Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62
63 struct btrfs_iget_args {
64 struct btrfs_key *location;
65 struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
114 {
115 int err;
116
117 err = btrfs_init_acl(trans, inode, dir);
118 if (!err)
119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120 return err;
121 }
122
123 /*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129 struct btrfs_path *path, int extent_inserted,
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
132 int compress_type,
133 struct page **compressed_pages)
134 {
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
143 unsigned long offset;
144
145 if (compressed_size && compressed_pages)
146 cur_size = compressed_size;
147
148 inode_add_bytes(inode, size);
149
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
153
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
156 key.type = BTRFS_EXTENT_DATA_KEY;
157
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
177 if (compress_type != BTRFS_COMPRESS_NONE) {
178 struct page *cpage;
179 int i = 0;
180 while (compressed_size > 0) {
181 cpage = compressed_pages[i];
182 cur_size = min_t(unsigned long, compressed_size,
183 PAGE_CACHE_SIZE);
184
185 kaddr = kmap_atomic(cpage);
186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 kunmap_atomic(kaddr);
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
194 compress_type);
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
199 kaddr = kmap_atomic(page);
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 kunmap_atomic(kaddr);
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_release_path(path);
207
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
217 BTRFS_I(inode)->disk_i_size = inode->i_size;
218 ret = btrfs_update_inode(trans, root, inode);
219
220 return ret;
221 fail:
222 return err;
223 }
224
225
226 /*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
236 {
237 struct btrfs_trans_handle *trans;
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
241 u64 aligned_end = ALIGN(end, root->sectorsize);
242 u64 data_len = inline_len;
243 int ret;
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
252 actual_end > PAGE_CACHE_SIZE ||
253 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
265 trans = btrfs_join_transaction(root);
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
268 return PTR_ERR(trans);
269 }
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
291 inline_len, compressed_size,
292 compress_type, compressed_pages);
293 if (ret && ret != -ENOSPC) {
294 btrfs_abort_transaction(trans, root, ret);
295 goto out;
296 } else if (ret == -ENOSPC) {
297 ret = 1;
298 goto out;
299 }
300
301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305 btrfs_free_path(path);
306 btrfs_end_transaction(trans, root);
307 return ret;
308 }
309
310 struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
316 int compress_type;
317 struct list_head list;
318 };
319
320 struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328 };
329
330 static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
334 unsigned long nr_pages,
335 int compress_type)
336 {
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340 BUG_ON(!async_extent); /* -ENOMEM */
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
346 async_extent->compress_type = compress_type;
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349 }
350
351 static inline int inode_need_compress(struct inode *inode)
352 {
353 struct btrfs_root *root = BTRFS_I(inode)->root;
354
355 /* force compress */
356 if (btrfs_test_opt(root, FORCE_COMPRESS))
357 return 1;
358 /* bad compression ratios */
359 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360 return 0;
361 if (btrfs_test_opt(root, COMPRESS) ||
362 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363 BTRFS_I(inode)->force_compress)
364 return 1;
365 return 0;
366 }
367
368 /*
369 * we create compressed extents in two phases. The first
370 * phase compresses a range of pages that have already been
371 * locked (both pages and state bits are locked).
372 *
373 * This is done inside an ordered work queue, and the compression
374 * is spread across many cpus. The actual IO submission is step
375 * two, and the ordered work queue takes care of making sure that
376 * happens in the same order things were put onto the queue by
377 * writepages and friends.
378 *
379 * If this code finds it can't get good compression, it puts an
380 * entry onto the work queue to write the uncompressed bytes. This
381 * makes sure that both compressed inodes and uncompressed inodes
382 * are written in the same order that the flusher thread sent them
383 * down.
384 */
385 static noinline void compress_file_range(struct inode *inode,
386 struct page *locked_page,
387 u64 start, u64 end,
388 struct async_cow *async_cow,
389 int *num_added)
390 {
391 struct btrfs_root *root = BTRFS_I(inode)->root;
392 u64 num_bytes;
393 u64 blocksize = root->sectorsize;
394 u64 actual_end;
395 u64 isize = i_size_read(inode);
396 int ret = 0;
397 struct page **pages = NULL;
398 unsigned long nr_pages;
399 unsigned long nr_pages_ret = 0;
400 unsigned long total_compressed = 0;
401 unsigned long total_in = 0;
402 unsigned long max_compressed = 128 * 1024;
403 unsigned long max_uncompressed = 128 * 1024;
404 int i;
405 int will_compress;
406 int compress_type = root->fs_info->compress_type;
407 int redirty = 0;
408
409 /* if this is a small write inside eof, kick off a defrag */
410 if ((end - start + 1) < 16 * 1024 &&
411 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
412 btrfs_add_inode_defrag(NULL, inode);
413
414 actual_end = min_t(u64, isize, end + 1);
415 again:
416 will_compress = 0;
417 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
418 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
419
420 /*
421 * we don't want to send crud past the end of i_size through
422 * compression, that's just a waste of CPU time. So, if the
423 * end of the file is before the start of our current
424 * requested range of bytes, we bail out to the uncompressed
425 * cleanup code that can deal with all of this.
426 *
427 * It isn't really the fastest way to fix things, but this is a
428 * very uncommon corner.
429 */
430 if (actual_end <= start)
431 goto cleanup_and_bail_uncompressed;
432
433 total_compressed = actual_end - start;
434
435 /*
436 * skip compression for a small file range(<=blocksize) that
437 * isn't an inline extent, since it dosen't save disk space at all.
438 */
439 if (total_compressed <= blocksize &&
440 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
441 goto cleanup_and_bail_uncompressed;
442
443 /* we want to make sure that amount of ram required to uncompress
444 * an extent is reasonable, so we limit the total size in ram
445 * of a compressed extent to 128k. This is a crucial number
446 * because it also controls how easily we can spread reads across
447 * cpus for decompression.
448 *
449 * We also want to make sure the amount of IO required to do
450 * a random read is reasonably small, so we limit the size of
451 * a compressed extent to 128k.
452 */
453 total_compressed = min(total_compressed, max_uncompressed);
454 num_bytes = ALIGN(end - start + 1, blocksize);
455 num_bytes = max(blocksize, num_bytes);
456 total_in = 0;
457 ret = 0;
458
459 /*
460 * we do compression for mount -o compress and when the
461 * inode has not been flagged as nocompress. This flag can
462 * change at any time if we discover bad compression ratios.
463 */
464 if (inode_need_compress(inode)) {
465 WARN_ON(pages);
466 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
467 if (!pages) {
468 /* just bail out to the uncompressed code */
469 goto cont;
470 }
471
472 if (BTRFS_I(inode)->force_compress)
473 compress_type = BTRFS_I(inode)->force_compress;
474
475 /*
476 * we need to call clear_page_dirty_for_io on each
477 * page in the range. Otherwise applications with the file
478 * mmap'd can wander in and change the page contents while
479 * we are compressing them.
480 *
481 * If the compression fails for any reason, we set the pages
482 * dirty again later on.
483 */
484 extent_range_clear_dirty_for_io(inode, start, end);
485 redirty = 1;
486 ret = btrfs_compress_pages(compress_type,
487 inode->i_mapping, start,
488 total_compressed, pages,
489 nr_pages, &nr_pages_ret,
490 &total_in,
491 &total_compressed,
492 max_compressed);
493
494 if (!ret) {
495 unsigned long offset = total_compressed &
496 (PAGE_CACHE_SIZE - 1);
497 struct page *page = pages[nr_pages_ret - 1];
498 char *kaddr;
499
500 /* zero the tail end of the last page, we might be
501 * sending it down to disk
502 */
503 if (offset) {
504 kaddr = kmap_atomic(page);
505 memset(kaddr + offset, 0,
506 PAGE_CACHE_SIZE - offset);
507 kunmap_atomic(kaddr);
508 }
509 will_compress = 1;
510 }
511 }
512 cont:
513 if (start == 0) {
514 /* lets try to make an inline extent */
515 if (ret || total_in < (actual_end - start)) {
516 /* we didn't compress the entire range, try
517 * to make an uncompressed inline extent.
518 */
519 ret = cow_file_range_inline(root, inode, start, end,
520 0, 0, NULL);
521 } else {
522 /* try making a compressed inline extent */
523 ret = cow_file_range_inline(root, inode, start, end,
524 total_compressed,
525 compress_type, pages);
526 }
527 if (ret <= 0) {
528 unsigned long clear_flags = EXTENT_DELALLOC |
529 EXTENT_DEFRAG;
530 unsigned long page_error_op;
531
532 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
533 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
534
535 /*
536 * inline extent creation worked or returned error,
537 * we don't need to create any more async work items.
538 * Unlock and free up our temp pages.
539 */
540 extent_clear_unlock_delalloc(inode, start, end, NULL,
541 clear_flags, PAGE_UNLOCK |
542 PAGE_CLEAR_DIRTY |
543 PAGE_SET_WRITEBACK |
544 page_error_op |
545 PAGE_END_WRITEBACK);
546 goto free_pages_out;
547 }
548 }
549
550 if (will_compress) {
551 /*
552 * we aren't doing an inline extent round the compressed size
553 * up to a block size boundary so the allocator does sane
554 * things
555 */
556 total_compressed = ALIGN(total_compressed, blocksize);
557
558 /*
559 * one last check to make sure the compression is really a
560 * win, compare the page count read with the blocks on disk
561 */
562 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
563 if (total_compressed >= total_in) {
564 will_compress = 0;
565 } else {
566 num_bytes = total_in;
567 }
568 }
569 if (!will_compress && pages) {
570 /*
571 * the compression code ran but failed to make things smaller,
572 * free any pages it allocated and our page pointer array
573 */
574 for (i = 0; i < nr_pages_ret; i++) {
575 WARN_ON(pages[i]->mapping);
576 page_cache_release(pages[i]);
577 }
578 kfree(pages);
579 pages = NULL;
580 total_compressed = 0;
581 nr_pages_ret = 0;
582
583 /* flag the file so we don't compress in the future */
584 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
585 !(BTRFS_I(inode)->force_compress)) {
586 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
587 }
588 }
589 if (will_compress) {
590 *num_added += 1;
591
592 /* the async work queues will take care of doing actual
593 * allocation on disk for these compressed pages,
594 * and will submit them to the elevator.
595 */
596 add_async_extent(async_cow, start, num_bytes,
597 total_compressed, pages, nr_pages_ret,
598 compress_type);
599
600 if (start + num_bytes < end) {
601 start += num_bytes;
602 pages = NULL;
603 cond_resched();
604 goto again;
605 }
606 } else {
607 cleanup_and_bail_uncompressed:
608 /*
609 * No compression, but we still need to write the pages in
610 * the file we've been given so far. redirty the locked
611 * page if it corresponds to our extent and set things up
612 * for the async work queue to run cow_file_range to do
613 * the normal delalloc dance
614 */
615 if (page_offset(locked_page) >= start &&
616 page_offset(locked_page) <= end) {
617 __set_page_dirty_nobuffers(locked_page);
618 /* unlocked later on in the async handlers */
619 }
620 if (redirty)
621 extent_range_redirty_for_io(inode, start, end);
622 add_async_extent(async_cow, start, end - start + 1,
623 0, NULL, 0, BTRFS_COMPRESS_NONE);
624 *num_added += 1;
625 }
626
627 return;
628
629 free_pages_out:
630 for (i = 0; i < nr_pages_ret; i++) {
631 WARN_ON(pages[i]->mapping);
632 page_cache_release(pages[i]);
633 }
634 kfree(pages);
635 }
636
637 static void free_async_extent_pages(struct async_extent *async_extent)
638 {
639 int i;
640
641 if (!async_extent->pages)
642 return;
643
644 for (i = 0; i < async_extent->nr_pages; i++) {
645 WARN_ON(async_extent->pages[i]->mapping);
646 page_cache_release(async_extent->pages[i]);
647 }
648 kfree(async_extent->pages);
649 async_extent->nr_pages = 0;
650 async_extent->pages = NULL;
651 }
652
653 /*
654 * phase two of compressed writeback. This is the ordered portion
655 * of the code, which only gets called in the order the work was
656 * queued. We walk all the async extents created by compress_file_range
657 * and send them down to the disk.
658 */
659 static noinline void submit_compressed_extents(struct inode *inode,
660 struct async_cow *async_cow)
661 {
662 struct async_extent *async_extent;
663 u64 alloc_hint = 0;
664 struct btrfs_key ins;
665 struct extent_map *em;
666 struct btrfs_root *root = BTRFS_I(inode)->root;
667 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
668 struct extent_io_tree *io_tree;
669 int ret = 0;
670
671 again:
672 while (!list_empty(&async_cow->extents)) {
673 async_extent = list_entry(async_cow->extents.next,
674 struct async_extent, list);
675 list_del(&async_extent->list);
676
677 io_tree = &BTRFS_I(inode)->io_tree;
678
679 retry:
680 /* did the compression code fall back to uncompressed IO? */
681 if (!async_extent->pages) {
682 int page_started = 0;
683 unsigned long nr_written = 0;
684
685 lock_extent(io_tree, async_extent->start,
686 async_extent->start +
687 async_extent->ram_size - 1);
688
689 /* allocate blocks */
690 ret = cow_file_range(inode, async_cow->locked_page,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 &page_started, &nr_written, 0);
695
696 /* JDM XXX */
697
698 /*
699 * if page_started, cow_file_range inserted an
700 * inline extent and took care of all the unlocking
701 * and IO for us. Otherwise, we need to submit
702 * all those pages down to the drive.
703 */
704 if (!page_started && !ret)
705 extent_write_locked_range(io_tree,
706 inode, async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1,
709 btrfs_get_extent,
710 WB_SYNC_ALL);
711 else if (ret)
712 unlock_page(async_cow->locked_page);
713 kfree(async_extent);
714 cond_resched();
715 continue;
716 }
717
718 lock_extent(io_tree, async_extent->start,
719 async_extent->start + async_extent->ram_size - 1);
720
721 ret = btrfs_reserve_extent(root,
722 async_extent->compressed_size,
723 async_extent->compressed_size,
724 0, alloc_hint, &ins, 1, 1);
725 if (ret) {
726 free_async_extent_pages(async_extent);
727
728 if (ret == -ENOSPC) {
729 unlock_extent(io_tree, async_extent->start,
730 async_extent->start +
731 async_extent->ram_size - 1);
732
733 /*
734 * we need to redirty the pages if we decide to
735 * fallback to uncompressed IO, otherwise we
736 * will not submit these pages down to lower
737 * layers.
738 */
739 extent_range_redirty_for_io(inode,
740 async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1);
743
744 goto retry;
745 }
746 goto out_free;
747 }
748
749 /*
750 * here we're doing allocation and writeback of the
751 * compressed pages
752 */
753 btrfs_drop_extent_cache(inode, async_extent->start,
754 async_extent->start +
755 async_extent->ram_size - 1, 0);
756
757 em = alloc_extent_map();
758 if (!em) {
759 ret = -ENOMEM;
760 goto out_free_reserve;
761 }
762 em->start = async_extent->start;
763 em->len = async_extent->ram_size;
764 em->orig_start = em->start;
765 em->mod_start = em->start;
766 em->mod_len = em->len;
767
768 em->block_start = ins.objectid;
769 em->block_len = ins.offset;
770 em->orig_block_len = ins.offset;
771 em->ram_bytes = async_extent->ram_size;
772 em->bdev = root->fs_info->fs_devices->latest_bdev;
773 em->compress_type = async_extent->compress_type;
774 set_bit(EXTENT_FLAG_PINNED, &em->flags);
775 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
776 em->generation = -1;
777
778 while (1) {
779 write_lock(&em_tree->lock);
780 ret = add_extent_mapping(em_tree, em, 1);
781 write_unlock(&em_tree->lock);
782 if (ret != -EEXIST) {
783 free_extent_map(em);
784 break;
785 }
786 btrfs_drop_extent_cache(inode, async_extent->start,
787 async_extent->start +
788 async_extent->ram_size - 1, 0);
789 }
790
791 if (ret)
792 goto out_free_reserve;
793
794 ret = btrfs_add_ordered_extent_compress(inode,
795 async_extent->start,
796 ins.objectid,
797 async_extent->ram_size,
798 ins.offset,
799 BTRFS_ORDERED_COMPRESSED,
800 async_extent->compress_type);
801 if (ret) {
802 btrfs_drop_extent_cache(inode, async_extent->start,
803 async_extent->start +
804 async_extent->ram_size - 1, 0);
805 goto out_free_reserve;
806 }
807
808 /*
809 * clear dirty, set writeback and unlock the pages.
810 */
811 extent_clear_unlock_delalloc(inode, async_extent->start,
812 async_extent->start +
813 async_extent->ram_size - 1,
814 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
815 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
816 PAGE_SET_WRITEBACK);
817 ret = btrfs_submit_compressed_write(inode,
818 async_extent->start,
819 async_extent->ram_size,
820 ins.objectid,
821 ins.offset, async_extent->pages,
822 async_extent->nr_pages);
823 if (ret) {
824 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
825 struct page *p = async_extent->pages[0];
826 const u64 start = async_extent->start;
827 const u64 end = start + async_extent->ram_size - 1;
828
829 p->mapping = inode->i_mapping;
830 tree->ops->writepage_end_io_hook(p, start, end,
831 NULL, 0);
832 p->mapping = NULL;
833 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
834 PAGE_END_WRITEBACK |
835 PAGE_SET_ERROR);
836 free_async_extent_pages(async_extent);
837 }
838 alloc_hint = ins.objectid + ins.offset;
839 kfree(async_extent);
840 cond_resched();
841 }
842 return;
843 out_free_reserve:
844 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
845 out_free:
846 extent_clear_unlock_delalloc(inode, async_extent->start,
847 async_extent->start +
848 async_extent->ram_size - 1,
849 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
850 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
852 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
853 PAGE_SET_ERROR);
854 free_async_extent_pages(async_extent);
855 kfree(async_extent);
856 goto again;
857 }
858
859 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
860 u64 num_bytes)
861 {
862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863 struct extent_map *em;
864 u64 alloc_hint = 0;
865
866 read_lock(&em_tree->lock);
867 em = search_extent_mapping(em_tree, start, num_bytes);
868 if (em) {
869 /*
870 * if block start isn't an actual block number then find the
871 * first block in this inode and use that as a hint. If that
872 * block is also bogus then just don't worry about it.
873 */
874 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
875 free_extent_map(em);
876 em = search_extent_mapping(em_tree, 0, 0);
877 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
878 alloc_hint = em->block_start;
879 if (em)
880 free_extent_map(em);
881 } else {
882 alloc_hint = em->block_start;
883 free_extent_map(em);
884 }
885 }
886 read_unlock(&em_tree->lock);
887
888 return alloc_hint;
889 }
890
891 /*
892 * when extent_io.c finds a delayed allocation range in the file,
893 * the call backs end up in this code. The basic idea is to
894 * allocate extents on disk for the range, and create ordered data structs
895 * in ram to track those extents.
896 *
897 * locked_page is the page that writepage had locked already. We use
898 * it to make sure we don't do extra locks or unlocks.
899 *
900 * *page_started is set to one if we unlock locked_page and do everything
901 * required to start IO on it. It may be clean and already done with
902 * IO when we return.
903 */
904 static noinline int cow_file_range(struct inode *inode,
905 struct page *locked_page,
906 u64 start, u64 end, int *page_started,
907 unsigned long *nr_written,
908 int unlock)
909 {
910 struct btrfs_root *root = BTRFS_I(inode)->root;
911 u64 alloc_hint = 0;
912 u64 num_bytes;
913 unsigned long ram_size;
914 u64 disk_num_bytes;
915 u64 cur_alloc_size;
916 u64 blocksize = root->sectorsize;
917 struct btrfs_key ins;
918 struct extent_map *em;
919 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
920 int ret = 0;
921
922 if (btrfs_is_free_space_inode(inode)) {
923 WARN_ON_ONCE(1);
924 ret = -EINVAL;
925 goto out_unlock;
926 }
927
928 num_bytes = ALIGN(end - start + 1, blocksize);
929 num_bytes = max(blocksize, num_bytes);
930 disk_num_bytes = num_bytes;
931
932 /* if this is a small write inside eof, kick off defrag */
933 if (num_bytes < 64 * 1024 &&
934 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
935 btrfs_add_inode_defrag(NULL, inode);
936
937 if (start == 0) {
938 /* lets try to make an inline extent */
939 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
940 NULL);
941 if (ret == 0) {
942 extent_clear_unlock_delalloc(inode, start, end, NULL,
943 EXTENT_LOCKED | EXTENT_DELALLOC |
944 EXTENT_DEFRAG, PAGE_UNLOCK |
945 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
946 PAGE_END_WRITEBACK);
947
948 *nr_written = *nr_written +
949 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
950 *page_started = 1;
951 goto out;
952 } else if (ret < 0) {
953 goto out_unlock;
954 }
955 }
956
957 BUG_ON(disk_num_bytes >
958 btrfs_super_total_bytes(root->fs_info->super_copy));
959
960 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
961 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
962
963 while (disk_num_bytes > 0) {
964 unsigned long op;
965
966 cur_alloc_size = disk_num_bytes;
967 ret = btrfs_reserve_extent(root, cur_alloc_size,
968 root->sectorsize, 0, alloc_hint,
969 &ins, 1, 1);
970 if (ret < 0)
971 goto out_unlock;
972
973 em = alloc_extent_map();
974 if (!em) {
975 ret = -ENOMEM;
976 goto out_reserve;
977 }
978 em->start = start;
979 em->orig_start = em->start;
980 ram_size = ins.offset;
981 em->len = ins.offset;
982 em->mod_start = em->start;
983 em->mod_len = em->len;
984
985 em->block_start = ins.objectid;
986 em->block_len = ins.offset;
987 em->orig_block_len = ins.offset;
988 em->ram_bytes = ram_size;
989 em->bdev = root->fs_info->fs_devices->latest_bdev;
990 set_bit(EXTENT_FLAG_PINNED, &em->flags);
991 em->generation = -1;
992
993 while (1) {
994 write_lock(&em_tree->lock);
995 ret = add_extent_mapping(em_tree, em, 1);
996 write_unlock(&em_tree->lock);
997 if (ret != -EEXIST) {
998 free_extent_map(em);
999 break;
1000 }
1001 btrfs_drop_extent_cache(inode, start,
1002 start + ram_size - 1, 0);
1003 }
1004 if (ret)
1005 goto out_reserve;
1006
1007 cur_alloc_size = ins.offset;
1008 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1009 ram_size, cur_alloc_size, 0);
1010 if (ret)
1011 goto out_drop_extent_cache;
1012
1013 if (root->root_key.objectid ==
1014 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1015 ret = btrfs_reloc_clone_csums(inode, start,
1016 cur_alloc_size);
1017 if (ret)
1018 goto out_drop_extent_cache;
1019 }
1020
1021 if (disk_num_bytes < cur_alloc_size)
1022 break;
1023
1024 /* we're not doing compressed IO, don't unlock the first
1025 * page (which the caller expects to stay locked), don't
1026 * clear any dirty bits and don't set any writeback bits
1027 *
1028 * Do set the Private2 bit so we know this page was properly
1029 * setup for writepage
1030 */
1031 op = unlock ? PAGE_UNLOCK : 0;
1032 op |= PAGE_SET_PRIVATE2;
1033
1034 extent_clear_unlock_delalloc(inode, start,
1035 start + ram_size - 1, locked_page,
1036 EXTENT_LOCKED | EXTENT_DELALLOC,
1037 op);
1038 disk_num_bytes -= cur_alloc_size;
1039 num_bytes -= cur_alloc_size;
1040 alloc_hint = ins.objectid + ins.offset;
1041 start += cur_alloc_size;
1042 }
1043 out:
1044 return ret;
1045
1046 out_drop_extent_cache:
1047 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1048 out_reserve:
1049 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1050 out_unlock:
1051 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1052 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1053 EXTENT_DELALLOC | EXTENT_DEFRAG,
1054 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1055 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1056 goto out;
1057 }
1058
1059 /*
1060 * work queue call back to started compression on a file and pages
1061 */
1062 static noinline void async_cow_start(struct btrfs_work *work)
1063 {
1064 struct async_cow *async_cow;
1065 int num_added = 0;
1066 async_cow = container_of(work, struct async_cow, work);
1067
1068 compress_file_range(async_cow->inode, async_cow->locked_page,
1069 async_cow->start, async_cow->end, async_cow,
1070 &num_added);
1071 if (num_added == 0) {
1072 btrfs_add_delayed_iput(async_cow->inode);
1073 async_cow->inode = NULL;
1074 }
1075 }
1076
1077 /*
1078 * work queue call back to submit previously compressed pages
1079 */
1080 static noinline void async_cow_submit(struct btrfs_work *work)
1081 {
1082 struct async_cow *async_cow;
1083 struct btrfs_root *root;
1084 unsigned long nr_pages;
1085
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 root = async_cow->root;
1089 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1090 PAGE_CACHE_SHIFT;
1091
1092 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1093 5 * 1024 * 1024 &&
1094 waitqueue_active(&root->fs_info->async_submit_wait))
1095 wake_up(&root->fs_info->async_submit_wait);
1096
1097 if (async_cow->inode)
1098 submit_compressed_extents(async_cow->inode, async_cow);
1099 }
1100
1101 static noinline void async_cow_free(struct btrfs_work *work)
1102 {
1103 struct async_cow *async_cow;
1104 async_cow = container_of(work, struct async_cow, work);
1105 if (async_cow->inode)
1106 btrfs_add_delayed_iput(async_cow->inode);
1107 kfree(async_cow);
1108 }
1109
1110 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1111 u64 start, u64 end, int *page_started,
1112 unsigned long *nr_written)
1113 {
1114 struct async_cow *async_cow;
1115 struct btrfs_root *root = BTRFS_I(inode)->root;
1116 unsigned long nr_pages;
1117 u64 cur_end;
1118 int limit = 10 * 1024 * 1024;
1119
1120 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1121 1, 0, NULL, GFP_NOFS);
1122 while (start < end) {
1123 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1124 BUG_ON(!async_cow); /* -ENOMEM */
1125 async_cow->inode = igrab(inode);
1126 async_cow->root = root;
1127 async_cow->locked_page = locked_page;
1128 async_cow->start = start;
1129
1130 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1131 !btrfs_test_opt(root, FORCE_COMPRESS))
1132 cur_end = end;
1133 else
1134 cur_end = min(end, start + 512 * 1024 - 1);
1135
1136 async_cow->end = cur_end;
1137 INIT_LIST_HEAD(&async_cow->extents);
1138
1139 btrfs_init_work(&async_cow->work,
1140 btrfs_delalloc_helper,
1141 async_cow_start, async_cow_submit,
1142 async_cow_free);
1143
1144 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1145 PAGE_CACHE_SHIFT;
1146 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1147
1148 btrfs_queue_work(root->fs_info->delalloc_workers,
1149 &async_cow->work);
1150
1151 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1152 wait_event(root->fs_info->async_submit_wait,
1153 (atomic_read(&root->fs_info->async_delalloc_pages) <
1154 limit));
1155 }
1156
1157 while (atomic_read(&root->fs_info->async_submit_draining) &&
1158 atomic_read(&root->fs_info->async_delalloc_pages)) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1161 0));
1162 }
1163
1164 *nr_written += nr_pages;
1165 start = cur_end + 1;
1166 }
1167 *page_started = 1;
1168 return 0;
1169 }
1170
1171 static noinline int csum_exist_in_range(struct btrfs_root *root,
1172 u64 bytenr, u64 num_bytes)
1173 {
1174 int ret;
1175 struct btrfs_ordered_sum *sums;
1176 LIST_HEAD(list);
1177
1178 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1179 bytenr + num_bytes - 1, &list, 0);
1180 if (ret == 0 && list_empty(&list))
1181 return 0;
1182
1183 while (!list_empty(&list)) {
1184 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1185 list_del(&sums->list);
1186 kfree(sums);
1187 }
1188 return 1;
1189 }
1190
1191 /*
1192 * when nowcow writeback call back. This checks for snapshots or COW copies
1193 * of the extents that exist in the file, and COWs the file as required.
1194 *
1195 * If no cow copies or snapshots exist, we write directly to the existing
1196 * blocks on disk
1197 */
1198 static noinline int run_delalloc_nocow(struct inode *inode,
1199 struct page *locked_page,
1200 u64 start, u64 end, int *page_started, int force,
1201 unsigned long *nr_written)
1202 {
1203 struct btrfs_root *root = BTRFS_I(inode)->root;
1204 struct btrfs_trans_handle *trans;
1205 struct extent_buffer *leaf;
1206 struct btrfs_path *path;
1207 struct btrfs_file_extent_item *fi;
1208 struct btrfs_key found_key;
1209 u64 cow_start;
1210 u64 cur_offset;
1211 u64 extent_end;
1212 u64 extent_offset;
1213 u64 disk_bytenr;
1214 u64 num_bytes;
1215 u64 disk_num_bytes;
1216 u64 ram_bytes;
1217 int extent_type;
1218 int ret, err;
1219 int type;
1220 int nocow;
1221 int check_prev = 1;
1222 bool nolock;
1223 u64 ino = btrfs_ino(inode);
1224
1225 path = btrfs_alloc_path();
1226 if (!path) {
1227 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1228 EXTENT_LOCKED | EXTENT_DELALLOC |
1229 EXTENT_DO_ACCOUNTING |
1230 EXTENT_DEFRAG, PAGE_UNLOCK |
1231 PAGE_CLEAR_DIRTY |
1232 PAGE_SET_WRITEBACK |
1233 PAGE_END_WRITEBACK);
1234 return -ENOMEM;
1235 }
1236
1237 nolock = btrfs_is_free_space_inode(inode);
1238
1239 if (nolock)
1240 trans = btrfs_join_transaction_nolock(root);
1241 else
1242 trans = btrfs_join_transaction(root);
1243
1244 if (IS_ERR(trans)) {
1245 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1246 EXTENT_LOCKED | EXTENT_DELALLOC |
1247 EXTENT_DO_ACCOUNTING |
1248 EXTENT_DEFRAG, PAGE_UNLOCK |
1249 PAGE_CLEAR_DIRTY |
1250 PAGE_SET_WRITEBACK |
1251 PAGE_END_WRITEBACK);
1252 btrfs_free_path(path);
1253 return PTR_ERR(trans);
1254 }
1255
1256 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1257
1258 cow_start = (u64)-1;
1259 cur_offset = start;
1260 while (1) {
1261 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1262 cur_offset, 0);
1263 if (ret < 0)
1264 goto error;
1265 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1266 leaf = path->nodes[0];
1267 btrfs_item_key_to_cpu(leaf, &found_key,
1268 path->slots[0] - 1);
1269 if (found_key.objectid == ino &&
1270 found_key.type == BTRFS_EXTENT_DATA_KEY)
1271 path->slots[0]--;
1272 }
1273 check_prev = 0;
1274 next_slot:
1275 leaf = path->nodes[0];
1276 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1277 ret = btrfs_next_leaf(root, path);
1278 if (ret < 0)
1279 goto error;
1280 if (ret > 0)
1281 break;
1282 leaf = path->nodes[0];
1283 }
1284
1285 nocow = 0;
1286 disk_bytenr = 0;
1287 num_bytes = 0;
1288 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1289
1290 if (found_key.objectid > ino ||
1291 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1292 found_key.offset > end)
1293 break;
1294
1295 if (found_key.offset > cur_offset) {
1296 extent_end = found_key.offset;
1297 extent_type = 0;
1298 goto out_check;
1299 }
1300
1301 fi = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_file_extent_item);
1303 extent_type = btrfs_file_extent_type(leaf, fi);
1304
1305 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1306 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1307 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1308 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1309 extent_offset = btrfs_file_extent_offset(leaf, fi);
1310 extent_end = found_key.offset +
1311 btrfs_file_extent_num_bytes(leaf, fi);
1312 disk_num_bytes =
1313 btrfs_file_extent_disk_num_bytes(leaf, fi);
1314 if (extent_end <= start) {
1315 path->slots[0]++;
1316 goto next_slot;
1317 }
1318 if (disk_bytenr == 0)
1319 goto out_check;
1320 if (btrfs_file_extent_compression(leaf, fi) ||
1321 btrfs_file_extent_encryption(leaf, fi) ||
1322 btrfs_file_extent_other_encoding(leaf, fi))
1323 goto out_check;
1324 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1325 goto out_check;
1326 if (btrfs_extent_readonly(root, disk_bytenr))
1327 goto out_check;
1328 if (btrfs_cross_ref_exist(trans, root, ino,
1329 found_key.offset -
1330 extent_offset, disk_bytenr))
1331 goto out_check;
1332 disk_bytenr += extent_offset;
1333 disk_bytenr += cur_offset - found_key.offset;
1334 num_bytes = min(end + 1, extent_end) - cur_offset;
1335 /*
1336 * if there are pending snapshots for this root,
1337 * we fall into common COW way.
1338 */
1339 if (!nolock) {
1340 err = btrfs_start_write_no_snapshoting(root);
1341 if (!err)
1342 goto out_check;
1343 }
1344 /*
1345 * force cow if csum exists in the range.
1346 * this ensure that csum for a given extent are
1347 * either valid or do not exist.
1348 */
1349 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1350 goto out_check;
1351 nocow = 1;
1352 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353 extent_end = found_key.offset +
1354 btrfs_file_extent_inline_len(leaf,
1355 path->slots[0], fi);
1356 extent_end = ALIGN(extent_end, root->sectorsize);
1357 } else {
1358 BUG_ON(1);
1359 }
1360 out_check:
1361 if (extent_end <= start) {
1362 path->slots[0]++;
1363 if (!nolock && nocow)
1364 btrfs_end_write_no_snapshoting(root);
1365 goto next_slot;
1366 }
1367 if (!nocow) {
1368 if (cow_start == (u64)-1)
1369 cow_start = cur_offset;
1370 cur_offset = extent_end;
1371 if (cur_offset > end)
1372 break;
1373 path->slots[0]++;
1374 goto next_slot;
1375 }
1376
1377 btrfs_release_path(path);
1378 if (cow_start != (u64)-1) {
1379 ret = cow_file_range(inode, locked_page,
1380 cow_start, found_key.offset - 1,
1381 page_started, nr_written, 1);
1382 if (ret) {
1383 if (!nolock && nocow)
1384 btrfs_end_write_no_snapshoting(root);
1385 goto error;
1386 }
1387 cow_start = (u64)-1;
1388 }
1389
1390 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1391 struct extent_map *em;
1392 struct extent_map_tree *em_tree;
1393 em_tree = &BTRFS_I(inode)->extent_tree;
1394 em = alloc_extent_map();
1395 BUG_ON(!em); /* -ENOMEM */
1396 em->start = cur_offset;
1397 em->orig_start = found_key.offset - extent_offset;
1398 em->len = num_bytes;
1399 em->block_len = num_bytes;
1400 em->block_start = disk_bytenr;
1401 em->orig_block_len = disk_num_bytes;
1402 em->ram_bytes = ram_bytes;
1403 em->bdev = root->fs_info->fs_devices->latest_bdev;
1404 em->mod_start = em->start;
1405 em->mod_len = em->len;
1406 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1407 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1408 em->generation = -1;
1409 while (1) {
1410 write_lock(&em_tree->lock);
1411 ret = add_extent_mapping(em_tree, em, 1);
1412 write_unlock(&em_tree->lock);
1413 if (ret != -EEXIST) {
1414 free_extent_map(em);
1415 break;
1416 }
1417 btrfs_drop_extent_cache(inode, em->start,
1418 em->start + em->len - 1, 0);
1419 }
1420 type = BTRFS_ORDERED_PREALLOC;
1421 } else {
1422 type = BTRFS_ORDERED_NOCOW;
1423 }
1424
1425 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1426 num_bytes, num_bytes, type);
1427 BUG_ON(ret); /* -ENOMEM */
1428
1429 if (root->root_key.objectid ==
1430 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1431 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1432 num_bytes);
1433 if (ret) {
1434 if (!nolock && nocow)
1435 btrfs_end_write_no_snapshoting(root);
1436 goto error;
1437 }
1438 }
1439
1440 extent_clear_unlock_delalloc(inode, cur_offset,
1441 cur_offset + num_bytes - 1,
1442 locked_page, EXTENT_LOCKED |
1443 EXTENT_DELALLOC, PAGE_UNLOCK |
1444 PAGE_SET_PRIVATE2);
1445 if (!nolock && nocow)
1446 btrfs_end_write_no_snapshoting(root);
1447 cur_offset = extent_end;
1448 if (cur_offset > end)
1449 break;
1450 }
1451 btrfs_release_path(path);
1452
1453 if (cur_offset <= end && cow_start == (u64)-1) {
1454 cow_start = cur_offset;
1455 cur_offset = end;
1456 }
1457
1458 if (cow_start != (u64)-1) {
1459 ret = cow_file_range(inode, locked_page, cow_start, end,
1460 page_started, nr_written, 1);
1461 if (ret)
1462 goto error;
1463 }
1464
1465 error:
1466 err = btrfs_end_transaction(trans, root);
1467 if (!ret)
1468 ret = err;
1469
1470 if (ret && cur_offset < end)
1471 extent_clear_unlock_delalloc(inode, cur_offset, end,
1472 locked_page, EXTENT_LOCKED |
1473 EXTENT_DELALLOC | EXTENT_DEFRAG |
1474 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1475 PAGE_CLEAR_DIRTY |
1476 PAGE_SET_WRITEBACK |
1477 PAGE_END_WRITEBACK);
1478 btrfs_free_path(path);
1479 return ret;
1480 }
1481
1482 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1483 {
1484
1485 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1486 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1487 return 0;
1488
1489 /*
1490 * @defrag_bytes is a hint value, no spinlock held here,
1491 * if is not zero, it means the file is defragging.
1492 * Force cow if given extent needs to be defragged.
1493 */
1494 if (BTRFS_I(inode)->defrag_bytes &&
1495 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1496 EXTENT_DEFRAG, 0, NULL))
1497 return 1;
1498
1499 return 0;
1500 }
1501
1502 /*
1503 * extent_io.c call back to do delayed allocation processing
1504 */
1505 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1506 u64 start, u64 end, int *page_started,
1507 unsigned long *nr_written)
1508 {
1509 int ret;
1510 int force_cow = need_force_cow(inode, start, end);
1511
1512 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1513 ret = run_delalloc_nocow(inode, locked_page, start, end,
1514 page_started, 1, nr_written);
1515 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1516 ret = run_delalloc_nocow(inode, locked_page, start, end,
1517 page_started, 0, nr_written);
1518 } else if (!inode_need_compress(inode)) {
1519 ret = cow_file_range(inode, locked_page, start, end,
1520 page_started, nr_written, 1);
1521 } else {
1522 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1523 &BTRFS_I(inode)->runtime_flags);
1524 ret = cow_file_range_async(inode, locked_page, start, end,
1525 page_started, nr_written);
1526 }
1527 return ret;
1528 }
1529
1530 static void btrfs_split_extent_hook(struct inode *inode,
1531 struct extent_state *orig, u64 split)
1532 {
1533 u64 size;
1534
1535 /* not delalloc, ignore it */
1536 if (!(orig->state & EXTENT_DELALLOC))
1537 return;
1538
1539 size = orig->end - orig->start + 1;
1540 if (size > BTRFS_MAX_EXTENT_SIZE) {
1541 u64 num_extents;
1542 u64 new_size;
1543
1544 /*
1545 * We need the largest size of the remaining extent to see if we
1546 * need to add a new outstanding extent. Think of the following
1547 * case
1548 *
1549 * [MEAX_EXTENT_SIZEx2 - 4k][4k]
1550 *
1551 * The new_size would just be 4k and we'd think we had enough
1552 * outstanding extents for this if we only took one side of the
1553 * split, same goes for the other direction. We need to see if
1554 * the larger size still is the same amount of extents as the
1555 * original size, because if it is we need to add a new
1556 * outstanding extent. But if we split up and the larger size
1557 * is less than the original then we are good to go since we've
1558 * already accounted for the extra extent in our original
1559 * accounting.
1560 */
1561 new_size = orig->end - split + 1;
1562 if ((split - orig->start) > new_size)
1563 new_size = split - orig->start;
1564
1565 num_extents = div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1566 BTRFS_MAX_EXTENT_SIZE);
1567 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1568 BTRFS_MAX_EXTENT_SIZE) < num_extents)
1569 return;
1570 }
1571
1572 spin_lock(&BTRFS_I(inode)->lock);
1573 BTRFS_I(inode)->outstanding_extents++;
1574 spin_unlock(&BTRFS_I(inode)->lock);
1575 }
1576
1577 /*
1578 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1579 * extents so we can keep track of new extents that are just merged onto old
1580 * extents, such as when we are doing sequential writes, so we can properly
1581 * account for the metadata space we'll need.
1582 */
1583 static void btrfs_merge_extent_hook(struct inode *inode,
1584 struct extent_state *new,
1585 struct extent_state *other)
1586 {
1587 u64 new_size, old_size;
1588 u64 num_extents;
1589
1590 /* not delalloc, ignore it */
1591 if (!(other->state & EXTENT_DELALLOC))
1592 return;
1593
1594 old_size = other->end - other->start + 1;
1595 new_size = old_size + (new->end - new->start + 1);
1596
1597 /* we're not bigger than the max, unreserve the space and go */
1598 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1599 spin_lock(&BTRFS_I(inode)->lock);
1600 BTRFS_I(inode)->outstanding_extents--;
1601 spin_unlock(&BTRFS_I(inode)->lock);
1602 return;
1603 }
1604
1605 /*
1606 * If we grew by another max_extent, just return, we want to keep that
1607 * reserved amount.
1608 */
1609 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1610 BTRFS_MAX_EXTENT_SIZE);
1611 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1612 BTRFS_MAX_EXTENT_SIZE) > num_extents)
1613 return;
1614
1615 spin_lock(&BTRFS_I(inode)->lock);
1616 BTRFS_I(inode)->outstanding_extents--;
1617 spin_unlock(&BTRFS_I(inode)->lock);
1618 }
1619
1620 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1621 struct inode *inode)
1622 {
1623 spin_lock(&root->delalloc_lock);
1624 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1625 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1626 &root->delalloc_inodes);
1627 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1628 &BTRFS_I(inode)->runtime_flags);
1629 root->nr_delalloc_inodes++;
1630 if (root->nr_delalloc_inodes == 1) {
1631 spin_lock(&root->fs_info->delalloc_root_lock);
1632 BUG_ON(!list_empty(&root->delalloc_root));
1633 list_add_tail(&root->delalloc_root,
1634 &root->fs_info->delalloc_roots);
1635 spin_unlock(&root->fs_info->delalloc_root_lock);
1636 }
1637 }
1638 spin_unlock(&root->delalloc_lock);
1639 }
1640
1641 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1642 struct inode *inode)
1643 {
1644 spin_lock(&root->delalloc_lock);
1645 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1646 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1647 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1648 &BTRFS_I(inode)->runtime_flags);
1649 root->nr_delalloc_inodes--;
1650 if (!root->nr_delalloc_inodes) {
1651 spin_lock(&root->fs_info->delalloc_root_lock);
1652 BUG_ON(list_empty(&root->delalloc_root));
1653 list_del_init(&root->delalloc_root);
1654 spin_unlock(&root->fs_info->delalloc_root_lock);
1655 }
1656 }
1657 spin_unlock(&root->delalloc_lock);
1658 }
1659
1660 /*
1661 * extent_io.c set_bit_hook, used to track delayed allocation
1662 * bytes in this file, and to maintain the list of inodes that
1663 * have pending delalloc work to be done.
1664 */
1665 static void btrfs_set_bit_hook(struct inode *inode,
1666 struct extent_state *state, unsigned *bits)
1667 {
1668
1669 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1670 WARN_ON(1);
1671 /*
1672 * set_bit and clear bit hooks normally require _irqsave/restore
1673 * but in this case, we are only testing for the DELALLOC
1674 * bit, which is only set or cleared with irqs on
1675 */
1676 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1677 struct btrfs_root *root = BTRFS_I(inode)->root;
1678 u64 len = state->end + 1 - state->start;
1679 bool do_list = !btrfs_is_free_space_inode(inode);
1680
1681 if (*bits & EXTENT_FIRST_DELALLOC) {
1682 *bits &= ~EXTENT_FIRST_DELALLOC;
1683 } else {
1684 spin_lock(&BTRFS_I(inode)->lock);
1685 BTRFS_I(inode)->outstanding_extents++;
1686 spin_unlock(&BTRFS_I(inode)->lock);
1687 }
1688
1689 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1690 root->fs_info->delalloc_batch);
1691 spin_lock(&BTRFS_I(inode)->lock);
1692 BTRFS_I(inode)->delalloc_bytes += len;
1693 if (*bits & EXTENT_DEFRAG)
1694 BTRFS_I(inode)->defrag_bytes += len;
1695 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1696 &BTRFS_I(inode)->runtime_flags))
1697 btrfs_add_delalloc_inodes(root, inode);
1698 spin_unlock(&BTRFS_I(inode)->lock);
1699 }
1700 }
1701
1702 /*
1703 * extent_io.c clear_bit_hook, see set_bit_hook for why
1704 */
1705 static void btrfs_clear_bit_hook(struct inode *inode,
1706 struct extent_state *state,
1707 unsigned *bits)
1708 {
1709 u64 len = state->end + 1 - state->start;
1710 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1711 BTRFS_MAX_EXTENT_SIZE);
1712
1713 spin_lock(&BTRFS_I(inode)->lock);
1714 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1715 BTRFS_I(inode)->defrag_bytes -= len;
1716 spin_unlock(&BTRFS_I(inode)->lock);
1717
1718 /*
1719 * set_bit and clear bit hooks normally require _irqsave/restore
1720 * but in this case, we are only testing for the DELALLOC
1721 * bit, which is only set or cleared with irqs on
1722 */
1723 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1724 struct btrfs_root *root = BTRFS_I(inode)->root;
1725 bool do_list = !btrfs_is_free_space_inode(inode);
1726
1727 if (*bits & EXTENT_FIRST_DELALLOC) {
1728 *bits &= ~EXTENT_FIRST_DELALLOC;
1729 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1730 spin_lock(&BTRFS_I(inode)->lock);
1731 BTRFS_I(inode)->outstanding_extents -= num_extents;
1732 spin_unlock(&BTRFS_I(inode)->lock);
1733 }
1734
1735 /*
1736 * We don't reserve metadata space for space cache inodes so we
1737 * don't need to call dellalloc_release_metadata if there is an
1738 * error.
1739 */
1740 if (*bits & EXTENT_DO_ACCOUNTING &&
1741 root != root->fs_info->tree_root)
1742 btrfs_delalloc_release_metadata(inode, len);
1743
1744 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1745 && do_list && !(state->state & EXTENT_NORESERVE))
1746 btrfs_free_reserved_data_space(inode, len);
1747
1748 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1749 root->fs_info->delalloc_batch);
1750 spin_lock(&BTRFS_I(inode)->lock);
1751 BTRFS_I(inode)->delalloc_bytes -= len;
1752 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1753 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1754 &BTRFS_I(inode)->runtime_flags))
1755 btrfs_del_delalloc_inode(root, inode);
1756 spin_unlock(&BTRFS_I(inode)->lock);
1757 }
1758 }
1759
1760 /*
1761 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1762 * we don't create bios that span stripes or chunks
1763 */
1764 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1765 size_t size, struct bio *bio,
1766 unsigned long bio_flags)
1767 {
1768 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1769 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1770 u64 length = 0;
1771 u64 map_length;
1772 int ret;
1773
1774 if (bio_flags & EXTENT_BIO_COMPRESSED)
1775 return 0;
1776
1777 length = bio->bi_iter.bi_size;
1778 map_length = length;
1779 ret = btrfs_map_block(root->fs_info, rw, logical,
1780 &map_length, NULL, 0);
1781 /* Will always return 0 with map_multi == NULL */
1782 BUG_ON(ret < 0);
1783 if (map_length < length + size)
1784 return 1;
1785 return 0;
1786 }
1787
1788 /*
1789 * in order to insert checksums into the metadata in large chunks,
1790 * we wait until bio submission time. All the pages in the bio are
1791 * checksummed and sums are attached onto the ordered extent record.
1792 *
1793 * At IO completion time the cums attached on the ordered extent record
1794 * are inserted into the btree
1795 */
1796 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1797 struct bio *bio, int mirror_num,
1798 unsigned long bio_flags,
1799 u64 bio_offset)
1800 {
1801 struct btrfs_root *root = BTRFS_I(inode)->root;
1802 int ret = 0;
1803
1804 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1805 BUG_ON(ret); /* -ENOMEM */
1806 return 0;
1807 }
1808
1809 /*
1810 * in order to insert checksums into the metadata in large chunks,
1811 * we wait until bio submission time. All the pages in the bio are
1812 * checksummed and sums are attached onto the ordered extent record.
1813 *
1814 * At IO completion time the cums attached on the ordered extent record
1815 * are inserted into the btree
1816 */
1817 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1818 int mirror_num, unsigned long bio_flags,
1819 u64 bio_offset)
1820 {
1821 struct btrfs_root *root = BTRFS_I(inode)->root;
1822 int ret;
1823
1824 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1825 if (ret)
1826 bio_endio(bio, ret);
1827 return ret;
1828 }
1829
1830 /*
1831 * extent_io.c submission hook. This does the right thing for csum calculation
1832 * on write, or reading the csums from the tree before a read
1833 */
1834 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1835 int mirror_num, unsigned long bio_flags,
1836 u64 bio_offset)
1837 {
1838 struct btrfs_root *root = BTRFS_I(inode)->root;
1839 int ret = 0;
1840 int skip_sum;
1841 int metadata = 0;
1842 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1843
1844 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1845
1846 if (btrfs_is_free_space_inode(inode))
1847 metadata = 2;
1848
1849 if (!(rw & REQ_WRITE)) {
1850 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1851 if (ret)
1852 goto out;
1853
1854 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1855 ret = btrfs_submit_compressed_read(inode, bio,
1856 mirror_num,
1857 bio_flags);
1858 goto out;
1859 } else if (!skip_sum) {
1860 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1861 if (ret)
1862 goto out;
1863 }
1864 goto mapit;
1865 } else if (async && !skip_sum) {
1866 /* csum items have already been cloned */
1867 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1868 goto mapit;
1869 /* we're doing a write, do the async checksumming */
1870 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1871 inode, rw, bio, mirror_num,
1872 bio_flags, bio_offset,
1873 __btrfs_submit_bio_start,
1874 __btrfs_submit_bio_done);
1875 goto out;
1876 } else if (!skip_sum) {
1877 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1878 if (ret)
1879 goto out;
1880 }
1881
1882 mapit:
1883 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1884
1885 out:
1886 if (ret < 0)
1887 bio_endio(bio, ret);
1888 return ret;
1889 }
1890
1891 /*
1892 * given a list of ordered sums record them in the inode. This happens
1893 * at IO completion time based on sums calculated at bio submission time.
1894 */
1895 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1896 struct inode *inode, u64 file_offset,
1897 struct list_head *list)
1898 {
1899 struct btrfs_ordered_sum *sum;
1900
1901 list_for_each_entry(sum, list, list) {
1902 trans->adding_csums = 1;
1903 btrfs_csum_file_blocks(trans,
1904 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1905 trans->adding_csums = 0;
1906 }
1907 return 0;
1908 }
1909
1910 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1911 struct extent_state **cached_state)
1912 {
1913 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1914 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1915 cached_state, GFP_NOFS);
1916 }
1917
1918 /* see btrfs_writepage_start_hook for details on why this is required */
1919 struct btrfs_writepage_fixup {
1920 struct page *page;
1921 struct btrfs_work work;
1922 };
1923
1924 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1925 {
1926 struct btrfs_writepage_fixup *fixup;
1927 struct btrfs_ordered_extent *ordered;
1928 struct extent_state *cached_state = NULL;
1929 struct page *page;
1930 struct inode *inode;
1931 u64 page_start;
1932 u64 page_end;
1933 int ret;
1934
1935 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1936 page = fixup->page;
1937 again:
1938 lock_page(page);
1939 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1940 ClearPageChecked(page);
1941 goto out_page;
1942 }
1943
1944 inode = page->mapping->host;
1945 page_start = page_offset(page);
1946 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1947
1948 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1949 &cached_state);
1950
1951 /* already ordered? We're done */
1952 if (PagePrivate2(page))
1953 goto out;
1954
1955 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1956 if (ordered) {
1957 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1958 page_end, &cached_state, GFP_NOFS);
1959 unlock_page(page);
1960 btrfs_start_ordered_extent(inode, ordered, 1);
1961 btrfs_put_ordered_extent(ordered);
1962 goto again;
1963 }
1964
1965 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1966 if (ret) {
1967 mapping_set_error(page->mapping, ret);
1968 end_extent_writepage(page, ret, page_start, page_end);
1969 ClearPageChecked(page);
1970 goto out;
1971 }
1972
1973 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1974 ClearPageChecked(page);
1975 set_page_dirty(page);
1976 out:
1977 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1978 &cached_state, GFP_NOFS);
1979 out_page:
1980 unlock_page(page);
1981 page_cache_release(page);
1982 kfree(fixup);
1983 }
1984
1985 /*
1986 * There are a few paths in the higher layers of the kernel that directly
1987 * set the page dirty bit without asking the filesystem if it is a
1988 * good idea. This causes problems because we want to make sure COW
1989 * properly happens and the data=ordered rules are followed.
1990 *
1991 * In our case any range that doesn't have the ORDERED bit set
1992 * hasn't been properly setup for IO. We kick off an async process
1993 * to fix it up. The async helper will wait for ordered extents, set
1994 * the delalloc bit and make it safe to write the page.
1995 */
1996 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1997 {
1998 struct inode *inode = page->mapping->host;
1999 struct btrfs_writepage_fixup *fixup;
2000 struct btrfs_root *root = BTRFS_I(inode)->root;
2001
2002 /* this page is properly in the ordered list */
2003 if (TestClearPagePrivate2(page))
2004 return 0;
2005
2006 if (PageChecked(page))
2007 return -EAGAIN;
2008
2009 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2010 if (!fixup)
2011 return -EAGAIN;
2012
2013 SetPageChecked(page);
2014 page_cache_get(page);
2015 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2016 btrfs_writepage_fixup_worker, NULL, NULL);
2017 fixup->page = page;
2018 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2019 return -EBUSY;
2020 }
2021
2022 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2023 struct inode *inode, u64 file_pos,
2024 u64 disk_bytenr, u64 disk_num_bytes,
2025 u64 num_bytes, u64 ram_bytes,
2026 u8 compression, u8 encryption,
2027 u16 other_encoding, int extent_type)
2028 {
2029 struct btrfs_root *root = BTRFS_I(inode)->root;
2030 struct btrfs_file_extent_item *fi;
2031 struct btrfs_path *path;
2032 struct extent_buffer *leaf;
2033 struct btrfs_key ins;
2034 int extent_inserted = 0;
2035 int ret;
2036
2037 path = btrfs_alloc_path();
2038 if (!path)
2039 return -ENOMEM;
2040
2041 /*
2042 * we may be replacing one extent in the tree with another.
2043 * The new extent is pinned in the extent map, and we don't want
2044 * to drop it from the cache until it is completely in the btree.
2045 *
2046 * So, tell btrfs_drop_extents to leave this extent in the cache.
2047 * the caller is expected to unpin it and allow it to be merged
2048 * with the others.
2049 */
2050 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2051 file_pos + num_bytes, NULL, 0,
2052 1, sizeof(*fi), &extent_inserted);
2053 if (ret)
2054 goto out;
2055
2056 if (!extent_inserted) {
2057 ins.objectid = btrfs_ino(inode);
2058 ins.offset = file_pos;
2059 ins.type = BTRFS_EXTENT_DATA_KEY;
2060
2061 path->leave_spinning = 1;
2062 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2063 sizeof(*fi));
2064 if (ret)
2065 goto out;
2066 }
2067 leaf = path->nodes[0];
2068 fi = btrfs_item_ptr(leaf, path->slots[0],
2069 struct btrfs_file_extent_item);
2070 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2071 btrfs_set_file_extent_type(leaf, fi, extent_type);
2072 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2073 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2074 btrfs_set_file_extent_offset(leaf, fi, 0);
2075 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2076 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2077 btrfs_set_file_extent_compression(leaf, fi, compression);
2078 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2079 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2080
2081 btrfs_mark_buffer_dirty(leaf);
2082 btrfs_release_path(path);
2083
2084 inode_add_bytes(inode, num_bytes);
2085
2086 ins.objectid = disk_bytenr;
2087 ins.offset = disk_num_bytes;
2088 ins.type = BTRFS_EXTENT_ITEM_KEY;
2089 ret = btrfs_alloc_reserved_file_extent(trans, root,
2090 root->root_key.objectid,
2091 btrfs_ino(inode), file_pos, &ins);
2092 out:
2093 btrfs_free_path(path);
2094
2095 return ret;
2096 }
2097
2098 /* snapshot-aware defrag */
2099 struct sa_defrag_extent_backref {
2100 struct rb_node node;
2101 struct old_sa_defrag_extent *old;
2102 u64 root_id;
2103 u64 inum;
2104 u64 file_pos;
2105 u64 extent_offset;
2106 u64 num_bytes;
2107 u64 generation;
2108 };
2109
2110 struct old_sa_defrag_extent {
2111 struct list_head list;
2112 struct new_sa_defrag_extent *new;
2113
2114 u64 extent_offset;
2115 u64 bytenr;
2116 u64 offset;
2117 u64 len;
2118 int count;
2119 };
2120
2121 struct new_sa_defrag_extent {
2122 struct rb_root root;
2123 struct list_head head;
2124 struct btrfs_path *path;
2125 struct inode *inode;
2126 u64 file_pos;
2127 u64 len;
2128 u64 bytenr;
2129 u64 disk_len;
2130 u8 compress_type;
2131 };
2132
2133 static int backref_comp(struct sa_defrag_extent_backref *b1,
2134 struct sa_defrag_extent_backref *b2)
2135 {
2136 if (b1->root_id < b2->root_id)
2137 return -1;
2138 else if (b1->root_id > b2->root_id)
2139 return 1;
2140
2141 if (b1->inum < b2->inum)
2142 return -1;
2143 else if (b1->inum > b2->inum)
2144 return 1;
2145
2146 if (b1->file_pos < b2->file_pos)
2147 return -1;
2148 else if (b1->file_pos > b2->file_pos)
2149 return 1;
2150
2151 /*
2152 * [------------------------------] ===> (a range of space)
2153 * |<--->| |<---->| =============> (fs/file tree A)
2154 * |<---------------------------->| ===> (fs/file tree B)
2155 *
2156 * A range of space can refer to two file extents in one tree while
2157 * refer to only one file extent in another tree.
2158 *
2159 * So we may process a disk offset more than one time(two extents in A)
2160 * and locate at the same extent(one extent in B), then insert two same
2161 * backrefs(both refer to the extent in B).
2162 */
2163 return 0;
2164 }
2165
2166 static void backref_insert(struct rb_root *root,
2167 struct sa_defrag_extent_backref *backref)
2168 {
2169 struct rb_node **p = &root->rb_node;
2170 struct rb_node *parent = NULL;
2171 struct sa_defrag_extent_backref *entry;
2172 int ret;
2173
2174 while (*p) {
2175 parent = *p;
2176 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2177
2178 ret = backref_comp(backref, entry);
2179 if (ret < 0)
2180 p = &(*p)->rb_left;
2181 else
2182 p = &(*p)->rb_right;
2183 }
2184
2185 rb_link_node(&backref->node, parent, p);
2186 rb_insert_color(&backref->node, root);
2187 }
2188
2189 /*
2190 * Note the backref might has changed, and in this case we just return 0.
2191 */
2192 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2193 void *ctx)
2194 {
2195 struct btrfs_file_extent_item *extent;
2196 struct btrfs_fs_info *fs_info;
2197 struct old_sa_defrag_extent *old = ctx;
2198 struct new_sa_defrag_extent *new = old->new;
2199 struct btrfs_path *path = new->path;
2200 struct btrfs_key key;
2201 struct btrfs_root *root;
2202 struct sa_defrag_extent_backref *backref;
2203 struct extent_buffer *leaf;
2204 struct inode *inode = new->inode;
2205 int slot;
2206 int ret;
2207 u64 extent_offset;
2208 u64 num_bytes;
2209
2210 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2211 inum == btrfs_ino(inode))
2212 return 0;
2213
2214 key.objectid = root_id;
2215 key.type = BTRFS_ROOT_ITEM_KEY;
2216 key.offset = (u64)-1;
2217
2218 fs_info = BTRFS_I(inode)->root->fs_info;
2219 root = btrfs_read_fs_root_no_name(fs_info, &key);
2220 if (IS_ERR(root)) {
2221 if (PTR_ERR(root) == -ENOENT)
2222 return 0;
2223 WARN_ON(1);
2224 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2225 inum, offset, root_id);
2226 return PTR_ERR(root);
2227 }
2228
2229 key.objectid = inum;
2230 key.type = BTRFS_EXTENT_DATA_KEY;
2231 if (offset > (u64)-1 << 32)
2232 key.offset = 0;
2233 else
2234 key.offset = offset;
2235
2236 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2237 if (WARN_ON(ret < 0))
2238 return ret;
2239 ret = 0;
2240
2241 while (1) {
2242 cond_resched();
2243
2244 leaf = path->nodes[0];
2245 slot = path->slots[0];
2246
2247 if (slot >= btrfs_header_nritems(leaf)) {
2248 ret = btrfs_next_leaf(root, path);
2249 if (ret < 0) {
2250 goto out;
2251 } else if (ret > 0) {
2252 ret = 0;
2253 goto out;
2254 }
2255 continue;
2256 }
2257
2258 path->slots[0]++;
2259
2260 btrfs_item_key_to_cpu(leaf, &key, slot);
2261
2262 if (key.objectid > inum)
2263 goto out;
2264
2265 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2266 continue;
2267
2268 extent = btrfs_item_ptr(leaf, slot,
2269 struct btrfs_file_extent_item);
2270
2271 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2272 continue;
2273
2274 /*
2275 * 'offset' refers to the exact key.offset,
2276 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2277 * (key.offset - extent_offset).
2278 */
2279 if (key.offset != offset)
2280 continue;
2281
2282 extent_offset = btrfs_file_extent_offset(leaf, extent);
2283 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2284
2285 if (extent_offset >= old->extent_offset + old->offset +
2286 old->len || extent_offset + num_bytes <=
2287 old->extent_offset + old->offset)
2288 continue;
2289 break;
2290 }
2291
2292 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2293 if (!backref) {
2294 ret = -ENOENT;
2295 goto out;
2296 }
2297
2298 backref->root_id = root_id;
2299 backref->inum = inum;
2300 backref->file_pos = offset;
2301 backref->num_bytes = num_bytes;
2302 backref->extent_offset = extent_offset;
2303 backref->generation = btrfs_file_extent_generation(leaf, extent);
2304 backref->old = old;
2305 backref_insert(&new->root, backref);
2306 old->count++;
2307 out:
2308 btrfs_release_path(path);
2309 WARN_ON(ret);
2310 return ret;
2311 }
2312
2313 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2314 struct new_sa_defrag_extent *new)
2315 {
2316 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2317 struct old_sa_defrag_extent *old, *tmp;
2318 int ret;
2319
2320 new->path = path;
2321
2322 list_for_each_entry_safe(old, tmp, &new->head, list) {
2323 ret = iterate_inodes_from_logical(old->bytenr +
2324 old->extent_offset, fs_info,
2325 path, record_one_backref,
2326 old);
2327 if (ret < 0 && ret != -ENOENT)
2328 return false;
2329
2330 /* no backref to be processed for this extent */
2331 if (!old->count) {
2332 list_del(&old->list);
2333 kfree(old);
2334 }
2335 }
2336
2337 if (list_empty(&new->head))
2338 return false;
2339
2340 return true;
2341 }
2342
2343 static int relink_is_mergable(struct extent_buffer *leaf,
2344 struct btrfs_file_extent_item *fi,
2345 struct new_sa_defrag_extent *new)
2346 {
2347 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2348 return 0;
2349
2350 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2351 return 0;
2352
2353 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2354 return 0;
2355
2356 if (btrfs_file_extent_encryption(leaf, fi) ||
2357 btrfs_file_extent_other_encoding(leaf, fi))
2358 return 0;
2359
2360 return 1;
2361 }
2362
2363 /*
2364 * Note the backref might has changed, and in this case we just return 0.
2365 */
2366 static noinline int relink_extent_backref(struct btrfs_path *path,
2367 struct sa_defrag_extent_backref *prev,
2368 struct sa_defrag_extent_backref *backref)
2369 {
2370 struct btrfs_file_extent_item *extent;
2371 struct btrfs_file_extent_item *item;
2372 struct btrfs_ordered_extent *ordered;
2373 struct btrfs_trans_handle *trans;
2374 struct btrfs_fs_info *fs_info;
2375 struct btrfs_root *root;
2376 struct btrfs_key key;
2377 struct extent_buffer *leaf;
2378 struct old_sa_defrag_extent *old = backref->old;
2379 struct new_sa_defrag_extent *new = old->new;
2380 struct inode *src_inode = new->inode;
2381 struct inode *inode;
2382 struct extent_state *cached = NULL;
2383 int ret = 0;
2384 u64 start;
2385 u64 len;
2386 u64 lock_start;
2387 u64 lock_end;
2388 bool merge = false;
2389 int index;
2390
2391 if (prev && prev->root_id == backref->root_id &&
2392 prev->inum == backref->inum &&
2393 prev->file_pos + prev->num_bytes == backref->file_pos)
2394 merge = true;
2395
2396 /* step 1: get root */
2397 key.objectid = backref->root_id;
2398 key.type = BTRFS_ROOT_ITEM_KEY;
2399 key.offset = (u64)-1;
2400
2401 fs_info = BTRFS_I(src_inode)->root->fs_info;
2402 index = srcu_read_lock(&fs_info->subvol_srcu);
2403
2404 root = btrfs_read_fs_root_no_name(fs_info, &key);
2405 if (IS_ERR(root)) {
2406 srcu_read_unlock(&fs_info->subvol_srcu, index);
2407 if (PTR_ERR(root) == -ENOENT)
2408 return 0;
2409 return PTR_ERR(root);
2410 }
2411
2412 if (btrfs_root_readonly(root)) {
2413 srcu_read_unlock(&fs_info->subvol_srcu, index);
2414 return 0;
2415 }
2416
2417 /* step 2: get inode */
2418 key.objectid = backref->inum;
2419 key.type = BTRFS_INODE_ITEM_KEY;
2420 key.offset = 0;
2421
2422 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2423 if (IS_ERR(inode)) {
2424 srcu_read_unlock(&fs_info->subvol_srcu, index);
2425 return 0;
2426 }
2427
2428 srcu_read_unlock(&fs_info->subvol_srcu, index);
2429
2430 /* step 3: relink backref */
2431 lock_start = backref->file_pos;
2432 lock_end = backref->file_pos + backref->num_bytes - 1;
2433 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2434 0, &cached);
2435
2436 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2437 if (ordered) {
2438 btrfs_put_ordered_extent(ordered);
2439 goto out_unlock;
2440 }
2441
2442 trans = btrfs_join_transaction(root);
2443 if (IS_ERR(trans)) {
2444 ret = PTR_ERR(trans);
2445 goto out_unlock;
2446 }
2447
2448 key.objectid = backref->inum;
2449 key.type = BTRFS_EXTENT_DATA_KEY;
2450 key.offset = backref->file_pos;
2451
2452 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2453 if (ret < 0) {
2454 goto out_free_path;
2455 } else if (ret > 0) {
2456 ret = 0;
2457 goto out_free_path;
2458 }
2459
2460 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2461 struct btrfs_file_extent_item);
2462
2463 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2464 backref->generation)
2465 goto out_free_path;
2466
2467 btrfs_release_path(path);
2468
2469 start = backref->file_pos;
2470 if (backref->extent_offset < old->extent_offset + old->offset)
2471 start += old->extent_offset + old->offset -
2472 backref->extent_offset;
2473
2474 len = min(backref->extent_offset + backref->num_bytes,
2475 old->extent_offset + old->offset + old->len);
2476 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2477
2478 ret = btrfs_drop_extents(trans, root, inode, start,
2479 start + len, 1);
2480 if (ret)
2481 goto out_free_path;
2482 again:
2483 key.objectid = btrfs_ino(inode);
2484 key.type = BTRFS_EXTENT_DATA_KEY;
2485 key.offset = start;
2486
2487 path->leave_spinning = 1;
2488 if (merge) {
2489 struct btrfs_file_extent_item *fi;
2490 u64 extent_len;
2491 struct btrfs_key found_key;
2492
2493 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2494 if (ret < 0)
2495 goto out_free_path;
2496
2497 path->slots[0]--;
2498 leaf = path->nodes[0];
2499 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2500
2501 fi = btrfs_item_ptr(leaf, path->slots[0],
2502 struct btrfs_file_extent_item);
2503 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2504
2505 if (extent_len + found_key.offset == start &&
2506 relink_is_mergable(leaf, fi, new)) {
2507 btrfs_set_file_extent_num_bytes(leaf, fi,
2508 extent_len + len);
2509 btrfs_mark_buffer_dirty(leaf);
2510 inode_add_bytes(inode, len);
2511
2512 ret = 1;
2513 goto out_free_path;
2514 } else {
2515 merge = false;
2516 btrfs_release_path(path);
2517 goto again;
2518 }
2519 }
2520
2521 ret = btrfs_insert_empty_item(trans, root, path, &key,
2522 sizeof(*extent));
2523 if (ret) {
2524 btrfs_abort_transaction(trans, root, ret);
2525 goto out_free_path;
2526 }
2527
2528 leaf = path->nodes[0];
2529 item = btrfs_item_ptr(leaf, path->slots[0],
2530 struct btrfs_file_extent_item);
2531 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2532 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2533 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2534 btrfs_set_file_extent_num_bytes(leaf, item, len);
2535 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2536 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2537 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2538 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2539 btrfs_set_file_extent_encryption(leaf, item, 0);
2540 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2541
2542 btrfs_mark_buffer_dirty(leaf);
2543 inode_add_bytes(inode, len);
2544 btrfs_release_path(path);
2545
2546 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2547 new->disk_len, 0,
2548 backref->root_id, backref->inum,
2549 new->file_pos, 0); /* start - extent_offset */
2550 if (ret) {
2551 btrfs_abort_transaction(trans, root, ret);
2552 goto out_free_path;
2553 }
2554
2555 ret = 1;
2556 out_free_path:
2557 btrfs_release_path(path);
2558 path->leave_spinning = 0;
2559 btrfs_end_transaction(trans, root);
2560 out_unlock:
2561 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2562 &cached, GFP_NOFS);
2563 iput(inode);
2564 return ret;
2565 }
2566
2567 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2568 {
2569 struct old_sa_defrag_extent *old, *tmp;
2570
2571 if (!new)
2572 return;
2573
2574 list_for_each_entry_safe(old, tmp, &new->head, list) {
2575 list_del(&old->list);
2576 kfree(old);
2577 }
2578 kfree(new);
2579 }
2580
2581 static void relink_file_extents(struct new_sa_defrag_extent *new)
2582 {
2583 struct btrfs_path *path;
2584 struct sa_defrag_extent_backref *backref;
2585 struct sa_defrag_extent_backref *prev = NULL;
2586 struct inode *inode;
2587 struct btrfs_root *root;
2588 struct rb_node *node;
2589 int ret;
2590
2591 inode = new->inode;
2592 root = BTRFS_I(inode)->root;
2593
2594 path = btrfs_alloc_path();
2595 if (!path)
2596 return;
2597
2598 if (!record_extent_backrefs(path, new)) {
2599 btrfs_free_path(path);
2600 goto out;
2601 }
2602 btrfs_release_path(path);
2603
2604 while (1) {
2605 node = rb_first(&new->root);
2606 if (!node)
2607 break;
2608 rb_erase(node, &new->root);
2609
2610 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2611
2612 ret = relink_extent_backref(path, prev, backref);
2613 WARN_ON(ret < 0);
2614
2615 kfree(prev);
2616
2617 if (ret == 1)
2618 prev = backref;
2619 else
2620 prev = NULL;
2621 cond_resched();
2622 }
2623 kfree(prev);
2624
2625 btrfs_free_path(path);
2626 out:
2627 free_sa_defrag_extent(new);
2628
2629 atomic_dec(&root->fs_info->defrag_running);
2630 wake_up(&root->fs_info->transaction_wait);
2631 }
2632
2633 static struct new_sa_defrag_extent *
2634 record_old_file_extents(struct inode *inode,
2635 struct btrfs_ordered_extent *ordered)
2636 {
2637 struct btrfs_root *root = BTRFS_I(inode)->root;
2638 struct btrfs_path *path;
2639 struct btrfs_key key;
2640 struct old_sa_defrag_extent *old;
2641 struct new_sa_defrag_extent *new;
2642 int ret;
2643
2644 new = kmalloc(sizeof(*new), GFP_NOFS);
2645 if (!new)
2646 return NULL;
2647
2648 new->inode = inode;
2649 new->file_pos = ordered->file_offset;
2650 new->len = ordered->len;
2651 new->bytenr = ordered->start;
2652 new->disk_len = ordered->disk_len;
2653 new->compress_type = ordered->compress_type;
2654 new->root = RB_ROOT;
2655 INIT_LIST_HEAD(&new->head);
2656
2657 path = btrfs_alloc_path();
2658 if (!path)
2659 goto out_kfree;
2660
2661 key.objectid = btrfs_ino(inode);
2662 key.type = BTRFS_EXTENT_DATA_KEY;
2663 key.offset = new->file_pos;
2664
2665 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2666 if (ret < 0)
2667 goto out_free_path;
2668 if (ret > 0 && path->slots[0] > 0)
2669 path->slots[0]--;
2670
2671 /* find out all the old extents for the file range */
2672 while (1) {
2673 struct btrfs_file_extent_item *extent;
2674 struct extent_buffer *l;
2675 int slot;
2676 u64 num_bytes;
2677 u64 offset;
2678 u64 end;
2679 u64 disk_bytenr;
2680 u64 extent_offset;
2681
2682 l = path->nodes[0];
2683 slot = path->slots[0];
2684
2685 if (slot >= btrfs_header_nritems(l)) {
2686 ret = btrfs_next_leaf(root, path);
2687 if (ret < 0)
2688 goto out_free_path;
2689 else if (ret > 0)
2690 break;
2691 continue;
2692 }
2693
2694 btrfs_item_key_to_cpu(l, &key, slot);
2695
2696 if (key.objectid != btrfs_ino(inode))
2697 break;
2698 if (key.type != BTRFS_EXTENT_DATA_KEY)
2699 break;
2700 if (key.offset >= new->file_pos + new->len)
2701 break;
2702
2703 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2704
2705 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2706 if (key.offset + num_bytes < new->file_pos)
2707 goto next;
2708
2709 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2710 if (!disk_bytenr)
2711 goto next;
2712
2713 extent_offset = btrfs_file_extent_offset(l, extent);
2714
2715 old = kmalloc(sizeof(*old), GFP_NOFS);
2716 if (!old)
2717 goto out_free_path;
2718
2719 offset = max(new->file_pos, key.offset);
2720 end = min(new->file_pos + new->len, key.offset + num_bytes);
2721
2722 old->bytenr = disk_bytenr;
2723 old->extent_offset = extent_offset;
2724 old->offset = offset - key.offset;
2725 old->len = end - offset;
2726 old->new = new;
2727 old->count = 0;
2728 list_add_tail(&old->list, &new->head);
2729 next:
2730 path->slots[0]++;
2731 cond_resched();
2732 }
2733
2734 btrfs_free_path(path);
2735 atomic_inc(&root->fs_info->defrag_running);
2736
2737 return new;
2738
2739 out_free_path:
2740 btrfs_free_path(path);
2741 out_kfree:
2742 free_sa_defrag_extent(new);
2743 return NULL;
2744 }
2745
2746 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2747 u64 start, u64 len)
2748 {
2749 struct btrfs_block_group_cache *cache;
2750
2751 cache = btrfs_lookup_block_group(root->fs_info, start);
2752 ASSERT(cache);
2753
2754 spin_lock(&cache->lock);
2755 cache->delalloc_bytes -= len;
2756 spin_unlock(&cache->lock);
2757
2758 btrfs_put_block_group(cache);
2759 }
2760
2761 /* as ordered data IO finishes, this gets called so we can finish
2762 * an ordered extent if the range of bytes in the file it covers are
2763 * fully written.
2764 */
2765 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2766 {
2767 struct inode *inode = ordered_extent->inode;
2768 struct btrfs_root *root = BTRFS_I(inode)->root;
2769 struct btrfs_trans_handle *trans = NULL;
2770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2771 struct extent_state *cached_state = NULL;
2772 struct new_sa_defrag_extent *new = NULL;
2773 int compress_type = 0;
2774 int ret = 0;
2775 u64 logical_len = ordered_extent->len;
2776 bool nolock;
2777 bool truncated = false;
2778
2779 nolock = btrfs_is_free_space_inode(inode);
2780
2781 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2782 ret = -EIO;
2783 goto out;
2784 }
2785
2786 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2787 ordered_extent->file_offset +
2788 ordered_extent->len - 1);
2789
2790 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2791 truncated = true;
2792 logical_len = ordered_extent->truncated_len;
2793 /* Truncated the entire extent, don't bother adding */
2794 if (!logical_len)
2795 goto out;
2796 }
2797
2798 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2799 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2800 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2801 if (nolock)
2802 trans = btrfs_join_transaction_nolock(root);
2803 else
2804 trans = btrfs_join_transaction(root);
2805 if (IS_ERR(trans)) {
2806 ret = PTR_ERR(trans);
2807 trans = NULL;
2808 goto out;
2809 }
2810 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2811 ret = btrfs_update_inode_fallback(trans, root, inode);
2812 if (ret) /* -ENOMEM or corruption */
2813 btrfs_abort_transaction(trans, root, ret);
2814 goto out;
2815 }
2816
2817 lock_extent_bits(io_tree, ordered_extent->file_offset,
2818 ordered_extent->file_offset + ordered_extent->len - 1,
2819 0, &cached_state);
2820
2821 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2822 ordered_extent->file_offset + ordered_extent->len - 1,
2823 EXTENT_DEFRAG, 1, cached_state);
2824 if (ret) {
2825 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2826 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2827 /* the inode is shared */
2828 new = record_old_file_extents(inode, ordered_extent);
2829
2830 clear_extent_bit(io_tree, ordered_extent->file_offset,
2831 ordered_extent->file_offset + ordered_extent->len - 1,
2832 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2833 }
2834
2835 if (nolock)
2836 trans = btrfs_join_transaction_nolock(root);
2837 else
2838 trans = btrfs_join_transaction(root);
2839 if (IS_ERR(trans)) {
2840 ret = PTR_ERR(trans);
2841 trans = NULL;
2842 goto out_unlock;
2843 }
2844
2845 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2846
2847 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2848 compress_type = ordered_extent->compress_type;
2849 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2850 BUG_ON(compress_type);
2851 ret = btrfs_mark_extent_written(trans, inode,
2852 ordered_extent->file_offset,
2853 ordered_extent->file_offset +
2854 logical_len);
2855 } else {
2856 BUG_ON(root == root->fs_info->tree_root);
2857 ret = insert_reserved_file_extent(trans, inode,
2858 ordered_extent->file_offset,
2859 ordered_extent->start,
2860 ordered_extent->disk_len,
2861 logical_len, logical_len,
2862 compress_type, 0, 0,
2863 BTRFS_FILE_EXTENT_REG);
2864 if (!ret)
2865 btrfs_release_delalloc_bytes(root,
2866 ordered_extent->start,
2867 ordered_extent->disk_len);
2868 }
2869 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2870 ordered_extent->file_offset, ordered_extent->len,
2871 trans->transid);
2872 if (ret < 0) {
2873 btrfs_abort_transaction(trans, root, ret);
2874 goto out_unlock;
2875 }
2876
2877 add_pending_csums(trans, inode, ordered_extent->file_offset,
2878 &ordered_extent->list);
2879
2880 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2881 ret = btrfs_update_inode_fallback(trans, root, inode);
2882 if (ret) { /* -ENOMEM or corruption */
2883 btrfs_abort_transaction(trans, root, ret);
2884 goto out_unlock;
2885 }
2886 ret = 0;
2887 out_unlock:
2888 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2889 ordered_extent->file_offset +
2890 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2891 out:
2892 if (root != root->fs_info->tree_root)
2893 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2894 if (trans)
2895 btrfs_end_transaction(trans, root);
2896
2897 if (ret || truncated) {
2898 u64 start, end;
2899
2900 if (truncated)
2901 start = ordered_extent->file_offset + logical_len;
2902 else
2903 start = ordered_extent->file_offset;
2904 end = ordered_extent->file_offset + ordered_extent->len - 1;
2905 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2906
2907 /* Drop the cache for the part of the extent we didn't write. */
2908 btrfs_drop_extent_cache(inode, start, end, 0);
2909
2910 /*
2911 * If the ordered extent had an IOERR or something else went
2912 * wrong we need to return the space for this ordered extent
2913 * back to the allocator. We only free the extent in the
2914 * truncated case if we didn't write out the extent at all.
2915 */
2916 if ((ret || !logical_len) &&
2917 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2918 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2919 btrfs_free_reserved_extent(root, ordered_extent->start,
2920 ordered_extent->disk_len, 1);
2921 }
2922
2923
2924 /*
2925 * This needs to be done to make sure anybody waiting knows we are done
2926 * updating everything for this ordered extent.
2927 */
2928 btrfs_remove_ordered_extent(inode, ordered_extent);
2929
2930 /* for snapshot-aware defrag */
2931 if (new) {
2932 if (ret) {
2933 free_sa_defrag_extent(new);
2934 atomic_dec(&root->fs_info->defrag_running);
2935 } else {
2936 relink_file_extents(new);
2937 }
2938 }
2939
2940 /* once for us */
2941 btrfs_put_ordered_extent(ordered_extent);
2942 /* once for the tree */
2943 btrfs_put_ordered_extent(ordered_extent);
2944
2945 return ret;
2946 }
2947
2948 static void finish_ordered_fn(struct btrfs_work *work)
2949 {
2950 struct btrfs_ordered_extent *ordered_extent;
2951 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2952 btrfs_finish_ordered_io(ordered_extent);
2953 }
2954
2955 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2956 struct extent_state *state, int uptodate)
2957 {
2958 struct inode *inode = page->mapping->host;
2959 struct btrfs_root *root = BTRFS_I(inode)->root;
2960 struct btrfs_ordered_extent *ordered_extent = NULL;
2961 struct btrfs_workqueue *wq;
2962 btrfs_work_func_t func;
2963
2964 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2965
2966 ClearPagePrivate2(page);
2967 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2968 end - start + 1, uptodate))
2969 return 0;
2970
2971 if (btrfs_is_free_space_inode(inode)) {
2972 wq = root->fs_info->endio_freespace_worker;
2973 func = btrfs_freespace_write_helper;
2974 } else {
2975 wq = root->fs_info->endio_write_workers;
2976 func = btrfs_endio_write_helper;
2977 }
2978
2979 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2980 NULL);
2981 btrfs_queue_work(wq, &ordered_extent->work);
2982
2983 return 0;
2984 }
2985
2986 static int __readpage_endio_check(struct inode *inode,
2987 struct btrfs_io_bio *io_bio,
2988 int icsum, struct page *page,
2989 int pgoff, u64 start, size_t len)
2990 {
2991 char *kaddr;
2992 u32 csum_expected;
2993 u32 csum = ~(u32)0;
2994 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2995 DEFAULT_RATELIMIT_BURST);
2996
2997 csum_expected = *(((u32 *)io_bio->csum) + icsum);
2998
2999 kaddr = kmap_atomic(page);
3000 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3001 btrfs_csum_final(csum, (char *)&csum);
3002 if (csum != csum_expected)
3003 goto zeroit;
3004
3005 kunmap_atomic(kaddr);
3006 return 0;
3007 zeroit:
3008 if (__ratelimit(&_rs))
3009 btrfs_warn(BTRFS_I(inode)->root->fs_info,
3010 "csum failed ino %llu off %llu csum %u expected csum %u",
3011 btrfs_ino(inode), start, csum, csum_expected);
3012 memset(kaddr + pgoff, 1, len);
3013 flush_dcache_page(page);
3014 kunmap_atomic(kaddr);
3015 if (csum_expected == 0)
3016 return 0;
3017 return -EIO;
3018 }
3019
3020 /*
3021 * when reads are done, we need to check csums to verify the data is correct
3022 * if there's a match, we allow the bio to finish. If not, the code in
3023 * extent_io.c will try to find good copies for us.
3024 */
3025 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3026 u64 phy_offset, struct page *page,
3027 u64 start, u64 end, int mirror)
3028 {
3029 size_t offset = start - page_offset(page);
3030 struct inode *inode = page->mapping->host;
3031 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3032 struct btrfs_root *root = BTRFS_I(inode)->root;
3033
3034 if (PageChecked(page)) {
3035 ClearPageChecked(page);
3036 return 0;
3037 }
3038
3039 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3040 return 0;
3041
3042 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3043 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3044 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3045 GFP_NOFS);
3046 return 0;
3047 }
3048
3049 phy_offset >>= inode->i_sb->s_blocksize_bits;
3050 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3051 start, (size_t)(end - start + 1));
3052 }
3053
3054 struct delayed_iput {
3055 struct list_head list;
3056 struct inode *inode;
3057 };
3058
3059 /* JDM: If this is fs-wide, why can't we add a pointer to
3060 * btrfs_inode instead and avoid the allocation? */
3061 void btrfs_add_delayed_iput(struct inode *inode)
3062 {
3063 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3064 struct delayed_iput *delayed;
3065
3066 if (atomic_add_unless(&inode->i_count, -1, 1))
3067 return;
3068
3069 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3070 delayed->inode = inode;
3071
3072 spin_lock(&fs_info->delayed_iput_lock);
3073 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3074 spin_unlock(&fs_info->delayed_iput_lock);
3075 }
3076
3077 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3078 {
3079 LIST_HEAD(list);
3080 struct btrfs_fs_info *fs_info = root->fs_info;
3081 struct delayed_iput *delayed;
3082 int empty;
3083
3084 spin_lock(&fs_info->delayed_iput_lock);
3085 empty = list_empty(&fs_info->delayed_iputs);
3086 spin_unlock(&fs_info->delayed_iput_lock);
3087 if (empty)
3088 return;
3089
3090 spin_lock(&fs_info->delayed_iput_lock);
3091 list_splice_init(&fs_info->delayed_iputs, &list);
3092 spin_unlock(&fs_info->delayed_iput_lock);
3093
3094 while (!list_empty(&list)) {
3095 delayed = list_entry(list.next, struct delayed_iput, list);
3096 list_del(&delayed->list);
3097 iput(delayed->inode);
3098 kfree(delayed);
3099 }
3100 }
3101
3102 /*
3103 * This is called in transaction commit time. If there are no orphan
3104 * files in the subvolume, it removes orphan item and frees block_rsv
3105 * structure.
3106 */
3107 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3108 struct btrfs_root *root)
3109 {
3110 struct btrfs_block_rsv *block_rsv;
3111 int ret;
3112
3113 if (atomic_read(&root->orphan_inodes) ||
3114 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3115 return;
3116
3117 spin_lock(&root->orphan_lock);
3118 if (atomic_read(&root->orphan_inodes)) {
3119 spin_unlock(&root->orphan_lock);
3120 return;
3121 }
3122
3123 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3124 spin_unlock(&root->orphan_lock);
3125 return;
3126 }
3127
3128 block_rsv = root->orphan_block_rsv;
3129 root->orphan_block_rsv = NULL;
3130 spin_unlock(&root->orphan_lock);
3131
3132 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3133 btrfs_root_refs(&root->root_item) > 0) {
3134 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3135 root->root_key.objectid);
3136 if (ret)
3137 btrfs_abort_transaction(trans, root, ret);
3138 else
3139 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3140 &root->state);
3141 }
3142
3143 if (block_rsv) {
3144 WARN_ON(block_rsv->size > 0);
3145 btrfs_free_block_rsv(root, block_rsv);
3146 }
3147 }
3148
3149 /*
3150 * This creates an orphan entry for the given inode in case something goes
3151 * wrong in the middle of an unlink/truncate.
3152 *
3153 * NOTE: caller of this function should reserve 5 units of metadata for
3154 * this function.
3155 */
3156 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3157 {
3158 struct btrfs_root *root = BTRFS_I(inode)->root;
3159 struct btrfs_block_rsv *block_rsv = NULL;
3160 int reserve = 0;
3161 int insert = 0;
3162 int ret;
3163
3164 if (!root->orphan_block_rsv) {
3165 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3166 if (!block_rsv)
3167 return -ENOMEM;
3168 }
3169
3170 spin_lock(&root->orphan_lock);
3171 if (!root->orphan_block_rsv) {
3172 root->orphan_block_rsv = block_rsv;
3173 } else if (block_rsv) {
3174 btrfs_free_block_rsv(root, block_rsv);
3175 block_rsv = NULL;
3176 }
3177
3178 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3179 &BTRFS_I(inode)->runtime_flags)) {
3180 #if 0
3181 /*
3182 * For proper ENOSPC handling, we should do orphan
3183 * cleanup when mounting. But this introduces backward
3184 * compatibility issue.
3185 */
3186 if (!xchg(&root->orphan_item_inserted, 1))
3187 insert = 2;
3188 else
3189 insert = 1;
3190 #endif
3191 insert = 1;
3192 atomic_inc(&root->orphan_inodes);
3193 }
3194
3195 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3196 &BTRFS_I(inode)->runtime_flags))
3197 reserve = 1;
3198 spin_unlock(&root->orphan_lock);
3199
3200 /* grab metadata reservation from transaction handle */
3201 if (reserve) {
3202 ret = btrfs_orphan_reserve_metadata(trans, inode);
3203 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3204 }
3205
3206 /* insert an orphan item to track this unlinked/truncated file */
3207 if (insert >= 1) {
3208 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3209 if (ret) {
3210 atomic_dec(&root->orphan_inodes);
3211 if (reserve) {
3212 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3213 &BTRFS_I(inode)->runtime_flags);
3214 btrfs_orphan_release_metadata(inode);
3215 }
3216 if (ret != -EEXIST) {
3217 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3218 &BTRFS_I(inode)->runtime_flags);
3219 btrfs_abort_transaction(trans, root, ret);
3220 return ret;
3221 }
3222 }
3223 ret = 0;
3224 }
3225
3226 /* insert an orphan item to track subvolume contains orphan files */
3227 if (insert >= 2) {
3228 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3229 root->root_key.objectid);
3230 if (ret && ret != -EEXIST) {
3231 btrfs_abort_transaction(trans, root, ret);
3232 return ret;
3233 }
3234 }
3235 return 0;
3236 }
3237
3238 /*
3239 * We have done the truncate/delete so we can go ahead and remove the orphan
3240 * item for this particular inode.
3241 */
3242 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3243 struct inode *inode)
3244 {
3245 struct btrfs_root *root = BTRFS_I(inode)->root;
3246 int delete_item = 0;
3247 int release_rsv = 0;
3248 int ret = 0;
3249
3250 spin_lock(&root->orphan_lock);
3251 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3252 &BTRFS_I(inode)->runtime_flags))
3253 delete_item = 1;
3254
3255 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3256 &BTRFS_I(inode)->runtime_flags))
3257 release_rsv = 1;
3258 spin_unlock(&root->orphan_lock);
3259
3260 if (delete_item) {
3261 atomic_dec(&root->orphan_inodes);
3262 if (trans)
3263 ret = btrfs_del_orphan_item(trans, root,
3264 btrfs_ino(inode));
3265 }
3266
3267 if (release_rsv)
3268 btrfs_orphan_release_metadata(inode);
3269
3270 return ret;
3271 }
3272
3273 /*
3274 * this cleans up any orphans that may be left on the list from the last use
3275 * of this root.
3276 */
3277 int btrfs_orphan_cleanup(struct btrfs_root *root)
3278 {
3279 struct btrfs_path *path;
3280 struct extent_buffer *leaf;
3281 struct btrfs_key key, found_key;
3282 struct btrfs_trans_handle *trans;
3283 struct inode *inode;
3284 u64 last_objectid = 0;
3285 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3286
3287 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3288 return 0;
3289
3290 path = btrfs_alloc_path();
3291 if (!path) {
3292 ret = -ENOMEM;
3293 goto out;
3294 }
3295 path->reada = -1;
3296
3297 key.objectid = BTRFS_ORPHAN_OBJECTID;
3298 key.type = BTRFS_ORPHAN_ITEM_KEY;
3299 key.offset = (u64)-1;
3300
3301 while (1) {
3302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3303 if (ret < 0)
3304 goto out;
3305
3306 /*
3307 * if ret == 0 means we found what we were searching for, which
3308 * is weird, but possible, so only screw with path if we didn't
3309 * find the key and see if we have stuff that matches
3310 */
3311 if (ret > 0) {
3312 ret = 0;
3313 if (path->slots[0] == 0)
3314 break;
3315 path->slots[0]--;
3316 }
3317
3318 /* pull out the item */
3319 leaf = path->nodes[0];
3320 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3321
3322 /* make sure the item matches what we want */
3323 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3324 break;
3325 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3326 break;
3327
3328 /* release the path since we're done with it */
3329 btrfs_release_path(path);
3330
3331 /*
3332 * this is where we are basically btrfs_lookup, without the
3333 * crossing root thing. we store the inode number in the
3334 * offset of the orphan item.
3335 */
3336
3337 if (found_key.offset == last_objectid) {
3338 btrfs_err(root->fs_info,
3339 "Error removing orphan entry, stopping orphan cleanup");
3340 ret = -EINVAL;
3341 goto out;
3342 }
3343
3344 last_objectid = found_key.offset;
3345
3346 found_key.objectid = found_key.offset;
3347 found_key.type = BTRFS_INODE_ITEM_KEY;
3348 found_key.offset = 0;
3349 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3350 ret = PTR_ERR_OR_ZERO(inode);
3351 if (ret && ret != -ESTALE)
3352 goto out;
3353
3354 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3355 struct btrfs_root *dead_root;
3356 struct btrfs_fs_info *fs_info = root->fs_info;
3357 int is_dead_root = 0;
3358
3359 /*
3360 * this is an orphan in the tree root. Currently these
3361 * could come from 2 sources:
3362 * a) a snapshot deletion in progress
3363 * b) a free space cache inode
3364 * We need to distinguish those two, as the snapshot
3365 * orphan must not get deleted.
3366 * find_dead_roots already ran before us, so if this
3367 * is a snapshot deletion, we should find the root
3368 * in the dead_roots list
3369 */
3370 spin_lock(&fs_info->trans_lock);
3371 list_for_each_entry(dead_root, &fs_info->dead_roots,
3372 root_list) {
3373 if (dead_root->root_key.objectid ==
3374 found_key.objectid) {
3375 is_dead_root = 1;
3376 break;
3377 }
3378 }
3379 spin_unlock(&fs_info->trans_lock);
3380 if (is_dead_root) {
3381 /* prevent this orphan from being found again */
3382 key.offset = found_key.objectid - 1;
3383 continue;
3384 }
3385 }
3386 /*
3387 * Inode is already gone but the orphan item is still there,
3388 * kill the orphan item.
3389 */
3390 if (ret == -ESTALE) {
3391 trans = btrfs_start_transaction(root, 1);
3392 if (IS_ERR(trans)) {
3393 ret = PTR_ERR(trans);
3394 goto out;
3395 }
3396 btrfs_debug(root->fs_info, "auto deleting %Lu",
3397 found_key.objectid);
3398 ret = btrfs_del_orphan_item(trans, root,
3399 found_key.objectid);
3400 btrfs_end_transaction(trans, root);
3401 if (ret)
3402 goto out;
3403 continue;
3404 }
3405
3406 /*
3407 * add this inode to the orphan list so btrfs_orphan_del does
3408 * the proper thing when we hit it
3409 */
3410 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3411 &BTRFS_I(inode)->runtime_flags);
3412 atomic_inc(&root->orphan_inodes);
3413
3414 /* if we have links, this was a truncate, lets do that */
3415 if (inode->i_nlink) {
3416 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3417 iput(inode);
3418 continue;
3419 }
3420 nr_truncate++;
3421
3422 /* 1 for the orphan item deletion. */
3423 trans = btrfs_start_transaction(root, 1);
3424 if (IS_ERR(trans)) {
3425 iput(inode);
3426 ret = PTR_ERR(trans);
3427 goto out;
3428 }
3429 ret = btrfs_orphan_add(trans, inode);
3430 btrfs_end_transaction(trans, root);
3431 if (ret) {
3432 iput(inode);
3433 goto out;
3434 }
3435
3436 ret = btrfs_truncate(inode);
3437 if (ret)
3438 btrfs_orphan_del(NULL, inode);
3439 } else {
3440 nr_unlink++;
3441 }
3442
3443 /* this will do delete_inode and everything for us */
3444 iput(inode);
3445 if (ret)
3446 goto out;
3447 }
3448 /* release the path since we're done with it */
3449 btrfs_release_path(path);
3450
3451 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3452
3453 if (root->orphan_block_rsv)
3454 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3455 (u64)-1);
3456
3457 if (root->orphan_block_rsv ||
3458 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3459 trans = btrfs_join_transaction(root);
3460 if (!IS_ERR(trans))
3461 btrfs_end_transaction(trans, root);
3462 }
3463
3464 if (nr_unlink)
3465 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3466 if (nr_truncate)
3467 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3468
3469 out:
3470 if (ret)
3471 btrfs_err(root->fs_info,
3472 "could not do orphan cleanup %d", ret);
3473 btrfs_free_path(path);
3474 return ret;
3475 }
3476
3477 /*
3478 * very simple check to peek ahead in the leaf looking for xattrs. If we
3479 * don't find any xattrs, we know there can't be any acls.
3480 *
3481 * slot is the slot the inode is in, objectid is the objectid of the inode
3482 */
3483 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3484 int slot, u64 objectid,
3485 int *first_xattr_slot)
3486 {
3487 u32 nritems = btrfs_header_nritems(leaf);
3488 struct btrfs_key found_key;
3489 static u64 xattr_access = 0;
3490 static u64 xattr_default = 0;
3491 int scanned = 0;
3492
3493 if (!xattr_access) {
3494 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3495 strlen(POSIX_ACL_XATTR_ACCESS));
3496 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3497 strlen(POSIX_ACL_XATTR_DEFAULT));
3498 }
3499
3500 slot++;
3501 *first_xattr_slot = -1;
3502 while (slot < nritems) {
3503 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3504
3505 /* we found a different objectid, there must not be acls */
3506 if (found_key.objectid != objectid)
3507 return 0;
3508
3509 /* we found an xattr, assume we've got an acl */
3510 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3511 if (*first_xattr_slot == -1)
3512 *first_xattr_slot = slot;
3513 if (found_key.offset == xattr_access ||
3514 found_key.offset == xattr_default)
3515 return 1;
3516 }
3517
3518 /*
3519 * we found a key greater than an xattr key, there can't
3520 * be any acls later on
3521 */
3522 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3523 return 0;
3524
3525 slot++;
3526 scanned++;
3527
3528 /*
3529 * it goes inode, inode backrefs, xattrs, extents,
3530 * so if there are a ton of hard links to an inode there can
3531 * be a lot of backrefs. Don't waste time searching too hard,
3532 * this is just an optimization
3533 */
3534 if (scanned >= 8)
3535 break;
3536 }
3537 /* we hit the end of the leaf before we found an xattr or
3538 * something larger than an xattr. We have to assume the inode
3539 * has acls
3540 */
3541 if (*first_xattr_slot == -1)
3542 *first_xattr_slot = slot;
3543 return 1;
3544 }
3545
3546 /*
3547 * read an inode from the btree into the in-memory inode
3548 */
3549 static void btrfs_read_locked_inode(struct inode *inode)
3550 {
3551 struct btrfs_path *path;
3552 struct extent_buffer *leaf;
3553 struct btrfs_inode_item *inode_item;
3554 struct btrfs_root *root = BTRFS_I(inode)->root;
3555 struct btrfs_key location;
3556 unsigned long ptr;
3557 int maybe_acls;
3558 u32 rdev;
3559 int ret;
3560 bool filled = false;
3561 int first_xattr_slot;
3562
3563 ret = btrfs_fill_inode(inode, &rdev);
3564 if (!ret)
3565 filled = true;
3566
3567 path = btrfs_alloc_path();
3568 if (!path)
3569 goto make_bad;
3570
3571 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3572
3573 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3574 if (ret)
3575 goto make_bad;
3576
3577 leaf = path->nodes[0];
3578
3579 if (filled)
3580 goto cache_index;
3581
3582 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3583 struct btrfs_inode_item);
3584 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3585 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3586 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3587 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3588 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3589
3590 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3591 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3592
3593 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3594 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3595
3596 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3597 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3598
3599 BTRFS_I(inode)->i_otime.tv_sec =
3600 btrfs_timespec_sec(leaf, &inode_item->otime);
3601 BTRFS_I(inode)->i_otime.tv_nsec =
3602 btrfs_timespec_nsec(leaf, &inode_item->otime);
3603
3604 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3605 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3606 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3607
3608 /*
3609 * If we were modified in the current generation and evicted from memory
3610 * and then re-read we need to do a full sync since we don't have any
3611 * idea about which extents were modified before we were evicted from
3612 * cache.
3613 */
3614 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3615 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3616 &BTRFS_I(inode)->runtime_flags);
3617
3618 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3619 inode->i_generation = BTRFS_I(inode)->generation;
3620 inode->i_rdev = 0;
3621 rdev = btrfs_inode_rdev(leaf, inode_item);
3622
3623 BTRFS_I(inode)->index_cnt = (u64)-1;
3624 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3625
3626 cache_index:
3627 path->slots[0]++;
3628 if (inode->i_nlink != 1 ||
3629 path->slots[0] >= btrfs_header_nritems(leaf))
3630 goto cache_acl;
3631
3632 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3633 if (location.objectid != btrfs_ino(inode))
3634 goto cache_acl;
3635
3636 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3637 if (location.type == BTRFS_INODE_REF_KEY) {
3638 struct btrfs_inode_ref *ref;
3639
3640 ref = (struct btrfs_inode_ref *)ptr;
3641 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3642 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3643 struct btrfs_inode_extref *extref;
3644
3645 extref = (struct btrfs_inode_extref *)ptr;
3646 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3647 extref);
3648 }
3649 cache_acl:
3650 /*
3651 * try to precache a NULL acl entry for files that don't have
3652 * any xattrs or acls
3653 */
3654 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3655 btrfs_ino(inode), &first_xattr_slot);
3656 if (first_xattr_slot != -1) {
3657 path->slots[0] = first_xattr_slot;
3658 ret = btrfs_load_inode_props(inode, path);
3659 if (ret)
3660 btrfs_err(root->fs_info,
3661 "error loading props for ino %llu (root %llu): %d",
3662 btrfs_ino(inode),
3663 root->root_key.objectid, ret);
3664 }
3665 btrfs_free_path(path);
3666
3667 if (!maybe_acls)
3668 cache_no_acl(inode);
3669
3670 switch (inode->i_mode & S_IFMT) {
3671 case S_IFREG:
3672 inode->i_mapping->a_ops = &btrfs_aops;
3673 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3674 inode->i_fop = &btrfs_file_operations;
3675 inode->i_op = &btrfs_file_inode_operations;
3676 break;
3677 case S_IFDIR:
3678 inode->i_fop = &btrfs_dir_file_operations;
3679 if (root == root->fs_info->tree_root)
3680 inode->i_op = &btrfs_dir_ro_inode_operations;
3681 else
3682 inode->i_op = &btrfs_dir_inode_operations;
3683 break;
3684 case S_IFLNK:
3685 inode->i_op = &btrfs_symlink_inode_operations;
3686 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3687 break;
3688 default:
3689 inode->i_op = &btrfs_special_inode_operations;
3690 init_special_inode(inode, inode->i_mode, rdev);
3691 break;
3692 }
3693
3694 btrfs_update_iflags(inode);
3695 return;
3696
3697 make_bad:
3698 btrfs_free_path(path);
3699 make_bad_inode(inode);
3700 }
3701
3702 /*
3703 * given a leaf and an inode, copy the inode fields into the leaf
3704 */
3705 static void fill_inode_item(struct btrfs_trans_handle *trans,
3706 struct extent_buffer *leaf,
3707 struct btrfs_inode_item *item,
3708 struct inode *inode)
3709 {
3710 struct btrfs_map_token token;
3711
3712 btrfs_init_map_token(&token);
3713
3714 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3715 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3716 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3717 &token);
3718 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3719 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3720
3721 btrfs_set_token_timespec_sec(leaf, &item->atime,
3722 inode->i_atime.tv_sec, &token);
3723 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3724 inode->i_atime.tv_nsec, &token);
3725
3726 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3727 inode->i_mtime.tv_sec, &token);
3728 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3729 inode->i_mtime.tv_nsec, &token);
3730
3731 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3732 inode->i_ctime.tv_sec, &token);
3733 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3734 inode->i_ctime.tv_nsec, &token);
3735
3736 btrfs_set_token_timespec_sec(leaf, &item->otime,
3737 BTRFS_I(inode)->i_otime.tv_sec, &token);
3738 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3739 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3740
3741 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3742 &token);
3743 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3744 &token);
3745 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3746 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3747 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3748 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3749 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3750 }
3751
3752 /*
3753 * copy everything in the in-memory inode into the btree.
3754 */
3755 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3756 struct btrfs_root *root, struct inode *inode)
3757 {
3758 struct btrfs_inode_item *inode_item;
3759 struct btrfs_path *path;
3760 struct extent_buffer *leaf;
3761 int ret;
3762
3763 path = btrfs_alloc_path();
3764 if (!path)
3765 return -ENOMEM;
3766
3767 path->leave_spinning = 1;
3768 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3769 1);
3770 if (ret) {
3771 if (ret > 0)
3772 ret = -ENOENT;
3773 goto failed;
3774 }
3775
3776 leaf = path->nodes[0];
3777 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3778 struct btrfs_inode_item);
3779
3780 fill_inode_item(trans, leaf, inode_item, inode);
3781 btrfs_mark_buffer_dirty(leaf);
3782 btrfs_set_inode_last_trans(trans, inode);
3783 ret = 0;
3784 failed:
3785 btrfs_free_path(path);
3786 return ret;
3787 }
3788
3789 /*
3790 * copy everything in the in-memory inode into the btree.
3791 */
3792 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3793 struct btrfs_root *root, struct inode *inode)
3794 {
3795 int ret;
3796
3797 /*
3798 * If the inode is a free space inode, we can deadlock during commit
3799 * if we put it into the delayed code.
3800 *
3801 * The data relocation inode should also be directly updated
3802 * without delay
3803 */
3804 if (!btrfs_is_free_space_inode(inode)
3805 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3806 && !root->fs_info->log_root_recovering) {
3807 btrfs_update_root_times(trans, root);
3808
3809 ret = btrfs_delayed_update_inode(trans, root, inode);
3810 if (!ret)
3811 btrfs_set_inode_last_trans(trans, inode);
3812 return ret;
3813 }
3814
3815 return btrfs_update_inode_item(trans, root, inode);
3816 }
3817
3818 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3819 struct btrfs_root *root,
3820 struct inode *inode)
3821 {
3822 int ret;
3823
3824 ret = btrfs_update_inode(trans, root, inode);
3825 if (ret == -ENOSPC)
3826 return btrfs_update_inode_item(trans, root, inode);
3827 return ret;
3828 }
3829
3830 /*
3831 * unlink helper that gets used here in inode.c and in the tree logging
3832 * recovery code. It remove a link in a directory with a given name, and
3833 * also drops the back refs in the inode to the directory
3834 */
3835 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3836 struct btrfs_root *root,
3837 struct inode *dir, struct inode *inode,
3838 const char *name, int name_len)
3839 {
3840 struct btrfs_path *path;
3841 int ret = 0;
3842 struct extent_buffer *leaf;
3843 struct btrfs_dir_item *di;
3844 struct btrfs_key key;
3845 u64 index;
3846 u64 ino = btrfs_ino(inode);
3847 u64 dir_ino = btrfs_ino(dir);
3848
3849 path = btrfs_alloc_path();
3850 if (!path) {
3851 ret = -ENOMEM;
3852 goto out;
3853 }
3854
3855 path->leave_spinning = 1;
3856 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3857 name, name_len, -1);
3858 if (IS_ERR(di)) {
3859 ret = PTR_ERR(di);
3860 goto err;
3861 }
3862 if (!di) {
3863 ret = -ENOENT;
3864 goto err;
3865 }
3866 leaf = path->nodes[0];
3867 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3868 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3869 if (ret)
3870 goto err;
3871 btrfs_release_path(path);
3872
3873 /*
3874 * If we don't have dir index, we have to get it by looking up
3875 * the inode ref, since we get the inode ref, remove it directly,
3876 * it is unnecessary to do delayed deletion.
3877 *
3878 * But if we have dir index, needn't search inode ref to get it.
3879 * Since the inode ref is close to the inode item, it is better
3880 * that we delay to delete it, and just do this deletion when
3881 * we update the inode item.
3882 */
3883 if (BTRFS_I(inode)->dir_index) {
3884 ret = btrfs_delayed_delete_inode_ref(inode);
3885 if (!ret) {
3886 index = BTRFS_I(inode)->dir_index;
3887 goto skip_backref;
3888 }
3889 }
3890
3891 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3892 dir_ino, &index);
3893 if (ret) {
3894 btrfs_info(root->fs_info,
3895 "failed to delete reference to %.*s, inode %llu parent %llu",
3896 name_len, name, ino, dir_ino);
3897 btrfs_abort_transaction(trans, root, ret);
3898 goto err;
3899 }
3900 skip_backref:
3901 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3902 if (ret) {
3903 btrfs_abort_transaction(trans, root, ret);
3904 goto err;
3905 }
3906
3907 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3908 inode, dir_ino);
3909 if (ret != 0 && ret != -ENOENT) {
3910 btrfs_abort_transaction(trans, root, ret);
3911 goto err;
3912 }
3913
3914 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3915 dir, index);
3916 if (ret == -ENOENT)
3917 ret = 0;
3918 else if (ret)
3919 btrfs_abort_transaction(trans, root, ret);
3920 err:
3921 btrfs_free_path(path);
3922 if (ret)
3923 goto out;
3924
3925 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3926 inode_inc_iversion(inode);
3927 inode_inc_iversion(dir);
3928 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3929 ret = btrfs_update_inode(trans, root, dir);
3930 out:
3931 return ret;
3932 }
3933
3934 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3935 struct btrfs_root *root,
3936 struct inode *dir, struct inode *inode,
3937 const char *name, int name_len)
3938 {
3939 int ret;
3940 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3941 if (!ret) {
3942 drop_nlink(inode);
3943 ret = btrfs_update_inode(trans, root, inode);
3944 }
3945 return ret;
3946 }
3947
3948 /*
3949 * helper to start transaction for unlink and rmdir.
3950 *
3951 * unlink and rmdir are special in btrfs, they do not always free space, so
3952 * if we cannot make our reservations the normal way try and see if there is
3953 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3954 * allow the unlink to occur.
3955 */
3956 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3957 {
3958 struct btrfs_trans_handle *trans;
3959 struct btrfs_root *root = BTRFS_I(dir)->root;
3960 int ret;
3961
3962 /*
3963 * 1 for the possible orphan item
3964 * 1 for the dir item
3965 * 1 for the dir index
3966 * 1 for the inode ref
3967 * 1 for the inode
3968 */
3969 trans = btrfs_start_transaction(root, 5);
3970 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3971 return trans;
3972
3973 if (PTR_ERR(trans) == -ENOSPC) {
3974 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3975
3976 trans = btrfs_start_transaction(root, 0);
3977 if (IS_ERR(trans))
3978 return trans;
3979 ret = btrfs_cond_migrate_bytes(root->fs_info,
3980 &root->fs_info->trans_block_rsv,
3981 num_bytes, 5);
3982 if (ret) {
3983 btrfs_end_transaction(trans, root);
3984 return ERR_PTR(ret);
3985 }
3986 trans->block_rsv = &root->fs_info->trans_block_rsv;
3987 trans->bytes_reserved = num_bytes;
3988 }
3989 return trans;
3990 }
3991
3992 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3993 {
3994 struct btrfs_root *root = BTRFS_I(dir)->root;
3995 struct btrfs_trans_handle *trans;
3996 struct inode *inode = dentry->d_inode;
3997 int ret;
3998
3999 trans = __unlink_start_trans(dir);
4000 if (IS_ERR(trans))
4001 return PTR_ERR(trans);
4002
4003 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
4004
4005 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4006 dentry->d_name.name, dentry->d_name.len);
4007 if (ret)
4008 goto out;
4009
4010 if (inode->i_nlink == 0) {
4011 ret = btrfs_orphan_add(trans, inode);
4012 if (ret)
4013 goto out;
4014 }
4015
4016 out:
4017 btrfs_end_transaction(trans, root);
4018 btrfs_btree_balance_dirty(root);
4019 return ret;
4020 }
4021
4022 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4023 struct btrfs_root *root,
4024 struct inode *dir, u64 objectid,
4025 const char *name, int name_len)
4026 {
4027 struct btrfs_path *path;
4028 struct extent_buffer *leaf;
4029 struct btrfs_dir_item *di;
4030 struct btrfs_key key;
4031 u64 index;
4032 int ret;
4033 u64 dir_ino = btrfs_ino(dir);
4034
4035 path = btrfs_alloc_path();
4036 if (!path)
4037 return -ENOMEM;
4038
4039 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4040 name, name_len, -1);
4041 if (IS_ERR_OR_NULL(di)) {
4042 if (!di)
4043 ret = -ENOENT;
4044 else
4045 ret = PTR_ERR(di);
4046 goto out;
4047 }
4048
4049 leaf = path->nodes[0];
4050 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4051 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4052 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4053 if (ret) {
4054 btrfs_abort_transaction(trans, root, ret);
4055 goto out;
4056 }
4057 btrfs_release_path(path);
4058
4059 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4060 objectid, root->root_key.objectid,
4061 dir_ino, &index, name, name_len);
4062 if (ret < 0) {
4063 if (ret != -ENOENT) {
4064 btrfs_abort_transaction(trans, root, ret);
4065 goto out;
4066 }
4067 di = btrfs_search_dir_index_item(root, path, dir_ino,
4068 name, name_len);
4069 if (IS_ERR_OR_NULL(di)) {
4070 if (!di)
4071 ret = -ENOENT;
4072 else
4073 ret = PTR_ERR(di);
4074 btrfs_abort_transaction(trans, root, ret);
4075 goto out;
4076 }
4077
4078 leaf = path->nodes[0];
4079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4080 btrfs_release_path(path);
4081 index = key.offset;
4082 }
4083 btrfs_release_path(path);
4084
4085 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4086 if (ret) {
4087 btrfs_abort_transaction(trans, root, ret);
4088 goto out;
4089 }
4090
4091 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4092 inode_inc_iversion(dir);
4093 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4094 ret = btrfs_update_inode_fallback(trans, root, dir);
4095 if (ret)
4096 btrfs_abort_transaction(trans, root, ret);
4097 out:
4098 btrfs_free_path(path);
4099 return ret;
4100 }
4101
4102 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4103 {
4104 struct inode *inode = dentry->d_inode;
4105 int err = 0;
4106 struct btrfs_root *root = BTRFS_I(dir)->root;
4107 struct btrfs_trans_handle *trans;
4108
4109 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4110 return -ENOTEMPTY;
4111 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4112 return -EPERM;
4113
4114 trans = __unlink_start_trans(dir);
4115 if (IS_ERR(trans))
4116 return PTR_ERR(trans);
4117
4118 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4119 err = btrfs_unlink_subvol(trans, root, dir,
4120 BTRFS_I(inode)->location.objectid,
4121 dentry->d_name.name,
4122 dentry->d_name.len);
4123 goto out;
4124 }
4125
4126 err = btrfs_orphan_add(trans, inode);
4127 if (err)
4128 goto out;
4129
4130 /* now the directory is empty */
4131 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4132 dentry->d_name.name, dentry->d_name.len);
4133 if (!err)
4134 btrfs_i_size_write(inode, 0);
4135 out:
4136 btrfs_end_transaction(trans, root);
4137 btrfs_btree_balance_dirty(root);
4138
4139 return err;
4140 }
4141
4142 /*
4143 * this can truncate away extent items, csum items and directory items.
4144 * It starts at a high offset and removes keys until it can't find
4145 * any higher than new_size
4146 *
4147 * csum items that cross the new i_size are truncated to the new size
4148 * as well.
4149 *
4150 * min_type is the minimum key type to truncate down to. If set to 0, this
4151 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4152 */
4153 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4154 struct btrfs_root *root,
4155 struct inode *inode,
4156 u64 new_size, u32 min_type)
4157 {
4158 struct btrfs_path *path;
4159 struct extent_buffer *leaf;
4160 struct btrfs_file_extent_item *fi;
4161 struct btrfs_key key;
4162 struct btrfs_key found_key;
4163 u64 extent_start = 0;
4164 u64 extent_num_bytes = 0;
4165 u64 extent_offset = 0;
4166 u64 item_end = 0;
4167 u64 last_size = (u64)-1;
4168 u32 found_type = (u8)-1;
4169 int found_extent;
4170 int del_item;
4171 int pending_del_nr = 0;
4172 int pending_del_slot = 0;
4173 int extent_type = -1;
4174 int ret;
4175 int err = 0;
4176 u64 ino = btrfs_ino(inode);
4177
4178 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4179
4180 path = btrfs_alloc_path();
4181 if (!path)
4182 return -ENOMEM;
4183 path->reada = -1;
4184
4185 /*
4186 * We want to drop from the next block forward in case this new size is
4187 * not block aligned since we will be keeping the last block of the
4188 * extent just the way it is.
4189 */
4190 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4191 root == root->fs_info->tree_root)
4192 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4193 root->sectorsize), (u64)-1, 0);
4194
4195 /*
4196 * This function is also used to drop the items in the log tree before
4197 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4198 * it is used to drop the loged items. So we shouldn't kill the delayed
4199 * items.
4200 */
4201 if (min_type == 0 && root == BTRFS_I(inode)->root)
4202 btrfs_kill_delayed_inode_items(inode);
4203
4204 key.objectid = ino;
4205 key.offset = (u64)-1;
4206 key.type = (u8)-1;
4207
4208 search_again:
4209 path->leave_spinning = 1;
4210 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4211 if (ret < 0) {
4212 err = ret;
4213 goto out;
4214 }
4215
4216 if (ret > 0) {
4217 /* there are no items in the tree for us to truncate, we're
4218 * done
4219 */
4220 if (path->slots[0] == 0)
4221 goto out;
4222 path->slots[0]--;
4223 }
4224
4225 while (1) {
4226 fi = NULL;
4227 leaf = path->nodes[0];
4228 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4229 found_type = found_key.type;
4230
4231 if (found_key.objectid != ino)
4232 break;
4233
4234 if (found_type < min_type)
4235 break;
4236
4237 item_end = found_key.offset;
4238 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4239 fi = btrfs_item_ptr(leaf, path->slots[0],
4240 struct btrfs_file_extent_item);
4241 extent_type = btrfs_file_extent_type(leaf, fi);
4242 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4243 item_end +=
4244 btrfs_file_extent_num_bytes(leaf, fi);
4245 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4246 item_end += btrfs_file_extent_inline_len(leaf,
4247 path->slots[0], fi);
4248 }
4249 item_end--;
4250 }
4251 if (found_type > min_type) {
4252 del_item = 1;
4253 } else {
4254 if (item_end < new_size)
4255 break;
4256 if (found_key.offset >= new_size)
4257 del_item = 1;
4258 else
4259 del_item = 0;
4260 }
4261 found_extent = 0;
4262 /* FIXME, shrink the extent if the ref count is only 1 */
4263 if (found_type != BTRFS_EXTENT_DATA_KEY)
4264 goto delete;
4265
4266 if (del_item)
4267 last_size = found_key.offset;
4268 else
4269 last_size = new_size;
4270
4271 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4272 u64 num_dec;
4273 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4274 if (!del_item) {
4275 u64 orig_num_bytes =
4276 btrfs_file_extent_num_bytes(leaf, fi);
4277 extent_num_bytes = ALIGN(new_size -
4278 found_key.offset,
4279 root->sectorsize);
4280 btrfs_set_file_extent_num_bytes(leaf, fi,
4281 extent_num_bytes);
4282 num_dec = (orig_num_bytes -
4283 extent_num_bytes);
4284 if (test_bit(BTRFS_ROOT_REF_COWS,
4285 &root->state) &&
4286 extent_start != 0)
4287 inode_sub_bytes(inode, num_dec);
4288 btrfs_mark_buffer_dirty(leaf);
4289 } else {
4290 extent_num_bytes =
4291 btrfs_file_extent_disk_num_bytes(leaf,
4292 fi);
4293 extent_offset = found_key.offset -
4294 btrfs_file_extent_offset(leaf, fi);
4295
4296 /* FIXME blocksize != 4096 */
4297 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4298 if (extent_start != 0) {
4299 found_extent = 1;
4300 if (test_bit(BTRFS_ROOT_REF_COWS,
4301 &root->state))
4302 inode_sub_bytes(inode, num_dec);
4303 }
4304 }
4305 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4306 /*
4307 * we can't truncate inline items that have had
4308 * special encodings
4309 */
4310 if (!del_item &&
4311 btrfs_file_extent_compression(leaf, fi) == 0 &&
4312 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4313 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4314 u32 size = new_size - found_key.offset;
4315
4316 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4317 inode_sub_bytes(inode, item_end + 1 -
4318 new_size);
4319
4320 /*
4321 * update the ram bytes to properly reflect
4322 * the new size of our item
4323 */
4324 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4325 size =
4326 btrfs_file_extent_calc_inline_size(size);
4327 btrfs_truncate_item(root, path, size, 1);
4328 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4329 &root->state)) {
4330 inode_sub_bytes(inode, item_end + 1 -
4331 found_key.offset);
4332 }
4333 }
4334 delete:
4335 if (del_item) {
4336 if (!pending_del_nr) {
4337 /* no pending yet, add ourselves */
4338 pending_del_slot = path->slots[0];
4339 pending_del_nr = 1;
4340 } else if (pending_del_nr &&
4341 path->slots[0] + 1 == pending_del_slot) {
4342 /* hop on the pending chunk */
4343 pending_del_nr++;
4344 pending_del_slot = path->slots[0];
4345 } else {
4346 BUG();
4347 }
4348 } else {
4349 break;
4350 }
4351 if (found_extent &&
4352 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4353 root == root->fs_info->tree_root)) {
4354 btrfs_set_path_blocking(path);
4355 ret = btrfs_free_extent(trans, root, extent_start,
4356 extent_num_bytes, 0,
4357 btrfs_header_owner(leaf),
4358 ino, extent_offset, 0);
4359 BUG_ON(ret);
4360 }
4361
4362 if (found_type == BTRFS_INODE_ITEM_KEY)
4363 break;
4364
4365 if (path->slots[0] == 0 ||
4366 path->slots[0] != pending_del_slot) {
4367 if (pending_del_nr) {
4368 ret = btrfs_del_items(trans, root, path,
4369 pending_del_slot,
4370 pending_del_nr);
4371 if (ret) {
4372 btrfs_abort_transaction(trans,
4373 root, ret);
4374 goto error;
4375 }
4376 pending_del_nr = 0;
4377 }
4378 btrfs_release_path(path);
4379 goto search_again;
4380 } else {
4381 path->slots[0]--;
4382 }
4383 }
4384 out:
4385 if (pending_del_nr) {
4386 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4387 pending_del_nr);
4388 if (ret)
4389 btrfs_abort_transaction(trans, root, ret);
4390 }
4391 error:
4392 if (last_size != (u64)-1 &&
4393 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4394 btrfs_ordered_update_i_size(inode, last_size, NULL);
4395 btrfs_free_path(path);
4396 return err;
4397 }
4398
4399 /*
4400 * btrfs_truncate_page - read, zero a chunk and write a page
4401 * @inode - inode that we're zeroing
4402 * @from - the offset to start zeroing
4403 * @len - the length to zero, 0 to zero the entire range respective to the
4404 * offset
4405 * @front - zero up to the offset instead of from the offset on
4406 *
4407 * This will find the page for the "from" offset and cow the page and zero the
4408 * part we want to zero. This is used with truncate and hole punching.
4409 */
4410 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4411 int front)
4412 {
4413 struct address_space *mapping = inode->i_mapping;
4414 struct btrfs_root *root = BTRFS_I(inode)->root;
4415 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4416 struct btrfs_ordered_extent *ordered;
4417 struct extent_state *cached_state = NULL;
4418 char *kaddr;
4419 u32 blocksize = root->sectorsize;
4420 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4421 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4422 struct page *page;
4423 gfp_t mask = btrfs_alloc_write_mask(mapping);
4424 int ret = 0;
4425 u64 page_start;
4426 u64 page_end;
4427
4428 if ((offset & (blocksize - 1)) == 0 &&
4429 (!len || ((len & (blocksize - 1)) == 0)))
4430 goto out;
4431 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4432 if (ret)
4433 goto out;
4434
4435 again:
4436 page = find_or_create_page(mapping, index, mask);
4437 if (!page) {
4438 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4439 ret = -ENOMEM;
4440 goto out;
4441 }
4442
4443 page_start = page_offset(page);
4444 page_end = page_start + PAGE_CACHE_SIZE - 1;
4445
4446 if (!PageUptodate(page)) {
4447 ret = btrfs_readpage(NULL, page);
4448 lock_page(page);
4449 if (page->mapping != mapping) {
4450 unlock_page(page);
4451 page_cache_release(page);
4452 goto again;
4453 }
4454 if (!PageUptodate(page)) {
4455 ret = -EIO;
4456 goto out_unlock;
4457 }
4458 }
4459 wait_on_page_writeback(page);
4460
4461 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4462 set_page_extent_mapped(page);
4463
4464 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4465 if (ordered) {
4466 unlock_extent_cached(io_tree, page_start, page_end,
4467 &cached_state, GFP_NOFS);
4468 unlock_page(page);
4469 page_cache_release(page);
4470 btrfs_start_ordered_extent(inode, ordered, 1);
4471 btrfs_put_ordered_extent(ordered);
4472 goto again;
4473 }
4474
4475 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4476 EXTENT_DIRTY | EXTENT_DELALLOC |
4477 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4478 0, 0, &cached_state, GFP_NOFS);
4479
4480 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4481 &cached_state);
4482 if (ret) {
4483 unlock_extent_cached(io_tree, page_start, page_end,
4484 &cached_state, GFP_NOFS);
4485 goto out_unlock;
4486 }
4487
4488 if (offset != PAGE_CACHE_SIZE) {
4489 if (!len)
4490 len = PAGE_CACHE_SIZE - offset;
4491 kaddr = kmap(page);
4492 if (front)
4493 memset(kaddr, 0, offset);
4494 else
4495 memset(kaddr + offset, 0, len);
4496 flush_dcache_page(page);
4497 kunmap(page);
4498 }
4499 ClearPageChecked(page);
4500 set_page_dirty(page);
4501 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4502 GFP_NOFS);
4503
4504 out_unlock:
4505 if (ret)
4506 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4507 unlock_page(page);
4508 page_cache_release(page);
4509 out:
4510 return ret;
4511 }
4512
4513 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4514 u64 offset, u64 len)
4515 {
4516 struct btrfs_trans_handle *trans;
4517 int ret;
4518
4519 /*
4520 * Still need to make sure the inode looks like it's been updated so
4521 * that any holes get logged if we fsync.
4522 */
4523 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4524 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4525 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4526 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4527 return 0;
4528 }
4529
4530 /*
4531 * 1 - for the one we're dropping
4532 * 1 - for the one we're adding
4533 * 1 - for updating the inode.
4534 */
4535 trans = btrfs_start_transaction(root, 3);
4536 if (IS_ERR(trans))
4537 return PTR_ERR(trans);
4538
4539 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4540 if (ret) {
4541 btrfs_abort_transaction(trans, root, ret);
4542 btrfs_end_transaction(trans, root);
4543 return ret;
4544 }
4545
4546 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4547 0, 0, len, 0, len, 0, 0, 0);
4548 if (ret)
4549 btrfs_abort_transaction(trans, root, ret);
4550 else
4551 btrfs_update_inode(trans, root, inode);
4552 btrfs_end_transaction(trans, root);
4553 return ret;
4554 }
4555
4556 /*
4557 * This function puts in dummy file extents for the area we're creating a hole
4558 * for. So if we are truncating this file to a larger size we need to insert
4559 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4560 * the range between oldsize and size
4561 */
4562 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4563 {
4564 struct btrfs_root *root = BTRFS_I(inode)->root;
4565 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4566 struct extent_map *em = NULL;
4567 struct extent_state *cached_state = NULL;
4568 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4569 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4570 u64 block_end = ALIGN(size, root->sectorsize);
4571 u64 last_byte;
4572 u64 cur_offset;
4573 u64 hole_size;
4574 int err = 0;
4575
4576 /*
4577 * If our size started in the middle of a page we need to zero out the
4578 * rest of the page before we expand the i_size, otherwise we could
4579 * expose stale data.
4580 */
4581 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4582 if (err)
4583 return err;
4584
4585 if (size <= hole_start)
4586 return 0;
4587
4588 while (1) {
4589 struct btrfs_ordered_extent *ordered;
4590
4591 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4592 &cached_state);
4593 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4594 block_end - hole_start);
4595 if (!ordered)
4596 break;
4597 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4598 &cached_state, GFP_NOFS);
4599 btrfs_start_ordered_extent(inode, ordered, 1);
4600 btrfs_put_ordered_extent(ordered);
4601 }
4602
4603 cur_offset = hole_start;
4604 while (1) {
4605 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4606 block_end - cur_offset, 0);
4607 if (IS_ERR(em)) {
4608 err = PTR_ERR(em);
4609 em = NULL;
4610 break;
4611 }
4612 last_byte = min(extent_map_end(em), block_end);
4613 last_byte = ALIGN(last_byte , root->sectorsize);
4614 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4615 struct extent_map *hole_em;
4616 hole_size = last_byte - cur_offset;
4617
4618 err = maybe_insert_hole(root, inode, cur_offset,
4619 hole_size);
4620 if (err)
4621 break;
4622 btrfs_drop_extent_cache(inode, cur_offset,
4623 cur_offset + hole_size - 1, 0);
4624 hole_em = alloc_extent_map();
4625 if (!hole_em) {
4626 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4627 &BTRFS_I(inode)->runtime_flags);
4628 goto next;
4629 }
4630 hole_em->start = cur_offset;
4631 hole_em->len = hole_size;
4632 hole_em->orig_start = cur_offset;
4633
4634 hole_em->block_start = EXTENT_MAP_HOLE;
4635 hole_em->block_len = 0;
4636 hole_em->orig_block_len = 0;
4637 hole_em->ram_bytes = hole_size;
4638 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4639 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4640 hole_em->generation = root->fs_info->generation;
4641
4642 while (1) {
4643 write_lock(&em_tree->lock);
4644 err = add_extent_mapping(em_tree, hole_em, 1);
4645 write_unlock(&em_tree->lock);
4646 if (err != -EEXIST)
4647 break;
4648 btrfs_drop_extent_cache(inode, cur_offset,
4649 cur_offset +
4650 hole_size - 1, 0);
4651 }
4652 free_extent_map(hole_em);
4653 }
4654 next:
4655 free_extent_map(em);
4656 em = NULL;
4657 cur_offset = last_byte;
4658 if (cur_offset >= block_end)
4659 break;
4660 }
4661 free_extent_map(em);
4662 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4663 GFP_NOFS);
4664 return err;
4665 }
4666
4667 static int wait_snapshoting_atomic_t(atomic_t *a)
4668 {
4669 schedule();
4670 return 0;
4671 }
4672
4673 static void wait_for_snapshot_creation(struct btrfs_root *root)
4674 {
4675 while (true) {
4676 int ret;
4677
4678 ret = btrfs_start_write_no_snapshoting(root);
4679 if (ret)
4680 break;
4681 wait_on_atomic_t(&root->will_be_snapshoted,
4682 wait_snapshoting_atomic_t,
4683 TASK_UNINTERRUPTIBLE);
4684 }
4685 }
4686
4687 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4688 {
4689 struct btrfs_root *root = BTRFS_I(inode)->root;
4690 struct btrfs_trans_handle *trans;
4691 loff_t oldsize = i_size_read(inode);
4692 loff_t newsize = attr->ia_size;
4693 int mask = attr->ia_valid;
4694 int ret;
4695
4696 /*
4697 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4698 * special case where we need to update the times despite not having
4699 * these flags set. For all other operations the VFS set these flags
4700 * explicitly if it wants a timestamp update.
4701 */
4702 if (newsize != oldsize) {
4703 inode_inc_iversion(inode);
4704 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4705 inode->i_ctime = inode->i_mtime =
4706 current_fs_time(inode->i_sb);
4707 }
4708
4709 if (newsize > oldsize) {
4710 truncate_pagecache(inode, newsize);
4711 /*
4712 * Don't do an expanding truncate while snapshoting is ongoing.
4713 * This is to ensure the snapshot captures a fully consistent
4714 * state of this file - if the snapshot captures this expanding
4715 * truncation, it must capture all writes that happened before
4716 * this truncation.
4717 */
4718 wait_for_snapshot_creation(root);
4719 ret = btrfs_cont_expand(inode, oldsize, newsize);
4720 if (ret) {
4721 btrfs_end_write_no_snapshoting(root);
4722 return ret;
4723 }
4724
4725 trans = btrfs_start_transaction(root, 1);
4726 if (IS_ERR(trans)) {
4727 btrfs_end_write_no_snapshoting(root);
4728 return PTR_ERR(trans);
4729 }
4730
4731 i_size_write(inode, newsize);
4732 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4733 ret = btrfs_update_inode(trans, root, inode);
4734 btrfs_end_write_no_snapshoting(root);
4735 btrfs_end_transaction(trans, root);
4736 } else {
4737
4738 /*
4739 * We're truncating a file that used to have good data down to
4740 * zero. Make sure it gets into the ordered flush list so that
4741 * any new writes get down to disk quickly.
4742 */
4743 if (newsize == 0)
4744 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4745 &BTRFS_I(inode)->runtime_flags);
4746
4747 /*
4748 * 1 for the orphan item we're going to add
4749 * 1 for the orphan item deletion.
4750 */
4751 trans = btrfs_start_transaction(root, 2);
4752 if (IS_ERR(trans))
4753 return PTR_ERR(trans);
4754
4755 /*
4756 * We need to do this in case we fail at _any_ point during the
4757 * actual truncate. Once we do the truncate_setsize we could
4758 * invalidate pages which forces any outstanding ordered io to
4759 * be instantly completed which will give us extents that need
4760 * to be truncated. If we fail to get an orphan inode down we
4761 * could have left over extents that were never meant to live,
4762 * so we need to garuntee from this point on that everything
4763 * will be consistent.
4764 */
4765 ret = btrfs_orphan_add(trans, inode);
4766 btrfs_end_transaction(trans, root);
4767 if (ret)
4768 return ret;
4769
4770 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4771 truncate_setsize(inode, newsize);
4772
4773 /* Disable nonlocked read DIO to avoid the end less truncate */
4774 btrfs_inode_block_unlocked_dio(inode);
4775 inode_dio_wait(inode);
4776 btrfs_inode_resume_unlocked_dio(inode);
4777
4778 ret = btrfs_truncate(inode);
4779 if (ret && inode->i_nlink) {
4780 int err;
4781
4782 /*
4783 * failed to truncate, disk_i_size is only adjusted down
4784 * as we remove extents, so it should represent the true
4785 * size of the inode, so reset the in memory size and
4786 * delete our orphan entry.
4787 */
4788 trans = btrfs_join_transaction(root);
4789 if (IS_ERR(trans)) {
4790 btrfs_orphan_del(NULL, inode);
4791 return ret;
4792 }
4793 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4794 err = btrfs_orphan_del(trans, inode);
4795 if (err)
4796 btrfs_abort_transaction(trans, root, err);
4797 btrfs_end_transaction(trans, root);
4798 }
4799 }
4800
4801 return ret;
4802 }
4803
4804 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4805 {
4806 struct inode *inode = dentry->d_inode;
4807 struct btrfs_root *root = BTRFS_I(inode)->root;
4808 int err;
4809
4810 if (btrfs_root_readonly(root))
4811 return -EROFS;
4812
4813 err = inode_change_ok(inode, attr);
4814 if (err)
4815 return err;
4816
4817 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4818 err = btrfs_setsize(inode, attr);
4819 if (err)
4820 return err;
4821 }
4822
4823 if (attr->ia_valid) {
4824 setattr_copy(inode, attr);
4825 inode_inc_iversion(inode);
4826 err = btrfs_dirty_inode(inode);
4827
4828 if (!err && attr->ia_valid & ATTR_MODE)
4829 err = posix_acl_chmod(inode, inode->i_mode);
4830 }
4831
4832 return err;
4833 }
4834
4835 /*
4836 * While truncating the inode pages during eviction, we get the VFS calling
4837 * btrfs_invalidatepage() against each page of the inode. This is slow because
4838 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4839 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4840 * extent_state structures over and over, wasting lots of time.
4841 *
4842 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4843 * those expensive operations on a per page basis and do only the ordered io
4844 * finishing, while we release here the extent_map and extent_state structures,
4845 * without the excessive merging and splitting.
4846 */
4847 static void evict_inode_truncate_pages(struct inode *inode)
4848 {
4849 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4850 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4851 struct rb_node *node;
4852
4853 ASSERT(inode->i_state & I_FREEING);
4854 truncate_inode_pages_final(&inode->i_data);
4855
4856 write_lock(&map_tree->lock);
4857 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4858 struct extent_map *em;
4859
4860 node = rb_first(&map_tree->map);
4861 em = rb_entry(node, struct extent_map, rb_node);
4862 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4863 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4864 remove_extent_mapping(map_tree, em);
4865 free_extent_map(em);
4866 if (need_resched()) {
4867 write_unlock(&map_tree->lock);
4868 cond_resched();
4869 write_lock(&map_tree->lock);
4870 }
4871 }
4872 write_unlock(&map_tree->lock);
4873
4874 spin_lock(&io_tree->lock);
4875 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4876 struct extent_state *state;
4877 struct extent_state *cached_state = NULL;
4878
4879 node = rb_first(&io_tree->state);
4880 state = rb_entry(node, struct extent_state, rb_node);
4881 atomic_inc(&state->refs);
4882 spin_unlock(&io_tree->lock);
4883
4884 lock_extent_bits(io_tree, state->start, state->end,
4885 0, &cached_state);
4886 clear_extent_bit(io_tree, state->start, state->end,
4887 EXTENT_LOCKED | EXTENT_DIRTY |
4888 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4889 EXTENT_DEFRAG, 1, 1,
4890 &cached_state, GFP_NOFS);
4891 free_extent_state(state);
4892
4893 cond_resched();
4894 spin_lock(&io_tree->lock);
4895 }
4896 spin_unlock(&io_tree->lock);
4897 }
4898
4899 void btrfs_evict_inode(struct inode *inode)
4900 {
4901 struct btrfs_trans_handle *trans;
4902 struct btrfs_root *root = BTRFS_I(inode)->root;
4903 struct btrfs_block_rsv *rsv, *global_rsv;
4904 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4905 int ret;
4906
4907 trace_btrfs_inode_evict(inode);
4908
4909 evict_inode_truncate_pages(inode);
4910
4911 if (inode->i_nlink &&
4912 ((btrfs_root_refs(&root->root_item) != 0 &&
4913 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4914 btrfs_is_free_space_inode(inode)))
4915 goto no_delete;
4916
4917 if (is_bad_inode(inode)) {
4918 btrfs_orphan_del(NULL, inode);
4919 goto no_delete;
4920 }
4921 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4922 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4923
4924 btrfs_free_io_failure_record(inode, 0, (u64)-1);
4925
4926 if (root->fs_info->log_root_recovering) {
4927 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4928 &BTRFS_I(inode)->runtime_flags));
4929 goto no_delete;
4930 }
4931
4932 if (inode->i_nlink > 0) {
4933 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4934 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4935 goto no_delete;
4936 }
4937
4938 ret = btrfs_commit_inode_delayed_inode(inode);
4939 if (ret) {
4940 btrfs_orphan_del(NULL, inode);
4941 goto no_delete;
4942 }
4943
4944 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4945 if (!rsv) {
4946 btrfs_orphan_del(NULL, inode);
4947 goto no_delete;
4948 }
4949 rsv->size = min_size;
4950 rsv->failfast = 1;
4951 global_rsv = &root->fs_info->global_block_rsv;
4952
4953 btrfs_i_size_write(inode, 0);
4954
4955 /*
4956 * This is a bit simpler than btrfs_truncate since we've already
4957 * reserved our space for our orphan item in the unlink, so we just
4958 * need to reserve some slack space in case we add bytes and update
4959 * inode item when doing the truncate.
4960 */
4961 while (1) {
4962 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4963 BTRFS_RESERVE_FLUSH_LIMIT);
4964
4965 /*
4966 * Try and steal from the global reserve since we will
4967 * likely not use this space anyway, we want to try as
4968 * hard as possible to get this to work.
4969 */
4970 if (ret)
4971 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4972
4973 if (ret) {
4974 btrfs_warn(root->fs_info,
4975 "Could not get space for a delete, will truncate on mount %d",
4976 ret);
4977 btrfs_orphan_del(NULL, inode);
4978 btrfs_free_block_rsv(root, rsv);
4979 goto no_delete;
4980 }
4981
4982 trans = btrfs_join_transaction(root);
4983 if (IS_ERR(trans)) {
4984 btrfs_orphan_del(NULL, inode);
4985 btrfs_free_block_rsv(root, rsv);
4986 goto no_delete;
4987 }
4988
4989 trans->block_rsv = rsv;
4990
4991 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4992 if (ret != -ENOSPC)
4993 break;
4994
4995 trans->block_rsv = &root->fs_info->trans_block_rsv;
4996 btrfs_end_transaction(trans, root);
4997 trans = NULL;
4998 btrfs_btree_balance_dirty(root);
4999 }
5000
5001 btrfs_free_block_rsv(root, rsv);
5002
5003 /*
5004 * Errors here aren't a big deal, it just means we leave orphan items
5005 * in the tree. They will be cleaned up on the next mount.
5006 */
5007 if (ret == 0) {
5008 trans->block_rsv = root->orphan_block_rsv;
5009 btrfs_orphan_del(trans, inode);
5010 } else {
5011 btrfs_orphan_del(NULL, inode);
5012 }
5013
5014 trans->block_rsv = &root->fs_info->trans_block_rsv;
5015 if (!(root == root->fs_info->tree_root ||
5016 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5017 btrfs_return_ino(root, btrfs_ino(inode));
5018
5019 btrfs_end_transaction(trans, root);
5020 btrfs_btree_balance_dirty(root);
5021 no_delete:
5022 btrfs_remove_delayed_node(inode);
5023 clear_inode(inode);
5024 return;
5025 }
5026
5027 /*
5028 * this returns the key found in the dir entry in the location pointer.
5029 * If no dir entries were found, location->objectid is 0.
5030 */
5031 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5032 struct btrfs_key *location)
5033 {
5034 const char *name = dentry->d_name.name;
5035 int namelen = dentry->d_name.len;
5036 struct btrfs_dir_item *di;
5037 struct btrfs_path *path;
5038 struct btrfs_root *root = BTRFS_I(dir)->root;
5039 int ret = 0;
5040
5041 path = btrfs_alloc_path();
5042 if (!path)
5043 return -ENOMEM;
5044
5045 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5046 namelen, 0);
5047 if (IS_ERR(di))
5048 ret = PTR_ERR(di);
5049
5050 if (IS_ERR_OR_NULL(di))
5051 goto out_err;
5052
5053 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5054 out:
5055 btrfs_free_path(path);
5056 return ret;
5057 out_err:
5058 location->objectid = 0;
5059 goto out;
5060 }
5061
5062 /*
5063 * when we hit a tree root in a directory, the btrfs part of the inode
5064 * needs to be changed to reflect the root directory of the tree root. This
5065 * is kind of like crossing a mount point.
5066 */
5067 static int fixup_tree_root_location(struct btrfs_root *root,
5068 struct inode *dir,
5069 struct dentry *dentry,
5070 struct btrfs_key *location,
5071 struct btrfs_root **sub_root)
5072 {
5073 struct btrfs_path *path;
5074 struct btrfs_root *new_root;
5075 struct btrfs_root_ref *ref;
5076 struct extent_buffer *leaf;
5077 struct btrfs_key key;
5078 int ret;
5079 int err = 0;
5080
5081 path = btrfs_alloc_path();
5082 if (!path) {
5083 err = -ENOMEM;
5084 goto out;
5085 }
5086
5087 err = -ENOENT;
5088 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5089 key.type = BTRFS_ROOT_REF_KEY;
5090 key.offset = location->objectid;
5091
5092 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5093 0, 0);
5094 if (ret) {
5095 if (ret < 0)
5096 err = ret;
5097 goto out;
5098 }
5099
5100 leaf = path->nodes[0];
5101 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5102 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5103 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5104 goto out;
5105
5106 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5107 (unsigned long)(ref + 1),
5108 dentry->d_name.len);
5109 if (ret)
5110 goto out;
5111
5112 btrfs_release_path(path);
5113
5114 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5115 if (IS_ERR(new_root)) {
5116 err = PTR_ERR(new_root);
5117 goto out;
5118 }
5119
5120 *sub_root = new_root;
5121 location->objectid = btrfs_root_dirid(&new_root->root_item);
5122 location->type = BTRFS_INODE_ITEM_KEY;
5123 location->offset = 0;
5124 err = 0;
5125 out:
5126 btrfs_free_path(path);
5127 return err;
5128 }
5129
5130 static void inode_tree_add(struct inode *inode)
5131 {
5132 struct btrfs_root *root = BTRFS_I(inode)->root;
5133 struct btrfs_inode *entry;
5134 struct rb_node **p;
5135 struct rb_node *parent;
5136 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5137 u64 ino = btrfs_ino(inode);
5138
5139 if (inode_unhashed(inode))
5140 return;
5141 parent = NULL;
5142 spin_lock(&root->inode_lock);
5143 p = &root->inode_tree.rb_node;
5144 while (*p) {
5145 parent = *p;
5146 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5147
5148 if (ino < btrfs_ino(&entry->vfs_inode))
5149 p = &parent->rb_left;
5150 else if (ino > btrfs_ino(&entry->vfs_inode))
5151 p = &parent->rb_right;
5152 else {
5153 WARN_ON(!(entry->vfs_inode.i_state &
5154 (I_WILL_FREE | I_FREEING)));
5155 rb_replace_node(parent, new, &root->inode_tree);
5156 RB_CLEAR_NODE(parent);
5157 spin_unlock(&root->inode_lock);
5158 return;
5159 }
5160 }
5161 rb_link_node(new, parent, p);
5162 rb_insert_color(new, &root->inode_tree);
5163 spin_unlock(&root->inode_lock);
5164 }
5165
5166 static void inode_tree_del(struct inode *inode)
5167 {
5168 struct btrfs_root *root = BTRFS_I(inode)->root;
5169 int empty = 0;
5170
5171 spin_lock(&root->inode_lock);
5172 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5173 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5174 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5175 empty = RB_EMPTY_ROOT(&root->inode_tree);
5176 }
5177 spin_unlock(&root->inode_lock);
5178
5179 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5180 synchronize_srcu(&root->fs_info->subvol_srcu);
5181 spin_lock(&root->inode_lock);
5182 empty = RB_EMPTY_ROOT(&root->inode_tree);
5183 spin_unlock(&root->inode_lock);
5184 if (empty)
5185 btrfs_add_dead_root(root);
5186 }
5187 }
5188
5189 void btrfs_invalidate_inodes(struct btrfs_root *root)
5190 {
5191 struct rb_node *node;
5192 struct rb_node *prev;
5193 struct btrfs_inode *entry;
5194 struct inode *inode;
5195 u64 objectid = 0;
5196
5197 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5198 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5199
5200 spin_lock(&root->inode_lock);
5201 again:
5202 node = root->inode_tree.rb_node;
5203 prev = NULL;
5204 while (node) {
5205 prev = node;
5206 entry = rb_entry(node, struct btrfs_inode, rb_node);
5207
5208 if (objectid < btrfs_ino(&entry->vfs_inode))
5209 node = node->rb_left;
5210 else if (objectid > btrfs_ino(&entry->vfs_inode))
5211 node = node->rb_right;
5212 else
5213 break;
5214 }
5215 if (!node) {
5216 while (prev) {
5217 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5218 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5219 node = prev;
5220 break;
5221 }
5222 prev = rb_next(prev);
5223 }
5224 }
5225 while (node) {
5226 entry = rb_entry(node, struct btrfs_inode, rb_node);
5227 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5228 inode = igrab(&entry->vfs_inode);
5229 if (inode) {
5230 spin_unlock(&root->inode_lock);
5231 if (atomic_read(&inode->i_count) > 1)
5232 d_prune_aliases(inode);
5233 /*
5234 * btrfs_drop_inode will have it removed from
5235 * the inode cache when its usage count
5236 * hits zero.
5237 */
5238 iput(inode);
5239 cond_resched();
5240 spin_lock(&root->inode_lock);
5241 goto again;
5242 }
5243
5244 if (cond_resched_lock(&root->inode_lock))
5245 goto again;
5246
5247 node = rb_next(node);
5248 }
5249 spin_unlock(&root->inode_lock);
5250 }
5251
5252 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5253 {
5254 struct btrfs_iget_args *args = p;
5255 inode->i_ino = args->location->objectid;
5256 memcpy(&BTRFS_I(inode)->location, args->location,
5257 sizeof(*args->location));
5258 BTRFS_I(inode)->root = args->root;
5259 return 0;
5260 }
5261
5262 static int btrfs_find_actor(struct inode *inode, void *opaque)
5263 {
5264 struct btrfs_iget_args *args = opaque;
5265 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5266 args->root == BTRFS_I(inode)->root;
5267 }
5268
5269 static struct inode *btrfs_iget_locked(struct super_block *s,
5270 struct btrfs_key *location,
5271 struct btrfs_root *root)
5272 {
5273 struct inode *inode;
5274 struct btrfs_iget_args args;
5275 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5276
5277 args.location = location;
5278 args.root = root;
5279
5280 inode = iget5_locked(s, hashval, btrfs_find_actor,
5281 btrfs_init_locked_inode,
5282 (void *)&args);
5283 return inode;
5284 }
5285
5286 /* Get an inode object given its location and corresponding root.
5287 * Returns in *is_new if the inode was read from disk
5288 */
5289 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5290 struct btrfs_root *root, int *new)
5291 {
5292 struct inode *inode;
5293
5294 inode = btrfs_iget_locked(s, location, root);
5295 if (!inode)
5296 return ERR_PTR(-ENOMEM);
5297
5298 if (inode->i_state & I_NEW) {
5299 btrfs_read_locked_inode(inode);
5300 if (!is_bad_inode(inode)) {
5301 inode_tree_add(inode);
5302 unlock_new_inode(inode);
5303 if (new)
5304 *new = 1;
5305 } else {
5306 unlock_new_inode(inode);
5307 iput(inode);
5308 inode = ERR_PTR(-ESTALE);
5309 }
5310 }
5311
5312 return inode;
5313 }
5314
5315 static struct inode *new_simple_dir(struct super_block *s,
5316 struct btrfs_key *key,
5317 struct btrfs_root *root)
5318 {
5319 struct inode *inode = new_inode(s);
5320
5321 if (!inode)
5322 return ERR_PTR(-ENOMEM);
5323
5324 BTRFS_I(inode)->root = root;
5325 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5326 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5327
5328 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5329 inode->i_op = &btrfs_dir_ro_inode_operations;
5330 inode->i_fop = &simple_dir_operations;
5331 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5332 inode->i_mtime = CURRENT_TIME;
5333 inode->i_atime = inode->i_mtime;
5334 inode->i_ctime = inode->i_mtime;
5335 BTRFS_I(inode)->i_otime = inode->i_mtime;
5336
5337 return inode;
5338 }
5339
5340 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5341 {
5342 struct inode *inode;
5343 struct btrfs_root *root = BTRFS_I(dir)->root;
5344 struct btrfs_root *sub_root = root;
5345 struct btrfs_key location;
5346 int index;
5347 int ret = 0;
5348
5349 if (dentry->d_name.len > BTRFS_NAME_LEN)
5350 return ERR_PTR(-ENAMETOOLONG);
5351
5352 ret = btrfs_inode_by_name(dir, dentry, &location);
5353 if (ret < 0)
5354 return ERR_PTR(ret);
5355
5356 if (location.objectid == 0)
5357 return ERR_PTR(-ENOENT);
5358
5359 if (location.type == BTRFS_INODE_ITEM_KEY) {
5360 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5361 return inode;
5362 }
5363
5364 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5365
5366 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5367 ret = fixup_tree_root_location(root, dir, dentry,
5368 &location, &sub_root);
5369 if (ret < 0) {
5370 if (ret != -ENOENT)
5371 inode = ERR_PTR(ret);
5372 else
5373 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5374 } else {
5375 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5376 }
5377 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5378
5379 if (!IS_ERR(inode) && root != sub_root) {
5380 down_read(&root->fs_info->cleanup_work_sem);
5381 if (!(inode->i_sb->s_flags & MS_RDONLY))
5382 ret = btrfs_orphan_cleanup(sub_root);
5383 up_read(&root->fs_info->cleanup_work_sem);
5384 if (ret) {
5385 iput(inode);
5386 inode = ERR_PTR(ret);
5387 }
5388 }
5389
5390 return inode;
5391 }
5392
5393 static int btrfs_dentry_delete(const struct dentry *dentry)
5394 {
5395 struct btrfs_root *root;
5396 struct inode *inode = dentry->d_inode;
5397
5398 if (!inode && !IS_ROOT(dentry))
5399 inode = dentry->d_parent->d_inode;
5400
5401 if (inode) {
5402 root = BTRFS_I(inode)->root;
5403 if (btrfs_root_refs(&root->root_item) == 0)
5404 return 1;
5405
5406 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5407 return 1;
5408 }
5409 return 0;
5410 }
5411
5412 static void btrfs_dentry_release(struct dentry *dentry)
5413 {
5414 kfree(dentry->d_fsdata);
5415 }
5416
5417 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5418 unsigned int flags)
5419 {
5420 struct inode *inode;
5421
5422 inode = btrfs_lookup_dentry(dir, dentry);
5423 if (IS_ERR(inode)) {
5424 if (PTR_ERR(inode) == -ENOENT)
5425 inode = NULL;
5426 else
5427 return ERR_CAST(inode);
5428 }
5429
5430 return d_splice_alias(inode, dentry);
5431 }
5432
5433 unsigned char btrfs_filetype_table[] = {
5434 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5435 };
5436
5437 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5438 {
5439 struct inode *inode = file_inode(file);
5440 struct btrfs_root *root = BTRFS_I(inode)->root;
5441 struct btrfs_item *item;
5442 struct btrfs_dir_item *di;
5443 struct btrfs_key key;
5444 struct btrfs_key found_key;
5445 struct btrfs_path *path;
5446 struct list_head ins_list;
5447 struct list_head del_list;
5448 int ret;
5449 struct extent_buffer *leaf;
5450 int slot;
5451 unsigned char d_type;
5452 int over = 0;
5453 u32 di_cur;
5454 u32 di_total;
5455 u32 di_len;
5456 int key_type = BTRFS_DIR_INDEX_KEY;
5457 char tmp_name[32];
5458 char *name_ptr;
5459 int name_len;
5460 int is_curr = 0; /* ctx->pos points to the current index? */
5461
5462 /* FIXME, use a real flag for deciding about the key type */
5463 if (root->fs_info->tree_root == root)
5464 key_type = BTRFS_DIR_ITEM_KEY;
5465
5466 if (!dir_emit_dots(file, ctx))
5467 return 0;
5468
5469 path = btrfs_alloc_path();
5470 if (!path)
5471 return -ENOMEM;
5472
5473 path->reada = 1;
5474
5475 if (key_type == BTRFS_DIR_INDEX_KEY) {
5476 INIT_LIST_HEAD(&ins_list);
5477 INIT_LIST_HEAD(&del_list);
5478 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5479 }
5480
5481 key.type = key_type;
5482 key.offset = ctx->pos;
5483 key.objectid = btrfs_ino(inode);
5484
5485 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5486 if (ret < 0)
5487 goto err;
5488
5489 while (1) {
5490 leaf = path->nodes[0];
5491 slot = path->slots[0];
5492 if (slot >= btrfs_header_nritems(leaf)) {
5493 ret = btrfs_next_leaf(root, path);
5494 if (ret < 0)
5495 goto err;
5496 else if (ret > 0)
5497 break;
5498 continue;
5499 }
5500
5501 item = btrfs_item_nr(slot);
5502 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5503
5504 if (found_key.objectid != key.objectid)
5505 break;
5506 if (found_key.type != key_type)
5507 break;
5508 if (found_key.offset < ctx->pos)
5509 goto next;
5510 if (key_type == BTRFS_DIR_INDEX_KEY &&
5511 btrfs_should_delete_dir_index(&del_list,
5512 found_key.offset))
5513 goto next;
5514
5515 ctx->pos = found_key.offset;
5516 is_curr = 1;
5517
5518 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5519 di_cur = 0;
5520 di_total = btrfs_item_size(leaf, item);
5521
5522 while (di_cur < di_total) {
5523 struct btrfs_key location;
5524
5525 if (verify_dir_item(root, leaf, di))
5526 break;
5527
5528 name_len = btrfs_dir_name_len(leaf, di);
5529 if (name_len <= sizeof(tmp_name)) {
5530 name_ptr = tmp_name;
5531 } else {
5532 name_ptr = kmalloc(name_len, GFP_NOFS);
5533 if (!name_ptr) {
5534 ret = -ENOMEM;
5535 goto err;
5536 }
5537 }
5538 read_extent_buffer(leaf, name_ptr,
5539 (unsigned long)(di + 1), name_len);
5540
5541 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5542 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5543
5544
5545 /* is this a reference to our own snapshot? If so
5546 * skip it.
5547 *
5548 * In contrast to old kernels, we insert the snapshot's
5549 * dir item and dir index after it has been created, so
5550 * we won't find a reference to our own snapshot. We
5551 * still keep the following code for backward
5552 * compatibility.
5553 */
5554 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5555 location.objectid == root->root_key.objectid) {
5556 over = 0;
5557 goto skip;
5558 }
5559 over = !dir_emit(ctx, name_ptr, name_len,
5560 location.objectid, d_type);
5561
5562 skip:
5563 if (name_ptr != tmp_name)
5564 kfree(name_ptr);
5565
5566 if (over)
5567 goto nopos;
5568 di_len = btrfs_dir_name_len(leaf, di) +
5569 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5570 di_cur += di_len;
5571 di = (struct btrfs_dir_item *)((char *)di + di_len);
5572 }
5573 next:
5574 path->slots[0]++;
5575 }
5576
5577 if (key_type == BTRFS_DIR_INDEX_KEY) {
5578 if (is_curr)
5579 ctx->pos++;
5580 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5581 if (ret)
5582 goto nopos;
5583 }
5584
5585 /* Reached end of directory/root. Bump pos past the last item. */
5586 ctx->pos++;
5587
5588 /*
5589 * Stop new entries from being returned after we return the last
5590 * entry.
5591 *
5592 * New directory entries are assigned a strictly increasing
5593 * offset. This means that new entries created during readdir
5594 * are *guaranteed* to be seen in the future by that readdir.
5595 * This has broken buggy programs which operate on names as
5596 * they're returned by readdir. Until we re-use freed offsets
5597 * we have this hack to stop new entries from being returned
5598 * under the assumption that they'll never reach this huge
5599 * offset.
5600 *
5601 * This is being careful not to overflow 32bit loff_t unless the
5602 * last entry requires it because doing so has broken 32bit apps
5603 * in the past.
5604 */
5605 if (key_type == BTRFS_DIR_INDEX_KEY) {
5606 if (ctx->pos >= INT_MAX)
5607 ctx->pos = LLONG_MAX;
5608 else
5609 ctx->pos = INT_MAX;
5610 }
5611 nopos:
5612 ret = 0;
5613 err:
5614 if (key_type == BTRFS_DIR_INDEX_KEY)
5615 btrfs_put_delayed_items(&ins_list, &del_list);
5616 btrfs_free_path(path);
5617 return ret;
5618 }
5619
5620 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5621 {
5622 struct btrfs_root *root = BTRFS_I(inode)->root;
5623 struct btrfs_trans_handle *trans;
5624 int ret = 0;
5625 bool nolock = false;
5626
5627 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5628 return 0;
5629
5630 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5631 nolock = true;
5632
5633 if (wbc->sync_mode == WB_SYNC_ALL) {
5634 if (nolock)
5635 trans = btrfs_join_transaction_nolock(root);
5636 else
5637 trans = btrfs_join_transaction(root);
5638 if (IS_ERR(trans))
5639 return PTR_ERR(trans);
5640 ret = btrfs_commit_transaction(trans, root);
5641 }
5642 return ret;
5643 }
5644
5645 /*
5646 * This is somewhat expensive, updating the tree every time the
5647 * inode changes. But, it is most likely to find the inode in cache.
5648 * FIXME, needs more benchmarking...there are no reasons other than performance
5649 * to keep or drop this code.
5650 */
5651 static int btrfs_dirty_inode(struct inode *inode)
5652 {
5653 struct btrfs_root *root = BTRFS_I(inode)->root;
5654 struct btrfs_trans_handle *trans;
5655 int ret;
5656
5657 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5658 return 0;
5659
5660 trans = btrfs_join_transaction(root);
5661 if (IS_ERR(trans))
5662 return PTR_ERR(trans);
5663
5664 ret = btrfs_update_inode(trans, root, inode);
5665 if (ret && ret == -ENOSPC) {
5666 /* whoops, lets try again with the full transaction */
5667 btrfs_end_transaction(trans, root);
5668 trans = btrfs_start_transaction(root, 1);
5669 if (IS_ERR(trans))
5670 return PTR_ERR(trans);
5671
5672 ret = btrfs_update_inode(trans, root, inode);
5673 }
5674 btrfs_end_transaction(trans, root);
5675 if (BTRFS_I(inode)->delayed_node)
5676 btrfs_balance_delayed_items(root);
5677
5678 return ret;
5679 }
5680
5681 /*
5682 * This is a copy of file_update_time. We need this so we can return error on
5683 * ENOSPC for updating the inode in the case of file write and mmap writes.
5684 */
5685 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5686 int flags)
5687 {
5688 struct btrfs_root *root = BTRFS_I(inode)->root;
5689
5690 if (btrfs_root_readonly(root))
5691 return -EROFS;
5692
5693 if (flags & S_VERSION)
5694 inode_inc_iversion(inode);
5695 if (flags & S_CTIME)
5696 inode->i_ctime = *now;
5697 if (flags & S_MTIME)
5698 inode->i_mtime = *now;
5699 if (flags & S_ATIME)
5700 inode->i_atime = *now;
5701 return btrfs_dirty_inode(inode);
5702 }
5703
5704 /*
5705 * find the highest existing sequence number in a directory
5706 * and then set the in-memory index_cnt variable to reflect
5707 * free sequence numbers
5708 */
5709 static int btrfs_set_inode_index_count(struct inode *inode)
5710 {
5711 struct btrfs_root *root = BTRFS_I(inode)->root;
5712 struct btrfs_key key, found_key;
5713 struct btrfs_path *path;
5714 struct extent_buffer *leaf;
5715 int ret;
5716
5717 key.objectid = btrfs_ino(inode);
5718 key.type = BTRFS_DIR_INDEX_KEY;
5719 key.offset = (u64)-1;
5720
5721 path = btrfs_alloc_path();
5722 if (!path)
5723 return -ENOMEM;
5724
5725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5726 if (ret < 0)
5727 goto out;
5728 /* FIXME: we should be able to handle this */
5729 if (ret == 0)
5730 goto out;
5731 ret = 0;
5732
5733 /*
5734 * MAGIC NUMBER EXPLANATION:
5735 * since we search a directory based on f_pos we have to start at 2
5736 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5737 * else has to start at 2
5738 */
5739 if (path->slots[0] == 0) {
5740 BTRFS_I(inode)->index_cnt = 2;
5741 goto out;
5742 }
5743
5744 path->slots[0]--;
5745
5746 leaf = path->nodes[0];
5747 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5748
5749 if (found_key.objectid != btrfs_ino(inode) ||
5750 found_key.type != BTRFS_DIR_INDEX_KEY) {
5751 BTRFS_I(inode)->index_cnt = 2;
5752 goto out;
5753 }
5754
5755 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5756 out:
5757 btrfs_free_path(path);
5758 return ret;
5759 }
5760
5761 /*
5762 * helper to find a free sequence number in a given directory. This current
5763 * code is very simple, later versions will do smarter things in the btree
5764 */
5765 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5766 {
5767 int ret = 0;
5768
5769 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5770 ret = btrfs_inode_delayed_dir_index_count(dir);
5771 if (ret) {
5772 ret = btrfs_set_inode_index_count(dir);
5773 if (ret)
5774 return ret;
5775 }
5776 }
5777
5778 *index = BTRFS_I(dir)->index_cnt;
5779 BTRFS_I(dir)->index_cnt++;
5780
5781 return ret;
5782 }
5783
5784 static int btrfs_insert_inode_locked(struct inode *inode)
5785 {
5786 struct btrfs_iget_args args;
5787 args.location = &BTRFS_I(inode)->location;
5788 args.root = BTRFS_I(inode)->root;
5789
5790 return insert_inode_locked4(inode,
5791 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5792 btrfs_find_actor, &args);
5793 }
5794
5795 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5796 struct btrfs_root *root,
5797 struct inode *dir,
5798 const char *name, int name_len,
5799 u64 ref_objectid, u64 objectid,
5800 umode_t mode, u64 *index)
5801 {
5802 struct inode *inode;
5803 struct btrfs_inode_item *inode_item;
5804 struct btrfs_key *location;
5805 struct btrfs_path *path;
5806 struct btrfs_inode_ref *ref;
5807 struct btrfs_key key[2];
5808 u32 sizes[2];
5809 int nitems = name ? 2 : 1;
5810 unsigned long ptr;
5811 int ret;
5812
5813 path = btrfs_alloc_path();
5814 if (!path)
5815 return ERR_PTR(-ENOMEM);
5816
5817 inode = new_inode(root->fs_info->sb);
5818 if (!inode) {
5819 btrfs_free_path(path);
5820 return ERR_PTR(-ENOMEM);
5821 }
5822
5823 /*
5824 * O_TMPFILE, set link count to 0, so that after this point,
5825 * we fill in an inode item with the correct link count.
5826 */
5827 if (!name)
5828 set_nlink(inode, 0);
5829
5830 /*
5831 * we have to initialize this early, so we can reclaim the inode
5832 * number if we fail afterwards in this function.
5833 */
5834 inode->i_ino = objectid;
5835
5836 if (dir && name) {
5837 trace_btrfs_inode_request(dir);
5838
5839 ret = btrfs_set_inode_index(dir, index);
5840 if (ret) {
5841 btrfs_free_path(path);
5842 iput(inode);
5843 return ERR_PTR(ret);
5844 }
5845 } else if (dir) {
5846 *index = 0;
5847 }
5848 /*
5849 * index_cnt is ignored for everything but a dir,
5850 * btrfs_get_inode_index_count has an explanation for the magic
5851 * number
5852 */
5853 BTRFS_I(inode)->index_cnt = 2;
5854 BTRFS_I(inode)->dir_index = *index;
5855 BTRFS_I(inode)->root = root;
5856 BTRFS_I(inode)->generation = trans->transid;
5857 inode->i_generation = BTRFS_I(inode)->generation;
5858
5859 /*
5860 * We could have gotten an inode number from somebody who was fsynced
5861 * and then removed in this same transaction, so let's just set full
5862 * sync since it will be a full sync anyway and this will blow away the
5863 * old info in the log.
5864 */
5865 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5866
5867 key[0].objectid = objectid;
5868 key[0].type = BTRFS_INODE_ITEM_KEY;
5869 key[0].offset = 0;
5870
5871 sizes[0] = sizeof(struct btrfs_inode_item);
5872
5873 if (name) {
5874 /*
5875 * Start new inodes with an inode_ref. This is slightly more
5876 * efficient for small numbers of hard links since they will
5877 * be packed into one item. Extended refs will kick in if we
5878 * add more hard links than can fit in the ref item.
5879 */
5880 key[1].objectid = objectid;
5881 key[1].type = BTRFS_INODE_REF_KEY;
5882 key[1].offset = ref_objectid;
5883
5884 sizes[1] = name_len + sizeof(*ref);
5885 }
5886
5887 location = &BTRFS_I(inode)->location;
5888 location->objectid = objectid;
5889 location->offset = 0;
5890 location->type = BTRFS_INODE_ITEM_KEY;
5891
5892 ret = btrfs_insert_inode_locked(inode);
5893 if (ret < 0)
5894 goto fail;
5895
5896 path->leave_spinning = 1;
5897 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5898 if (ret != 0)
5899 goto fail_unlock;
5900
5901 inode_init_owner(inode, dir, mode);
5902 inode_set_bytes(inode, 0);
5903
5904 inode->i_mtime = CURRENT_TIME;
5905 inode->i_atime = inode->i_mtime;
5906 inode->i_ctime = inode->i_mtime;
5907 BTRFS_I(inode)->i_otime = inode->i_mtime;
5908
5909 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5910 struct btrfs_inode_item);
5911 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5912 sizeof(*inode_item));
5913 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5914
5915 if (name) {
5916 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5917 struct btrfs_inode_ref);
5918 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5919 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5920 ptr = (unsigned long)(ref + 1);
5921 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5922 }
5923
5924 btrfs_mark_buffer_dirty(path->nodes[0]);
5925 btrfs_free_path(path);
5926
5927 btrfs_inherit_iflags(inode, dir);
5928
5929 if (S_ISREG(mode)) {
5930 if (btrfs_test_opt(root, NODATASUM))
5931 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5932 if (btrfs_test_opt(root, NODATACOW))
5933 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5934 BTRFS_INODE_NODATASUM;
5935 }
5936
5937 inode_tree_add(inode);
5938
5939 trace_btrfs_inode_new(inode);
5940 btrfs_set_inode_last_trans(trans, inode);
5941
5942 btrfs_update_root_times(trans, root);
5943
5944 ret = btrfs_inode_inherit_props(trans, inode, dir);
5945 if (ret)
5946 btrfs_err(root->fs_info,
5947 "error inheriting props for ino %llu (root %llu): %d",
5948 btrfs_ino(inode), root->root_key.objectid, ret);
5949
5950 return inode;
5951
5952 fail_unlock:
5953 unlock_new_inode(inode);
5954 fail:
5955 if (dir && name)
5956 BTRFS_I(dir)->index_cnt--;
5957 btrfs_free_path(path);
5958 iput(inode);
5959 return ERR_PTR(ret);
5960 }
5961
5962 static inline u8 btrfs_inode_type(struct inode *inode)
5963 {
5964 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5965 }
5966
5967 /*
5968 * utility function to add 'inode' into 'parent_inode' with
5969 * a give name and a given sequence number.
5970 * if 'add_backref' is true, also insert a backref from the
5971 * inode to the parent directory.
5972 */
5973 int btrfs_add_link(struct btrfs_trans_handle *trans,
5974 struct inode *parent_inode, struct inode *inode,
5975 const char *name, int name_len, int add_backref, u64 index)
5976 {
5977 int ret = 0;
5978 struct btrfs_key key;
5979 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5980 u64 ino = btrfs_ino(inode);
5981 u64 parent_ino = btrfs_ino(parent_inode);
5982
5983 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5984 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5985 } else {
5986 key.objectid = ino;
5987 key.type = BTRFS_INODE_ITEM_KEY;
5988 key.offset = 0;
5989 }
5990
5991 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5992 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5993 key.objectid, root->root_key.objectid,
5994 parent_ino, index, name, name_len);
5995 } else if (add_backref) {
5996 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5997 parent_ino, index);
5998 }
5999
6000 /* Nothing to clean up yet */
6001 if (ret)
6002 return ret;
6003
6004 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6005 parent_inode, &key,
6006 btrfs_inode_type(inode), index);
6007 if (ret == -EEXIST || ret == -EOVERFLOW)
6008 goto fail_dir_item;
6009 else if (ret) {
6010 btrfs_abort_transaction(trans, root, ret);
6011 return ret;
6012 }
6013
6014 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6015 name_len * 2);
6016 inode_inc_iversion(parent_inode);
6017 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6018 ret = btrfs_update_inode(trans, root, parent_inode);
6019 if (ret)
6020 btrfs_abort_transaction(trans, root, ret);
6021 return ret;
6022
6023 fail_dir_item:
6024 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025 u64 local_index;
6026 int err;
6027 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6028 key.objectid, root->root_key.objectid,
6029 parent_ino, &local_index, name, name_len);
6030
6031 } else if (add_backref) {
6032 u64 local_index;
6033 int err;
6034
6035 err = btrfs_del_inode_ref(trans, root, name, name_len,
6036 ino, parent_ino, &local_index);
6037 }
6038 return ret;
6039 }
6040
6041 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6042 struct inode *dir, struct dentry *dentry,
6043 struct inode *inode, int backref, u64 index)
6044 {
6045 int err = btrfs_add_link(trans, dir, inode,
6046 dentry->d_name.name, dentry->d_name.len,
6047 backref, index);
6048 if (err > 0)
6049 err = -EEXIST;
6050 return err;
6051 }
6052
6053 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6054 umode_t mode, dev_t rdev)
6055 {
6056 struct btrfs_trans_handle *trans;
6057 struct btrfs_root *root = BTRFS_I(dir)->root;
6058 struct inode *inode = NULL;
6059 int err;
6060 int drop_inode = 0;
6061 u64 objectid;
6062 u64 index = 0;
6063
6064 if (!new_valid_dev(rdev))
6065 return -EINVAL;
6066
6067 /*
6068 * 2 for inode item and ref
6069 * 2 for dir items
6070 * 1 for xattr if selinux is on
6071 */
6072 trans = btrfs_start_transaction(root, 5);
6073 if (IS_ERR(trans))
6074 return PTR_ERR(trans);
6075
6076 err = btrfs_find_free_ino(root, &objectid);
6077 if (err)
6078 goto out_unlock;
6079
6080 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6081 dentry->d_name.len, btrfs_ino(dir), objectid,
6082 mode, &index);
6083 if (IS_ERR(inode)) {
6084 err = PTR_ERR(inode);
6085 goto out_unlock;
6086 }
6087
6088 /*
6089 * If the active LSM wants to access the inode during
6090 * d_instantiate it needs these. Smack checks to see
6091 * if the filesystem supports xattrs by looking at the
6092 * ops vector.
6093 */
6094 inode->i_op = &btrfs_special_inode_operations;
6095 init_special_inode(inode, inode->i_mode, rdev);
6096
6097 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6098 if (err)
6099 goto out_unlock_inode;
6100
6101 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6102 if (err) {
6103 goto out_unlock_inode;
6104 } else {
6105 btrfs_update_inode(trans, root, inode);
6106 unlock_new_inode(inode);
6107 d_instantiate(dentry, inode);
6108 }
6109
6110 out_unlock:
6111 btrfs_end_transaction(trans, root);
6112 btrfs_balance_delayed_items(root);
6113 btrfs_btree_balance_dirty(root);
6114 if (drop_inode) {
6115 inode_dec_link_count(inode);
6116 iput(inode);
6117 }
6118 return err;
6119
6120 out_unlock_inode:
6121 drop_inode = 1;
6122 unlock_new_inode(inode);
6123 goto out_unlock;
6124
6125 }
6126
6127 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6128 umode_t mode, bool excl)
6129 {
6130 struct btrfs_trans_handle *trans;
6131 struct btrfs_root *root = BTRFS_I(dir)->root;
6132 struct inode *inode = NULL;
6133 int drop_inode_on_err = 0;
6134 int err;
6135 u64 objectid;
6136 u64 index = 0;
6137
6138 /*
6139 * 2 for inode item and ref
6140 * 2 for dir items
6141 * 1 for xattr if selinux is on
6142 */
6143 trans = btrfs_start_transaction(root, 5);
6144 if (IS_ERR(trans))
6145 return PTR_ERR(trans);
6146
6147 err = btrfs_find_free_ino(root, &objectid);
6148 if (err)
6149 goto out_unlock;
6150
6151 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6152 dentry->d_name.len, btrfs_ino(dir), objectid,
6153 mode, &index);
6154 if (IS_ERR(inode)) {
6155 err = PTR_ERR(inode);
6156 goto out_unlock;
6157 }
6158 drop_inode_on_err = 1;
6159 /*
6160 * If the active LSM wants to access the inode during
6161 * d_instantiate it needs these. Smack checks to see
6162 * if the filesystem supports xattrs by looking at the
6163 * ops vector.
6164 */
6165 inode->i_fop = &btrfs_file_operations;
6166 inode->i_op = &btrfs_file_inode_operations;
6167 inode->i_mapping->a_ops = &btrfs_aops;
6168
6169 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6170 if (err)
6171 goto out_unlock_inode;
6172
6173 err = btrfs_update_inode(trans, root, inode);
6174 if (err)
6175 goto out_unlock_inode;
6176
6177 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6178 if (err)
6179 goto out_unlock_inode;
6180
6181 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6182 unlock_new_inode(inode);
6183 d_instantiate(dentry, inode);
6184
6185 out_unlock:
6186 btrfs_end_transaction(trans, root);
6187 if (err && drop_inode_on_err) {
6188 inode_dec_link_count(inode);
6189 iput(inode);
6190 }
6191 btrfs_balance_delayed_items(root);
6192 btrfs_btree_balance_dirty(root);
6193 return err;
6194
6195 out_unlock_inode:
6196 unlock_new_inode(inode);
6197 goto out_unlock;
6198
6199 }
6200
6201 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6202 struct dentry *dentry)
6203 {
6204 struct btrfs_trans_handle *trans;
6205 struct btrfs_root *root = BTRFS_I(dir)->root;
6206 struct inode *inode = old_dentry->d_inode;
6207 u64 index;
6208 int err;
6209 int drop_inode = 0;
6210
6211 /* do not allow sys_link's with other subvols of the same device */
6212 if (root->objectid != BTRFS_I(inode)->root->objectid)
6213 return -EXDEV;
6214
6215 if (inode->i_nlink >= BTRFS_LINK_MAX)
6216 return -EMLINK;
6217
6218 err = btrfs_set_inode_index(dir, &index);
6219 if (err)
6220 goto fail;
6221
6222 /*
6223 * 2 items for inode and inode ref
6224 * 2 items for dir items
6225 * 1 item for parent inode
6226 */
6227 trans = btrfs_start_transaction(root, 5);
6228 if (IS_ERR(trans)) {
6229 err = PTR_ERR(trans);
6230 goto fail;
6231 }
6232
6233 /* There are several dir indexes for this inode, clear the cache. */
6234 BTRFS_I(inode)->dir_index = 0ULL;
6235 inc_nlink(inode);
6236 inode_inc_iversion(inode);
6237 inode->i_ctime = CURRENT_TIME;
6238 ihold(inode);
6239 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6240
6241 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6242
6243 if (err) {
6244 drop_inode = 1;
6245 } else {
6246 struct dentry *parent = dentry->d_parent;
6247 err = btrfs_update_inode(trans, root, inode);
6248 if (err)
6249 goto fail;
6250 if (inode->i_nlink == 1) {
6251 /*
6252 * If new hard link count is 1, it's a file created
6253 * with open(2) O_TMPFILE flag.
6254 */
6255 err = btrfs_orphan_del(trans, inode);
6256 if (err)
6257 goto fail;
6258 }
6259 d_instantiate(dentry, inode);
6260 btrfs_log_new_name(trans, inode, NULL, parent);
6261 }
6262
6263 btrfs_end_transaction(trans, root);
6264 btrfs_balance_delayed_items(root);
6265 fail:
6266 if (drop_inode) {
6267 inode_dec_link_count(inode);
6268 iput(inode);
6269 }
6270 btrfs_btree_balance_dirty(root);
6271 return err;
6272 }
6273
6274 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6275 {
6276 struct inode *inode = NULL;
6277 struct btrfs_trans_handle *trans;
6278 struct btrfs_root *root = BTRFS_I(dir)->root;
6279 int err = 0;
6280 int drop_on_err = 0;
6281 u64 objectid = 0;
6282 u64 index = 0;
6283
6284 /*
6285 * 2 items for inode and ref
6286 * 2 items for dir items
6287 * 1 for xattr if selinux is on
6288 */
6289 trans = btrfs_start_transaction(root, 5);
6290 if (IS_ERR(trans))
6291 return PTR_ERR(trans);
6292
6293 err = btrfs_find_free_ino(root, &objectid);
6294 if (err)
6295 goto out_fail;
6296
6297 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6298 dentry->d_name.len, btrfs_ino(dir), objectid,
6299 S_IFDIR | mode, &index);
6300 if (IS_ERR(inode)) {
6301 err = PTR_ERR(inode);
6302 goto out_fail;
6303 }
6304
6305 drop_on_err = 1;
6306 /* these must be set before we unlock the inode */
6307 inode->i_op = &btrfs_dir_inode_operations;
6308 inode->i_fop = &btrfs_dir_file_operations;
6309
6310 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6311 if (err)
6312 goto out_fail_inode;
6313
6314 btrfs_i_size_write(inode, 0);
6315 err = btrfs_update_inode(trans, root, inode);
6316 if (err)
6317 goto out_fail_inode;
6318
6319 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6320 dentry->d_name.len, 0, index);
6321 if (err)
6322 goto out_fail_inode;
6323
6324 d_instantiate(dentry, inode);
6325 /*
6326 * mkdir is special. We're unlocking after we call d_instantiate
6327 * to avoid a race with nfsd calling d_instantiate.
6328 */
6329 unlock_new_inode(inode);
6330 drop_on_err = 0;
6331
6332 out_fail:
6333 btrfs_end_transaction(trans, root);
6334 if (drop_on_err) {
6335 inode_dec_link_count(inode);
6336 iput(inode);
6337 }
6338 btrfs_balance_delayed_items(root);
6339 btrfs_btree_balance_dirty(root);
6340 return err;
6341
6342 out_fail_inode:
6343 unlock_new_inode(inode);
6344 goto out_fail;
6345 }
6346
6347 /* Find next extent map of a given extent map, caller needs to ensure locks */
6348 static struct extent_map *next_extent_map(struct extent_map *em)
6349 {
6350 struct rb_node *next;
6351
6352 next = rb_next(&em->rb_node);
6353 if (!next)
6354 return NULL;
6355 return container_of(next, struct extent_map, rb_node);
6356 }
6357
6358 static struct extent_map *prev_extent_map(struct extent_map *em)
6359 {
6360 struct rb_node *prev;
6361
6362 prev = rb_prev(&em->rb_node);
6363 if (!prev)
6364 return NULL;
6365 return container_of(prev, struct extent_map, rb_node);
6366 }
6367
6368 /* helper for btfs_get_extent. Given an existing extent in the tree,
6369 * the existing extent is the nearest extent to map_start,
6370 * and an extent that you want to insert, deal with overlap and insert
6371 * the best fitted new extent into the tree.
6372 */
6373 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6374 struct extent_map *existing,
6375 struct extent_map *em,
6376 u64 map_start)
6377 {
6378 struct extent_map *prev;
6379 struct extent_map *next;
6380 u64 start;
6381 u64 end;
6382 u64 start_diff;
6383
6384 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6385
6386 if (existing->start > map_start) {
6387 next = existing;
6388 prev = prev_extent_map(next);
6389 } else {
6390 prev = existing;
6391 next = next_extent_map(prev);
6392 }
6393
6394 start = prev ? extent_map_end(prev) : em->start;
6395 start = max_t(u64, start, em->start);
6396 end = next ? next->start : extent_map_end(em);
6397 end = min_t(u64, end, extent_map_end(em));
6398 start_diff = start - em->start;
6399 em->start = start;
6400 em->len = end - start;
6401 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6402 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6403 em->block_start += start_diff;
6404 em->block_len -= start_diff;
6405 }
6406 return add_extent_mapping(em_tree, em, 0);
6407 }
6408
6409 static noinline int uncompress_inline(struct btrfs_path *path,
6410 struct inode *inode, struct page *page,
6411 size_t pg_offset, u64 extent_offset,
6412 struct btrfs_file_extent_item *item)
6413 {
6414 int ret;
6415 struct extent_buffer *leaf = path->nodes[0];
6416 char *tmp;
6417 size_t max_size;
6418 unsigned long inline_size;
6419 unsigned long ptr;
6420 int compress_type;
6421
6422 WARN_ON(pg_offset != 0);
6423 compress_type = btrfs_file_extent_compression(leaf, item);
6424 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6425 inline_size = btrfs_file_extent_inline_item_len(leaf,
6426 btrfs_item_nr(path->slots[0]));
6427 tmp = kmalloc(inline_size, GFP_NOFS);
6428 if (!tmp)
6429 return -ENOMEM;
6430 ptr = btrfs_file_extent_inline_start(item);
6431
6432 read_extent_buffer(leaf, tmp, ptr, inline_size);
6433
6434 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6435 ret = btrfs_decompress(compress_type, tmp, page,
6436 extent_offset, inline_size, max_size);
6437 kfree(tmp);
6438 return ret;
6439 }
6440
6441 /*
6442 * a bit scary, this does extent mapping from logical file offset to the disk.
6443 * the ugly parts come from merging extents from the disk with the in-ram
6444 * representation. This gets more complex because of the data=ordered code,
6445 * where the in-ram extents might be locked pending data=ordered completion.
6446 *
6447 * This also copies inline extents directly into the page.
6448 */
6449
6450 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6451 size_t pg_offset, u64 start, u64 len,
6452 int create)
6453 {
6454 int ret;
6455 int err = 0;
6456 u64 extent_start = 0;
6457 u64 extent_end = 0;
6458 u64 objectid = btrfs_ino(inode);
6459 u32 found_type;
6460 struct btrfs_path *path = NULL;
6461 struct btrfs_root *root = BTRFS_I(inode)->root;
6462 struct btrfs_file_extent_item *item;
6463 struct extent_buffer *leaf;
6464 struct btrfs_key found_key;
6465 struct extent_map *em = NULL;
6466 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6467 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6468 struct btrfs_trans_handle *trans = NULL;
6469 const bool new_inline = !page || create;
6470
6471 again:
6472 read_lock(&em_tree->lock);
6473 em = lookup_extent_mapping(em_tree, start, len);
6474 if (em)
6475 em->bdev = root->fs_info->fs_devices->latest_bdev;
6476 read_unlock(&em_tree->lock);
6477
6478 if (em) {
6479 if (em->start > start || em->start + em->len <= start)
6480 free_extent_map(em);
6481 else if (em->block_start == EXTENT_MAP_INLINE && page)
6482 free_extent_map(em);
6483 else
6484 goto out;
6485 }
6486 em = alloc_extent_map();
6487 if (!em) {
6488 err = -ENOMEM;
6489 goto out;
6490 }
6491 em->bdev = root->fs_info->fs_devices->latest_bdev;
6492 em->start = EXTENT_MAP_HOLE;
6493 em->orig_start = EXTENT_MAP_HOLE;
6494 em->len = (u64)-1;
6495 em->block_len = (u64)-1;
6496
6497 if (!path) {
6498 path = btrfs_alloc_path();
6499 if (!path) {
6500 err = -ENOMEM;
6501 goto out;
6502 }
6503 /*
6504 * Chances are we'll be called again, so go ahead and do
6505 * readahead
6506 */
6507 path->reada = 1;
6508 }
6509
6510 ret = btrfs_lookup_file_extent(trans, root, path,
6511 objectid, start, trans != NULL);
6512 if (ret < 0) {
6513 err = ret;
6514 goto out;
6515 }
6516
6517 if (ret != 0) {
6518 if (path->slots[0] == 0)
6519 goto not_found;
6520 path->slots[0]--;
6521 }
6522
6523 leaf = path->nodes[0];
6524 item = btrfs_item_ptr(leaf, path->slots[0],
6525 struct btrfs_file_extent_item);
6526 /* are we inside the extent that was found? */
6527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6528 found_type = found_key.type;
6529 if (found_key.objectid != objectid ||
6530 found_type != BTRFS_EXTENT_DATA_KEY) {
6531 /*
6532 * If we backup past the first extent we want to move forward
6533 * and see if there is an extent in front of us, otherwise we'll
6534 * say there is a hole for our whole search range which can
6535 * cause problems.
6536 */
6537 extent_end = start;
6538 goto next;
6539 }
6540
6541 found_type = btrfs_file_extent_type(leaf, item);
6542 extent_start = found_key.offset;
6543 if (found_type == BTRFS_FILE_EXTENT_REG ||
6544 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6545 extent_end = extent_start +
6546 btrfs_file_extent_num_bytes(leaf, item);
6547 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6548 size_t size;
6549 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6550 extent_end = ALIGN(extent_start + size, root->sectorsize);
6551 }
6552 next:
6553 if (start >= extent_end) {
6554 path->slots[0]++;
6555 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6556 ret = btrfs_next_leaf(root, path);
6557 if (ret < 0) {
6558 err = ret;
6559 goto out;
6560 }
6561 if (ret > 0)
6562 goto not_found;
6563 leaf = path->nodes[0];
6564 }
6565 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6566 if (found_key.objectid != objectid ||
6567 found_key.type != BTRFS_EXTENT_DATA_KEY)
6568 goto not_found;
6569 if (start + len <= found_key.offset)
6570 goto not_found;
6571 if (start > found_key.offset)
6572 goto next;
6573 em->start = start;
6574 em->orig_start = start;
6575 em->len = found_key.offset - start;
6576 goto not_found_em;
6577 }
6578
6579 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6580
6581 if (found_type == BTRFS_FILE_EXTENT_REG ||
6582 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6583 goto insert;
6584 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6585 unsigned long ptr;
6586 char *map;
6587 size_t size;
6588 size_t extent_offset;
6589 size_t copy_size;
6590
6591 if (new_inline)
6592 goto out;
6593
6594 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6595 extent_offset = page_offset(page) + pg_offset - extent_start;
6596 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6597 size - extent_offset);
6598 em->start = extent_start + extent_offset;
6599 em->len = ALIGN(copy_size, root->sectorsize);
6600 em->orig_block_len = em->len;
6601 em->orig_start = em->start;
6602 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6603 if (create == 0 && !PageUptodate(page)) {
6604 if (btrfs_file_extent_compression(leaf, item) !=
6605 BTRFS_COMPRESS_NONE) {
6606 ret = uncompress_inline(path, inode, page,
6607 pg_offset,
6608 extent_offset, item);
6609 if (ret) {
6610 err = ret;
6611 goto out;
6612 }
6613 } else {
6614 map = kmap(page);
6615 read_extent_buffer(leaf, map + pg_offset, ptr,
6616 copy_size);
6617 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6618 memset(map + pg_offset + copy_size, 0,
6619 PAGE_CACHE_SIZE - pg_offset -
6620 copy_size);
6621 }
6622 kunmap(page);
6623 }
6624 flush_dcache_page(page);
6625 } else if (create && PageUptodate(page)) {
6626 BUG();
6627 if (!trans) {
6628 kunmap(page);
6629 free_extent_map(em);
6630 em = NULL;
6631
6632 btrfs_release_path(path);
6633 trans = btrfs_join_transaction(root);
6634
6635 if (IS_ERR(trans))
6636 return ERR_CAST(trans);
6637 goto again;
6638 }
6639 map = kmap(page);
6640 write_extent_buffer(leaf, map + pg_offset, ptr,
6641 copy_size);
6642 kunmap(page);
6643 btrfs_mark_buffer_dirty(leaf);
6644 }
6645 set_extent_uptodate(io_tree, em->start,
6646 extent_map_end(em) - 1, NULL, GFP_NOFS);
6647 goto insert;
6648 }
6649 not_found:
6650 em->start = start;
6651 em->orig_start = start;
6652 em->len = len;
6653 not_found_em:
6654 em->block_start = EXTENT_MAP_HOLE;
6655 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6656 insert:
6657 btrfs_release_path(path);
6658 if (em->start > start || extent_map_end(em) <= start) {
6659 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6660 em->start, em->len, start, len);
6661 err = -EIO;
6662 goto out;
6663 }
6664
6665 err = 0;
6666 write_lock(&em_tree->lock);
6667 ret = add_extent_mapping(em_tree, em, 0);
6668 /* it is possible that someone inserted the extent into the tree
6669 * while we had the lock dropped. It is also possible that
6670 * an overlapping map exists in the tree
6671 */
6672 if (ret == -EEXIST) {
6673 struct extent_map *existing;
6674
6675 ret = 0;
6676
6677 existing = search_extent_mapping(em_tree, start, len);
6678 /*
6679 * existing will always be non-NULL, since there must be
6680 * extent causing the -EEXIST.
6681 */
6682 if (start >= extent_map_end(existing) ||
6683 start <= existing->start) {
6684 /*
6685 * The existing extent map is the one nearest to
6686 * the [start, start + len) range which overlaps
6687 */
6688 err = merge_extent_mapping(em_tree, existing,
6689 em, start);
6690 free_extent_map(existing);
6691 if (err) {
6692 free_extent_map(em);
6693 em = NULL;
6694 }
6695 } else {
6696 free_extent_map(em);
6697 em = existing;
6698 err = 0;
6699 }
6700 }
6701 write_unlock(&em_tree->lock);
6702 out:
6703
6704 trace_btrfs_get_extent(root, em);
6705
6706 if (path)
6707 btrfs_free_path(path);
6708 if (trans) {
6709 ret = btrfs_end_transaction(trans, root);
6710 if (!err)
6711 err = ret;
6712 }
6713 if (err) {
6714 free_extent_map(em);
6715 return ERR_PTR(err);
6716 }
6717 BUG_ON(!em); /* Error is always set */
6718 return em;
6719 }
6720
6721 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6722 size_t pg_offset, u64 start, u64 len,
6723 int create)
6724 {
6725 struct extent_map *em;
6726 struct extent_map *hole_em = NULL;
6727 u64 range_start = start;
6728 u64 end;
6729 u64 found;
6730 u64 found_end;
6731 int err = 0;
6732
6733 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6734 if (IS_ERR(em))
6735 return em;
6736 if (em) {
6737 /*
6738 * if our em maps to
6739 * - a hole or
6740 * - a pre-alloc extent,
6741 * there might actually be delalloc bytes behind it.
6742 */
6743 if (em->block_start != EXTENT_MAP_HOLE &&
6744 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6745 return em;
6746 else
6747 hole_em = em;
6748 }
6749
6750 /* check to see if we've wrapped (len == -1 or similar) */
6751 end = start + len;
6752 if (end < start)
6753 end = (u64)-1;
6754 else
6755 end -= 1;
6756
6757 em = NULL;
6758
6759 /* ok, we didn't find anything, lets look for delalloc */
6760 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6761 end, len, EXTENT_DELALLOC, 1);
6762 found_end = range_start + found;
6763 if (found_end < range_start)
6764 found_end = (u64)-1;
6765
6766 /*
6767 * we didn't find anything useful, return
6768 * the original results from get_extent()
6769 */
6770 if (range_start > end || found_end <= start) {
6771 em = hole_em;
6772 hole_em = NULL;
6773 goto out;
6774 }
6775
6776 /* adjust the range_start to make sure it doesn't
6777 * go backwards from the start they passed in
6778 */
6779 range_start = max(start, range_start);
6780 found = found_end - range_start;
6781
6782 if (found > 0) {
6783 u64 hole_start = start;
6784 u64 hole_len = len;
6785
6786 em = alloc_extent_map();
6787 if (!em) {
6788 err = -ENOMEM;
6789 goto out;
6790 }
6791 /*
6792 * when btrfs_get_extent can't find anything it
6793 * returns one huge hole
6794 *
6795 * make sure what it found really fits our range, and
6796 * adjust to make sure it is based on the start from
6797 * the caller
6798 */
6799 if (hole_em) {
6800 u64 calc_end = extent_map_end(hole_em);
6801
6802 if (calc_end <= start || (hole_em->start > end)) {
6803 free_extent_map(hole_em);
6804 hole_em = NULL;
6805 } else {
6806 hole_start = max(hole_em->start, start);
6807 hole_len = calc_end - hole_start;
6808 }
6809 }
6810 em->bdev = NULL;
6811 if (hole_em && range_start > hole_start) {
6812 /* our hole starts before our delalloc, so we
6813 * have to return just the parts of the hole
6814 * that go until the delalloc starts
6815 */
6816 em->len = min(hole_len,
6817 range_start - hole_start);
6818 em->start = hole_start;
6819 em->orig_start = hole_start;
6820 /*
6821 * don't adjust block start at all,
6822 * it is fixed at EXTENT_MAP_HOLE
6823 */
6824 em->block_start = hole_em->block_start;
6825 em->block_len = hole_len;
6826 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6827 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6828 } else {
6829 em->start = range_start;
6830 em->len = found;
6831 em->orig_start = range_start;
6832 em->block_start = EXTENT_MAP_DELALLOC;
6833 em->block_len = found;
6834 }
6835 } else if (hole_em) {
6836 return hole_em;
6837 }
6838 out:
6839
6840 free_extent_map(hole_em);
6841 if (err) {
6842 free_extent_map(em);
6843 return ERR_PTR(err);
6844 }
6845 return em;
6846 }
6847
6848 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6849 u64 start, u64 len)
6850 {
6851 struct btrfs_root *root = BTRFS_I(inode)->root;
6852 struct extent_map *em;
6853 struct btrfs_key ins;
6854 u64 alloc_hint;
6855 int ret;
6856
6857 alloc_hint = get_extent_allocation_hint(inode, start, len);
6858 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6859 alloc_hint, &ins, 1, 1);
6860 if (ret)
6861 return ERR_PTR(ret);
6862
6863 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6864 ins.offset, ins.offset, ins.offset, 0);
6865 if (IS_ERR(em)) {
6866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6867 return em;
6868 }
6869
6870 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6871 ins.offset, ins.offset, 0);
6872 if (ret) {
6873 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6874 free_extent_map(em);
6875 return ERR_PTR(ret);
6876 }
6877
6878 return em;
6879 }
6880
6881 /*
6882 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6883 * block must be cow'd
6884 */
6885 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6886 u64 *orig_start, u64 *orig_block_len,
6887 u64 *ram_bytes)
6888 {
6889 struct btrfs_trans_handle *trans;
6890 struct btrfs_path *path;
6891 int ret;
6892 struct extent_buffer *leaf;
6893 struct btrfs_root *root = BTRFS_I(inode)->root;
6894 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6895 struct btrfs_file_extent_item *fi;
6896 struct btrfs_key key;
6897 u64 disk_bytenr;
6898 u64 backref_offset;
6899 u64 extent_end;
6900 u64 num_bytes;
6901 int slot;
6902 int found_type;
6903 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6904
6905 path = btrfs_alloc_path();
6906 if (!path)
6907 return -ENOMEM;
6908
6909 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6910 offset, 0);
6911 if (ret < 0)
6912 goto out;
6913
6914 slot = path->slots[0];
6915 if (ret == 1) {
6916 if (slot == 0) {
6917 /* can't find the item, must cow */
6918 ret = 0;
6919 goto out;
6920 }
6921 slot--;
6922 }
6923 ret = 0;
6924 leaf = path->nodes[0];
6925 btrfs_item_key_to_cpu(leaf, &key, slot);
6926 if (key.objectid != btrfs_ino(inode) ||
6927 key.type != BTRFS_EXTENT_DATA_KEY) {
6928 /* not our file or wrong item type, must cow */
6929 goto out;
6930 }
6931
6932 if (key.offset > offset) {
6933 /* Wrong offset, must cow */
6934 goto out;
6935 }
6936
6937 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6938 found_type = btrfs_file_extent_type(leaf, fi);
6939 if (found_type != BTRFS_FILE_EXTENT_REG &&
6940 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6941 /* not a regular extent, must cow */
6942 goto out;
6943 }
6944
6945 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6946 goto out;
6947
6948 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6949 if (extent_end <= offset)
6950 goto out;
6951
6952 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6953 if (disk_bytenr == 0)
6954 goto out;
6955
6956 if (btrfs_file_extent_compression(leaf, fi) ||
6957 btrfs_file_extent_encryption(leaf, fi) ||
6958 btrfs_file_extent_other_encoding(leaf, fi))
6959 goto out;
6960
6961 backref_offset = btrfs_file_extent_offset(leaf, fi);
6962
6963 if (orig_start) {
6964 *orig_start = key.offset - backref_offset;
6965 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6966 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6967 }
6968
6969 if (btrfs_extent_readonly(root, disk_bytenr))
6970 goto out;
6971
6972 num_bytes = min(offset + *len, extent_end) - offset;
6973 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6974 u64 range_end;
6975
6976 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6977 ret = test_range_bit(io_tree, offset, range_end,
6978 EXTENT_DELALLOC, 0, NULL);
6979 if (ret) {
6980 ret = -EAGAIN;
6981 goto out;
6982 }
6983 }
6984
6985 btrfs_release_path(path);
6986
6987 /*
6988 * look for other files referencing this extent, if we
6989 * find any we must cow
6990 */
6991 trans = btrfs_join_transaction(root);
6992 if (IS_ERR(trans)) {
6993 ret = 0;
6994 goto out;
6995 }
6996
6997 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6998 key.offset - backref_offset, disk_bytenr);
6999 btrfs_end_transaction(trans, root);
7000 if (ret) {
7001 ret = 0;
7002 goto out;
7003 }
7004
7005 /*
7006 * adjust disk_bytenr and num_bytes to cover just the bytes
7007 * in this extent we are about to write. If there
7008 * are any csums in that range we have to cow in order
7009 * to keep the csums correct
7010 */
7011 disk_bytenr += backref_offset;
7012 disk_bytenr += offset - key.offset;
7013 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7014 goto out;
7015 /*
7016 * all of the above have passed, it is safe to overwrite this extent
7017 * without cow
7018 */
7019 *len = num_bytes;
7020 ret = 1;
7021 out:
7022 btrfs_free_path(path);
7023 return ret;
7024 }
7025
7026 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7027 {
7028 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7029 int found = false;
7030 void **pagep = NULL;
7031 struct page *page = NULL;
7032 int start_idx;
7033 int end_idx;
7034
7035 start_idx = start >> PAGE_CACHE_SHIFT;
7036
7037 /*
7038 * end is the last byte in the last page. end == start is legal
7039 */
7040 end_idx = end >> PAGE_CACHE_SHIFT;
7041
7042 rcu_read_lock();
7043
7044 /* Most of the code in this while loop is lifted from
7045 * find_get_page. It's been modified to begin searching from a
7046 * page and return just the first page found in that range. If the
7047 * found idx is less than or equal to the end idx then we know that
7048 * a page exists. If no pages are found or if those pages are
7049 * outside of the range then we're fine (yay!) */
7050 while (page == NULL &&
7051 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7052 page = radix_tree_deref_slot(pagep);
7053 if (unlikely(!page))
7054 break;
7055
7056 if (radix_tree_exception(page)) {
7057 if (radix_tree_deref_retry(page)) {
7058 page = NULL;
7059 continue;
7060 }
7061 /*
7062 * Otherwise, shmem/tmpfs must be storing a swap entry
7063 * here as an exceptional entry: so return it without
7064 * attempting to raise page count.
7065 */
7066 page = NULL;
7067 break; /* TODO: Is this relevant for this use case? */
7068 }
7069
7070 if (!page_cache_get_speculative(page)) {
7071 page = NULL;
7072 continue;
7073 }
7074
7075 /*
7076 * Has the page moved?
7077 * This is part of the lockless pagecache protocol. See
7078 * include/linux/pagemap.h for details.
7079 */
7080 if (unlikely(page != *pagep)) {
7081 page_cache_release(page);
7082 page = NULL;
7083 }
7084 }
7085
7086 if (page) {
7087 if (page->index <= end_idx)
7088 found = true;
7089 page_cache_release(page);
7090 }
7091
7092 rcu_read_unlock();
7093 return found;
7094 }
7095
7096 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7097 struct extent_state **cached_state, int writing)
7098 {
7099 struct btrfs_ordered_extent *ordered;
7100 int ret = 0;
7101
7102 while (1) {
7103 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7104 0, cached_state);
7105 /*
7106 * We're concerned with the entire range that we're going to be
7107 * doing DIO to, so we need to make sure theres no ordered
7108 * extents in this range.
7109 */
7110 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7111 lockend - lockstart + 1);
7112
7113 /*
7114 * We need to make sure there are no buffered pages in this
7115 * range either, we could have raced between the invalidate in
7116 * generic_file_direct_write and locking the extent. The
7117 * invalidate needs to happen so that reads after a write do not
7118 * get stale data.
7119 */
7120 if (!ordered &&
7121 (!writing ||
7122 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7123 break;
7124
7125 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7126 cached_state, GFP_NOFS);
7127
7128 if (ordered) {
7129 btrfs_start_ordered_extent(inode, ordered, 1);
7130 btrfs_put_ordered_extent(ordered);
7131 } else {
7132 /* Screw you mmap */
7133 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7134 if (ret)
7135 break;
7136 ret = filemap_fdatawait_range(inode->i_mapping,
7137 lockstart,
7138 lockend);
7139 if (ret)
7140 break;
7141
7142 /*
7143 * If we found a page that couldn't be invalidated just
7144 * fall back to buffered.
7145 */
7146 ret = invalidate_inode_pages2_range(inode->i_mapping,
7147 lockstart >> PAGE_CACHE_SHIFT,
7148 lockend >> PAGE_CACHE_SHIFT);
7149 if (ret)
7150 break;
7151 }
7152
7153 cond_resched();
7154 }
7155
7156 return ret;
7157 }
7158
7159 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7160 u64 len, u64 orig_start,
7161 u64 block_start, u64 block_len,
7162 u64 orig_block_len, u64 ram_bytes,
7163 int type)
7164 {
7165 struct extent_map_tree *em_tree;
7166 struct extent_map *em;
7167 struct btrfs_root *root = BTRFS_I(inode)->root;
7168 int ret;
7169
7170 em_tree = &BTRFS_I(inode)->extent_tree;
7171 em = alloc_extent_map();
7172 if (!em)
7173 return ERR_PTR(-ENOMEM);
7174
7175 em->start = start;
7176 em->orig_start = orig_start;
7177 em->mod_start = start;
7178 em->mod_len = len;
7179 em->len = len;
7180 em->block_len = block_len;
7181 em->block_start = block_start;
7182 em->bdev = root->fs_info->fs_devices->latest_bdev;
7183 em->orig_block_len = orig_block_len;
7184 em->ram_bytes = ram_bytes;
7185 em->generation = -1;
7186 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7187 if (type == BTRFS_ORDERED_PREALLOC)
7188 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7189
7190 do {
7191 btrfs_drop_extent_cache(inode, em->start,
7192 em->start + em->len - 1, 0);
7193 write_lock(&em_tree->lock);
7194 ret = add_extent_mapping(em_tree, em, 1);
7195 write_unlock(&em_tree->lock);
7196 } while (ret == -EEXIST);
7197
7198 if (ret) {
7199 free_extent_map(em);
7200 return ERR_PTR(ret);
7201 }
7202
7203 return em;
7204 }
7205
7206
7207 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7208 struct buffer_head *bh_result, int create)
7209 {
7210 struct extent_map *em;
7211 struct btrfs_root *root = BTRFS_I(inode)->root;
7212 struct extent_state *cached_state = NULL;
7213 u64 start = iblock << inode->i_blkbits;
7214 u64 lockstart, lockend;
7215 u64 len = bh_result->b_size;
7216 u64 orig_len = len;
7217 int unlock_bits = EXTENT_LOCKED;
7218 int ret = 0;
7219
7220 if (create)
7221 unlock_bits |= EXTENT_DIRTY;
7222 else
7223 len = min_t(u64, len, root->sectorsize);
7224
7225 lockstart = start;
7226 lockend = start + len - 1;
7227
7228 /*
7229 * If this errors out it's because we couldn't invalidate pagecache for
7230 * this range and we need to fallback to buffered.
7231 */
7232 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7233 return -ENOTBLK;
7234
7235 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7236 if (IS_ERR(em)) {
7237 ret = PTR_ERR(em);
7238 goto unlock_err;
7239 }
7240
7241 /*
7242 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7243 * io. INLINE is special, and we could probably kludge it in here, but
7244 * it's still buffered so for safety lets just fall back to the generic
7245 * buffered path.
7246 *
7247 * For COMPRESSED we _have_ to read the entire extent in so we can
7248 * decompress it, so there will be buffering required no matter what we
7249 * do, so go ahead and fallback to buffered.
7250 *
7251 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7252 * to buffered IO. Don't blame me, this is the price we pay for using
7253 * the generic code.
7254 */
7255 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7256 em->block_start == EXTENT_MAP_INLINE) {
7257 free_extent_map(em);
7258 ret = -ENOTBLK;
7259 goto unlock_err;
7260 }
7261
7262 /* Just a good old fashioned hole, return */
7263 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7264 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7265 free_extent_map(em);
7266 goto unlock_err;
7267 }
7268
7269 /*
7270 * We don't allocate a new extent in the following cases
7271 *
7272 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7273 * existing extent.
7274 * 2) The extent is marked as PREALLOC. We're good to go here and can
7275 * just use the extent.
7276 *
7277 */
7278 if (!create) {
7279 len = min(len, em->len - (start - em->start));
7280 lockstart = start + len;
7281 goto unlock;
7282 }
7283
7284 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7285 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7286 em->block_start != EXTENT_MAP_HOLE)) {
7287 int type;
7288 u64 block_start, orig_start, orig_block_len, ram_bytes;
7289
7290 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7291 type = BTRFS_ORDERED_PREALLOC;
7292 else
7293 type = BTRFS_ORDERED_NOCOW;
7294 len = min(len, em->len - (start - em->start));
7295 block_start = em->block_start + (start - em->start);
7296
7297 if (can_nocow_extent(inode, start, &len, &orig_start,
7298 &orig_block_len, &ram_bytes) == 1) {
7299 if (type == BTRFS_ORDERED_PREALLOC) {
7300 free_extent_map(em);
7301 em = create_pinned_em(inode, start, len,
7302 orig_start,
7303 block_start, len,
7304 orig_block_len,
7305 ram_bytes, type);
7306 if (IS_ERR(em)) {
7307 ret = PTR_ERR(em);
7308 goto unlock_err;
7309 }
7310 }
7311
7312 ret = btrfs_add_ordered_extent_dio(inode, start,
7313 block_start, len, len, type);
7314 if (ret) {
7315 free_extent_map(em);
7316 goto unlock_err;
7317 }
7318 goto unlock;
7319 }
7320 }
7321
7322 /*
7323 * this will cow the extent, reset the len in case we changed
7324 * it above
7325 */
7326 len = bh_result->b_size;
7327 free_extent_map(em);
7328 em = btrfs_new_extent_direct(inode, start, len);
7329 if (IS_ERR(em)) {
7330 ret = PTR_ERR(em);
7331 goto unlock_err;
7332 }
7333 len = min(len, em->len - (start - em->start));
7334 unlock:
7335 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7336 inode->i_blkbits;
7337 bh_result->b_size = len;
7338 bh_result->b_bdev = em->bdev;
7339 set_buffer_mapped(bh_result);
7340 if (create) {
7341 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7342 set_buffer_new(bh_result);
7343
7344 /*
7345 * Need to update the i_size under the extent lock so buffered
7346 * readers will get the updated i_size when we unlock.
7347 */
7348 if (start + len > i_size_read(inode))
7349 i_size_write(inode, start + len);
7350
7351 if (len < orig_len) {
7352 spin_lock(&BTRFS_I(inode)->lock);
7353 BTRFS_I(inode)->outstanding_extents++;
7354 spin_unlock(&BTRFS_I(inode)->lock);
7355 }
7356 btrfs_free_reserved_data_space(inode, len);
7357 }
7358
7359 /*
7360 * In the case of write we need to clear and unlock the entire range,
7361 * in the case of read we need to unlock only the end area that we
7362 * aren't using if there is any left over space.
7363 */
7364 if (lockstart < lockend) {
7365 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7366 lockend, unlock_bits, 1, 0,
7367 &cached_state, GFP_NOFS);
7368 } else {
7369 free_extent_state(cached_state);
7370 }
7371
7372 free_extent_map(em);
7373
7374 return 0;
7375
7376 unlock_err:
7377 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7378 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7379 return ret;
7380 }
7381
7382 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7383 int rw, int mirror_num)
7384 {
7385 struct btrfs_root *root = BTRFS_I(inode)->root;
7386 int ret;
7387
7388 BUG_ON(rw & REQ_WRITE);
7389
7390 bio_get(bio);
7391
7392 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7393 BTRFS_WQ_ENDIO_DIO_REPAIR);
7394 if (ret)
7395 goto err;
7396
7397 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7398 err:
7399 bio_put(bio);
7400 return ret;
7401 }
7402
7403 static int btrfs_check_dio_repairable(struct inode *inode,
7404 struct bio *failed_bio,
7405 struct io_failure_record *failrec,
7406 int failed_mirror)
7407 {
7408 int num_copies;
7409
7410 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7411 failrec->logical, failrec->len);
7412 if (num_copies == 1) {
7413 /*
7414 * we only have a single copy of the data, so don't bother with
7415 * all the retry and error correction code that follows. no
7416 * matter what the error is, it is very likely to persist.
7417 */
7418 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7419 num_copies, failrec->this_mirror, failed_mirror);
7420 return 0;
7421 }
7422
7423 failrec->failed_mirror = failed_mirror;
7424 failrec->this_mirror++;
7425 if (failrec->this_mirror == failed_mirror)
7426 failrec->this_mirror++;
7427
7428 if (failrec->this_mirror > num_copies) {
7429 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7430 num_copies, failrec->this_mirror, failed_mirror);
7431 return 0;
7432 }
7433
7434 return 1;
7435 }
7436
7437 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7438 struct page *page, u64 start, u64 end,
7439 int failed_mirror, bio_end_io_t *repair_endio,
7440 void *repair_arg)
7441 {
7442 struct io_failure_record *failrec;
7443 struct bio *bio;
7444 int isector;
7445 int read_mode;
7446 int ret;
7447
7448 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7449
7450 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7451 if (ret)
7452 return ret;
7453
7454 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7455 failed_mirror);
7456 if (!ret) {
7457 free_io_failure(inode, failrec);
7458 return -EIO;
7459 }
7460
7461 if (failed_bio->bi_vcnt > 1)
7462 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7463 else
7464 read_mode = READ_SYNC;
7465
7466 isector = start - btrfs_io_bio(failed_bio)->logical;
7467 isector >>= inode->i_sb->s_blocksize_bits;
7468 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7469 0, isector, repair_endio, repair_arg);
7470 if (!bio) {
7471 free_io_failure(inode, failrec);
7472 return -EIO;
7473 }
7474
7475 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7476 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7477 read_mode, failrec->this_mirror, failrec->in_validation);
7478
7479 ret = submit_dio_repair_bio(inode, bio, read_mode,
7480 failrec->this_mirror);
7481 if (ret) {
7482 free_io_failure(inode, failrec);
7483 bio_put(bio);
7484 }
7485
7486 return ret;
7487 }
7488
7489 struct btrfs_retry_complete {
7490 struct completion done;
7491 struct inode *inode;
7492 u64 start;
7493 int uptodate;
7494 };
7495
7496 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7497 {
7498 struct btrfs_retry_complete *done = bio->bi_private;
7499 struct bio_vec *bvec;
7500 int i;
7501
7502 if (err)
7503 goto end;
7504
7505 done->uptodate = 1;
7506 bio_for_each_segment_all(bvec, bio, i)
7507 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7508 end:
7509 complete(&done->done);
7510 bio_put(bio);
7511 }
7512
7513 static int __btrfs_correct_data_nocsum(struct inode *inode,
7514 struct btrfs_io_bio *io_bio)
7515 {
7516 struct bio_vec *bvec;
7517 struct btrfs_retry_complete done;
7518 u64 start;
7519 int i;
7520 int ret;
7521
7522 start = io_bio->logical;
7523 done.inode = inode;
7524
7525 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7526 try_again:
7527 done.uptodate = 0;
7528 done.start = start;
7529 init_completion(&done.done);
7530
7531 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7532 start + bvec->bv_len - 1,
7533 io_bio->mirror_num,
7534 btrfs_retry_endio_nocsum, &done);
7535 if (ret)
7536 return ret;
7537
7538 wait_for_completion(&done.done);
7539
7540 if (!done.uptodate) {
7541 /* We might have another mirror, so try again */
7542 goto try_again;
7543 }
7544
7545 start += bvec->bv_len;
7546 }
7547
7548 return 0;
7549 }
7550
7551 static void btrfs_retry_endio(struct bio *bio, int err)
7552 {
7553 struct btrfs_retry_complete *done = bio->bi_private;
7554 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7555 struct bio_vec *bvec;
7556 int uptodate;
7557 int ret;
7558 int i;
7559
7560 if (err)
7561 goto end;
7562
7563 uptodate = 1;
7564 bio_for_each_segment_all(bvec, bio, i) {
7565 ret = __readpage_endio_check(done->inode, io_bio, i,
7566 bvec->bv_page, 0,
7567 done->start, bvec->bv_len);
7568 if (!ret)
7569 clean_io_failure(done->inode, done->start,
7570 bvec->bv_page, 0);
7571 else
7572 uptodate = 0;
7573 }
7574
7575 done->uptodate = uptodate;
7576 end:
7577 complete(&done->done);
7578 bio_put(bio);
7579 }
7580
7581 static int __btrfs_subio_endio_read(struct inode *inode,
7582 struct btrfs_io_bio *io_bio, int err)
7583 {
7584 struct bio_vec *bvec;
7585 struct btrfs_retry_complete done;
7586 u64 start;
7587 u64 offset = 0;
7588 int i;
7589 int ret;
7590
7591 err = 0;
7592 start = io_bio->logical;
7593 done.inode = inode;
7594
7595 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7596 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7597 0, start, bvec->bv_len);
7598 if (likely(!ret))
7599 goto next;
7600 try_again:
7601 done.uptodate = 0;
7602 done.start = start;
7603 init_completion(&done.done);
7604
7605 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7606 start + bvec->bv_len - 1,
7607 io_bio->mirror_num,
7608 btrfs_retry_endio, &done);
7609 if (ret) {
7610 err = ret;
7611 goto next;
7612 }
7613
7614 wait_for_completion(&done.done);
7615
7616 if (!done.uptodate) {
7617 /* We might have another mirror, so try again */
7618 goto try_again;
7619 }
7620 next:
7621 offset += bvec->bv_len;
7622 start += bvec->bv_len;
7623 }
7624
7625 return err;
7626 }
7627
7628 static int btrfs_subio_endio_read(struct inode *inode,
7629 struct btrfs_io_bio *io_bio, int err)
7630 {
7631 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7632
7633 if (skip_csum) {
7634 if (unlikely(err))
7635 return __btrfs_correct_data_nocsum(inode, io_bio);
7636 else
7637 return 0;
7638 } else {
7639 return __btrfs_subio_endio_read(inode, io_bio, err);
7640 }
7641 }
7642
7643 static void btrfs_endio_direct_read(struct bio *bio, int err)
7644 {
7645 struct btrfs_dio_private *dip = bio->bi_private;
7646 struct inode *inode = dip->inode;
7647 struct bio *dio_bio;
7648 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7649
7650 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7651 err = btrfs_subio_endio_read(inode, io_bio, err);
7652
7653 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7654 dip->logical_offset + dip->bytes - 1);
7655 dio_bio = dip->dio_bio;
7656
7657 kfree(dip);
7658
7659 /* If we had a csum failure make sure to clear the uptodate flag */
7660 if (err)
7661 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7662 dio_end_io(dio_bio, err);
7663
7664 if (io_bio->end_io)
7665 io_bio->end_io(io_bio, err);
7666 bio_put(bio);
7667 }
7668
7669 static void btrfs_endio_direct_write(struct bio *bio, int err)
7670 {
7671 struct btrfs_dio_private *dip = bio->bi_private;
7672 struct inode *inode = dip->inode;
7673 struct btrfs_root *root = BTRFS_I(inode)->root;
7674 struct btrfs_ordered_extent *ordered = NULL;
7675 u64 ordered_offset = dip->logical_offset;
7676 u64 ordered_bytes = dip->bytes;
7677 struct bio *dio_bio;
7678 int ret;
7679
7680 if (err)
7681 goto out_done;
7682 again:
7683 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7684 &ordered_offset,
7685 ordered_bytes, !err);
7686 if (!ret)
7687 goto out_test;
7688
7689 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7690 finish_ordered_fn, NULL, NULL);
7691 btrfs_queue_work(root->fs_info->endio_write_workers,
7692 &ordered->work);
7693 out_test:
7694 /*
7695 * our bio might span multiple ordered extents. If we haven't
7696 * completed the accounting for the whole dio, go back and try again
7697 */
7698 if (ordered_offset < dip->logical_offset + dip->bytes) {
7699 ordered_bytes = dip->logical_offset + dip->bytes -
7700 ordered_offset;
7701 ordered = NULL;
7702 goto again;
7703 }
7704 out_done:
7705 dio_bio = dip->dio_bio;
7706
7707 kfree(dip);
7708
7709 /* If we had an error make sure to clear the uptodate flag */
7710 if (err)
7711 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7712 dio_end_io(dio_bio, err);
7713 bio_put(bio);
7714 }
7715
7716 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7717 struct bio *bio, int mirror_num,
7718 unsigned long bio_flags, u64 offset)
7719 {
7720 int ret;
7721 struct btrfs_root *root = BTRFS_I(inode)->root;
7722 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7723 BUG_ON(ret); /* -ENOMEM */
7724 return 0;
7725 }
7726
7727 static void btrfs_end_dio_bio(struct bio *bio, int err)
7728 {
7729 struct btrfs_dio_private *dip = bio->bi_private;
7730
7731 if (err)
7732 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7733 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7734 btrfs_ino(dip->inode), bio->bi_rw,
7735 (unsigned long long)bio->bi_iter.bi_sector,
7736 bio->bi_iter.bi_size, err);
7737
7738 if (dip->subio_endio)
7739 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7740
7741 if (err) {
7742 dip->errors = 1;
7743
7744 /*
7745 * before atomic variable goto zero, we must make sure
7746 * dip->errors is perceived to be set.
7747 */
7748 smp_mb__before_atomic();
7749 }
7750
7751 /* if there are more bios still pending for this dio, just exit */
7752 if (!atomic_dec_and_test(&dip->pending_bios))
7753 goto out;
7754
7755 if (dip->errors) {
7756 bio_io_error(dip->orig_bio);
7757 } else {
7758 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7759 bio_endio(dip->orig_bio, 0);
7760 }
7761 out:
7762 bio_put(bio);
7763 }
7764
7765 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7766 u64 first_sector, gfp_t gfp_flags)
7767 {
7768 int nr_vecs = bio_get_nr_vecs(bdev);
7769 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7770 }
7771
7772 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7773 struct inode *inode,
7774 struct btrfs_dio_private *dip,
7775 struct bio *bio,
7776 u64 file_offset)
7777 {
7778 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7779 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7780 int ret;
7781
7782 /*
7783 * We load all the csum data we need when we submit
7784 * the first bio to reduce the csum tree search and
7785 * contention.
7786 */
7787 if (dip->logical_offset == file_offset) {
7788 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7789 file_offset);
7790 if (ret)
7791 return ret;
7792 }
7793
7794 if (bio == dip->orig_bio)
7795 return 0;
7796
7797 file_offset -= dip->logical_offset;
7798 file_offset >>= inode->i_sb->s_blocksize_bits;
7799 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7800
7801 return 0;
7802 }
7803
7804 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7805 int rw, u64 file_offset, int skip_sum,
7806 int async_submit)
7807 {
7808 struct btrfs_dio_private *dip = bio->bi_private;
7809 int write = rw & REQ_WRITE;
7810 struct btrfs_root *root = BTRFS_I(inode)->root;
7811 int ret;
7812
7813 if (async_submit)
7814 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7815
7816 bio_get(bio);
7817
7818 if (!write) {
7819 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7820 BTRFS_WQ_ENDIO_DATA);
7821 if (ret)
7822 goto err;
7823 }
7824
7825 if (skip_sum)
7826 goto map;
7827
7828 if (write && async_submit) {
7829 ret = btrfs_wq_submit_bio(root->fs_info,
7830 inode, rw, bio, 0, 0,
7831 file_offset,
7832 __btrfs_submit_bio_start_direct_io,
7833 __btrfs_submit_bio_done);
7834 goto err;
7835 } else if (write) {
7836 /*
7837 * If we aren't doing async submit, calculate the csum of the
7838 * bio now.
7839 */
7840 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7841 if (ret)
7842 goto err;
7843 } else {
7844 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7845 file_offset);
7846 if (ret)
7847 goto err;
7848 }
7849 map:
7850 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7851 err:
7852 bio_put(bio);
7853 return ret;
7854 }
7855
7856 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7857 int skip_sum)
7858 {
7859 struct inode *inode = dip->inode;
7860 struct btrfs_root *root = BTRFS_I(inode)->root;
7861 struct bio *bio;
7862 struct bio *orig_bio = dip->orig_bio;
7863 struct bio_vec *bvec = orig_bio->bi_io_vec;
7864 u64 start_sector = orig_bio->bi_iter.bi_sector;
7865 u64 file_offset = dip->logical_offset;
7866 u64 submit_len = 0;
7867 u64 map_length;
7868 int nr_pages = 0;
7869 int ret;
7870 int async_submit = 0;
7871
7872 map_length = orig_bio->bi_iter.bi_size;
7873 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7874 &map_length, NULL, 0);
7875 if (ret)
7876 return -EIO;
7877
7878 if (map_length >= orig_bio->bi_iter.bi_size) {
7879 bio = orig_bio;
7880 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7881 goto submit;
7882 }
7883
7884 /* async crcs make it difficult to collect full stripe writes. */
7885 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
7886 async_submit = 0;
7887 else
7888 async_submit = 1;
7889
7890 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7891 if (!bio)
7892 return -ENOMEM;
7893
7894 bio->bi_private = dip;
7895 bio->bi_end_io = btrfs_end_dio_bio;
7896 btrfs_io_bio(bio)->logical = file_offset;
7897 atomic_inc(&dip->pending_bios);
7898
7899 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7900 if (map_length < submit_len + bvec->bv_len ||
7901 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7902 bvec->bv_offset) < bvec->bv_len) {
7903 /*
7904 * inc the count before we submit the bio so
7905 * we know the end IO handler won't happen before
7906 * we inc the count. Otherwise, the dip might get freed
7907 * before we're done setting it up
7908 */
7909 atomic_inc(&dip->pending_bios);
7910 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7911 file_offset, skip_sum,
7912 async_submit);
7913 if (ret) {
7914 bio_put(bio);
7915 atomic_dec(&dip->pending_bios);
7916 goto out_err;
7917 }
7918
7919 start_sector += submit_len >> 9;
7920 file_offset += submit_len;
7921
7922 submit_len = 0;
7923 nr_pages = 0;
7924
7925 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7926 start_sector, GFP_NOFS);
7927 if (!bio)
7928 goto out_err;
7929 bio->bi_private = dip;
7930 bio->bi_end_io = btrfs_end_dio_bio;
7931 btrfs_io_bio(bio)->logical = file_offset;
7932
7933 map_length = orig_bio->bi_iter.bi_size;
7934 ret = btrfs_map_block(root->fs_info, rw,
7935 start_sector << 9,
7936 &map_length, NULL, 0);
7937 if (ret) {
7938 bio_put(bio);
7939 goto out_err;
7940 }
7941 } else {
7942 submit_len += bvec->bv_len;
7943 nr_pages++;
7944 bvec++;
7945 }
7946 }
7947
7948 submit:
7949 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7950 async_submit);
7951 if (!ret)
7952 return 0;
7953
7954 bio_put(bio);
7955 out_err:
7956 dip->errors = 1;
7957 /*
7958 * before atomic variable goto zero, we must
7959 * make sure dip->errors is perceived to be set.
7960 */
7961 smp_mb__before_atomic();
7962 if (atomic_dec_and_test(&dip->pending_bios))
7963 bio_io_error(dip->orig_bio);
7964
7965 /* bio_end_io() will handle error, so we needn't return it */
7966 return 0;
7967 }
7968
7969 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7970 struct inode *inode, loff_t file_offset)
7971 {
7972 struct btrfs_root *root = BTRFS_I(inode)->root;
7973 struct btrfs_dio_private *dip;
7974 struct bio *io_bio;
7975 struct btrfs_io_bio *btrfs_bio;
7976 int skip_sum;
7977 int write = rw & REQ_WRITE;
7978 int ret = 0;
7979
7980 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7981
7982 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7983 if (!io_bio) {
7984 ret = -ENOMEM;
7985 goto free_ordered;
7986 }
7987
7988 dip = kzalloc(sizeof(*dip), GFP_NOFS);
7989 if (!dip) {
7990 ret = -ENOMEM;
7991 goto free_io_bio;
7992 }
7993
7994 dip->private = dio_bio->bi_private;
7995 dip->inode = inode;
7996 dip->logical_offset = file_offset;
7997 dip->bytes = dio_bio->bi_iter.bi_size;
7998 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7999 io_bio->bi_private = dip;
8000 dip->orig_bio = io_bio;
8001 dip->dio_bio = dio_bio;
8002 atomic_set(&dip->pending_bios, 0);
8003 btrfs_bio = btrfs_io_bio(io_bio);
8004 btrfs_bio->logical = file_offset;
8005
8006 if (write) {
8007 io_bio->bi_end_io = btrfs_endio_direct_write;
8008 } else {
8009 io_bio->bi_end_io = btrfs_endio_direct_read;
8010 dip->subio_endio = btrfs_subio_endio_read;
8011 }
8012
8013 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8014 if (!ret)
8015 return;
8016
8017 if (btrfs_bio->end_io)
8018 btrfs_bio->end_io(btrfs_bio, ret);
8019 free_io_bio:
8020 bio_put(io_bio);
8021
8022 free_ordered:
8023 /*
8024 * If this is a write, we need to clean up the reserved space and kill
8025 * the ordered extent.
8026 */
8027 if (write) {
8028 struct btrfs_ordered_extent *ordered;
8029 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
8030 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
8031 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
8032 btrfs_free_reserved_extent(root, ordered->start,
8033 ordered->disk_len, 1);
8034 btrfs_put_ordered_extent(ordered);
8035 btrfs_put_ordered_extent(ordered);
8036 }
8037 bio_endio(dio_bio, ret);
8038 }
8039
8040 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
8041 const struct iov_iter *iter, loff_t offset)
8042 {
8043 int seg;
8044 int i;
8045 unsigned blocksize_mask = root->sectorsize - 1;
8046 ssize_t retval = -EINVAL;
8047
8048 if (offset & blocksize_mask)
8049 goto out;
8050
8051 if (iov_iter_alignment(iter) & blocksize_mask)
8052 goto out;
8053
8054 /* If this is a write we don't need to check anymore */
8055 if (rw & WRITE)
8056 return 0;
8057 /*
8058 * Check to make sure we don't have duplicate iov_base's in this
8059 * iovec, if so return EINVAL, otherwise we'll get csum errors
8060 * when reading back.
8061 */
8062 for (seg = 0; seg < iter->nr_segs; seg++) {
8063 for (i = seg + 1; i < iter->nr_segs; i++) {
8064 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8065 goto out;
8066 }
8067 }
8068 retval = 0;
8069 out:
8070 return retval;
8071 }
8072
8073 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
8074 struct iov_iter *iter, loff_t offset)
8075 {
8076 struct file *file = iocb->ki_filp;
8077 struct inode *inode = file->f_mapping->host;
8078 size_t count = 0;
8079 int flags = 0;
8080 bool wakeup = true;
8081 bool relock = false;
8082 ssize_t ret;
8083
8084 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
8085 return 0;
8086
8087 atomic_inc(&inode->i_dio_count);
8088 smp_mb__after_atomic();
8089
8090 /*
8091 * The generic stuff only does filemap_write_and_wait_range, which
8092 * isn't enough if we've written compressed pages to this area, so
8093 * we need to flush the dirty pages again to make absolutely sure
8094 * that any outstanding dirty pages are on disk.
8095 */
8096 count = iov_iter_count(iter);
8097 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8098 &BTRFS_I(inode)->runtime_flags))
8099 filemap_fdatawrite_range(inode->i_mapping, offset,
8100 offset + count - 1);
8101
8102 if (rw & WRITE) {
8103 /*
8104 * If the write DIO is beyond the EOF, we need update
8105 * the isize, but it is protected by i_mutex. So we can
8106 * not unlock the i_mutex at this case.
8107 */
8108 if (offset + count <= inode->i_size) {
8109 mutex_unlock(&inode->i_mutex);
8110 relock = true;
8111 }
8112 ret = btrfs_delalloc_reserve_space(inode, count);
8113 if (ret)
8114 goto out;
8115 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8116 &BTRFS_I(inode)->runtime_flags)) {
8117 inode_dio_done(inode);
8118 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8119 wakeup = false;
8120 }
8121
8122 ret = __blockdev_direct_IO(rw, iocb, inode,
8123 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8124 iter, offset, btrfs_get_blocks_direct, NULL,
8125 btrfs_submit_direct, flags);
8126 if (rw & WRITE) {
8127 if (ret < 0 && ret != -EIOCBQUEUED)
8128 btrfs_delalloc_release_space(inode, count);
8129 else if (ret >= 0 && (size_t)ret < count)
8130 btrfs_delalloc_release_space(inode,
8131 count - (size_t)ret);
8132 }
8133 out:
8134 if (wakeup)
8135 inode_dio_done(inode);
8136 if (relock)
8137 mutex_lock(&inode->i_mutex);
8138
8139 return ret;
8140 }
8141
8142 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8143
8144 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8145 __u64 start, __u64 len)
8146 {
8147 int ret;
8148
8149 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8150 if (ret)
8151 return ret;
8152
8153 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8154 }
8155
8156 int btrfs_readpage(struct file *file, struct page *page)
8157 {
8158 struct extent_io_tree *tree;
8159 tree = &BTRFS_I(page->mapping->host)->io_tree;
8160 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8161 }
8162
8163 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8164 {
8165 struct extent_io_tree *tree;
8166
8167
8168 if (current->flags & PF_MEMALLOC) {
8169 redirty_page_for_writepage(wbc, page);
8170 unlock_page(page);
8171 return 0;
8172 }
8173 tree = &BTRFS_I(page->mapping->host)->io_tree;
8174 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8175 }
8176
8177 static int btrfs_writepages(struct address_space *mapping,
8178 struct writeback_control *wbc)
8179 {
8180 struct extent_io_tree *tree;
8181
8182 tree = &BTRFS_I(mapping->host)->io_tree;
8183 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8184 }
8185
8186 static int
8187 btrfs_readpages(struct file *file, struct address_space *mapping,
8188 struct list_head *pages, unsigned nr_pages)
8189 {
8190 struct extent_io_tree *tree;
8191 tree = &BTRFS_I(mapping->host)->io_tree;
8192 return extent_readpages(tree, mapping, pages, nr_pages,
8193 btrfs_get_extent);
8194 }
8195 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8196 {
8197 struct extent_io_tree *tree;
8198 struct extent_map_tree *map;
8199 int ret;
8200
8201 tree = &BTRFS_I(page->mapping->host)->io_tree;
8202 map = &BTRFS_I(page->mapping->host)->extent_tree;
8203 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8204 if (ret == 1) {
8205 ClearPagePrivate(page);
8206 set_page_private(page, 0);
8207 page_cache_release(page);
8208 }
8209 return ret;
8210 }
8211
8212 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8213 {
8214 if (PageWriteback(page) || PageDirty(page))
8215 return 0;
8216 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8217 }
8218
8219 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8220 unsigned int length)
8221 {
8222 struct inode *inode = page->mapping->host;
8223 struct extent_io_tree *tree;
8224 struct btrfs_ordered_extent *ordered;
8225 struct extent_state *cached_state = NULL;
8226 u64 page_start = page_offset(page);
8227 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8228 int inode_evicting = inode->i_state & I_FREEING;
8229
8230 /*
8231 * we have the page locked, so new writeback can't start,
8232 * and the dirty bit won't be cleared while we are here.
8233 *
8234 * Wait for IO on this page so that we can safely clear
8235 * the PagePrivate2 bit and do ordered accounting
8236 */
8237 wait_on_page_writeback(page);
8238
8239 tree = &BTRFS_I(inode)->io_tree;
8240 if (offset) {
8241 btrfs_releasepage(page, GFP_NOFS);
8242 return;
8243 }
8244
8245 if (!inode_evicting)
8246 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8247 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8248 if (ordered) {
8249 /*
8250 * IO on this page will never be started, so we need
8251 * to account for any ordered extents now
8252 */
8253 if (!inode_evicting)
8254 clear_extent_bit(tree, page_start, page_end,
8255 EXTENT_DIRTY | EXTENT_DELALLOC |
8256 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8257 EXTENT_DEFRAG, 1, 0, &cached_state,
8258 GFP_NOFS);
8259 /*
8260 * whoever cleared the private bit is responsible
8261 * for the finish_ordered_io
8262 */
8263 if (TestClearPagePrivate2(page)) {
8264 struct btrfs_ordered_inode_tree *tree;
8265 u64 new_len;
8266
8267 tree = &BTRFS_I(inode)->ordered_tree;
8268
8269 spin_lock_irq(&tree->lock);
8270 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8271 new_len = page_start - ordered->file_offset;
8272 if (new_len < ordered->truncated_len)
8273 ordered->truncated_len = new_len;
8274 spin_unlock_irq(&tree->lock);
8275
8276 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8277 page_start,
8278 PAGE_CACHE_SIZE, 1))
8279 btrfs_finish_ordered_io(ordered);
8280 }
8281 btrfs_put_ordered_extent(ordered);
8282 if (!inode_evicting) {
8283 cached_state = NULL;
8284 lock_extent_bits(tree, page_start, page_end, 0,
8285 &cached_state);
8286 }
8287 }
8288
8289 if (!inode_evicting) {
8290 clear_extent_bit(tree, page_start, page_end,
8291 EXTENT_LOCKED | EXTENT_DIRTY |
8292 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8293 EXTENT_DEFRAG, 1, 1,
8294 &cached_state, GFP_NOFS);
8295
8296 __btrfs_releasepage(page, GFP_NOFS);
8297 }
8298
8299 ClearPageChecked(page);
8300 if (PagePrivate(page)) {
8301 ClearPagePrivate(page);
8302 set_page_private(page, 0);
8303 page_cache_release(page);
8304 }
8305 }
8306
8307 /*
8308 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8309 * called from a page fault handler when a page is first dirtied. Hence we must
8310 * be careful to check for EOF conditions here. We set the page up correctly
8311 * for a written page which means we get ENOSPC checking when writing into
8312 * holes and correct delalloc and unwritten extent mapping on filesystems that
8313 * support these features.
8314 *
8315 * We are not allowed to take the i_mutex here so we have to play games to
8316 * protect against truncate races as the page could now be beyond EOF. Because
8317 * vmtruncate() writes the inode size before removing pages, once we have the
8318 * page lock we can determine safely if the page is beyond EOF. If it is not
8319 * beyond EOF, then the page is guaranteed safe against truncation until we
8320 * unlock the page.
8321 */
8322 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8323 {
8324 struct page *page = vmf->page;
8325 struct inode *inode = file_inode(vma->vm_file);
8326 struct btrfs_root *root = BTRFS_I(inode)->root;
8327 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8328 struct btrfs_ordered_extent *ordered;
8329 struct extent_state *cached_state = NULL;
8330 char *kaddr;
8331 unsigned long zero_start;
8332 loff_t size;
8333 int ret;
8334 int reserved = 0;
8335 u64 page_start;
8336 u64 page_end;
8337
8338 sb_start_pagefault(inode->i_sb);
8339 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8340 if (!ret) {
8341 ret = file_update_time(vma->vm_file);
8342 reserved = 1;
8343 }
8344 if (ret) {
8345 if (ret == -ENOMEM)
8346 ret = VM_FAULT_OOM;
8347 else /* -ENOSPC, -EIO, etc */
8348 ret = VM_FAULT_SIGBUS;
8349 if (reserved)
8350 goto out;
8351 goto out_noreserve;
8352 }
8353
8354 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8355 again:
8356 lock_page(page);
8357 size = i_size_read(inode);
8358 page_start = page_offset(page);
8359 page_end = page_start + PAGE_CACHE_SIZE - 1;
8360
8361 if ((page->mapping != inode->i_mapping) ||
8362 (page_start >= size)) {
8363 /* page got truncated out from underneath us */
8364 goto out_unlock;
8365 }
8366 wait_on_page_writeback(page);
8367
8368 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8369 set_page_extent_mapped(page);
8370
8371 /*
8372 * we can't set the delalloc bits if there are pending ordered
8373 * extents. Drop our locks and wait for them to finish
8374 */
8375 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8376 if (ordered) {
8377 unlock_extent_cached(io_tree, page_start, page_end,
8378 &cached_state, GFP_NOFS);
8379 unlock_page(page);
8380 btrfs_start_ordered_extent(inode, ordered, 1);
8381 btrfs_put_ordered_extent(ordered);
8382 goto again;
8383 }
8384
8385 /*
8386 * XXX - page_mkwrite gets called every time the page is dirtied, even
8387 * if it was already dirty, so for space accounting reasons we need to
8388 * clear any delalloc bits for the range we are fixing to save. There
8389 * is probably a better way to do this, but for now keep consistent with
8390 * prepare_pages in the normal write path.
8391 */
8392 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8393 EXTENT_DIRTY | EXTENT_DELALLOC |
8394 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8395 0, 0, &cached_state, GFP_NOFS);
8396
8397 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8398 &cached_state);
8399 if (ret) {
8400 unlock_extent_cached(io_tree, page_start, page_end,
8401 &cached_state, GFP_NOFS);
8402 ret = VM_FAULT_SIGBUS;
8403 goto out_unlock;
8404 }
8405 ret = 0;
8406
8407 /* page is wholly or partially inside EOF */
8408 if (page_start + PAGE_CACHE_SIZE > size)
8409 zero_start = size & ~PAGE_CACHE_MASK;
8410 else
8411 zero_start = PAGE_CACHE_SIZE;
8412
8413 if (zero_start != PAGE_CACHE_SIZE) {
8414 kaddr = kmap(page);
8415 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8416 flush_dcache_page(page);
8417 kunmap(page);
8418 }
8419 ClearPageChecked(page);
8420 set_page_dirty(page);
8421 SetPageUptodate(page);
8422
8423 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8424 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8425 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8426
8427 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8428
8429 out_unlock:
8430 if (!ret) {
8431 sb_end_pagefault(inode->i_sb);
8432 return VM_FAULT_LOCKED;
8433 }
8434 unlock_page(page);
8435 out:
8436 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8437 out_noreserve:
8438 sb_end_pagefault(inode->i_sb);
8439 return ret;
8440 }
8441
8442 static int btrfs_truncate(struct inode *inode)
8443 {
8444 struct btrfs_root *root = BTRFS_I(inode)->root;
8445 struct btrfs_block_rsv *rsv;
8446 int ret = 0;
8447 int err = 0;
8448 struct btrfs_trans_handle *trans;
8449 u64 mask = root->sectorsize - 1;
8450 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8451
8452 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8453 (u64)-1);
8454 if (ret)
8455 return ret;
8456
8457 /*
8458 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8459 * 3 things going on here
8460 *
8461 * 1) We need to reserve space for our orphan item and the space to
8462 * delete our orphan item. Lord knows we don't want to have a dangling
8463 * orphan item because we didn't reserve space to remove it.
8464 *
8465 * 2) We need to reserve space to update our inode.
8466 *
8467 * 3) We need to have something to cache all the space that is going to
8468 * be free'd up by the truncate operation, but also have some slack
8469 * space reserved in case it uses space during the truncate (thank you
8470 * very much snapshotting).
8471 *
8472 * And we need these to all be seperate. The fact is we can use alot of
8473 * space doing the truncate, and we have no earthly idea how much space
8474 * we will use, so we need the truncate reservation to be seperate so it
8475 * doesn't end up using space reserved for updating the inode or
8476 * removing the orphan item. We also need to be able to stop the
8477 * transaction and start a new one, which means we need to be able to
8478 * update the inode several times, and we have no idea of knowing how
8479 * many times that will be, so we can't just reserve 1 item for the
8480 * entirety of the opration, so that has to be done seperately as well.
8481 * Then there is the orphan item, which does indeed need to be held on
8482 * to for the whole operation, and we need nobody to touch this reserved
8483 * space except the orphan code.
8484 *
8485 * So that leaves us with
8486 *
8487 * 1) root->orphan_block_rsv - for the orphan deletion.
8488 * 2) rsv - for the truncate reservation, which we will steal from the
8489 * transaction reservation.
8490 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8491 * updating the inode.
8492 */
8493 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8494 if (!rsv)
8495 return -ENOMEM;
8496 rsv->size = min_size;
8497 rsv->failfast = 1;
8498
8499 /*
8500 * 1 for the truncate slack space
8501 * 1 for updating the inode.
8502 */
8503 trans = btrfs_start_transaction(root, 2);
8504 if (IS_ERR(trans)) {
8505 err = PTR_ERR(trans);
8506 goto out;
8507 }
8508
8509 /* Migrate the slack space for the truncate to our reserve */
8510 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8511 min_size);
8512 BUG_ON(ret);
8513
8514 /*
8515 * So if we truncate and then write and fsync we normally would just
8516 * write the extents that changed, which is a problem if we need to
8517 * first truncate that entire inode. So set this flag so we write out
8518 * all of the extents in the inode to the sync log so we're completely
8519 * safe.
8520 */
8521 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8522 trans->block_rsv = rsv;
8523
8524 while (1) {
8525 ret = btrfs_truncate_inode_items(trans, root, inode,
8526 inode->i_size,
8527 BTRFS_EXTENT_DATA_KEY);
8528 if (ret != -ENOSPC) {
8529 err = ret;
8530 break;
8531 }
8532
8533 trans->block_rsv = &root->fs_info->trans_block_rsv;
8534 ret = btrfs_update_inode(trans, root, inode);
8535 if (ret) {
8536 err = ret;
8537 break;
8538 }
8539
8540 btrfs_end_transaction(trans, root);
8541 btrfs_btree_balance_dirty(root);
8542
8543 trans = btrfs_start_transaction(root, 2);
8544 if (IS_ERR(trans)) {
8545 ret = err = PTR_ERR(trans);
8546 trans = NULL;
8547 break;
8548 }
8549
8550 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8551 rsv, min_size);
8552 BUG_ON(ret); /* shouldn't happen */
8553 trans->block_rsv = rsv;
8554 }
8555
8556 if (ret == 0 && inode->i_nlink > 0) {
8557 trans->block_rsv = root->orphan_block_rsv;
8558 ret = btrfs_orphan_del(trans, inode);
8559 if (ret)
8560 err = ret;
8561 }
8562
8563 if (trans) {
8564 trans->block_rsv = &root->fs_info->trans_block_rsv;
8565 ret = btrfs_update_inode(trans, root, inode);
8566 if (ret && !err)
8567 err = ret;
8568
8569 ret = btrfs_end_transaction(trans, root);
8570 btrfs_btree_balance_dirty(root);
8571 }
8572
8573 out:
8574 btrfs_free_block_rsv(root, rsv);
8575
8576 if (ret && !err)
8577 err = ret;
8578
8579 return err;
8580 }
8581
8582 /*
8583 * create a new subvolume directory/inode (helper for the ioctl).
8584 */
8585 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8586 struct btrfs_root *new_root,
8587 struct btrfs_root *parent_root,
8588 u64 new_dirid)
8589 {
8590 struct inode *inode;
8591 int err;
8592 u64 index = 0;
8593
8594 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8595 new_dirid, new_dirid,
8596 S_IFDIR | (~current_umask() & S_IRWXUGO),
8597 &index);
8598 if (IS_ERR(inode))
8599 return PTR_ERR(inode);
8600 inode->i_op = &btrfs_dir_inode_operations;
8601 inode->i_fop = &btrfs_dir_file_operations;
8602
8603 set_nlink(inode, 1);
8604 btrfs_i_size_write(inode, 0);
8605 unlock_new_inode(inode);
8606
8607 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8608 if (err)
8609 btrfs_err(new_root->fs_info,
8610 "error inheriting subvolume %llu properties: %d",
8611 new_root->root_key.objectid, err);
8612
8613 err = btrfs_update_inode(trans, new_root, inode);
8614
8615 iput(inode);
8616 return err;
8617 }
8618
8619 struct inode *btrfs_alloc_inode(struct super_block *sb)
8620 {
8621 struct btrfs_inode *ei;
8622 struct inode *inode;
8623
8624 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8625 if (!ei)
8626 return NULL;
8627
8628 ei->root = NULL;
8629 ei->generation = 0;
8630 ei->last_trans = 0;
8631 ei->last_sub_trans = 0;
8632 ei->logged_trans = 0;
8633 ei->delalloc_bytes = 0;
8634 ei->defrag_bytes = 0;
8635 ei->disk_i_size = 0;
8636 ei->flags = 0;
8637 ei->csum_bytes = 0;
8638 ei->index_cnt = (u64)-1;
8639 ei->dir_index = 0;
8640 ei->last_unlink_trans = 0;
8641 ei->last_log_commit = 0;
8642
8643 spin_lock_init(&ei->lock);
8644 ei->outstanding_extents = 0;
8645 ei->reserved_extents = 0;
8646
8647 ei->runtime_flags = 0;
8648 ei->force_compress = BTRFS_COMPRESS_NONE;
8649
8650 ei->delayed_node = NULL;
8651
8652 ei->i_otime.tv_sec = 0;
8653 ei->i_otime.tv_nsec = 0;
8654
8655 inode = &ei->vfs_inode;
8656 extent_map_tree_init(&ei->extent_tree);
8657 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8658 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8659 ei->io_tree.track_uptodate = 1;
8660 ei->io_failure_tree.track_uptodate = 1;
8661 atomic_set(&ei->sync_writers, 0);
8662 mutex_init(&ei->log_mutex);
8663 mutex_init(&ei->delalloc_mutex);
8664 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8665 INIT_LIST_HEAD(&ei->delalloc_inodes);
8666 RB_CLEAR_NODE(&ei->rb_node);
8667
8668 return inode;
8669 }
8670
8671 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8672 void btrfs_test_destroy_inode(struct inode *inode)
8673 {
8674 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8675 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8676 }
8677 #endif
8678
8679 static void btrfs_i_callback(struct rcu_head *head)
8680 {
8681 struct inode *inode = container_of(head, struct inode, i_rcu);
8682 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8683 }
8684
8685 void btrfs_destroy_inode(struct inode *inode)
8686 {
8687 struct btrfs_ordered_extent *ordered;
8688 struct btrfs_root *root = BTRFS_I(inode)->root;
8689
8690 WARN_ON(!hlist_empty(&inode->i_dentry));
8691 WARN_ON(inode->i_data.nrpages);
8692 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8693 WARN_ON(BTRFS_I(inode)->reserved_extents);
8694 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8695 WARN_ON(BTRFS_I(inode)->csum_bytes);
8696 WARN_ON(BTRFS_I(inode)->defrag_bytes);
8697
8698 /*
8699 * This can happen where we create an inode, but somebody else also
8700 * created the same inode and we need to destroy the one we already
8701 * created.
8702 */
8703 if (!root)
8704 goto free;
8705
8706 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8707 &BTRFS_I(inode)->runtime_flags)) {
8708 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8709 btrfs_ino(inode));
8710 atomic_dec(&root->orphan_inodes);
8711 }
8712
8713 while (1) {
8714 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8715 if (!ordered)
8716 break;
8717 else {
8718 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8719 ordered->file_offset, ordered->len);
8720 btrfs_remove_ordered_extent(inode, ordered);
8721 btrfs_put_ordered_extent(ordered);
8722 btrfs_put_ordered_extent(ordered);
8723 }
8724 }
8725 inode_tree_del(inode);
8726 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8727 free:
8728 call_rcu(&inode->i_rcu, btrfs_i_callback);
8729 }
8730
8731 int btrfs_drop_inode(struct inode *inode)
8732 {
8733 struct btrfs_root *root = BTRFS_I(inode)->root;
8734
8735 if (root == NULL)
8736 return 1;
8737
8738 /* the snap/subvol tree is on deleting */
8739 if (btrfs_root_refs(&root->root_item) == 0)
8740 return 1;
8741 else
8742 return generic_drop_inode(inode);
8743 }
8744
8745 static void init_once(void *foo)
8746 {
8747 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8748
8749 inode_init_once(&ei->vfs_inode);
8750 }
8751
8752 void btrfs_destroy_cachep(void)
8753 {
8754 /*
8755 * Make sure all delayed rcu free inodes are flushed before we
8756 * destroy cache.
8757 */
8758 rcu_barrier();
8759 if (btrfs_inode_cachep)
8760 kmem_cache_destroy(btrfs_inode_cachep);
8761 if (btrfs_trans_handle_cachep)
8762 kmem_cache_destroy(btrfs_trans_handle_cachep);
8763 if (btrfs_transaction_cachep)
8764 kmem_cache_destroy(btrfs_transaction_cachep);
8765 if (btrfs_path_cachep)
8766 kmem_cache_destroy(btrfs_path_cachep);
8767 if (btrfs_free_space_cachep)
8768 kmem_cache_destroy(btrfs_free_space_cachep);
8769 if (btrfs_delalloc_work_cachep)
8770 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8771 }
8772
8773 int btrfs_init_cachep(void)
8774 {
8775 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8776 sizeof(struct btrfs_inode), 0,
8777 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8778 if (!btrfs_inode_cachep)
8779 goto fail;
8780
8781 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8782 sizeof(struct btrfs_trans_handle), 0,
8783 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8784 if (!btrfs_trans_handle_cachep)
8785 goto fail;
8786
8787 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8788 sizeof(struct btrfs_transaction), 0,
8789 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8790 if (!btrfs_transaction_cachep)
8791 goto fail;
8792
8793 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8794 sizeof(struct btrfs_path), 0,
8795 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8796 if (!btrfs_path_cachep)
8797 goto fail;
8798
8799 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8800 sizeof(struct btrfs_free_space), 0,
8801 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8802 if (!btrfs_free_space_cachep)
8803 goto fail;
8804
8805 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8806 sizeof(struct btrfs_delalloc_work), 0,
8807 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8808 NULL);
8809 if (!btrfs_delalloc_work_cachep)
8810 goto fail;
8811
8812 return 0;
8813 fail:
8814 btrfs_destroy_cachep();
8815 return -ENOMEM;
8816 }
8817
8818 static int btrfs_getattr(struct vfsmount *mnt,
8819 struct dentry *dentry, struct kstat *stat)
8820 {
8821 u64 delalloc_bytes;
8822 struct inode *inode = dentry->d_inode;
8823 u32 blocksize = inode->i_sb->s_blocksize;
8824
8825 generic_fillattr(inode, stat);
8826 stat->dev = BTRFS_I(inode)->root->anon_dev;
8827 stat->blksize = PAGE_CACHE_SIZE;
8828
8829 spin_lock(&BTRFS_I(inode)->lock);
8830 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8831 spin_unlock(&BTRFS_I(inode)->lock);
8832 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8833 ALIGN(delalloc_bytes, blocksize)) >> 9;
8834 return 0;
8835 }
8836
8837 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8838 struct inode *new_dir, struct dentry *new_dentry)
8839 {
8840 struct btrfs_trans_handle *trans;
8841 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8842 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8843 struct inode *new_inode = new_dentry->d_inode;
8844 struct inode *old_inode = old_dentry->d_inode;
8845 struct timespec ctime = CURRENT_TIME;
8846 u64 index = 0;
8847 u64 root_objectid;
8848 int ret;
8849 u64 old_ino = btrfs_ino(old_inode);
8850
8851 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8852 return -EPERM;
8853
8854 /* we only allow rename subvolume link between subvolumes */
8855 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8856 return -EXDEV;
8857
8858 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8859 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8860 return -ENOTEMPTY;
8861
8862 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8863 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8864 return -ENOTEMPTY;
8865
8866
8867 /* check for collisions, even if the name isn't there */
8868 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8869 new_dentry->d_name.name,
8870 new_dentry->d_name.len);
8871
8872 if (ret) {
8873 if (ret == -EEXIST) {
8874 /* we shouldn't get
8875 * eexist without a new_inode */
8876 if (WARN_ON(!new_inode)) {
8877 return ret;
8878 }
8879 } else {
8880 /* maybe -EOVERFLOW */
8881 return ret;
8882 }
8883 }
8884 ret = 0;
8885
8886 /*
8887 * we're using rename to replace one file with another. Start IO on it
8888 * now so we don't add too much work to the end of the transaction
8889 */
8890 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8891 filemap_flush(old_inode->i_mapping);
8892
8893 /* close the racy window with snapshot create/destroy ioctl */
8894 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8895 down_read(&root->fs_info->subvol_sem);
8896 /*
8897 * We want to reserve the absolute worst case amount of items. So if
8898 * both inodes are subvols and we need to unlink them then that would
8899 * require 4 item modifications, but if they are both normal inodes it
8900 * would require 5 item modifications, so we'll assume their normal
8901 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8902 * should cover the worst case number of items we'll modify.
8903 */
8904 trans = btrfs_start_transaction(root, 11);
8905 if (IS_ERR(trans)) {
8906 ret = PTR_ERR(trans);
8907 goto out_notrans;
8908 }
8909
8910 if (dest != root)
8911 btrfs_record_root_in_trans(trans, dest);
8912
8913 ret = btrfs_set_inode_index(new_dir, &index);
8914 if (ret)
8915 goto out_fail;
8916
8917 BTRFS_I(old_inode)->dir_index = 0ULL;
8918 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8919 /* force full log commit if subvolume involved. */
8920 btrfs_set_log_full_commit(root->fs_info, trans);
8921 } else {
8922 ret = btrfs_insert_inode_ref(trans, dest,
8923 new_dentry->d_name.name,
8924 new_dentry->d_name.len,
8925 old_ino,
8926 btrfs_ino(new_dir), index);
8927 if (ret)
8928 goto out_fail;
8929 /*
8930 * this is an ugly little race, but the rename is required
8931 * to make sure that if we crash, the inode is either at the
8932 * old name or the new one. pinning the log transaction lets
8933 * us make sure we don't allow a log commit to come in after
8934 * we unlink the name but before we add the new name back in.
8935 */
8936 btrfs_pin_log_trans(root);
8937 }
8938
8939 inode_inc_iversion(old_dir);
8940 inode_inc_iversion(new_dir);
8941 inode_inc_iversion(old_inode);
8942 old_dir->i_ctime = old_dir->i_mtime = ctime;
8943 new_dir->i_ctime = new_dir->i_mtime = ctime;
8944 old_inode->i_ctime = ctime;
8945
8946 if (old_dentry->d_parent != new_dentry->d_parent)
8947 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8948
8949 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8950 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8951 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8952 old_dentry->d_name.name,
8953 old_dentry->d_name.len);
8954 } else {
8955 ret = __btrfs_unlink_inode(trans, root, old_dir,
8956 old_dentry->d_inode,
8957 old_dentry->d_name.name,
8958 old_dentry->d_name.len);
8959 if (!ret)
8960 ret = btrfs_update_inode(trans, root, old_inode);
8961 }
8962 if (ret) {
8963 btrfs_abort_transaction(trans, root, ret);
8964 goto out_fail;
8965 }
8966
8967 if (new_inode) {
8968 inode_inc_iversion(new_inode);
8969 new_inode->i_ctime = CURRENT_TIME;
8970 if (unlikely(btrfs_ino(new_inode) ==
8971 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8972 root_objectid = BTRFS_I(new_inode)->location.objectid;
8973 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8974 root_objectid,
8975 new_dentry->d_name.name,
8976 new_dentry->d_name.len);
8977 BUG_ON(new_inode->i_nlink == 0);
8978 } else {
8979 ret = btrfs_unlink_inode(trans, dest, new_dir,
8980 new_dentry->d_inode,
8981 new_dentry->d_name.name,
8982 new_dentry->d_name.len);
8983 }
8984 if (!ret && new_inode->i_nlink == 0)
8985 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8986 if (ret) {
8987 btrfs_abort_transaction(trans, root, ret);
8988 goto out_fail;
8989 }
8990 }
8991
8992 ret = btrfs_add_link(trans, new_dir, old_inode,
8993 new_dentry->d_name.name,
8994 new_dentry->d_name.len, 0, index);
8995 if (ret) {
8996 btrfs_abort_transaction(trans, root, ret);
8997 goto out_fail;
8998 }
8999
9000 if (old_inode->i_nlink == 1)
9001 BTRFS_I(old_inode)->dir_index = index;
9002
9003 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9004 struct dentry *parent = new_dentry->d_parent;
9005 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9006 btrfs_end_log_trans(root);
9007 }
9008 out_fail:
9009 btrfs_end_transaction(trans, root);
9010 out_notrans:
9011 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9012 up_read(&root->fs_info->subvol_sem);
9013
9014 return ret;
9015 }
9016
9017 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9018 struct inode *new_dir, struct dentry *new_dentry,
9019 unsigned int flags)
9020 {
9021 if (flags & ~RENAME_NOREPLACE)
9022 return -EINVAL;
9023
9024 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9025 }
9026
9027 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9028 {
9029 struct btrfs_delalloc_work *delalloc_work;
9030 struct inode *inode;
9031
9032 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9033 work);
9034 inode = delalloc_work->inode;
9035 if (delalloc_work->wait) {
9036 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9037 } else {
9038 filemap_flush(inode->i_mapping);
9039 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9040 &BTRFS_I(inode)->runtime_flags))
9041 filemap_flush(inode->i_mapping);
9042 }
9043
9044 if (delalloc_work->delay_iput)
9045 btrfs_add_delayed_iput(inode);
9046 else
9047 iput(inode);
9048 complete(&delalloc_work->completion);
9049 }
9050
9051 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9052 int wait, int delay_iput)
9053 {
9054 struct btrfs_delalloc_work *work;
9055
9056 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9057 if (!work)
9058 return NULL;
9059
9060 init_completion(&work->completion);
9061 INIT_LIST_HEAD(&work->list);
9062 work->inode = inode;
9063 work->wait = wait;
9064 work->delay_iput = delay_iput;
9065 WARN_ON_ONCE(!inode);
9066 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9067 btrfs_run_delalloc_work, NULL, NULL);
9068
9069 return work;
9070 }
9071
9072 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9073 {
9074 wait_for_completion(&work->completion);
9075 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9076 }
9077
9078 /*
9079 * some fairly slow code that needs optimization. This walks the list
9080 * of all the inodes with pending delalloc and forces them to disk.
9081 */
9082 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9083 int nr)
9084 {
9085 struct btrfs_inode *binode;
9086 struct inode *inode;
9087 struct btrfs_delalloc_work *work, *next;
9088 struct list_head works;
9089 struct list_head splice;
9090 int ret = 0;
9091
9092 INIT_LIST_HEAD(&works);
9093 INIT_LIST_HEAD(&splice);
9094
9095 mutex_lock(&root->delalloc_mutex);
9096 spin_lock(&root->delalloc_lock);
9097 list_splice_init(&root->delalloc_inodes, &splice);
9098 while (!list_empty(&splice)) {
9099 binode = list_entry(splice.next, struct btrfs_inode,
9100 delalloc_inodes);
9101
9102 list_move_tail(&binode->delalloc_inodes,
9103 &root->delalloc_inodes);
9104 inode = igrab(&binode->vfs_inode);
9105 if (!inode) {
9106 cond_resched_lock(&root->delalloc_lock);
9107 continue;
9108 }
9109 spin_unlock(&root->delalloc_lock);
9110
9111 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9112 if (!work) {
9113 if (delay_iput)
9114 btrfs_add_delayed_iput(inode);
9115 else
9116 iput(inode);
9117 ret = -ENOMEM;
9118 goto out;
9119 }
9120 list_add_tail(&work->list, &works);
9121 btrfs_queue_work(root->fs_info->flush_workers,
9122 &work->work);
9123 ret++;
9124 if (nr != -1 && ret >= nr)
9125 goto out;
9126 cond_resched();
9127 spin_lock(&root->delalloc_lock);
9128 }
9129 spin_unlock(&root->delalloc_lock);
9130
9131 out:
9132 list_for_each_entry_safe(work, next, &works, list) {
9133 list_del_init(&work->list);
9134 btrfs_wait_and_free_delalloc_work(work);
9135 }
9136
9137 if (!list_empty_careful(&splice)) {
9138 spin_lock(&root->delalloc_lock);
9139 list_splice_tail(&splice, &root->delalloc_inodes);
9140 spin_unlock(&root->delalloc_lock);
9141 }
9142 mutex_unlock(&root->delalloc_mutex);
9143 return ret;
9144 }
9145
9146 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9147 {
9148 int ret;
9149
9150 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9151 return -EROFS;
9152
9153 ret = __start_delalloc_inodes(root, delay_iput, -1);
9154 if (ret > 0)
9155 ret = 0;
9156 /*
9157 * the filemap_flush will queue IO into the worker threads, but
9158 * we have to make sure the IO is actually started and that
9159 * ordered extents get created before we return
9160 */
9161 atomic_inc(&root->fs_info->async_submit_draining);
9162 while (atomic_read(&root->fs_info->nr_async_submits) ||
9163 atomic_read(&root->fs_info->async_delalloc_pages)) {
9164 wait_event(root->fs_info->async_submit_wait,
9165 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9166 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9167 }
9168 atomic_dec(&root->fs_info->async_submit_draining);
9169 return ret;
9170 }
9171
9172 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9173 int nr)
9174 {
9175 struct btrfs_root *root;
9176 struct list_head splice;
9177 int ret;
9178
9179 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9180 return -EROFS;
9181
9182 INIT_LIST_HEAD(&splice);
9183
9184 mutex_lock(&fs_info->delalloc_root_mutex);
9185 spin_lock(&fs_info->delalloc_root_lock);
9186 list_splice_init(&fs_info->delalloc_roots, &splice);
9187 while (!list_empty(&splice) && nr) {
9188 root = list_first_entry(&splice, struct btrfs_root,
9189 delalloc_root);
9190 root = btrfs_grab_fs_root(root);
9191 BUG_ON(!root);
9192 list_move_tail(&root->delalloc_root,
9193 &fs_info->delalloc_roots);
9194 spin_unlock(&fs_info->delalloc_root_lock);
9195
9196 ret = __start_delalloc_inodes(root, delay_iput, nr);
9197 btrfs_put_fs_root(root);
9198 if (ret < 0)
9199 goto out;
9200
9201 if (nr != -1) {
9202 nr -= ret;
9203 WARN_ON(nr < 0);
9204 }
9205 spin_lock(&fs_info->delalloc_root_lock);
9206 }
9207 spin_unlock(&fs_info->delalloc_root_lock);
9208
9209 ret = 0;
9210 atomic_inc(&fs_info->async_submit_draining);
9211 while (atomic_read(&fs_info->nr_async_submits) ||
9212 atomic_read(&fs_info->async_delalloc_pages)) {
9213 wait_event(fs_info->async_submit_wait,
9214 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9215 atomic_read(&fs_info->async_delalloc_pages) == 0));
9216 }
9217 atomic_dec(&fs_info->async_submit_draining);
9218 out:
9219 if (!list_empty_careful(&splice)) {
9220 spin_lock(&fs_info->delalloc_root_lock);
9221 list_splice_tail(&splice, &fs_info->delalloc_roots);
9222 spin_unlock(&fs_info->delalloc_root_lock);
9223 }
9224 mutex_unlock(&fs_info->delalloc_root_mutex);
9225 return ret;
9226 }
9227
9228 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9229 const char *symname)
9230 {
9231 struct btrfs_trans_handle *trans;
9232 struct btrfs_root *root = BTRFS_I(dir)->root;
9233 struct btrfs_path *path;
9234 struct btrfs_key key;
9235 struct inode *inode = NULL;
9236 int err;
9237 int drop_inode = 0;
9238 u64 objectid;
9239 u64 index = 0;
9240 int name_len;
9241 int datasize;
9242 unsigned long ptr;
9243 struct btrfs_file_extent_item *ei;
9244 struct extent_buffer *leaf;
9245
9246 name_len = strlen(symname);
9247 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9248 return -ENAMETOOLONG;
9249
9250 /*
9251 * 2 items for inode item and ref
9252 * 2 items for dir items
9253 * 1 item for xattr if selinux is on
9254 */
9255 trans = btrfs_start_transaction(root, 5);
9256 if (IS_ERR(trans))
9257 return PTR_ERR(trans);
9258
9259 err = btrfs_find_free_ino(root, &objectid);
9260 if (err)
9261 goto out_unlock;
9262
9263 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9264 dentry->d_name.len, btrfs_ino(dir), objectid,
9265 S_IFLNK|S_IRWXUGO, &index);
9266 if (IS_ERR(inode)) {
9267 err = PTR_ERR(inode);
9268 goto out_unlock;
9269 }
9270
9271 /*
9272 * If the active LSM wants to access the inode during
9273 * d_instantiate it needs these. Smack checks to see
9274 * if the filesystem supports xattrs by looking at the
9275 * ops vector.
9276 */
9277 inode->i_fop = &btrfs_file_operations;
9278 inode->i_op = &btrfs_file_inode_operations;
9279 inode->i_mapping->a_ops = &btrfs_aops;
9280 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9281
9282 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9283 if (err)
9284 goto out_unlock_inode;
9285
9286 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9287 if (err)
9288 goto out_unlock_inode;
9289
9290 path = btrfs_alloc_path();
9291 if (!path) {
9292 err = -ENOMEM;
9293 goto out_unlock_inode;
9294 }
9295 key.objectid = btrfs_ino(inode);
9296 key.offset = 0;
9297 key.type = BTRFS_EXTENT_DATA_KEY;
9298 datasize = btrfs_file_extent_calc_inline_size(name_len);
9299 err = btrfs_insert_empty_item(trans, root, path, &key,
9300 datasize);
9301 if (err) {
9302 btrfs_free_path(path);
9303 goto out_unlock_inode;
9304 }
9305 leaf = path->nodes[0];
9306 ei = btrfs_item_ptr(leaf, path->slots[0],
9307 struct btrfs_file_extent_item);
9308 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9309 btrfs_set_file_extent_type(leaf, ei,
9310 BTRFS_FILE_EXTENT_INLINE);
9311 btrfs_set_file_extent_encryption(leaf, ei, 0);
9312 btrfs_set_file_extent_compression(leaf, ei, 0);
9313 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9314 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9315
9316 ptr = btrfs_file_extent_inline_start(ei);
9317 write_extent_buffer(leaf, symname, ptr, name_len);
9318 btrfs_mark_buffer_dirty(leaf);
9319 btrfs_free_path(path);
9320
9321 inode->i_op = &btrfs_symlink_inode_operations;
9322 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9323 inode_set_bytes(inode, name_len);
9324 btrfs_i_size_write(inode, name_len);
9325 err = btrfs_update_inode(trans, root, inode);
9326 if (err) {
9327 drop_inode = 1;
9328 goto out_unlock_inode;
9329 }
9330
9331 unlock_new_inode(inode);
9332 d_instantiate(dentry, inode);
9333
9334 out_unlock:
9335 btrfs_end_transaction(trans, root);
9336 if (drop_inode) {
9337 inode_dec_link_count(inode);
9338 iput(inode);
9339 }
9340 btrfs_btree_balance_dirty(root);
9341 return err;
9342
9343 out_unlock_inode:
9344 drop_inode = 1;
9345 unlock_new_inode(inode);
9346 goto out_unlock;
9347 }
9348
9349 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9350 u64 start, u64 num_bytes, u64 min_size,
9351 loff_t actual_len, u64 *alloc_hint,
9352 struct btrfs_trans_handle *trans)
9353 {
9354 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9355 struct extent_map *em;
9356 struct btrfs_root *root = BTRFS_I(inode)->root;
9357 struct btrfs_key ins;
9358 u64 cur_offset = start;
9359 u64 i_size;
9360 u64 cur_bytes;
9361 int ret = 0;
9362 bool own_trans = true;
9363
9364 if (trans)
9365 own_trans = false;
9366 while (num_bytes > 0) {
9367 if (own_trans) {
9368 trans = btrfs_start_transaction(root, 3);
9369 if (IS_ERR(trans)) {
9370 ret = PTR_ERR(trans);
9371 break;
9372 }
9373 }
9374
9375 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9376 cur_bytes = max(cur_bytes, min_size);
9377 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9378 *alloc_hint, &ins, 1, 0);
9379 if (ret) {
9380 if (own_trans)
9381 btrfs_end_transaction(trans, root);
9382 break;
9383 }
9384
9385 ret = insert_reserved_file_extent(trans, inode,
9386 cur_offset, ins.objectid,
9387 ins.offset, ins.offset,
9388 ins.offset, 0, 0, 0,
9389 BTRFS_FILE_EXTENT_PREALLOC);
9390 if (ret) {
9391 btrfs_free_reserved_extent(root, ins.objectid,
9392 ins.offset, 0);
9393 btrfs_abort_transaction(trans, root, ret);
9394 if (own_trans)
9395 btrfs_end_transaction(trans, root);
9396 break;
9397 }
9398 btrfs_drop_extent_cache(inode, cur_offset,
9399 cur_offset + ins.offset -1, 0);
9400
9401 em = alloc_extent_map();
9402 if (!em) {
9403 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9404 &BTRFS_I(inode)->runtime_flags);
9405 goto next;
9406 }
9407
9408 em->start = cur_offset;
9409 em->orig_start = cur_offset;
9410 em->len = ins.offset;
9411 em->block_start = ins.objectid;
9412 em->block_len = ins.offset;
9413 em->orig_block_len = ins.offset;
9414 em->ram_bytes = ins.offset;
9415 em->bdev = root->fs_info->fs_devices->latest_bdev;
9416 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9417 em->generation = trans->transid;
9418
9419 while (1) {
9420 write_lock(&em_tree->lock);
9421 ret = add_extent_mapping(em_tree, em, 1);
9422 write_unlock(&em_tree->lock);
9423 if (ret != -EEXIST)
9424 break;
9425 btrfs_drop_extent_cache(inode, cur_offset,
9426 cur_offset + ins.offset - 1,
9427 0);
9428 }
9429 free_extent_map(em);
9430 next:
9431 num_bytes -= ins.offset;
9432 cur_offset += ins.offset;
9433 *alloc_hint = ins.objectid + ins.offset;
9434
9435 inode_inc_iversion(inode);
9436 inode->i_ctime = CURRENT_TIME;
9437 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9438 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9439 (actual_len > inode->i_size) &&
9440 (cur_offset > inode->i_size)) {
9441 if (cur_offset > actual_len)
9442 i_size = actual_len;
9443 else
9444 i_size = cur_offset;
9445 i_size_write(inode, i_size);
9446 btrfs_ordered_update_i_size(inode, i_size, NULL);
9447 }
9448
9449 ret = btrfs_update_inode(trans, root, inode);
9450
9451 if (ret) {
9452 btrfs_abort_transaction(trans, root, ret);
9453 if (own_trans)
9454 btrfs_end_transaction(trans, root);
9455 break;
9456 }
9457
9458 if (own_trans)
9459 btrfs_end_transaction(trans, root);
9460 }
9461 return ret;
9462 }
9463
9464 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9465 u64 start, u64 num_bytes, u64 min_size,
9466 loff_t actual_len, u64 *alloc_hint)
9467 {
9468 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9469 min_size, actual_len, alloc_hint,
9470 NULL);
9471 }
9472
9473 int btrfs_prealloc_file_range_trans(struct inode *inode,
9474 struct btrfs_trans_handle *trans, int mode,
9475 u64 start, u64 num_bytes, u64 min_size,
9476 loff_t actual_len, u64 *alloc_hint)
9477 {
9478 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9479 min_size, actual_len, alloc_hint, trans);
9480 }
9481
9482 static int btrfs_set_page_dirty(struct page *page)
9483 {
9484 return __set_page_dirty_nobuffers(page);
9485 }
9486
9487 static int btrfs_permission(struct inode *inode, int mask)
9488 {
9489 struct btrfs_root *root = BTRFS_I(inode)->root;
9490 umode_t mode = inode->i_mode;
9491
9492 if (mask & MAY_WRITE &&
9493 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9494 if (btrfs_root_readonly(root))
9495 return -EROFS;
9496 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9497 return -EACCES;
9498 }
9499 return generic_permission(inode, mask);
9500 }
9501
9502 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9503 {
9504 struct btrfs_trans_handle *trans;
9505 struct btrfs_root *root = BTRFS_I(dir)->root;
9506 struct inode *inode = NULL;
9507 u64 objectid;
9508 u64 index;
9509 int ret = 0;
9510
9511 /*
9512 * 5 units required for adding orphan entry
9513 */
9514 trans = btrfs_start_transaction(root, 5);
9515 if (IS_ERR(trans))
9516 return PTR_ERR(trans);
9517
9518 ret = btrfs_find_free_ino(root, &objectid);
9519 if (ret)
9520 goto out;
9521
9522 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9523 btrfs_ino(dir), objectid, mode, &index);
9524 if (IS_ERR(inode)) {
9525 ret = PTR_ERR(inode);
9526 inode = NULL;
9527 goto out;
9528 }
9529
9530 inode->i_fop = &btrfs_file_operations;
9531 inode->i_op = &btrfs_file_inode_operations;
9532
9533 inode->i_mapping->a_ops = &btrfs_aops;
9534 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9535
9536 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9537 if (ret)
9538 goto out_inode;
9539
9540 ret = btrfs_update_inode(trans, root, inode);
9541 if (ret)
9542 goto out_inode;
9543 ret = btrfs_orphan_add(trans, inode);
9544 if (ret)
9545 goto out_inode;
9546
9547 /*
9548 * We set number of links to 0 in btrfs_new_inode(), and here we set
9549 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9550 * through:
9551 *
9552 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9553 */
9554 set_nlink(inode, 1);
9555 unlock_new_inode(inode);
9556 d_tmpfile(dentry, inode);
9557 mark_inode_dirty(inode);
9558
9559 out:
9560 btrfs_end_transaction(trans, root);
9561 if (ret)
9562 iput(inode);
9563 btrfs_balance_delayed_items(root);
9564 btrfs_btree_balance_dirty(root);
9565 return ret;
9566
9567 out_inode:
9568 unlock_new_inode(inode);
9569 goto out;
9570
9571 }
9572
9573 /* Inspired by filemap_check_errors() */
9574 int btrfs_inode_check_errors(struct inode *inode)
9575 {
9576 int ret = 0;
9577
9578 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9579 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9580 ret = -ENOSPC;
9581 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9582 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9583 ret = -EIO;
9584
9585 return ret;
9586 }
9587
9588 static const struct inode_operations btrfs_dir_inode_operations = {
9589 .getattr = btrfs_getattr,
9590 .lookup = btrfs_lookup,
9591 .create = btrfs_create,
9592 .unlink = btrfs_unlink,
9593 .link = btrfs_link,
9594 .mkdir = btrfs_mkdir,
9595 .rmdir = btrfs_rmdir,
9596 .rename2 = btrfs_rename2,
9597 .symlink = btrfs_symlink,
9598 .setattr = btrfs_setattr,
9599 .mknod = btrfs_mknod,
9600 .setxattr = btrfs_setxattr,
9601 .getxattr = btrfs_getxattr,
9602 .listxattr = btrfs_listxattr,
9603 .removexattr = btrfs_removexattr,
9604 .permission = btrfs_permission,
9605 .get_acl = btrfs_get_acl,
9606 .set_acl = btrfs_set_acl,
9607 .update_time = btrfs_update_time,
9608 .tmpfile = btrfs_tmpfile,
9609 };
9610 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9611 .lookup = btrfs_lookup,
9612 .permission = btrfs_permission,
9613 .get_acl = btrfs_get_acl,
9614 .set_acl = btrfs_set_acl,
9615 .update_time = btrfs_update_time,
9616 };
9617
9618 static const struct file_operations btrfs_dir_file_operations = {
9619 .llseek = generic_file_llseek,
9620 .read = generic_read_dir,
9621 .iterate = btrfs_real_readdir,
9622 .unlocked_ioctl = btrfs_ioctl,
9623 #ifdef CONFIG_COMPAT
9624 .compat_ioctl = btrfs_ioctl,
9625 #endif
9626 .release = btrfs_release_file,
9627 .fsync = btrfs_sync_file,
9628 };
9629
9630 static struct extent_io_ops btrfs_extent_io_ops = {
9631 .fill_delalloc = run_delalloc_range,
9632 .submit_bio_hook = btrfs_submit_bio_hook,
9633 .merge_bio_hook = btrfs_merge_bio_hook,
9634 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9635 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9636 .writepage_start_hook = btrfs_writepage_start_hook,
9637 .set_bit_hook = btrfs_set_bit_hook,
9638 .clear_bit_hook = btrfs_clear_bit_hook,
9639 .merge_extent_hook = btrfs_merge_extent_hook,
9640 .split_extent_hook = btrfs_split_extent_hook,
9641 };
9642
9643 /*
9644 * btrfs doesn't support the bmap operation because swapfiles
9645 * use bmap to make a mapping of extents in the file. They assume
9646 * these extents won't change over the life of the file and they
9647 * use the bmap result to do IO directly to the drive.
9648 *
9649 * the btrfs bmap call would return logical addresses that aren't
9650 * suitable for IO and they also will change frequently as COW
9651 * operations happen. So, swapfile + btrfs == corruption.
9652 *
9653 * For now we're avoiding this by dropping bmap.
9654 */
9655 static const struct address_space_operations btrfs_aops = {
9656 .readpage = btrfs_readpage,
9657 .writepage = btrfs_writepage,
9658 .writepages = btrfs_writepages,
9659 .readpages = btrfs_readpages,
9660 .direct_IO = btrfs_direct_IO,
9661 .invalidatepage = btrfs_invalidatepage,
9662 .releasepage = btrfs_releasepage,
9663 .set_page_dirty = btrfs_set_page_dirty,
9664 .error_remove_page = generic_error_remove_page,
9665 };
9666
9667 static const struct address_space_operations btrfs_symlink_aops = {
9668 .readpage = btrfs_readpage,
9669 .writepage = btrfs_writepage,
9670 .invalidatepage = btrfs_invalidatepage,
9671 .releasepage = btrfs_releasepage,
9672 };
9673
9674 static const struct inode_operations btrfs_file_inode_operations = {
9675 .getattr = btrfs_getattr,
9676 .setattr = btrfs_setattr,
9677 .setxattr = btrfs_setxattr,
9678 .getxattr = btrfs_getxattr,
9679 .listxattr = btrfs_listxattr,
9680 .removexattr = btrfs_removexattr,
9681 .permission = btrfs_permission,
9682 .fiemap = btrfs_fiemap,
9683 .get_acl = btrfs_get_acl,
9684 .set_acl = btrfs_set_acl,
9685 .update_time = btrfs_update_time,
9686 };
9687 static const struct inode_operations btrfs_special_inode_operations = {
9688 .getattr = btrfs_getattr,
9689 .setattr = btrfs_setattr,
9690 .permission = btrfs_permission,
9691 .setxattr = btrfs_setxattr,
9692 .getxattr = btrfs_getxattr,
9693 .listxattr = btrfs_listxattr,
9694 .removexattr = btrfs_removexattr,
9695 .get_acl = btrfs_get_acl,
9696 .set_acl = btrfs_set_acl,
9697 .update_time = btrfs_update_time,
9698 };
9699 static const struct inode_operations btrfs_symlink_inode_operations = {
9700 .readlink = generic_readlink,
9701 .follow_link = page_follow_link_light,
9702 .put_link = page_put_link,
9703 .getattr = btrfs_getattr,
9704 .setattr = btrfs_setattr,
9705 .permission = btrfs_permission,
9706 .setxattr = btrfs_setxattr,
9707 .getxattr = btrfs_getxattr,
9708 .listxattr = btrfs_listxattr,
9709 .removexattr = btrfs_removexattr,
9710 .update_time = btrfs_update_time,
9711 };
9712
9713 const struct dentry_operations btrfs_dentry_operations = {
9714 .d_delete = btrfs_dentry_delete,
9715 .d_release = btrfs_dentry_release,
9716 };
This page took 0.213915 seconds and 6 git commands to generate.