Get rid of BTRFS_I(inode)->index and use local vars instead
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48
49 struct btrfs_iget_args {
50 u64 ino;
51 struct btrfs_root *root;
52 };
53
54 static struct inode_operations btrfs_dir_inode_operations;
55 static struct inode_operations btrfs_symlink_inode_operations;
56 static struct inode_operations btrfs_dir_ro_inode_operations;
57 static struct inode_operations btrfs_special_inode_operations;
58 static struct inode_operations btrfs_file_inode_operations;
59 static struct address_space_operations btrfs_aops;
60 static struct address_space_operations btrfs_symlink_aops;
61 static struct file_operations btrfs_dir_file_operations;
62 static struct extent_io_ops btrfs_extent_io_ops;
63
64 static struct kmem_cache *btrfs_inode_cachep;
65 struct kmem_cache *btrfs_trans_handle_cachep;
66 struct kmem_cache *btrfs_transaction_cachep;
67 struct kmem_cache *btrfs_bit_radix_cachep;
68 struct kmem_cache *btrfs_path_cachep;
69
70 #define S_SHIFT 12
71 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
72 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
73 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
74 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
75 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
76 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
77 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
78 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
79 };
80
81 static void btrfs_truncate(struct inode *inode);
82
83 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
84 int for_del)
85 {
86 u64 total;
87 u64 used;
88 u64 thresh;
89 unsigned long flags;
90 int ret = 0;
91
92 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
93 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
94 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
95 if (for_del)
96 thresh = total * 90;
97 else
98 thresh = total * 85;
99
100 do_div(thresh, 100);
101
102 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
103 ret = -ENOSPC;
104 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
105 return ret;
106 }
107
108 static int cow_file_range(struct inode *inode, u64 start, u64 end)
109 {
110 struct btrfs_root *root = BTRFS_I(inode)->root;
111 struct btrfs_trans_handle *trans;
112 u64 alloc_hint = 0;
113 u64 num_bytes;
114 u64 cur_alloc_size;
115 u64 blocksize = root->sectorsize;
116 u64 orig_num_bytes;
117 struct btrfs_key ins;
118 struct extent_map *em;
119 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
120 int ret = 0;
121
122 trans = btrfs_join_transaction(root, 1);
123 BUG_ON(!trans);
124 btrfs_set_trans_block_group(trans, inode);
125
126 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
127 num_bytes = max(blocksize, num_bytes);
128 orig_num_bytes = num_bytes;
129
130 if (alloc_hint == EXTENT_MAP_INLINE)
131 goto out;
132
133 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
134 mutex_lock(&BTRFS_I(inode)->extent_mutex);
135 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
136 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
137
138 while(num_bytes > 0) {
139 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
140 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
141 root->sectorsize, 0, 0,
142 (u64)-1, &ins, 1);
143 if (ret) {
144 WARN_ON(1);
145 goto out;
146 }
147 em = alloc_extent_map(GFP_NOFS);
148 em->start = start;
149 em->len = ins.offset;
150 em->block_start = ins.objectid;
151 em->bdev = root->fs_info->fs_devices->latest_bdev;
152 mutex_lock(&BTRFS_I(inode)->extent_mutex);
153 set_bit(EXTENT_FLAG_PINNED, &em->flags);
154 while(1) {
155 spin_lock(&em_tree->lock);
156 ret = add_extent_mapping(em_tree, em);
157 spin_unlock(&em_tree->lock);
158 if (ret != -EEXIST) {
159 free_extent_map(em);
160 break;
161 }
162 btrfs_drop_extent_cache(inode, start,
163 start + ins.offset - 1);
164 }
165 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
166
167 cur_alloc_size = ins.offset;
168 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
169 ins.offset);
170 BUG_ON(ret);
171 if (num_bytes < cur_alloc_size) {
172 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
173 cur_alloc_size);
174 break;
175 }
176 num_bytes -= cur_alloc_size;
177 alloc_hint = ins.objectid + ins.offset;
178 start += cur_alloc_size;
179 }
180 out:
181 btrfs_end_transaction(trans, root);
182 return ret;
183 }
184
185 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
186 {
187 u64 extent_start;
188 u64 extent_end;
189 u64 bytenr;
190 u64 cow_end;
191 u64 loops = 0;
192 u64 total_fs_bytes;
193 struct btrfs_root *root = BTRFS_I(inode)->root;
194 struct btrfs_block_group_cache *block_group;
195 struct extent_buffer *leaf;
196 int found_type;
197 struct btrfs_path *path;
198 struct btrfs_file_extent_item *item;
199 int ret;
200 int err;
201 struct btrfs_key found_key;
202
203 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
204 path = btrfs_alloc_path();
205 BUG_ON(!path);
206 again:
207 ret = btrfs_lookup_file_extent(NULL, root, path,
208 inode->i_ino, start, 0);
209 if (ret < 0) {
210 btrfs_free_path(path);
211 return ret;
212 }
213
214 cow_end = end;
215 if (ret != 0) {
216 if (path->slots[0] == 0)
217 goto not_found;
218 path->slots[0]--;
219 }
220
221 leaf = path->nodes[0];
222 item = btrfs_item_ptr(leaf, path->slots[0],
223 struct btrfs_file_extent_item);
224
225 /* are we inside the extent that was found? */
226 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
227 found_type = btrfs_key_type(&found_key);
228 if (found_key.objectid != inode->i_ino ||
229 found_type != BTRFS_EXTENT_DATA_KEY)
230 goto not_found;
231
232 found_type = btrfs_file_extent_type(leaf, item);
233 extent_start = found_key.offset;
234 if (found_type == BTRFS_FILE_EXTENT_REG) {
235 u64 extent_num_bytes;
236
237 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
238 extent_end = extent_start + extent_num_bytes;
239 err = 0;
240
241 if (loops && start != extent_start)
242 goto not_found;
243
244 if (start < extent_start || start >= extent_end)
245 goto not_found;
246
247 cow_end = min(end, extent_end - 1);
248 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
249 if (bytenr == 0)
250 goto not_found;
251
252 if (btrfs_cross_ref_exists(root, &found_key, bytenr))
253 goto not_found;
254 /*
255 * we may be called by the resizer, make sure we're inside
256 * the limits of the FS
257 */
258 block_group = btrfs_lookup_block_group(root->fs_info,
259 bytenr);
260 if (!block_group || block_group->ro)
261 goto not_found;
262
263 start = extent_end;
264 } else {
265 goto not_found;
266 }
267 loop:
268 if (start > end) {
269 btrfs_free_path(path);
270 return 0;
271 }
272 btrfs_release_path(root, path);
273 loops++;
274 goto again;
275
276 not_found:
277 btrfs_release_path(root, path);
278 cow_file_range(inode, start, end);
279 start = end + 1;
280 goto loop;
281 }
282
283 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
284 {
285 struct btrfs_root *root = BTRFS_I(inode)->root;
286 int ret;
287
288 if (btrfs_test_opt(root, NODATACOW) ||
289 btrfs_test_flag(inode, NODATACOW))
290 ret = run_delalloc_nocow(inode, start, end);
291 else
292 ret = cow_file_range(inode, start, end);
293
294 return ret;
295 }
296
297 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
298 unsigned long old, unsigned long bits)
299 {
300 unsigned long flags;
301 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
302 struct btrfs_root *root = BTRFS_I(inode)->root;
303 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
304 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
305 root->fs_info->delalloc_bytes += end - start + 1;
306 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
307 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
308 &root->fs_info->delalloc_inodes);
309 }
310 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
311 }
312 return 0;
313 }
314
315 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
316 unsigned long old, unsigned long bits)
317 {
318 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
319 struct btrfs_root *root = BTRFS_I(inode)->root;
320 unsigned long flags;
321
322 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
323 if (end - start + 1 > root->fs_info->delalloc_bytes) {
324 printk("warning: delalloc account %Lu %Lu\n",
325 end - start + 1, root->fs_info->delalloc_bytes);
326 root->fs_info->delalloc_bytes = 0;
327 BTRFS_I(inode)->delalloc_bytes = 0;
328 } else {
329 root->fs_info->delalloc_bytes -= end - start + 1;
330 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
331 }
332 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
333 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
334 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
335 }
336 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
337 }
338 return 0;
339 }
340
341 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
342 size_t size, struct bio *bio)
343 {
344 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
345 struct btrfs_mapping_tree *map_tree;
346 u64 logical = bio->bi_sector << 9;
347 u64 length = 0;
348 u64 map_length;
349 int ret;
350
351 length = bio->bi_size;
352 map_tree = &root->fs_info->mapping_tree;
353 map_length = length;
354 ret = btrfs_map_block(map_tree, READ, logical,
355 &map_length, NULL, 0);
356
357 if (map_length < length + size) {
358 return 1;
359 }
360 return 0;
361 }
362
363 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
364 int mirror_num)
365 {
366 struct btrfs_root *root = BTRFS_I(inode)->root;
367 int ret = 0;
368
369 ret = btrfs_csum_one_bio(root, inode, bio);
370 BUG_ON(ret);
371
372 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
373 }
374
375 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
376 int mirror_num)
377 {
378 struct btrfs_root *root = BTRFS_I(inode)->root;
379 int ret = 0;
380
381 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
382 BUG_ON(ret);
383
384 if (!(rw & (1 << BIO_RW))) {
385 goto mapit;
386 }
387
388 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
389 inode, rw, bio, mirror_num,
390 __btrfs_submit_bio_hook);
391 mapit:
392 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
393 }
394
395 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
396 struct inode *inode, u64 file_offset,
397 struct list_head *list)
398 {
399 struct list_head *cur;
400 struct btrfs_ordered_sum *sum;
401
402 btrfs_set_trans_block_group(trans, inode);
403 list_for_each(cur, list) {
404 sum = list_entry(cur, struct btrfs_ordered_sum, list);
405 mutex_lock(&BTRFS_I(inode)->csum_mutex);
406 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
407 inode, sum);
408 mutex_unlock(&BTRFS_I(inode)->csum_mutex);
409 }
410 return 0;
411 }
412
413 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
414 {
415 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
416 GFP_NOFS);
417 }
418
419 struct btrfs_writepage_fixup {
420 struct page *page;
421 struct btrfs_work work;
422 };
423
424 /* see btrfs_writepage_start_hook for details on why this is required */
425 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
426 {
427 struct btrfs_writepage_fixup *fixup;
428 struct btrfs_ordered_extent *ordered;
429 struct page *page;
430 struct inode *inode;
431 u64 page_start;
432 u64 page_end;
433
434 fixup = container_of(work, struct btrfs_writepage_fixup, work);
435 page = fixup->page;
436 again:
437 lock_page(page);
438 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
439 ClearPageChecked(page);
440 goto out_page;
441 }
442
443 inode = page->mapping->host;
444 page_start = page_offset(page);
445 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
446
447 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
448
449 /* already ordered? We're done */
450 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
451 EXTENT_ORDERED, 0)) {
452 goto out;
453 }
454
455 ordered = btrfs_lookup_ordered_extent(inode, page_start);
456 if (ordered) {
457 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
458 page_end, GFP_NOFS);
459 unlock_page(page);
460 btrfs_start_ordered_extent(inode, ordered, 1);
461 goto again;
462 }
463
464 btrfs_set_extent_delalloc(inode, page_start, page_end);
465 ClearPageChecked(page);
466 out:
467 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
468 out_page:
469 unlock_page(page);
470 page_cache_release(page);
471 }
472
473 /*
474 * There are a few paths in the higher layers of the kernel that directly
475 * set the page dirty bit without asking the filesystem if it is a
476 * good idea. This causes problems because we want to make sure COW
477 * properly happens and the data=ordered rules are followed.
478 *
479 * In our case any range that doesn't have the EXTENT_ORDERED bit set
480 * hasn't been properly setup for IO. We kick off an async process
481 * to fix it up. The async helper will wait for ordered extents, set
482 * the delalloc bit and make it safe to write the page.
483 */
484 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
485 {
486 struct inode *inode = page->mapping->host;
487 struct btrfs_writepage_fixup *fixup;
488 struct btrfs_root *root = BTRFS_I(inode)->root;
489 int ret;
490
491 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
492 EXTENT_ORDERED, 0);
493 if (ret)
494 return 0;
495
496 if (PageChecked(page))
497 return -EAGAIN;
498
499 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
500 if (!fixup)
501 return -EAGAIN;
502
503 SetPageChecked(page);
504 page_cache_get(page);
505 fixup->work.func = btrfs_writepage_fixup_worker;
506 fixup->page = page;
507 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
508 return -EAGAIN;
509 }
510
511 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
512 {
513 struct btrfs_root *root = BTRFS_I(inode)->root;
514 struct btrfs_trans_handle *trans;
515 struct btrfs_ordered_extent *ordered_extent;
516 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
517 u64 alloc_hint = 0;
518 struct list_head list;
519 struct btrfs_key ins;
520 int ret;
521
522 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
523 if (!ret)
524 return 0;
525
526 trans = btrfs_join_transaction(root, 1);
527
528 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
529 BUG_ON(!ordered_extent);
530
531 lock_extent(io_tree, ordered_extent->file_offset,
532 ordered_extent->file_offset + ordered_extent->len - 1,
533 GFP_NOFS);
534
535 INIT_LIST_HEAD(&list);
536
537 ins.objectid = ordered_extent->start;
538 ins.offset = ordered_extent->len;
539 ins.type = BTRFS_EXTENT_ITEM_KEY;
540
541 ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
542 trans->transid, inode->i_ino,
543 ordered_extent->file_offset, &ins);
544 BUG_ON(ret);
545
546 mutex_lock(&BTRFS_I(inode)->extent_mutex);
547
548 ret = btrfs_drop_extents(trans, root, inode,
549 ordered_extent->file_offset,
550 ordered_extent->file_offset +
551 ordered_extent->len,
552 ordered_extent->file_offset, &alloc_hint);
553 BUG_ON(ret);
554 ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
555 ordered_extent->file_offset,
556 ordered_extent->start,
557 ordered_extent->len,
558 ordered_extent->len, 0);
559 BUG_ON(ret);
560
561 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
562 ordered_extent->file_offset +
563 ordered_extent->len - 1);
564 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
565
566 inode->i_blocks += ordered_extent->len >> 9;
567 unlock_extent(io_tree, ordered_extent->file_offset,
568 ordered_extent->file_offset + ordered_extent->len - 1,
569 GFP_NOFS);
570 add_pending_csums(trans, inode, ordered_extent->file_offset,
571 &ordered_extent->list);
572
573 btrfs_ordered_update_i_size(inode, ordered_extent);
574 btrfs_remove_ordered_extent(inode, ordered_extent);
575
576 /* once for us */
577 btrfs_put_ordered_extent(ordered_extent);
578 /* once for the tree */
579 btrfs_put_ordered_extent(ordered_extent);
580
581 btrfs_update_inode(trans, root, inode);
582 btrfs_end_transaction(trans, root);
583 return 0;
584 }
585
586 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
587 struct extent_state *state, int uptodate)
588 {
589 return btrfs_finish_ordered_io(page->mapping->host, start, end);
590 }
591
592 int btrfs_readpage_io_hook(struct page *page, u64 start, u64 end)
593 {
594 int ret = 0;
595 struct inode *inode = page->mapping->host;
596 struct btrfs_root *root = BTRFS_I(inode)->root;
597 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
598 struct btrfs_csum_item *item;
599 struct btrfs_path *path = NULL;
600 u32 csum;
601
602 if (btrfs_test_opt(root, NODATASUM) ||
603 btrfs_test_flag(inode, NODATASUM))
604 return 0;
605
606 /*
607 * It is possible there is an ordered extent that has
608 * not yet finished for this range in the file. If so,
609 * that extent will have a csum cached, and it will insert
610 * the sum after all the blocks in the extent are fully
611 * on disk. So, look for an ordered extent and use the
612 * sum if found. We have to do this before looking in the
613 * btree because csum items are pre-inserted based on
614 * the file size. btrfs_lookup_csum might find an item
615 * that still hasn't been fully filled.
616 */
617 ret = btrfs_find_ordered_sum(inode, start, &csum);
618 if (ret == 0)
619 goto found;
620
621 ret = 0;
622 path = btrfs_alloc_path();
623 item = btrfs_lookup_csum(NULL, root, path, inode->i_ino, start, 0);
624 if (IS_ERR(item)) {
625 ret = PTR_ERR(item);
626 /* a csum that isn't present is a preallocated region. */
627 if (ret == -ENOENT || ret == -EFBIG)
628 ret = 0;
629 csum = 0;
630 printk("no csum found for inode %lu start %Lu\n", inode->i_ino,
631 start);
632 goto out;
633 }
634 read_extent_buffer(path->nodes[0], &csum, (unsigned long)item,
635 BTRFS_CRC32_SIZE);
636 found:
637 set_state_private(io_tree, start, csum);
638 out:
639 if (path)
640 btrfs_free_path(path);
641 return ret;
642 }
643
644 struct io_failure_record {
645 struct page *page;
646 u64 start;
647 u64 len;
648 u64 logical;
649 int last_mirror;
650 };
651
652 int btrfs_io_failed_hook(struct bio *failed_bio,
653 struct page *page, u64 start, u64 end,
654 struct extent_state *state)
655 {
656 struct io_failure_record *failrec = NULL;
657 u64 private;
658 struct extent_map *em;
659 struct inode *inode = page->mapping->host;
660 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
661 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
662 struct bio *bio;
663 int num_copies;
664 int ret;
665 int rw;
666 u64 logical;
667
668 ret = get_state_private(failure_tree, start, &private);
669 if (ret) {
670 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
671 if (!failrec)
672 return -ENOMEM;
673 failrec->start = start;
674 failrec->len = end - start + 1;
675 failrec->last_mirror = 0;
676
677 spin_lock(&em_tree->lock);
678 em = lookup_extent_mapping(em_tree, start, failrec->len);
679 if (em->start > start || em->start + em->len < start) {
680 free_extent_map(em);
681 em = NULL;
682 }
683 spin_unlock(&em_tree->lock);
684
685 if (!em || IS_ERR(em)) {
686 kfree(failrec);
687 return -EIO;
688 }
689 logical = start - em->start;
690 logical = em->block_start + logical;
691 failrec->logical = logical;
692 free_extent_map(em);
693 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
694 EXTENT_DIRTY, GFP_NOFS);
695 set_state_private(failure_tree, start,
696 (u64)(unsigned long)failrec);
697 } else {
698 failrec = (struct io_failure_record *)(unsigned long)private;
699 }
700 num_copies = btrfs_num_copies(
701 &BTRFS_I(inode)->root->fs_info->mapping_tree,
702 failrec->logical, failrec->len);
703 failrec->last_mirror++;
704 if (!state) {
705 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
706 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
707 failrec->start,
708 EXTENT_LOCKED);
709 if (state && state->start != failrec->start)
710 state = NULL;
711 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
712 }
713 if (!state || failrec->last_mirror > num_copies) {
714 set_state_private(failure_tree, failrec->start, 0);
715 clear_extent_bits(failure_tree, failrec->start,
716 failrec->start + failrec->len - 1,
717 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
718 kfree(failrec);
719 return -EIO;
720 }
721 bio = bio_alloc(GFP_NOFS, 1);
722 bio->bi_private = state;
723 bio->bi_end_io = failed_bio->bi_end_io;
724 bio->bi_sector = failrec->logical >> 9;
725 bio->bi_bdev = failed_bio->bi_bdev;
726 bio->bi_size = 0;
727 bio_add_page(bio, page, failrec->len, start - page_offset(page));
728 if (failed_bio->bi_rw & (1 << BIO_RW))
729 rw = WRITE;
730 else
731 rw = READ;
732
733 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
734 failrec->last_mirror);
735 return 0;
736 }
737
738 int btrfs_clean_io_failures(struct inode *inode, u64 start)
739 {
740 u64 private;
741 u64 private_failure;
742 struct io_failure_record *failure;
743 int ret;
744
745 private = 0;
746 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
747 (u64)-1, 1, EXTENT_DIRTY)) {
748 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
749 start, &private_failure);
750 if (ret == 0) {
751 failure = (struct io_failure_record *)(unsigned long)
752 private_failure;
753 set_state_private(&BTRFS_I(inode)->io_failure_tree,
754 failure->start, 0);
755 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
756 failure->start,
757 failure->start + failure->len - 1,
758 EXTENT_DIRTY | EXTENT_LOCKED,
759 GFP_NOFS);
760 kfree(failure);
761 }
762 }
763 return 0;
764 }
765
766 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
767 struct extent_state *state)
768 {
769 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
770 struct inode *inode = page->mapping->host;
771 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
772 char *kaddr;
773 u64 private = ~(u32)0;
774 int ret;
775 struct btrfs_root *root = BTRFS_I(inode)->root;
776 u32 csum = ~(u32)0;
777 unsigned long flags;
778
779 if (btrfs_test_opt(root, NODATASUM) ||
780 btrfs_test_flag(inode, NODATASUM))
781 return 0;
782 if (state && state->start == start) {
783 private = state->private;
784 ret = 0;
785 } else {
786 ret = get_state_private(io_tree, start, &private);
787 }
788 local_irq_save(flags);
789 kaddr = kmap_atomic(page, KM_IRQ0);
790 if (ret) {
791 goto zeroit;
792 }
793 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
794 btrfs_csum_final(csum, (char *)&csum);
795 if (csum != private) {
796 goto zeroit;
797 }
798 kunmap_atomic(kaddr, KM_IRQ0);
799 local_irq_restore(flags);
800
801 /* if the io failure tree for this inode is non-empty,
802 * check to see if we've recovered from a failed IO
803 */
804 btrfs_clean_io_failures(inode, start);
805 return 0;
806
807 zeroit:
808 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
809 page->mapping->host->i_ino, (unsigned long long)start, csum,
810 private);
811 memset(kaddr + offset, 1, end - start + 1);
812 flush_dcache_page(page);
813 kunmap_atomic(kaddr, KM_IRQ0);
814 local_irq_restore(flags);
815 if (private == 0)
816 return 0;
817 return -EIO;
818 }
819
820 /*
821 * This creates an orphan entry for the given inode in case something goes
822 * wrong in the middle of an unlink/truncate.
823 */
824 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
825 {
826 struct btrfs_root *root = BTRFS_I(inode)->root;
827 int ret = 0;
828
829 spin_lock(&root->list_lock);
830
831 /* already on the orphan list, we're good */
832 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
833 spin_unlock(&root->list_lock);
834 return 0;
835 }
836
837 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
838
839 spin_unlock(&root->list_lock);
840
841 /*
842 * insert an orphan item to track this unlinked/truncated file
843 */
844 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
845
846 return ret;
847 }
848
849 /*
850 * We have done the truncate/delete so we can go ahead and remove the orphan
851 * item for this particular inode.
852 */
853 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
854 {
855 struct btrfs_root *root = BTRFS_I(inode)->root;
856 int ret = 0;
857
858 spin_lock(&root->list_lock);
859
860 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
861 spin_unlock(&root->list_lock);
862 return 0;
863 }
864
865 list_del_init(&BTRFS_I(inode)->i_orphan);
866 if (!trans) {
867 spin_unlock(&root->list_lock);
868 return 0;
869 }
870
871 spin_unlock(&root->list_lock);
872
873 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
874
875 return ret;
876 }
877
878 /*
879 * this cleans up any orphans that may be left on the list from the last use
880 * of this root.
881 */
882 void btrfs_orphan_cleanup(struct btrfs_root *root)
883 {
884 struct btrfs_path *path;
885 struct extent_buffer *leaf;
886 struct btrfs_item *item;
887 struct btrfs_key key, found_key;
888 struct btrfs_trans_handle *trans;
889 struct inode *inode;
890 int ret = 0, nr_unlink = 0, nr_truncate = 0;
891
892 /* don't do orphan cleanup if the fs is readonly. */
893 if (root->inode->i_sb->s_flags & MS_RDONLY)
894 return;
895
896 path = btrfs_alloc_path();
897 if (!path)
898 return;
899 path->reada = -1;
900
901 key.objectid = BTRFS_ORPHAN_OBJECTID;
902 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
903 key.offset = (u64)-1;
904
905 trans = btrfs_start_transaction(root, 1);
906 btrfs_set_trans_block_group(trans, root->inode);
907
908 while (1) {
909 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
910 if (ret < 0) {
911 printk(KERN_ERR "Error searching slot for orphan: %d"
912 "\n", ret);
913 break;
914 }
915
916 /*
917 * if ret == 0 means we found what we were searching for, which
918 * is weird, but possible, so only screw with path if we didnt
919 * find the key and see if we have stuff that matches
920 */
921 if (ret > 0) {
922 if (path->slots[0] == 0)
923 break;
924 path->slots[0]--;
925 }
926
927 /* pull out the item */
928 leaf = path->nodes[0];
929 item = btrfs_item_nr(leaf, path->slots[0]);
930 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
931
932 /* make sure the item matches what we want */
933 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
934 break;
935 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
936 break;
937
938 /* release the path since we're done with it */
939 btrfs_release_path(root, path);
940
941 /*
942 * this is where we are basically btrfs_lookup, without the
943 * crossing root thing. we store the inode number in the
944 * offset of the orphan item.
945 */
946 inode = btrfs_iget_locked(root->inode->i_sb,
947 found_key.offset, root);
948 if (!inode)
949 break;
950
951 if (inode->i_state & I_NEW) {
952 BTRFS_I(inode)->root = root;
953
954 /* have to set the location manually */
955 BTRFS_I(inode)->location.objectid = inode->i_ino;
956 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
957 BTRFS_I(inode)->location.offset = 0;
958
959 btrfs_read_locked_inode(inode);
960 unlock_new_inode(inode);
961 }
962
963 /*
964 * add this inode to the orphan list so btrfs_orphan_del does
965 * the proper thing when we hit it
966 */
967 spin_lock(&root->list_lock);
968 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
969 spin_unlock(&root->list_lock);
970
971 /*
972 * if this is a bad inode, means we actually succeeded in
973 * removing the inode, but not the orphan record, which means
974 * we need to manually delete the orphan since iput will just
975 * do a destroy_inode
976 */
977 if (is_bad_inode(inode)) {
978 btrfs_orphan_del(trans, inode);
979 iput(inode);
980 continue;
981 }
982
983 /* if we have links, this was a truncate, lets do that */
984 if (inode->i_nlink) {
985 nr_truncate++;
986 btrfs_truncate(inode);
987 } else {
988 nr_unlink++;
989 }
990
991 /* this will do delete_inode and everything for us */
992 iput(inode);
993 }
994
995 if (nr_unlink)
996 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
997 if (nr_truncate)
998 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
999
1000 btrfs_free_path(path);
1001 btrfs_end_transaction(trans, root);
1002 }
1003
1004 void btrfs_read_locked_inode(struct inode *inode)
1005 {
1006 struct btrfs_path *path;
1007 struct extent_buffer *leaf;
1008 struct btrfs_inode_item *inode_item;
1009 struct btrfs_timespec *tspec;
1010 struct btrfs_root *root = BTRFS_I(inode)->root;
1011 struct btrfs_key location;
1012 u64 alloc_group_block;
1013 u32 rdev;
1014 int ret;
1015
1016 path = btrfs_alloc_path();
1017 BUG_ON(!path);
1018 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1019
1020 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1021 if (ret)
1022 goto make_bad;
1023
1024 leaf = path->nodes[0];
1025 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1026 struct btrfs_inode_item);
1027
1028 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1029 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1030 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1031 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1032 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1033
1034 tspec = btrfs_inode_atime(inode_item);
1035 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1036 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1037
1038 tspec = btrfs_inode_mtime(inode_item);
1039 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1040 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1041
1042 tspec = btrfs_inode_ctime(inode_item);
1043 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1044 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1045
1046 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1047 inode->i_generation = btrfs_inode_generation(leaf, inode_item);
1048 inode->i_rdev = 0;
1049 rdev = btrfs_inode_rdev(leaf, inode_item);
1050
1051 BTRFS_I(inode)->index_cnt = (u64)-1;
1052
1053 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1054 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1055 alloc_group_block);
1056 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1057 if (!BTRFS_I(inode)->block_group) {
1058 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1059 NULL, 0,
1060 BTRFS_BLOCK_GROUP_METADATA, 0);
1061 }
1062 btrfs_free_path(path);
1063 inode_item = NULL;
1064
1065 switch (inode->i_mode & S_IFMT) {
1066 case S_IFREG:
1067 inode->i_mapping->a_ops = &btrfs_aops;
1068 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1069 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1070 inode->i_fop = &btrfs_file_operations;
1071 inode->i_op = &btrfs_file_inode_operations;
1072 break;
1073 case S_IFDIR:
1074 inode->i_fop = &btrfs_dir_file_operations;
1075 if (root == root->fs_info->tree_root)
1076 inode->i_op = &btrfs_dir_ro_inode_operations;
1077 else
1078 inode->i_op = &btrfs_dir_inode_operations;
1079 break;
1080 case S_IFLNK:
1081 inode->i_op = &btrfs_symlink_inode_operations;
1082 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1083 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1084 break;
1085 default:
1086 init_special_inode(inode, inode->i_mode, rdev);
1087 break;
1088 }
1089 return;
1090
1091 make_bad:
1092 btrfs_free_path(path);
1093 make_bad_inode(inode);
1094 }
1095
1096 static void fill_inode_item(struct extent_buffer *leaf,
1097 struct btrfs_inode_item *item,
1098 struct inode *inode)
1099 {
1100 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1101 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1102 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1103 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1104 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1105
1106 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1107 inode->i_atime.tv_sec);
1108 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1109 inode->i_atime.tv_nsec);
1110
1111 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1112 inode->i_mtime.tv_sec);
1113 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1114 inode->i_mtime.tv_nsec);
1115
1116 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1117 inode->i_ctime.tv_sec);
1118 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1119 inode->i_ctime.tv_nsec);
1120
1121 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1122 btrfs_set_inode_generation(leaf, item, inode->i_generation);
1123 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1124 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1125 btrfs_set_inode_block_group(leaf, item,
1126 BTRFS_I(inode)->block_group->key.objectid);
1127 }
1128
1129 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1130 struct btrfs_root *root,
1131 struct inode *inode)
1132 {
1133 struct btrfs_inode_item *inode_item;
1134 struct btrfs_path *path;
1135 struct extent_buffer *leaf;
1136 int ret;
1137
1138 path = btrfs_alloc_path();
1139 BUG_ON(!path);
1140 ret = btrfs_lookup_inode(trans, root, path,
1141 &BTRFS_I(inode)->location, 1);
1142 if (ret) {
1143 if (ret > 0)
1144 ret = -ENOENT;
1145 goto failed;
1146 }
1147
1148 leaf = path->nodes[0];
1149 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1150 struct btrfs_inode_item);
1151
1152 fill_inode_item(leaf, inode_item, inode);
1153 btrfs_mark_buffer_dirty(leaf);
1154 btrfs_set_inode_last_trans(trans, inode);
1155 ret = 0;
1156 failed:
1157 btrfs_free_path(path);
1158 return ret;
1159 }
1160
1161
1162 static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
1163 struct btrfs_root *root,
1164 struct inode *dir,
1165 struct dentry *dentry)
1166 {
1167 struct btrfs_path *path;
1168 const char *name = dentry->d_name.name;
1169 int name_len = dentry->d_name.len;
1170 int ret = 0;
1171 struct extent_buffer *leaf;
1172 struct btrfs_dir_item *di;
1173 struct btrfs_key key;
1174 u64 index;
1175
1176 path = btrfs_alloc_path();
1177 if (!path) {
1178 ret = -ENOMEM;
1179 goto err;
1180 }
1181
1182 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1183 name, name_len, -1);
1184 if (IS_ERR(di)) {
1185 ret = PTR_ERR(di);
1186 goto err;
1187 }
1188 if (!di) {
1189 ret = -ENOENT;
1190 goto err;
1191 }
1192 leaf = path->nodes[0];
1193 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1194 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1195 if (ret)
1196 goto err;
1197 btrfs_release_path(root, path);
1198
1199 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1200 dentry->d_inode->i_ino,
1201 dentry->d_parent->d_inode->i_ino, &index);
1202 if (ret) {
1203 printk("failed to delete reference to %.*s, "
1204 "inode %lu parent %lu\n", name_len, name,
1205 dentry->d_inode->i_ino,
1206 dentry->d_parent->d_inode->i_ino);
1207 goto err;
1208 }
1209
1210 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1211 index, name, name_len, -1);
1212 if (IS_ERR(di)) {
1213 ret = PTR_ERR(di);
1214 goto err;
1215 }
1216 if (!di) {
1217 ret = -ENOENT;
1218 goto err;
1219 }
1220 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1221 btrfs_release_path(root, path);
1222
1223 dentry->d_inode->i_ctime = dir->i_ctime;
1224 err:
1225 btrfs_free_path(path);
1226 if (!ret) {
1227 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1228 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1229 btrfs_update_inode(trans, root, dir);
1230 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1231 dentry->d_inode->i_nlink--;
1232 #else
1233 drop_nlink(dentry->d_inode);
1234 #endif
1235 ret = btrfs_update_inode(trans, root, dentry->d_inode);
1236 dir->i_sb->s_dirt = 1;
1237 }
1238 return ret;
1239 }
1240
1241 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1242 {
1243 struct btrfs_root *root;
1244 struct btrfs_trans_handle *trans;
1245 struct inode *inode = dentry->d_inode;
1246 int ret;
1247 unsigned long nr = 0;
1248
1249 root = BTRFS_I(dir)->root;
1250
1251 ret = btrfs_check_free_space(root, 1, 1);
1252 if (ret)
1253 goto fail;
1254
1255 trans = btrfs_start_transaction(root, 1);
1256
1257 btrfs_set_trans_block_group(trans, dir);
1258 ret = btrfs_unlink_trans(trans, root, dir, dentry);
1259
1260 if (inode->i_nlink == 0)
1261 ret = btrfs_orphan_add(trans, inode);
1262
1263 nr = trans->blocks_used;
1264
1265 btrfs_end_transaction_throttle(trans, root);
1266 fail:
1267 btrfs_btree_balance_dirty(root, nr);
1268 return ret;
1269 }
1270
1271 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1272 {
1273 struct inode *inode = dentry->d_inode;
1274 int err = 0;
1275 int ret;
1276 struct btrfs_root *root = BTRFS_I(dir)->root;
1277 struct btrfs_trans_handle *trans;
1278 unsigned long nr = 0;
1279
1280 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1281 return -ENOTEMPTY;
1282 }
1283
1284 ret = btrfs_check_free_space(root, 1, 1);
1285 if (ret)
1286 goto fail;
1287
1288 trans = btrfs_start_transaction(root, 1);
1289 btrfs_set_trans_block_group(trans, dir);
1290
1291 err = btrfs_orphan_add(trans, inode);
1292 if (err)
1293 goto fail_trans;
1294
1295 /* now the directory is empty */
1296 err = btrfs_unlink_trans(trans, root, dir, dentry);
1297 if (!err) {
1298 btrfs_i_size_write(inode, 0);
1299 }
1300
1301 fail_trans:
1302 nr = trans->blocks_used;
1303 ret = btrfs_end_transaction_throttle(trans, root);
1304 fail:
1305 btrfs_btree_balance_dirty(root, nr);
1306
1307 if (ret && !err)
1308 err = ret;
1309 return err;
1310 }
1311
1312 /*
1313 * this can truncate away extent items, csum items and directory items.
1314 * It starts at a high offset and removes keys until it can't find
1315 * any higher than i_size.
1316 *
1317 * csum items that cross the new i_size are truncated to the new size
1318 * as well.
1319 *
1320 * min_type is the minimum key type to truncate down to. If set to 0, this
1321 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1322 */
1323 static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
1324 struct btrfs_root *root,
1325 struct inode *inode,
1326 u32 min_type)
1327 {
1328 int ret;
1329 struct btrfs_path *path;
1330 struct btrfs_key key;
1331 struct btrfs_key found_key;
1332 u32 found_type;
1333 struct extent_buffer *leaf;
1334 struct btrfs_file_extent_item *fi;
1335 u64 extent_start = 0;
1336 u64 extent_num_bytes = 0;
1337 u64 item_end = 0;
1338 u64 root_gen = 0;
1339 u64 root_owner = 0;
1340 int found_extent;
1341 int del_item;
1342 int pending_del_nr = 0;
1343 int pending_del_slot = 0;
1344 int extent_type = -1;
1345 u64 mask = root->sectorsize - 1;
1346
1347 btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1);
1348 path = btrfs_alloc_path();
1349 path->reada = -1;
1350 BUG_ON(!path);
1351
1352 /* FIXME, add redo link to tree so we don't leak on crash */
1353 key.objectid = inode->i_ino;
1354 key.offset = (u64)-1;
1355 key.type = (u8)-1;
1356
1357 btrfs_init_path(path);
1358 search_again:
1359 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1360 if (ret < 0) {
1361 goto error;
1362 }
1363 if (ret > 0) {
1364 BUG_ON(path->slots[0] == 0);
1365 path->slots[0]--;
1366 }
1367
1368 while(1) {
1369 fi = NULL;
1370 leaf = path->nodes[0];
1371 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1372 found_type = btrfs_key_type(&found_key);
1373
1374 if (found_key.objectid != inode->i_ino)
1375 break;
1376
1377 if (found_type < min_type)
1378 break;
1379
1380 item_end = found_key.offset;
1381 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1382 fi = btrfs_item_ptr(leaf, path->slots[0],
1383 struct btrfs_file_extent_item);
1384 extent_type = btrfs_file_extent_type(leaf, fi);
1385 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1386 item_end +=
1387 btrfs_file_extent_num_bytes(leaf, fi);
1388 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1389 struct btrfs_item *item = btrfs_item_nr(leaf,
1390 path->slots[0]);
1391 item_end += btrfs_file_extent_inline_len(leaf,
1392 item);
1393 }
1394 item_end--;
1395 }
1396 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1397 ret = btrfs_csum_truncate(trans, root, path,
1398 inode->i_size);
1399 BUG_ON(ret);
1400 }
1401 if (item_end < inode->i_size) {
1402 if (found_type == BTRFS_DIR_ITEM_KEY) {
1403 found_type = BTRFS_INODE_ITEM_KEY;
1404 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1405 found_type = BTRFS_CSUM_ITEM_KEY;
1406 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1407 found_type = BTRFS_XATTR_ITEM_KEY;
1408 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1409 found_type = BTRFS_INODE_REF_KEY;
1410 } else if (found_type) {
1411 found_type--;
1412 } else {
1413 break;
1414 }
1415 btrfs_set_key_type(&key, found_type);
1416 goto next;
1417 }
1418 if (found_key.offset >= inode->i_size)
1419 del_item = 1;
1420 else
1421 del_item = 0;
1422 found_extent = 0;
1423
1424 /* FIXME, shrink the extent if the ref count is only 1 */
1425 if (found_type != BTRFS_EXTENT_DATA_KEY)
1426 goto delete;
1427
1428 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1429 u64 num_dec;
1430 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1431 if (!del_item) {
1432 u64 orig_num_bytes =
1433 btrfs_file_extent_num_bytes(leaf, fi);
1434 extent_num_bytes = inode->i_size -
1435 found_key.offset + root->sectorsize - 1;
1436 extent_num_bytes = extent_num_bytes &
1437 ~((u64)root->sectorsize - 1);
1438 btrfs_set_file_extent_num_bytes(leaf, fi,
1439 extent_num_bytes);
1440 num_dec = (orig_num_bytes -
1441 extent_num_bytes);
1442 if (extent_start != 0)
1443 dec_i_blocks(inode, num_dec);
1444 btrfs_mark_buffer_dirty(leaf);
1445 } else {
1446 extent_num_bytes =
1447 btrfs_file_extent_disk_num_bytes(leaf,
1448 fi);
1449 /* FIXME blocksize != 4096 */
1450 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1451 if (extent_start != 0) {
1452 found_extent = 1;
1453 dec_i_blocks(inode, num_dec);
1454 }
1455 root_gen = btrfs_header_generation(leaf);
1456 root_owner = btrfs_header_owner(leaf);
1457 }
1458 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1459 if (!del_item) {
1460 u32 newsize = inode->i_size - found_key.offset;
1461 dec_i_blocks(inode, item_end + 1 -
1462 found_key.offset - newsize);
1463 newsize =
1464 btrfs_file_extent_calc_inline_size(newsize);
1465 ret = btrfs_truncate_item(trans, root, path,
1466 newsize, 1);
1467 BUG_ON(ret);
1468 } else {
1469 dec_i_blocks(inode, item_end + 1 -
1470 found_key.offset);
1471 }
1472 }
1473 delete:
1474 if (del_item) {
1475 if (!pending_del_nr) {
1476 /* no pending yet, add ourselves */
1477 pending_del_slot = path->slots[0];
1478 pending_del_nr = 1;
1479 } else if (pending_del_nr &&
1480 path->slots[0] + 1 == pending_del_slot) {
1481 /* hop on the pending chunk */
1482 pending_del_nr++;
1483 pending_del_slot = path->slots[0];
1484 } else {
1485 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1486 }
1487 } else {
1488 break;
1489 }
1490 if (found_extent) {
1491 ret = btrfs_free_extent(trans, root, extent_start,
1492 extent_num_bytes,
1493 root_owner,
1494 root_gen, inode->i_ino,
1495 found_key.offset, 0);
1496 BUG_ON(ret);
1497 }
1498 next:
1499 if (path->slots[0] == 0) {
1500 if (pending_del_nr)
1501 goto del_pending;
1502 btrfs_release_path(root, path);
1503 goto search_again;
1504 }
1505
1506 path->slots[0]--;
1507 if (pending_del_nr &&
1508 path->slots[0] + 1 != pending_del_slot) {
1509 struct btrfs_key debug;
1510 del_pending:
1511 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1512 pending_del_slot);
1513 ret = btrfs_del_items(trans, root, path,
1514 pending_del_slot,
1515 pending_del_nr);
1516 BUG_ON(ret);
1517 pending_del_nr = 0;
1518 btrfs_release_path(root, path);
1519 goto search_again;
1520 }
1521 }
1522 ret = 0;
1523 error:
1524 if (pending_del_nr) {
1525 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1526 pending_del_nr);
1527 }
1528 btrfs_free_path(path);
1529 inode->i_sb->s_dirt = 1;
1530 return ret;
1531 }
1532
1533 /*
1534 * taken from block_truncate_page, but does cow as it zeros out
1535 * any bytes left in the last page in the file.
1536 */
1537 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1538 {
1539 struct inode *inode = mapping->host;
1540 struct btrfs_root *root = BTRFS_I(inode)->root;
1541 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1542 struct btrfs_ordered_extent *ordered;
1543 char *kaddr;
1544 u32 blocksize = root->sectorsize;
1545 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1546 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1547 struct page *page;
1548 int ret = 0;
1549 u64 page_start;
1550 u64 page_end;
1551
1552 if ((offset & (blocksize - 1)) == 0)
1553 goto out;
1554
1555 ret = -ENOMEM;
1556 again:
1557 page = grab_cache_page(mapping, index);
1558 if (!page)
1559 goto out;
1560
1561 page_start = page_offset(page);
1562 page_end = page_start + PAGE_CACHE_SIZE - 1;
1563
1564 if (!PageUptodate(page)) {
1565 ret = btrfs_readpage(NULL, page);
1566 lock_page(page);
1567 if (page->mapping != mapping) {
1568 unlock_page(page);
1569 page_cache_release(page);
1570 goto again;
1571 }
1572 if (!PageUptodate(page)) {
1573 ret = -EIO;
1574 goto out_unlock;
1575 }
1576 }
1577 wait_on_page_writeback(page);
1578
1579 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1580 set_page_extent_mapped(page);
1581
1582 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1583 if (ordered) {
1584 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1585 unlock_page(page);
1586 page_cache_release(page);
1587 btrfs_start_ordered_extent(inode, ordered, 1);
1588 btrfs_put_ordered_extent(ordered);
1589 goto again;
1590 }
1591
1592 btrfs_set_extent_delalloc(inode, page_start, page_end);
1593 ret = 0;
1594 if (offset != PAGE_CACHE_SIZE) {
1595 kaddr = kmap(page);
1596 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1597 flush_dcache_page(page);
1598 kunmap(page);
1599 }
1600 ClearPageChecked(page);
1601 set_page_dirty(page);
1602 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1603
1604 out_unlock:
1605 unlock_page(page);
1606 page_cache_release(page);
1607 out:
1608 return ret;
1609 }
1610
1611 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1612 {
1613 struct inode *inode = dentry->d_inode;
1614 int err;
1615
1616 err = inode_change_ok(inode, attr);
1617 if (err)
1618 return err;
1619
1620 if (S_ISREG(inode->i_mode) &&
1621 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1622 struct btrfs_trans_handle *trans;
1623 struct btrfs_root *root = BTRFS_I(inode)->root;
1624 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1625
1626 u64 mask = root->sectorsize - 1;
1627 u64 hole_start = (inode->i_size + mask) & ~mask;
1628 u64 block_end = (attr->ia_size + mask) & ~mask;
1629 u64 hole_size;
1630 u64 alloc_hint = 0;
1631
1632 if (attr->ia_size <= hole_start)
1633 goto out;
1634
1635 err = btrfs_check_free_space(root, 1, 0);
1636 if (err)
1637 goto fail;
1638
1639 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1640
1641 hole_size = block_end - hole_start;
1642 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1643 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1644
1645 trans = btrfs_start_transaction(root, 1);
1646 btrfs_set_trans_block_group(trans, inode);
1647 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1648 err = btrfs_drop_extents(trans, root, inode,
1649 hole_start, block_end, hole_start,
1650 &alloc_hint);
1651
1652 if (alloc_hint != EXTENT_MAP_INLINE) {
1653 err = btrfs_insert_file_extent(trans, root,
1654 inode->i_ino,
1655 hole_start, 0, 0,
1656 hole_size, 0);
1657 btrfs_drop_extent_cache(inode, hole_start,
1658 (u64)-1);
1659 btrfs_check_file(root, inode);
1660 }
1661 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1662 btrfs_end_transaction(trans, root);
1663 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1664 if (err)
1665 return err;
1666 }
1667 out:
1668 err = inode_setattr(inode, attr);
1669
1670 if (!err && ((attr->ia_valid & ATTR_MODE)))
1671 err = btrfs_acl_chmod(inode);
1672 fail:
1673 return err;
1674 }
1675
1676 void btrfs_delete_inode(struct inode *inode)
1677 {
1678 struct btrfs_trans_handle *trans;
1679 struct btrfs_root *root = BTRFS_I(inode)->root;
1680 unsigned long nr;
1681 int ret;
1682
1683 truncate_inode_pages(&inode->i_data, 0);
1684 if (is_bad_inode(inode)) {
1685 btrfs_orphan_del(NULL, inode);
1686 goto no_delete;
1687 }
1688 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1689
1690 btrfs_i_size_write(inode, 0);
1691 trans = btrfs_start_transaction(root, 1);
1692
1693 btrfs_set_trans_block_group(trans, inode);
1694 ret = btrfs_truncate_in_trans(trans, root, inode, 0);
1695 if (ret) {
1696 btrfs_orphan_del(NULL, inode);
1697 goto no_delete_lock;
1698 }
1699
1700 btrfs_orphan_del(trans, inode);
1701
1702 nr = trans->blocks_used;
1703 clear_inode(inode);
1704
1705 btrfs_end_transaction(trans, root);
1706 btrfs_btree_balance_dirty(root, nr);
1707 return;
1708
1709 no_delete_lock:
1710 nr = trans->blocks_used;
1711 btrfs_end_transaction(trans, root);
1712 btrfs_btree_balance_dirty(root, nr);
1713 no_delete:
1714 clear_inode(inode);
1715 }
1716
1717 /*
1718 * this returns the key found in the dir entry in the location pointer.
1719 * If no dir entries were found, location->objectid is 0.
1720 */
1721 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1722 struct btrfs_key *location)
1723 {
1724 const char *name = dentry->d_name.name;
1725 int namelen = dentry->d_name.len;
1726 struct btrfs_dir_item *di;
1727 struct btrfs_path *path;
1728 struct btrfs_root *root = BTRFS_I(dir)->root;
1729 int ret = 0;
1730
1731 if (namelen == 1 && strcmp(name, ".") == 0) {
1732 location->objectid = dir->i_ino;
1733 location->type = BTRFS_INODE_ITEM_KEY;
1734 location->offset = 0;
1735 return 0;
1736 }
1737 path = btrfs_alloc_path();
1738 BUG_ON(!path);
1739
1740 if (namelen == 2 && strcmp(name, "..") == 0) {
1741 struct btrfs_key key;
1742 struct extent_buffer *leaf;
1743 int slot;
1744
1745 key.objectid = dir->i_ino;
1746 key.offset = (u64)-1;
1747 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1748 if (ret < 0 || path->slots[0] == 0)
1749 goto out_err;
1750 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1751 BUG_ON(ret == 0);
1752 ret = 0;
1753 leaf = path->nodes[0];
1754 slot = path->slots[0] - 1;
1755
1756 btrfs_item_key_to_cpu(leaf, &key, slot);
1757 if (key.objectid != dir->i_ino ||
1758 key.type != BTRFS_INODE_REF_KEY) {
1759 goto out_err;
1760 }
1761 location->objectid = key.offset;
1762 location->type = BTRFS_INODE_ITEM_KEY;
1763 location->offset = 0;
1764 goto out;
1765 }
1766
1767 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1768 namelen, 0);
1769 if (IS_ERR(di))
1770 ret = PTR_ERR(di);
1771 if (!di || IS_ERR(di)) {
1772 goto out_err;
1773 }
1774 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1775 out:
1776 btrfs_free_path(path);
1777 return ret;
1778 out_err:
1779 location->objectid = 0;
1780 goto out;
1781 }
1782
1783 /*
1784 * when we hit a tree root in a directory, the btrfs part of the inode
1785 * needs to be changed to reflect the root directory of the tree root. This
1786 * is kind of like crossing a mount point.
1787 */
1788 static int fixup_tree_root_location(struct btrfs_root *root,
1789 struct btrfs_key *location,
1790 struct btrfs_root **sub_root,
1791 struct dentry *dentry)
1792 {
1793 struct btrfs_root_item *ri;
1794
1795 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1796 return 0;
1797 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1798 return 0;
1799
1800 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1801 dentry->d_name.name,
1802 dentry->d_name.len);
1803 if (IS_ERR(*sub_root))
1804 return PTR_ERR(*sub_root);
1805
1806 ri = &(*sub_root)->root_item;
1807 location->objectid = btrfs_root_dirid(ri);
1808 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1809 location->offset = 0;
1810
1811 return 0;
1812 }
1813
1814 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1815 {
1816 struct btrfs_iget_args *args = p;
1817 inode->i_ino = args->ino;
1818 BTRFS_I(inode)->root = args->root;
1819 BTRFS_I(inode)->delalloc_bytes = 0;
1820 BTRFS_I(inode)->disk_i_size = 0;
1821 BTRFS_I(inode)->index_cnt = (u64)-1;
1822 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1823 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1824 inode->i_mapping, GFP_NOFS);
1825 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1826 inode->i_mapping, GFP_NOFS);
1827 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1828 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1829 mutex_init(&BTRFS_I(inode)->csum_mutex);
1830 mutex_init(&BTRFS_I(inode)->extent_mutex);
1831 return 0;
1832 }
1833
1834 static int btrfs_find_actor(struct inode *inode, void *opaque)
1835 {
1836 struct btrfs_iget_args *args = opaque;
1837 return (args->ino == inode->i_ino &&
1838 args->root == BTRFS_I(inode)->root);
1839 }
1840
1841 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1842 u64 root_objectid)
1843 {
1844 struct btrfs_iget_args args;
1845 args.ino = objectid;
1846 args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1847
1848 if (!args.root)
1849 return NULL;
1850
1851 return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1852 }
1853
1854 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1855 struct btrfs_root *root)
1856 {
1857 struct inode *inode;
1858 struct btrfs_iget_args args;
1859 args.ino = objectid;
1860 args.root = root;
1861
1862 inode = iget5_locked(s, objectid, btrfs_find_actor,
1863 btrfs_init_locked_inode,
1864 (void *)&args);
1865 return inode;
1866 }
1867
1868 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1869 struct nameidata *nd)
1870 {
1871 struct inode * inode;
1872 struct btrfs_inode *bi = BTRFS_I(dir);
1873 struct btrfs_root *root = bi->root;
1874 struct btrfs_root *sub_root = root;
1875 struct btrfs_key location;
1876 int ret, do_orphan = 0;
1877
1878 if (dentry->d_name.len > BTRFS_NAME_LEN)
1879 return ERR_PTR(-ENAMETOOLONG);
1880
1881 ret = btrfs_inode_by_name(dir, dentry, &location);
1882
1883 if (ret < 0)
1884 return ERR_PTR(ret);
1885
1886 inode = NULL;
1887 if (location.objectid) {
1888 ret = fixup_tree_root_location(root, &location, &sub_root,
1889 dentry);
1890 if (ret < 0)
1891 return ERR_PTR(ret);
1892 if (ret > 0)
1893 return ERR_PTR(-ENOENT);
1894
1895 inode = btrfs_iget_locked(dir->i_sb, location.objectid,
1896 sub_root);
1897 if (!inode)
1898 return ERR_PTR(-EACCES);
1899 if (inode->i_state & I_NEW) {
1900 /* the inode and parent dir are two different roots */
1901 if (sub_root != root) {
1902 igrab(inode);
1903 sub_root->inode = inode;
1904 do_orphan = 1;
1905 }
1906 BTRFS_I(inode)->root = sub_root;
1907 memcpy(&BTRFS_I(inode)->location, &location,
1908 sizeof(location));
1909 btrfs_read_locked_inode(inode);
1910 unlock_new_inode(inode);
1911 }
1912 }
1913
1914 if (unlikely(do_orphan))
1915 btrfs_orphan_cleanup(sub_root);
1916
1917 return d_splice_alias(inode, dentry);
1918 }
1919
1920 static unsigned char btrfs_filetype_table[] = {
1921 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1922 };
1923
1924 static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
1925 {
1926 struct inode *inode = filp->f_dentry->d_inode;
1927 struct btrfs_root *root = BTRFS_I(inode)->root;
1928 struct btrfs_item *item;
1929 struct btrfs_dir_item *di;
1930 struct btrfs_key key;
1931 struct btrfs_key found_key;
1932 struct btrfs_path *path;
1933 int ret;
1934 u32 nritems;
1935 struct extent_buffer *leaf;
1936 int slot;
1937 int advance;
1938 unsigned char d_type;
1939 int over = 0;
1940 u32 di_cur;
1941 u32 di_total;
1942 u32 di_len;
1943 int key_type = BTRFS_DIR_INDEX_KEY;
1944 char tmp_name[32];
1945 char *name_ptr;
1946 int name_len;
1947
1948 /* FIXME, use a real flag for deciding about the key type */
1949 if (root->fs_info->tree_root == root)
1950 key_type = BTRFS_DIR_ITEM_KEY;
1951
1952 /* special case for "." */
1953 if (filp->f_pos == 0) {
1954 over = filldir(dirent, ".", 1,
1955 1, inode->i_ino,
1956 DT_DIR);
1957 if (over)
1958 return 0;
1959 filp->f_pos = 1;
1960 }
1961
1962 key.objectid = inode->i_ino;
1963 path = btrfs_alloc_path();
1964 path->reada = 2;
1965
1966 /* special case for .., just use the back ref */
1967 if (filp->f_pos == 1) {
1968 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1969 key.offset = (u64)-1;
1970 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1971 if (ret < 0 || path->slots[0] == 0) {
1972 btrfs_release_path(root, path);
1973 goto read_dir_items;
1974 }
1975 BUG_ON(ret == 0);
1976 leaf = path->nodes[0];
1977 slot = path->slots[0] - 1;
1978 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1979 btrfs_release_path(root, path);
1980 if (found_key.objectid != key.objectid ||
1981 found_key.type != BTRFS_INODE_REF_KEY)
1982 goto read_dir_items;
1983 over = filldir(dirent, "..", 2,
1984 2, found_key.offset, DT_DIR);
1985 if (over)
1986 goto nopos;
1987 filp->f_pos = 2;
1988 }
1989
1990 read_dir_items:
1991 btrfs_set_key_type(&key, key_type);
1992 key.offset = filp->f_pos;
1993
1994 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1995 if (ret < 0)
1996 goto err;
1997 advance = 0;
1998 while(1) {
1999 leaf = path->nodes[0];
2000 nritems = btrfs_header_nritems(leaf);
2001 slot = path->slots[0];
2002 if (advance || slot >= nritems) {
2003 if (slot >= nritems -1) {
2004 ret = btrfs_next_leaf(root, path);
2005 if (ret)
2006 break;
2007 leaf = path->nodes[0];
2008 nritems = btrfs_header_nritems(leaf);
2009 slot = path->slots[0];
2010 } else {
2011 slot++;
2012 path->slots[0]++;
2013 }
2014 }
2015 advance = 1;
2016 item = btrfs_item_nr(leaf, slot);
2017 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2018
2019 if (found_key.objectid != key.objectid)
2020 break;
2021 if (btrfs_key_type(&found_key) != key_type)
2022 break;
2023 if (found_key.offset < filp->f_pos)
2024 continue;
2025
2026 filp->f_pos = found_key.offset;
2027 advance = 1;
2028 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2029 di_cur = 0;
2030 di_total = btrfs_item_size(leaf, item);
2031 while(di_cur < di_total) {
2032 struct btrfs_key location;
2033
2034 name_len = btrfs_dir_name_len(leaf, di);
2035 if (name_len < 32) {
2036 name_ptr = tmp_name;
2037 } else {
2038 name_ptr = kmalloc(name_len, GFP_NOFS);
2039 BUG_ON(!name_ptr);
2040 }
2041 read_extent_buffer(leaf, name_ptr,
2042 (unsigned long)(di + 1), name_len);
2043
2044 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2045 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2046 over = filldir(dirent, name_ptr, name_len,
2047 found_key.offset,
2048 location.objectid,
2049 d_type);
2050
2051 if (name_ptr != tmp_name)
2052 kfree(name_ptr);
2053
2054 if (over)
2055 goto nopos;
2056 di_len = btrfs_dir_name_len(leaf, di) +
2057 btrfs_dir_data_len(leaf, di) +sizeof(*di);
2058 di_cur += di_len;
2059 di = (struct btrfs_dir_item *)((char *)di + di_len);
2060 }
2061 }
2062 if (key_type == BTRFS_DIR_INDEX_KEY)
2063 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2064 else
2065 filp->f_pos++;
2066 nopos:
2067 ret = 0;
2068 err:
2069 btrfs_free_path(path);
2070 return ret;
2071 }
2072
2073 int btrfs_write_inode(struct inode *inode, int wait)
2074 {
2075 struct btrfs_root *root = BTRFS_I(inode)->root;
2076 struct btrfs_trans_handle *trans;
2077 int ret = 0;
2078
2079 if (wait) {
2080 trans = btrfs_join_transaction(root, 1);
2081 btrfs_set_trans_block_group(trans, inode);
2082 ret = btrfs_commit_transaction(trans, root);
2083 }
2084 return ret;
2085 }
2086
2087 /*
2088 * This is somewhat expensive, updating the tree every time the
2089 * inode changes. But, it is most likely to find the inode in cache.
2090 * FIXME, needs more benchmarking...there are no reasons other than performance
2091 * to keep or drop this code.
2092 */
2093 void btrfs_dirty_inode(struct inode *inode)
2094 {
2095 struct btrfs_root *root = BTRFS_I(inode)->root;
2096 struct btrfs_trans_handle *trans;
2097
2098 trans = btrfs_join_transaction(root, 1);
2099 btrfs_set_trans_block_group(trans, inode);
2100 btrfs_update_inode(trans, root, inode);
2101 btrfs_end_transaction(trans, root);
2102 }
2103
2104 static int btrfs_set_inode_index_count(struct inode *inode)
2105 {
2106 struct btrfs_root *root = BTRFS_I(inode)->root;
2107 struct btrfs_key key, found_key;
2108 struct btrfs_path *path;
2109 struct extent_buffer *leaf;
2110 int ret;
2111
2112 key.objectid = inode->i_ino;
2113 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2114 key.offset = (u64)-1;
2115
2116 path = btrfs_alloc_path();
2117 if (!path)
2118 return -ENOMEM;
2119
2120 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2121 if (ret < 0)
2122 goto out;
2123 /* FIXME: we should be able to handle this */
2124 if (ret == 0)
2125 goto out;
2126 ret = 0;
2127
2128 /*
2129 * MAGIC NUMBER EXPLANATION:
2130 * since we search a directory based on f_pos we have to start at 2
2131 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2132 * else has to start at 2
2133 */
2134 if (path->slots[0] == 0) {
2135 BTRFS_I(inode)->index_cnt = 2;
2136 goto out;
2137 }
2138
2139 path->slots[0]--;
2140
2141 leaf = path->nodes[0];
2142 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2143
2144 if (found_key.objectid != inode->i_ino ||
2145 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2146 BTRFS_I(inode)->index_cnt = 2;
2147 goto out;
2148 }
2149
2150 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2151 out:
2152 btrfs_free_path(path);
2153 return ret;
2154 }
2155
2156 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2157 u64 *index)
2158 {
2159 int ret = 0;
2160
2161 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2162 ret = btrfs_set_inode_index_count(dir);
2163 if (ret)
2164 return ret;
2165 }
2166
2167 *index = BTRFS_I(dir)->index_cnt;
2168 BTRFS_I(dir)->index_cnt++;
2169
2170 return ret;
2171 }
2172
2173 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2174 struct btrfs_root *root,
2175 struct inode *dir,
2176 const char *name, int name_len,
2177 u64 ref_objectid,
2178 u64 objectid,
2179 struct btrfs_block_group_cache *group,
2180 int mode, u64 *index)
2181 {
2182 struct inode *inode;
2183 struct btrfs_inode_item *inode_item;
2184 struct btrfs_block_group_cache *new_inode_group;
2185 struct btrfs_key *location;
2186 struct btrfs_path *path;
2187 struct btrfs_inode_ref *ref;
2188 struct btrfs_key key[2];
2189 u32 sizes[2];
2190 unsigned long ptr;
2191 int ret;
2192 int owner;
2193
2194 path = btrfs_alloc_path();
2195 BUG_ON(!path);
2196
2197 inode = new_inode(root->fs_info->sb);
2198 if (!inode)
2199 return ERR_PTR(-ENOMEM);
2200
2201 if (dir) {
2202 ret = btrfs_set_inode_index(dir, inode, index);
2203 if (ret)
2204 return ERR_PTR(ret);
2205 }
2206 /*
2207 * index_cnt is ignored for everything but a dir,
2208 * btrfs_get_inode_index_count has an explanation for the magic
2209 * number
2210 */
2211 BTRFS_I(inode)->index_cnt = 2;
2212
2213 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2214 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2215 inode->i_mapping, GFP_NOFS);
2216 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2217 inode->i_mapping, GFP_NOFS);
2218 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2219 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2220 mutex_init(&BTRFS_I(inode)->csum_mutex);
2221 mutex_init(&BTRFS_I(inode)->extent_mutex);
2222 BTRFS_I(inode)->delalloc_bytes = 0;
2223 BTRFS_I(inode)->disk_i_size = 0;
2224 BTRFS_I(inode)->root = root;
2225
2226 if (mode & S_IFDIR)
2227 owner = 0;
2228 else
2229 owner = 1;
2230 new_inode_group = btrfs_find_block_group(root, group, 0,
2231 BTRFS_BLOCK_GROUP_METADATA, owner);
2232 if (!new_inode_group) {
2233 printk("find_block group failed\n");
2234 new_inode_group = group;
2235 }
2236 BTRFS_I(inode)->block_group = new_inode_group;
2237 BTRFS_I(inode)->flags = 0;
2238
2239 key[0].objectid = objectid;
2240 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2241 key[0].offset = 0;
2242
2243 key[1].objectid = objectid;
2244 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2245 key[1].offset = ref_objectid;
2246
2247 sizes[0] = sizeof(struct btrfs_inode_item);
2248 sizes[1] = name_len + sizeof(*ref);
2249
2250 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2251 if (ret != 0)
2252 goto fail;
2253
2254 if (objectid > root->highest_inode)
2255 root->highest_inode = objectid;
2256
2257 inode->i_uid = current->fsuid;
2258 inode->i_gid = current->fsgid;
2259 inode->i_mode = mode;
2260 inode->i_ino = objectid;
2261 inode->i_blocks = 0;
2262 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2263 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2264 struct btrfs_inode_item);
2265 fill_inode_item(path->nodes[0], inode_item, inode);
2266
2267 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2268 struct btrfs_inode_ref);
2269 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2270 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2271 ptr = (unsigned long)(ref + 1);
2272 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2273
2274 btrfs_mark_buffer_dirty(path->nodes[0]);
2275 btrfs_free_path(path);
2276
2277 location = &BTRFS_I(inode)->location;
2278 location->objectid = objectid;
2279 location->offset = 0;
2280 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2281
2282 insert_inode_hash(inode);
2283 return inode;
2284 fail:
2285 if (dir)
2286 BTRFS_I(dir)->index_cnt--;
2287 btrfs_free_path(path);
2288 return ERR_PTR(ret);
2289 }
2290
2291 static inline u8 btrfs_inode_type(struct inode *inode)
2292 {
2293 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2294 }
2295
2296 static int btrfs_add_link(struct btrfs_trans_handle *trans,
2297 struct dentry *dentry, struct inode *inode,
2298 int add_backref, u64 index)
2299 {
2300 int ret;
2301 struct btrfs_key key;
2302 struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
2303 struct inode *parent_inode = dentry->d_parent->d_inode;
2304
2305 key.objectid = inode->i_ino;
2306 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2307 key.offset = 0;
2308
2309 ret = btrfs_insert_dir_item(trans, root,
2310 dentry->d_name.name, dentry->d_name.len,
2311 dentry->d_parent->d_inode->i_ino,
2312 &key, btrfs_inode_type(inode),
2313 index);
2314 if (ret == 0) {
2315 if (add_backref) {
2316 ret = btrfs_insert_inode_ref(trans, root,
2317 dentry->d_name.name,
2318 dentry->d_name.len,
2319 inode->i_ino,
2320 parent_inode->i_ino,
2321 index);
2322 }
2323 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2324 dentry->d_name.len * 2);
2325 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2326 ret = btrfs_update_inode(trans, root,
2327 dentry->d_parent->d_inode);
2328 }
2329 return ret;
2330 }
2331
2332 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2333 struct dentry *dentry, struct inode *inode,
2334 int backref, u64 index)
2335 {
2336 int err = btrfs_add_link(trans, dentry, inode, backref, index);
2337 if (!err) {
2338 d_instantiate(dentry, inode);
2339 return 0;
2340 }
2341 if (err > 0)
2342 err = -EEXIST;
2343 return err;
2344 }
2345
2346 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2347 int mode, dev_t rdev)
2348 {
2349 struct btrfs_trans_handle *trans;
2350 struct btrfs_root *root = BTRFS_I(dir)->root;
2351 struct inode *inode = NULL;
2352 int err;
2353 int drop_inode = 0;
2354 u64 objectid;
2355 unsigned long nr = 0;
2356 u64 index = 0;
2357
2358 if (!new_valid_dev(rdev))
2359 return -EINVAL;
2360
2361 err = btrfs_check_free_space(root, 1, 0);
2362 if (err)
2363 goto fail;
2364
2365 trans = btrfs_start_transaction(root, 1);
2366 btrfs_set_trans_block_group(trans, dir);
2367
2368 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2369 if (err) {
2370 err = -ENOSPC;
2371 goto out_unlock;
2372 }
2373
2374 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2375 dentry->d_name.len,
2376 dentry->d_parent->d_inode->i_ino, objectid,
2377 BTRFS_I(dir)->block_group, mode, &index);
2378 err = PTR_ERR(inode);
2379 if (IS_ERR(inode))
2380 goto out_unlock;
2381
2382 err = btrfs_init_acl(inode, dir);
2383 if (err) {
2384 drop_inode = 1;
2385 goto out_unlock;
2386 }
2387
2388 btrfs_set_trans_block_group(trans, inode);
2389 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2390 if (err)
2391 drop_inode = 1;
2392 else {
2393 inode->i_op = &btrfs_special_inode_operations;
2394 init_special_inode(inode, inode->i_mode, rdev);
2395 btrfs_update_inode(trans, root, inode);
2396 }
2397 dir->i_sb->s_dirt = 1;
2398 btrfs_update_inode_block_group(trans, inode);
2399 btrfs_update_inode_block_group(trans, dir);
2400 out_unlock:
2401 nr = trans->blocks_used;
2402 btrfs_end_transaction_throttle(trans, root);
2403 fail:
2404 if (drop_inode) {
2405 inode_dec_link_count(inode);
2406 iput(inode);
2407 }
2408 btrfs_btree_balance_dirty(root, nr);
2409 return err;
2410 }
2411
2412 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2413 int mode, struct nameidata *nd)
2414 {
2415 struct btrfs_trans_handle *trans;
2416 struct btrfs_root *root = BTRFS_I(dir)->root;
2417 struct inode *inode = NULL;
2418 int err;
2419 int drop_inode = 0;
2420 unsigned long nr = 0;
2421 u64 objectid;
2422 u64 index = 0;
2423
2424 err = btrfs_check_free_space(root, 1, 0);
2425 if (err)
2426 goto fail;
2427 trans = btrfs_start_transaction(root, 1);
2428 btrfs_set_trans_block_group(trans, dir);
2429
2430 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2431 if (err) {
2432 err = -ENOSPC;
2433 goto out_unlock;
2434 }
2435
2436 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2437 dentry->d_name.len,
2438 dentry->d_parent->d_inode->i_ino,
2439 objectid, BTRFS_I(dir)->block_group, mode,
2440 &index);
2441 err = PTR_ERR(inode);
2442 if (IS_ERR(inode))
2443 goto out_unlock;
2444
2445 err = btrfs_init_acl(inode, dir);
2446 if (err) {
2447 drop_inode = 1;
2448 goto out_unlock;
2449 }
2450
2451 btrfs_set_trans_block_group(trans, inode);
2452 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2453 if (err)
2454 drop_inode = 1;
2455 else {
2456 inode->i_mapping->a_ops = &btrfs_aops;
2457 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2458 inode->i_fop = &btrfs_file_operations;
2459 inode->i_op = &btrfs_file_inode_operations;
2460 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2461 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2462 inode->i_mapping, GFP_NOFS);
2463 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2464 inode->i_mapping, GFP_NOFS);
2465 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2466 mutex_init(&BTRFS_I(inode)->csum_mutex);
2467 mutex_init(&BTRFS_I(inode)->extent_mutex);
2468 BTRFS_I(inode)->delalloc_bytes = 0;
2469 BTRFS_I(inode)->disk_i_size = 0;
2470 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2471 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2472 }
2473 dir->i_sb->s_dirt = 1;
2474 btrfs_update_inode_block_group(trans, inode);
2475 btrfs_update_inode_block_group(trans, dir);
2476 out_unlock:
2477 nr = trans->blocks_used;
2478 btrfs_end_transaction_throttle(trans, root);
2479 fail:
2480 if (drop_inode) {
2481 inode_dec_link_count(inode);
2482 iput(inode);
2483 }
2484 btrfs_btree_balance_dirty(root, nr);
2485 return err;
2486 }
2487
2488 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2489 struct dentry *dentry)
2490 {
2491 struct btrfs_trans_handle *trans;
2492 struct btrfs_root *root = BTRFS_I(dir)->root;
2493 struct inode *inode = old_dentry->d_inode;
2494 u64 index;
2495 unsigned long nr = 0;
2496 int err;
2497 int drop_inode = 0;
2498
2499 if (inode->i_nlink == 0)
2500 return -ENOENT;
2501
2502 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2503 inode->i_nlink++;
2504 #else
2505 inc_nlink(inode);
2506 #endif
2507 err = btrfs_check_free_space(root, 1, 0);
2508 if (err)
2509 goto fail;
2510 err = btrfs_set_inode_index(dir, inode, &index);
2511 if (err)
2512 goto fail;
2513
2514 trans = btrfs_start_transaction(root, 1);
2515
2516 btrfs_set_trans_block_group(trans, dir);
2517 atomic_inc(&inode->i_count);
2518
2519 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2520
2521 if (err)
2522 drop_inode = 1;
2523
2524 dir->i_sb->s_dirt = 1;
2525 btrfs_update_inode_block_group(trans, dir);
2526 err = btrfs_update_inode(trans, root, inode);
2527
2528 if (err)
2529 drop_inode = 1;
2530
2531 nr = trans->blocks_used;
2532 btrfs_end_transaction_throttle(trans, root);
2533 fail:
2534 if (drop_inode) {
2535 inode_dec_link_count(inode);
2536 iput(inode);
2537 }
2538 btrfs_btree_balance_dirty(root, nr);
2539 return err;
2540 }
2541
2542 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2543 {
2544 struct inode *inode = NULL;
2545 struct btrfs_trans_handle *trans;
2546 struct btrfs_root *root = BTRFS_I(dir)->root;
2547 int err = 0;
2548 int drop_on_err = 0;
2549 u64 objectid = 0;
2550 u64 index = 0;
2551 unsigned long nr = 1;
2552
2553 err = btrfs_check_free_space(root, 1, 0);
2554 if (err)
2555 goto out_unlock;
2556
2557 trans = btrfs_start_transaction(root, 1);
2558 btrfs_set_trans_block_group(trans, dir);
2559
2560 if (IS_ERR(trans)) {
2561 err = PTR_ERR(trans);
2562 goto out_unlock;
2563 }
2564
2565 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2566 if (err) {
2567 err = -ENOSPC;
2568 goto out_unlock;
2569 }
2570
2571 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2572 dentry->d_name.len,
2573 dentry->d_parent->d_inode->i_ino, objectid,
2574 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2575 &index);
2576 if (IS_ERR(inode)) {
2577 err = PTR_ERR(inode);
2578 goto out_fail;
2579 }
2580
2581 drop_on_err = 1;
2582
2583 err = btrfs_init_acl(inode, dir);
2584 if (err)
2585 goto out_fail;
2586
2587 inode->i_op = &btrfs_dir_inode_operations;
2588 inode->i_fop = &btrfs_dir_file_operations;
2589 btrfs_set_trans_block_group(trans, inode);
2590
2591 btrfs_i_size_write(inode, 0);
2592 err = btrfs_update_inode(trans, root, inode);
2593 if (err)
2594 goto out_fail;
2595
2596 err = btrfs_add_link(trans, dentry, inode, 0, index);
2597 if (err)
2598 goto out_fail;
2599
2600 d_instantiate(dentry, inode);
2601 drop_on_err = 0;
2602 dir->i_sb->s_dirt = 1;
2603 btrfs_update_inode_block_group(trans, inode);
2604 btrfs_update_inode_block_group(trans, dir);
2605
2606 out_fail:
2607 nr = trans->blocks_used;
2608 btrfs_end_transaction_throttle(trans, root);
2609
2610 out_unlock:
2611 if (drop_on_err)
2612 iput(inode);
2613 btrfs_btree_balance_dirty(root, nr);
2614 return err;
2615 }
2616
2617 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2618 struct extent_map *existing,
2619 struct extent_map *em,
2620 u64 map_start, u64 map_len)
2621 {
2622 u64 start_diff;
2623
2624 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2625 start_diff = map_start - em->start;
2626 em->start = map_start;
2627 em->len = map_len;
2628 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2629 em->block_start += start_diff;
2630 return add_extent_mapping(em_tree, em);
2631 }
2632
2633 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2634 size_t pg_offset, u64 start, u64 len,
2635 int create)
2636 {
2637 int ret;
2638 int err = 0;
2639 u64 bytenr;
2640 u64 extent_start = 0;
2641 u64 extent_end = 0;
2642 u64 objectid = inode->i_ino;
2643 u32 found_type;
2644 struct btrfs_path *path = NULL;
2645 struct btrfs_root *root = BTRFS_I(inode)->root;
2646 struct btrfs_file_extent_item *item;
2647 struct extent_buffer *leaf;
2648 struct btrfs_key found_key;
2649 struct extent_map *em = NULL;
2650 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2651 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2652 struct btrfs_trans_handle *trans = NULL;
2653
2654 again:
2655 spin_lock(&em_tree->lock);
2656 em = lookup_extent_mapping(em_tree, start, len);
2657 if (em)
2658 em->bdev = root->fs_info->fs_devices->latest_bdev;
2659 spin_unlock(&em_tree->lock);
2660
2661 if (em) {
2662 if (em->start > start || em->start + em->len <= start)
2663 free_extent_map(em);
2664 else if (em->block_start == EXTENT_MAP_INLINE && page)
2665 free_extent_map(em);
2666 else
2667 goto out;
2668 }
2669 em = alloc_extent_map(GFP_NOFS);
2670 if (!em) {
2671 err = -ENOMEM;
2672 goto out;
2673 }
2674 em->bdev = root->fs_info->fs_devices->latest_bdev;
2675 em->start = EXTENT_MAP_HOLE;
2676 em->len = (u64)-1;
2677
2678 if (!path) {
2679 path = btrfs_alloc_path();
2680 BUG_ON(!path);
2681 }
2682
2683 ret = btrfs_lookup_file_extent(trans, root, path,
2684 objectid, start, trans != NULL);
2685 if (ret < 0) {
2686 err = ret;
2687 goto out;
2688 }
2689
2690 if (ret != 0) {
2691 if (path->slots[0] == 0)
2692 goto not_found;
2693 path->slots[0]--;
2694 }
2695
2696 leaf = path->nodes[0];
2697 item = btrfs_item_ptr(leaf, path->slots[0],
2698 struct btrfs_file_extent_item);
2699 /* are we inside the extent that was found? */
2700 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2701 found_type = btrfs_key_type(&found_key);
2702 if (found_key.objectid != objectid ||
2703 found_type != BTRFS_EXTENT_DATA_KEY) {
2704 goto not_found;
2705 }
2706
2707 found_type = btrfs_file_extent_type(leaf, item);
2708 extent_start = found_key.offset;
2709 if (found_type == BTRFS_FILE_EXTENT_REG) {
2710 extent_end = extent_start +
2711 btrfs_file_extent_num_bytes(leaf, item);
2712 err = 0;
2713 if (start < extent_start || start >= extent_end) {
2714 em->start = start;
2715 if (start < extent_start) {
2716 if (start + len <= extent_start)
2717 goto not_found;
2718 em->len = extent_end - extent_start;
2719 } else {
2720 em->len = len;
2721 }
2722 goto not_found_em;
2723 }
2724 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2725 if (bytenr == 0) {
2726 em->start = extent_start;
2727 em->len = extent_end - extent_start;
2728 em->block_start = EXTENT_MAP_HOLE;
2729 goto insert;
2730 }
2731 bytenr += btrfs_file_extent_offset(leaf, item);
2732 em->block_start = bytenr;
2733 em->start = extent_start;
2734 em->len = extent_end - extent_start;
2735 goto insert;
2736 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2737 u64 page_start;
2738 unsigned long ptr;
2739 char *map;
2740 size_t size;
2741 size_t extent_offset;
2742 size_t copy_size;
2743
2744 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2745 path->slots[0]));
2746 extent_end = (extent_start + size + root->sectorsize - 1) &
2747 ~((u64)root->sectorsize - 1);
2748 if (start < extent_start || start >= extent_end) {
2749 em->start = start;
2750 if (start < extent_start) {
2751 if (start + len <= extent_start)
2752 goto not_found;
2753 em->len = extent_end - extent_start;
2754 } else {
2755 em->len = len;
2756 }
2757 goto not_found_em;
2758 }
2759 em->block_start = EXTENT_MAP_INLINE;
2760
2761 if (!page) {
2762 em->start = extent_start;
2763 em->len = size;
2764 goto out;
2765 }
2766
2767 page_start = page_offset(page) + pg_offset;
2768 extent_offset = page_start - extent_start;
2769 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2770 size - extent_offset);
2771 em->start = extent_start + extent_offset;
2772 em->len = (copy_size + root->sectorsize - 1) &
2773 ~((u64)root->sectorsize - 1);
2774 map = kmap(page);
2775 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2776 if (create == 0 && !PageUptodate(page)) {
2777 read_extent_buffer(leaf, map + pg_offset, ptr,
2778 copy_size);
2779 flush_dcache_page(page);
2780 } else if (create && PageUptodate(page)) {
2781 if (!trans) {
2782 kunmap(page);
2783 free_extent_map(em);
2784 em = NULL;
2785 btrfs_release_path(root, path);
2786 trans = btrfs_join_transaction(root, 1);
2787 goto again;
2788 }
2789 write_extent_buffer(leaf, map + pg_offset, ptr,
2790 copy_size);
2791 btrfs_mark_buffer_dirty(leaf);
2792 }
2793 kunmap(page);
2794 set_extent_uptodate(io_tree, em->start,
2795 extent_map_end(em) - 1, GFP_NOFS);
2796 goto insert;
2797 } else {
2798 printk("unkknown found_type %d\n", found_type);
2799 WARN_ON(1);
2800 }
2801 not_found:
2802 em->start = start;
2803 em->len = len;
2804 not_found_em:
2805 em->block_start = EXTENT_MAP_HOLE;
2806 insert:
2807 btrfs_release_path(root, path);
2808 if (em->start > start || extent_map_end(em) <= start) {
2809 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2810 err = -EIO;
2811 goto out;
2812 }
2813
2814 err = 0;
2815 spin_lock(&em_tree->lock);
2816 ret = add_extent_mapping(em_tree, em);
2817 /* it is possible that someone inserted the extent into the tree
2818 * while we had the lock dropped. It is also possible that
2819 * an overlapping map exists in the tree
2820 */
2821 if (ret == -EEXIST) {
2822 struct extent_map *existing;
2823
2824 ret = 0;
2825
2826 existing = lookup_extent_mapping(em_tree, start, len);
2827 if (existing && (existing->start > start ||
2828 existing->start + existing->len <= start)) {
2829 free_extent_map(existing);
2830 existing = NULL;
2831 }
2832 if (!existing) {
2833 existing = lookup_extent_mapping(em_tree, em->start,
2834 em->len);
2835 if (existing) {
2836 err = merge_extent_mapping(em_tree, existing,
2837 em, start,
2838 root->sectorsize);
2839 free_extent_map(existing);
2840 if (err) {
2841 free_extent_map(em);
2842 em = NULL;
2843 }
2844 } else {
2845 err = -EIO;
2846 printk("failing to insert %Lu %Lu\n",
2847 start, len);
2848 free_extent_map(em);
2849 em = NULL;
2850 }
2851 } else {
2852 free_extent_map(em);
2853 em = existing;
2854 err = 0;
2855 }
2856 }
2857 spin_unlock(&em_tree->lock);
2858 out:
2859 if (path)
2860 btrfs_free_path(path);
2861 if (trans) {
2862 ret = btrfs_end_transaction(trans, root);
2863 if (!err) {
2864 err = ret;
2865 }
2866 }
2867 if (err) {
2868 free_extent_map(em);
2869 WARN_ON(1);
2870 return ERR_PTR(err);
2871 }
2872 return em;
2873 }
2874
2875 #if 0 /* waiting for O_DIRECT reads */
2876 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2877 struct buffer_head *bh_result, int create)
2878 {
2879 struct extent_map *em;
2880 u64 start = (u64)iblock << inode->i_blkbits;
2881 struct btrfs_multi_bio *multi = NULL;
2882 struct btrfs_root *root = BTRFS_I(inode)->root;
2883 u64 len;
2884 u64 logical;
2885 u64 map_length;
2886 int ret = 0;
2887
2888 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2889
2890 if (!em || IS_ERR(em))
2891 goto out;
2892
2893 if (em->start > start || em->start + em->len <= start) {
2894 goto out;
2895 }
2896
2897 if (em->block_start == EXTENT_MAP_INLINE) {
2898 ret = -EINVAL;
2899 goto out;
2900 }
2901
2902 len = em->start + em->len - start;
2903 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2904
2905 if (em->block_start == EXTENT_MAP_HOLE ||
2906 em->block_start == EXTENT_MAP_DELALLOC) {
2907 bh_result->b_size = len;
2908 goto out;
2909 }
2910
2911 logical = start - em->start;
2912 logical = em->block_start + logical;
2913
2914 map_length = len;
2915 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2916 logical, &map_length, &multi, 0);
2917 BUG_ON(ret);
2918 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2919 bh_result->b_size = min(map_length, len);
2920
2921 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2922 set_buffer_mapped(bh_result);
2923 kfree(multi);
2924 out:
2925 free_extent_map(em);
2926 return ret;
2927 }
2928 #endif
2929
2930 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2931 const struct iovec *iov, loff_t offset,
2932 unsigned long nr_segs)
2933 {
2934 return -EINVAL;
2935 #if 0
2936 struct file *file = iocb->ki_filp;
2937 struct inode *inode = file->f_mapping->host;
2938
2939 if (rw == WRITE)
2940 return -EINVAL;
2941
2942 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2943 offset, nr_segs, btrfs_get_block, NULL);
2944 #endif
2945 }
2946
2947 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2948 {
2949 return extent_bmap(mapping, iblock, btrfs_get_extent);
2950 }
2951
2952 int btrfs_readpage(struct file *file, struct page *page)
2953 {
2954 struct extent_io_tree *tree;
2955 tree = &BTRFS_I(page->mapping->host)->io_tree;
2956 return extent_read_full_page(tree, page, btrfs_get_extent);
2957 }
2958
2959 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2960 {
2961 struct extent_io_tree *tree;
2962
2963
2964 if (current->flags & PF_MEMALLOC) {
2965 redirty_page_for_writepage(wbc, page);
2966 unlock_page(page);
2967 return 0;
2968 }
2969 tree = &BTRFS_I(page->mapping->host)->io_tree;
2970 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2971 }
2972
2973 int btrfs_writepages(struct address_space *mapping,
2974 struct writeback_control *wbc)
2975 {
2976 struct extent_io_tree *tree;
2977 tree = &BTRFS_I(mapping->host)->io_tree;
2978 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2979 }
2980
2981 static int
2982 btrfs_readpages(struct file *file, struct address_space *mapping,
2983 struct list_head *pages, unsigned nr_pages)
2984 {
2985 struct extent_io_tree *tree;
2986 tree = &BTRFS_I(mapping->host)->io_tree;
2987 return extent_readpages(tree, mapping, pages, nr_pages,
2988 btrfs_get_extent);
2989 }
2990 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2991 {
2992 struct extent_io_tree *tree;
2993 struct extent_map_tree *map;
2994 int ret;
2995
2996 tree = &BTRFS_I(page->mapping->host)->io_tree;
2997 map = &BTRFS_I(page->mapping->host)->extent_tree;
2998 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
2999 if (ret == 1) {
3000 ClearPagePrivate(page);
3001 set_page_private(page, 0);
3002 page_cache_release(page);
3003 }
3004 return ret;
3005 }
3006
3007 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3008 {
3009 return __btrfs_releasepage(page, gfp_flags);
3010 }
3011
3012 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3013 {
3014 struct extent_io_tree *tree;
3015 struct btrfs_ordered_extent *ordered;
3016 u64 page_start = page_offset(page);
3017 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3018
3019 wait_on_page_writeback(page);
3020 tree = &BTRFS_I(page->mapping->host)->io_tree;
3021 if (offset) {
3022 btrfs_releasepage(page, GFP_NOFS);
3023 return;
3024 }
3025
3026 lock_extent(tree, page_start, page_end, GFP_NOFS);
3027 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3028 page_offset(page));
3029 if (ordered) {
3030 /*
3031 * IO on this page will never be started, so we need
3032 * to account for any ordered extents now
3033 */
3034 clear_extent_bit(tree, page_start, page_end,
3035 EXTENT_DIRTY | EXTENT_DELALLOC |
3036 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3037 btrfs_finish_ordered_io(page->mapping->host,
3038 page_start, page_end);
3039 btrfs_put_ordered_extent(ordered);
3040 lock_extent(tree, page_start, page_end, GFP_NOFS);
3041 }
3042 clear_extent_bit(tree, page_start, page_end,
3043 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3044 EXTENT_ORDERED,
3045 1, 1, GFP_NOFS);
3046 __btrfs_releasepage(page, GFP_NOFS);
3047
3048 ClearPageChecked(page);
3049 if (PagePrivate(page)) {
3050 ClearPagePrivate(page);
3051 set_page_private(page, 0);
3052 page_cache_release(page);
3053 }
3054 }
3055
3056 /*
3057 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3058 * called from a page fault handler when a page is first dirtied. Hence we must
3059 * be careful to check for EOF conditions here. We set the page up correctly
3060 * for a written page which means we get ENOSPC checking when writing into
3061 * holes and correct delalloc and unwritten extent mapping on filesystems that
3062 * support these features.
3063 *
3064 * We are not allowed to take the i_mutex here so we have to play games to
3065 * protect against truncate races as the page could now be beyond EOF. Because
3066 * vmtruncate() writes the inode size before removing pages, once we have the
3067 * page lock we can determine safely if the page is beyond EOF. If it is not
3068 * beyond EOF, then the page is guaranteed safe against truncation until we
3069 * unlock the page.
3070 */
3071 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3072 {
3073 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3074 struct btrfs_root *root = BTRFS_I(inode)->root;
3075 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3076 struct btrfs_ordered_extent *ordered;
3077 char *kaddr;
3078 unsigned long zero_start;
3079 loff_t size;
3080 int ret;
3081 u64 page_start;
3082 u64 page_end;
3083
3084 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3085 if (ret)
3086 goto out;
3087
3088 ret = -EINVAL;
3089 again:
3090 lock_page(page);
3091 size = i_size_read(inode);
3092 page_start = page_offset(page);
3093 page_end = page_start + PAGE_CACHE_SIZE - 1;
3094
3095 if ((page->mapping != inode->i_mapping) ||
3096 (page_start >= size)) {
3097 /* page got truncated out from underneath us */
3098 goto out_unlock;
3099 }
3100 wait_on_page_writeback(page);
3101
3102 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3103 set_page_extent_mapped(page);
3104
3105 /*
3106 * we can't set the delalloc bits if there are pending ordered
3107 * extents. Drop our locks and wait for them to finish
3108 */
3109 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3110 if (ordered) {
3111 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3112 unlock_page(page);
3113 btrfs_start_ordered_extent(inode, ordered, 1);
3114 btrfs_put_ordered_extent(ordered);
3115 goto again;
3116 }
3117
3118 btrfs_set_extent_delalloc(inode, page_start, page_end);
3119 ret = 0;
3120
3121 /* page is wholly or partially inside EOF */
3122 if (page_start + PAGE_CACHE_SIZE > size)
3123 zero_start = size & ~PAGE_CACHE_MASK;
3124 else
3125 zero_start = PAGE_CACHE_SIZE;
3126
3127 if (zero_start != PAGE_CACHE_SIZE) {
3128 kaddr = kmap(page);
3129 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3130 flush_dcache_page(page);
3131 kunmap(page);
3132 }
3133 ClearPageChecked(page);
3134 set_page_dirty(page);
3135 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3136
3137 out_unlock:
3138 unlock_page(page);
3139 out:
3140 return ret;
3141 }
3142
3143 static void btrfs_truncate(struct inode *inode)
3144 {
3145 struct btrfs_root *root = BTRFS_I(inode)->root;
3146 int ret;
3147 struct btrfs_trans_handle *trans;
3148 unsigned long nr;
3149 u64 mask = root->sectorsize - 1;
3150
3151 if (!S_ISREG(inode->i_mode))
3152 return;
3153 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3154 return;
3155
3156 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3157 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3158
3159 trans = btrfs_start_transaction(root, 1);
3160 btrfs_set_trans_block_group(trans, inode);
3161 btrfs_i_size_write(inode, inode->i_size);
3162
3163 ret = btrfs_orphan_add(trans, inode);
3164 if (ret)
3165 goto out;
3166 /* FIXME, add redo link to tree so we don't leak on crash */
3167 ret = btrfs_truncate_in_trans(trans, root, inode,
3168 BTRFS_EXTENT_DATA_KEY);
3169 btrfs_update_inode(trans, root, inode);
3170
3171 ret = btrfs_orphan_del(trans, inode);
3172 BUG_ON(ret);
3173
3174 out:
3175 nr = trans->blocks_used;
3176 ret = btrfs_end_transaction_throttle(trans, root);
3177 BUG_ON(ret);
3178 btrfs_btree_balance_dirty(root, nr);
3179 }
3180
3181 /*
3182 * Invalidate a single dcache entry at the root of the filesystem.
3183 * Needed after creation of snapshot or subvolume.
3184 */
3185 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3186 int namelen)
3187 {
3188 struct dentry *alias, *entry;
3189 struct qstr qstr;
3190
3191 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3192 if (alias) {
3193 qstr.name = name;
3194 qstr.len = namelen;
3195 /* change me if btrfs ever gets a d_hash operation */
3196 qstr.hash = full_name_hash(qstr.name, qstr.len);
3197 entry = d_lookup(alias, &qstr);
3198 dput(alias);
3199 if (entry) {
3200 d_invalidate(entry);
3201 dput(entry);
3202 }
3203 }
3204 }
3205
3206 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3207 struct btrfs_trans_handle *trans, u64 new_dirid,
3208 struct btrfs_block_group_cache *block_group)
3209 {
3210 struct inode *inode;
3211 u64 index = 0;
3212
3213 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3214 new_dirid, block_group, S_IFDIR | 0700, &index);
3215 if (IS_ERR(inode))
3216 return PTR_ERR(inode);
3217 inode->i_op = &btrfs_dir_inode_operations;
3218 inode->i_fop = &btrfs_dir_file_operations;
3219 new_root->inode = inode;
3220
3221 inode->i_nlink = 1;
3222 btrfs_i_size_write(inode, 0);
3223
3224 return btrfs_update_inode(trans, new_root, inode);
3225 }
3226
3227 unsigned long btrfs_force_ra(struct address_space *mapping,
3228 struct file_ra_state *ra, struct file *file,
3229 pgoff_t offset, pgoff_t last_index)
3230 {
3231 pgoff_t req_size = last_index - offset + 1;
3232
3233 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3234 offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3235 return offset;
3236 #else
3237 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3238 return offset + req_size;
3239 #endif
3240 }
3241
3242 struct inode *btrfs_alloc_inode(struct super_block *sb)
3243 {
3244 struct btrfs_inode *ei;
3245
3246 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3247 if (!ei)
3248 return NULL;
3249 ei->last_trans = 0;
3250 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3251 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3252 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3253 INIT_LIST_HEAD(&ei->i_orphan);
3254 return &ei->vfs_inode;
3255 }
3256
3257 void btrfs_destroy_inode(struct inode *inode)
3258 {
3259 struct btrfs_ordered_extent *ordered;
3260 WARN_ON(!list_empty(&inode->i_dentry));
3261 WARN_ON(inode->i_data.nrpages);
3262
3263 if (BTRFS_I(inode)->i_acl &&
3264 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3265 posix_acl_release(BTRFS_I(inode)->i_acl);
3266 if (BTRFS_I(inode)->i_default_acl &&
3267 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3268 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3269
3270 spin_lock(&BTRFS_I(inode)->root->list_lock);
3271 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3272 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3273 " list\n", inode->i_ino);
3274 dump_stack();
3275 }
3276 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3277
3278 while(1) {
3279 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3280 if (!ordered)
3281 break;
3282 else {
3283 printk("found ordered extent %Lu %Lu\n",
3284 ordered->file_offset, ordered->len);
3285 btrfs_remove_ordered_extent(inode, ordered);
3286 btrfs_put_ordered_extent(ordered);
3287 btrfs_put_ordered_extent(ordered);
3288 }
3289 }
3290 btrfs_drop_extent_cache(inode, 0, (u64)-1);
3291 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3292 }
3293
3294 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3295 static void init_once(void *foo)
3296 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3297 static void init_once(struct kmem_cache * cachep, void *foo)
3298 #else
3299 static void init_once(void * foo, struct kmem_cache * cachep,
3300 unsigned long flags)
3301 #endif
3302 {
3303 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3304
3305 inode_init_once(&ei->vfs_inode);
3306 }
3307
3308 void btrfs_destroy_cachep(void)
3309 {
3310 if (btrfs_inode_cachep)
3311 kmem_cache_destroy(btrfs_inode_cachep);
3312 if (btrfs_trans_handle_cachep)
3313 kmem_cache_destroy(btrfs_trans_handle_cachep);
3314 if (btrfs_transaction_cachep)
3315 kmem_cache_destroy(btrfs_transaction_cachep);
3316 if (btrfs_bit_radix_cachep)
3317 kmem_cache_destroy(btrfs_bit_radix_cachep);
3318 if (btrfs_path_cachep)
3319 kmem_cache_destroy(btrfs_path_cachep);
3320 }
3321
3322 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3323 unsigned long extra_flags,
3324 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3325 void (*ctor)(void *)
3326 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3327 void (*ctor)(struct kmem_cache *, void *)
3328 #else
3329 void (*ctor)(void *, struct kmem_cache *,
3330 unsigned long)
3331 #endif
3332 )
3333 {
3334 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3335 SLAB_MEM_SPREAD | extra_flags), ctor
3336 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3337 ,NULL
3338 #endif
3339 );
3340 }
3341
3342 int btrfs_init_cachep(void)
3343 {
3344 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3345 sizeof(struct btrfs_inode),
3346 0, init_once);
3347 if (!btrfs_inode_cachep)
3348 goto fail;
3349 btrfs_trans_handle_cachep =
3350 btrfs_cache_create("btrfs_trans_handle_cache",
3351 sizeof(struct btrfs_trans_handle),
3352 0, NULL);
3353 if (!btrfs_trans_handle_cachep)
3354 goto fail;
3355 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3356 sizeof(struct btrfs_transaction),
3357 0, NULL);
3358 if (!btrfs_transaction_cachep)
3359 goto fail;
3360 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3361 sizeof(struct btrfs_path),
3362 0, NULL);
3363 if (!btrfs_path_cachep)
3364 goto fail;
3365 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3366 SLAB_DESTROY_BY_RCU, NULL);
3367 if (!btrfs_bit_radix_cachep)
3368 goto fail;
3369 return 0;
3370 fail:
3371 btrfs_destroy_cachep();
3372 return -ENOMEM;
3373 }
3374
3375 static int btrfs_getattr(struct vfsmount *mnt,
3376 struct dentry *dentry, struct kstat *stat)
3377 {
3378 struct inode *inode = dentry->d_inode;
3379 generic_fillattr(inode, stat);
3380 stat->blksize = PAGE_CACHE_SIZE;
3381 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3382 return 0;
3383 }
3384
3385 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3386 struct inode * new_dir,struct dentry *new_dentry)
3387 {
3388 struct btrfs_trans_handle *trans;
3389 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3390 struct inode *new_inode = new_dentry->d_inode;
3391 struct inode *old_inode = old_dentry->d_inode;
3392 struct timespec ctime = CURRENT_TIME;
3393 u64 index = 0;
3394 int ret;
3395
3396 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3397 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3398 return -ENOTEMPTY;
3399 }
3400
3401 ret = btrfs_check_free_space(root, 1, 0);
3402 if (ret)
3403 goto out_unlock;
3404
3405 trans = btrfs_start_transaction(root, 1);
3406
3407 btrfs_set_trans_block_group(trans, new_dir);
3408
3409 old_dentry->d_inode->i_nlink++;
3410 old_dir->i_ctime = old_dir->i_mtime = ctime;
3411 new_dir->i_ctime = new_dir->i_mtime = ctime;
3412 old_inode->i_ctime = ctime;
3413
3414 ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
3415 if (ret)
3416 goto out_fail;
3417
3418 if (new_inode) {
3419 new_inode->i_ctime = CURRENT_TIME;
3420 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
3421 if (ret)
3422 goto out_fail;
3423 if (new_inode->i_nlink == 0) {
3424 ret = btrfs_orphan_add(trans, new_inode);
3425 if (ret)
3426 goto out_fail;
3427 }
3428 }
3429 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3430 if (ret)
3431 goto out_fail;
3432
3433 ret = btrfs_add_link(trans, new_dentry, old_inode, 1, index);
3434 if (ret)
3435 goto out_fail;
3436
3437 out_fail:
3438 btrfs_end_transaction_throttle(trans, root);
3439 out_unlock:
3440 return ret;
3441 }
3442
3443 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3444 {
3445 struct list_head *head = &root->fs_info->delalloc_inodes;
3446 struct btrfs_inode *binode;
3447 unsigned long flags;
3448
3449 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3450 while(!list_empty(head)) {
3451 binode = list_entry(head->next, struct btrfs_inode,
3452 delalloc_inodes);
3453 atomic_inc(&binode->vfs_inode.i_count);
3454 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3455 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3456 iput(&binode->vfs_inode);
3457 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3458 }
3459 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3460 return 0;
3461 }
3462
3463 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3464 const char *symname)
3465 {
3466 struct btrfs_trans_handle *trans;
3467 struct btrfs_root *root = BTRFS_I(dir)->root;
3468 struct btrfs_path *path;
3469 struct btrfs_key key;
3470 struct inode *inode = NULL;
3471 int err;
3472 int drop_inode = 0;
3473 u64 objectid;
3474 u64 index = 0 ;
3475 int name_len;
3476 int datasize;
3477 unsigned long ptr;
3478 struct btrfs_file_extent_item *ei;
3479 struct extent_buffer *leaf;
3480 unsigned long nr = 0;
3481
3482 name_len = strlen(symname) + 1;
3483 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3484 return -ENAMETOOLONG;
3485
3486 err = btrfs_check_free_space(root, 1, 0);
3487 if (err)
3488 goto out_fail;
3489
3490 trans = btrfs_start_transaction(root, 1);
3491 btrfs_set_trans_block_group(trans, dir);
3492
3493 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3494 if (err) {
3495 err = -ENOSPC;
3496 goto out_unlock;
3497 }
3498
3499 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3500 dentry->d_name.len,
3501 dentry->d_parent->d_inode->i_ino, objectid,
3502 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3503 &index);
3504 err = PTR_ERR(inode);
3505 if (IS_ERR(inode))
3506 goto out_unlock;
3507
3508 err = btrfs_init_acl(inode, dir);
3509 if (err) {
3510 drop_inode = 1;
3511 goto out_unlock;
3512 }
3513
3514 btrfs_set_trans_block_group(trans, inode);
3515 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3516 if (err)
3517 drop_inode = 1;
3518 else {
3519 inode->i_mapping->a_ops = &btrfs_aops;
3520 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3521 inode->i_fop = &btrfs_file_operations;
3522 inode->i_op = &btrfs_file_inode_operations;
3523 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3524 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3525 inode->i_mapping, GFP_NOFS);
3526 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3527 inode->i_mapping, GFP_NOFS);
3528 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3529 mutex_init(&BTRFS_I(inode)->csum_mutex);
3530 mutex_init(&BTRFS_I(inode)->extent_mutex);
3531 BTRFS_I(inode)->delalloc_bytes = 0;
3532 BTRFS_I(inode)->disk_i_size = 0;
3533 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3534 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3535 }
3536 dir->i_sb->s_dirt = 1;
3537 btrfs_update_inode_block_group(trans, inode);
3538 btrfs_update_inode_block_group(trans, dir);
3539 if (drop_inode)
3540 goto out_unlock;
3541
3542 path = btrfs_alloc_path();
3543 BUG_ON(!path);
3544 key.objectid = inode->i_ino;
3545 key.offset = 0;
3546 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3547 datasize = btrfs_file_extent_calc_inline_size(name_len);
3548 err = btrfs_insert_empty_item(trans, root, path, &key,
3549 datasize);
3550 if (err) {
3551 drop_inode = 1;
3552 goto out_unlock;
3553 }
3554 leaf = path->nodes[0];
3555 ei = btrfs_item_ptr(leaf, path->slots[0],
3556 struct btrfs_file_extent_item);
3557 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3558 btrfs_set_file_extent_type(leaf, ei,
3559 BTRFS_FILE_EXTENT_INLINE);
3560 ptr = btrfs_file_extent_inline_start(ei);
3561 write_extent_buffer(leaf, symname, ptr, name_len);
3562 btrfs_mark_buffer_dirty(leaf);
3563 btrfs_free_path(path);
3564
3565 inode->i_op = &btrfs_symlink_inode_operations;
3566 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3567 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3568 btrfs_i_size_write(inode, name_len - 1);
3569 err = btrfs_update_inode(trans, root, inode);
3570 if (err)
3571 drop_inode = 1;
3572
3573 out_unlock:
3574 nr = trans->blocks_used;
3575 btrfs_end_transaction_throttle(trans, root);
3576 out_fail:
3577 if (drop_inode) {
3578 inode_dec_link_count(inode);
3579 iput(inode);
3580 }
3581 btrfs_btree_balance_dirty(root, nr);
3582 return err;
3583 }
3584
3585 static int btrfs_set_page_dirty(struct page *page)
3586 {
3587 return __set_page_dirty_nobuffers(page);
3588 }
3589
3590 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3591 static int btrfs_permission(struct inode *inode, int mask)
3592 #else
3593 static int btrfs_permission(struct inode *inode, int mask,
3594 struct nameidata *nd)
3595 #endif
3596 {
3597 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3598 return -EACCES;
3599 return generic_permission(inode, mask, btrfs_check_acl);
3600 }
3601
3602 static struct inode_operations btrfs_dir_inode_operations = {
3603 .lookup = btrfs_lookup,
3604 .create = btrfs_create,
3605 .unlink = btrfs_unlink,
3606 .link = btrfs_link,
3607 .mkdir = btrfs_mkdir,
3608 .rmdir = btrfs_rmdir,
3609 .rename = btrfs_rename,
3610 .symlink = btrfs_symlink,
3611 .setattr = btrfs_setattr,
3612 .mknod = btrfs_mknod,
3613 .setxattr = generic_setxattr,
3614 .getxattr = generic_getxattr,
3615 .listxattr = btrfs_listxattr,
3616 .removexattr = generic_removexattr,
3617 .permission = btrfs_permission,
3618 };
3619 static struct inode_operations btrfs_dir_ro_inode_operations = {
3620 .lookup = btrfs_lookup,
3621 .permission = btrfs_permission,
3622 };
3623 static struct file_operations btrfs_dir_file_operations = {
3624 .llseek = generic_file_llseek,
3625 .read = generic_read_dir,
3626 .readdir = btrfs_readdir,
3627 .unlocked_ioctl = btrfs_ioctl,
3628 #ifdef CONFIG_COMPAT
3629 .compat_ioctl = btrfs_ioctl,
3630 #endif
3631 .release = btrfs_release_file,
3632 };
3633
3634 static struct extent_io_ops btrfs_extent_io_ops = {
3635 .fill_delalloc = run_delalloc_range,
3636 .submit_bio_hook = btrfs_submit_bio_hook,
3637 .merge_bio_hook = btrfs_merge_bio_hook,
3638 .readpage_io_hook = btrfs_readpage_io_hook,
3639 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3640 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3641 .writepage_start_hook = btrfs_writepage_start_hook,
3642 .readpage_io_failed_hook = btrfs_io_failed_hook,
3643 .set_bit_hook = btrfs_set_bit_hook,
3644 .clear_bit_hook = btrfs_clear_bit_hook,
3645 };
3646
3647 static struct address_space_operations btrfs_aops = {
3648 .readpage = btrfs_readpage,
3649 .writepage = btrfs_writepage,
3650 .writepages = btrfs_writepages,
3651 .readpages = btrfs_readpages,
3652 .sync_page = block_sync_page,
3653 .bmap = btrfs_bmap,
3654 .direct_IO = btrfs_direct_IO,
3655 .invalidatepage = btrfs_invalidatepage,
3656 .releasepage = btrfs_releasepage,
3657 .set_page_dirty = btrfs_set_page_dirty,
3658 };
3659
3660 static struct address_space_operations btrfs_symlink_aops = {
3661 .readpage = btrfs_readpage,
3662 .writepage = btrfs_writepage,
3663 .invalidatepage = btrfs_invalidatepage,
3664 .releasepage = btrfs_releasepage,
3665 };
3666
3667 static struct inode_operations btrfs_file_inode_operations = {
3668 .truncate = btrfs_truncate,
3669 .getattr = btrfs_getattr,
3670 .setattr = btrfs_setattr,
3671 .setxattr = generic_setxattr,
3672 .getxattr = generic_getxattr,
3673 .listxattr = btrfs_listxattr,
3674 .removexattr = generic_removexattr,
3675 .permission = btrfs_permission,
3676 };
3677 static struct inode_operations btrfs_special_inode_operations = {
3678 .getattr = btrfs_getattr,
3679 .setattr = btrfs_setattr,
3680 .permission = btrfs_permission,
3681 .setxattr = generic_setxattr,
3682 .getxattr = generic_getxattr,
3683 .listxattr = btrfs_listxattr,
3684 .removexattr = generic_removexattr,
3685 };
3686 static struct inode_operations btrfs_symlink_inode_operations = {
3687 .readlink = generic_readlink,
3688 .follow_link = page_follow_link_light,
3689 .put_link = page_put_link,
3690 .permission = btrfs_permission,
3691 };
This page took 0.170496 seconds and 6 git commands to generate.