btrfs: using cached extent_state in set/unlock combinations
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
97 {
98 int err;
99
100 err = btrfs_init_acl(trans, inode, dir);
101 if (!err)
102 err = btrfs_xattr_security_init(trans, inode, dir);
103 return err;
104 }
105
106 /*
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
110 */
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
114 int compress_type,
115 struct page **compressed_pages)
116 {
117 struct btrfs_key key;
118 struct btrfs_path *path;
119 struct extent_buffer *leaf;
120 struct page *page = NULL;
121 char *kaddr;
122 unsigned long ptr;
123 struct btrfs_file_extent_item *ei;
124 int err = 0;
125 int ret;
126 size_t cur_size = size;
127 size_t datasize;
128 unsigned long offset;
129
130 if (compressed_size && compressed_pages)
131 cur_size = compressed_size;
132
133 path = btrfs_alloc_path();
134 if (!path)
135 return -ENOMEM;
136
137 path->leave_spinning = 1;
138 btrfs_set_trans_block_group(trans, inode);
139
140 key.objectid = inode->i_ino;
141 key.offset = start;
142 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
143 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145 inode_add_bytes(inode, size);
146 ret = btrfs_insert_empty_item(trans, root, path, &key,
147 datasize);
148 BUG_ON(ret);
149 if (ret) {
150 err = ret;
151 goto fail;
152 }
153 leaf = path->nodes[0];
154 ei = btrfs_item_ptr(leaf, path->slots[0],
155 struct btrfs_file_extent_item);
156 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158 btrfs_set_file_extent_encryption(leaf, ei, 0);
159 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161 ptr = btrfs_file_extent_inline_start(ei);
162
163 if (compress_type != BTRFS_COMPRESS_NONE) {
164 struct page *cpage;
165 int i = 0;
166 while (compressed_size > 0) {
167 cpage = compressed_pages[i];
168 cur_size = min_t(unsigned long, compressed_size,
169 PAGE_CACHE_SIZE);
170
171 kaddr = kmap_atomic(cpage, KM_USER0);
172 write_extent_buffer(leaf, kaddr, ptr, cur_size);
173 kunmap_atomic(kaddr, KM_USER0);
174
175 i++;
176 ptr += cur_size;
177 compressed_size -= cur_size;
178 }
179 btrfs_set_file_extent_compression(leaf, ei,
180 compress_type);
181 } else {
182 page = find_get_page(inode->i_mapping,
183 start >> PAGE_CACHE_SHIFT);
184 btrfs_set_file_extent_compression(leaf, ei, 0);
185 kaddr = kmap_atomic(page, KM_USER0);
186 offset = start & (PAGE_CACHE_SIZE - 1);
187 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188 kunmap_atomic(kaddr, KM_USER0);
189 page_cache_release(page);
190 }
191 btrfs_mark_buffer_dirty(leaf);
192 btrfs_free_path(path);
193
194 /*
195 * we're an inline extent, so nobody can
196 * extend the file past i_size without locking
197 * a page we already have locked.
198 *
199 * We must do any isize and inode updates
200 * before we unlock the pages. Otherwise we
201 * could end up racing with unlink.
202 */
203 BTRFS_I(inode)->disk_i_size = inode->i_size;
204 btrfs_update_inode(trans, root, inode);
205
206 return 0;
207 fail:
208 btrfs_free_path(path);
209 return err;
210 }
211
212
213 /*
214 * conditionally insert an inline extent into the file. This
215 * does the checks required to make sure the data is small enough
216 * to fit as an inline extent.
217 */
218 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
219 struct btrfs_root *root,
220 struct inode *inode, u64 start, u64 end,
221 size_t compressed_size, int compress_type,
222 struct page **compressed_pages)
223 {
224 u64 isize = i_size_read(inode);
225 u64 actual_end = min(end + 1, isize);
226 u64 inline_len = actual_end - start;
227 u64 aligned_end = (end + root->sectorsize - 1) &
228 ~((u64)root->sectorsize - 1);
229 u64 hint_byte;
230 u64 data_len = inline_len;
231 int ret;
232
233 if (compressed_size)
234 data_len = compressed_size;
235
236 if (start > 0 ||
237 actual_end >= PAGE_CACHE_SIZE ||
238 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239 (!compressed_size &&
240 (actual_end & (root->sectorsize - 1)) == 0) ||
241 end + 1 < isize ||
242 data_len > root->fs_info->max_inline) {
243 return 1;
244 }
245
246 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
247 &hint_byte, 1);
248 BUG_ON(ret);
249
250 if (isize > actual_end)
251 inline_len = min_t(u64, isize, actual_end);
252 ret = insert_inline_extent(trans, root, inode, start,
253 inline_len, compressed_size,
254 compress_type, compressed_pages);
255 BUG_ON(ret);
256 btrfs_delalloc_release_metadata(inode, end + 1 - start);
257 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
258 return 0;
259 }
260
261 struct async_extent {
262 u64 start;
263 u64 ram_size;
264 u64 compressed_size;
265 struct page **pages;
266 unsigned long nr_pages;
267 int compress_type;
268 struct list_head list;
269 };
270
271 struct async_cow {
272 struct inode *inode;
273 struct btrfs_root *root;
274 struct page *locked_page;
275 u64 start;
276 u64 end;
277 struct list_head extents;
278 struct btrfs_work work;
279 };
280
281 static noinline int add_async_extent(struct async_cow *cow,
282 u64 start, u64 ram_size,
283 u64 compressed_size,
284 struct page **pages,
285 unsigned long nr_pages,
286 int compress_type)
287 {
288 struct async_extent *async_extent;
289
290 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
291 BUG_ON(!async_extent);
292 async_extent->start = start;
293 async_extent->ram_size = ram_size;
294 async_extent->compressed_size = compressed_size;
295 async_extent->pages = pages;
296 async_extent->nr_pages = nr_pages;
297 async_extent->compress_type = compress_type;
298 list_add_tail(&async_extent->list, &cow->extents);
299 return 0;
300 }
301
302 /*
303 * we create compressed extents in two phases. The first
304 * phase compresses a range of pages that have already been
305 * locked (both pages and state bits are locked).
306 *
307 * This is done inside an ordered work queue, and the compression
308 * is spread across many cpus. The actual IO submission is step
309 * two, and the ordered work queue takes care of making sure that
310 * happens in the same order things were put onto the queue by
311 * writepages and friends.
312 *
313 * If this code finds it can't get good compression, it puts an
314 * entry onto the work queue to write the uncompressed bytes. This
315 * makes sure that both compressed inodes and uncompressed inodes
316 * are written in the same order that pdflush sent them down.
317 */
318 static noinline int compress_file_range(struct inode *inode,
319 struct page *locked_page,
320 u64 start, u64 end,
321 struct async_cow *async_cow,
322 int *num_added)
323 {
324 struct btrfs_root *root = BTRFS_I(inode)->root;
325 struct btrfs_trans_handle *trans;
326 u64 num_bytes;
327 u64 blocksize = root->sectorsize;
328 u64 actual_end;
329 u64 isize = i_size_read(inode);
330 int ret = 0;
331 struct page **pages = NULL;
332 unsigned long nr_pages;
333 unsigned long nr_pages_ret = 0;
334 unsigned long total_compressed = 0;
335 unsigned long total_in = 0;
336 unsigned long max_compressed = 128 * 1024;
337 unsigned long max_uncompressed = 128 * 1024;
338 int i;
339 int will_compress;
340 int compress_type = root->fs_info->compress_type;
341
342 actual_end = min_t(u64, isize, end + 1);
343 again:
344 will_compress = 0;
345 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
347
348 /*
349 * we don't want to send crud past the end of i_size through
350 * compression, that's just a waste of CPU time. So, if the
351 * end of the file is before the start of our current
352 * requested range of bytes, we bail out to the uncompressed
353 * cleanup code that can deal with all of this.
354 *
355 * It isn't really the fastest way to fix things, but this is a
356 * very uncommon corner.
357 */
358 if (actual_end <= start)
359 goto cleanup_and_bail_uncompressed;
360
361 total_compressed = actual_end - start;
362
363 /* we want to make sure that amount of ram required to uncompress
364 * an extent is reasonable, so we limit the total size in ram
365 * of a compressed extent to 128k. This is a crucial number
366 * because it also controls how easily we can spread reads across
367 * cpus for decompression.
368 *
369 * We also want to make sure the amount of IO required to do
370 * a random read is reasonably small, so we limit the size of
371 * a compressed extent to 128k.
372 */
373 total_compressed = min(total_compressed, max_uncompressed);
374 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
375 num_bytes = max(blocksize, num_bytes);
376 total_in = 0;
377 ret = 0;
378
379 /*
380 * we do compression for mount -o compress and when the
381 * inode has not been flagged as nocompress. This flag can
382 * change at any time if we discover bad compression ratios.
383 */
384 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
385 (btrfs_test_opt(root, COMPRESS) ||
386 (BTRFS_I(inode)->force_compress) ||
387 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
388 WARN_ON(pages);
389 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
390 BUG_ON(!pages);
391
392 if (BTRFS_I(inode)->force_compress)
393 compress_type = BTRFS_I(inode)->force_compress;
394
395 ret = btrfs_compress_pages(compress_type,
396 inode->i_mapping, start,
397 total_compressed, pages,
398 nr_pages, &nr_pages_ret,
399 &total_in,
400 &total_compressed,
401 max_compressed);
402
403 if (!ret) {
404 unsigned long offset = total_compressed &
405 (PAGE_CACHE_SIZE - 1);
406 struct page *page = pages[nr_pages_ret - 1];
407 char *kaddr;
408
409 /* zero the tail end of the last page, we might be
410 * sending it down to disk
411 */
412 if (offset) {
413 kaddr = kmap_atomic(page, KM_USER0);
414 memset(kaddr + offset, 0,
415 PAGE_CACHE_SIZE - offset);
416 kunmap_atomic(kaddr, KM_USER0);
417 }
418 will_compress = 1;
419 }
420 }
421 if (start == 0) {
422 trans = btrfs_join_transaction(root, 1);
423 BUG_ON(IS_ERR(trans));
424 btrfs_set_trans_block_group(trans, inode);
425 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
426
427 /* lets try to make an inline extent */
428 if (ret || total_in < (actual_end - start)) {
429 /* we didn't compress the entire range, try
430 * to make an uncompressed inline extent.
431 */
432 ret = cow_file_range_inline(trans, root, inode,
433 start, end, 0, 0, NULL);
434 } else {
435 /* try making a compressed inline extent */
436 ret = cow_file_range_inline(trans, root, inode,
437 start, end,
438 total_compressed,
439 compress_type, pages);
440 }
441 if (ret == 0) {
442 /*
443 * inline extent creation worked, we don't need
444 * to create any more async work items. Unlock
445 * and free up our temp pages.
446 */
447 extent_clear_unlock_delalloc(inode,
448 &BTRFS_I(inode)->io_tree,
449 start, end, NULL,
450 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
451 EXTENT_CLEAR_DELALLOC |
452 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
453
454 btrfs_end_transaction(trans, root);
455 goto free_pages_out;
456 }
457 btrfs_end_transaction(trans, root);
458 }
459
460 if (will_compress) {
461 /*
462 * we aren't doing an inline extent round the compressed size
463 * up to a block size boundary so the allocator does sane
464 * things
465 */
466 total_compressed = (total_compressed + blocksize - 1) &
467 ~(blocksize - 1);
468
469 /*
470 * one last check to make sure the compression is really a
471 * win, compare the page count read with the blocks on disk
472 */
473 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
474 ~(PAGE_CACHE_SIZE - 1);
475 if (total_compressed >= total_in) {
476 will_compress = 0;
477 } else {
478 num_bytes = total_in;
479 }
480 }
481 if (!will_compress && pages) {
482 /*
483 * the compression code ran but failed to make things smaller,
484 * free any pages it allocated and our page pointer array
485 */
486 for (i = 0; i < nr_pages_ret; i++) {
487 WARN_ON(pages[i]->mapping);
488 page_cache_release(pages[i]);
489 }
490 kfree(pages);
491 pages = NULL;
492 total_compressed = 0;
493 nr_pages_ret = 0;
494
495 /* flag the file so we don't compress in the future */
496 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
497 !(BTRFS_I(inode)->force_compress)) {
498 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
499 }
500 }
501 if (will_compress) {
502 *num_added += 1;
503
504 /* the async work queues will take care of doing actual
505 * allocation on disk for these compressed pages,
506 * and will submit them to the elevator.
507 */
508 add_async_extent(async_cow, start, num_bytes,
509 total_compressed, pages, nr_pages_ret,
510 compress_type);
511
512 if (start + num_bytes < end) {
513 start += num_bytes;
514 pages = NULL;
515 cond_resched();
516 goto again;
517 }
518 } else {
519 cleanup_and_bail_uncompressed:
520 /*
521 * No compression, but we still need to write the pages in
522 * the file we've been given so far. redirty the locked
523 * page if it corresponds to our extent and set things up
524 * for the async work queue to run cow_file_range to do
525 * the normal delalloc dance
526 */
527 if (page_offset(locked_page) >= start &&
528 page_offset(locked_page) <= end) {
529 __set_page_dirty_nobuffers(locked_page);
530 /* unlocked later on in the async handlers */
531 }
532 add_async_extent(async_cow, start, end - start + 1,
533 0, NULL, 0, BTRFS_COMPRESS_NONE);
534 *num_added += 1;
535 }
536
537 out:
538 return 0;
539
540 free_pages_out:
541 for (i = 0; i < nr_pages_ret; i++) {
542 WARN_ON(pages[i]->mapping);
543 page_cache_release(pages[i]);
544 }
545 kfree(pages);
546
547 goto out;
548 }
549
550 /*
551 * phase two of compressed writeback. This is the ordered portion
552 * of the code, which only gets called in the order the work was
553 * queued. We walk all the async extents created by compress_file_range
554 * and send them down to the disk.
555 */
556 static noinline int submit_compressed_extents(struct inode *inode,
557 struct async_cow *async_cow)
558 {
559 struct async_extent *async_extent;
560 u64 alloc_hint = 0;
561 struct btrfs_trans_handle *trans;
562 struct btrfs_key ins;
563 struct extent_map *em;
564 struct btrfs_root *root = BTRFS_I(inode)->root;
565 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566 struct extent_io_tree *io_tree;
567 int ret = 0;
568
569 if (list_empty(&async_cow->extents))
570 return 0;
571
572
573 while (!list_empty(&async_cow->extents)) {
574 async_extent = list_entry(async_cow->extents.next,
575 struct async_extent, list);
576 list_del(&async_extent->list);
577
578 io_tree = &BTRFS_I(inode)->io_tree;
579
580 retry:
581 /* did the compression code fall back to uncompressed IO? */
582 if (!async_extent->pages) {
583 int page_started = 0;
584 unsigned long nr_written = 0;
585
586 lock_extent(io_tree, async_extent->start,
587 async_extent->start +
588 async_extent->ram_size - 1, GFP_NOFS);
589
590 /* allocate blocks */
591 ret = cow_file_range(inode, async_cow->locked_page,
592 async_extent->start,
593 async_extent->start +
594 async_extent->ram_size - 1,
595 &page_started, &nr_written, 0);
596
597 /*
598 * if page_started, cow_file_range inserted an
599 * inline extent and took care of all the unlocking
600 * and IO for us. Otherwise, we need to submit
601 * all those pages down to the drive.
602 */
603 if (!page_started && !ret)
604 extent_write_locked_range(io_tree,
605 inode, async_extent->start,
606 async_extent->start +
607 async_extent->ram_size - 1,
608 btrfs_get_extent,
609 WB_SYNC_ALL);
610 kfree(async_extent);
611 cond_resched();
612 continue;
613 }
614
615 lock_extent(io_tree, async_extent->start,
616 async_extent->start + async_extent->ram_size - 1,
617 GFP_NOFS);
618
619 trans = btrfs_join_transaction(root, 1);
620 BUG_ON(IS_ERR(trans));
621 ret = btrfs_reserve_extent(trans, root,
622 async_extent->compressed_size,
623 async_extent->compressed_size,
624 0, alloc_hint,
625 (u64)-1, &ins, 1);
626 btrfs_end_transaction(trans, root);
627
628 if (ret) {
629 int i;
630 for (i = 0; i < async_extent->nr_pages; i++) {
631 WARN_ON(async_extent->pages[i]->mapping);
632 page_cache_release(async_extent->pages[i]);
633 }
634 kfree(async_extent->pages);
635 async_extent->nr_pages = 0;
636 async_extent->pages = NULL;
637 unlock_extent(io_tree, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, GFP_NOFS);
640 goto retry;
641 }
642
643 /*
644 * here we're doing allocation and writeback of the
645 * compressed pages
646 */
647 btrfs_drop_extent_cache(inode, async_extent->start,
648 async_extent->start +
649 async_extent->ram_size - 1, 0);
650
651 em = alloc_extent_map(GFP_NOFS);
652 BUG_ON(!em);
653 em->start = async_extent->start;
654 em->len = async_extent->ram_size;
655 em->orig_start = em->start;
656
657 em->block_start = ins.objectid;
658 em->block_len = ins.offset;
659 em->bdev = root->fs_info->fs_devices->latest_bdev;
660 em->compress_type = async_extent->compress_type;
661 set_bit(EXTENT_FLAG_PINNED, &em->flags);
662 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
663
664 while (1) {
665 write_lock(&em_tree->lock);
666 ret = add_extent_mapping(em_tree, em);
667 write_unlock(&em_tree->lock);
668 if (ret != -EEXIST) {
669 free_extent_map(em);
670 break;
671 }
672 btrfs_drop_extent_cache(inode, async_extent->start,
673 async_extent->start +
674 async_extent->ram_size - 1, 0);
675 }
676
677 ret = btrfs_add_ordered_extent_compress(inode,
678 async_extent->start,
679 ins.objectid,
680 async_extent->ram_size,
681 ins.offset,
682 BTRFS_ORDERED_COMPRESSED,
683 async_extent->compress_type);
684 BUG_ON(ret);
685
686 /*
687 * clear dirty, set writeback and unlock the pages.
688 */
689 extent_clear_unlock_delalloc(inode,
690 &BTRFS_I(inode)->io_tree,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
695 EXTENT_CLEAR_UNLOCK |
696 EXTENT_CLEAR_DELALLOC |
697 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
698
699 ret = btrfs_submit_compressed_write(inode,
700 async_extent->start,
701 async_extent->ram_size,
702 ins.objectid,
703 ins.offset, async_extent->pages,
704 async_extent->nr_pages);
705
706 BUG_ON(ret);
707 alloc_hint = ins.objectid + ins.offset;
708 kfree(async_extent);
709 cond_resched();
710 }
711
712 return 0;
713 }
714
715 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
716 u64 num_bytes)
717 {
718 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719 struct extent_map *em;
720 u64 alloc_hint = 0;
721
722 read_lock(&em_tree->lock);
723 em = search_extent_mapping(em_tree, start, num_bytes);
724 if (em) {
725 /*
726 * if block start isn't an actual block number then find the
727 * first block in this inode and use that as a hint. If that
728 * block is also bogus then just don't worry about it.
729 */
730 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
731 free_extent_map(em);
732 em = search_extent_mapping(em_tree, 0, 0);
733 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
734 alloc_hint = em->block_start;
735 if (em)
736 free_extent_map(em);
737 } else {
738 alloc_hint = em->block_start;
739 free_extent_map(em);
740 }
741 }
742 read_unlock(&em_tree->lock);
743
744 return alloc_hint;
745 }
746
747 /*
748 * when extent_io.c finds a delayed allocation range in the file,
749 * the call backs end up in this code. The basic idea is to
750 * allocate extents on disk for the range, and create ordered data structs
751 * in ram to track those extents.
752 *
753 * locked_page is the page that writepage had locked already. We use
754 * it to make sure we don't do extra locks or unlocks.
755 *
756 * *page_started is set to one if we unlock locked_page and do everything
757 * required to start IO on it. It may be clean and already done with
758 * IO when we return.
759 */
760 static noinline int cow_file_range(struct inode *inode,
761 struct page *locked_page,
762 u64 start, u64 end, int *page_started,
763 unsigned long *nr_written,
764 int unlock)
765 {
766 struct btrfs_root *root = BTRFS_I(inode)->root;
767 struct btrfs_trans_handle *trans;
768 u64 alloc_hint = 0;
769 u64 num_bytes;
770 unsigned long ram_size;
771 u64 disk_num_bytes;
772 u64 cur_alloc_size;
773 u64 blocksize = root->sectorsize;
774 struct btrfs_key ins;
775 struct extent_map *em;
776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777 int ret = 0;
778
779 BUG_ON(root == root->fs_info->tree_root);
780 trans = btrfs_join_transaction(root, 1);
781 BUG_ON(IS_ERR(trans));
782 btrfs_set_trans_block_group(trans, inode);
783 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
784
785 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
786 num_bytes = max(blocksize, num_bytes);
787 disk_num_bytes = num_bytes;
788 ret = 0;
789
790 if (start == 0) {
791 /* lets try to make an inline extent */
792 ret = cow_file_range_inline(trans, root, inode,
793 start, end, 0, 0, NULL);
794 if (ret == 0) {
795 extent_clear_unlock_delalloc(inode,
796 &BTRFS_I(inode)->io_tree,
797 start, end, NULL,
798 EXTENT_CLEAR_UNLOCK_PAGE |
799 EXTENT_CLEAR_UNLOCK |
800 EXTENT_CLEAR_DELALLOC |
801 EXTENT_CLEAR_DIRTY |
802 EXTENT_SET_WRITEBACK |
803 EXTENT_END_WRITEBACK);
804
805 *nr_written = *nr_written +
806 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
807 *page_started = 1;
808 ret = 0;
809 goto out;
810 }
811 }
812
813 BUG_ON(disk_num_bytes >
814 btrfs_super_total_bytes(&root->fs_info->super_copy));
815
816 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
817 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
818
819 while (disk_num_bytes > 0) {
820 unsigned long op;
821
822 cur_alloc_size = disk_num_bytes;
823 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
824 root->sectorsize, 0, alloc_hint,
825 (u64)-1, &ins, 1);
826 BUG_ON(ret);
827
828 em = alloc_extent_map(GFP_NOFS);
829 BUG_ON(!em);
830 em->start = start;
831 em->orig_start = em->start;
832 ram_size = ins.offset;
833 em->len = ins.offset;
834
835 em->block_start = ins.objectid;
836 em->block_len = ins.offset;
837 em->bdev = root->fs_info->fs_devices->latest_bdev;
838 set_bit(EXTENT_FLAG_PINNED, &em->flags);
839
840 while (1) {
841 write_lock(&em_tree->lock);
842 ret = add_extent_mapping(em_tree, em);
843 write_unlock(&em_tree->lock);
844 if (ret != -EEXIST) {
845 free_extent_map(em);
846 break;
847 }
848 btrfs_drop_extent_cache(inode, start,
849 start + ram_size - 1, 0);
850 }
851
852 cur_alloc_size = ins.offset;
853 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
854 ram_size, cur_alloc_size, 0);
855 BUG_ON(ret);
856
857 if (root->root_key.objectid ==
858 BTRFS_DATA_RELOC_TREE_OBJECTID) {
859 ret = btrfs_reloc_clone_csums(inode, start,
860 cur_alloc_size);
861 BUG_ON(ret);
862 }
863
864 if (disk_num_bytes < cur_alloc_size)
865 break;
866
867 /* we're not doing compressed IO, don't unlock the first
868 * page (which the caller expects to stay locked), don't
869 * clear any dirty bits and don't set any writeback bits
870 *
871 * Do set the Private2 bit so we know this page was properly
872 * setup for writepage
873 */
874 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
875 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
876 EXTENT_SET_PRIVATE2;
877
878 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
879 start, start + ram_size - 1,
880 locked_page, op);
881 disk_num_bytes -= cur_alloc_size;
882 num_bytes -= cur_alloc_size;
883 alloc_hint = ins.objectid + ins.offset;
884 start += cur_alloc_size;
885 }
886 out:
887 ret = 0;
888 btrfs_end_transaction(trans, root);
889
890 return ret;
891 }
892
893 /*
894 * work queue call back to started compression on a file and pages
895 */
896 static noinline void async_cow_start(struct btrfs_work *work)
897 {
898 struct async_cow *async_cow;
899 int num_added = 0;
900 async_cow = container_of(work, struct async_cow, work);
901
902 compress_file_range(async_cow->inode, async_cow->locked_page,
903 async_cow->start, async_cow->end, async_cow,
904 &num_added);
905 if (num_added == 0)
906 async_cow->inode = NULL;
907 }
908
909 /*
910 * work queue call back to submit previously compressed pages
911 */
912 static noinline void async_cow_submit(struct btrfs_work *work)
913 {
914 struct async_cow *async_cow;
915 struct btrfs_root *root;
916 unsigned long nr_pages;
917
918 async_cow = container_of(work, struct async_cow, work);
919
920 root = async_cow->root;
921 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
922 PAGE_CACHE_SHIFT;
923
924 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
925
926 if (atomic_read(&root->fs_info->async_delalloc_pages) <
927 5 * 1042 * 1024 &&
928 waitqueue_active(&root->fs_info->async_submit_wait))
929 wake_up(&root->fs_info->async_submit_wait);
930
931 if (async_cow->inode)
932 submit_compressed_extents(async_cow->inode, async_cow);
933 }
934
935 static noinline void async_cow_free(struct btrfs_work *work)
936 {
937 struct async_cow *async_cow;
938 async_cow = container_of(work, struct async_cow, work);
939 kfree(async_cow);
940 }
941
942 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
943 u64 start, u64 end, int *page_started,
944 unsigned long *nr_written)
945 {
946 struct async_cow *async_cow;
947 struct btrfs_root *root = BTRFS_I(inode)->root;
948 unsigned long nr_pages;
949 u64 cur_end;
950 int limit = 10 * 1024 * 1042;
951
952 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
953 1, 0, NULL, GFP_NOFS);
954 while (start < end) {
955 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
956 async_cow->inode = inode;
957 async_cow->root = root;
958 async_cow->locked_page = locked_page;
959 async_cow->start = start;
960
961 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
962 cur_end = end;
963 else
964 cur_end = min(end, start + 512 * 1024 - 1);
965
966 async_cow->end = cur_end;
967 INIT_LIST_HEAD(&async_cow->extents);
968
969 async_cow->work.func = async_cow_start;
970 async_cow->work.ordered_func = async_cow_submit;
971 async_cow->work.ordered_free = async_cow_free;
972 async_cow->work.flags = 0;
973
974 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
975 PAGE_CACHE_SHIFT;
976 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
977
978 btrfs_queue_worker(&root->fs_info->delalloc_workers,
979 &async_cow->work);
980
981 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
982 wait_event(root->fs_info->async_submit_wait,
983 (atomic_read(&root->fs_info->async_delalloc_pages) <
984 limit));
985 }
986
987 while (atomic_read(&root->fs_info->async_submit_draining) &&
988 atomic_read(&root->fs_info->async_delalloc_pages)) {
989 wait_event(root->fs_info->async_submit_wait,
990 (atomic_read(&root->fs_info->async_delalloc_pages) ==
991 0));
992 }
993
994 *nr_written += nr_pages;
995 start = cur_end + 1;
996 }
997 *page_started = 1;
998 return 0;
999 }
1000
1001 static noinline int csum_exist_in_range(struct btrfs_root *root,
1002 u64 bytenr, u64 num_bytes)
1003 {
1004 int ret;
1005 struct btrfs_ordered_sum *sums;
1006 LIST_HEAD(list);
1007
1008 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1009 bytenr + num_bytes - 1, &list);
1010 if (ret == 0 && list_empty(&list))
1011 return 0;
1012
1013 while (!list_empty(&list)) {
1014 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1015 list_del(&sums->list);
1016 kfree(sums);
1017 }
1018 return 1;
1019 }
1020
1021 /*
1022 * when nowcow writeback call back. This checks for snapshots or COW copies
1023 * of the extents that exist in the file, and COWs the file as required.
1024 *
1025 * If no cow copies or snapshots exist, we write directly to the existing
1026 * blocks on disk
1027 */
1028 static noinline int run_delalloc_nocow(struct inode *inode,
1029 struct page *locked_page,
1030 u64 start, u64 end, int *page_started, int force,
1031 unsigned long *nr_written)
1032 {
1033 struct btrfs_root *root = BTRFS_I(inode)->root;
1034 struct btrfs_trans_handle *trans;
1035 struct extent_buffer *leaf;
1036 struct btrfs_path *path;
1037 struct btrfs_file_extent_item *fi;
1038 struct btrfs_key found_key;
1039 u64 cow_start;
1040 u64 cur_offset;
1041 u64 extent_end;
1042 u64 extent_offset;
1043 u64 disk_bytenr;
1044 u64 num_bytes;
1045 int extent_type;
1046 int ret;
1047 int type;
1048 int nocow;
1049 int check_prev = 1;
1050 bool nolock = false;
1051
1052 path = btrfs_alloc_path();
1053 BUG_ON(!path);
1054 if (root == root->fs_info->tree_root) {
1055 nolock = true;
1056 trans = btrfs_join_transaction_nolock(root, 1);
1057 } else {
1058 trans = btrfs_join_transaction(root, 1);
1059 }
1060 BUG_ON(IS_ERR(trans));
1061
1062 cow_start = (u64)-1;
1063 cur_offset = start;
1064 while (1) {
1065 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1066 cur_offset, 0);
1067 BUG_ON(ret < 0);
1068 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1069 leaf = path->nodes[0];
1070 btrfs_item_key_to_cpu(leaf, &found_key,
1071 path->slots[0] - 1);
1072 if (found_key.objectid == inode->i_ino &&
1073 found_key.type == BTRFS_EXTENT_DATA_KEY)
1074 path->slots[0]--;
1075 }
1076 check_prev = 0;
1077 next_slot:
1078 leaf = path->nodes[0];
1079 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1080 ret = btrfs_next_leaf(root, path);
1081 if (ret < 0)
1082 BUG_ON(1);
1083 if (ret > 0)
1084 break;
1085 leaf = path->nodes[0];
1086 }
1087
1088 nocow = 0;
1089 disk_bytenr = 0;
1090 num_bytes = 0;
1091 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1092
1093 if (found_key.objectid > inode->i_ino ||
1094 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1095 found_key.offset > end)
1096 break;
1097
1098 if (found_key.offset > cur_offset) {
1099 extent_end = found_key.offset;
1100 extent_type = 0;
1101 goto out_check;
1102 }
1103
1104 fi = btrfs_item_ptr(leaf, path->slots[0],
1105 struct btrfs_file_extent_item);
1106 extent_type = btrfs_file_extent_type(leaf, fi);
1107
1108 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1109 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1110 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1111 extent_offset = btrfs_file_extent_offset(leaf, fi);
1112 extent_end = found_key.offset +
1113 btrfs_file_extent_num_bytes(leaf, fi);
1114 if (extent_end <= start) {
1115 path->slots[0]++;
1116 goto next_slot;
1117 }
1118 if (disk_bytenr == 0)
1119 goto out_check;
1120 if (btrfs_file_extent_compression(leaf, fi) ||
1121 btrfs_file_extent_encryption(leaf, fi) ||
1122 btrfs_file_extent_other_encoding(leaf, fi))
1123 goto out_check;
1124 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1125 goto out_check;
1126 if (btrfs_extent_readonly(root, disk_bytenr))
1127 goto out_check;
1128 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1129 found_key.offset -
1130 extent_offset, disk_bytenr))
1131 goto out_check;
1132 disk_bytenr += extent_offset;
1133 disk_bytenr += cur_offset - found_key.offset;
1134 num_bytes = min(end + 1, extent_end) - cur_offset;
1135 /*
1136 * force cow if csum exists in the range.
1137 * this ensure that csum for a given extent are
1138 * either valid or do not exist.
1139 */
1140 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1141 goto out_check;
1142 nocow = 1;
1143 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1144 extent_end = found_key.offset +
1145 btrfs_file_extent_inline_len(leaf, fi);
1146 extent_end = ALIGN(extent_end, root->sectorsize);
1147 } else {
1148 BUG_ON(1);
1149 }
1150 out_check:
1151 if (extent_end <= start) {
1152 path->slots[0]++;
1153 goto next_slot;
1154 }
1155 if (!nocow) {
1156 if (cow_start == (u64)-1)
1157 cow_start = cur_offset;
1158 cur_offset = extent_end;
1159 if (cur_offset > end)
1160 break;
1161 path->slots[0]++;
1162 goto next_slot;
1163 }
1164
1165 btrfs_release_path(root, path);
1166 if (cow_start != (u64)-1) {
1167 ret = cow_file_range(inode, locked_page, cow_start,
1168 found_key.offset - 1, page_started,
1169 nr_written, 1);
1170 BUG_ON(ret);
1171 cow_start = (u64)-1;
1172 }
1173
1174 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1175 struct extent_map *em;
1176 struct extent_map_tree *em_tree;
1177 em_tree = &BTRFS_I(inode)->extent_tree;
1178 em = alloc_extent_map(GFP_NOFS);
1179 BUG_ON(!em);
1180 em->start = cur_offset;
1181 em->orig_start = em->start;
1182 em->len = num_bytes;
1183 em->block_len = num_bytes;
1184 em->block_start = disk_bytenr;
1185 em->bdev = root->fs_info->fs_devices->latest_bdev;
1186 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1187 while (1) {
1188 write_lock(&em_tree->lock);
1189 ret = add_extent_mapping(em_tree, em);
1190 write_unlock(&em_tree->lock);
1191 if (ret != -EEXIST) {
1192 free_extent_map(em);
1193 break;
1194 }
1195 btrfs_drop_extent_cache(inode, em->start,
1196 em->start + em->len - 1, 0);
1197 }
1198 type = BTRFS_ORDERED_PREALLOC;
1199 } else {
1200 type = BTRFS_ORDERED_NOCOW;
1201 }
1202
1203 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1204 num_bytes, num_bytes, type);
1205 BUG_ON(ret);
1206
1207 if (root->root_key.objectid ==
1208 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1209 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1210 num_bytes);
1211 BUG_ON(ret);
1212 }
1213
1214 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1215 cur_offset, cur_offset + num_bytes - 1,
1216 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1217 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1218 EXTENT_SET_PRIVATE2);
1219 cur_offset = extent_end;
1220 if (cur_offset > end)
1221 break;
1222 }
1223 btrfs_release_path(root, path);
1224
1225 if (cur_offset <= end && cow_start == (u64)-1)
1226 cow_start = cur_offset;
1227 if (cow_start != (u64)-1) {
1228 ret = cow_file_range(inode, locked_page, cow_start, end,
1229 page_started, nr_written, 1);
1230 BUG_ON(ret);
1231 }
1232
1233 if (nolock) {
1234 ret = btrfs_end_transaction_nolock(trans, root);
1235 BUG_ON(ret);
1236 } else {
1237 ret = btrfs_end_transaction(trans, root);
1238 BUG_ON(ret);
1239 }
1240 btrfs_free_path(path);
1241 return 0;
1242 }
1243
1244 /*
1245 * extent_io.c call back to do delayed allocation processing
1246 */
1247 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1248 u64 start, u64 end, int *page_started,
1249 unsigned long *nr_written)
1250 {
1251 int ret;
1252 struct btrfs_root *root = BTRFS_I(inode)->root;
1253
1254 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1255 ret = run_delalloc_nocow(inode, locked_page, start, end,
1256 page_started, 1, nr_written);
1257 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1258 ret = run_delalloc_nocow(inode, locked_page, start, end,
1259 page_started, 0, nr_written);
1260 else if (!btrfs_test_opt(root, COMPRESS) &&
1261 !(BTRFS_I(inode)->force_compress) &&
1262 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1263 ret = cow_file_range(inode, locked_page, start, end,
1264 page_started, nr_written, 1);
1265 else
1266 ret = cow_file_range_async(inode, locked_page, start, end,
1267 page_started, nr_written);
1268 return ret;
1269 }
1270
1271 static int btrfs_split_extent_hook(struct inode *inode,
1272 struct extent_state *orig, u64 split)
1273 {
1274 /* not delalloc, ignore it */
1275 if (!(orig->state & EXTENT_DELALLOC))
1276 return 0;
1277
1278 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1279 return 0;
1280 }
1281
1282 /*
1283 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1284 * extents so we can keep track of new extents that are just merged onto old
1285 * extents, such as when we are doing sequential writes, so we can properly
1286 * account for the metadata space we'll need.
1287 */
1288 static int btrfs_merge_extent_hook(struct inode *inode,
1289 struct extent_state *new,
1290 struct extent_state *other)
1291 {
1292 /* not delalloc, ignore it */
1293 if (!(other->state & EXTENT_DELALLOC))
1294 return 0;
1295
1296 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1297 return 0;
1298 }
1299
1300 /*
1301 * extent_io.c set_bit_hook, used to track delayed allocation
1302 * bytes in this file, and to maintain the list of inodes that
1303 * have pending delalloc work to be done.
1304 */
1305 static int btrfs_set_bit_hook(struct inode *inode,
1306 struct extent_state *state, int *bits)
1307 {
1308
1309 /*
1310 * set_bit and clear bit hooks normally require _irqsave/restore
1311 * but in this case, we are only testeing for the DELALLOC
1312 * bit, which is only set or cleared with irqs on
1313 */
1314 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1315 struct btrfs_root *root = BTRFS_I(inode)->root;
1316 u64 len = state->end + 1 - state->start;
1317 int do_list = (root->root_key.objectid !=
1318 BTRFS_ROOT_TREE_OBJECTID);
1319
1320 if (*bits & EXTENT_FIRST_DELALLOC)
1321 *bits &= ~EXTENT_FIRST_DELALLOC;
1322 else
1323 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1324
1325 spin_lock(&root->fs_info->delalloc_lock);
1326 BTRFS_I(inode)->delalloc_bytes += len;
1327 root->fs_info->delalloc_bytes += len;
1328 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1329 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1330 &root->fs_info->delalloc_inodes);
1331 }
1332 spin_unlock(&root->fs_info->delalloc_lock);
1333 }
1334 return 0;
1335 }
1336
1337 /*
1338 * extent_io.c clear_bit_hook, see set_bit_hook for why
1339 */
1340 static int btrfs_clear_bit_hook(struct inode *inode,
1341 struct extent_state *state, int *bits)
1342 {
1343 /*
1344 * set_bit and clear bit hooks normally require _irqsave/restore
1345 * but in this case, we are only testeing for the DELALLOC
1346 * bit, which is only set or cleared with irqs on
1347 */
1348 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1349 struct btrfs_root *root = BTRFS_I(inode)->root;
1350 u64 len = state->end + 1 - state->start;
1351 int do_list = (root->root_key.objectid !=
1352 BTRFS_ROOT_TREE_OBJECTID);
1353
1354 if (*bits & EXTENT_FIRST_DELALLOC)
1355 *bits &= ~EXTENT_FIRST_DELALLOC;
1356 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1357 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1358
1359 if (*bits & EXTENT_DO_ACCOUNTING)
1360 btrfs_delalloc_release_metadata(inode, len);
1361
1362 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1363 && do_list)
1364 btrfs_free_reserved_data_space(inode, len);
1365
1366 spin_lock(&root->fs_info->delalloc_lock);
1367 root->fs_info->delalloc_bytes -= len;
1368 BTRFS_I(inode)->delalloc_bytes -= len;
1369
1370 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1371 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1372 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1373 }
1374 spin_unlock(&root->fs_info->delalloc_lock);
1375 }
1376 return 0;
1377 }
1378
1379 /*
1380 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1381 * we don't create bios that span stripes or chunks
1382 */
1383 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1384 size_t size, struct bio *bio,
1385 unsigned long bio_flags)
1386 {
1387 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1388 struct btrfs_mapping_tree *map_tree;
1389 u64 logical = (u64)bio->bi_sector << 9;
1390 u64 length = 0;
1391 u64 map_length;
1392 int ret;
1393
1394 if (bio_flags & EXTENT_BIO_COMPRESSED)
1395 return 0;
1396
1397 length = bio->bi_size;
1398 map_tree = &root->fs_info->mapping_tree;
1399 map_length = length;
1400 ret = btrfs_map_block(map_tree, READ, logical,
1401 &map_length, NULL, 0);
1402
1403 if (map_length < length + size)
1404 return 1;
1405 return ret;
1406 }
1407
1408 /*
1409 * in order to insert checksums into the metadata in large chunks,
1410 * we wait until bio submission time. All the pages in the bio are
1411 * checksummed and sums are attached onto the ordered extent record.
1412 *
1413 * At IO completion time the cums attached on the ordered extent record
1414 * are inserted into the btree
1415 */
1416 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1417 struct bio *bio, int mirror_num,
1418 unsigned long bio_flags,
1419 u64 bio_offset)
1420 {
1421 struct btrfs_root *root = BTRFS_I(inode)->root;
1422 int ret = 0;
1423
1424 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1425 BUG_ON(ret);
1426 return 0;
1427 }
1428
1429 /*
1430 * in order to insert checksums into the metadata in large chunks,
1431 * we wait until bio submission time. All the pages in the bio are
1432 * checksummed and sums are attached onto the ordered extent record.
1433 *
1434 * At IO completion time the cums attached on the ordered extent record
1435 * are inserted into the btree
1436 */
1437 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1438 int mirror_num, unsigned long bio_flags,
1439 u64 bio_offset)
1440 {
1441 struct btrfs_root *root = BTRFS_I(inode)->root;
1442 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1443 }
1444
1445 /*
1446 * extent_io.c submission hook. This does the right thing for csum calculation
1447 * on write, or reading the csums from the tree before a read
1448 */
1449 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1450 int mirror_num, unsigned long bio_flags,
1451 u64 bio_offset)
1452 {
1453 struct btrfs_root *root = BTRFS_I(inode)->root;
1454 int ret = 0;
1455 int skip_sum;
1456
1457 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1458
1459 if (root == root->fs_info->tree_root)
1460 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1461 else
1462 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1463 BUG_ON(ret);
1464
1465 if (!(rw & REQ_WRITE)) {
1466 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1467 return btrfs_submit_compressed_read(inode, bio,
1468 mirror_num, bio_flags);
1469 } else if (!skip_sum) {
1470 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1471 if (ret)
1472 return ret;
1473 }
1474 goto mapit;
1475 } else if (!skip_sum) {
1476 /* csum items have already been cloned */
1477 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1478 goto mapit;
1479 /* we're doing a write, do the async checksumming */
1480 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1481 inode, rw, bio, mirror_num,
1482 bio_flags, bio_offset,
1483 __btrfs_submit_bio_start,
1484 __btrfs_submit_bio_done);
1485 }
1486
1487 mapit:
1488 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1489 }
1490
1491 /*
1492 * given a list of ordered sums record them in the inode. This happens
1493 * at IO completion time based on sums calculated at bio submission time.
1494 */
1495 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1496 struct inode *inode, u64 file_offset,
1497 struct list_head *list)
1498 {
1499 struct btrfs_ordered_sum *sum;
1500
1501 btrfs_set_trans_block_group(trans, inode);
1502
1503 list_for_each_entry(sum, list, list) {
1504 btrfs_csum_file_blocks(trans,
1505 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1506 }
1507 return 0;
1508 }
1509
1510 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1511 struct extent_state **cached_state)
1512 {
1513 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1514 WARN_ON(1);
1515 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516 cached_state, GFP_NOFS);
1517 }
1518
1519 /* see btrfs_writepage_start_hook for details on why this is required */
1520 struct btrfs_writepage_fixup {
1521 struct page *page;
1522 struct btrfs_work work;
1523 };
1524
1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1526 {
1527 struct btrfs_writepage_fixup *fixup;
1528 struct btrfs_ordered_extent *ordered;
1529 struct extent_state *cached_state = NULL;
1530 struct page *page;
1531 struct inode *inode;
1532 u64 page_start;
1533 u64 page_end;
1534
1535 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1536 page = fixup->page;
1537 again:
1538 lock_page(page);
1539 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1540 ClearPageChecked(page);
1541 goto out_page;
1542 }
1543
1544 inode = page->mapping->host;
1545 page_start = page_offset(page);
1546 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1547
1548 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1549 &cached_state, GFP_NOFS);
1550
1551 /* already ordered? We're done */
1552 if (PagePrivate2(page))
1553 goto out;
1554
1555 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1556 if (ordered) {
1557 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1558 page_end, &cached_state, GFP_NOFS);
1559 unlock_page(page);
1560 btrfs_start_ordered_extent(inode, ordered, 1);
1561 goto again;
1562 }
1563
1564 BUG();
1565 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1566 ClearPageChecked(page);
1567 out:
1568 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1569 &cached_state, GFP_NOFS);
1570 out_page:
1571 unlock_page(page);
1572 page_cache_release(page);
1573 kfree(fixup);
1574 }
1575
1576 /*
1577 * There are a few paths in the higher layers of the kernel that directly
1578 * set the page dirty bit without asking the filesystem if it is a
1579 * good idea. This causes problems because we want to make sure COW
1580 * properly happens and the data=ordered rules are followed.
1581 *
1582 * In our case any range that doesn't have the ORDERED bit set
1583 * hasn't been properly setup for IO. We kick off an async process
1584 * to fix it up. The async helper will wait for ordered extents, set
1585 * the delalloc bit and make it safe to write the page.
1586 */
1587 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1588 {
1589 struct inode *inode = page->mapping->host;
1590 struct btrfs_writepage_fixup *fixup;
1591 struct btrfs_root *root = BTRFS_I(inode)->root;
1592
1593 /* this page is properly in the ordered list */
1594 if (TestClearPagePrivate2(page))
1595 return 0;
1596
1597 if (PageChecked(page))
1598 return -EAGAIN;
1599
1600 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1601 if (!fixup)
1602 return -EAGAIN;
1603
1604 SetPageChecked(page);
1605 page_cache_get(page);
1606 fixup->work.func = btrfs_writepage_fixup_worker;
1607 fixup->page = page;
1608 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1609 return -EAGAIN;
1610 }
1611
1612 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1613 struct inode *inode, u64 file_pos,
1614 u64 disk_bytenr, u64 disk_num_bytes,
1615 u64 num_bytes, u64 ram_bytes,
1616 u8 compression, u8 encryption,
1617 u16 other_encoding, int extent_type)
1618 {
1619 struct btrfs_root *root = BTRFS_I(inode)->root;
1620 struct btrfs_file_extent_item *fi;
1621 struct btrfs_path *path;
1622 struct extent_buffer *leaf;
1623 struct btrfs_key ins;
1624 u64 hint;
1625 int ret;
1626
1627 path = btrfs_alloc_path();
1628 BUG_ON(!path);
1629
1630 path->leave_spinning = 1;
1631
1632 /*
1633 * we may be replacing one extent in the tree with another.
1634 * The new extent is pinned in the extent map, and we don't want
1635 * to drop it from the cache until it is completely in the btree.
1636 *
1637 * So, tell btrfs_drop_extents to leave this extent in the cache.
1638 * the caller is expected to unpin it and allow it to be merged
1639 * with the others.
1640 */
1641 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1642 &hint, 0);
1643 BUG_ON(ret);
1644
1645 ins.objectid = inode->i_ino;
1646 ins.offset = file_pos;
1647 ins.type = BTRFS_EXTENT_DATA_KEY;
1648 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1649 BUG_ON(ret);
1650 leaf = path->nodes[0];
1651 fi = btrfs_item_ptr(leaf, path->slots[0],
1652 struct btrfs_file_extent_item);
1653 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1654 btrfs_set_file_extent_type(leaf, fi, extent_type);
1655 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1656 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1657 btrfs_set_file_extent_offset(leaf, fi, 0);
1658 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1659 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1660 btrfs_set_file_extent_compression(leaf, fi, compression);
1661 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1662 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1663
1664 btrfs_unlock_up_safe(path, 1);
1665 btrfs_set_lock_blocking(leaf);
1666
1667 btrfs_mark_buffer_dirty(leaf);
1668
1669 inode_add_bytes(inode, num_bytes);
1670
1671 ins.objectid = disk_bytenr;
1672 ins.offset = disk_num_bytes;
1673 ins.type = BTRFS_EXTENT_ITEM_KEY;
1674 ret = btrfs_alloc_reserved_file_extent(trans, root,
1675 root->root_key.objectid,
1676 inode->i_ino, file_pos, &ins);
1677 BUG_ON(ret);
1678 btrfs_free_path(path);
1679
1680 return 0;
1681 }
1682
1683 /*
1684 * helper function for btrfs_finish_ordered_io, this
1685 * just reads in some of the csum leaves to prime them into ram
1686 * before we start the transaction. It limits the amount of btree
1687 * reads required while inside the transaction.
1688 */
1689 /* as ordered data IO finishes, this gets called so we can finish
1690 * an ordered extent if the range of bytes in the file it covers are
1691 * fully written.
1692 */
1693 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1694 {
1695 struct btrfs_root *root = BTRFS_I(inode)->root;
1696 struct btrfs_trans_handle *trans = NULL;
1697 struct btrfs_ordered_extent *ordered_extent = NULL;
1698 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1699 struct extent_state *cached_state = NULL;
1700 int compress_type = 0;
1701 int ret;
1702 bool nolock = false;
1703
1704 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1705 end - start + 1);
1706 if (!ret)
1707 return 0;
1708 BUG_ON(!ordered_extent);
1709
1710 nolock = (root == root->fs_info->tree_root);
1711
1712 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1713 BUG_ON(!list_empty(&ordered_extent->list));
1714 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1715 if (!ret) {
1716 if (nolock)
1717 trans = btrfs_join_transaction_nolock(root, 1);
1718 else
1719 trans = btrfs_join_transaction(root, 1);
1720 BUG_ON(IS_ERR(trans));
1721 btrfs_set_trans_block_group(trans, inode);
1722 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1723 ret = btrfs_update_inode(trans, root, inode);
1724 BUG_ON(ret);
1725 }
1726 goto out;
1727 }
1728
1729 lock_extent_bits(io_tree, ordered_extent->file_offset,
1730 ordered_extent->file_offset + ordered_extent->len - 1,
1731 0, &cached_state, GFP_NOFS);
1732
1733 if (nolock)
1734 trans = btrfs_join_transaction_nolock(root, 1);
1735 else
1736 trans = btrfs_join_transaction(root, 1);
1737 BUG_ON(IS_ERR(trans));
1738 btrfs_set_trans_block_group(trans, inode);
1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1740
1741 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1742 compress_type = ordered_extent->compress_type;
1743 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1744 BUG_ON(compress_type);
1745 ret = btrfs_mark_extent_written(trans, inode,
1746 ordered_extent->file_offset,
1747 ordered_extent->file_offset +
1748 ordered_extent->len);
1749 BUG_ON(ret);
1750 } else {
1751 BUG_ON(root == root->fs_info->tree_root);
1752 ret = insert_reserved_file_extent(trans, inode,
1753 ordered_extent->file_offset,
1754 ordered_extent->start,
1755 ordered_extent->disk_len,
1756 ordered_extent->len,
1757 ordered_extent->len,
1758 compress_type, 0, 0,
1759 BTRFS_FILE_EXTENT_REG);
1760 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1761 ordered_extent->file_offset,
1762 ordered_extent->len);
1763 BUG_ON(ret);
1764 }
1765 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1766 ordered_extent->file_offset +
1767 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1768
1769 add_pending_csums(trans, inode, ordered_extent->file_offset,
1770 &ordered_extent->list);
1771
1772 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1773 ret = btrfs_update_inode(trans, root, inode);
1774 BUG_ON(ret);
1775 out:
1776 if (nolock) {
1777 if (trans)
1778 btrfs_end_transaction_nolock(trans, root);
1779 } else {
1780 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1781 if (trans)
1782 btrfs_end_transaction(trans, root);
1783 }
1784
1785 /* once for us */
1786 btrfs_put_ordered_extent(ordered_extent);
1787 /* once for the tree */
1788 btrfs_put_ordered_extent(ordered_extent);
1789
1790 return 0;
1791 }
1792
1793 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1794 struct extent_state *state, int uptodate)
1795 {
1796 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1797
1798 ClearPagePrivate2(page);
1799 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1800 }
1801
1802 /*
1803 * When IO fails, either with EIO or csum verification fails, we
1804 * try other mirrors that might have a good copy of the data. This
1805 * io_failure_record is used to record state as we go through all the
1806 * mirrors. If another mirror has good data, the page is set up to date
1807 * and things continue. If a good mirror can't be found, the original
1808 * bio end_io callback is called to indicate things have failed.
1809 */
1810 struct io_failure_record {
1811 struct page *page;
1812 u64 start;
1813 u64 len;
1814 u64 logical;
1815 unsigned long bio_flags;
1816 int last_mirror;
1817 };
1818
1819 static int btrfs_io_failed_hook(struct bio *failed_bio,
1820 struct page *page, u64 start, u64 end,
1821 struct extent_state *state)
1822 {
1823 struct io_failure_record *failrec = NULL;
1824 u64 private;
1825 struct extent_map *em;
1826 struct inode *inode = page->mapping->host;
1827 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1828 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1829 struct bio *bio;
1830 int num_copies;
1831 int ret;
1832 int rw;
1833 u64 logical;
1834
1835 ret = get_state_private(failure_tree, start, &private);
1836 if (ret) {
1837 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1838 if (!failrec)
1839 return -ENOMEM;
1840 failrec->start = start;
1841 failrec->len = end - start + 1;
1842 failrec->last_mirror = 0;
1843 failrec->bio_flags = 0;
1844
1845 read_lock(&em_tree->lock);
1846 em = lookup_extent_mapping(em_tree, start, failrec->len);
1847 if (em->start > start || em->start + em->len < start) {
1848 free_extent_map(em);
1849 em = NULL;
1850 }
1851 read_unlock(&em_tree->lock);
1852
1853 if (!em || IS_ERR(em)) {
1854 kfree(failrec);
1855 return -EIO;
1856 }
1857 logical = start - em->start;
1858 logical = em->block_start + logical;
1859 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1860 logical = em->block_start;
1861 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1862 extent_set_compress_type(&failrec->bio_flags,
1863 em->compress_type);
1864 }
1865 failrec->logical = logical;
1866 free_extent_map(em);
1867 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1868 EXTENT_DIRTY, GFP_NOFS);
1869 set_state_private(failure_tree, start,
1870 (u64)(unsigned long)failrec);
1871 } else {
1872 failrec = (struct io_failure_record *)(unsigned long)private;
1873 }
1874 num_copies = btrfs_num_copies(
1875 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1876 failrec->logical, failrec->len);
1877 failrec->last_mirror++;
1878 if (!state) {
1879 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1880 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1881 failrec->start,
1882 EXTENT_LOCKED);
1883 if (state && state->start != failrec->start)
1884 state = NULL;
1885 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1886 }
1887 if (!state || failrec->last_mirror > num_copies) {
1888 set_state_private(failure_tree, failrec->start, 0);
1889 clear_extent_bits(failure_tree, failrec->start,
1890 failrec->start + failrec->len - 1,
1891 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1892 kfree(failrec);
1893 return -EIO;
1894 }
1895 bio = bio_alloc(GFP_NOFS, 1);
1896 bio->bi_private = state;
1897 bio->bi_end_io = failed_bio->bi_end_io;
1898 bio->bi_sector = failrec->logical >> 9;
1899 bio->bi_bdev = failed_bio->bi_bdev;
1900 bio->bi_size = 0;
1901
1902 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1903 if (failed_bio->bi_rw & REQ_WRITE)
1904 rw = WRITE;
1905 else
1906 rw = READ;
1907
1908 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1909 failrec->last_mirror,
1910 failrec->bio_flags, 0);
1911 return ret;
1912 }
1913
1914 /*
1915 * each time an IO finishes, we do a fast check in the IO failure tree
1916 * to see if we need to process or clean up an io_failure_record
1917 */
1918 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1919 {
1920 u64 private;
1921 u64 private_failure;
1922 struct io_failure_record *failure;
1923 int ret;
1924
1925 private = 0;
1926 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1927 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1928 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1929 start, &private_failure);
1930 if (ret == 0) {
1931 failure = (struct io_failure_record *)(unsigned long)
1932 private_failure;
1933 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1934 failure->start, 0);
1935 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1936 failure->start,
1937 failure->start + failure->len - 1,
1938 EXTENT_DIRTY | EXTENT_LOCKED,
1939 GFP_NOFS);
1940 kfree(failure);
1941 }
1942 }
1943 return 0;
1944 }
1945
1946 /*
1947 * when reads are done, we need to check csums to verify the data is correct
1948 * if there's a match, we allow the bio to finish. If not, we go through
1949 * the io_failure_record routines to find good copies
1950 */
1951 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1952 struct extent_state *state)
1953 {
1954 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1955 struct inode *inode = page->mapping->host;
1956 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1957 char *kaddr;
1958 u64 private = ~(u32)0;
1959 int ret;
1960 struct btrfs_root *root = BTRFS_I(inode)->root;
1961 u32 csum = ~(u32)0;
1962
1963 if (PageChecked(page)) {
1964 ClearPageChecked(page);
1965 goto good;
1966 }
1967
1968 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1969 return 0;
1970
1971 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1972 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1973 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1974 GFP_NOFS);
1975 return 0;
1976 }
1977
1978 if (state && state->start == start) {
1979 private = state->private;
1980 ret = 0;
1981 } else {
1982 ret = get_state_private(io_tree, start, &private);
1983 }
1984 kaddr = kmap_atomic(page, KM_USER0);
1985 if (ret)
1986 goto zeroit;
1987
1988 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1989 btrfs_csum_final(csum, (char *)&csum);
1990 if (csum != private)
1991 goto zeroit;
1992
1993 kunmap_atomic(kaddr, KM_USER0);
1994 good:
1995 /* if the io failure tree for this inode is non-empty,
1996 * check to see if we've recovered from a failed IO
1997 */
1998 btrfs_clean_io_failures(inode, start);
1999 return 0;
2000
2001 zeroit:
2002 if (printk_ratelimit()) {
2003 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2004 "private %llu\n", page->mapping->host->i_ino,
2005 (unsigned long long)start, csum,
2006 (unsigned long long)private);
2007 }
2008 memset(kaddr + offset, 1, end - start + 1);
2009 flush_dcache_page(page);
2010 kunmap_atomic(kaddr, KM_USER0);
2011 if (private == 0)
2012 return 0;
2013 return -EIO;
2014 }
2015
2016 struct delayed_iput {
2017 struct list_head list;
2018 struct inode *inode;
2019 };
2020
2021 void btrfs_add_delayed_iput(struct inode *inode)
2022 {
2023 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2024 struct delayed_iput *delayed;
2025
2026 if (atomic_add_unless(&inode->i_count, -1, 1))
2027 return;
2028
2029 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2030 delayed->inode = inode;
2031
2032 spin_lock(&fs_info->delayed_iput_lock);
2033 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2034 spin_unlock(&fs_info->delayed_iput_lock);
2035 }
2036
2037 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2038 {
2039 LIST_HEAD(list);
2040 struct btrfs_fs_info *fs_info = root->fs_info;
2041 struct delayed_iput *delayed;
2042 int empty;
2043
2044 spin_lock(&fs_info->delayed_iput_lock);
2045 empty = list_empty(&fs_info->delayed_iputs);
2046 spin_unlock(&fs_info->delayed_iput_lock);
2047 if (empty)
2048 return;
2049
2050 down_read(&root->fs_info->cleanup_work_sem);
2051 spin_lock(&fs_info->delayed_iput_lock);
2052 list_splice_init(&fs_info->delayed_iputs, &list);
2053 spin_unlock(&fs_info->delayed_iput_lock);
2054
2055 while (!list_empty(&list)) {
2056 delayed = list_entry(list.next, struct delayed_iput, list);
2057 list_del(&delayed->list);
2058 iput(delayed->inode);
2059 kfree(delayed);
2060 }
2061 up_read(&root->fs_info->cleanup_work_sem);
2062 }
2063
2064 /*
2065 * calculate extra metadata reservation when snapshotting a subvolume
2066 * contains orphan files.
2067 */
2068 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2069 struct btrfs_pending_snapshot *pending,
2070 u64 *bytes_to_reserve)
2071 {
2072 struct btrfs_root *root;
2073 struct btrfs_block_rsv *block_rsv;
2074 u64 num_bytes;
2075 int index;
2076
2077 root = pending->root;
2078 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2079 return;
2080
2081 block_rsv = root->orphan_block_rsv;
2082
2083 /* orphan block reservation for the snapshot */
2084 num_bytes = block_rsv->size;
2085
2086 /*
2087 * after the snapshot is created, COWing tree blocks may use more
2088 * space than it frees. So we should make sure there is enough
2089 * reserved space.
2090 */
2091 index = trans->transid & 0x1;
2092 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2093 num_bytes += block_rsv->size -
2094 (block_rsv->reserved + block_rsv->freed[index]);
2095 }
2096
2097 *bytes_to_reserve += num_bytes;
2098 }
2099
2100 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2101 struct btrfs_pending_snapshot *pending)
2102 {
2103 struct btrfs_root *root = pending->root;
2104 struct btrfs_root *snap = pending->snap;
2105 struct btrfs_block_rsv *block_rsv;
2106 u64 num_bytes;
2107 int index;
2108 int ret;
2109
2110 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2111 return;
2112
2113 /* refill source subvolume's orphan block reservation */
2114 block_rsv = root->orphan_block_rsv;
2115 index = trans->transid & 0x1;
2116 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2117 num_bytes = block_rsv->size -
2118 (block_rsv->reserved + block_rsv->freed[index]);
2119 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120 root->orphan_block_rsv,
2121 num_bytes);
2122 BUG_ON(ret);
2123 }
2124
2125 /* setup orphan block reservation for the snapshot */
2126 block_rsv = btrfs_alloc_block_rsv(snap);
2127 BUG_ON(!block_rsv);
2128
2129 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2130 snap->orphan_block_rsv = block_rsv;
2131
2132 num_bytes = root->orphan_block_rsv->size;
2133 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2134 block_rsv, num_bytes);
2135 BUG_ON(ret);
2136
2137 #if 0
2138 /* insert orphan item for the snapshot */
2139 WARN_ON(!root->orphan_item_inserted);
2140 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2141 snap->root_key.objectid);
2142 BUG_ON(ret);
2143 snap->orphan_item_inserted = 1;
2144 #endif
2145 }
2146
2147 enum btrfs_orphan_cleanup_state {
2148 ORPHAN_CLEANUP_STARTED = 1,
2149 ORPHAN_CLEANUP_DONE = 2,
2150 };
2151
2152 /*
2153 * This is called in transaction commmit time. If there are no orphan
2154 * files in the subvolume, it removes orphan item and frees block_rsv
2155 * structure.
2156 */
2157 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2158 struct btrfs_root *root)
2159 {
2160 int ret;
2161
2162 if (!list_empty(&root->orphan_list) ||
2163 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2164 return;
2165
2166 if (root->orphan_item_inserted &&
2167 btrfs_root_refs(&root->root_item) > 0) {
2168 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2169 root->root_key.objectid);
2170 BUG_ON(ret);
2171 root->orphan_item_inserted = 0;
2172 }
2173
2174 if (root->orphan_block_rsv) {
2175 WARN_ON(root->orphan_block_rsv->size > 0);
2176 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2177 root->orphan_block_rsv = NULL;
2178 }
2179 }
2180
2181 /*
2182 * This creates an orphan entry for the given inode in case something goes
2183 * wrong in the middle of an unlink/truncate.
2184 *
2185 * NOTE: caller of this function should reserve 5 units of metadata for
2186 * this function.
2187 */
2188 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2189 {
2190 struct btrfs_root *root = BTRFS_I(inode)->root;
2191 struct btrfs_block_rsv *block_rsv = NULL;
2192 int reserve = 0;
2193 int insert = 0;
2194 int ret;
2195
2196 if (!root->orphan_block_rsv) {
2197 block_rsv = btrfs_alloc_block_rsv(root);
2198 BUG_ON(!block_rsv);
2199 }
2200
2201 spin_lock(&root->orphan_lock);
2202 if (!root->orphan_block_rsv) {
2203 root->orphan_block_rsv = block_rsv;
2204 } else if (block_rsv) {
2205 btrfs_free_block_rsv(root, block_rsv);
2206 block_rsv = NULL;
2207 }
2208
2209 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2210 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2211 #if 0
2212 /*
2213 * For proper ENOSPC handling, we should do orphan
2214 * cleanup when mounting. But this introduces backward
2215 * compatibility issue.
2216 */
2217 if (!xchg(&root->orphan_item_inserted, 1))
2218 insert = 2;
2219 else
2220 insert = 1;
2221 #endif
2222 insert = 1;
2223 }
2224
2225 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2226 BTRFS_I(inode)->orphan_meta_reserved = 1;
2227 reserve = 1;
2228 }
2229 spin_unlock(&root->orphan_lock);
2230
2231 if (block_rsv)
2232 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2233
2234 /* grab metadata reservation from transaction handle */
2235 if (reserve) {
2236 ret = btrfs_orphan_reserve_metadata(trans, inode);
2237 BUG_ON(ret);
2238 }
2239
2240 /* insert an orphan item to track this unlinked/truncated file */
2241 if (insert >= 1) {
2242 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2243 BUG_ON(ret);
2244 }
2245
2246 /* insert an orphan item to track subvolume contains orphan files */
2247 if (insert >= 2) {
2248 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2249 root->root_key.objectid);
2250 BUG_ON(ret);
2251 }
2252 return 0;
2253 }
2254
2255 /*
2256 * We have done the truncate/delete so we can go ahead and remove the orphan
2257 * item for this particular inode.
2258 */
2259 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2260 {
2261 struct btrfs_root *root = BTRFS_I(inode)->root;
2262 int delete_item = 0;
2263 int release_rsv = 0;
2264 int ret = 0;
2265
2266 spin_lock(&root->orphan_lock);
2267 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2268 list_del_init(&BTRFS_I(inode)->i_orphan);
2269 delete_item = 1;
2270 }
2271
2272 if (BTRFS_I(inode)->orphan_meta_reserved) {
2273 BTRFS_I(inode)->orphan_meta_reserved = 0;
2274 release_rsv = 1;
2275 }
2276 spin_unlock(&root->orphan_lock);
2277
2278 if (trans && delete_item) {
2279 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2280 BUG_ON(ret);
2281 }
2282
2283 if (release_rsv)
2284 btrfs_orphan_release_metadata(inode);
2285
2286 return 0;
2287 }
2288
2289 /*
2290 * this cleans up any orphans that may be left on the list from the last use
2291 * of this root.
2292 */
2293 int btrfs_orphan_cleanup(struct btrfs_root *root)
2294 {
2295 struct btrfs_path *path;
2296 struct extent_buffer *leaf;
2297 struct btrfs_key key, found_key;
2298 struct btrfs_trans_handle *trans;
2299 struct inode *inode;
2300 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2301
2302 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2303 return 0;
2304
2305 path = btrfs_alloc_path();
2306 if (!path) {
2307 ret = -ENOMEM;
2308 goto out;
2309 }
2310 path->reada = -1;
2311
2312 key.objectid = BTRFS_ORPHAN_OBJECTID;
2313 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2314 key.offset = (u64)-1;
2315
2316 while (1) {
2317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2318 if (ret < 0)
2319 goto out;
2320
2321 /*
2322 * if ret == 0 means we found what we were searching for, which
2323 * is weird, but possible, so only screw with path if we didnt
2324 * find the key and see if we have stuff that matches
2325 */
2326 if (ret > 0) {
2327 ret = 0;
2328 if (path->slots[0] == 0)
2329 break;
2330 path->slots[0]--;
2331 }
2332
2333 /* pull out the item */
2334 leaf = path->nodes[0];
2335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2336
2337 /* make sure the item matches what we want */
2338 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2339 break;
2340 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2341 break;
2342
2343 /* release the path since we're done with it */
2344 btrfs_release_path(root, path);
2345
2346 /*
2347 * this is where we are basically btrfs_lookup, without the
2348 * crossing root thing. we store the inode number in the
2349 * offset of the orphan item.
2350 */
2351 found_key.objectid = found_key.offset;
2352 found_key.type = BTRFS_INODE_ITEM_KEY;
2353 found_key.offset = 0;
2354 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2355 if (IS_ERR(inode)) {
2356 ret = PTR_ERR(inode);
2357 goto out;
2358 }
2359
2360 /*
2361 * add this inode to the orphan list so btrfs_orphan_del does
2362 * the proper thing when we hit it
2363 */
2364 spin_lock(&root->orphan_lock);
2365 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2366 spin_unlock(&root->orphan_lock);
2367
2368 /*
2369 * if this is a bad inode, means we actually succeeded in
2370 * removing the inode, but not the orphan record, which means
2371 * we need to manually delete the orphan since iput will just
2372 * do a destroy_inode
2373 */
2374 if (is_bad_inode(inode)) {
2375 trans = btrfs_start_transaction(root, 0);
2376 if (IS_ERR(trans)) {
2377 ret = PTR_ERR(trans);
2378 goto out;
2379 }
2380 btrfs_orphan_del(trans, inode);
2381 btrfs_end_transaction(trans, root);
2382 iput(inode);
2383 continue;
2384 }
2385
2386 /* if we have links, this was a truncate, lets do that */
2387 if (inode->i_nlink) {
2388 if (!S_ISREG(inode->i_mode)) {
2389 WARN_ON(1);
2390 iput(inode);
2391 continue;
2392 }
2393 nr_truncate++;
2394 ret = btrfs_truncate(inode);
2395 } else {
2396 nr_unlink++;
2397 }
2398
2399 /* this will do delete_inode and everything for us */
2400 iput(inode);
2401 if (ret)
2402 goto out;
2403 }
2404 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2405
2406 if (root->orphan_block_rsv)
2407 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2408 (u64)-1);
2409
2410 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2411 trans = btrfs_join_transaction(root, 1);
2412 if (!IS_ERR(trans))
2413 btrfs_end_transaction(trans, root);
2414 }
2415
2416 if (nr_unlink)
2417 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2418 if (nr_truncate)
2419 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2420
2421 out:
2422 if (ret)
2423 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2424 btrfs_free_path(path);
2425 return ret;
2426 }
2427
2428 /*
2429 * very simple check to peek ahead in the leaf looking for xattrs. If we
2430 * don't find any xattrs, we know there can't be any acls.
2431 *
2432 * slot is the slot the inode is in, objectid is the objectid of the inode
2433 */
2434 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2435 int slot, u64 objectid)
2436 {
2437 u32 nritems = btrfs_header_nritems(leaf);
2438 struct btrfs_key found_key;
2439 int scanned = 0;
2440
2441 slot++;
2442 while (slot < nritems) {
2443 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2444
2445 /* we found a different objectid, there must not be acls */
2446 if (found_key.objectid != objectid)
2447 return 0;
2448
2449 /* we found an xattr, assume we've got an acl */
2450 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2451 return 1;
2452
2453 /*
2454 * we found a key greater than an xattr key, there can't
2455 * be any acls later on
2456 */
2457 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2458 return 0;
2459
2460 slot++;
2461 scanned++;
2462
2463 /*
2464 * it goes inode, inode backrefs, xattrs, extents,
2465 * so if there are a ton of hard links to an inode there can
2466 * be a lot of backrefs. Don't waste time searching too hard,
2467 * this is just an optimization
2468 */
2469 if (scanned >= 8)
2470 break;
2471 }
2472 /* we hit the end of the leaf before we found an xattr or
2473 * something larger than an xattr. We have to assume the inode
2474 * has acls
2475 */
2476 return 1;
2477 }
2478
2479 /*
2480 * read an inode from the btree into the in-memory inode
2481 */
2482 static void btrfs_read_locked_inode(struct inode *inode)
2483 {
2484 struct btrfs_path *path;
2485 struct extent_buffer *leaf;
2486 struct btrfs_inode_item *inode_item;
2487 struct btrfs_timespec *tspec;
2488 struct btrfs_root *root = BTRFS_I(inode)->root;
2489 struct btrfs_key location;
2490 int maybe_acls;
2491 u64 alloc_group_block;
2492 u32 rdev;
2493 int ret;
2494
2495 path = btrfs_alloc_path();
2496 BUG_ON(!path);
2497 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2498
2499 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2500 if (ret)
2501 goto make_bad;
2502
2503 leaf = path->nodes[0];
2504 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2505 struct btrfs_inode_item);
2506
2507 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2508 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2509 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2510 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2511 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2512
2513 tspec = btrfs_inode_atime(inode_item);
2514 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2515 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2516
2517 tspec = btrfs_inode_mtime(inode_item);
2518 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520
2521 tspec = btrfs_inode_ctime(inode_item);
2522 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2523 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2524
2525 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2526 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2527 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2528 inode->i_generation = BTRFS_I(inode)->generation;
2529 inode->i_rdev = 0;
2530 rdev = btrfs_inode_rdev(leaf, inode_item);
2531
2532 BTRFS_I(inode)->index_cnt = (u64)-1;
2533 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2534
2535 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2536
2537 /*
2538 * try to precache a NULL acl entry for files that don't have
2539 * any xattrs or acls
2540 */
2541 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2542 if (!maybe_acls)
2543 cache_no_acl(inode);
2544
2545 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2546 alloc_group_block, 0);
2547 btrfs_free_path(path);
2548 inode_item = NULL;
2549
2550 switch (inode->i_mode & S_IFMT) {
2551 case S_IFREG:
2552 inode->i_mapping->a_ops = &btrfs_aops;
2553 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2554 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2555 inode->i_fop = &btrfs_file_operations;
2556 inode->i_op = &btrfs_file_inode_operations;
2557 break;
2558 case S_IFDIR:
2559 inode->i_fop = &btrfs_dir_file_operations;
2560 if (root == root->fs_info->tree_root)
2561 inode->i_op = &btrfs_dir_ro_inode_operations;
2562 else
2563 inode->i_op = &btrfs_dir_inode_operations;
2564 break;
2565 case S_IFLNK:
2566 inode->i_op = &btrfs_symlink_inode_operations;
2567 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2568 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2569 break;
2570 default:
2571 inode->i_op = &btrfs_special_inode_operations;
2572 init_special_inode(inode, inode->i_mode, rdev);
2573 break;
2574 }
2575
2576 btrfs_update_iflags(inode);
2577 return;
2578
2579 make_bad:
2580 btrfs_free_path(path);
2581 make_bad_inode(inode);
2582 }
2583
2584 /*
2585 * given a leaf and an inode, copy the inode fields into the leaf
2586 */
2587 static void fill_inode_item(struct btrfs_trans_handle *trans,
2588 struct extent_buffer *leaf,
2589 struct btrfs_inode_item *item,
2590 struct inode *inode)
2591 {
2592 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2593 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2594 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2595 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2596 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2597
2598 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2599 inode->i_atime.tv_sec);
2600 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2601 inode->i_atime.tv_nsec);
2602
2603 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2604 inode->i_mtime.tv_sec);
2605 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2606 inode->i_mtime.tv_nsec);
2607
2608 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2609 inode->i_ctime.tv_sec);
2610 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2611 inode->i_ctime.tv_nsec);
2612
2613 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2614 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2615 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2616 btrfs_set_inode_transid(leaf, item, trans->transid);
2617 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2618 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2619 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2620 }
2621
2622 /*
2623 * copy everything in the in-memory inode into the btree.
2624 */
2625 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2626 struct btrfs_root *root, struct inode *inode)
2627 {
2628 struct btrfs_inode_item *inode_item;
2629 struct btrfs_path *path;
2630 struct extent_buffer *leaf;
2631 int ret;
2632
2633 path = btrfs_alloc_path();
2634 BUG_ON(!path);
2635 path->leave_spinning = 1;
2636 ret = btrfs_lookup_inode(trans, root, path,
2637 &BTRFS_I(inode)->location, 1);
2638 if (ret) {
2639 if (ret > 0)
2640 ret = -ENOENT;
2641 goto failed;
2642 }
2643
2644 btrfs_unlock_up_safe(path, 1);
2645 leaf = path->nodes[0];
2646 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2647 struct btrfs_inode_item);
2648
2649 fill_inode_item(trans, leaf, inode_item, inode);
2650 btrfs_mark_buffer_dirty(leaf);
2651 btrfs_set_inode_last_trans(trans, inode);
2652 ret = 0;
2653 failed:
2654 btrfs_free_path(path);
2655 return ret;
2656 }
2657
2658
2659 /*
2660 * unlink helper that gets used here in inode.c and in the tree logging
2661 * recovery code. It remove a link in a directory with a given name, and
2662 * also drops the back refs in the inode to the directory
2663 */
2664 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2665 struct btrfs_root *root,
2666 struct inode *dir, struct inode *inode,
2667 const char *name, int name_len)
2668 {
2669 struct btrfs_path *path;
2670 int ret = 0;
2671 struct extent_buffer *leaf;
2672 struct btrfs_dir_item *di;
2673 struct btrfs_key key;
2674 u64 index;
2675
2676 path = btrfs_alloc_path();
2677 if (!path) {
2678 ret = -ENOMEM;
2679 goto out;
2680 }
2681
2682 path->leave_spinning = 1;
2683 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2684 name, name_len, -1);
2685 if (IS_ERR(di)) {
2686 ret = PTR_ERR(di);
2687 goto err;
2688 }
2689 if (!di) {
2690 ret = -ENOENT;
2691 goto err;
2692 }
2693 leaf = path->nodes[0];
2694 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2695 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2696 if (ret)
2697 goto err;
2698 btrfs_release_path(root, path);
2699
2700 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2701 inode->i_ino,
2702 dir->i_ino, &index);
2703 if (ret) {
2704 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2705 "inode %lu parent %lu\n", name_len, name,
2706 inode->i_ino, dir->i_ino);
2707 goto err;
2708 }
2709
2710 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2711 index, name, name_len, -1);
2712 if (IS_ERR(di)) {
2713 ret = PTR_ERR(di);
2714 goto err;
2715 }
2716 if (!di) {
2717 ret = -ENOENT;
2718 goto err;
2719 }
2720 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2721 btrfs_release_path(root, path);
2722
2723 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2724 inode, dir->i_ino);
2725 BUG_ON(ret != 0 && ret != -ENOENT);
2726
2727 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2728 dir, index);
2729 if (ret == -ENOENT)
2730 ret = 0;
2731 err:
2732 btrfs_free_path(path);
2733 if (ret)
2734 goto out;
2735
2736 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2737 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2738 btrfs_update_inode(trans, root, dir);
2739 out:
2740 return ret;
2741 }
2742
2743 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2744 struct btrfs_root *root,
2745 struct inode *dir, struct inode *inode,
2746 const char *name, int name_len)
2747 {
2748 int ret;
2749 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2750 if (!ret) {
2751 btrfs_drop_nlink(inode);
2752 ret = btrfs_update_inode(trans, root, inode);
2753 }
2754 return ret;
2755 }
2756
2757
2758 /* helper to check if there is any shared block in the path */
2759 static int check_path_shared(struct btrfs_root *root,
2760 struct btrfs_path *path)
2761 {
2762 struct extent_buffer *eb;
2763 int level;
2764 u64 refs = 1;
2765
2766 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2767 int ret;
2768
2769 if (!path->nodes[level])
2770 break;
2771 eb = path->nodes[level];
2772 if (!btrfs_block_can_be_shared(root, eb))
2773 continue;
2774 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2775 &refs, NULL);
2776 if (refs > 1)
2777 return 1;
2778 }
2779 return 0;
2780 }
2781
2782 /*
2783 * helper to start transaction for unlink and rmdir.
2784 *
2785 * unlink and rmdir are special in btrfs, they do not always free space.
2786 * so in enospc case, we should make sure they will free space before
2787 * allowing them to use the global metadata reservation.
2788 */
2789 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2790 struct dentry *dentry)
2791 {
2792 struct btrfs_trans_handle *trans;
2793 struct btrfs_root *root = BTRFS_I(dir)->root;
2794 struct btrfs_path *path;
2795 struct btrfs_inode_ref *ref;
2796 struct btrfs_dir_item *di;
2797 struct inode *inode = dentry->d_inode;
2798 u64 index;
2799 int check_link = 1;
2800 int err = -ENOSPC;
2801 int ret;
2802
2803 trans = btrfs_start_transaction(root, 10);
2804 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2805 return trans;
2806
2807 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2808 return ERR_PTR(-ENOSPC);
2809
2810 /* check if there is someone else holds reference */
2811 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2812 return ERR_PTR(-ENOSPC);
2813
2814 if (atomic_read(&inode->i_count) > 2)
2815 return ERR_PTR(-ENOSPC);
2816
2817 if (xchg(&root->fs_info->enospc_unlink, 1))
2818 return ERR_PTR(-ENOSPC);
2819
2820 path = btrfs_alloc_path();
2821 if (!path) {
2822 root->fs_info->enospc_unlink = 0;
2823 return ERR_PTR(-ENOMEM);
2824 }
2825
2826 trans = btrfs_start_transaction(root, 0);
2827 if (IS_ERR(trans)) {
2828 btrfs_free_path(path);
2829 root->fs_info->enospc_unlink = 0;
2830 return trans;
2831 }
2832
2833 path->skip_locking = 1;
2834 path->search_commit_root = 1;
2835
2836 ret = btrfs_lookup_inode(trans, root, path,
2837 &BTRFS_I(dir)->location, 0);
2838 if (ret < 0) {
2839 err = ret;
2840 goto out;
2841 }
2842 if (ret == 0) {
2843 if (check_path_shared(root, path))
2844 goto out;
2845 } else {
2846 check_link = 0;
2847 }
2848 btrfs_release_path(root, path);
2849
2850 ret = btrfs_lookup_inode(trans, root, path,
2851 &BTRFS_I(inode)->location, 0);
2852 if (ret < 0) {
2853 err = ret;
2854 goto out;
2855 }
2856 if (ret == 0) {
2857 if (check_path_shared(root, path))
2858 goto out;
2859 } else {
2860 check_link = 0;
2861 }
2862 btrfs_release_path(root, path);
2863
2864 if (ret == 0 && S_ISREG(inode->i_mode)) {
2865 ret = btrfs_lookup_file_extent(trans, root, path,
2866 inode->i_ino, (u64)-1, 0);
2867 if (ret < 0) {
2868 err = ret;
2869 goto out;
2870 }
2871 BUG_ON(ret == 0);
2872 if (check_path_shared(root, path))
2873 goto out;
2874 btrfs_release_path(root, path);
2875 }
2876
2877 if (!check_link) {
2878 err = 0;
2879 goto out;
2880 }
2881
2882 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2883 dentry->d_name.name, dentry->d_name.len, 0);
2884 if (IS_ERR(di)) {
2885 err = PTR_ERR(di);
2886 goto out;
2887 }
2888 if (di) {
2889 if (check_path_shared(root, path))
2890 goto out;
2891 } else {
2892 err = 0;
2893 goto out;
2894 }
2895 btrfs_release_path(root, path);
2896
2897 ref = btrfs_lookup_inode_ref(trans, root, path,
2898 dentry->d_name.name, dentry->d_name.len,
2899 inode->i_ino, dir->i_ino, 0);
2900 if (IS_ERR(ref)) {
2901 err = PTR_ERR(ref);
2902 goto out;
2903 }
2904 BUG_ON(!ref);
2905 if (check_path_shared(root, path))
2906 goto out;
2907 index = btrfs_inode_ref_index(path->nodes[0], ref);
2908 btrfs_release_path(root, path);
2909
2910 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2911 dentry->d_name.name, dentry->d_name.len, 0);
2912 if (IS_ERR(di)) {
2913 err = PTR_ERR(di);
2914 goto out;
2915 }
2916 BUG_ON(ret == -ENOENT);
2917 if (check_path_shared(root, path))
2918 goto out;
2919
2920 err = 0;
2921 out:
2922 btrfs_free_path(path);
2923 if (err) {
2924 btrfs_end_transaction(trans, root);
2925 root->fs_info->enospc_unlink = 0;
2926 return ERR_PTR(err);
2927 }
2928
2929 trans->block_rsv = &root->fs_info->global_block_rsv;
2930 return trans;
2931 }
2932
2933 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2934 struct btrfs_root *root)
2935 {
2936 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2937 BUG_ON(!root->fs_info->enospc_unlink);
2938 root->fs_info->enospc_unlink = 0;
2939 }
2940 btrfs_end_transaction_throttle(trans, root);
2941 }
2942
2943 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2944 {
2945 struct btrfs_root *root = BTRFS_I(dir)->root;
2946 struct btrfs_trans_handle *trans;
2947 struct inode *inode = dentry->d_inode;
2948 int ret;
2949 unsigned long nr = 0;
2950
2951 trans = __unlink_start_trans(dir, dentry);
2952 if (IS_ERR(trans))
2953 return PTR_ERR(trans);
2954
2955 btrfs_set_trans_block_group(trans, dir);
2956
2957 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2958
2959 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2960 dentry->d_name.name, dentry->d_name.len);
2961 BUG_ON(ret);
2962
2963 if (inode->i_nlink == 0) {
2964 ret = btrfs_orphan_add(trans, inode);
2965 BUG_ON(ret);
2966 }
2967
2968 nr = trans->blocks_used;
2969 __unlink_end_trans(trans, root);
2970 btrfs_btree_balance_dirty(root, nr);
2971 return ret;
2972 }
2973
2974 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2975 struct btrfs_root *root,
2976 struct inode *dir, u64 objectid,
2977 const char *name, int name_len)
2978 {
2979 struct btrfs_path *path;
2980 struct extent_buffer *leaf;
2981 struct btrfs_dir_item *di;
2982 struct btrfs_key key;
2983 u64 index;
2984 int ret;
2985
2986 path = btrfs_alloc_path();
2987 if (!path)
2988 return -ENOMEM;
2989
2990 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2991 name, name_len, -1);
2992 BUG_ON(!di || IS_ERR(di));
2993
2994 leaf = path->nodes[0];
2995 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2996 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2997 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2998 BUG_ON(ret);
2999 btrfs_release_path(root, path);
3000
3001 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3002 objectid, root->root_key.objectid,
3003 dir->i_ino, &index, name, name_len);
3004 if (ret < 0) {
3005 BUG_ON(ret != -ENOENT);
3006 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3007 name, name_len);
3008 BUG_ON(!di || IS_ERR(di));
3009
3010 leaf = path->nodes[0];
3011 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3012 btrfs_release_path(root, path);
3013 index = key.offset;
3014 }
3015
3016 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3017 index, name, name_len, -1);
3018 BUG_ON(!di || IS_ERR(di));
3019
3020 leaf = path->nodes[0];
3021 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3022 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3023 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3024 BUG_ON(ret);
3025 btrfs_release_path(root, path);
3026
3027 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3028 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3029 ret = btrfs_update_inode(trans, root, dir);
3030 BUG_ON(ret);
3031
3032 btrfs_free_path(path);
3033 return 0;
3034 }
3035
3036 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3037 {
3038 struct inode *inode = dentry->d_inode;
3039 int err = 0;
3040 struct btrfs_root *root = BTRFS_I(dir)->root;
3041 struct btrfs_trans_handle *trans;
3042 unsigned long nr = 0;
3043
3044 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3045 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3046 return -ENOTEMPTY;
3047
3048 trans = __unlink_start_trans(dir, dentry);
3049 if (IS_ERR(trans))
3050 return PTR_ERR(trans);
3051
3052 btrfs_set_trans_block_group(trans, dir);
3053
3054 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3055 err = btrfs_unlink_subvol(trans, root, dir,
3056 BTRFS_I(inode)->location.objectid,
3057 dentry->d_name.name,
3058 dentry->d_name.len);
3059 goto out;
3060 }
3061
3062 err = btrfs_orphan_add(trans, inode);
3063 if (err)
3064 goto out;
3065
3066 /* now the directory is empty */
3067 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3068 dentry->d_name.name, dentry->d_name.len);
3069 if (!err)
3070 btrfs_i_size_write(inode, 0);
3071 out:
3072 nr = trans->blocks_used;
3073 __unlink_end_trans(trans, root);
3074 btrfs_btree_balance_dirty(root, nr);
3075
3076 return err;
3077 }
3078
3079 #if 0
3080 /*
3081 * when truncating bytes in a file, it is possible to avoid reading
3082 * the leaves that contain only checksum items. This can be the
3083 * majority of the IO required to delete a large file, but it must
3084 * be done carefully.
3085 *
3086 * The keys in the level just above the leaves are checked to make sure
3087 * the lowest key in a given leaf is a csum key, and starts at an offset
3088 * after the new size.
3089 *
3090 * Then the key for the next leaf is checked to make sure it also has
3091 * a checksum item for the same file. If it does, we know our target leaf
3092 * contains only checksum items, and it can be safely freed without reading
3093 * it.
3094 *
3095 * This is just an optimization targeted at large files. It may do
3096 * nothing. It will return 0 unless things went badly.
3097 */
3098 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3099 struct btrfs_root *root,
3100 struct btrfs_path *path,
3101 struct inode *inode, u64 new_size)
3102 {
3103 struct btrfs_key key;
3104 int ret;
3105 int nritems;
3106 struct btrfs_key found_key;
3107 struct btrfs_key other_key;
3108 struct btrfs_leaf_ref *ref;
3109 u64 leaf_gen;
3110 u64 leaf_start;
3111
3112 path->lowest_level = 1;
3113 key.objectid = inode->i_ino;
3114 key.type = BTRFS_CSUM_ITEM_KEY;
3115 key.offset = new_size;
3116 again:
3117 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3118 if (ret < 0)
3119 goto out;
3120
3121 if (path->nodes[1] == NULL) {
3122 ret = 0;
3123 goto out;
3124 }
3125 ret = 0;
3126 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3127 nritems = btrfs_header_nritems(path->nodes[1]);
3128
3129 if (!nritems)
3130 goto out;
3131
3132 if (path->slots[1] >= nritems)
3133 goto next_node;
3134
3135 /* did we find a key greater than anything we want to delete? */
3136 if (found_key.objectid > inode->i_ino ||
3137 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3138 goto out;
3139
3140 /* we check the next key in the node to make sure the leave contains
3141 * only checksum items. This comparison doesn't work if our
3142 * leaf is the last one in the node
3143 */
3144 if (path->slots[1] + 1 >= nritems) {
3145 next_node:
3146 /* search forward from the last key in the node, this
3147 * will bring us into the next node in the tree
3148 */
3149 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3150
3151 /* unlikely, but we inc below, so check to be safe */
3152 if (found_key.offset == (u64)-1)
3153 goto out;
3154
3155 /* search_forward needs a path with locks held, do the
3156 * search again for the original key. It is possible
3157 * this will race with a balance and return a path that
3158 * we could modify, but this drop is just an optimization
3159 * and is allowed to miss some leaves.
3160 */
3161 btrfs_release_path(root, path);
3162 found_key.offset++;
3163
3164 /* setup a max key for search_forward */
3165 other_key.offset = (u64)-1;
3166 other_key.type = key.type;
3167 other_key.objectid = key.objectid;
3168
3169 path->keep_locks = 1;
3170 ret = btrfs_search_forward(root, &found_key, &other_key,
3171 path, 0, 0);
3172 path->keep_locks = 0;
3173 if (ret || found_key.objectid != key.objectid ||
3174 found_key.type != key.type) {
3175 ret = 0;
3176 goto out;
3177 }
3178
3179 key.offset = found_key.offset;
3180 btrfs_release_path(root, path);
3181 cond_resched();
3182 goto again;
3183 }
3184
3185 /* we know there's one more slot after us in the tree,
3186 * read that key so we can verify it is also a checksum item
3187 */
3188 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3189
3190 if (found_key.objectid < inode->i_ino)
3191 goto next_key;
3192
3193 if (found_key.type != key.type || found_key.offset < new_size)
3194 goto next_key;
3195
3196 /*
3197 * if the key for the next leaf isn't a csum key from this objectid,
3198 * we can't be sure there aren't good items inside this leaf.
3199 * Bail out
3200 */
3201 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3202 goto out;
3203
3204 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3205 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3206 /*
3207 * it is safe to delete this leaf, it contains only
3208 * csum items from this inode at an offset >= new_size
3209 */
3210 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3211 BUG_ON(ret);
3212
3213 if (root->ref_cows && leaf_gen < trans->transid) {
3214 ref = btrfs_alloc_leaf_ref(root, 0);
3215 if (ref) {
3216 ref->root_gen = root->root_key.offset;
3217 ref->bytenr = leaf_start;
3218 ref->owner = 0;
3219 ref->generation = leaf_gen;
3220 ref->nritems = 0;
3221
3222 btrfs_sort_leaf_ref(ref);
3223
3224 ret = btrfs_add_leaf_ref(root, ref, 0);
3225 WARN_ON(ret);
3226 btrfs_free_leaf_ref(root, ref);
3227 } else {
3228 WARN_ON(1);
3229 }
3230 }
3231 next_key:
3232 btrfs_release_path(root, path);
3233
3234 if (other_key.objectid == inode->i_ino &&
3235 other_key.type == key.type && other_key.offset > key.offset) {
3236 key.offset = other_key.offset;
3237 cond_resched();
3238 goto again;
3239 }
3240 ret = 0;
3241 out:
3242 /* fixup any changes we've made to the path */
3243 path->lowest_level = 0;
3244 path->keep_locks = 0;
3245 btrfs_release_path(root, path);
3246 return ret;
3247 }
3248
3249 #endif
3250
3251 /*
3252 * this can truncate away extent items, csum items and directory items.
3253 * It starts at a high offset and removes keys until it can't find
3254 * any higher than new_size
3255 *
3256 * csum items that cross the new i_size are truncated to the new size
3257 * as well.
3258 *
3259 * min_type is the minimum key type to truncate down to. If set to 0, this
3260 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3261 */
3262 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3263 struct btrfs_root *root,
3264 struct inode *inode,
3265 u64 new_size, u32 min_type)
3266 {
3267 struct btrfs_path *path;
3268 struct extent_buffer *leaf;
3269 struct btrfs_file_extent_item *fi;
3270 struct btrfs_key key;
3271 struct btrfs_key found_key;
3272 u64 extent_start = 0;
3273 u64 extent_num_bytes = 0;
3274 u64 extent_offset = 0;
3275 u64 item_end = 0;
3276 u64 mask = root->sectorsize - 1;
3277 u32 found_type = (u8)-1;
3278 int found_extent;
3279 int del_item;
3280 int pending_del_nr = 0;
3281 int pending_del_slot = 0;
3282 int extent_type = -1;
3283 int encoding;
3284 int ret;
3285 int err = 0;
3286
3287 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3288
3289 if (root->ref_cows || root == root->fs_info->tree_root)
3290 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3291
3292 path = btrfs_alloc_path();
3293 BUG_ON(!path);
3294 path->reada = -1;
3295
3296 key.objectid = inode->i_ino;
3297 key.offset = (u64)-1;
3298 key.type = (u8)-1;
3299
3300 search_again:
3301 path->leave_spinning = 1;
3302 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3303 if (ret < 0) {
3304 err = ret;
3305 goto out;
3306 }
3307
3308 if (ret > 0) {
3309 /* there are no items in the tree for us to truncate, we're
3310 * done
3311 */
3312 if (path->slots[0] == 0)
3313 goto out;
3314 path->slots[0]--;
3315 }
3316
3317 while (1) {
3318 fi = NULL;
3319 leaf = path->nodes[0];
3320 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3321 found_type = btrfs_key_type(&found_key);
3322 encoding = 0;
3323
3324 if (found_key.objectid != inode->i_ino)
3325 break;
3326
3327 if (found_type < min_type)
3328 break;
3329
3330 item_end = found_key.offset;
3331 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3332 fi = btrfs_item_ptr(leaf, path->slots[0],
3333 struct btrfs_file_extent_item);
3334 extent_type = btrfs_file_extent_type(leaf, fi);
3335 encoding = btrfs_file_extent_compression(leaf, fi);
3336 encoding |= btrfs_file_extent_encryption(leaf, fi);
3337 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3338
3339 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3340 item_end +=
3341 btrfs_file_extent_num_bytes(leaf, fi);
3342 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3343 item_end += btrfs_file_extent_inline_len(leaf,
3344 fi);
3345 }
3346 item_end--;
3347 }
3348 if (found_type > min_type) {
3349 del_item = 1;
3350 } else {
3351 if (item_end < new_size)
3352 break;
3353 if (found_key.offset >= new_size)
3354 del_item = 1;
3355 else
3356 del_item = 0;
3357 }
3358 found_extent = 0;
3359 /* FIXME, shrink the extent if the ref count is only 1 */
3360 if (found_type != BTRFS_EXTENT_DATA_KEY)
3361 goto delete;
3362
3363 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3364 u64 num_dec;
3365 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3366 if (!del_item && !encoding) {
3367 u64 orig_num_bytes =
3368 btrfs_file_extent_num_bytes(leaf, fi);
3369 extent_num_bytes = new_size -
3370 found_key.offset + root->sectorsize - 1;
3371 extent_num_bytes = extent_num_bytes &
3372 ~((u64)root->sectorsize - 1);
3373 btrfs_set_file_extent_num_bytes(leaf, fi,
3374 extent_num_bytes);
3375 num_dec = (orig_num_bytes -
3376 extent_num_bytes);
3377 if (root->ref_cows && extent_start != 0)
3378 inode_sub_bytes(inode, num_dec);
3379 btrfs_mark_buffer_dirty(leaf);
3380 } else {
3381 extent_num_bytes =
3382 btrfs_file_extent_disk_num_bytes(leaf,
3383 fi);
3384 extent_offset = found_key.offset -
3385 btrfs_file_extent_offset(leaf, fi);
3386
3387 /* FIXME blocksize != 4096 */
3388 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3389 if (extent_start != 0) {
3390 found_extent = 1;
3391 if (root->ref_cows)
3392 inode_sub_bytes(inode, num_dec);
3393 }
3394 }
3395 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3396 /*
3397 * we can't truncate inline items that have had
3398 * special encodings
3399 */
3400 if (!del_item &&
3401 btrfs_file_extent_compression(leaf, fi) == 0 &&
3402 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3403 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3404 u32 size = new_size - found_key.offset;
3405
3406 if (root->ref_cows) {
3407 inode_sub_bytes(inode, item_end + 1 -
3408 new_size);
3409 }
3410 size =
3411 btrfs_file_extent_calc_inline_size(size);
3412 ret = btrfs_truncate_item(trans, root, path,
3413 size, 1);
3414 BUG_ON(ret);
3415 } else if (root->ref_cows) {
3416 inode_sub_bytes(inode, item_end + 1 -
3417 found_key.offset);
3418 }
3419 }
3420 delete:
3421 if (del_item) {
3422 if (!pending_del_nr) {
3423 /* no pending yet, add ourselves */
3424 pending_del_slot = path->slots[0];
3425 pending_del_nr = 1;
3426 } else if (pending_del_nr &&
3427 path->slots[0] + 1 == pending_del_slot) {
3428 /* hop on the pending chunk */
3429 pending_del_nr++;
3430 pending_del_slot = path->slots[0];
3431 } else {
3432 BUG();
3433 }
3434 } else {
3435 break;
3436 }
3437 if (found_extent && (root->ref_cows ||
3438 root == root->fs_info->tree_root)) {
3439 btrfs_set_path_blocking(path);
3440 ret = btrfs_free_extent(trans, root, extent_start,
3441 extent_num_bytes, 0,
3442 btrfs_header_owner(leaf),
3443 inode->i_ino, extent_offset);
3444 BUG_ON(ret);
3445 }
3446
3447 if (found_type == BTRFS_INODE_ITEM_KEY)
3448 break;
3449
3450 if (path->slots[0] == 0 ||
3451 path->slots[0] != pending_del_slot) {
3452 if (root->ref_cows) {
3453 err = -EAGAIN;
3454 goto out;
3455 }
3456 if (pending_del_nr) {
3457 ret = btrfs_del_items(trans, root, path,
3458 pending_del_slot,
3459 pending_del_nr);
3460 BUG_ON(ret);
3461 pending_del_nr = 0;
3462 }
3463 btrfs_release_path(root, path);
3464 goto search_again;
3465 } else {
3466 path->slots[0]--;
3467 }
3468 }
3469 out:
3470 if (pending_del_nr) {
3471 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3472 pending_del_nr);
3473 BUG_ON(ret);
3474 }
3475 btrfs_free_path(path);
3476 return err;
3477 }
3478
3479 /*
3480 * taken from block_truncate_page, but does cow as it zeros out
3481 * any bytes left in the last page in the file.
3482 */
3483 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3484 {
3485 struct inode *inode = mapping->host;
3486 struct btrfs_root *root = BTRFS_I(inode)->root;
3487 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3488 struct btrfs_ordered_extent *ordered;
3489 struct extent_state *cached_state = NULL;
3490 char *kaddr;
3491 u32 blocksize = root->sectorsize;
3492 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3493 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3494 struct page *page;
3495 int ret = 0;
3496 u64 page_start;
3497 u64 page_end;
3498
3499 if ((offset & (blocksize - 1)) == 0)
3500 goto out;
3501 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3502 if (ret)
3503 goto out;
3504
3505 ret = -ENOMEM;
3506 again:
3507 page = grab_cache_page(mapping, index);
3508 if (!page) {
3509 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3510 goto out;
3511 }
3512
3513 page_start = page_offset(page);
3514 page_end = page_start + PAGE_CACHE_SIZE - 1;
3515
3516 if (!PageUptodate(page)) {
3517 ret = btrfs_readpage(NULL, page);
3518 lock_page(page);
3519 if (page->mapping != mapping) {
3520 unlock_page(page);
3521 page_cache_release(page);
3522 goto again;
3523 }
3524 if (!PageUptodate(page)) {
3525 ret = -EIO;
3526 goto out_unlock;
3527 }
3528 }
3529 wait_on_page_writeback(page);
3530
3531 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3532 GFP_NOFS);
3533 set_page_extent_mapped(page);
3534
3535 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3536 if (ordered) {
3537 unlock_extent_cached(io_tree, page_start, page_end,
3538 &cached_state, GFP_NOFS);
3539 unlock_page(page);
3540 page_cache_release(page);
3541 btrfs_start_ordered_extent(inode, ordered, 1);
3542 btrfs_put_ordered_extent(ordered);
3543 goto again;
3544 }
3545
3546 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3547 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3548 0, 0, &cached_state, GFP_NOFS);
3549
3550 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3551 &cached_state);
3552 if (ret) {
3553 unlock_extent_cached(io_tree, page_start, page_end,
3554 &cached_state, GFP_NOFS);
3555 goto out_unlock;
3556 }
3557
3558 ret = 0;
3559 if (offset != PAGE_CACHE_SIZE) {
3560 kaddr = kmap(page);
3561 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3562 flush_dcache_page(page);
3563 kunmap(page);
3564 }
3565 ClearPageChecked(page);
3566 set_page_dirty(page);
3567 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3568 GFP_NOFS);
3569
3570 out_unlock:
3571 if (ret)
3572 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3573 unlock_page(page);
3574 page_cache_release(page);
3575 out:
3576 return ret;
3577 }
3578
3579 /*
3580 * This function puts in dummy file extents for the area we're creating a hole
3581 * for. So if we are truncating this file to a larger size we need to insert
3582 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3583 * the range between oldsize and size
3584 */
3585 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3586 {
3587 struct btrfs_trans_handle *trans;
3588 struct btrfs_root *root = BTRFS_I(inode)->root;
3589 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3590 struct extent_map *em = NULL;
3591 struct extent_state *cached_state = NULL;
3592 u64 mask = root->sectorsize - 1;
3593 u64 hole_start = (oldsize + mask) & ~mask;
3594 u64 block_end = (size + mask) & ~mask;
3595 u64 last_byte;
3596 u64 cur_offset;
3597 u64 hole_size;
3598 int err = 0;
3599
3600 if (size <= hole_start)
3601 return 0;
3602
3603 while (1) {
3604 struct btrfs_ordered_extent *ordered;
3605 btrfs_wait_ordered_range(inode, hole_start,
3606 block_end - hole_start);
3607 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3608 &cached_state, GFP_NOFS);
3609 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3610 if (!ordered)
3611 break;
3612 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3613 &cached_state, GFP_NOFS);
3614 btrfs_put_ordered_extent(ordered);
3615 }
3616
3617 cur_offset = hole_start;
3618 while (1) {
3619 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3620 block_end - cur_offset, 0);
3621 BUG_ON(IS_ERR(em) || !em);
3622 last_byte = min(extent_map_end(em), block_end);
3623 last_byte = (last_byte + mask) & ~mask;
3624 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3625 u64 hint_byte = 0;
3626 hole_size = last_byte - cur_offset;
3627
3628 trans = btrfs_start_transaction(root, 2);
3629 if (IS_ERR(trans)) {
3630 err = PTR_ERR(trans);
3631 break;
3632 }
3633 btrfs_set_trans_block_group(trans, inode);
3634
3635 err = btrfs_drop_extents(trans, inode, cur_offset,
3636 cur_offset + hole_size,
3637 &hint_byte, 1);
3638 if (err)
3639 break;
3640
3641 err = btrfs_insert_file_extent(trans, root,
3642 inode->i_ino, cur_offset, 0,
3643 0, hole_size, 0, hole_size,
3644 0, 0, 0);
3645 if (err)
3646 break;
3647
3648 btrfs_drop_extent_cache(inode, hole_start,
3649 last_byte - 1, 0);
3650
3651 btrfs_end_transaction(trans, root);
3652 }
3653 free_extent_map(em);
3654 em = NULL;
3655 cur_offset = last_byte;
3656 if (cur_offset >= block_end)
3657 break;
3658 }
3659
3660 free_extent_map(em);
3661 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3662 GFP_NOFS);
3663 return err;
3664 }
3665
3666 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3667 {
3668 loff_t oldsize = i_size_read(inode);
3669 int ret;
3670
3671 if (newsize == oldsize)
3672 return 0;
3673
3674 if (newsize > oldsize) {
3675 i_size_write(inode, newsize);
3676 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3677 truncate_pagecache(inode, oldsize, newsize);
3678 ret = btrfs_cont_expand(inode, oldsize, newsize);
3679 if (ret) {
3680 btrfs_setsize(inode, oldsize);
3681 return ret;
3682 }
3683
3684 mark_inode_dirty(inode);
3685 } else {
3686
3687 /*
3688 * We're truncating a file that used to have good data down to
3689 * zero. Make sure it gets into the ordered flush list so that
3690 * any new writes get down to disk quickly.
3691 */
3692 if (newsize == 0)
3693 BTRFS_I(inode)->ordered_data_close = 1;
3694
3695 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3696 truncate_setsize(inode, newsize);
3697 ret = btrfs_truncate(inode);
3698 }
3699
3700 return ret;
3701 }
3702
3703 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3704 {
3705 struct inode *inode = dentry->d_inode;
3706 struct btrfs_root *root = BTRFS_I(inode)->root;
3707 int err;
3708
3709 if (btrfs_root_readonly(root))
3710 return -EROFS;
3711
3712 err = inode_change_ok(inode, attr);
3713 if (err)
3714 return err;
3715
3716 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3717 err = btrfs_setsize(inode, attr->ia_size);
3718 if (err)
3719 return err;
3720 }
3721
3722 if (attr->ia_valid) {
3723 setattr_copy(inode, attr);
3724 mark_inode_dirty(inode);
3725
3726 if (attr->ia_valid & ATTR_MODE)
3727 err = btrfs_acl_chmod(inode);
3728 }
3729
3730 return err;
3731 }
3732
3733 void btrfs_evict_inode(struct inode *inode)
3734 {
3735 struct btrfs_trans_handle *trans;
3736 struct btrfs_root *root = BTRFS_I(inode)->root;
3737 unsigned long nr;
3738 int ret;
3739
3740 trace_btrfs_inode_evict(inode);
3741
3742 truncate_inode_pages(&inode->i_data, 0);
3743 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3744 root == root->fs_info->tree_root))
3745 goto no_delete;
3746
3747 if (is_bad_inode(inode)) {
3748 btrfs_orphan_del(NULL, inode);
3749 goto no_delete;
3750 }
3751 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3752 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3753
3754 if (root->fs_info->log_root_recovering) {
3755 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3756 goto no_delete;
3757 }
3758
3759 if (inode->i_nlink > 0) {
3760 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3761 goto no_delete;
3762 }
3763
3764 btrfs_i_size_write(inode, 0);
3765
3766 while (1) {
3767 trans = btrfs_start_transaction(root, 0);
3768 BUG_ON(IS_ERR(trans));
3769 btrfs_set_trans_block_group(trans, inode);
3770 trans->block_rsv = root->orphan_block_rsv;
3771
3772 ret = btrfs_block_rsv_check(trans, root,
3773 root->orphan_block_rsv, 0, 5);
3774 if (ret) {
3775 BUG_ON(ret != -EAGAIN);
3776 ret = btrfs_commit_transaction(trans, root);
3777 BUG_ON(ret);
3778 continue;
3779 }
3780
3781 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3782 if (ret != -EAGAIN)
3783 break;
3784
3785 nr = trans->blocks_used;
3786 btrfs_end_transaction(trans, root);
3787 trans = NULL;
3788 btrfs_btree_balance_dirty(root, nr);
3789
3790 }
3791
3792 if (ret == 0) {
3793 ret = btrfs_orphan_del(trans, inode);
3794 BUG_ON(ret);
3795 }
3796
3797 nr = trans->blocks_used;
3798 btrfs_end_transaction(trans, root);
3799 btrfs_btree_balance_dirty(root, nr);
3800 no_delete:
3801 end_writeback(inode);
3802 return;
3803 }
3804
3805 /*
3806 * this returns the key found in the dir entry in the location pointer.
3807 * If no dir entries were found, location->objectid is 0.
3808 */
3809 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3810 struct btrfs_key *location)
3811 {
3812 const char *name = dentry->d_name.name;
3813 int namelen = dentry->d_name.len;
3814 struct btrfs_dir_item *di;
3815 struct btrfs_path *path;
3816 struct btrfs_root *root = BTRFS_I(dir)->root;
3817 int ret = 0;
3818
3819 path = btrfs_alloc_path();
3820 BUG_ON(!path);
3821
3822 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3823 namelen, 0);
3824 if (IS_ERR(di))
3825 ret = PTR_ERR(di);
3826
3827 if (!di || IS_ERR(di))
3828 goto out_err;
3829
3830 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3831 out:
3832 btrfs_free_path(path);
3833 return ret;
3834 out_err:
3835 location->objectid = 0;
3836 goto out;
3837 }
3838
3839 /*
3840 * when we hit a tree root in a directory, the btrfs part of the inode
3841 * needs to be changed to reflect the root directory of the tree root. This
3842 * is kind of like crossing a mount point.
3843 */
3844 static int fixup_tree_root_location(struct btrfs_root *root,
3845 struct inode *dir,
3846 struct dentry *dentry,
3847 struct btrfs_key *location,
3848 struct btrfs_root **sub_root)
3849 {
3850 struct btrfs_path *path;
3851 struct btrfs_root *new_root;
3852 struct btrfs_root_ref *ref;
3853 struct extent_buffer *leaf;
3854 int ret;
3855 int err = 0;
3856
3857 path = btrfs_alloc_path();
3858 if (!path) {
3859 err = -ENOMEM;
3860 goto out;
3861 }
3862
3863 err = -ENOENT;
3864 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3865 BTRFS_I(dir)->root->root_key.objectid,
3866 location->objectid);
3867 if (ret) {
3868 if (ret < 0)
3869 err = ret;
3870 goto out;
3871 }
3872
3873 leaf = path->nodes[0];
3874 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3875 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3876 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3877 goto out;
3878
3879 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3880 (unsigned long)(ref + 1),
3881 dentry->d_name.len);
3882 if (ret)
3883 goto out;
3884
3885 btrfs_release_path(root->fs_info->tree_root, path);
3886
3887 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3888 if (IS_ERR(new_root)) {
3889 err = PTR_ERR(new_root);
3890 goto out;
3891 }
3892
3893 if (btrfs_root_refs(&new_root->root_item) == 0) {
3894 err = -ENOENT;
3895 goto out;
3896 }
3897
3898 *sub_root = new_root;
3899 location->objectid = btrfs_root_dirid(&new_root->root_item);
3900 location->type = BTRFS_INODE_ITEM_KEY;
3901 location->offset = 0;
3902 err = 0;
3903 out:
3904 btrfs_free_path(path);
3905 return err;
3906 }
3907
3908 static void inode_tree_add(struct inode *inode)
3909 {
3910 struct btrfs_root *root = BTRFS_I(inode)->root;
3911 struct btrfs_inode *entry;
3912 struct rb_node **p;
3913 struct rb_node *parent;
3914 again:
3915 p = &root->inode_tree.rb_node;
3916 parent = NULL;
3917
3918 if (inode_unhashed(inode))
3919 return;
3920
3921 spin_lock(&root->inode_lock);
3922 while (*p) {
3923 parent = *p;
3924 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3925
3926 if (inode->i_ino < entry->vfs_inode.i_ino)
3927 p = &parent->rb_left;
3928 else if (inode->i_ino > entry->vfs_inode.i_ino)
3929 p = &parent->rb_right;
3930 else {
3931 WARN_ON(!(entry->vfs_inode.i_state &
3932 (I_WILL_FREE | I_FREEING)));
3933 rb_erase(parent, &root->inode_tree);
3934 RB_CLEAR_NODE(parent);
3935 spin_unlock(&root->inode_lock);
3936 goto again;
3937 }
3938 }
3939 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3940 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3941 spin_unlock(&root->inode_lock);
3942 }
3943
3944 static void inode_tree_del(struct inode *inode)
3945 {
3946 struct btrfs_root *root = BTRFS_I(inode)->root;
3947 int empty = 0;
3948
3949 spin_lock(&root->inode_lock);
3950 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3951 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3952 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3953 empty = RB_EMPTY_ROOT(&root->inode_tree);
3954 }
3955 spin_unlock(&root->inode_lock);
3956
3957 /*
3958 * Free space cache has inodes in the tree root, but the tree root has a
3959 * root_refs of 0, so this could end up dropping the tree root as a
3960 * snapshot, so we need the extra !root->fs_info->tree_root check to
3961 * make sure we don't drop it.
3962 */
3963 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3964 root != root->fs_info->tree_root) {
3965 synchronize_srcu(&root->fs_info->subvol_srcu);
3966 spin_lock(&root->inode_lock);
3967 empty = RB_EMPTY_ROOT(&root->inode_tree);
3968 spin_unlock(&root->inode_lock);
3969 if (empty)
3970 btrfs_add_dead_root(root);
3971 }
3972 }
3973
3974 int btrfs_invalidate_inodes(struct btrfs_root *root)
3975 {
3976 struct rb_node *node;
3977 struct rb_node *prev;
3978 struct btrfs_inode *entry;
3979 struct inode *inode;
3980 u64 objectid = 0;
3981
3982 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3983
3984 spin_lock(&root->inode_lock);
3985 again:
3986 node = root->inode_tree.rb_node;
3987 prev = NULL;
3988 while (node) {
3989 prev = node;
3990 entry = rb_entry(node, struct btrfs_inode, rb_node);
3991
3992 if (objectid < entry->vfs_inode.i_ino)
3993 node = node->rb_left;
3994 else if (objectid > entry->vfs_inode.i_ino)
3995 node = node->rb_right;
3996 else
3997 break;
3998 }
3999 if (!node) {
4000 while (prev) {
4001 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4002 if (objectid <= entry->vfs_inode.i_ino) {
4003 node = prev;
4004 break;
4005 }
4006 prev = rb_next(prev);
4007 }
4008 }
4009 while (node) {
4010 entry = rb_entry(node, struct btrfs_inode, rb_node);
4011 objectid = entry->vfs_inode.i_ino + 1;
4012 inode = igrab(&entry->vfs_inode);
4013 if (inode) {
4014 spin_unlock(&root->inode_lock);
4015 if (atomic_read(&inode->i_count) > 1)
4016 d_prune_aliases(inode);
4017 /*
4018 * btrfs_drop_inode will have it removed from
4019 * the inode cache when its usage count
4020 * hits zero.
4021 */
4022 iput(inode);
4023 cond_resched();
4024 spin_lock(&root->inode_lock);
4025 goto again;
4026 }
4027
4028 if (cond_resched_lock(&root->inode_lock))
4029 goto again;
4030
4031 node = rb_next(node);
4032 }
4033 spin_unlock(&root->inode_lock);
4034 return 0;
4035 }
4036
4037 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4038 {
4039 struct btrfs_iget_args *args = p;
4040 inode->i_ino = args->ino;
4041 BTRFS_I(inode)->root = args->root;
4042 btrfs_set_inode_space_info(args->root, inode);
4043 return 0;
4044 }
4045
4046 static int btrfs_find_actor(struct inode *inode, void *opaque)
4047 {
4048 struct btrfs_iget_args *args = opaque;
4049 return args->ino == inode->i_ino &&
4050 args->root == BTRFS_I(inode)->root;
4051 }
4052
4053 static struct inode *btrfs_iget_locked(struct super_block *s,
4054 u64 objectid,
4055 struct btrfs_root *root)
4056 {
4057 struct inode *inode;
4058 struct btrfs_iget_args args;
4059 args.ino = objectid;
4060 args.root = root;
4061
4062 inode = iget5_locked(s, objectid, btrfs_find_actor,
4063 btrfs_init_locked_inode,
4064 (void *)&args);
4065 return inode;
4066 }
4067
4068 /* Get an inode object given its location and corresponding root.
4069 * Returns in *is_new if the inode was read from disk
4070 */
4071 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4072 struct btrfs_root *root, int *new)
4073 {
4074 struct inode *inode;
4075
4076 inode = btrfs_iget_locked(s, location->objectid, root);
4077 if (!inode)
4078 return ERR_PTR(-ENOMEM);
4079
4080 if (inode->i_state & I_NEW) {
4081 BTRFS_I(inode)->root = root;
4082 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4083 btrfs_read_locked_inode(inode);
4084 inode_tree_add(inode);
4085 unlock_new_inode(inode);
4086 if (new)
4087 *new = 1;
4088 }
4089
4090 return inode;
4091 }
4092
4093 static struct inode *new_simple_dir(struct super_block *s,
4094 struct btrfs_key *key,
4095 struct btrfs_root *root)
4096 {
4097 struct inode *inode = new_inode(s);
4098
4099 if (!inode)
4100 return ERR_PTR(-ENOMEM);
4101
4102 BTRFS_I(inode)->root = root;
4103 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4104 BTRFS_I(inode)->dummy_inode = 1;
4105
4106 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4107 inode->i_op = &simple_dir_inode_operations;
4108 inode->i_fop = &simple_dir_operations;
4109 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4110 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4111
4112 return inode;
4113 }
4114
4115 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4116 {
4117 struct inode *inode;
4118 struct btrfs_root *root = BTRFS_I(dir)->root;
4119 struct btrfs_root *sub_root = root;
4120 struct btrfs_key location;
4121 int index;
4122 int ret;
4123
4124 if (dentry->d_name.len > BTRFS_NAME_LEN)
4125 return ERR_PTR(-ENAMETOOLONG);
4126
4127 ret = btrfs_inode_by_name(dir, dentry, &location);
4128
4129 if (ret < 0)
4130 return ERR_PTR(ret);
4131
4132 if (location.objectid == 0)
4133 return NULL;
4134
4135 if (location.type == BTRFS_INODE_ITEM_KEY) {
4136 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4137 return inode;
4138 }
4139
4140 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4141
4142 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4143 ret = fixup_tree_root_location(root, dir, dentry,
4144 &location, &sub_root);
4145 if (ret < 0) {
4146 if (ret != -ENOENT)
4147 inode = ERR_PTR(ret);
4148 else
4149 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4150 } else {
4151 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4152 }
4153 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4154
4155 if (!IS_ERR(inode) && root != sub_root) {
4156 down_read(&root->fs_info->cleanup_work_sem);
4157 if (!(inode->i_sb->s_flags & MS_RDONLY))
4158 ret = btrfs_orphan_cleanup(sub_root);
4159 up_read(&root->fs_info->cleanup_work_sem);
4160 if (ret)
4161 inode = ERR_PTR(ret);
4162 }
4163
4164 return inode;
4165 }
4166
4167 static int btrfs_dentry_delete(const struct dentry *dentry)
4168 {
4169 struct btrfs_root *root;
4170
4171 if (!dentry->d_inode && !IS_ROOT(dentry))
4172 dentry = dentry->d_parent;
4173
4174 if (dentry->d_inode) {
4175 root = BTRFS_I(dentry->d_inode)->root;
4176 if (btrfs_root_refs(&root->root_item) == 0)
4177 return 1;
4178 }
4179 return 0;
4180 }
4181
4182 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4183 struct nameidata *nd)
4184 {
4185 struct inode *inode;
4186
4187 inode = btrfs_lookup_dentry(dir, dentry);
4188 if (IS_ERR(inode))
4189 return ERR_CAST(inode);
4190
4191 return d_splice_alias(inode, dentry);
4192 }
4193
4194 static unsigned char btrfs_filetype_table[] = {
4195 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4196 };
4197
4198 static int btrfs_real_readdir(struct file *filp, void *dirent,
4199 filldir_t filldir)
4200 {
4201 struct inode *inode = filp->f_dentry->d_inode;
4202 struct btrfs_root *root = BTRFS_I(inode)->root;
4203 struct btrfs_item *item;
4204 struct btrfs_dir_item *di;
4205 struct btrfs_key key;
4206 struct btrfs_key found_key;
4207 struct btrfs_path *path;
4208 int ret;
4209 u32 nritems;
4210 struct extent_buffer *leaf;
4211 int slot;
4212 int advance;
4213 unsigned char d_type;
4214 int over = 0;
4215 u32 di_cur;
4216 u32 di_total;
4217 u32 di_len;
4218 int key_type = BTRFS_DIR_INDEX_KEY;
4219 char tmp_name[32];
4220 char *name_ptr;
4221 int name_len;
4222
4223 /* FIXME, use a real flag for deciding about the key type */
4224 if (root->fs_info->tree_root == root)
4225 key_type = BTRFS_DIR_ITEM_KEY;
4226
4227 /* special case for "." */
4228 if (filp->f_pos == 0) {
4229 over = filldir(dirent, ".", 1,
4230 1, inode->i_ino,
4231 DT_DIR);
4232 if (over)
4233 return 0;
4234 filp->f_pos = 1;
4235 }
4236 /* special case for .., just use the back ref */
4237 if (filp->f_pos == 1) {
4238 u64 pino = parent_ino(filp->f_path.dentry);
4239 over = filldir(dirent, "..", 2,
4240 2, pino, DT_DIR);
4241 if (over)
4242 return 0;
4243 filp->f_pos = 2;
4244 }
4245 path = btrfs_alloc_path();
4246 path->reada = 2;
4247
4248 btrfs_set_key_type(&key, key_type);
4249 key.offset = filp->f_pos;
4250 key.objectid = inode->i_ino;
4251
4252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4253 if (ret < 0)
4254 goto err;
4255 advance = 0;
4256
4257 while (1) {
4258 leaf = path->nodes[0];
4259 nritems = btrfs_header_nritems(leaf);
4260 slot = path->slots[0];
4261 if (advance || slot >= nritems) {
4262 if (slot >= nritems - 1) {
4263 ret = btrfs_next_leaf(root, path);
4264 if (ret)
4265 break;
4266 leaf = path->nodes[0];
4267 nritems = btrfs_header_nritems(leaf);
4268 slot = path->slots[0];
4269 } else {
4270 slot++;
4271 path->slots[0]++;
4272 }
4273 }
4274
4275 advance = 1;
4276 item = btrfs_item_nr(leaf, slot);
4277 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4278
4279 if (found_key.objectid != key.objectid)
4280 break;
4281 if (btrfs_key_type(&found_key) != key_type)
4282 break;
4283 if (found_key.offset < filp->f_pos)
4284 continue;
4285
4286 filp->f_pos = found_key.offset;
4287
4288 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4289 di_cur = 0;
4290 di_total = btrfs_item_size(leaf, item);
4291
4292 while (di_cur < di_total) {
4293 struct btrfs_key location;
4294
4295 if (verify_dir_item(root, leaf, di))
4296 break;
4297
4298 name_len = btrfs_dir_name_len(leaf, di);
4299 if (name_len <= sizeof(tmp_name)) {
4300 name_ptr = tmp_name;
4301 } else {
4302 name_ptr = kmalloc(name_len, GFP_NOFS);
4303 if (!name_ptr) {
4304 ret = -ENOMEM;
4305 goto err;
4306 }
4307 }
4308 read_extent_buffer(leaf, name_ptr,
4309 (unsigned long)(di + 1), name_len);
4310
4311 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4312 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4313
4314 /* is this a reference to our own snapshot? If so
4315 * skip it
4316 */
4317 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4318 location.objectid == root->root_key.objectid) {
4319 over = 0;
4320 goto skip;
4321 }
4322 over = filldir(dirent, name_ptr, name_len,
4323 found_key.offset, location.objectid,
4324 d_type);
4325
4326 skip:
4327 if (name_ptr != tmp_name)
4328 kfree(name_ptr);
4329
4330 if (over)
4331 goto nopos;
4332 di_len = btrfs_dir_name_len(leaf, di) +
4333 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4334 di_cur += di_len;
4335 di = (struct btrfs_dir_item *)((char *)di + di_len);
4336 }
4337 }
4338
4339 /* Reached end of directory/root. Bump pos past the last item. */
4340 if (key_type == BTRFS_DIR_INDEX_KEY)
4341 /*
4342 * 32-bit glibc will use getdents64, but then strtol -
4343 * so the last number we can serve is this.
4344 */
4345 filp->f_pos = 0x7fffffff;
4346 else
4347 filp->f_pos++;
4348 nopos:
4349 ret = 0;
4350 err:
4351 btrfs_free_path(path);
4352 return ret;
4353 }
4354
4355 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4356 {
4357 struct btrfs_root *root = BTRFS_I(inode)->root;
4358 struct btrfs_trans_handle *trans;
4359 int ret = 0;
4360 bool nolock = false;
4361
4362 if (BTRFS_I(inode)->dummy_inode)
4363 return 0;
4364
4365 smp_mb();
4366 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4367
4368 if (wbc->sync_mode == WB_SYNC_ALL) {
4369 if (nolock)
4370 trans = btrfs_join_transaction_nolock(root, 1);
4371 else
4372 trans = btrfs_join_transaction(root, 1);
4373 if (IS_ERR(trans))
4374 return PTR_ERR(trans);
4375 btrfs_set_trans_block_group(trans, inode);
4376 if (nolock)
4377 ret = btrfs_end_transaction_nolock(trans, root);
4378 else
4379 ret = btrfs_commit_transaction(trans, root);
4380 }
4381 return ret;
4382 }
4383
4384 /*
4385 * This is somewhat expensive, updating the tree every time the
4386 * inode changes. But, it is most likely to find the inode in cache.
4387 * FIXME, needs more benchmarking...there are no reasons other than performance
4388 * to keep or drop this code.
4389 */
4390 void btrfs_dirty_inode(struct inode *inode)
4391 {
4392 struct btrfs_root *root = BTRFS_I(inode)->root;
4393 struct btrfs_trans_handle *trans;
4394 int ret;
4395
4396 if (BTRFS_I(inode)->dummy_inode)
4397 return;
4398
4399 trans = btrfs_join_transaction(root, 1);
4400 BUG_ON(IS_ERR(trans));
4401 btrfs_set_trans_block_group(trans, inode);
4402
4403 ret = btrfs_update_inode(trans, root, inode);
4404 if (ret && ret == -ENOSPC) {
4405 /* whoops, lets try again with the full transaction */
4406 btrfs_end_transaction(trans, root);
4407 trans = btrfs_start_transaction(root, 1);
4408 if (IS_ERR(trans)) {
4409 if (printk_ratelimit()) {
4410 printk(KERN_ERR "btrfs: fail to "
4411 "dirty inode %lu error %ld\n",
4412 inode->i_ino, PTR_ERR(trans));
4413 }
4414 return;
4415 }
4416 btrfs_set_trans_block_group(trans, inode);
4417
4418 ret = btrfs_update_inode(trans, root, inode);
4419 if (ret) {
4420 if (printk_ratelimit()) {
4421 printk(KERN_ERR "btrfs: fail to "
4422 "dirty inode %lu error %d\n",
4423 inode->i_ino, ret);
4424 }
4425 }
4426 }
4427 btrfs_end_transaction(trans, root);
4428 }
4429
4430 /*
4431 * find the highest existing sequence number in a directory
4432 * and then set the in-memory index_cnt variable to reflect
4433 * free sequence numbers
4434 */
4435 static int btrfs_set_inode_index_count(struct inode *inode)
4436 {
4437 struct btrfs_root *root = BTRFS_I(inode)->root;
4438 struct btrfs_key key, found_key;
4439 struct btrfs_path *path;
4440 struct extent_buffer *leaf;
4441 int ret;
4442
4443 key.objectid = inode->i_ino;
4444 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4445 key.offset = (u64)-1;
4446
4447 path = btrfs_alloc_path();
4448 if (!path)
4449 return -ENOMEM;
4450
4451 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4452 if (ret < 0)
4453 goto out;
4454 /* FIXME: we should be able to handle this */
4455 if (ret == 0)
4456 goto out;
4457 ret = 0;
4458
4459 /*
4460 * MAGIC NUMBER EXPLANATION:
4461 * since we search a directory based on f_pos we have to start at 2
4462 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4463 * else has to start at 2
4464 */
4465 if (path->slots[0] == 0) {
4466 BTRFS_I(inode)->index_cnt = 2;
4467 goto out;
4468 }
4469
4470 path->slots[0]--;
4471
4472 leaf = path->nodes[0];
4473 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4474
4475 if (found_key.objectid != inode->i_ino ||
4476 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4477 BTRFS_I(inode)->index_cnt = 2;
4478 goto out;
4479 }
4480
4481 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4482 out:
4483 btrfs_free_path(path);
4484 return ret;
4485 }
4486
4487 /*
4488 * helper to find a free sequence number in a given directory. This current
4489 * code is very simple, later versions will do smarter things in the btree
4490 */
4491 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4492 {
4493 int ret = 0;
4494
4495 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4496 ret = btrfs_set_inode_index_count(dir);
4497 if (ret)
4498 return ret;
4499 }
4500
4501 *index = BTRFS_I(dir)->index_cnt;
4502 BTRFS_I(dir)->index_cnt++;
4503
4504 return ret;
4505 }
4506
4507 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4508 struct btrfs_root *root,
4509 struct inode *dir,
4510 const char *name, int name_len,
4511 u64 ref_objectid, u64 objectid,
4512 u64 alloc_hint, int mode, u64 *index)
4513 {
4514 struct inode *inode;
4515 struct btrfs_inode_item *inode_item;
4516 struct btrfs_key *location;
4517 struct btrfs_path *path;
4518 struct btrfs_inode_ref *ref;
4519 struct btrfs_key key[2];
4520 u32 sizes[2];
4521 unsigned long ptr;
4522 int ret;
4523 int owner;
4524
4525 path = btrfs_alloc_path();
4526 BUG_ON(!path);
4527
4528 inode = new_inode(root->fs_info->sb);
4529 if (!inode) {
4530 btrfs_free_path(path);
4531 return ERR_PTR(-ENOMEM);
4532 }
4533
4534 if (dir) {
4535 trace_btrfs_inode_request(dir);
4536
4537 ret = btrfs_set_inode_index(dir, index);
4538 if (ret) {
4539 btrfs_free_path(path);
4540 iput(inode);
4541 return ERR_PTR(ret);
4542 }
4543 }
4544 /*
4545 * index_cnt is ignored for everything but a dir,
4546 * btrfs_get_inode_index_count has an explanation for the magic
4547 * number
4548 */
4549 BTRFS_I(inode)->index_cnt = 2;
4550 BTRFS_I(inode)->root = root;
4551 BTRFS_I(inode)->generation = trans->transid;
4552 inode->i_generation = BTRFS_I(inode)->generation;
4553 btrfs_set_inode_space_info(root, inode);
4554
4555 if (mode & S_IFDIR)
4556 owner = 0;
4557 else
4558 owner = 1;
4559 BTRFS_I(inode)->block_group =
4560 btrfs_find_block_group(root, 0, alloc_hint, owner);
4561
4562 key[0].objectid = objectid;
4563 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4564 key[0].offset = 0;
4565
4566 key[1].objectid = objectid;
4567 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4568 key[1].offset = ref_objectid;
4569
4570 sizes[0] = sizeof(struct btrfs_inode_item);
4571 sizes[1] = name_len + sizeof(*ref);
4572
4573 path->leave_spinning = 1;
4574 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4575 if (ret != 0)
4576 goto fail;
4577
4578 inode_init_owner(inode, dir, mode);
4579 inode->i_ino = objectid;
4580 inode_set_bytes(inode, 0);
4581 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4582 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4583 struct btrfs_inode_item);
4584 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4585
4586 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4587 struct btrfs_inode_ref);
4588 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4589 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4590 ptr = (unsigned long)(ref + 1);
4591 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4592
4593 btrfs_mark_buffer_dirty(path->nodes[0]);
4594 btrfs_free_path(path);
4595
4596 location = &BTRFS_I(inode)->location;
4597 location->objectid = objectid;
4598 location->offset = 0;
4599 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4600
4601 btrfs_inherit_iflags(inode, dir);
4602
4603 if ((mode & S_IFREG)) {
4604 if (btrfs_test_opt(root, NODATASUM))
4605 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4606 if (btrfs_test_opt(root, NODATACOW) ||
4607 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4608 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4609 }
4610
4611 insert_inode_hash(inode);
4612 inode_tree_add(inode);
4613
4614 trace_btrfs_inode_new(inode);
4615
4616 return inode;
4617 fail:
4618 if (dir)
4619 BTRFS_I(dir)->index_cnt--;
4620 btrfs_free_path(path);
4621 iput(inode);
4622 return ERR_PTR(ret);
4623 }
4624
4625 static inline u8 btrfs_inode_type(struct inode *inode)
4626 {
4627 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4628 }
4629
4630 /*
4631 * utility function to add 'inode' into 'parent_inode' with
4632 * a give name and a given sequence number.
4633 * if 'add_backref' is true, also insert a backref from the
4634 * inode to the parent directory.
4635 */
4636 int btrfs_add_link(struct btrfs_trans_handle *trans,
4637 struct inode *parent_inode, struct inode *inode,
4638 const char *name, int name_len, int add_backref, u64 index)
4639 {
4640 int ret = 0;
4641 struct btrfs_key key;
4642 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4643
4644 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4645 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4646 } else {
4647 key.objectid = inode->i_ino;
4648 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4649 key.offset = 0;
4650 }
4651
4652 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4653 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4654 key.objectid, root->root_key.objectid,
4655 parent_inode->i_ino,
4656 index, name, name_len);
4657 } else if (add_backref) {
4658 ret = btrfs_insert_inode_ref(trans, root,
4659 name, name_len, inode->i_ino,
4660 parent_inode->i_ino, index);
4661 }
4662
4663 if (ret == 0) {
4664 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4665 parent_inode->i_ino, &key,
4666 btrfs_inode_type(inode), index);
4667 BUG_ON(ret);
4668
4669 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4670 name_len * 2);
4671 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4672 ret = btrfs_update_inode(trans, root, parent_inode);
4673 }
4674 return ret;
4675 }
4676
4677 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4678 struct inode *dir, struct dentry *dentry,
4679 struct inode *inode, int backref, u64 index)
4680 {
4681 int err = btrfs_add_link(trans, dir, inode,
4682 dentry->d_name.name, dentry->d_name.len,
4683 backref, index);
4684 if (!err) {
4685 d_instantiate(dentry, inode);
4686 return 0;
4687 }
4688 if (err > 0)
4689 err = -EEXIST;
4690 return err;
4691 }
4692
4693 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4694 int mode, dev_t rdev)
4695 {
4696 struct btrfs_trans_handle *trans;
4697 struct btrfs_root *root = BTRFS_I(dir)->root;
4698 struct inode *inode = NULL;
4699 int err;
4700 int drop_inode = 0;
4701 u64 objectid;
4702 unsigned long nr = 0;
4703 u64 index = 0;
4704
4705 if (!new_valid_dev(rdev))
4706 return -EINVAL;
4707
4708 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4709 if (err)
4710 return err;
4711
4712 /*
4713 * 2 for inode item and ref
4714 * 2 for dir items
4715 * 1 for xattr if selinux is on
4716 */
4717 trans = btrfs_start_transaction(root, 5);
4718 if (IS_ERR(trans))
4719 return PTR_ERR(trans);
4720
4721 btrfs_set_trans_block_group(trans, dir);
4722
4723 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4724 dentry->d_name.len, dir->i_ino, objectid,
4725 BTRFS_I(dir)->block_group, mode, &index);
4726 err = PTR_ERR(inode);
4727 if (IS_ERR(inode))
4728 goto out_unlock;
4729
4730 err = btrfs_init_inode_security(trans, inode, dir);
4731 if (err) {
4732 drop_inode = 1;
4733 goto out_unlock;
4734 }
4735
4736 btrfs_set_trans_block_group(trans, inode);
4737 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4738 if (err)
4739 drop_inode = 1;
4740 else {
4741 inode->i_op = &btrfs_special_inode_operations;
4742 init_special_inode(inode, inode->i_mode, rdev);
4743 btrfs_update_inode(trans, root, inode);
4744 }
4745 btrfs_update_inode_block_group(trans, inode);
4746 btrfs_update_inode_block_group(trans, dir);
4747 out_unlock:
4748 nr = trans->blocks_used;
4749 btrfs_end_transaction_throttle(trans, root);
4750 btrfs_btree_balance_dirty(root, nr);
4751 if (drop_inode) {
4752 inode_dec_link_count(inode);
4753 iput(inode);
4754 }
4755 return err;
4756 }
4757
4758 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4759 int mode, struct nameidata *nd)
4760 {
4761 struct btrfs_trans_handle *trans;
4762 struct btrfs_root *root = BTRFS_I(dir)->root;
4763 struct inode *inode = NULL;
4764 int drop_inode = 0;
4765 int err;
4766 unsigned long nr = 0;
4767 u64 objectid;
4768 u64 index = 0;
4769
4770 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4771 if (err)
4772 return err;
4773 /*
4774 * 2 for inode item and ref
4775 * 2 for dir items
4776 * 1 for xattr if selinux is on
4777 */
4778 trans = btrfs_start_transaction(root, 5);
4779 if (IS_ERR(trans))
4780 return PTR_ERR(trans);
4781
4782 btrfs_set_trans_block_group(trans, dir);
4783
4784 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4785 dentry->d_name.len, dir->i_ino, objectid,
4786 BTRFS_I(dir)->block_group, mode, &index);
4787 err = PTR_ERR(inode);
4788 if (IS_ERR(inode))
4789 goto out_unlock;
4790
4791 err = btrfs_init_inode_security(trans, inode, dir);
4792 if (err) {
4793 drop_inode = 1;
4794 goto out_unlock;
4795 }
4796
4797 btrfs_set_trans_block_group(trans, inode);
4798 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4799 if (err)
4800 drop_inode = 1;
4801 else {
4802 inode->i_mapping->a_ops = &btrfs_aops;
4803 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4804 inode->i_fop = &btrfs_file_operations;
4805 inode->i_op = &btrfs_file_inode_operations;
4806 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4807 }
4808 btrfs_update_inode_block_group(trans, inode);
4809 btrfs_update_inode_block_group(trans, dir);
4810 out_unlock:
4811 nr = trans->blocks_used;
4812 btrfs_end_transaction_throttle(trans, root);
4813 if (drop_inode) {
4814 inode_dec_link_count(inode);
4815 iput(inode);
4816 }
4817 btrfs_btree_balance_dirty(root, nr);
4818 return err;
4819 }
4820
4821 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4822 struct dentry *dentry)
4823 {
4824 struct btrfs_trans_handle *trans;
4825 struct btrfs_root *root = BTRFS_I(dir)->root;
4826 struct inode *inode = old_dentry->d_inode;
4827 u64 index;
4828 unsigned long nr = 0;
4829 int err;
4830 int drop_inode = 0;
4831
4832 if (inode->i_nlink == 0)
4833 return -ENOENT;
4834
4835 /* do not allow sys_link's with other subvols of the same device */
4836 if (root->objectid != BTRFS_I(inode)->root->objectid)
4837 return -EXDEV;
4838
4839 if (inode->i_nlink == ~0U)
4840 return -EMLINK;
4841
4842 btrfs_inc_nlink(inode);
4843 inode->i_ctime = CURRENT_TIME;
4844
4845 err = btrfs_set_inode_index(dir, &index);
4846 if (err)
4847 goto fail;
4848
4849 /*
4850 * 2 items for inode and inode ref
4851 * 2 items for dir items
4852 * 1 item for parent inode
4853 */
4854 trans = btrfs_start_transaction(root, 5);
4855 if (IS_ERR(trans)) {
4856 err = PTR_ERR(trans);
4857 goto fail;
4858 }
4859
4860 btrfs_set_trans_block_group(trans, dir);
4861 ihold(inode);
4862
4863 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4864
4865 if (err) {
4866 drop_inode = 1;
4867 } else {
4868 struct dentry *parent = dget_parent(dentry);
4869 btrfs_update_inode_block_group(trans, dir);
4870 err = btrfs_update_inode(trans, root, inode);
4871 BUG_ON(err);
4872 btrfs_log_new_name(trans, inode, NULL, parent);
4873 dput(parent);
4874 }
4875
4876 nr = trans->blocks_used;
4877 btrfs_end_transaction_throttle(trans, root);
4878 fail:
4879 if (drop_inode) {
4880 inode_dec_link_count(inode);
4881 iput(inode);
4882 }
4883 btrfs_btree_balance_dirty(root, nr);
4884 return err;
4885 }
4886
4887 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4888 {
4889 struct inode *inode = NULL;
4890 struct btrfs_trans_handle *trans;
4891 struct btrfs_root *root = BTRFS_I(dir)->root;
4892 int err = 0;
4893 int drop_on_err = 0;
4894 u64 objectid = 0;
4895 u64 index = 0;
4896 unsigned long nr = 1;
4897
4898 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4899 if (err)
4900 return err;
4901
4902 /*
4903 * 2 items for inode and ref
4904 * 2 items for dir items
4905 * 1 for xattr if selinux is on
4906 */
4907 trans = btrfs_start_transaction(root, 5);
4908 if (IS_ERR(trans))
4909 return PTR_ERR(trans);
4910 btrfs_set_trans_block_group(trans, dir);
4911
4912 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4913 dentry->d_name.len, dir->i_ino, objectid,
4914 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4915 &index);
4916 if (IS_ERR(inode)) {
4917 err = PTR_ERR(inode);
4918 goto out_fail;
4919 }
4920
4921 drop_on_err = 1;
4922
4923 err = btrfs_init_inode_security(trans, inode, dir);
4924 if (err)
4925 goto out_fail;
4926
4927 inode->i_op = &btrfs_dir_inode_operations;
4928 inode->i_fop = &btrfs_dir_file_operations;
4929 btrfs_set_trans_block_group(trans, inode);
4930
4931 btrfs_i_size_write(inode, 0);
4932 err = btrfs_update_inode(trans, root, inode);
4933 if (err)
4934 goto out_fail;
4935
4936 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4937 dentry->d_name.len, 0, index);
4938 if (err)
4939 goto out_fail;
4940
4941 d_instantiate(dentry, inode);
4942 drop_on_err = 0;
4943 btrfs_update_inode_block_group(trans, inode);
4944 btrfs_update_inode_block_group(trans, dir);
4945
4946 out_fail:
4947 nr = trans->blocks_used;
4948 btrfs_end_transaction_throttle(trans, root);
4949 if (drop_on_err)
4950 iput(inode);
4951 btrfs_btree_balance_dirty(root, nr);
4952 return err;
4953 }
4954
4955 /* helper for btfs_get_extent. Given an existing extent in the tree,
4956 * and an extent that you want to insert, deal with overlap and insert
4957 * the new extent into the tree.
4958 */
4959 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4960 struct extent_map *existing,
4961 struct extent_map *em,
4962 u64 map_start, u64 map_len)
4963 {
4964 u64 start_diff;
4965
4966 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4967 start_diff = map_start - em->start;
4968 em->start = map_start;
4969 em->len = map_len;
4970 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4971 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4972 em->block_start += start_diff;
4973 em->block_len -= start_diff;
4974 }
4975 return add_extent_mapping(em_tree, em);
4976 }
4977
4978 static noinline int uncompress_inline(struct btrfs_path *path,
4979 struct inode *inode, struct page *page,
4980 size_t pg_offset, u64 extent_offset,
4981 struct btrfs_file_extent_item *item)
4982 {
4983 int ret;
4984 struct extent_buffer *leaf = path->nodes[0];
4985 char *tmp;
4986 size_t max_size;
4987 unsigned long inline_size;
4988 unsigned long ptr;
4989 int compress_type;
4990
4991 WARN_ON(pg_offset != 0);
4992 compress_type = btrfs_file_extent_compression(leaf, item);
4993 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4994 inline_size = btrfs_file_extent_inline_item_len(leaf,
4995 btrfs_item_nr(leaf, path->slots[0]));
4996 tmp = kmalloc(inline_size, GFP_NOFS);
4997 ptr = btrfs_file_extent_inline_start(item);
4998
4999 read_extent_buffer(leaf, tmp, ptr, inline_size);
5000
5001 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5002 ret = btrfs_decompress(compress_type, tmp, page,
5003 extent_offset, inline_size, max_size);
5004 if (ret) {
5005 char *kaddr = kmap_atomic(page, KM_USER0);
5006 unsigned long copy_size = min_t(u64,
5007 PAGE_CACHE_SIZE - pg_offset,
5008 max_size - extent_offset);
5009 memset(kaddr + pg_offset, 0, copy_size);
5010 kunmap_atomic(kaddr, KM_USER0);
5011 }
5012 kfree(tmp);
5013 return 0;
5014 }
5015
5016 /*
5017 * a bit scary, this does extent mapping from logical file offset to the disk.
5018 * the ugly parts come from merging extents from the disk with the in-ram
5019 * representation. This gets more complex because of the data=ordered code,
5020 * where the in-ram extents might be locked pending data=ordered completion.
5021 *
5022 * This also copies inline extents directly into the page.
5023 */
5024
5025 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5026 size_t pg_offset, u64 start, u64 len,
5027 int create)
5028 {
5029 int ret;
5030 int err = 0;
5031 u64 bytenr;
5032 u64 extent_start = 0;
5033 u64 extent_end = 0;
5034 u64 objectid = inode->i_ino;
5035 u32 found_type;
5036 struct btrfs_path *path = NULL;
5037 struct btrfs_root *root = BTRFS_I(inode)->root;
5038 struct btrfs_file_extent_item *item;
5039 struct extent_buffer *leaf;
5040 struct btrfs_key found_key;
5041 struct extent_map *em = NULL;
5042 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5043 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5044 struct btrfs_trans_handle *trans = NULL;
5045 int compress_type;
5046
5047 again:
5048 read_lock(&em_tree->lock);
5049 em = lookup_extent_mapping(em_tree, start, len);
5050 if (em)
5051 em->bdev = root->fs_info->fs_devices->latest_bdev;
5052 read_unlock(&em_tree->lock);
5053
5054 if (em) {
5055 if (em->start > start || em->start + em->len <= start)
5056 free_extent_map(em);
5057 else if (em->block_start == EXTENT_MAP_INLINE && page)
5058 free_extent_map(em);
5059 else
5060 goto out;
5061 }
5062 em = alloc_extent_map(GFP_NOFS);
5063 if (!em) {
5064 err = -ENOMEM;
5065 goto out;
5066 }
5067 em->bdev = root->fs_info->fs_devices->latest_bdev;
5068 em->start = EXTENT_MAP_HOLE;
5069 em->orig_start = EXTENT_MAP_HOLE;
5070 em->len = (u64)-1;
5071 em->block_len = (u64)-1;
5072
5073 if (!path) {
5074 path = btrfs_alloc_path();
5075 BUG_ON(!path);
5076 }
5077
5078 ret = btrfs_lookup_file_extent(trans, root, path,
5079 objectid, start, trans != NULL);
5080 if (ret < 0) {
5081 err = ret;
5082 goto out;
5083 }
5084
5085 if (ret != 0) {
5086 if (path->slots[0] == 0)
5087 goto not_found;
5088 path->slots[0]--;
5089 }
5090
5091 leaf = path->nodes[0];
5092 item = btrfs_item_ptr(leaf, path->slots[0],
5093 struct btrfs_file_extent_item);
5094 /* are we inside the extent that was found? */
5095 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5096 found_type = btrfs_key_type(&found_key);
5097 if (found_key.objectid != objectid ||
5098 found_type != BTRFS_EXTENT_DATA_KEY) {
5099 goto not_found;
5100 }
5101
5102 found_type = btrfs_file_extent_type(leaf, item);
5103 extent_start = found_key.offset;
5104 compress_type = btrfs_file_extent_compression(leaf, item);
5105 if (found_type == BTRFS_FILE_EXTENT_REG ||
5106 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5107 extent_end = extent_start +
5108 btrfs_file_extent_num_bytes(leaf, item);
5109 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5110 size_t size;
5111 size = btrfs_file_extent_inline_len(leaf, item);
5112 extent_end = (extent_start + size + root->sectorsize - 1) &
5113 ~((u64)root->sectorsize - 1);
5114 }
5115
5116 if (start >= extent_end) {
5117 path->slots[0]++;
5118 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5119 ret = btrfs_next_leaf(root, path);
5120 if (ret < 0) {
5121 err = ret;
5122 goto out;
5123 }
5124 if (ret > 0)
5125 goto not_found;
5126 leaf = path->nodes[0];
5127 }
5128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5129 if (found_key.objectid != objectid ||
5130 found_key.type != BTRFS_EXTENT_DATA_KEY)
5131 goto not_found;
5132 if (start + len <= found_key.offset)
5133 goto not_found;
5134 em->start = start;
5135 em->len = found_key.offset - start;
5136 goto not_found_em;
5137 }
5138
5139 if (found_type == BTRFS_FILE_EXTENT_REG ||
5140 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5141 em->start = extent_start;
5142 em->len = extent_end - extent_start;
5143 em->orig_start = extent_start -
5144 btrfs_file_extent_offset(leaf, item);
5145 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5146 if (bytenr == 0) {
5147 em->block_start = EXTENT_MAP_HOLE;
5148 goto insert;
5149 }
5150 if (compress_type != BTRFS_COMPRESS_NONE) {
5151 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5152 em->compress_type = compress_type;
5153 em->block_start = bytenr;
5154 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5155 item);
5156 } else {
5157 bytenr += btrfs_file_extent_offset(leaf, item);
5158 em->block_start = bytenr;
5159 em->block_len = em->len;
5160 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5161 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5162 }
5163 goto insert;
5164 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5165 unsigned long ptr;
5166 char *map;
5167 size_t size;
5168 size_t extent_offset;
5169 size_t copy_size;
5170
5171 em->block_start = EXTENT_MAP_INLINE;
5172 if (!page || create) {
5173 em->start = extent_start;
5174 em->len = extent_end - extent_start;
5175 goto out;
5176 }
5177
5178 size = btrfs_file_extent_inline_len(leaf, item);
5179 extent_offset = page_offset(page) + pg_offset - extent_start;
5180 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5181 size - extent_offset);
5182 em->start = extent_start + extent_offset;
5183 em->len = (copy_size + root->sectorsize - 1) &
5184 ~((u64)root->sectorsize - 1);
5185 em->orig_start = EXTENT_MAP_INLINE;
5186 if (compress_type) {
5187 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5188 em->compress_type = compress_type;
5189 }
5190 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5191 if (create == 0 && !PageUptodate(page)) {
5192 if (btrfs_file_extent_compression(leaf, item) !=
5193 BTRFS_COMPRESS_NONE) {
5194 ret = uncompress_inline(path, inode, page,
5195 pg_offset,
5196 extent_offset, item);
5197 BUG_ON(ret);
5198 } else {
5199 map = kmap(page);
5200 read_extent_buffer(leaf, map + pg_offset, ptr,
5201 copy_size);
5202 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5203 memset(map + pg_offset + copy_size, 0,
5204 PAGE_CACHE_SIZE - pg_offset -
5205 copy_size);
5206 }
5207 kunmap(page);
5208 }
5209 flush_dcache_page(page);
5210 } else if (create && PageUptodate(page)) {
5211 WARN_ON(1);
5212 if (!trans) {
5213 kunmap(page);
5214 free_extent_map(em);
5215 em = NULL;
5216 btrfs_release_path(root, path);
5217 trans = btrfs_join_transaction(root, 1);
5218 if (IS_ERR(trans))
5219 return ERR_CAST(trans);
5220 goto again;
5221 }
5222 map = kmap(page);
5223 write_extent_buffer(leaf, map + pg_offset, ptr,
5224 copy_size);
5225 kunmap(page);
5226 btrfs_mark_buffer_dirty(leaf);
5227 }
5228 set_extent_uptodate(io_tree, em->start,
5229 extent_map_end(em) - 1, NULL, GFP_NOFS);
5230 goto insert;
5231 } else {
5232 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5233 WARN_ON(1);
5234 }
5235 not_found:
5236 em->start = start;
5237 em->len = len;
5238 not_found_em:
5239 em->block_start = EXTENT_MAP_HOLE;
5240 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5241 insert:
5242 btrfs_release_path(root, path);
5243 if (em->start > start || extent_map_end(em) <= start) {
5244 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5245 "[%llu %llu]\n", (unsigned long long)em->start,
5246 (unsigned long long)em->len,
5247 (unsigned long long)start,
5248 (unsigned long long)len);
5249 err = -EIO;
5250 goto out;
5251 }
5252
5253 err = 0;
5254 write_lock(&em_tree->lock);
5255 ret = add_extent_mapping(em_tree, em);
5256 /* it is possible that someone inserted the extent into the tree
5257 * while we had the lock dropped. It is also possible that
5258 * an overlapping map exists in the tree
5259 */
5260 if (ret == -EEXIST) {
5261 struct extent_map *existing;
5262
5263 ret = 0;
5264
5265 existing = lookup_extent_mapping(em_tree, start, len);
5266 if (existing && (existing->start > start ||
5267 existing->start + existing->len <= start)) {
5268 free_extent_map(existing);
5269 existing = NULL;
5270 }
5271 if (!existing) {
5272 existing = lookup_extent_mapping(em_tree, em->start,
5273 em->len);
5274 if (existing) {
5275 err = merge_extent_mapping(em_tree, existing,
5276 em, start,
5277 root->sectorsize);
5278 free_extent_map(existing);
5279 if (err) {
5280 free_extent_map(em);
5281 em = NULL;
5282 }
5283 } else {
5284 err = -EIO;
5285 free_extent_map(em);
5286 em = NULL;
5287 }
5288 } else {
5289 free_extent_map(em);
5290 em = existing;
5291 err = 0;
5292 }
5293 }
5294 write_unlock(&em_tree->lock);
5295 out:
5296
5297 trace_btrfs_get_extent(root, em);
5298
5299 if (path)
5300 btrfs_free_path(path);
5301 if (trans) {
5302 ret = btrfs_end_transaction(trans, root);
5303 if (!err)
5304 err = ret;
5305 }
5306 if (err) {
5307 free_extent_map(em);
5308 return ERR_PTR(err);
5309 }
5310 return em;
5311 }
5312
5313 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5314 size_t pg_offset, u64 start, u64 len,
5315 int create)
5316 {
5317 struct extent_map *em;
5318 struct extent_map *hole_em = NULL;
5319 u64 range_start = start;
5320 u64 end;
5321 u64 found;
5322 u64 found_end;
5323 int err = 0;
5324
5325 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5326 if (IS_ERR(em))
5327 return em;
5328 if (em) {
5329 /*
5330 * if our em maps to a hole, there might
5331 * actually be delalloc bytes behind it
5332 */
5333 if (em->block_start != EXTENT_MAP_HOLE)
5334 return em;
5335 else
5336 hole_em = em;
5337 }
5338
5339 /* check to see if we've wrapped (len == -1 or similar) */
5340 end = start + len;
5341 if (end < start)
5342 end = (u64)-1;
5343 else
5344 end -= 1;
5345
5346 em = NULL;
5347
5348 /* ok, we didn't find anything, lets look for delalloc */
5349 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5350 end, len, EXTENT_DELALLOC, 1);
5351 found_end = range_start + found;
5352 if (found_end < range_start)
5353 found_end = (u64)-1;
5354
5355 /*
5356 * we didn't find anything useful, return
5357 * the original results from get_extent()
5358 */
5359 if (range_start > end || found_end <= start) {
5360 em = hole_em;
5361 hole_em = NULL;
5362 goto out;
5363 }
5364
5365 /* adjust the range_start to make sure it doesn't
5366 * go backwards from the start they passed in
5367 */
5368 range_start = max(start,range_start);
5369 found = found_end - range_start;
5370
5371 if (found > 0) {
5372 u64 hole_start = start;
5373 u64 hole_len = len;
5374
5375 em = alloc_extent_map(GFP_NOFS);
5376 if (!em) {
5377 err = -ENOMEM;
5378 goto out;
5379 }
5380 /*
5381 * when btrfs_get_extent can't find anything it
5382 * returns one huge hole
5383 *
5384 * make sure what it found really fits our range, and
5385 * adjust to make sure it is based on the start from
5386 * the caller
5387 */
5388 if (hole_em) {
5389 u64 calc_end = extent_map_end(hole_em);
5390
5391 if (calc_end <= start || (hole_em->start > end)) {
5392 free_extent_map(hole_em);
5393 hole_em = NULL;
5394 } else {
5395 hole_start = max(hole_em->start, start);
5396 hole_len = calc_end - hole_start;
5397 }
5398 }
5399 em->bdev = NULL;
5400 if (hole_em && range_start > hole_start) {
5401 /* our hole starts before our delalloc, so we
5402 * have to return just the parts of the hole
5403 * that go until the delalloc starts
5404 */
5405 em->len = min(hole_len,
5406 range_start - hole_start);
5407 em->start = hole_start;
5408 em->orig_start = hole_start;
5409 /*
5410 * don't adjust block start at all,
5411 * it is fixed at EXTENT_MAP_HOLE
5412 */
5413 em->block_start = hole_em->block_start;
5414 em->block_len = hole_len;
5415 } else {
5416 em->start = range_start;
5417 em->len = found;
5418 em->orig_start = range_start;
5419 em->block_start = EXTENT_MAP_DELALLOC;
5420 em->block_len = found;
5421 }
5422 } else if (hole_em) {
5423 return hole_em;
5424 }
5425 out:
5426
5427 free_extent_map(hole_em);
5428 if (err) {
5429 free_extent_map(em);
5430 return ERR_PTR(err);
5431 }
5432 return em;
5433 }
5434
5435 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5436 u64 start, u64 len)
5437 {
5438 struct btrfs_root *root = BTRFS_I(inode)->root;
5439 struct btrfs_trans_handle *trans;
5440 struct extent_map *em;
5441 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5442 struct btrfs_key ins;
5443 u64 alloc_hint;
5444 int ret;
5445
5446 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5447
5448 trans = btrfs_join_transaction(root, 0);
5449 if (IS_ERR(trans))
5450 return ERR_CAST(trans);
5451
5452 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5453
5454 alloc_hint = get_extent_allocation_hint(inode, start, len);
5455 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5456 alloc_hint, (u64)-1, &ins, 1);
5457 if (ret) {
5458 em = ERR_PTR(ret);
5459 goto out;
5460 }
5461
5462 em = alloc_extent_map(GFP_NOFS);
5463 if (!em) {
5464 em = ERR_PTR(-ENOMEM);
5465 goto out;
5466 }
5467
5468 em->start = start;
5469 em->orig_start = em->start;
5470 em->len = ins.offset;
5471
5472 em->block_start = ins.objectid;
5473 em->block_len = ins.offset;
5474 em->bdev = root->fs_info->fs_devices->latest_bdev;
5475 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5476
5477 while (1) {
5478 write_lock(&em_tree->lock);
5479 ret = add_extent_mapping(em_tree, em);
5480 write_unlock(&em_tree->lock);
5481 if (ret != -EEXIST)
5482 break;
5483 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5484 }
5485
5486 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5487 ins.offset, ins.offset, 0);
5488 if (ret) {
5489 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5490 em = ERR_PTR(ret);
5491 }
5492 out:
5493 btrfs_end_transaction(trans, root);
5494 return em;
5495 }
5496
5497 /*
5498 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5499 * block must be cow'd
5500 */
5501 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5502 struct inode *inode, u64 offset, u64 len)
5503 {
5504 struct btrfs_path *path;
5505 int ret;
5506 struct extent_buffer *leaf;
5507 struct btrfs_root *root = BTRFS_I(inode)->root;
5508 struct btrfs_file_extent_item *fi;
5509 struct btrfs_key key;
5510 u64 disk_bytenr;
5511 u64 backref_offset;
5512 u64 extent_end;
5513 u64 num_bytes;
5514 int slot;
5515 int found_type;
5516
5517 path = btrfs_alloc_path();
5518 if (!path)
5519 return -ENOMEM;
5520
5521 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5522 offset, 0);
5523 if (ret < 0)
5524 goto out;
5525
5526 slot = path->slots[0];
5527 if (ret == 1) {
5528 if (slot == 0) {
5529 /* can't find the item, must cow */
5530 ret = 0;
5531 goto out;
5532 }
5533 slot--;
5534 }
5535 ret = 0;
5536 leaf = path->nodes[0];
5537 btrfs_item_key_to_cpu(leaf, &key, slot);
5538 if (key.objectid != inode->i_ino ||
5539 key.type != BTRFS_EXTENT_DATA_KEY) {
5540 /* not our file or wrong item type, must cow */
5541 goto out;
5542 }
5543
5544 if (key.offset > offset) {
5545 /* Wrong offset, must cow */
5546 goto out;
5547 }
5548
5549 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5550 found_type = btrfs_file_extent_type(leaf, fi);
5551 if (found_type != BTRFS_FILE_EXTENT_REG &&
5552 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5553 /* not a regular extent, must cow */
5554 goto out;
5555 }
5556 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5557 backref_offset = btrfs_file_extent_offset(leaf, fi);
5558
5559 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5560 if (extent_end < offset + len) {
5561 /* extent doesn't include our full range, must cow */
5562 goto out;
5563 }
5564
5565 if (btrfs_extent_readonly(root, disk_bytenr))
5566 goto out;
5567
5568 /*
5569 * look for other files referencing this extent, if we
5570 * find any we must cow
5571 */
5572 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5573 key.offset - backref_offset, disk_bytenr))
5574 goto out;
5575
5576 /*
5577 * adjust disk_bytenr and num_bytes to cover just the bytes
5578 * in this extent we are about to write. If there
5579 * are any csums in that range we have to cow in order
5580 * to keep the csums correct
5581 */
5582 disk_bytenr += backref_offset;
5583 disk_bytenr += offset - key.offset;
5584 num_bytes = min(offset + len, extent_end) - offset;
5585 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5586 goto out;
5587 /*
5588 * all of the above have passed, it is safe to overwrite this extent
5589 * without cow
5590 */
5591 ret = 1;
5592 out:
5593 btrfs_free_path(path);
5594 return ret;
5595 }
5596
5597 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5598 struct buffer_head *bh_result, int create)
5599 {
5600 struct extent_map *em;
5601 struct btrfs_root *root = BTRFS_I(inode)->root;
5602 u64 start = iblock << inode->i_blkbits;
5603 u64 len = bh_result->b_size;
5604 struct btrfs_trans_handle *trans;
5605
5606 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5607 if (IS_ERR(em))
5608 return PTR_ERR(em);
5609
5610 /*
5611 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5612 * io. INLINE is special, and we could probably kludge it in here, but
5613 * it's still buffered so for safety lets just fall back to the generic
5614 * buffered path.
5615 *
5616 * For COMPRESSED we _have_ to read the entire extent in so we can
5617 * decompress it, so there will be buffering required no matter what we
5618 * do, so go ahead and fallback to buffered.
5619 *
5620 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5621 * to buffered IO. Don't blame me, this is the price we pay for using
5622 * the generic code.
5623 */
5624 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5625 em->block_start == EXTENT_MAP_INLINE) {
5626 free_extent_map(em);
5627 return -ENOTBLK;
5628 }
5629
5630 /* Just a good old fashioned hole, return */
5631 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5632 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5633 free_extent_map(em);
5634 /* DIO will do one hole at a time, so just unlock a sector */
5635 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5636 start + root->sectorsize - 1, GFP_NOFS);
5637 return 0;
5638 }
5639
5640 /*
5641 * We don't allocate a new extent in the following cases
5642 *
5643 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5644 * existing extent.
5645 * 2) The extent is marked as PREALLOC. We're good to go here and can
5646 * just use the extent.
5647 *
5648 */
5649 if (!create) {
5650 len = em->len - (start - em->start);
5651 goto map;
5652 }
5653
5654 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5655 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5656 em->block_start != EXTENT_MAP_HOLE)) {
5657 int type;
5658 int ret;
5659 u64 block_start;
5660
5661 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5662 type = BTRFS_ORDERED_PREALLOC;
5663 else
5664 type = BTRFS_ORDERED_NOCOW;
5665 len = min(len, em->len - (start - em->start));
5666 block_start = em->block_start + (start - em->start);
5667
5668 /*
5669 * we're not going to log anything, but we do need
5670 * to make sure the current transaction stays open
5671 * while we look for nocow cross refs
5672 */
5673 trans = btrfs_join_transaction(root, 0);
5674 if (IS_ERR(trans))
5675 goto must_cow;
5676
5677 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5678 ret = btrfs_add_ordered_extent_dio(inode, start,
5679 block_start, len, len, type);
5680 btrfs_end_transaction(trans, root);
5681 if (ret) {
5682 free_extent_map(em);
5683 return ret;
5684 }
5685 goto unlock;
5686 }
5687 btrfs_end_transaction(trans, root);
5688 }
5689 must_cow:
5690 /*
5691 * this will cow the extent, reset the len in case we changed
5692 * it above
5693 */
5694 len = bh_result->b_size;
5695 free_extent_map(em);
5696 em = btrfs_new_extent_direct(inode, start, len);
5697 if (IS_ERR(em))
5698 return PTR_ERR(em);
5699 len = min(len, em->len - (start - em->start));
5700 unlock:
5701 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5702 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5703 0, NULL, GFP_NOFS);
5704 map:
5705 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5706 inode->i_blkbits;
5707 bh_result->b_size = len;
5708 bh_result->b_bdev = em->bdev;
5709 set_buffer_mapped(bh_result);
5710 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5711 set_buffer_new(bh_result);
5712
5713 free_extent_map(em);
5714
5715 return 0;
5716 }
5717
5718 struct btrfs_dio_private {
5719 struct inode *inode;
5720 u64 logical_offset;
5721 u64 disk_bytenr;
5722 u64 bytes;
5723 u32 *csums;
5724 void *private;
5725
5726 /* number of bios pending for this dio */
5727 atomic_t pending_bios;
5728
5729 /* IO errors */
5730 int errors;
5731
5732 struct bio *orig_bio;
5733 };
5734
5735 static void btrfs_endio_direct_read(struct bio *bio, int err)
5736 {
5737 struct btrfs_dio_private *dip = bio->bi_private;
5738 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5739 struct bio_vec *bvec = bio->bi_io_vec;
5740 struct inode *inode = dip->inode;
5741 struct btrfs_root *root = BTRFS_I(inode)->root;
5742 u64 start;
5743 u32 *private = dip->csums;
5744
5745 start = dip->logical_offset;
5746 do {
5747 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5748 struct page *page = bvec->bv_page;
5749 char *kaddr;
5750 u32 csum = ~(u32)0;
5751 unsigned long flags;
5752
5753 local_irq_save(flags);
5754 kaddr = kmap_atomic(page, KM_IRQ0);
5755 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5756 csum, bvec->bv_len);
5757 btrfs_csum_final(csum, (char *)&csum);
5758 kunmap_atomic(kaddr, KM_IRQ0);
5759 local_irq_restore(flags);
5760
5761 flush_dcache_page(bvec->bv_page);
5762 if (csum != *private) {
5763 printk(KERN_ERR "btrfs csum failed ino %lu off"
5764 " %llu csum %u private %u\n",
5765 inode->i_ino, (unsigned long long)start,
5766 csum, *private);
5767 err = -EIO;
5768 }
5769 }
5770
5771 start += bvec->bv_len;
5772 private++;
5773 bvec++;
5774 } while (bvec <= bvec_end);
5775
5776 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5777 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5778 bio->bi_private = dip->private;
5779
5780 kfree(dip->csums);
5781 kfree(dip);
5782
5783 /* If we had a csum failure make sure to clear the uptodate flag */
5784 if (err)
5785 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5786 dio_end_io(bio, err);
5787 }
5788
5789 static void btrfs_endio_direct_write(struct bio *bio, int err)
5790 {
5791 struct btrfs_dio_private *dip = bio->bi_private;
5792 struct inode *inode = dip->inode;
5793 struct btrfs_root *root = BTRFS_I(inode)->root;
5794 struct btrfs_trans_handle *trans;
5795 struct btrfs_ordered_extent *ordered = NULL;
5796 struct extent_state *cached_state = NULL;
5797 u64 ordered_offset = dip->logical_offset;
5798 u64 ordered_bytes = dip->bytes;
5799 int ret;
5800
5801 if (err)
5802 goto out_done;
5803 again:
5804 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5805 &ordered_offset,
5806 ordered_bytes);
5807 if (!ret)
5808 goto out_test;
5809
5810 BUG_ON(!ordered);
5811
5812 trans = btrfs_join_transaction(root, 1);
5813 if (IS_ERR(trans)) {
5814 err = -ENOMEM;
5815 goto out;
5816 }
5817 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5818
5819 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5820 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5821 if (!ret)
5822 ret = btrfs_update_inode(trans, root, inode);
5823 err = ret;
5824 goto out;
5825 }
5826
5827 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5828 ordered->file_offset + ordered->len - 1, 0,
5829 &cached_state, GFP_NOFS);
5830
5831 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5832 ret = btrfs_mark_extent_written(trans, inode,
5833 ordered->file_offset,
5834 ordered->file_offset +
5835 ordered->len);
5836 if (ret) {
5837 err = ret;
5838 goto out_unlock;
5839 }
5840 } else {
5841 ret = insert_reserved_file_extent(trans, inode,
5842 ordered->file_offset,
5843 ordered->start,
5844 ordered->disk_len,
5845 ordered->len,
5846 ordered->len,
5847 0, 0, 0,
5848 BTRFS_FILE_EXTENT_REG);
5849 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5850 ordered->file_offset, ordered->len);
5851 if (ret) {
5852 err = ret;
5853 WARN_ON(1);
5854 goto out_unlock;
5855 }
5856 }
5857
5858 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5859 btrfs_ordered_update_i_size(inode, 0, ordered);
5860 btrfs_update_inode(trans, root, inode);
5861 out_unlock:
5862 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5863 ordered->file_offset + ordered->len - 1,
5864 &cached_state, GFP_NOFS);
5865 out:
5866 btrfs_delalloc_release_metadata(inode, ordered->len);
5867 btrfs_end_transaction(trans, root);
5868 ordered_offset = ordered->file_offset + ordered->len;
5869 btrfs_put_ordered_extent(ordered);
5870 btrfs_put_ordered_extent(ordered);
5871
5872 out_test:
5873 /*
5874 * our bio might span multiple ordered extents. If we haven't
5875 * completed the accounting for the whole dio, go back and try again
5876 */
5877 if (ordered_offset < dip->logical_offset + dip->bytes) {
5878 ordered_bytes = dip->logical_offset + dip->bytes -
5879 ordered_offset;
5880 goto again;
5881 }
5882 out_done:
5883 bio->bi_private = dip->private;
5884
5885 kfree(dip->csums);
5886 kfree(dip);
5887
5888 /* If we had an error make sure to clear the uptodate flag */
5889 if (err)
5890 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5891 dio_end_io(bio, err);
5892 }
5893
5894 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5895 struct bio *bio, int mirror_num,
5896 unsigned long bio_flags, u64 offset)
5897 {
5898 int ret;
5899 struct btrfs_root *root = BTRFS_I(inode)->root;
5900 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5901 BUG_ON(ret);
5902 return 0;
5903 }
5904
5905 static void btrfs_end_dio_bio(struct bio *bio, int err)
5906 {
5907 struct btrfs_dio_private *dip = bio->bi_private;
5908
5909 if (err) {
5910 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5911 "sector %#Lx len %u err no %d\n",
5912 dip->inode->i_ino, bio->bi_rw,
5913 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5914 dip->errors = 1;
5915
5916 /*
5917 * before atomic variable goto zero, we must make sure
5918 * dip->errors is perceived to be set.
5919 */
5920 smp_mb__before_atomic_dec();
5921 }
5922
5923 /* if there are more bios still pending for this dio, just exit */
5924 if (!atomic_dec_and_test(&dip->pending_bios))
5925 goto out;
5926
5927 if (dip->errors)
5928 bio_io_error(dip->orig_bio);
5929 else {
5930 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5931 bio_endio(dip->orig_bio, 0);
5932 }
5933 out:
5934 bio_put(bio);
5935 }
5936
5937 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5938 u64 first_sector, gfp_t gfp_flags)
5939 {
5940 int nr_vecs = bio_get_nr_vecs(bdev);
5941 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5942 }
5943
5944 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5945 int rw, u64 file_offset, int skip_sum,
5946 u32 *csums)
5947 {
5948 int write = rw & REQ_WRITE;
5949 struct btrfs_root *root = BTRFS_I(inode)->root;
5950 int ret;
5951
5952 bio_get(bio);
5953 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5954 if (ret)
5955 goto err;
5956
5957 if (write && !skip_sum) {
5958 ret = btrfs_wq_submit_bio(root->fs_info,
5959 inode, rw, bio, 0, 0,
5960 file_offset,
5961 __btrfs_submit_bio_start_direct_io,
5962 __btrfs_submit_bio_done);
5963 goto err;
5964 } else if (!skip_sum) {
5965 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5966 file_offset, csums);
5967 if (ret)
5968 goto err;
5969 }
5970
5971 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5972 err:
5973 bio_put(bio);
5974 return ret;
5975 }
5976
5977 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5978 int skip_sum)
5979 {
5980 struct inode *inode = dip->inode;
5981 struct btrfs_root *root = BTRFS_I(inode)->root;
5982 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5983 struct bio *bio;
5984 struct bio *orig_bio = dip->orig_bio;
5985 struct bio_vec *bvec = orig_bio->bi_io_vec;
5986 u64 start_sector = orig_bio->bi_sector;
5987 u64 file_offset = dip->logical_offset;
5988 u64 submit_len = 0;
5989 u64 map_length;
5990 int nr_pages = 0;
5991 u32 *csums = dip->csums;
5992 int ret = 0;
5993 int write = rw & REQ_WRITE;
5994
5995 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5996 if (!bio)
5997 return -ENOMEM;
5998 bio->bi_private = dip;
5999 bio->bi_end_io = btrfs_end_dio_bio;
6000 atomic_inc(&dip->pending_bios);
6001
6002 map_length = orig_bio->bi_size;
6003 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6004 &map_length, NULL, 0);
6005 if (ret) {
6006 bio_put(bio);
6007 return -EIO;
6008 }
6009
6010 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6011 if (unlikely(map_length < submit_len + bvec->bv_len ||
6012 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6013 bvec->bv_offset) < bvec->bv_len)) {
6014 /*
6015 * inc the count before we submit the bio so
6016 * we know the end IO handler won't happen before
6017 * we inc the count. Otherwise, the dip might get freed
6018 * before we're done setting it up
6019 */
6020 atomic_inc(&dip->pending_bios);
6021 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6022 file_offset, skip_sum,
6023 csums);
6024 if (ret) {
6025 bio_put(bio);
6026 atomic_dec(&dip->pending_bios);
6027 goto out_err;
6028 }
6029
6030 /* Write's use the ordered csums */
6031 if (!write && !skip_sum)
6032 csums = csums + nr_pages;
6033 start_sector += submit_len >> 9;
6034 file_offset += submit_len;
6035
6036 submit_len = 0;
6037 nr_pages = 0;
6038
6039 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6040 start_sector, GFP_NOFS);
6041 if (!bio)
6042 goto out_err;
6043 bio->bi_private = dip;
6044 bio->bi_end_io = btrfs_end_dio_bio;
6045
6046 map_length = orig_bio->bi_size;
6047 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6048 &map_length, NULL, 0);
6049 if (ret) {
6050 bio_put(bio);
6051 goto out_err;
6052 }
6053 } else {
6054 submit_len += bvec->bv_len;
6055 nr_pages ++;
6056 bvec++;
6057 }
6058 }
6059
6060 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6061 csums);
6062 if (!ret)
6063 return 0;
6064
6065 bio_put(bio);
6066 out_err:
6067 dip->errors = 1;
6068 /*
6069 * before atomic variable goto zero, we must
6070 * make sure dip->errors is perceived to be set.
6071 */
6072 smp_mb__before_atomic_dec();
6073 if (atomic_dec_and_test(&dip->pending_bios))
6074 bio_io_error(dip->orig_bio);
6075
6076 /* bio_end_io() will handle error, so we needn't return it */
6077 return 0;
6078 }
6079
6080 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6081 loff_t file_offset)
6082 {
6083 struct btrfs_root *root = BTRFS_I(inode)->root;
6084 struct btrfs_dio_private *dip;
6085 struct bio_vec *bvec = bio->bi_io_vec;
6086 int skip_sum;
6087 int write = rw & REQ_WRITE;
6088 int ret = 0;
6089
6090 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6091
6092 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6093 if (!dip) {
6094 ret = -ENOMEM;
6095 goto free_ordered;
6096 }
6097 dip->csums = NULL;
6098
6099 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6100 if (!write && !skip_sum) {
6101 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6102 if (!dip->csums) {
6103 kfree(dip);
6104 ret = -ENOMEM;
6105 goto free_ordered;
6106 }
6107 }
6108
6109 dip->private = bio->bi_private;
6110 dip->inode = inode;
6111 dip->logical_offset = file_offset;
6112
6113 dip->bytes = 0;
6114 do {
6115 dip->bytes += bvec->bv_len;
6116 bvec++;
6117 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6118
6119 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6120 bio->bi_private = dip;
6121 dip->errors = 0;
6122 dip->orig_bio = bio;
6123 atomic_set(&dip->pending_bios, 0);
6124
6125 if (write)
6126 bio->bi_end_io = btrfs_endio_direct_write;
6127 else
6128 bio->bi_end_io = btrfs_endio_direct_read;
6129
6130 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6131 if (!ret)
6132 return;
6133 free_ordered:
6134 /*
6135 * If this is a write, we need to clean up the reserved space and kill
6136 * the ordered extent.
6137 */
6138 if (write) {
6139 struct btrfs_ordered_extent *ordered;
6140 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6141 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6142 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6143 btrfs_free_reserved_extent(root, ordered->start,
6144 ordered->disk_len);
6145 btrfs_put_ordered_extent(ordered);
6146 btrfs_put_ordered_extent(ordered);
6147 }
6148 bio_endio(bio, ret);
6149 }
6150
6151 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6152 const struct iovec *iov, loff_t offset,
6153 unsigned long nr_segs)
6154 {
6155 int seg;
6156 int i;
6157 size_t size;
6158 unsigned long addr;
6159 unsigned blocksize_mask = root->sectorsize - 1;
6160 ssize_t retval = -EINVAL;
6161 loff_t end = offset;
6162
6163 if (offset & blocksize_mask)
6164 goto out;
6165
6166 /* Check the memory alignment. Blocks cannot straddle pages */
6167 for (seg = 0; seg < nr_segs; seg++) {
6168 addr = (unsigned long)iov[seg].iov_base;
6169 size = iov[seg].iov_len;
6170 end += size;
6171 if ((addr & blocksize_mask) || (size & blocksize_mask))
6172 goto out;
6173
6174 /* If this is a write we don't need to check anymore */
6175 if (rw & WRITE)
6176 continue;
6177
6178 /*
6179 * Check to make sure we don't have duplicate iov_base's in this
6180 * iovec, if so return EINVAL, otherwise we'll get csum errors
6181 * when reading back.
6182 */
6183 for (i = seg + 1; i < nr_segs; i++) {
6184 if (iov[seg].iov_base == iov[i].iov_base)
6185 goto out;
6186 }
6187 }
6188 retval = 0;
6189 out:
6190 return retval;
6191 }
6192 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6193 const struct iovec *iov, loff_t offset,
6194 unsigned long nr_segs)
6195 {
6196 struct file *file = iocb->ki_filp;
6197 struct inode *inode = file->f_mapping->host;
6198 struct btrfs_ordered_extent *ordered;
6199 struct extent_state *cached_state = NULL;
6200 u64 lockstart, lockend;
6201 ssize_t ret;
6202 int writing = rw & WRITE;
6203 int write_bits = 0;
6204 size_t count = iov_length(iov, nr_segs);
6205
6206 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6207 offset, nr_segs)) {
6208 return 0;
6209 }
6210
6211 lockstart = offset;
6212 lockend = offset + count - 1;
6213
6214 if (writing) {
6215 ret = btrfs_delalloc_reserve_space(inode, count);
6216 if (ret)
6217 goto out;
6218 }
6219
6220 while (1) {
6221 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6222 0, &cached_state, GFP_NOFS);
6223 /*
6224 * We're concerned with the entire range that we're going to be
6225 * doing DIO to, so we need to make sure theres no ordered
6226 * extents in this range.
6227 */
6228 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6229 lockend - lockstart + 1);
6230 if (!ordered)
6231 break;
6232 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6233 &cached_state, GFP_NOFS);
6234 btrfs_start_ordered_extent(inode, ordered, 1);
6235 btrfs_put_ordered_extent(ordered);
6236 cond_resched();
6237 }
6238
6239 /*
6240 * we don't use btrfs_set_extent_delalloc because we don't want
6241 * the dirty or uptodate bits
6242 */
6243 if (writing) {
6244 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6245 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6246 EXTENT_DELALLOC, 0, NULL, &cached_state,
6247 GFP_NOFS);
6248 if (ret) {
6249 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6250 lockend, EXTENT_LOCKED | write_bits,
6251 1, 0, &cached_state, GFP_NOFS);
6252 goto out;
6253 }
6254 }
6255
6256 free_extent_state(cached_state);
6257 cached_state = NULL;
6258
6259 ret = __blockdev_direct_IO(rw, iocb, inode,
6260 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6261 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6262 btrfs_submit_direct, 0);
6263
6264 if (ret < 0 && ret != -EIOCBQUEUED) {
6265 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6266 offset + iov_length(iov, nr_segs) - 1,
6267 EXTENT_LOCKED | write_bits, 1, 0,
6268 &cached_state, GFP_NOFS);
6269 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6270 /*
6271 * We're falling back to buffered, unlock the section we didn't
6272 * do IO on.
6273 */
6274 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6275 offset + iov_length(iov, nr_segs) - 1,
6276 EXTENT_LOCKED | write_bits, 1, 0,
6277 &cached_state, GFP_NOFS);
6278 }
6279 out:
6280 free_extent_state(cached_state);
6281 return ret;
6282 }
6283
6284 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6285 __u64 start, __u64 len)
6286 {
6287 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6288 }
6289
6290 int btrfs_readpage(struct file *file, struct page *page)
6291 {
6292 struct extent_io_tree *tree;
6293 tree = &BTRFS_I(page->mapping->host)->io_tree;
6294 return extent_read_full_page(tree, page, btrfs_get_extent);
6295 }
6296
6297 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6298 {
6299 struct extent_io_tree *tree;
6300
6301
6302 if (current->flags & PF_MEMALLOC) {
6303 redirty_page_for_writepage(wbc, page);
6304 unlock_page(page);
6305 return 0;
6306 }
6307 tree = &BTRFS_I(page->mapping->host)->io_tree;
6308 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6309 }
6310
6311 int btrfs_writepages(struct address_space *mapping,
6312 struct writeback_control *wbc)
6313 {
6314 struct extent_io_tree *tree;
6315
6316 tree = &BTRFS_I(mapping->host)->io_tree;
6317 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6318 }
6319
6320 static int
6321 btrfs_readpages(struct file *file, struct address_space *mapping,
6322 struct list_head *pages, unsigned nr_pages)
6323 {
6324 struct extent_io_tree *tree;
6325 tree = &BTRFS_I(mapping->host)->io_tree;
6326 return extent_readpages(tree, mapping, pages, nr_pages,
6327 btrfs_get_extent);
6328 }
6329 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6330 {
6331 struct extent_io_tree *tree;
6332 struct extent_map_tree *map;
6333 int ret;
6334
6335 tree = &BTRFS_I(page->mapping->host)->io_tree;
6336 map = &BTRFS_I(page->mapping->host)->extent_tree;
6337 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6338 if (ret == 1) {
6339 ClearPagePrivate(page);
6340 set_page_private(page, 0);
6341 page_cache_release(page);
6342 }
6343 return ret;
6344 }
6345
6346 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6347 {
6348 if (PageWriteback(page) || PageDirty(page))
6349 return 0;
6350 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6351 }
6352
6353 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6354 {
6355 struct extent_io_tree *tree;
6356 struct btrfs_ordered_extent *ordered;
6357 struct extent_state *cached_state = NULL;
6358 u64 page_start = page_offset(page);
6359 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6360
6361
6362 /*
6363 * we have the page locked, so new writeback can't start,
6364 * and the dirty bit won't be cleared while we are here.
6365 *
6366 * Wait for IO on this page so that we can safely clear
6367 * the PagePrivate2 bit and do ordered accounting
6368 */
6369 wait_on_page_writeback(page);
6370
6371 tree = &BTRFS_I(page->mapping->host)->io_tree;
6372 if (offset) {
6373 btrfs_releasepage(page, GFP_NOFS);
6374 return;
6375 }
6376 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6377 GFP_NOFS);
6378 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6379 page_offset(page));
6380 if (ordered) {
6381 /*
6382 * IO on this page will never be started, so we need
6383 * to account for any ordered extents now
6384 */
6385 clear_extent_bit(tree, page_start, page_end,
6386 EXTENT_DIRTY | EXTENT_DELALLOC |
6387 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6388 &cached_state, GFP_NOFS);
6389 /*
6390 * whoever cleared the private bit is responsible
6391 * for the finish_ordered_io
6392 */
6393 if (TestClearPagePrivate2(page)) {
6394 btrfs_finish_ordered_io(page->mapping->host,
6395 page_start, page_end);
6396 }
6397 btrfs_put_ordered_extent(ordered);
6398 cached_state = NULL;
6399 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6400 GFP_NOFS);
6401 }
6402 clear_extent_bit(tree, page_start, page_end,
6403 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6404 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6405 __btrfs_releasepage(page, GFP_NOFS);
6406
6407 ClearPageChecked(page);
6408 if (PagePrivate(page)) {
6409 ClearPagePrivate(page);
6410 set_page_private(page, 0);
6411 page_cache_release(page);
6412 }
6413 }
6414
6415 /*
6416 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6417 * called from a page fault handler when a page is first dirtied. Hence we must
6418 * be careful to check for EOF conditions here. We set the page up correctly
6419 * for a written page which means we get ENOSPC checking when writing into
6420 * holes and correct delalloc and unwritten extent mapping on filesystems that
6421 * support these features.
6422 *
6423 * We are not allowed to take the i_mutex here so we have to play games to
6424 * protect against truncate races as the page could now be beyond EOF. Because
6425 * vmtruncate() writes the inode size before removing pages, once we have the
6426 * page lock we can determine safely if the page is beyond EOF. If it is not
6427 * beyond EOF, then the page is guaranteed safe against truncation until we
6428 * unlock the page.
6429 */
6430 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6431 {
6432 struct page *page = vmf->page;
6433 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6434 struct btrfs_root *root = BTRFS_I(inode)->root;
6435 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6436 struct btrfs_ordered_extent *ordered;
6437 struct extent_state *cached_state = NULL;
6438 char *kaddr;
6439 unsigned long zero_start;
6440 loff_t size;
6441 int ret;
6442 u64 page_start;
6443 u64 page_end;
6444
6445 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6446 if (ret) {
6447 if (ret == -ENOMEM)
6448 ret = VM_FAULT_OOM;
6449 else /* -ENOSPC, -EIO, etc */
6450 ret = VM_FAULT_SIGBUS;
6451 goto out;
6452 }
6453
6454 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6455 again:
6456 lock_page(page);
6457 size = i_size_read(inode);
6458 page_start = page_offset(page);
6459 page_end = page_start + PAGE_CACHE_SIZE - 1;
6460
6461 if ((page->mapping != inode->i_mapping) ||
6462 (page_start >= size)) {
6463 /* page got truncated out from underneath us */
6464 goto out_unlock;
6465 }
6466 wait_on_page_writeback(page);
6467
6468 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6469 GFP_NOFS);
6470 set_page_extent_mapped(page);
6471
6472 /*
6473 * we can't set the delalloc bits if there are pending ordered
6474 * extents. Drop our locks and wait for them to finish
6475 */
6476 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6477 if (ordered) {
6478 unlock_extent_cached(io_tree, page_start, page_end,
6479 &cached_state, GFP_NOFS);
6480 unlock_page(page);
6481 btrfs_start_ordered_extent(inode, ordered, 1);
6482 btrfs_put_ordered_extent(ordered);
6483 goto again;
6484 }
6485
6486 /*
6487 * XXX - page_mkwrite gets called every time the page is dirtied, even
6488 * if it was already dirty, so for space accounting reasons we need to
6489 * clear any delalloc bits for the range we are fixing to save. There
6490 * is probably a better way to do this, but for now keep consistent with
6491 * prepare_pages in the normal write path.
6492 */
6493 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6494 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6495 0, 0, &cached_state, GFP_NOFS);
6496
6497 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6498 &cached_state);
6499 if (ret) {
6500 unlock_extent_cached(io_tree, page_start, page_end,
6501 &cached_state, GFP_NOFS);
6502 ret = VM_FAULT_SIGBUS;
6503 goto out_unlock;
6504 }
6505 ret = 0;
6506
6507 /* page is wholly or partially inside EOF */
6508 if (page_start + PAGE_CACHE_SIZE > size)
6509 zero_start = size & ~PAGE_CACHE_MASK;
6510 else
6511 zero_start = PAGE_CACHE_SIZE;
6512
6513 if (zero_start != PAGE_CACHE_SIZE) {
6514 kaddr = kmap(page);
6515 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6516 flush_dcache_page(page);
6517 kunmap(page);
6518 }
6519 ClearPageChecked(page);
6520 set_page_dirty(page);
6521 SetPageUptodate(page);
6522
6523 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6524 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6525
6526 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6527
6528 out_unlock:
6529 if (!ret)
6530 return VM_FAULT_LOCKED;
6531 unlock_page(page);
6532 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6533 out:
6534 return ret;
6535 }
6536
6537 static int btrfs_truncate(struct inode *inode)
6538 {
6539 struct btrfs_root *root = BTRFS_I(inode)->root;
6540 int ret;
6541 int err = 0;
6542 struct btrfs_trans_handle *trans;
6543 unsigned long nr;
6544 u64 mask = root->sectorsize - 1;
6545
6546 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6547 if (ret)
6548 return ret;
6549
6550 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6551 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6552
6553 trans = btrfs_start_transaction(root, 5);
6554 if (IS_ERR(trans))
6555 return PTR_ERR(trans);
6556
6557 btrfs_set_trans_block_group(trans, inode);
6558
6559 ret = btrfs_orphan_add(trans, inode);
6560 if (ret) {
6561 btrfs_end_transaction(trans, root);
6562 return ret;
6563 }
6564
6565 nr = trans->blocks_used;
6566 btrfs_end_transaction(trans, root);
6567 btrfs_btree_balance_dirty(root, nr);
6568
6569 /* Now start a transaction for the truncate */
6570 trans = btrfs_start_transaction(root, 0);
6571 if (IS_ERR(trans))
6572 return PTR_ERR(trans);
6573 btrfs_set_trans_block_group(trans, inode);
6574 trans->block_rsv = root->orphan_block_rsv;
6575
6576 /*
6577 * setattr is responsible for setting the ordered_data_close flag,
6578 * but that is only tested during the last file release. That
6579 * could happen well after the next commit, leaving a great big
6580 * window where new writes may get lost if someone chooses to write
6581 * to this file after truncating to zero
6582 *
6583 * The inode doesn't have any dirty data here, and so if we commit
6584 * this is a noop. If someone immediately starts writing to the inode
6585 * it is very likely we'll catch some of their writes in this
6586 * transaction, and the commit will find this file on the ordered
6587 * data list with good things to send down.
6588 *
6589 * This is a best effort solution, there is still a window where
6590 * using truncate to replace the contents of the file will
6591 * end up with a zero length file after a crash.
6592 */
6593 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6594 btrfs_add_ordered_operation(trans, root, inode);
6595
6596 while (1) {
6597 if (!trans) {
6598 trans = btrfs_start_transaction(root, 0);
6599 if (IS_ERR(trans))
6600 return PTR_ERR(trans);
6601 btrfs_set_trans_block_group(trans, inode);
6602 trans->block_rsv = root->orphan_block_rsv;
6603 }
6604
6605 ret = btrfs_block_rsv_check(trans, root,
6606 root->orphan_block_rsv, 0, 5);
6607 if (ret == -EAGAIN) {
6608 ret = btrfs_commit_transaction(trans, root);
6609 if (ret)
6610 return ret;
6611 trans = NULL;
6612 continue;
6613 } else if (ret) {
6614 err = ret;
6615 break;
6616 }
6617
6618 ret = btrfs_truncate_inode_items(trans, root, inode,
6619 inode->i_size,
6620 BTRFS_EXTENT_DATA_KEY);
6621 if (ret != -EAGAIN) {
6622 err = ret;
6623 break;
6624 }
6625
6626 ret = btrfs_update_inode(trans, root, inode);
6627 if (ret) {
6628 err = ret;
6629 break;
6630 }
6631
6632 nr = trans->blocks_used;
6633 btrfs_end_transaction(trans, root);
6634 trans = NULL;
6635 btrfs_btree_balance_dirty(root, nr);
6636 }
6637
6638 if (ret == 0 && inode->i_nlink > 0) {
6639 ret = btrfs_orphan_del(trans, inode);
6640 if (ret)
6641 err = ret;
6642 } else if (ret && inode->i_nlink > 0) {
6643 /*
6644 * Failed to do the truncate, remove us from the in memory
6645 * orphan list.
6646 */
6647 ret = btrfs_orphan_del(NULL, inode);
6648 }
6649
6650 ret = btrfs_update_inode(trans, root, inode);
6651 if (ret && !err)
6652 err = ret;
6653
6654 nr = trans->blocks_used;
6655 ret = btrfs_end_transaction_throttle(trans, root);
6656 if (ret && !err)
6657 err = ret;
6658 btrfs_btree_balance_dirty(root, nr);
6659
6660 return err;
6661 }
6662
6663 /*
6664 * create a new subvolume directory/inode (helper for the ioctl).
6665 */
6666 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6667 struct btrfs_root *new_root,
6668 u64 new_dirid, u64 alloc_hint)
6669 {
6670 struct inode *inode;
6671 int err;
6672 u64 index = 0;
6673
6674 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6675 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6676 if (IS_ERR(inode))
6677 return PTR_ERR(inode);
6678 inode->i_op = &btrfs_dir_inode_operations;
6679 inode->i_fop = &btrfs_dir_file_operations;
6680
6681 inode->i_nlink = 1;
6682 btrfs_i_size_write(inode, 0);
6683
6684 err = btrfs_update_inode(trans, new_root, inode);
6685 BUG_ON(err);
6686
6687 iput(inode);
6688 return 0;
6689 }
6690
6691 /* helper function for file defrag and space balancing. This
6692 * forces readahead on a given range of bytes in an inode
6693 */
6694 unsigned long btrfs_force_ra(struct address_space *mapping,
6695 struct file_ra_state *ra, struct file *file,
6696 pgoff_t offset, pgoff_t last_index)
6697 {
6698 pgoff_t req_size = last_index - offset + 1;
6699
6700 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6701 return offset + req_size;
6702 }
6703
6704 struct inode *btrfs_alloc_inode(struct super_block *sb)
6705 {
6706 struct btrfs_inode *ei;
6707 struct inode *inode;
6708
6709 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6710 if (!ei)
6711 return NULL;
6712
6713 ei->root = NULL;
6714 ei->space_info = NULL;
6715 ei->generation = 0;
6716 ei->sequence = 0;
6717 ei->last_trans = 0;
6718 ei->last_sub_trans = 0;
6719 ei->logged_trans = 0;
6720 ei->delalloc_bytes = 0;
6721 ei->reserved_bytes = 0;
6722 ei->disk_i_size = 0;
6723 ei->flags = 0;
6724 ei->index_cnt = (u64)-1;
6725 ei->last_unlink_trans = 0;
6726
6727 atomic_set(&ei->outstanding_extents, 0);
6728 atomic_set(&ei->reserved_extents, 0);
6729
6730 ei->ordered_data_close = 0;
6731 ei->orphan_meta_reserved = 0;
6732 ei->dummy_inode = 0;
6733 ei->force_compress = BTRFS_COMPRESS_NONE;
6734
6735 inode = &ei->vfs_inode;
6736 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6737 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6738 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6739 mutex_init(&ei->log_mutex);
6740 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6741 INIT_LIST_HEAD(&ei->i_orphan);
6742 INIT_LIST_HEAD(&ei->delalloc_inodes);
6743 INIT_LIST_HEAD(&ei->ordered_operations);
6744 RB_CLEAR_NODE(&ei->rb_node);
6745
6746 return inode;
6747 }
6748
6749 static void btrfs_i_callback(struct rcu_head *head)
6750 {
6751 struct inode *inode = container_of(head, struct inode, i_rcu);
6752 INIT_LIST_HEAD(&inode->i_dentry);
6753 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6754 }
6755
6756 void btrfs_destroy_inode(struct inode *inode)
6757 {
6758 struct btrfs_ordered_extent *ordered;
6759 struct btrfs_root *root = BTRFS_I(inode)->root;
6760
6761 WARN_ON(!list_empty(&inode->i_dentry));
6762 WARN_ON(inode->i_data.nrpages);
6763 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6764 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6765
6766 /*
6767 * This can happen where we create an inode, but somebody else also
6768 * created the same inode and we need to destroy the one we already
6769 * created.
6770 */
6771 if (!root)
6772 goto free;
6773
6774 /*
6775 * Make sure we're properly removed from the ordered operation
6776 * lists.
6777 */
6778 smp_mb();
6779 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6780 spin_lock(&root->fs_info->ordered_extent_lock);
6781 list_del_init(&BTRFS_I(inode)->ordered_operations);
6782 spin_unlock(&root->fs_info->ordered_extent_lock);
6783 }
6784
6785 if (root == root->fs_info->tree_root) {
6786 struct btrfs_block_group_cache *block_group;
6787
6788 block_group = btrfs_lookup_block_group(root->fs_info,
6789 BTRFS_I(inode)->block_group);
6790 if (block_group && block_group->inode == inode) {
6791 spin_lock(&block_group->lock);
6792 block_group->inode = NULL;
6793 spin_unlock(&block_group->lock);
6794 btrfs_put_block_group(block_group);
6795 } else if (block_group) {
6796 btrfs_put_block_group(block_group);
6797 }
6798 }
6799
6800 spin_lock(&root->orphan_lock);
6801 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6802 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6803 inode->i_ino);
6804 list_del_init(&BTRFS_I(inode)->i_orphan);
6805 }
6806 spin_unlock(&root->orphan_lock);
6807
6808 while (1) {
6809 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6810 if (!ordered)
6811 break;
6812 else {
6813 printk(KERN_ERR "btrfs found ordered "
6814 "extent %llu %llu on inode cleanup\n",
6815 (unsigned long long)ordered->file_offset,
6816 (unsigned long long)ordered->len);
6817 btrfs_remove_ordered_extent(inode, ordered);
6818 btrfs_put_ordered_extent(ordered);
6819 btrfs_put_ordered_extent(ordered);
6820 }
6821 }
6822 inode_tree_del(inode);
6823 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6824 free:
6825 call_rcu(&inode->i_rcu, btrfs_i_callback);
6826 }
6827
6828 int btrfs_drop_inode(struct inode *inode)
6829 {
6830 struct btrfs_root *root = BTRFS_I(inode)->root;
6831
6832 if (btrfs_root_refs(&root->root_item) == 0 &&
6833 root != root->fs_info->tree_root)
6834 return 1;
6835 else
6836 return generic_drop_inode(inode);
6837 }
6838
6839 static void init_once(void *foo)
6840 {
6841 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6842
6843 inode_init_once(&ei->vfs_inode);
6844 }
6845
6846 void btrfs_destroy_cachep(void)
6847 {
6848 if (btrfs_inode_cachep)
6849 kmem_cache_destroy(btrfs_inode_cachep);
6850 if (btrfs_trans_handle_cachep)
6851 kmem_cache_destroy(btrfs_trans_handle_cachep);
6852 if (btrfs_transaction_cachep)
6853 kmem_cache_destroy(btrfs_transaction_cachep);
6854 if (btrfs_path_cachep)
6855 kmem_cache_destroy(btrfs_path_cachep);
6856 if (btrfs_free_space_cachep)
6857 kmem_cache_destroy(btrfs_free_space_cachep);
6858 }
6859
6860 int btrfs_init_cachep(void)
6861 {
6862 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6863 sizeof(struct btrfs_inode), 0,
6864 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6865 if (!btrfs_inode_cachep)
6866 goto fail;
6867
6868 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6869 sizeof(struct btrfs_trans_handle), 0,
6870 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6871 if (!btrfs_trans_handle_cachep)
6872 goto fail;
6873
6874 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6875 sizeof(struct btrfs_transaction), 0,
6876 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6877 if (!btrfs_transaction_cachep)
6878 goto fail;
6879
6880 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6881 sizeof(struct btrfs_path), 0,
6882 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6883 if (!btrfs_path_cachep)
6884 goto fail;
6885
6886 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6887 sizeof(struct btrfs_free_space), 0,
6888 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6889 if (!btrfs_free_space_cachep)
6890 goto fail;
6891
6892 return 0;
6893 fail:
6894 btrfs_destroy_cachep();
6895 return -ENOMEM;
6896 }
6897
6898 static int btrfs_getattr(struct vfsmount *mnt,
6899 struct dentry *dentry, struct kstat *stat)
6900 {
6901 struct inode *inode = dentry->d_inode;
6902 generic_fillattr(inode, stat);
6903 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6904 stat->blksize = PAGE_CACHE_SIZE;
6905 stat->blocks = (inode_get_bytes(inode) +
6906 BTRFS_I(inode)->delalloc_bytes) >> 9;
6907 return 0;
6908 }
6909
6910 /*
6911 * If a file is moved, it will inherit the cow and compression flags of the new
6912 * directory.
6913 */
6914 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6915 {
6916 struct btrfs_inode *b_dir = BTRFS_I(dir);
6917 struct btrfs_inode *b_inode = BTRFS_I(inode);
6918
6919 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6920 b_inode->flags |= BTRFS_INODE_NODATACOW;
6921 else
6922 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6923
6924 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6925 b_inode->flags |= BTRFS_INODE_COMPRESS;
6926 else
6927 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6928 }
6929
6930 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6931 struct inode *new_dir, struct dentry *new_dentry)
6932 {
6933 struct btrfs_trans_handle *trans;
6934 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6935 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6936 struct inode *new_inode = new_dentry->d_inode;
6937 struct inode *old_inode = old_dentry->d_inode;
6938 struct timespec ctime = CURRENT_TIME;
6939 u64 index = 0;
6940 u64 root_objectid;
6941 int ret;
6942
6943 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6944 return -EPERM;
6945
6946 /* we only allow rename subvolume link between subvolumes */
6947 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6948 return -EXDEV;
6949
6950 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6951 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6952 return -ENOTEMPTY;
6953
6954 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6955 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6956 return -ENOTEMPTY;
6957 /*
6958 * we're using rename to replace one file with another.
6959 * and the replacement file is large. Start IO on it now so
6960 * we don't add too much work to the end of the transaction
6961 */
6962 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6963 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6964 filemap_flush(old_inode->i_mapping);
6965
6966 /* close the racy window with snapshot create/destroy ioctl */
6967 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6968 down_read(&root->fs_info->subvol_sem);
6969 /*
6970 * We want to reserve the absolute worst case amount of items. So if
6971 * both inodes are subvols and we need to unlink them then that would
6972 * require 4 item modifications, but if they are both normal inodes it
6973 * would require 5 item modifications, so we'll assume their normal
6974 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6975 * should cover the worst case number of items we'll modify.
6976 */
6977 trans = btrfs_start_transaction(root, 20);
6978 if (IS_ERR(trans)) {
6979 ret = PTR_ERR(trans);
6980 goto out_notrans;
6981 }
6982
6983 btrfs_set_trans_block_group(trans, new_dir);
6984
6985 if (dest != root)
6986 btrfs_record_root_in_trans(trans, dest);
6987
6988 ret = btrfs_set_inode_index(new_dir, &index);
6989 if (ret)
6990 goto out_fail;
6991
6992 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6993 /* force full log commit if subvolume involved. */
6994 root->fs_info->last_trans_log_full_commit = trans->transid;
6995 } else {
6996 ret = btrfs_insert_inode_ref(trans, dest,
6997 new_dentry->d_name.name,
6998 new_dentry->d_name.len,
6999 old_inode->i_ino,
7000 new_dir->i_ino, index);
7001 if (ret)
7002 goto out_fail;
7003 /*
7004 * this is an ugly little race, but the rename is required
7005 * to make sure that if we crash, the inode is either at the
7006 * old name or the new one. pinning the log transaction lets
7007 * us make sure we don't allow a log commit to come in after
7008 * we unlink the name but before we add the new name back in.
7009 */
7010 btrfs_pin_log_trans(root);
7011 }
7012 /*
7013 * make sure the inode gets flushed if it is replacing
7014 * something.
7015 */
7016 if (new_inode && new_inode->i_size &&
7017 old_inode && S_ISREG(old_inode->i_mode)) {
7018 btrfs_add_ordered_operation(trans, root, old_inode);
7019 }
7020
7021 old_dir->i_ctime = old_dir->i_mtime = ctime;
7022 new_dir->i_ctime = new_dir->i_mtime = ctime;
7023 old_inode->i_ctime = ctime;
7024
7025 if (old_dentry->d_parent != new_dentry->d_parent)
7026 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7027
7028 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7029 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7030 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7031 old_dentry->d_name.name,
7032 old_dentry->d_name.len);
7033 } else {
7034 ret = __btrfs_unlink_inode(trans, root, old_dir,
7035 old_dentry->d_inode,
7036 old_dentry->d_name.name,
7037 old_dentry->d_name.len);
7038 if (!ret)
7039 ret = btrfs_update_inode(trans, root, old_inode);
7040 }
7041 BUG_ON(ret);
7042
7043 if (new_inode) {
7044 new_inode->i_ctime = CURRENT_TIME;
7045 if (unlikely(new_inode->i_ino ==
7046 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7047 root_objectid = BTRFS_I(new_inode)->location.objectid;
7048 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7049 root_objectid,
7050 new_dentry->d_name.name,
7051 new_dentry->d_name.len);
7052 BUG_ON(new_inode->i_nlink == 0);
7053 } else {
7054 ret = btrfs_unlink_inode(trans, dest, new_dir,
7055 new_dentry->d_inode,
7056 new_dentry->d_name.name,
7057 new_dentry->d_name.len);
7058 }
7059 BUG_ON(ret);
7060 if (new_inode->i_nlink == 0) {
7061 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7062 BUG_ON(ret);
7063 }
7064 }
7065
7066 fixup_inode_flags(new_dir, old_inode);
7067
7068 ret = btrfs_add_link(trans, new_dir, old_inode,
7069 new_dentry->d_name.name,
7070 new_dentry->d_name.len, 0, index);
7071 BUG_ON(ret);
7072
7073 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7074 struct dentry *parent = dget_parent(new_dentry);
7075 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7076 dput(parent);
7077 btrfs_end_log_trans(root);
7078 }
7079 out_fail:
7080 btrfs_end_transaction_throttle(trans, root);
7081 out_notrans:
7082 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7083 up_read(&root->fs_info->subvol_sem);
7084
7085 return ret;
7086 }
7087
7088 /*
7089 * some fairly slow code that needs optimization. This walks the list
7090 * of all the inodes with pending delalloc and forces them to disk.
7091 */
7092 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7093 {
7094 struct list_head *head = &root->fs_info->delalloc_inodes;
7095 struct btrfs_inode *binode;
7096 struct inode *inode;
7097
7098 if (root->fs_info->sb->s_flags & MS_RDONLY)
7099 return -EROFS;
7100
7101 spin_lock(&root->fs_info->delalloc_lock);
7102 while (!list_empty(head)) {
7103 binode = list_entry(head->next, struct btrfs_inode,
7104 delalloc_inodes);
7105 inode = igrab(&binode->vfs_inode);
7106 if (!inode)
7107 list_del_init(&binode->delalloc_inodes);
7108 spin_unlock(&root->fs_info->delalloc_lock);
7109 if (inode) {
7110 filemap_flush(inode->i_mapping);
7111 if (delay_iput)
7112 btrfs_add_delayed_iput(inode);
7113 else
7114 iput(inode);
7115 }
7116 cond_resched();
7117 spin_lock(&root->fs_info->delalloc_lock);
7118 }
7119 spin_unlock(&root->fs_info->delalloc_lock);
7120
7121 /* the filemap_flush will queue IO into the worker threads, but
7122 * we have to make sure the IO is actually started and that
7123 * ordered extents get created before we return
7124 */
7125 atomic_inc(&root->fs_info->async_submit_draining);
7126 while (atomic_read(&root->fs_info->nr_async_submits) ||
7127 atomic_read(&root->fs_info->async_delalloc_pages)) {
7128 wait_event(root->fs_info->async_submit_wait,
7129 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7130 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7131 }
7132 atomic_dec(&root->fs_info->async_submit_draining);
7133 return 0;
7134 }
7135
7136 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7137 int sync)
7138 {
7139 struct btrfs_inode *binode;
7140 struct inode *inode = NULL;
7141
7142 spin_lock(&root->fs_info->delalloc_lock);
7143 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7144 binode = list_entry(root->fs_info->delalloc_inodes.next,
7145 struct btrfs_inode, delalloc_inodes);
7146 inode = igrab(&binode->vfs_inode);
7147 if (inode) {
7148 list_move_tail(&binode->delalloc_inodes,
7149 &root->fs_info->delalloc_inodes);
7150 break;
7151 }
7152
7153 list_del_init(&binode->delalloc_inodes);
7154 cond_resched_lock(&root->fs_info->delalloc_lock);
7155 }
7156 spin_unlock(&root->fs_info->delalloc_lock);
7157
7158 if (inode) {
7159 if (sync) {
7160 filemap_write_and_wait(inode->i_mapping);
7161 /*
7162 * We have to do this because compression doesn't
7163 * actually set PG_writeback until it submits the pages
7164 * for IO, which happens in an async thread, so we could
7165 * race and not actually wait for any writeback pages
7166 * because they've not been submitted yet. Technically
7167 * this could still be the case for the ordered stuff
7168 * since the async thread may not have started to do its
7169 * work yet. If this becomes the case then we need to
7170 * figure out a way to make sure that in writepage we
7171 * wait for any async pages to be submitted before
7172 * returning so that fdatawait does what its supposed to
7173 * do.
7174 */
7175 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7176 } else {
7177 filemap_flush(inode->i_mapping);
7178 }
7179 if (delay_iput)
7180 btrfs_add_delayed_iput(inode);
7181 else
7182 iput(inode);
7183 return 1;
7184 }
7185 return 0;
7186 }
7187
7188 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7189 const char *symname)
7190 {
7191 struct btrfs_trans_handle *trans;
7192 struct btrfs_root *root = BTRFS_I(dir)->root;
7193 struct btrfs_path *path;
7194 struct btrfs_key key;
7195 struct inode *inode = NULL;
7196 int err;
7197 int drop_inode = 0;
7198 u64 objectid;
7199 u64 index = 0 ;
7200 int name_len;
7201 int datasize;
7202 unsigned long ptr;
7203 struct btrfs_file_extent_item *ei;
7204 struct extent_buffer *leaf;
7205 unsigned long nr = 0;
7206
7207 name_len = strlen(symname) + 1;
7208 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7209 return -ENAMETOOLONG;
7210
7211 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7212 if (err)
7213 return err;
7214 /*
7215 * 2 items for inode item and ref
7216 * 2 items for dir items
7217 * 1 item for xattr if selinux is on
7218 */
7219 trans = btrfs_start_transaction(root, 5);
7220 if (IS_ERR(trans))
7221 return PTR_ERR(trans);
7222
7223 btrfs_set_trans_block_group(trans, dir);
7224
7225 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7226 dentry->d_name.len, dir->i_ino, objectid,
7227 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7228 &index);
7229 err = PTR_ERR(inode);
7230 if (IS_ERR(inode))
7231 goto out_unlock;
7232
7233 err = btrfs_init_inode_security(trans, inode, dir);
7234 if (err) {
7235 drop_inode = 1;
7236 goto out_unlock;
7237 }
7238
7239 btrfs_set_trans_block_group(trans, inode);
7240 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7241 if (err)
7242 drop_inode = 1;
7243 else {
7244 inode->i_mapping->a_ops = &btrfs_aops;
7245 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7246 inode->i_fop = &btrfs_file_operations;
7247 inode->i_op = &btrfs_file_inode_operations;
7248 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7249 }
7250 btrfs_update_inode_block_group(trans, inode);
7251 btrfs_update_inode_block_group(trans, dir);
7252 if (drop_inode)
7253 goto out_unlock;
7254
7255 path = btrfs_alloc_path();
7256 BUG_ON(!path);
7257 key.objectid = inode->i_ino;
7258 key.offset = 0;
7259 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7260 datasize = btrfs_file_extent_calc_inline_size(name_len);
7261 err = btrfs_insert_empty_item(trans, root, path, &key,
7262 datasize);
7263 if (err) {
7264 drop_inode = 1;
7265 goto out_unlock;
7266 }
7267 leaf = path->nodes[0];
7268 ei = btrfs_item_ptr(leaf, path->slots[0],
7269 struct btrfs_file_extent_item);
7270 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7271 btrfs_set_file_extent_type(leaf, ei,
7272 BTRFS_FILE_EXTENT_INLINE);
7273 btrfs_set_file_extent_encryption(leaf, ei, 0);
7274 btrfs_set_file_extent_compression(leaf, ei, 0);
7275 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7276 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7277
7278 ptr = btrfs_file_extent_inline_start(ei);
7279 write_extent_buffer(leaf, symname, ptr, name_len);
7280 btrfs_mark_buffer_dirty(leaf);
7281 btrfs_free_path(path);
7282
7283 inode->i_op = &btrfs_symlink_inode_operations;
7284 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7285 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7286 inode_set_bytes(inode, name_len);
7287 btrfs_i_size_write(inode, name_len - 1);
7288 err = btrfs_update_inode(trans, root, inode);
7289 if (err)
7290 drop_inode = 1;
7291
7292 out_unlock:
7293 nr = trans->blocks_used;
7294 btrfs_end_transaction_throttle(trans, root);
7295 if (drop_inode) {
7296 inode_dec_link_count(inode);
7297 iput(inode);
7298 }
7299 btrfs_btree_balance_dirty(root, nr);
7300 return err;
7301 }
7302
7303 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7304 u64 start, u64 num_bytes, u64 min_size,
7305 loff_t actual_len, u64 *alloc_hint,
7306 struct btrfs_trans_handle *trans)
7307 {
7308 struct btrfs_root *root = BTRFS_I(inode)->root;
7309 struct btrfs_key ins;
7310 u64 cur_offset = start;
7311 u64 i_size;
7312 int ret = 0;
7313 bool own_trans = true;
7314
7315 if (trans)
7316 own_trans = false;
7317 while (num_bytes > 0) {
7318 if (own_trans) {
7319 trans = btrfs_start_transaction(root, 3);
7320 if (IS_ERR(trans)) {
7321 ret = PTR_ERR(trans);
7322 break;
7323 }
7324 }
7325
7326 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7327 0, *alloc_hint, (u64)-1, &ins, 1);
7328 if (ret) {
7329 if (own_trans)
7330 btrfs_end_transaction(trans, root);
7331 break;
7332 }
7333
7334 ret = insert_reserved_file_extent(trans, inode,
7335 cur_offset, ins.objectid,
7336 ins.offset, ins.offset,
7337 ins.offset, 0, 0, 0,
7338 BTRFS_FILE_EXTENT_PREALLOC);
7339 BUG_ON(ret);
7340 btrfs_drop_extent_cache(inode, cur_offset,
7341 cur_offset + ins.offset -1, 0);
7342
7343 num_bytes -= ins.offset;
7344 cur_offset += ins.offset;
7345 *alloc_hint = ins.objectid + ins.offset;
7346
7347 inode->i_ctime = CURRENT_TIME;
7348 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7349 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7350 (actual_len > inode->i_size) &&
7351 (cur_offset > inode->i_size)) {
7352 if (cur_offset > actual_len)
7353 i_size = actual_len;
7354 else
7355 i_size = cur_offset;
7356 i_size_write(inode, i_size);
7357 btrfs_ordered_update_i_size(inode, i_size, NULL);
7358 }
7359
7360 ret = btrfs_update_inode(trans, root, inode);
7361 BUG_ON(ret);
7362
7363 if (own_trans)
7364 btrfs_end_transaction(trans, root);
7365 }
7366 return ret;
7367 }
7368
7369 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7370 u64 start, u64 num_bytes, u64 min_size,
7371 loff_t actual_len, u64 *alloc_hint)
7372 {
7373 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7374 min_size, actual_len, alloc_hint,
7375 NULL);
7376 }
7377
7378 int btrfs_prealloc_file_range_trans(struct inode *inode,
7379 struct btrfs_trans_handle *trans, int mode,
7380 u64 start, u64 num_bytes, u64 min_size,
7381 loff_t actual_len, u64 *alloc_hint)
7382 {
7383 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7384 min_size, actual_len, alloc_hint, trans);
7385 }
7386
7387 static int btrfs_set_page_dirty(struct page *page)
7388 {
7389 return __set_page_dirty_nobuffers(page);
7390 }
7391
7392 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7393 {
7394 struct btrfs_root *root = BTRFS_I(inode)->root;
7395
7396 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7397 return -EROFS;
7398 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7399 return -EACCES;
7400 return generic_permission(inode, mask, flags, btrfs_check_acl);
7401 }
7402
7403 static const struct inode_operations btrfs_dir_inode_operations = {
7404 .getattr = btrfs_getattr,
7405 .lookup = btrfs_lookup,
7406 .create = btrfs_create,
7407 .unlink = btrfs_unlink,
7408 .link = btrfs_link,
7409 .mkdir = btrfs_mkdir,
7410 .rmdir = btrfs_rmdir,
7411 .rename = btrfs_rename,
7412 .symlink = btrfs_symlink,
7413 .setattr = btrfs_setattr,
7414 .mknod = btrfs_mknod,
7415 .setxattr = btrfs_setxattr,
7416 .getxattr = btrfs_getxattr,
7417 .listxattr = btrfs_listxattr,
7418 .removexattr = btrfs_removexattr,
7419 .permission = btrfs_permission,
7420 };
7421 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7422 .lookup = btrfs_lookup,
7423 .permission = btrfs_permission,
7424 };
7425
7426 static const struct file_operations btrfs_dir_file_operations = {
7427 .llseek = generic_file_llseek,
7428 .read = generic_read_dir,
7429 .readdir = btrfs_real_readdir,
7430 .unlocked_ioctl = btrfs_ioctl,
7431 #ifdef CONFIG_COMPAT
7432 .compat_ioctl = btrfs_ioctl,
7433 #endif
7434 .release = btrfs_release_file,
7435 .fsync = btrfs_sync_file,
7436 };
7437
7438 static struct extent_io_ops btrfs_extent_io_ops = {
7439 .fill_delalloc = run_delalloc_range,
7440 .submit_bio_hook = btrfs_submit_bio_hook,
7441 .merge_bio_hook = btrfs_merge_bio_hook,
7442 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7443 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7444 .writepage_start_hook = btrfs_writepage_start_hook,
7445 .readpage_io_failed_hook = btrfs_io_failed_hook,
7446 .set_bit_hook = btrfs_set_bit_hook,
7447 .clear_bit_hook = btrfs_clear_bit_hook,
7448 .merge_extent_hook = btrfs_merge_extent_hook,
7449 .split_extent_hook = btrfs_split_extent_hook,
7450 };
7451
7452 /*
7453 * btrfs doesn't support the bmap operation because swapfiles
7454 * use bmap to make a mapping of extents in the file. They assume
7455 * these extents won't change over the life of the file and they
7456 * use the bmap result to do IO directly to the drive.
7457 *
7458 * the btrfs bmap call would return logical addresses that aren't
7459 * suitable for IO and they also will change frequently as COW
7460 * operations happen. So, swapfile + btrfs == corruption.
7461 *
7462 * For now we're avoiding this by dropping bmap.
7463 */
7464 static const struct address_space_operations btrfs_aops = {
7465 .readpage = btrfs_readpage,
7466 .writepage = btrfs_writepage,
7467 .writepages = btrfs_writepages,
7468 .readpages = btrfs_readpages,
7469 .sync_page = block_sync_page,
7470 .direct_IO = btrfs_direct_IO,
7471 .invalidatepage = btrfs_invalidatepage,
7472 .releasepage = btrfs_releasepage,
7473 .set_page_dirty = btrfs_set_page_dirty,
7474 .error_remove_page = generic_error_remove_page,
7475 };
7476
7477 static const struct address_space_operations btrfs_symlink_aops = {
7478 .readpage = btrfs_readpage,
7479 .writepage = btrfs_writepage,
7480 .invalidatepage = btrfs_invalidatepage,
7481 .releasepage = btrfs_releasepage,
7482 };
7483
7484 static const struct inode_operations btrfs_file_inode_operations = {
7485 .getattr = btrfs_getattr,
7486 .setattr = btrfs_setattr,
7487 .setxattr = btrfs_setxattr,
7488 .getxattr = btrfs_getxattr,
7489 .listxattr = btrfs_listxattr,
7490 .removexattr = btrfs_removexattr,
7491 .permission = btrfs_permission,
7492 .fiemap = btrfs_fiemap,
7493 };
7494 static const struct inode_operations btrfs_special_inode_operations = {
7495 .getattr = btrfs_getattr,
7496 .setattr = btrfs_setattr,
7497 .permission = btrfs_permission,
7498 .setxattr = btrfs_setxattr,
7499 .getxattr = btrfs_getxattr,
7500 .listxattr = btrfs_listxattr,
7501 .removexattr = btrfs_removexattr,
7502 };
7503 static const struct inode_operations btrfs_symlink_inode_operations = {
7504 .readlink = generic_readlink,
7505 .follow_link = page_follow_link_light,
7506 .put_link = page_put_link,
7507 .getattr = btrfs_getattr,
7508 .permission = btrfs_permission,
7509 .setxattr = btrfs_setxattr,
7510 .getxattr = btrfs_getxattr,
7511 .listxattr = btrfs_listxattr,
7512 .removexattr = btrfs_removexattr,
7513 };
7514
7515 const struct dentry_operations btrfs_dentry_operations = {
7516 .d_delete = btrfs_dentry_delete,
7517 };
This page took 0.190281 seconds and 5 git commands to generate.