btrfs: Drop unused function btrfs_abort_devices()
[deliverable/linux.git] / fs / btrfs / free-space-cache.c
1 /*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30
31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
33
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 struct btrfs_free_space *info);
38
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 struct btrfs_path *path,
41 u64 offset)
42 {
43 struct btrfs_key key;
44 struct btrfs_key location;
45 struct btrfs_disk_key disk_key;
46 struct btrfs_free_space_header *header;
47 struct extent_buffer *leaf;
48 struct inode *inode = NULL;
49 int ret;
50
51 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 key.offset = offset;
53 key.type = 0;
54
55 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 if (ret < 0)
57 return ERR_PTR(ret);
58 if (ret > 0) {
59 btrfs_release_path(path);
60 return ERR_PTR(-ENOENT);
61 }
62
63 leaf = path->nodes[0];
64 header = btrfs_item_ptr(leaf, path->slots[0],
65 struct btrfs_free_space_header);
66 btrfs_free_space_key(leaf, header, &disk_key);
67 btrfs_disk_key_to_cpu(&location, &disk_key);
68 btrfs_release_path(path);
69
70 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 if (!inode)
72 return ERR_PTR(-ENOENT);
73 if (IS_ERR(inode))
74 return inode;
75 if (is_bad_inode(inode)) {
76 iput(inode);
77 return ERR_PTR(-ENOENT);
78 }
79
80 inode->i_mapping->flags &= ~__GFP_FS;
81
82 return inode;
83 }
84
85 struct inode *lookup_free_space_inode(struct btrfs_root *root,
86 struct btrfs_block_group_cache
87 *block_group, struct btrfs_path *path)
88 {
89 struct inode *inode = NULL;
90 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
91
92 spin_lock(&block_group->lock);
93 if (block_group->inode)
94 inode = igrab(block_group->inode);
95 spin_unlock(&block_group->lock);
96 if (inode)
97 return inode;
98
99 inode = __lookup_free_space_inode(root, path,
100 block_group->key.objectid);
101 if (IS_ERR(inode))
102 return inode;
103
104 spin_lock(&block_group->lock);
105 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
106 printk(KERN_INFO "Old style space inode found, converting.\n");
107 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
108 BTRFS_INODE_NODATACOW;
109 block_group->disk_cache_state = BTRFS_DC_CLEAR;
110 }
111
112 if (!block_group->iref) {
113 block_group->inode = igrab(inode);
114 block_group->iref = 1;
115 }
116 spin_unlock(&block_group->lock);
117
118 return inode;
119 }
120
121 int __create_free_space_inode(struct btrfs_root *root,
122 struct btrfs_trans_handle *trans,
123 struct btrfs_path *path, u64 ino, u64 offset)
124 {
125 struct btrfs_key key;
126 struct btrfs_disk_key disk_key;
127 struct btrfs_free_space_header *header;
128 struct btrfs_inode_item *inode_item;
129 struct extent_buffer *leaf;
130 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
131 int ret;
132
133 ret = btrfs_insert_empty_inode(trans, root, path, ino);
134 if (ret)
135 return ret;
136
137 /* We inline crc's for the free disk space cache */
138 if (ino != BTRFS_FREE_INO_OBJECTID)
139 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
140
141 leaf = path->nodes[0];
142 inode_item = btrfs_item_ptr(leaf, path->slots[0],
143 struct btrfs_inode_item);
144 btrfs_item_key(leaf, &disk_key, path->slots[0]);
145 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
146 sizeof(*inode_item));
147 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
148 btrfs_set_inode_size(leaf, inode_item, 0);
149 btrfs_set_inode_nbytes(leaf, inode_item, 0);
150 btrfs_set_inode_uid(leaf, inode_item, 0);
151 btrfs_set_inode_gid(leaf, inode_item, 0);
152 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
153 btrfs_set_inode_flags(leaf, inode_item, flags);
154 btrfs_set_inode_nlink(leaf, inode_item, 1);
155 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
156 btrfs_set_inode_block_group(leaf, inode_item, offset);
157 btrfs_mark_buffer_dirty(leaf);
158 btrfs_release_path(path);
159
160 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
161 key.offset = offset;
162 key.type = 0;
163
164 ret = btrfs_insert_empty_item(trans, root, path, &key,
165 sizeof(struct btrfs_free_space_header));
166 if (ret < 0) {
167 btrfs_release_path(path);
168 return ret;
169 }
170 leaf = path->nodes[0];
171 header = btrfs_item_ptr(leaf, path->slots[0],
172 struct btrfs_free_space_header);
173 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
174 btrfs_set_free_space_key(leaf, header, &disk_key);
175 btrfs_mark_buffer_dirty(leaf);
176 btrfs_release_path(path);
177
178 return 0;
179 }
180
181 int create_free_space_inode(struct btrfs_root *root,
182 struct btrfs_trans_handle *trans,
183 struct btrfs_block_group_cache *block_group,
184 struct btrfs_path *path)
185 {
186 int ret;
187 u64 ino;
188
189 ret = btrfs_find_free_objectid(root, &ino);
190 if (ret < 0)
191 return ret;
192
193 return __create_free_space_inode(root, trans, path, ino,
194 block_group->key.objectid);
195 }
196
197 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
198 struct btrfs_trans_handle *trans,
199 struct btrfs_path *path,
200 struct inode *inode)
201 {
202 struct btrfs_block_rsv *rsv;
203 u64 needed_bytes;
204 loff_t oldsize;
205 int ret = 0;
206
207 rsv = trans->block_rsv;
208 trans->block_rsv = &root->fs_info->global_block_rsv;
209
210 /* 1 for slack space, 1 for updating the inode */
211 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
212 btrfs_calc_trans_metadata_size(root, 1);
213
214 spin_lock(&trans->block_rsv->lock);
215 if (trans->block_rsv->reserved < needed_bytes) {
216 spin_unlock(&trans->block_rsv->lock);
217 trans->block_rsv = rsv;
218 return -ENOSPC;
219 }
220 spin_unlock(&trans->block_rsv->lock);
221
222 oldsize = i_size_read(inode);
223 btrfs_i_size_write(inode, 0);
224 truncate_pagecache(inode, oldsize, 0);
225
226 /*
227 * We don't need an orphan item because truncating the free space cache
228 * will never be split across transactions.
229 */
230 ret = btrfs_truncate_inode_items(trans, root, inode,
231 0, BTRFS_EXTENT_DATA_KEY);
232
233 if (ret) {
234 trans->block_rsv = rsv;
235 btrfs_abort_transaction(trans, root, ret);
236 return ret;
237 }
238
239 ret = btrfs_update_inode(trans, root, inode);
240 if (ret)
241 btrfs_abort_transaction(trans, root, ret);
242 trans->block_rsv = rsv;
243
244 return ret;
245 }
246
247 static int readahead_cache(struct inode *inode)
248 {
249 struct file_ra_state *ra;
250 unsigned long last_index;
251
252 ra = kzalloc(sizeof(*ra), GFP_NOFS);
253 if (!ra)
254 return -ENOMEM;
255
256 file_ra_state_init(ra, inode->i_mapping);
257 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
258
259 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
260
261 kfree(ra);
262
263 return 0;
264 }
265
266 struct io_ctl {
267 void *cur, *orig;
268 struct page *page;
269 struct page **pages;
270 struct btrfs_root *root;
271 unsigned long size;
272 int index;
273 int num_pages;
274 unsigned check_crcs:1;
275 };
276
277 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
278 struct btrfs_root *root)
279 {
280 memset(io_ctl, 0, sizeof(struct io_ctl));
281 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
282 PAGE_CACHE_SHIFT;
283 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
284 GFP_NOFS);
285 if (!io_ctl->pages)
286 return -ENOMEM;
287 io_ctl->root = root;
288 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
289 io_ctl->check_crcs = 1;
290 return 0;
291 }
292
293 static void io_ctl_free(struct io_ctl *io_ctl)
294 {
295 kfree(io_ctl->pages);
296 }
297
298 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
299 {
300 if (io_ctl->cur) {
301 kunmap(io_ctl->page);
302 io_ctl->cur = NULL;
303 io_ctl->orig = NULL;
304 }
305 }
306
307 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
308 {
309 WARN_ON(io_ctl->cur);
310 BUG_ON(io_ctl->index >= io_ctl->num_pages);
311 io_ctl->page = io_ctl->pages[io_ctl->index++];
312 io_ctl->cur = kmap(io_ctl->page);
313 io_ctl->orig = io_ctl->cur;
314 io_ctl->size = PAGE_CACHE_SIZE;
315 if (clear)
316 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
317 }
318
319 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
320 {
321 int i;
322
323 io_ctl_unmap_page(io_ctl);
324
325 for (i = 0; i < io_ctl->num_pages; i++) {
326 if (io_ctl->pages[i]) {
327 ClearPageChecked(io_ctl->pages[i]);
328 unlock_page(io_ctl->pages[i]);
329 page_cache_release(io_ctl->pages[i]);
330 }
331 }
332 }
333
334 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
335 int uptodate)
336 {
337 struct page *page;
338 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
339 int i;
340
341 for (i = 0; i < io_ctl->num_pages; i++) {
342 page = find_or_create_page(inode->i_mapping, i, mask);
343 if (!page) {
344 io_ctl_drop_pages(io_ctl);
345 return -ENOMEM;
346 }
347 io_ctl->pages[i] = page;
348 if (uptodate && !PageUptodate(page)) {
349 btrfs_readpage(NULL, page);
350 lock_page(page);
351 if (!PageUptodate(page)) {
352 printk(KERN_ERR "btrfs: error reading free "
353 "space cache\n");
354 io_ctl_drop_pages(io_ctl);
355 return -EIO;
356 }
357 }
358 }
359
360 for (i = 0; i < io_ctl->num_pages; i++) {
361 clear_page_dirty_for_io(io_ctl->pages[i]);
362 set_page_extent_mapped(io_ctl->pages[i]);
363 }
364
365 return 0;
366 }
367
368 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
369 {
370 u64 *val;
371
372 io_ctl_map_page(io_ctl, 1);
373
374 /*
375 * Skip the csum areas. If we don't check crcs then we just have a
376 * 64bit chunk at the front of the first page.
377 */
378 if (io_ctl->check_crcs) {
379 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
380 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
381 } else {
382 io_ctl->cur += sizeof(u64);
383 io_ctl->size -= sizeof(u64) * 2;
384 }
385
386 val = io_ctl->cur;
387 *val = cpu_to_le64(generation);
388 io_ctl->cur += sizeof(u64);
389 }
390
391 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
392 {
393 u64 *gen;
394
395 /*
396 * Skip the crc area. If we don't check crcs then we just have a 64bit
397 * chunk at the front of the first page.
398 */
399 if (io_ctl->check_crcs) {
400 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
401 io_ctl->size -= sizeof(u64) +
402 (sizeof(u32) * io_ctl->num_pages);
403 } else {
404 io_ctl->cur += sizeof(u64);
405 io_ctl->size -= sizeof(u64) * 2;
406 }
407
408 gen = io_ctl->cur;
409 if (le64_to_cpu(*gen) != generation) {
410 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
411 "(%Lu) does not match inode (%Lu)\n", *gen,
412 generation);
413 io_ctl_unmap_page(io_ctl);
414 return -EIO;
415 }
416 io_ctl->cur += sizeof(u64);
417 return 0;
418 }
419
420 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
421 {
422 u32 *tmp;
423 u32 crc = ~(u32)0;
424 unsigned offset = 0;
425
426 if (!io_ctl->check_crcs) {
427 io_ctl_unmap_page(io_ctl);
428 return;
429 }
430
431 if (index == 0)
432 offset = sizeof(u32) * io_ctl->num_pages;
433
434 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
435 PAGE_CACHE_SIZE - offset);
436 btrfs_csum_final(crc, (char *)&crc);
437 io_ctl_unmap_page(io_ctl);
438 tmp = kmap(io_ctl->pages[0]);
439 tmp += index;
440 *tmp = crc;
441 kunmap(io_ctl->pages[0]);
442 }
443
444 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
445 {
446 u32 *tmp, val;
447 u32 crc = ~(u32)0;
448 unsigned offset = 0;
449
450 if (!io_ctl->check_crcs) {
451 io_ctl_map_page(io_ctl, 0);
452 return 0;
453 }
454
455 if (index == 0)
456 offset = sizeof(u32) * io_ctl->num_pages;
457
458 tmp = kmap(io_ctl->pages[0]);
459 tmp += index;
460 val = *tmp;
461 kunmap(io_ctl->pages[0]);
462
463 io_ctl_map_page(io_ctl, 0);
464 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
465 PAGE_CACHE_SIZE - offset);
466 btrfs_csum_final(crc, (char *)&crc);
467 if (val != crc) {
468 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
469 "space cache\n");
470 io_ctl_unmap_page(io_ctl);
471 return -EIO;
472 }
473
474 return 0;
475 }
476
477 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
478 void *bitmap)
479 {
480 struct btrfs_free_space_entry *entry;
481
482 if (!io_ctl->cur)
483 return -ENOSPC;
484
485 entry = io_ctl->cur;
486 entry->offset = cpu_to_le64(offset);
487 entry->bytes = cpu_to_le64(bytes);
488 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
489 BTRFS_FREE_SPACE_EXTENT;
490 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
491 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
492
493 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
494 return 0;
495
496 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
497
498 /* No more pages to map */
499 if (io_ctl->index >= io_ctl->num_pages)
500 return 0;
501
502 /* map the next page */
503 io_ctl_map_page(io_ctl, 1);
504 return 0;
505 }
506
507 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
508 {
509 if (!io_ctl->cur)
510 return -ENOSPC;
511
512 /*
513 * If we aren't at the start of the current page, unmap this one and
514 * map the next one if there is any left.
515 */
516 if (io_ctl->cur != io_ctl->orig) {
517 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
518 if (io_ctl->index >= io_ctl->num_pages)
519 return -ENOSPC;
520 io_ctl_map_page(io_ctl, 0);
521 }
522
523 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
524 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
525 if (io_ctl->index < io_ctl->num_pages)
526 io_ctl_map_page(io_ctl, 0);
527 return 0;
528 }
529
530 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
531 {
532 /*
533 * If we're not on the boundary we know we've modified the page and we
534 * need to crc the page.
535 */
536 if (io_ctl->cur != io_ctl->orig)
537 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 else
539 io_ctl_unmap_page(io_ctl);
540
541 while (io_ctl->index < io_ctl->num_pages) {
542 io_ctl_map_page(io_ctl, 1);
543 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
544 }
545 }
546
547 static int io_ctl_read_entry(struct io_ctl *io_ctl,
548 struct btrfs_free_space *entry, u8 *type)
549 {
550 struct btrfs_free_space_entry *e;
551 int ret;
552
553 if (!io_ctl->cur) {
554 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
555 if (ret)
556 return ret;
557 }
558
559 e = io_ctl->cur;
560 entry->offset = le64_to_cpu(e->offset);
561 entry->bytes = le64_to_cpu(e->bytes);
562 *type = e->type;
563 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
564 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
565
566 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
567 return 0;
568
569 io_ctl_unmap_page(io_ctl);
570
571 return 0;
572 }
573
574 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
575 struct btrfs_free_space *entry)
576 {
577 int ret;
578
579 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
580 if (ret)
581 return ret;
582
583 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
584 io_ctl_unmap_page(io_ctl);
585
586 return 0;
587 }
588
589 /*
590 * Since we attach pinned extents after the fact we can have contiguous sections
591 * of free space that are split up in entries. This poses a problem with the
592 * tree logging stuff since it could have allocated across what appears to be 2
593 * entries since we would have merged the entries when adding the pinned extents
594 * back to the free space cache. So run through the space cache that we just
595 * loaded and merge contiguous entries. This will make the log replay stuff not
596 * blow up and it will make for nicer allocator behavior.
597 */
598 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
599 {
600 struct btrfs_free_space *e, *prev = NULL;
601 struct rb_node *n;
602
603 again:
604 spin_lock(&ctl->tree_lock);
605 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
606 e = rb_entry(n, struct btrfs_free_space, offset_index);
607 if (!prev)
608 goto next;
609 if (e->bitmap || prev->bitmap)
610 goto next;
611 if (prev->offset + prev->bytes == e->offset) {
612 unlink_free_space(ctl, prev);
613 unlink_free_space(ctl, e);
614 prev->bytes += e->bytes;
615 kmem_cache_free(btrfs_free_space_cachep, e);
616 link_free_space(ctl, prev);
617 prev = NULL;
618 spin_unlock(&ctl->tree_lock);
619 goto again;
620 }
621 next:
622 prev = e;
623 }
624 spin_unlock(&ctl->tree_lock);
625 }
626
627 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
628 struct btrfs_free_space_ctl *ctl,
629 struct btrfs_path *path, u64 offset)
630 {
631 struct btrfs_free_space_header *header;
632 struct extent_buffer *leaf;
633 struct io_ctl io_ctl;
634 struct btrfs_key key;
635 struct btrfs_free_space *e, *n;
636 struct list_head bitmaps;
637 u64 num_entries;
638 u64 num_bitmaps;
639 u64 generation;
640 u8 type;
641 int ret = 0;
642
643 INIT_LIST_HEAD(&bitmaps);
644
645 /* Nothing in the space cache, goodbye */
646 if (!i_size_read(inode))
647 return 0;
648
649 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
650 key.offset = offset;
651 key.type = 0;
652
653 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
654 if (ret < 0)
655 return 0;
656 else if (ret > 0) {
657 btrfs_release_path(path);
658 return 0;
659 }
660
661 ret = -1;
662
663 leaf = path->nodes[0];
664 header = btrfs_item_ptr(leaf, path->slots[0],
665 struct btrfs_free_space_header);
666 num_entries = btrfs_free_space_entries(leaf, header);
667 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
668 generation = btrfs_free_space_generation(leaf, header);
669 btrfs_release_path(path);
670
671 if (BTRFS_I(inode)->generation != generation) {
672 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
673 " not match free space cache generation (%llu)\n",
674 (unsigned long long)BTRFS_I(inode)->generation,
675 (unsigned long long)generation);
676 return 0;
677 }
678
679 if (!num_entries)
680 return 0;
681
682 ret = io_ctl_init(&io_ctl, inode, root);
683 if (ret)
684 return ret;
685
686 ret = readahead_cache(inode);
687 if (ret)
688 goto out;
689
690 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
691 if (ret)
692 goto out;
693
694 ret = io_ctl_check_crc(&io_ctl, 0);
695 if (ret)
696 goto free_cache;
697
698 ret = io_ctl_check_generation(&io_ctl, generation);
699 if (ret)
700 goto free_cache;
701
702 while (num_entries) {
703 e = kmem_cache_zalloc(btrfs_free_space_cachep,
704 GFP_NOFS);
705 if (!e)
706 goto free_cache;
707
708 ret = io_ctl_read_entry(&io_ctl, e, &type);
709 if (ret) {
710 kmem_cache_free(btrfs_free_space_cachep, e);
711 goto free_cache;
712 }
713
714 if (!e->bytes) {
715 kmem_cache_free(btrfs_free_space_cachep, e);
716 goto free_cache;
717 }
718
719 if (type == BTRFS_FREE_SPACE_EXTENT) {
720 spin_lock(&ctl->tree_lock);
721 ret = link_free_space(ctl, e);
722 spin_unlock(&ctl->tree_lock);
723 if (ret) {
724 printk(KERN_ERR "Duplicate entries in "
725 "free space cache, dumping\n");
726 kmem_cache_free(btrfs_free_space_cachep, e);
727 goto free_cache;
728 }
729 } else {
730 BUG_ON(!num_bitmaps);
731 num_bitmaps--;
732 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
733 if (!e->bitmap) {
734 kmem_cache_free(
735 btrfs_free_space_cachep, e);
736 goto free_cache;
737 }
738 spin_lock(&ctl->tree_lock);
739 ret = link_free_space(ctl, e);
740 ctl->total_bitmaps++;
741 ctl->op->recalc_thresholds(ctl);
742 spin_unlock(&ctl->tree_lock);
743 if (ret) {
744 printk(KERN_ERR "Duplicate entries in "
745 "free space cache, dumping\n");
746 kmem_cache_free(btrfs_free_space_cachep, e);
747 goto free_cache;
748 }
749 list_add_tail(&e->list, &bitmaps);
750 }
751
752 num_entries--;
753 }
754
755 io_ctl_unmap_page(&io_ctl);
756
757 /*
758 * We add the bitmaps at the end of the entries in order that
759 * the bitmap entries are added to the cache.
760 */
761 list_for_each_entry_safe(e, n, &bitmaps, list) {
762 list_del_init(&e->list);
763 ret = io_ctl_read_bitmap(&io_ctl, e);
764 if (ret)
765 goto free_cache;
766 }
767
768 io_ctl_drop_pages(&io_ctl);
769 merge_space_tree(ctl);
770 ret = 1;
771 out:
772 io_ctl_free(&io_ctl);
773 return ret;
774 free_cache:
775 io_ctl_drop_pages(&io_ctl);
776 __btrfs_remove_free_space_cache(ctl);
777 goto out;
778 }
779
780 int load_free_space_cache(struct btrfs_fs_info *fs_info,
781 struct btrfs_block_group_cache *block_group)
782 {
783 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
784 struct btrfs_root *root = fs_info->tree_root;
785 struct inode *inode;
786 struct btrfs_path *path;
787 int ret = 0;
788 bool matched;
789 u64 used = btrfs_block_group_used(&block_group->item);
790
791 /*
792 * If this block group has been marked to be cleared for one reason or
793 * another then we can't trust the on disk cache, so just return.
794 */
795 spin_lock(&block_group->lock);
796 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
797 spin_unlock(&block_group->lock);
798 return 0;
799 }
800 spin_unlock(&block_group->lock);
801
802 path = btrfs_alloc_path();
803 if (!path)
804 return 0;
805 path->search_commit_root = 1;
806 path->skip_locking = 1;
807
808 inode = lookup_free_space_inode(root, block_group, path);
809 if (IS_ERR(inode)) {
810 btrfs_free_path(path);
811 return 0;
812 }
813
814 /* We may have converted the inode and made the cache invalid. */
815 spin_lock(&block_group->lock);
816 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
817 spin_unlock(&block_group->lock);
818 btrfs_free_path(path);
819 goto out;
820 }
821 spin_unlock(&block_group->lock);
822
823 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
824 path, block_group->key.objectid);
825 btrfs_free_path(path);
826 if (ret <= 0)
827 goto out;
828
829 spin_lock(&ctl->tree_lock);
830 matched = (ctl->free_space == (block_group->key.offset - used -
831 block_group->bytes_super));
832 spin_unlock(&ctl->tree_lock);
833
834 if (!matched) {
835 __btrfs_remove_free_space_cache(ctl);
836 printk(KERN_ERR "block group %llu has an wrong amount of free "
837 "space\n", block_group->key.objectid);
838 ret = -1;
839 }
840 out:
841 if (ret < 0) {
842 /* This cache is bogus, make sure it gets cleared */
843 spin_lock(&block_group->lock);
844 block_group->disk_cache_state = BTRFS_DC_CLEAR;
845 spin_unlock(&block_group->lock);
846 ret = 0;
847
848 printk(KERN_ERR "btrfs: failed to load free space cache "
849 "for block group %llu\n", block_group->key.objectid);
850 }
851
852 iput(inode);
853 return ret;
854 }
855
856 /**
857 * __btrfs_write_out_cache - write out cached info to an inode
858 * @root - the root the inode belongs to
859 * @ctl - the free space cache we are going to write out
860 * @block_group - the block_group for this cache if it belongs to a block_group
861 * @trans - the trans handle
862 * @path - the path to use
863 * @offset - the offset for the key we'll insert
864 *
865 * This function writes out a free space cache struct to disk for quick recovery
866 * on mount. This will return 0 if it was successfull in writing the cache out,
867 * and -1 if it was not.
868 */
869 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
870 struct btrfs_free_space_ctl *ctl,
871 struct btrfs_block_group_cache *block_group,
872 struct btrfs_trans_handle *trans,
873 struct btrfs_path *path, u64 offset)
874 {
875 struct btrfs_free_space_header *header;
876 struct extent_buffer *leaf;
877 struct rb_node *node;
878 struct list_head *pos, *n;
879 struct extent_state *cached_state = NULL;
880 struct btrfs_free_cluster *cluster = NULL;
881 struct extent_io_tree *unpin = NULL;
882 struct io_ctl io_ctl;
883 struct list_head bitmap_list;
884 struct btrfs_key key;
885 u64 start, extent_start, extent_end, len;
886 int entries = 0;
887 int bitmaps = 0;
888 int ret;
889 int err = -1;
890
891 INIT_LIST_HEAD(&bitmap_list);
892
893 if (!i_size_read(inode))
894 return -1;
895
896 ret = io_ctl_init(&io_ctl, inode, root);
897 if (ret)
898 return -1;
899
900 /* Get the cluster for this block_group if it exists */
901 if (block_group && !list_empty(&block_group->cluster_list))
902 cluster = list_entry(block_group->cluster_list.next,
903 struct btrfs_free_cluster,
904 block_group_list);
905
906 /* Lock all pages first so we can lock the extent safely. */
907 io_ctl_prepare_pages(&io_ctl, inode, 0);
908
909 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
910 0, &cached_state);
911
912 node = rb_first(&ctl->free_space_offset);
913 if (!node && cluster) {
914 node = rb_first(&cluster->root);
915 cluster = NULL;
916 }
917
918 /* Make sure we can fit our crcs into the first page */
919 if (io_ctl.check_crcs &&
920 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
921 WARN_ON(1);
922 goto out_nospc;
923 }
924
925 io_ctl_set_generation(&io_ctl, trans->transid);
926
927 /* Write out the extent entries */
928 while (node) {
929 struct btrfs_free_space *e;
930
931 e = rb_entry(node, struct btrfs_free_space, offset_index);
932 entries++;
933
934 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
935 e->bitmap);
936 if (ret)
937 goto out_nospc;
938
939 if (e->bitmap) {
940 list_add_tail(&e->list, &bitmap_list);
941 bitmaps++;
942 }
943 node = rb_next(node);
944 if (!node && cluster) {
945 node = rb_first(&cluster->root);
946 cluster = NULL;
947 }
948 }
949
950 /*
951 * We want to add any pinned extents to our free space cache
952 * so we don't leak the space
953 */
954
955 /*
956 * We shouldn't have switched the pinned extents yet so this is the
957 * right one
958 */
959 unpin = root->fs_info->pinned_extents;
960
961 if (block_group)
962 start = block_group->key.objectid;
963
964 while (block_group && (start < block_group->key.objectid +
965 block_group->key.offset)) {
966 ret = find_first_extent_bit(unpin, start,
967 &extent_start, &extent_end,
968 EXTENT_DIRTY);
969 if (ret) {
970 ret = 0;
971 break;
972 }
973
974 /* This pinned extent is out of our range */
975 if (extent_start >= block_group->key.objectid +
976 block_group->key.offset)
977 break;
978
979 extent_start = max(extent_start, start);
980 extent_end = min(block_group->key.objectid +
981 block_group->key.offset, extent_end + 1);
982 len = extent_end - extent_start;
983
984 entries++;
985 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
986 if (ret)
987 goto out_nospc;
988
989 start = extent_end;
990 }
991
992 /* Write out the bitmaps */
993 list_for_each_safe(pos, n, &bitmap_list) {
994 struct btrfs_free_space *entry =
995 list_entry(pos, struct btrfs_free_space, list);
996
997 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
998 if (ret)
999 goto out_nospc;
1000 list_del_init(&entry->list);
1001 }
1002
1003 /* Zero out the rest of the pages just to make sure */
1004 io_ctl_zero_remaining_pages(&io_ctl);
1005
1006 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1007 0, i_size_read(inode), &cached_state);
1008 io_ctl_drop_pages(&io_ctl);
1009 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1010 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1011
1012 if (ret)
1013 goto out;
1014
1015
1016 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1017
1018 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1019 key.offset = offset;
1020 key.type = 0;
1021
1022 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1023 if (ret < 0) {
1024 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1025 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1026 GFP_NOFS);
1027 goto out;
1028 }
1029 leaf = path->nodes[0];
1030 if (ret > 0) {
1031 struct btrfs_key found_key;
1032 BUG_ON(!path->slots[0]);
1033 path->slots[0]--;
1034 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1035 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1036 found_key.offset != offset) {
1037 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1038 inode->i_size - 1,
1039 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1040 NULL, GFP_NOFS);
1041 btrfs_release_path(path);
1042 goto out;
1043 }
1044 }
1045
1046 BTRFS_I(inode)->generation = trans->transid;
1047 header = btrfs_item_ptr(leaf, path->slots[0],
1048 struct btrfs_free_space_header);
1049 btrfs_set_free_space_entries(leaf, header, entries);
1050 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1051 btrfs_set_free_space_generation(leaf, header, trans->transid);
1052 btrfs_mark_buffer_dirty(leaf);
1053 btrfs_release_path(path);
1054
1055 err = 0;
1056 out:
1057 io_ctl_free(&io_ctl);
1058 if (err) {
1059 invalidate_inode_pages2(inode->i_mapping);
1060 BTRFS_I(inode)->generation = 0;
1061 }
1062 btrfs_update_inode(trans, root, inode);
1063 return err;
1064
1065 out_nospc:
1066 list_for_each_safe(pos, n, &bitmap_list) {
1067 struct btrfs_free_space *entry =
1068 list_entry(pos, struct btrfs_free_space, list);
1069 list_del_init(&entry->list);
1070 }
1071 io_ctl_drop_pages(&io_ctl);
1072 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1073 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1074 goto out;
1075 }
1076
1077 int btrfs_write_out_cache(struct btrfs_root *root,
1078 struct btrfs_trans_handle *trans,
1079 struct btrfs_block_group_cache *block_group,
1080 struct btrfs_path *path)
1081 {
1082 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1083 struct inode *inode;
1084 int ret = 0;
1085
1086 root = root->fs_info->tree_root;
1087
1088 spin_lock(&block_group->lock);
1089 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1090 spin_unlock(&block_group->lock);
1091 return 0;
1092 }
1093 spin_unlock(&block_group->lock);
1094
1095 inode = lookup_free_space_inode(root, block_group, path);
1096 if (IS_ERR(inode))
1097 return 0;
1098
1099 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1100 path, block_group->key.objectid);
1101 if (ret) {
1102 spin_lock(&block_group->lock);
1103 block_group->disk_cache_state = BTRFS_DC_ERROR;
1104 spin_unlock(&block_group->lock);
1105 ret = 0;
1106 #ifdef DEBUG
1107 printk(KERN_ERR "btrfs: failed to write free space cache "
1108 "for block group %llu\n", block_group->key.objectid);
1109 #endif
1110 }
1111
1112 iput(inode);
1113 return ret;
1114 }
1115
1116 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1117 u64 offset)
1118 {
1119 BUG_ON(offset < bitmap_start);
1120 offset -= bitmap_start;
1121 return (unsigned long)(div_u64(offset, unit));
1122 }
1123
1124 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1125 {
1126 return (unsigned long)(div_u64(bytes, unit));
1127 }
1128
1129 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1130 u64 offset)
1131 {
1132 u64 bitmap_start;
1133 u64 bytes_per_bitmap;
1134
1135 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1136 bitmap_start = offset - ctl->start;
1137 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1138 bitmap_start *= bytes_per_bitmap;
1139 bitmap_start += ctl->start;
1140
1141 return bitmap_start;
1142 }
1143
1144 static int tree_insert_offset(struct rb_root *root, u64 offset,
1145 struct rb_node *node, int bitmap)
1146 {
1147 struct rb_node **p = &root->rb_node;
1148 struct rb_node *parent = NULL;
1149 struct btrfs_free_space *info;
1150
1151 while (*p) {
1152 parent = *p;
1153 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1154
1155 if (offset < info->offset) {
1156 p = &(*p)->rb_left;
1157 } else if (offset > info->offset) {
1158 p = &(*p)->rb_right;
1159 } else {
1160 /*
1161 * we could have a bitmap entry and an extent entry
1162 * share the same offset. If this is the case, we want
1163 * the extent entry to always be found first if we do a
1164 * linear search through the tree, since we want to have
1165 * the quickest allocation time, and allocating from an
1166 * extent is faster than allocating from a bitmap. So
1167 * if we're inserting a bitmap and we find an entry at
1168 * this offset, we want to go right, or after this entry
1169 * logically. If we are inserting an extent and we've
1170 * found a bitmap, we want to go left, or before
1171 * logically.
1172 */
1173 if (bitmap) {
1174 if (info->bitmap) {
1175 WARN_ON_ONCE(1);
1176 return -EEXIST;
1177 }
1178 p = &(*p)->rb_right;
1179 } else {
1180 if (!info->bitmap) {
1181 WARN_ON_ONCE(1);
1182 return -EEXIST;
1183 }
1184 p = &(*p)->rb_left;
1185 }
1186 }
1187 }
1188
1189 rb_link_node(node, parent, p);
1190 rb_insert_color(node, root);
1191
1192 return 0;
1193 }
1194
1195 /*
1196 * searches the tree for the given offset.
1197 *
1198 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1199 * want a section that has at least bytes size and comes at or after the given
1200 * offset.
1201 */
1202 static struct btrfs_free_space *
1203 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1204 u64 offset, int bitmap_only, int fuzzy)
1205 {
1206 struct rb_node *n = ctl->free_space_offset.rb_node;
1207 struct btrfs_free_space *entry, *prev = NULL;
1208
1209 /* find entry that is closest to the 'offset' */
1210 while (1) {
1211 if (!n) {
1212 entry = NULL;
1213 break;
1214 }
1215
1216 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1217 prev = entry;
1218
1219 if (offset < entry->offset)
1220 n = n->rb_left;
1221 else if (offset > entry->offset)
1222 n = n->rb_right;
1223 else
1224 break;
1225 }
1226
1227 if (bitmap_only) {
1228 if (!entry)
1229 return NULL;
1230 if (entry->bitmap)
1231 return entry;
1232
1233 /*
1234 * bitmap entry and extent entry may share same offset,
1235 * in that case, bitmap entry comes after extent entry.
1236 */
1237 n = rb_next(n);
1238 if (!n)
1239 return NULL;
1240 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1241 if (entry->offset != offset)
1242 return NULL;
1243
1244 WARN_ON(!entry->bitmap);
1245 return entry;
1246 } else if (entry) {
1247 if (entry->bitmap) {
1248 /*
1249 * if previous extent entry covers the offset,
1250 * we should return it instead of the bitmap entry
1251 */
1252 n = &entry->offset_index;
1253 while (1) {
1254 n = rb_prev(n);
1255 if (!n)
1256 break;
1257 prev = rb_entry(n, struct btrfs_free_space,
1258 offset_index);
1259 if (!prev->bitmap) {
1260 if (prev->offset + prev->bytes > offset)
1261 entry = prev;
1262 break;
1263 }
1264 }
1265 }
1266 return entry;
1267 }
1268
1269 if (!prev)
1270 return NULL;
1271
1272 /* find last entry before the 'offset' */
1273 entry = prev;
1274 if (entry->offset > offset) {
1275 n = rb_prev(&entry->offset_index);
1276 if (n) {
1277 entry = rb_entry(n, struct btrfs_free_space,
1278 offset_index);
1279 BUG_ON(entry->offset > offset);
1280 } else {
1281 if (fuzzy)
1282 return entry;
1283 else
1284 return NULL;
1285 }
1286 }
1287
1288 if (entry->bitmap) {
1289 n = &entry->offset_index;
1290 while (1) {
1291 n = rb_prev(n);
1292 if (!n)
1293 break;
1294 prev = rb_entry(n, struct btrfs_free_space,
1295 offset_index);
1296 if (!prev->bitmap) {
1297 if (prev->offset + prev->bytes > offset)
1298 return prev;
1299 break;
1300 }
1301 }
1302 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1303 return entry;
1304 } else if (entry->offset + entry->bytes > offset)
1305 return entry;
1306
1307 if (!fuzzy)
1308 return NULL;
1309
1310 while (1) {
1311 if (entry->bitmap) {
1312 if (entry->offset + BITS_PER_BITMAP *
1313 ctl->unit > offset)
1314 break;
1315 } else {
1316 if (entry->offset + entry->bytes > offset)
1317 break;
1318 }
1319
1320 n = rb_next(&entry->offset_index);
1321 if (!n)
1322 return NULL;
1323 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1324 }
1325 return entry;
1326 }
1327
1328 static inline void
1329 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1330 struct btrfs_free_space *info)
1331 {
1332 rb_erase(&info->offset_index, &ctl->free_space_offset);
1333 ctl->free_extents--;
1334 }
1335
1336 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1337 struct btrfs_free_space *info)
1338 {
1339 __unlink_free_space(ctl, info);
1340 ctl->free_space -= info->bytes;
1341 }
1342
1343 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1344 struct btrfs_free_space *info)
1345 {
1346 int ret = 0;
1347
1348 BUG_ON(!info->bitmap && !info->bytes);
1349 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1350 &info->offset_index, (info->bitmap != NULL));
1351 if (ret)
1352 return ret;
1353
1354 ctl->free_space += info->bytes;
1355 ctl->free_extents++;
1356 return ret;
1357 }
1358
1359 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1360 {
1361 struct btrfs_block_group_cache *block_group = ctl->private;
1362 u64 max_bytes;
1363 u64 bitmap_bytes;
1364 u64 extent_bytes;
1365 u64 size = block_group->key.offset;
1366 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1367 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1368
1369 BUG_ON(ctl->total_bitmaps > max_bitmaps);
1370
1371 /*
1372 * The goal is to keep the total amount of memory used per 1gb of space
1373 * at or below 32k, so we need to adjust how much memory we allow to be
1374 * used by extent based free space tracking
1375 */
1376 if (size < 1024 * 1024 * 1024)
1377 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1378 else
1379 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1380 div64_u64(size, 1024 * 1024 * 1024);
1381
1382 /*
1383 * we want to account for 1 more bitmap than what we have so we can make
1384 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1385 * we add more bitmaps.
1386 */
1387 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1388
1389 if (bitmap_bytes >= max_bytes) {
1390 ctl->extents_thresh = 0;
1391 return;
1392 }
1393
1394 /*
1395 * we want the extent entry threshold to always be at most 1/2 the maxw
1396 * bytes we can have, or whatever is less than that.
1397 */
1398 extent_bytes = max_bytes - bitmap_bytes;
1399 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1400
1401 ctl->extents_thresh =
1402 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1403 }
1404
1405 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1406 struct btrfs_free_space *info,
1407 u64 offset, u64 bytes)
1408 {
1409 unsigned long start, count;
1410
1411 start = offset_to_bit(info->offset, ctl->unit, offset);
1412 count = bytes_to_bits(bytes, ctl->unit);
1413 BUG_ON(start + count > BITS_PER_BITMAP);
1414
1415 bitmap_clear(info->bitmap, start, count);
1416
1417 info->bytes -= bytes;
1418 }
1419
1420 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1421 struct btrfs_free_space *info, u64 offset,
1422 u64 bytes)
1423 {
1424 __bitmap_clear_bits(ctl, info, offset, bytes);
1425 ctl->free_space -= bytes;
1426 }
1427
1428 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1429 struct btrfs_free_space *info, u64 offset,
1430 u64 bytes)
1431 {
1432 unsigned long start, count;
1433
1434 start = offset_to_bit(info->offset, ctl->unit, offset);
1435 count = bytes_to_bits(bytes, ctl->unit);
1436 BUG_ON(start + count > BITS_PER_BITMAP);
1437
1438 bitmap_set(info->bitmap, start, count);
1439
1440 info->bytes += bytes;
1441 ctl->free_space += bytes;
1442 }
1443
1444 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1445 struct btrfs_free_space *bitmap_info, u64 *offset,
1446 u64 *bytes)
1447 {
1448 unsigned long found_bits = 0;
1449 unsigned long bits, i;
1450 unsigned long next_zero;
1451
1452 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1453 max_t(u64, *offset, bitmap_info->offset));
1454 bits = bytes_to_bits(*bytes, ctl->unit);
1455
1456 for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1457 i < BITS_PER_BITMAP;
1458 i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1459 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1460 BITS_PER_BITMAP, i);
1461 if ((next_zero - i) >= bits) {
1462 found_bits = next_zero - i;
1463 break;
1464 }
1465 i = next_zero;
1466 }
1467
1468 if (found_bits) {
1469 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1470 *bytes = (u64)(found_bits) * ctl->unit;
1471 return 0;
1472 }
1473
1474 return -1;
1475 }
1476
1477 static struct btrfs_free_space *
1478 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1479 {
1480 struct btrfs_free_space *entry;
1481 struct rb_node *node;
1482 int ret;
1483
1484 if (!ctl->free_space_offset.rb_node)
1485 return NULL;
1486
1487 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1488 if (!entry)
1489 return NULL;
1490
1491 for (node = &entry->offset_index; node; node = rb_next(node)) {
1492 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1493 if (entry->bytes < *bytes)
1494 continue;
1495
1496 if (entry->bitmap) {
1497 ret = search_bitmap(ctl, entry, offset, bytes);
1498 if (!ret)
1499 return entry;
1500 continue;
1501 }
1502
1503 *offset = entry->offset;
1504 *bytes = entry->bytes;
1505 return entry;
1506 }
1507
1508 return NULL;
1509 }
1510
1511 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1512 struct btrfs_free_space *info, u64 offset)
1513 {
1514 info->offset = offset_to_bitmap(ctl, offset);
1515 info->bytes = 0;
1516 INIT_LIST_HEAD(&info->list);
1517 link_free_space(ctl, info);
1518 ctl->total_bitmaps++;
1519
1520 ctl->op->recalc_thresholds(ctl);
1521 }
1522
1523 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1524 struct btrfs_free_space *bitmap_info)
1525 {
1526 unlink_free_space(ctl, bitmap_info);
1527 kfree(bitmap_info->bitmap);
1528 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1529 ctl->total_bitmaps--;
1530 ctl->op->recalc_thresholds(ctl);
1531 }
1532
1533 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1534 struct btrfs_free_space *bitmap_info,
1535 u64 *offset, u64 *bytes)
1536 {
1537 u64 end;
1538 u64 search_start, search_bytes;
1539 int ret;
1540
1541 again:
1542 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1543
1544 /*
1545 * XXX - this can go away after a few releases.
1546 *
1547 * since the only user of btrfs_remove_free_space is the tree logging
1548 * stuff, and the only way to test that is under crash conditions, we
1549 * want to have this debug stuff here just in case somethings not
1550 * working. Search the bitmap for the space we are trying to use to
1551 * make sure its actually there. If its not there then we need to stop
1552 * because something has gone wrong.
1553 */
1554 search_start = *offset;
1555 search_bytes = *bytes;
1556 search_bytes = min(search_bytes, end - search_start + 1);
1557 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1558 BUG_ON(ret < 0 || search_start != *offset);
1559
1560 if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1561 bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
1562 *bytes -= end - *offset + 1;
1563 *offset = end + 1;
1564 } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1565 bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
1566 *bytes = 0;
1567 }
1568
1569 if (*bytes) {
1570 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1571 if (!bitmap_info->bytes)
1572 free_bitmap(ctl, bitmap_info);
1573
1574 /*
1575 * no entry after this bitmap, but we still have bytes to
1576 * remove, so something has gone wrong.
1577 */
1578 if (!next)
1579 return -EINVAL;
1580
1581 bitmap_info = rb_entry(next, struct btrfs_free_space,
1582 offset_index);
1583
1584 /*
1585 * if the next entry isn't a bitmap we need to return to let the
1586 * extent stuff do its work.
1587 */
1588 if (!bitmap_info->bitmap)
1589 return -EAGAIN;
1590
1591 /*
1592 * Ok the next item is a bitmap, but it may not actually hold
1593 * the information for the rest of this free space stuff, so
1594 * look for it, and if we don't find it return so we can try
1595 * everything over again.
1596 */
1597 search_start = *offset;
1598 search_bytes = *bytes;
1599 ret = search_bitmap(ctl, bitmap_info, &search_start,
1600 &search_bytes);
1601 if (ret < 0 || search_start != *offset)
1602 return -EAGAIN;
1603
1604 goto again;
1605 } else if (!bitmap_info->bytes)
1606 free_bitmap(ctl, bitmap_info);
1607
1608 return 0;
1609 }
1610
1611 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1612 struct btrfs_free_space *info, u64 offset,
1613 u64 bytes)
1614 {
1615 u64 bytes_to_set = 0;
1616 u64 end;
1617
1618 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1619
1620 bytes_to_set = min(end - offset, bytes);
1621
1622 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1623
1624 return bytes_to_set;
1625
1626 }
1627
1628 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1629 struct btrfs_free_space *info)
1630 {
1631 struct btrfs_block_group_cache *block_group = ctl->private;
1632
1633 /*
1634 * If we are below the extents threshold then we can add this as an
1635 * extent, and don't have to deal with the bitmap
1636 */
1637 if (ctl->free_extents < ctl->extents_thresh) {
1638 /*
1639 * If this block group has some small extents we don't want to
1640 * use up all of our free slots in the cache with them, we want
1641 * to reserve them to larger extents, however if we have plent
1642 * of cache left then go ahead an dadd them, no sense in adding
1643 * the overhead of a bitmap if we don't have to.
1644 */
1645 if (info->bytes <= block_group->sectorsize * 4) {
1646 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1647 return false;
1648 } else {
1649 return false;
1650 }
1651 }
1652
1653 /*
1654 * some block groups are so tiny they can't be enveloped by a bitmap, so
1655 * don't even bother to create a bitmap for this
1656 */
1657 if (BITS_PER_BITMAP * block_group->sectorsize >
1658 block_group->key.offset)
1659 return false;
1660
1661 return true;
1662 }
1663
1664 static struct btrfs_free_space_op free_space_op = {
1665 .recalc_thresholds = recalculate_thresholds,
1666 .use_bitmap = use_bitmap,
1667 };
1668
1669 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1670 struct btrfs_free_space *info)
1671 {
1672 struct btrfs_free_space *bitmap_info;
1673 struct btrfs_block_group_cache *block_group = NULL;
1674 int added = 0;
1675 u64 bytes, offset, bytes_added;
1676 int ret;
1677
1678 bytes = info->bytes;
1679 offset = info->offset;
1680
1681 if (!ctl->op->use_bitmap(ctl, info))
1682 return 0;
1683
1684 if (ctl->op == &free_space_op)
1685 block_group = ctl->private;
1686 again:
1687 /*
1688 * Since we link bitmaps right into the cluster we need to see if we
1689 * have a cluster here, and if so and it has our bitmap we need to add
1690 * the free space to that bitmap.
1691 */
1692 if (block_group && !list_empty(&block_group->cluster_list)) {
1693 struct btrfs_free_cluster *cluster;
1694 struct rb_node *node;
1695 struct btrfs_free_space *entry;
1696
1697 cluster = list_entry(block_group->cluster_list.next,
1698 struct btrfs_free_cluster,
1699 block_group_list);
1700 spin_lock(&cluster->lock);
1701 node = rb_first(&cluster->root);
1702 if (!node) {
1703 spin_unlock(&cluster->lock);
1704 goto no_cluster_bitmap;
1705 }
1706
1707 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1708 if (!entry->bitmap) {
1709 spin_unlock(&cluster->lock);
1710 goto no_cluster_bitmap;
1711 }
1712
1713 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1714 bytes_added = add_bytes_to_bitmap(ctl, entry,
1715 offset, bytes);
1716 bytes -= bytes_added;
1717 offset += bytes_added;
1718 }
1719 spin_unlock(&cluster->lock);
1720 if (!bytes) {
1721 ret = 1;
1722 goto out;
1723 }
1724 }
1725
1726 no_cluster_bitmap:
1727 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1728 1, 0);
1729 if (!bitmap_info) {
1730 BUG_ON(added);
1731 goto new_bitmap;
1732 }
1733
1734 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1735 bytes -= bytes_added;
1736 offset += bytes_added;
1737 added = 0;
1738
1739 if (!bytes) {
1740 ret = 1;
1741 goto out;
1742 } else
1743 goto again;
1744
1745 new_bitmap:
1746 if (info && info->bitmap) {
1747 add_new_bitmap(ctl, info, offset);
1748 added = 1;
1749 info = NULL;
1750 goto again;
1751 } else {
1752 spin_unlock(&ctl->tree_lock);
1753
1754 /* no pre-allocated info, allocate a new one */
1755 if (!info) {
1756 info = kmem_cache_zalloc(btrfs_free_space_cachep,
1757 GFP_NOFS);
1758 if (!info) {
1759 spin_lock(&ctl->tree_lock);
1760 ret = -ENOMEM;
1761 goto out;
1762 }
1763 }
1764
1765 /* allocate the bitmap */
1766 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1767 spin_lock(&ctl->tree_lock);
1768 if (!info->bitmap) {
1769 ret = -ENOMEM;
1770 goto out;
1771 }
1772 goto again;
1773 }
1774
1775 out:
1776 if (info) {
1777 if (info->bitmap)
1778 kfree(info->bitmap);
1779 kmem_cache_free(btrfs_free_space_cachep, info);
1780 }
1781
1782 return ret;
1783 }
1784
1785 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1786 struct btrfs_free_space *info, bool update_stat)
1787 {
1788 struct btrfs_free_space *left_info;
1789 struct btrfs_free_space *right_info;
1790 bool merged = false;
1791 u64 offset = info->offset;
1792 u64 bytes = info->bytes;
1793
1794 /*
1795 * first we want to see if there is free space adjacent to the range we
1796 * are adding, if there is remove that struct and add a new one to
1797 * cover the entire range
1798 */
1799 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1800 if (right_info && rb_prev(&right_info->offset_index))
1801 left_info = rb_entry(rb_prev(&right_info->offset_index),
1802 struct btrfs_free_space, offset_index);
1803 else
1804 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1805
1806 if (right_info && !right_info->bitmap) {
1807 if (update_stat)
1808 unlink_free_space(ctl, right_info);
1809 else
1810 __unlink_free_space(ctl, right_info);
1811 info->bytes += right_info->bytes;
1812 kmem_cache_free(btrfs_free_space_cachep, right_info);
1813 merged = true;
1814 }
1815
1816 if (left_info && !left_info->bitmap &&
1817 left_info->offset + left_info->bytes == offset) {
1818 if (update_stat)
1819 unlink_free_space(ctl, left_info);
1820 else
1821 __unlink_free_space(ctl, left_info);
1822 info->offset = left_info->offset;
1823 info->bytes += left_info->bytes;
1824 kmem_cache_free(btrfs_free_space_cachep, left_info);
1825 merged = true;
1826 }
1827
1828 return merged;
1829 }
1830
1831 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1832 u64 offset, u64 bytes)
1833 {
1834 struct btrfs_free_space *info;
1835 int ret = 0;
1836
1837 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1838 if (!info)
1839 return -ENOMEM;
1840
1841 info->offset = offset;
1842 info->bytes = bytes;
1843
1844 spin_lock(&ctl->tree_lock);
1845
1846 if (try_merge_free_space(ctl, info, true))
1847 goto link;
1848
1849 /*
1850 * There was no extent directly to the left or right of this new
1851 * extent then we know we're going to have to allocate a new extent, so
1852 * before we do that see if we need to drop this into a bitmap
1853 */
1854 ret = insert_into_bitmap(ctl, info);
1855 if (ret < 0) {
1856 goto out;
1857 } else if (ret) {
1858 ret = 0;
1859 goto out;
1860 }
1861 link:
1862 ret = link_free_space(ctl, info);
1863 if (ret)
1864 kmem_cache_free(btrfs_free_space_cachep, info);
1865 out:
1866 spin_unlock(&ctl->tree_lock);
1867
1868 if (ret) {
1869 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1870 BUG_ON(ret == -EEXIST);
1871 }
1872
1873 return ret;
1874 }
1875
1876 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1877 u64 offset, u64 bytes)
1878 {
1879 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1880 struct btrfs_free_space *info;
1881 struct btrfs_free_space *next_info = NULL;
1882 int ret = 0;
1883
1884 spin_lock(&ctl->tree_lock);
1885
1886 again:
1887 info = tree_search_offset(ctl, offset, 0, 0);
1888 if (!info) {
1889 /*
1890 * oops didn't find an extent that matched the space we wanted
1891 * to remove, look for a bitmap instead
1892 */
1893 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1894 1, 0);
1895 if (!info) {
1896 /* the tree logging code might be calling us before we
1897 * have fully loaded the free space rbtree for this
1898 * block group. So it is possible the entry won't
1899 * be in the rbtree yet at all. The caching code
1900 * will make sure not to put it in the rbtree if
1901 * the logging code has pinned it.
1902 */
1903 goto out_lock;
1904 }
1905 }
1906
1907 if (info->bytes < bytes && rb_next(&info->offset_index)) {
1908 u64 end;
1909 next_info = rb_entry(rb_next(&info->offset_index),
1910 struct btrfs_free_space,
1911 offset_index);
1912
1913 if (next_info->bitmap)
1914 end = next_info->offset +
1915 BITS_PER_BITMAP * ctl->unit - 1;
1916 else
1917 end = next_info->offset + next_info->bytes;
1918
1919 if (next_info->bytes < bytes ||
1920 next_info->offset > offset || offset > end) {
1921 printk(KERN_CRIT "Found free space at %llu, size %llu,"
1922 " trying to use %llu\n",
1923 (unsigned long long)info->offset,
1924 (unsigned long long)info->bytes,
1925 (unsigned long long)bytes);
1926 WARN_ON(1);
1927 ret = -EINVAL;
1928 goto out_lock;
1929 }
1930
1931 info = next_info;
1932 }
1933
1934 if (info->bytes == bytes) {
1935 unlink_free_space(ctl, info);
1936 if (info->bitmap) {
1937 kfree(info->bitmap);
1938 ctl->total_bitmaps--;
1939 }
1940 kmem_cache_free(btrfs_free_space_cachep, info);
1941 ret = 0;
1942 goto out_lock;
1943 }
1944
1945 if (!info->bitmap && info->offset == offset) {
1946 unlink_free_space(ctl, info);
1947 info->offset += bytes;
1948 info->bytes -= bytes;
1949 ret = link_free_space(ctl, info);
1950 WARN_ON(ret);
1951 goto out_lock;
1952 }
1953
1954 if (!info->bitmap && info->offset <= offset &&
1955 info->offset + info->bytes >= offset + bytes) {
1956 u64 old_start = info->offset;
1957 /*
1958 * we're freeing space in the middle of the info,
1959 * this can happen during tree log replay
1960 *
1961 * first unlink the old info and then
1962 * insert it again after the hole we're creating
1963 */
1964 unlink_free_space(ctl, info);
1965 if (offset + bytes < info->offset + info->bytes) {
1966 u64 old_end = info->offset + info->bytes;
1967
1968 info->offset = offset + bytes;
1969 info->bytes = old_end - info->offset;
1970 ret = link_free_space(ctl, info);
1971 WARN_ON(ret);
1972 if (ret)
1973 goto out_lock;
1974 } else {
1975 /* the hole we're creating ends at the end
1976 * of the info struct, just free the info
1977 */
1978 kmem_cache_free(btrfs_free_space_cachep, info);
1979 }
1980 spin_unlock(&ctl->tree_lock);
1981
1982 /* step two, insert a new info struct to cover
1983 * anything before the hole
1984 */
1985 ret = btrfs_add_free_space(block_group, old_start,
1986 offset - old_start);
1987 WARN_ON(ret); /* -ENOMEM */
1988 goto out;
1989 }
1990
1991 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1992 if (ret == -EAGAIN)
1993 goto again;
1994 BUG_ON(ret); /* logic error */
1995 out_lock:
1996 spin_unlock(&ctl->tree_lock);
1997 out:
1998 return ret;
1999 }
2000
2001 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2002 u64 bytes)
2003 {
2004 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2005 struct btrfs_free_space *info;
2006 struct rb_node *n;
2007 int count = 0;
2008
2009 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2010 info = rb_entry(n, struct btrfs_free_space, offset_index);
2011 if (info->bytes >= bytes)
2012 count++;
2013 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
2014 (unsigned long long)info->offset,
2015 (unsigned long long)info->bytes,
2016 (info->bitmap) ? "yes" : "no");
2017 }
2018 printk(KERN_INFO "block group has cluster?: %s\n",
2019 list_empty(&block_group->cluster_list) ? "no" : "yes");
2020 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
2021 "\n", count);
2022 }
2023
2024 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2025 {
2026 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2027
2028 spin_lock_init(&ctl->tree_lock);
2029 ctl->unit = block_group->sectorsize;
2030 ctl->start = block_group->key.objectid;
2031 ctl->private = block_group;
2032 ctl->op = &free_space_op;
2033
2034 /*
2035 * we only want to have 32k of ram per block group for keeping
2036 * track of free space, and if we pass 1/2 of that we want to
2037 * start converting things over to using bitmaps
2038 */
2039 ctl->extents_thresh = ((1024 * 32) / 2) /
2040 sizeof(struct btrfs_free_space);
2041 }
2042
2043 /*
2044 * for a given cluster, put all of its extents back into the free
2045 * space cache. If the block group passed doesn't match the block group
2046 * pointed to by the cluster, someone else raced in and freed the
2047 * cluster already. In that case, we just return without changing anything
2048 */
2049 static int
2050 __btrfs_return_cluster_to_free_space(
2051 struct btrfs_block_group_cache *block_group,
2052 struct btrfs_free_cluster *cluster)
2053 {
2054 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2055 struct btrfs_free_space *entry;
2056 struct rb_node *node;
2057
2058 spin_lock(&cluster->lock);
2059 if (cluster->block_group != block_group)
2060 goto out;
2061
2062 cluster->block_group = NULL;
2063 cluster->window_start = 0;
2064 list_del_init(&cluster->block_group_list);
2065
2066 node = rb_first(&cluster->root);
2067 while (node) {
2068 bool bitmap;
2069
2070 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2071 node = rb_next(&entry->offset_index);
2072 rb_erase(&entry->offset_index, &cluster->root);
2073
2074 bitmap = (entry->bitmap != NULL);
2075 if (!bitmap)
2076 try_merge_free_space(ctl, entry, false);
2077 tree_insert_offset(&ctl->free_space_offset,
2078 entry->offset, &entry->offset_index, bitmap);
2079 }
2080 cluster->root = RB_ROOT;
2081
2082 out:
2083 spin_unlock(&cluster->lock);
2084 btrfs_put_block_group(block_group);
2085 return 0;
2086 }
2087
2088 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
2089 {
2090 struct btrfs_free_space *info;
2091 struct rb_node *node;
2092
2093 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2094 info = rb_entry(node, struct btrfs_free_space, offset_index);
2095 if (!info->bitmap) {
2096 unlink_free_space(ctl, info);
2097 kmem_cache_free(btrfs_free_space_cachep, info);
2098 } else {
2099 free_bitmap(ctl, info);
2100 }
2101 if (need_resched()) {
2102 spin_unlock(&ctl->tree_lock);
2103 cond_resched();
2104 spin_lock(&ctl->tree_lock);
2105 }
2106 }
2107 }
2108
2109 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2110 {
2111 spin_lock(&ctl->tree_lock);
2112 __btrfs_remove_free_space_cache_locked(ctl);
2113 spin_unlock(&ctl->tree_lock);
2114 }
2115
2116 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2117 {
2118 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2119 struct btrfs_free_cluster *cluster;
2120 struct list_head *head;
2121
2122 spin_lock(&ctl->tree_lock);
2123 while ((head = block_group->cluster_list.next) !=
2124 &block_group->cluster_list) {
2125 cluster = list_entry(head, struct btrfs_free_cluster,
2126 block_group_list);
2127
2128 WARN_ON(cluster->block_group != block_group);
2129 __btrfs_return_cluster_to_free_space(block_group, cluster);
2130 if (need_resched()) {
2131 spin_unlock(&ctl->tree_lock);
2132 cond_resched();
2133 spin_lock(&ctl->tree_lock);
2134 }
2135 }
2136 __btrfs_remove_free_space_cache_locked(ctl);
2137 spin_unlock(&ctl->tree_lock);
2138
2139 }
2140
2141 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2142 u64 offset, u64 bytes, u64 empty_size)
2143 {
2144 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2145 struct btrfs_free_space *entry = NULL;
2146 u64 bytes_search = bytes + empty_size;
2147 u64 ret = 0;
2148
2149 spin_lock(&ctl->tree_lock);
2150 entry = find_free_space(ctl, &offset, &bytes_search);
2151 if (!entry)
2152 goto out;
2153
2154 ret = offset;
2155 if (entry->bitmap) {
2156 bitmap_clear_bits(ctl, entry, offset, bytes);
2157 if (!entry->bytes)
2158 free_bitmap(ctl, entry);
2159 } else {
2160 unlink_free_space(ctl, entry);
2161 entry->offset += bytes;
2162 entry->bytes -= bytes;
2163 if (!entry->bytes)
2164 kmem_cache_free(btrfs_free_space_cachep, entry);
2165 else
2166 link_free_space(ctl, entry);
2167 }
2168
2169 out:
2170 spin_unlock(&ctl->tree_lock);
2171
2172 return ret;
2173 }
2174
2175 /*
2176 * given a cluster, put all of its extents back into the free space
2177 * cache. If a block group is passed, this function will only free
2178 * a cluster that belongs to the passed block group.
2179 *
2180 * Otherwise, it'll get a reference on the block group pointed to by the
2181 * cluster and remove the cluster from it.
2182 */
2183 int btrfs_return_cluster_to_free_space(
2184 struct btrfs_block_group_cache *block_group,
2185 struct btrfs_free_cluster *cluster)
2186 {
2187 struct btrfs_free_space_ctl *ctl;
2188 int ret;
2189
2190 /* first, get a safe pointer to the block group */
2191 spin_lock(&cluster->lock);
2192 if (!block_group) {
2193 block_group = cluster->block_group;
2194 if (!block_group) {
2195 spin_unlock(&cluster->lock);
2196 return 0;
2197 }
2198 } else if (cluster->block_group != block_group) {
2199 /* someone else has already freed it don't redo their work */
2200 spin_unlock(&cluster->lock);
2201 return 0;
2202 }
2203 atomic_inc(&block_group->count);
2204 spin_unlock(&cluster->lock);
2205
2206 ctl = block_group->free_space_ctl;
2207
2208 /* now return any extents the cluster had on it */
2209 spin_lock(&ctl->tree_lock);
2210 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2211 spin_unlock(&ctl->tree_lock);
2212
2213 /* finally drop our ref */
2214 btrfs_put_block_group(block_group);
2215 return ret;
2216 }
2217
2218 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2219 struct btrfs_free_cluster *cluster,
2220 struct btrfs_free_space *entry,
2221 u64 bytes, u64 min_start)
2222 {
2223 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2224 int err;
2225 u64 search_start = cluster->window_start;
2226 u64 search_bytes = bytes;
2227 u64 ret = 0;
2228
2229 search_start = min_start;
2230 search_bytes = bytes;
2231
2232 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2233 if (err)
2234 return 0;
2235
2236 ret = search_start;
2237 __bitmap_clear_bits(ctl, entry, ret, bytes);
2238
2239 return ret;
2240 }
2241
2242 /*
2243 * given a cluster, try to allocate 'bytes' from it, returns 0
2244 * if it couldn't find anything suitably large, or a logical disk offset
2245 * if things worked out
2246 */
2247 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2248 struct btrfs_free_cluster *cluster, u64 bytes,
2249 u64 min_start)
2250 {
2251 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2252 struct btrfs_free_space *entry = NULL;
2253 struct rb_node *node;
2254 u64 ret = 0;
2255
2256 spin_lock(&cluster->lock);
2257 if (bytes > cluster->max_size)
2258 goto out;
2259
2260 if (cluster->block_group != block_group)
2261 goto out;
2262
2263 node = rb_first(&cluster->root);
2264 if (!node)
2265 goto out;
2266
2267 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2268 while(1) {
2269 if (entry->bytes < bytes ||
2270 (!entry->bitmap && entry->offset < min_start)) {
2271 node = rb_next(&entry->offset_index);
2272 if (!node)
2273 break;
2274 entry = rb_entry(node, struct btrfs_free_space,
2275 offset_index);
2276 continue;
2277 }
2278
2279 if (entry->bitmap) {
2280 ret = btrfs_alloc_from_bitmap(block_group,
2281 cluster, entry, bytes,
2282 cluster->window_start);
2283 if (ret == 0) {
2284 node = rb_next(&entry->offset_index);
2285 if (!node)
2286 break;
2287 entry = rb_entry(node, struct btrfs_free_space,
2288 offset_index);
2289 continue;
2290 }
2291 cluster->window_start += bytes;
2292 } else {
2293 ret = entry->offset;
2294
2295 entry->offset += bytes;
2296 entry->bytes -= bytes;
2297 }
2298
2299 if (entry->bytes == 0)
2300 rb_erase(&entry->offset_index, &cluster->root);
2301 break;
2302 }
2303 out:
2304 spin_unlock(&cluster->lock);
2305
2306 if (!ret)
2307 return 0;
2308
2309 spin_lock(&ctl->tree_lock);
2310
2311 ctl->free_space -= bytes;
2312 if (entry->bytes == 0) {
2313 ctl->free_extents--;
2314 if (entry->bitmap) {
2315 kfree(entry->bitmap);
2316 ctl->total_bitmaps--;
2317 ctl->op->recalc_thresholds(ctl);
2318 }
2319 kmem_cache_free(btrfs_free_space_cachep, entry);
2320 }
2321
2322 spin_unlock(&ctl->tree_lock);
2323
2324 return ret;
2325 }
2326
2327 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2328 struct btrfs_free_space *entry,
2329 struct btrfs_free_cluster *cluster,
2330 u64 offset, u64 bytes,
2331 u64 cont1_bytes, u64 min_bytes)
2332 {
2333 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2334 unsigned long next_zero;
2335 unsigned long i;
2336 unsigned long want_bits;
2337 unsigned long min_bits;
2338 unsigned long found_bits;
2339 unsigned long start = 0;
2340 unsigned long total_found = 0;
2341 int ret;
2342
2343 i = offset_to_bit(entry->offset, block_group->sectorsize,
2344 max_t(u64, offset, entry->offset));
2345 want_bits = bytes_to_bits(bytes, block_group->sectorsize);
2346 min_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2347
2348 again:
2349 found_bits = 0;
2350 for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2351 i < BITS_PER_BITMAP;
2352 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2353 next_zero = find_next_zero_bit(entry->bitmap,
2354 BITS_PER_BITMAP, i);
2355 if (next_zero - i >= min_bits) {
2356 found_bits = next_zero - i;
2357 break;
2358 }
2359 i = next_zero;
2360 }
2361
2362 if (!found_bits)
2363 return -ENOSPC;
2364
2365 if (!total_found) {
2366 start = i;
2367 cluster->max_size = 0;
2368 }
2369
2370 total_found += found_bits;
2371
2372 if (cluster->max_size < found_bits * block_group->sectorsize)
2373 cluster->max_size = found_bits * block_group->sectorsize;
2374
2375 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2376 i = next_zero + 1;
2377 goto again;
2378 }
2379
2380 cluster->window_start = start * block_group->sectorsize +
2381 entry->offset;
2382 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2383 ret = tree_insert_offset(&cluster->root, entry->offset,
2384 &entry->offset_index, 1);
2385 BUG_ON(ret); /* -EEXIST; Logic error */
2386
2387 trace_btrfs_setup_cluster(block_group, cluster,
2388 total_found * block_group->sectorsize, 1);
2389 return 0;
2390 }
2391
2392 /*
2393 * This searches the block group for just extents to fill the cluster with.
2394 * Try to find a cluster with at least bytes total bytes, at least one
2395 * extent of cont1_bytes, and other clusters of at least min_bytes.
2396 */
2397 static noinline int
2398 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2399 struct btrfs_free_cluster *cluster,
2400 struct list_head *bitmaps, u64 offset, u64 bytes,
2401 u64 cont1_bytes, u64 min_bytes)
2402 {
2403 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2404 struct btrfs_free_space *first = NULL;
2405 struct btrfs_free_space *entry = NULL;
2406 struct btrfs_free_space *last;
2407 struct rb_node *node;
2408 u64 window_start;
2409 u64 window_free;
2410 u64 max_extent;
2411 u64 total_size = 0;
2412
2413 entry = tree_search_offset(ctl, offset, 0, 1);
2414 if (!entry)
2415 return -ENOSPC;
2416
2417 /*
2418 * We don't want bitmaps, so just move along until we find a normal
2419 * extent entry.
2420 */
2421 while (entry->bitmap || entry->bytes < min_bytes) {
2422 if (entry->bitmap && list_empty(&entry->list))
2423 list_add_tail(&entry->list, bitmaps);
2424 node = rb_next(&entry->offset_index);
2425 if (!node)
2426 return -ENOSPC;
2427 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2428 }
2429
2430 window_start = entry->offset;
2431 window_free = entry->bytes;
2432 max_extent = entry->bytes;
2433 first = entry;
2434 last = entry;
2435
2436 for (node = rb_next(&entry->offset_index); node;
2437 node = rb_next(&entry->offset_index)) {
2438 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2439
2440 if (entry->bitmap) {
2441 if (list_empty(&entry->list))
2442 list_add_tail(&entry->list, bitmaps);
2443 continue;
2444 }
2445
2446 if (entry->bytes < min_bytes)
2447 continue;
2448
2449 last = entry;
2450 window_free += entry->bytes;
2451 if (entry->bytes > max_extent)
2452 max_extent = entry->bytes;
2453 }
2454
2455 if (window_free < bytes || max_extent < cont1_bytes)
2456 return -ENOSPC;
2457
2458 cluster->window_start = first->offset;
2459
2460 node = &first->offset_index;
2461
2462 /*
2463 * now we've found our entries, pull them out of the free space
2464 * cache and put them into the cluster rbtree
2465 */
2466 do {
2467 int ret;
2468
2469 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2470 node = rb_next(&entry->offset_index);
2471 if (entry->bitmap || entry->bytes < min_bytes)
2472 continue;
2473
2474 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2475 ret = tree_insert_offset(&cluster->root, entry->offset,
2476 &entry->offset_index, 0);
2477 total_size += entry->bytes;
2478 BUG_ON(ret); /* -EEXIST; Logic error */
2479 } while (node && entry != last);
2480
2481 cluster->max_size = max_extent;
2482 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2483 return 0;
2484 }
2485
2486 /*
2487 * This specifically looks for bitmaps that may work in the cluster, we assume
2488 * that we have already failed to find extents that will work.
2489 */
2490 static noinline int
2491 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2492 struct btrfs_free_cluster *cluster,
2493 struct list_head *bitmaps, u64 offset, u64 bytes,
2494 u64 cont1_bytes, u64 min_bytes)
2495 {
2496 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2497 struct btrfs_free_space *entry;
2498 int ret = -ENOSPC;
2499 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2500
2501 if (ctl->total_bitmaps == 0)
2502 return -ENOSPC;
2503
2504 /*
2505 * The bitmap that covers offset won't be in the list unless offset
2506 * is just its start offset.
2507 */
2508 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2509 if (entry->offset != bitmap_offset) {
2510 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2511 if (entry && list_empty(&entry->list))
2512 list_add(&entry->list, bitmaps);
2513 }
2514
2515 list_for_each_entry(entry, bitmaps, list) {
2516 if (entry->bytes < bytes)
2517 continue;
2518 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2519 bytes, cont1_bytes, min_bytes);
2520 if (!ret)
2521 return 0;
2522 }
2523
2524 /*
2525 * The bitmaps list has all the bitmaps that record free space
2526 * starting after offset, so no more search is required.
2527 */
2528 return -ENOSPC;
2529 }
2530
2531 /*
2532 * here we try to find a cluster of blocks in a block group. The goal
2533 * is to find at least bytes+empty_size.
2534 * We might not find them all in one contiguous area.
2535 *
2536 * returns zero and sets up cluster if things worked out, otherwise
2537 * it returns -enospc
2538 */
2539 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2540 struct btrfs_root *root,
2541 struct btrfs_block_group_cache *block_group,
2542 struct btrfs_free_cluster *cluster,
2543 u64 offset, u64 bytes, u64 empty_size)
2544 {
2545 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2546 struct btrfs_free_space *entry, *tmp;
2547 LIST_HEAD(bitmaps);
2548 u64 min_bytes;
2549 u64 cont1_bytes;
2550 int ret;
2551
2552 /*
2553 * Choose the minimum extent size we'll require for this
2554 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2555 * For metadata, allow allocates with smaller extents. For
2556 * data, keep it dense.
2557 */
2558 if (btrfs_test_opt(root, SSD_SPREAD)) {
2559 cont1_bytes = min_bytes = bytes + empty_size;
2560 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2561 cont1_bytes = bytes;
2562 min_bytes = block_group->sectorsize;
2563 } else {
2564 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2565 min_bytes = block_group->sectorsize;
2566 }
2567
2568 spin_lock(&ctl->tree_lock);
2569
2570 /*
2571 * If we know we don't have enough space to make a cluster don't even
2572 * bother doing all the work to try and find one.
2573 */
2574 if (ctl->free_space < bytes) {
2575 spin_unlock(&ctl->tree_lock);
2576 return -ENOSPC;
2577 }
2578
2579 spin_lock(&cluster->lock);
2580
2581 /* someone already found a cluster, hooray */
2582 if (cluster->block_group) {
2583 ret = 0;
2584 goto out;
2585 }
2586
2587 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2588 min_bytes);
2589
2590 INIT_LIST_HEAD(&bitmaps);
2591 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2592 bytes + empty_size,
2593 cont1_bytes, min_bytes);
2594 if (ret)
2595 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2596 offset, bytes + empty_size,
2597 cont1_bytes, min_bytes);
2598
2599 /* Clear our temporary list */
2600 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2601 list_del_init(&entry->list);
2602
2603 if (!ret) {
2604 atomic_inc(&block_group->count);
2605 list_add_tail(&cluster->block_group_list,
2606 &block_group->cluster_list);
2607 cluster->block_group = block_group;
2608 } else {
2609 trace_btrfs_failed_cluster_setup(block_group);
2610 }
2611 out:
2612 spin_unlock(&cluster->lock);
2613 spin_unlock(&ctl->tree_lock);
2614
2615 return ret;
2616 }
2617
2618 /*
2619 * simple code to zero out a cluster
2620 */
2621 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2622 {
2623 spin_lock_init(&cluster->lock);
2624 spin_lock_init(&cluster->refill_lock);
2625 cluster->root = RB_ROOT;
2626 cluster->max_size = 0;
2627 INIT_LIST_HEAD(&cluster->block_group_list);
2628 cluster->block_group = NULL;
2629 }
2630
2631 static int do_trimming(struct btrfs_block_group_cache *block_group,
2632 u64 *total_trimmed, u64 start, u64 bytes,
2633 u64 reserved_start, u64 reserved_bytes)
2634 {
2635 struct btrfs_space_info *space_info = block_group->space_info;
2636 struct btrfs_fs_info *fs_info = block_group->fs_info;
2637 int ret;
2638 int update = 0;
2639 u64 trimmed = 0;
2640
2641 spin_lock(&space_info->lock);
2642 spin_lock(&block_group->lock);
2643 if (!block_group->ro) {
2644 block_group->reserved += reserved_bytes;
2645 space_info->bytes_reserved += reserved_bytes;
2646 update = 1;
2647 }
2648 spin_unlock(&block_group->lock);
2649 spin_unlock(&space_info->lock);
2650
2651 ret = btrfs_error_discard_extent(fs_info->extent_root,
2652 start, bytes, &trimmed);
2653 if (!ret)
2654 *total_trimmed += trimmed;
2655
2656 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2657
2658 if (update) {
2659 spin_lock(&space_info->lock);
2660 spin_lock(&block_group->lock);
2661 if (block_group->ro)
2662 space_info->bytes_readonly += reserved_bytes;
2663 block_group->reserved -= reserved_bytes;
2664 space_info->bytes_reserved -= reserved_bytes;
2665 spin_unlock(&space_info->lock);
2666 spin_unlock(&block_group->lock);
2667 }
2668
2669 return ret;
2670 }
2671
2672 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2673 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2674 {
2675 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2676 struct btrfs_free_space *entry;
2677 struct rb_node *node;
2678 int ret = 0;
2679 u64 extent_start;
2680 u64 extent_bytes;
2681 u64 bytes;
2682
2683 while (start < end) {
2684 spin_lock(&ctl->tree_lock);
2685
2686 if (ctl->free_space < minlen) {
2687 spin_unlock(&ctl->tree_lock);
2688 break;
2689 }
2690
2691 entry = tree_search_offset(ctl, start, 0, 1);
2692 if (!entry) {
2693 spin_unlock(&ctl->tree_lock);
2694 break;
2695 }
2696
2697 /* skip bitmaps */
2698 while (entry->bitmap) {
2699 node = rb_next(&entry->offset_index);
2700 if (!node) {
2701 spin_unlock(&ctl->tree_lock);
2702 goto out;
2703 }
2704 entry = rb_entry(node, struct btrfs_free_space,
2705 offset_index);
2706 }
2707
2708 if (entry->offset >= end) {
2709 spin_unlock(&ctl->tree_lock);
2710 break;
2711 }
2712
2713 extent_start = entry->offset;
2714 extent_bytes = entry->bytes;
2715 start = max(start, extent_start);
2716 bytes = min(extent_start + extent_bytes, end) - start;
2717 if (bytes < minlen) {
2718 spin_unlock(&ctl->tree_lock);
2719 goto next;
2720 }
2721
2722 unlink_free_space(ctl, entry);
2723 kmem_cache_free(btrfs_free_space_cachep, entry);
2724
2725 spin_unlock(&ctl->tree_lock);
2726
2727 ret = do_trimming(block_group, total_trimmed, start, bytes,
2728 extent_start, extent_bytes);
2729 if (ret)
2730 break;
2731 next:
2732 start += bytes;
2733
2734 if (fatal_signal_pending(current)) {
2735 ret = -ERESTARTSYS;
2736 break;
2737 }
2738
2739 cond_resched();
2740 }
2741 out:
2742 return ret;
2743 }
2744
2745 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2746 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2747 {
2748 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2749 struct btrfs_free_space *entry;
2750 int ret = 0;
2751 int ret2;
2752 u64 bytes;
2753 u64 offset = offset_to_bitmap(ctl, start);
2754
2755 while (offset < end) {
2756 bool next_bitmap = false;
2757
2758 spin_lock(&ctl->tree_lock);
2759
2760 if (ctl->free_space < minlen) {
2761 spin_unlock(&ctl->tree_lock);
2762 break;
2763 }
2764
2765 entry = tree_search_offset(ctl, offset, 1, 0);
2766 if (!entry) {
2767 spin_unlock(&ctl->tree_lock);
2768 next_bitmap = true;
2769 goto next;
2770 }
2771
2772 bytes = minlen;
2773 ret2 = search_bitmap(ctl, entry, &start, &bytes);
2774 if (ret2 || start >= end) {
2775 spin_unlock(&ctl->tree_lock);
2776 next_bitmap = true;
2777 goto next;
2778 }
2779
2780 bytes = min(bytes, end - start);
2781 if (bytes < minlen) {
2782 spin_unlock(&ctl->tree_lock);
2783 goto next;
2784 }
2785
2786 bitmap_clear_bits(ctl, entry, start, bytes);
2787 if (entry->bytes == 0)
2788 free_bitmap(ctl, entry);
2789
2790 spin_unlock(&ctl->tree_lock);
2791
2792 ret = do_trimming(block_group, total_trimmed, start, bytes,
2793 start, bytes);
2794 if (ret)
2795 break;
2796 next:
2797 if (next_bitmap) {
2798 offset += BITS_PER_BITMAP * ctl->unit;
2799 } else {
2800 start += bytes;
2801 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2802 offset += BITS_PER_BITMAP * ctl->unit;
2803 }
2804
2805 if (fatal_signal_pending(current)) {
2806 ret = -ERESTARTSYS;
2807 break;
2808 }
2809
2810 cond_resched();
2811 }
2812
2813 return ret;
2814 }
2815
2816 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2817 u64 *trimmed, u64 start, u64 end, u64 minlen)
2818 {
2819 int ret;
2820
2821 *trimmed = 0;
2822
2823 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2824 if (ret)
2825 return ret;
2826
2827 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2828
2829 return ret;
2830 }
2831
2832 /*
2833 * Find the left-most item in the cache tree, and then return the
2834 * smallest inode number in the item.
2835 *
2836 * Note: the returned inode number may not be the smallest one in
2837 * the tree, if the left-most item is a bitmap.
2838 */
2839 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2840 {
2841 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2842 struct btrfs_free_space *entry = NULL;
2843 u64 ino = 0;
2844
2845 spin_lock(&ctl->tree_lock);
2846
2847 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2848 goto out;
2849
2850 entry = rb_entry(rb_first(&ctl->free_space_offset),
2851 struct btrfs_free_space, offset_index);
2852
2853 if (!entry->bitmap) {
2854 ino = entry->offset;
2855
2856 unlink_free_space(ctl, entry);
2857 entry->offset++;
2858 entry->bytes--;
2859 if (!entry->bytes)
2860 kmem_cache_free(btrfs_free_space_cachep, entry);
2861 else
2862 link_free_space(ctl, entry);
2863 } else {
2864 u64 offset = 0;
2865 u64 count = 1;
2866 int ret;
2867
2868 ret = search_bitmap(ctl, entry, &offset, &count);
2869 /* Logic error; Should be empty if it can't find anything */
2870 BUG_ON(ret);
2871
2872 ino = offset;
2873 bitmap_clear_bits(ctl, entry, offset, 1);
2874 if (entry->bytes == 0)
2875 free_bitmap(ctl, entry);
2876 }
2877 out:
2878 spin_unlock(&ctl->tree_lock);
2879
2880 return ino;
2881 }
2882
2883 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2884 struct btrfs_path *path)
2885 {
2886 struct inode *inode = NULL;
2887
2888 spin_lock(&root->cache_lock);
2889 if (root->cache_inode)
2890 inode = igrab(root->cache_inode);
2891 spin_unlock(&root->cache_lock);
2892 if (inode)
2893 return inode;
2894
2895 inode = __lookup_free_space_inode(root, path, 0);
2896 if (IS_ERR(inode))
2897 return inode;
2898
2899 spin_lock(&root->cache_lock);
2900 if (!btrfs_fs_closing(root->fs_info))
2901 root->cache_inode = igrab(inode);
2902 spin_unlock(&root->cache_lock);
2903
2904 return inode;
2905 }
2906
2907 int create_free_ino_inode(struct btrfs_root *root,
2908 struct btrfs_trans_handle *trans,
2909 struct btrfs_path *path)
2910 {
2911 return __create_free_space_inode(root, trans, path,
2912 BTRFS_FREE_INO_OBJECTID, 0);
2913 }
2914
2915 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2916 {
2917 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2918 struct btrfs_path *path;
2919 struct inode *inode;
2920 int ret = 0;
2921 u64 root_gen = btrfs_root_generation(&root->root_item);
2922
2923 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2924 return 0;
2925
2926 /*
2927 * If we're unmounting then just return, since this does a search on the
2928 * normal root and not the commit root and we could deadlock.
2929 */
2930 if (btrfs_fs_closing(fs_info))
2931 return 0;
2932
2933 path = btrfs_alloc_path();
2934 if (!path)
2935 return 0;
2936
2937 inode = lookup_free_ino_inode(root, path);
2938 if (IS_ERR(inode))
2939 goto out;
2940
2941 if (root_gen != BTRFS_I(inode)->generation)
2942 goto out_put;
2943
2944 ret = __load_free_space_cache(root, inode, ctl, path, 0);
2945
2946 if (ret < 0)
2947 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2948 "root %llu\n", root->root_key.objectid);
2949 out_put:
2950 iput(inode);
2951 out:
2952 btrfs_free_path(path);
2953 return ret;
2954 }
2955
2956 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2957 struct btrfs_trans_handle *trans,
2958 struct btrfs_path *path)
2959 {
2960 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2961 struct inode *inode;
2962 int ret;
2963
2964 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2965 return 0;
2966
2967 inode = lookup_free_ino_inode(root, path);
2968 if (IS_ERR(inode))
2969 return 0;
2970
2971 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2972 if (ret) {
2973 btrfs_delalloc_release_metadata(inode, inode->i_size);
2974 #ifdef DEBUG
2975 printk(KERN_ERR "btrfs: failed to write free ino cache "
2976 "for root %llu\n", root->root_key.objectid);
2977 #endif
2978 }
2979
2980 iput(inode);
2981 return ret;
2982 }
This page took 0.313053 seconds and 5 git commands to generate.