Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57
58 struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61 };
62
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88 };
89
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
93 static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
99
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
103 {
104 int err;
105
106 err = btrfs_init_acl(trans, inode, dir);
107 if (!err)
108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 return err;
110 }
111
112 /*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
120 int compress_type,
121 struct page **compressed_pages)
122 {
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
135
136 if (compressed_size && compressed_pages)
137 cur_size = compressed_size;
138
139 path = btrfs_alloc_path();
140 if (!path)
141 return -ENOMEM;
142
143 path->leave_spinning = 1;
144
145 key.objectid = btrfs_ino(inode);
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 if (ret) {
154 err = ret;
155 goto fail;
156 }
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
166
167 if (compress_type != BTRFS_COMPRESS_NONE) {
168 struct page *cpage;
169 int i = 0;
170 while (compressed_size > 0) {
171 cpage = compressed_pages[i];
172 cur_size = min_t(unsigned long, compressed_size,
173 PAGE_CACHE_SIZE);
174
175 kaddr = kmap_atomic(cpage);
176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 kunmap_atomic(kaddr);
178
179 i++;
180 ptr += cur_size;
181 compressed_size -= cur_size;
182 }
183 btrfs_set_file_extent_compression(leaf, ei,
184 compress_type);
185 } else {
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
189 kaddr = kmap_atomic(page);
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 kunmap_atomic(kaddr);
193 page_cache_release(page);
194 }
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
197
198 /*
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
202 *
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
206 */
207 BTRFS_I(inode)->disk_i_size = inode->i_size;
208 ret = btrfs_update_inode(trans, root, inode);
209
210 return ret;
211 fail:
212 btrfs_free_path(path);
213 return err;
214 }
215
216
217 /*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
225 size_t compressed_size, int compress_type,
226 struct page **compressed_pages)
227 {
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
233 u64 hint_byte;
234 u64 data_len = inline_len;
235 int ret;
236
237 if (compressed_size)
238 data_len = compressed_size;
239
240 if (start > 0 ||
241 actual_end >= PAGE_CACHE_SIZE ||
242 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 (!compressed_size &&
244 (actual_end & (root->sectorsize - 1)) == 0) ||
245 end + 1 < isize ||
246 data_len > root->fs_info->max_inline) {
247 return 1;
248 }
249
250 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
251 &hint_byte, 1);
252 if (ret)
253 return ret;
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
259 compress_type, compressed_pages);
260 if (ret) {
261 btrfs_abort_transaction(trans, root, ret);
262 return ret;
263 }
264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
266 return 0;
267 }
268
269 struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
275 int compress_type;
276 struct list_head list;
277 };
278
279 struct async_cow {
280 struct inode *inode;
281 struct btrfs_root *root;
282 struct page *locked_page;
283 u64 start;
284 u64 end;
285 struct list_head extents;
286 struct btrfs_work work;
287 };
288
289 static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
291 u64 compressed_size,
292 struct page **pages,
293 unsigned long nr_pages,
294 int compress_type)
295 {
296 struct async_extent *async_extent;
297
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
299 BUG_ON(!async_extent); /* -ENOMEM */
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
305 async_extent->compress_type = compress_type;
306 list_add_tail(&async_extent->list, &cow->extents);
307 return 0;
308 }
309
310 /*
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
314 *
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
320 *
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
324 * are written in the same order that pdflush sent them down.
325 */
326 static noinline int compress_file_range(struct inode *inode,
327 struct page *locked_page,
328 u64 start, u64 end,
329 struct async_cow *async_cow,
330 int *num_added)
331 {
332 struct btrfs_root *root = BTRFS_I(inode)->root;
333 struct btrfs_trans_handle *trans;
334 u64 num_bytes;
335 u64 blocksize = root->sectorsize;
336 u64 actual_end;
337 u64 isize = i_size_read(inode);
338 int ret = 0;
339 struct page **pages = NULL;
340 unsigned long nr_pages;
341 unsigned long nr_pages_ret = 0;
342 unsigned long total_compressed = 0;
343 unsigned long total_in = 0;
344 unsigned long max_compressed = 128 * 1024;
345 unsigned long max_uncompressed = 128 * 1024;
346 int i;
347 int will_compress;
348 int compress_type = root->fs_info->compress_type;
349
350 /* if this is a small write inside eof, kick off a defrag */
351 if ((end - start + 1) < 16 * 1024 &&
352 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
353 btrfs_add_inode_defrag(NULL, inode);
354
355 actual_end = min_t(u64, isize, end + 1);
356 again:
357 will_compress = 0;
358 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
359 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
360
361 /*
362 * we don't want to send crud past the end of i_size through
363 * compression, that's just a waste of CPU time. So, if the
364 * end of the file is before the start of our current
365 * requested range of bytes, we bail out to the uncompressed
366 * cleanup code that can deal with all of this.
367 *
368 * It isn't really the fastest way to fix things, but this is a
369 * very uncommon corner.
370 */
371 if (actual_end <= start)
372 goto cleanup_and_bail_uncompressed;
373
374 total_compressed = actual_end - start;
375
376 /* we want to make sure that amount of ram required to uncompress
377 * an extent is reasonable, so we limit the total size in ram
378 * of a compressed extent to 128k. This is a crucial number
379 * because it also controls how easily we can spread reads across
380 * cpus for decompression.
381 *
382 * We also want to make sure the amount of IO required to do
383 * a random read is reasonably small, so we limit the size of
384 * a compressed extent to 128k.
385 */
386 total_compressed = min(total_compressed, max_uncompressed);
387 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
388 num_bytes = max(blocksize, num_bytes);
389 total_in = 0;
390 ret = 0;
391
392 /*
393 * we do compression for mount -o compress and when the
394 * inode has not been flagged as nocompress. This flag can
395 * change at any time if we discover bad compression ratios.
396 */
397 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
398 (btrfs_test_opt(root, COMPRESS) ||
399 (BTRFS_I(inode)->force_compress) ||
400 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
401 WARN_ON(pages);
402 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
403 if (!pages) {
404 /* just bail out to the uncompressed code */
405 goto cont;
406 }
407
408 if (BTRFS_I(inode)->force_compress)
409 compress_type = BTRFS_I(inode)->force_compress;
410
411 ret = btrfs_compress_pages(compress_type,
412 inode->i_mapping, start,
413 total_compressed, pages,
414 nr_pages, &nr_pages_ret,
415 &total_in,
416 &total_compressed,
417 max_compressed);
418
419 if (!ret) {
420 unsigned long offset = total_compressed &
421 (PAGE_CACHE_SIZE - 1);
422 struct page *page = pages[nr_pages_ret - 1];
423 char *kaddr;
424
425 /* zero the tail end of the last page, we might be
426 * sending it down to disk
427 */
428 if (offset) {
429 kaddr = kmap_atomic(page);
430 memset(kaddr + offset, 0,
431 PAGE_CACHE_SIZE - offset);
432 kunmap_atomic(kaddr);
433 }
434 will_compress = 1;
435 }
436 }
437 cont:
438 if (start == 0) {
439 trans = btrfs_join_transaction(root);
440 if (IS_ERR(trans)) {
441 ret = PTR_ERR(trans);
442 trans = NULL;
443 goto cleanup_and_out;
444 }
445 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
446
447 /* lets try to make an inline extent */
448 if (ret || total_in < (actual_end - start)) {
449 /* we didn't compress the entire range, try
450 * to make an uncompressed inline extent.
451 */
452 ret = cow_file_range_inline(trans, root, inode,
453 start, end, 0, 0, NULL);
454 } else {
455 /* try making a compressed inline extent */
456 ret = cow_file_range_inline(trans, root, inode,
457 start, end,
458 total_compressed,
459 compress_type, pages);
460 }
461 if (ret <= 0) {
462 /*
463 * inline extent creation worked or returned error,
464 * we don't need to create any more async work items.
465 * Unlock and free up our temp pages.
466 */
467 extent_clear_unlock_delalloc(inode,
468 &BTRFS_I(inode)->io_tree,
469 start, end, NULL,
470 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
471 EXTENT_CLEAR_DELALLOC |
472 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
473
474 btrfs_end_transaction(trans, root);
475 goto free_pages_out;
476 }
477 btrfs_end_transaction(trans, root);
478 }
479
480 if (will_compress) {
481 /*
482 * we aren't doing an inline extent round the compressed size
483 * up to a block size boundary so the allocator does sane
484 * things
485 */
486 total_compressed = (total_compressed + blocksize - 1) &
487 ~(blocksize - 1);
488
489 /*
490 * one last check to make sure the compression is really a
491 * win, compare the page count read with the blocks on disk
492 */
493 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
494 ~(PAGE_CACHE_SIZE - 1);
495 if (total_compressed >= total_in) {
496 will_compress = 0;
497 } else {
498 num_bytes = total_in;
499 }
500 }
501 if (!will_compress && pages) {
502 /*
503 * the compression code ran but failed to make things smaller,
504 * free any pages it allocated and our page pointer array
505 */
506 for (i = 0; i < nr_pages_ret; i++) {
507 WARN_ON(pages[i]->mapping);
508 page_cache_release(pages[i]);
509 }
510 kfree(pages);
511 pages = NULL;
512 total_compressed = 0;
513 nr_pages_ret = 0;
514
515 /* flag the file so we don't compress in the future */
516 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
517 !(BTRFS_I(inode)->force_compress)) {
518 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
519 }
520 }
521 if (will_compress) {
522 *num_added += 1;
523
524 /* the async work queues will take care of doing actual
525 * allocation on disk for these compressed pages,
526 * and will submit them to the elevator.
527 */
528 add_async_extent(async_cow, start, num_bytes,
529 total_compressed, pages, nr_pages_ret,
530 compress_type);
531
532 if (start + num_bytes < end) {
533 start += num_bytes;
534 pages = NULL;
535 cond_resched();
536 goto again;
537 }
538 } else {
539 cleanup_and_bail_uncompressed:
540 /*
541 * No compression, but we still need to write the pages in
542 * the file we've been given so far. redirty the locked
543 * page if it corresponds to our extent and set things up
544 * for the async work queue to run cow_file_range to do
545 * the normal delalloc dance
546 */
547 if (page_offset(locked_page) >= start &&
548 page_offset(locked_page) <= end) {
549 __set_page_dirty_nobuffers(locked_page);
550 /* unlocked later on in the async handlers */
551 }
552 add_async_extent(async_cow, start, end - start + 1,
553 0, NULL, 0, BTRFS_COMPRESS_NONE);
554 *num_added += 1;
555 }
556
557 out:
558 return ret;
559
560 free_pages_out:
561 for (i = 0; i < nr_pages_ret; i++) {
562 WARN_ON(pages[i]->mapping);
563 page_cache_release(pages[i]);
564 }
565 kfree(pages);
566
567 goto out;
568
569 cleanup_and_out:
570 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
571 start, end, NULL,
572 EXTENT_CLEAR_UNLOCK_PAGE |
573 EXTENT_CLEAR_DIRTY |
574 EXTENT_CLEAR_DELALLOC |
575 EXTENT_SET_WRITEBACK |
576 EXTENT_END_WRITEBACK);
577 if (!trans || IS_ERR(trans))
578 btrfs_error(root->fs_info, ret, "Failed to join transaction");
579 else
580 btrfs_abort_transaction(trans, root, ret);
581 goto free_pages_out;
582 }
583
584 /*
585 * phase two of compressed writeback. This is the ordered portion
586 * of the code, which only gets called in the order the work was
587 * queued. We walk all the async extents created by compress_file_range
588 * and send them down to the disk.
589 */
590 static noinline int submit_compressed_extents(struct inode *inode,
591 struct async_cow *async_cow)
592 {
593 struct async_extent *async_extent;
594 u64 alloc_hint = 0;
595 struct btrfs_trans_handle *trans;
596 struct btrfs_key ins;
597 struct extent_map *em;
598 struct btrfs_root *root = BTRFS_I(inode)->root;
599 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
600 struct extent_io_tree *io_tree;
601 int ret = 0;
602
603 if (list_empty(&async_cow->extents))
604 return 0;
605
606
607 while (!list_empty(&async_cow->extents)) {
608 async_extent = list_entry(async_cow->extents.next,
609 struct async_extent, list);
610 list_del(&async_extent->list);
611
612 io_tree = &BTRFS_I(inode)->io_tree;
613
614 retry:
615 /* did the compression code fall back to uncompressed IO? */
616 if (!async_extent->pages) {
617 int page_started = 0;
618 unsigned long nr_written = 0;
619
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start +
622 async_extent->ram_size - 1);
623
624 /* allocate blocks */
625 ret = cow_file_range(inode, async_cow->locked_page,
626 async_extent->start,
627 async_extent->start +
628 async_extent->ram_size - 1,
629 &page_started, &nr_written, 0);
630
631 /* JDM XXX */
632
633 /*
634 * if page_started, cow_file_range inserted an
635 * inline extent and took care of all the unlocking
636 * and IO for us. Otherwise, we need to submit
637 * all those pages down to the drive.
638 */
639 if (!page_started && !ret)
640 extent_write_locked_range(io_tree,
641 inode, async_extent->start,
642 async_extent->start +
643 async_extent->ram_size - 1,
644 btrfs_get_extent,
645 WB_SYNC_ALL);
646 kfree(async_extent);
647 cond_resched();
648 continue;
649 }
650
651 lock_extent(io_tree, async_extent->start,
652 async_extent->start + async_extent->ram_size - 1);
653
654 trans = btrfs_join_transaction(root);
655 if (IS_ERR(trans)) {
656 ret = PTR_ERR(trans);
657 } else {
658 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
659 ret = btrfs_reserve_extent(trans, root,
660 async_extent->compressed_size,
661 async_extent->compressed_size,
662 0, alloc_hint, &ins, 1);
663 if (ret)
664 btrfs_abort_transaction(trans, root, ret);
665 btrfs_end_transaction(trans, root);
666 }
667
668 if (ret) {
669 int i;
670 for (i = 0; i < async_extent->nr_pages; i++) {
671 WARN_ON(async_extent->pages[i]->mapping);
672 page_cache_release(async_extent->pages[i]);
673 }
674 kfree(async_extent->pages);
675 async_extent->nr_pages = 0;
676 async_extent->pages = NULL;
677 unlock_extent(io_tree, async_extent->start,
678 async_extent->start +
679 async_extent->ram_size - 1);
680 if (ret == -ENOSPC)
681 goto retry;
682 goto out_free; /* JDM: Requeue? */
683 }
684
685 /*
686 * here we're doing allocation and writeback of the
687 * compressed pages
688 */
689 btrfs_drop_extent_cache(inode, async_extent->start,
690 async_extent->start +
691 async_extent->ram_size - 1, 0);
692
693 em = alloc_extent_map();
694 BUG_ON(!em); /* -ENOMEM */
695 em->start = async_extent->start;
696 em->len = async_extent->ram_size;
697 em->orig_start = em->start;
698
699 em->block_start = ins.objectid;
700 em->block_len = ins.offset;
701 em->bdev = root->fs_info->fs_devices->latest_bdev;
702 em->compress_type = async_extent->compress_type;
703 set_bit(EXTENT_FLAG_PINNED, &em->flags);
704 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
705
706 while (1) {
707 write_lock(&em_tree->lock);
708 ret = add_extent_mapping(em_tree, em);
709 write_unlock(&em_tree->lock);
710 if (ret != -EEXIST) {
711 free_extent_map(em);
712 break;
713 }
714 btrfs_drop_extent_cache(inode, async_extent->start,
715 async_extent->start +
716 async_extent->ram_size - 1, 0);
717 }
718
719 ret = btrfs_add_ordered_extent_compress(inode,
720 async_extent->start,
721 ins.objectid,
722 async_extent->ram_size,
723 ins.offset,
724 BTRFS_ORDERED_COMPRESSED,
725 async_extent->compress_type);
726 BUG_ON(ret); /* -ENOMEM */
727
728 /*
729 * clear dirty, set writeback and unlock the pages.
730 */
731 extent_clear_unlock_delalloc(inode,
732 &BTRFS_I(inode)->io_tree,
733 async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1,
736 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
737 EXTENT_CLEAR_UNLOCK |
738 EXTENT_CLEAR_DELALLOC |
739 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
740
741 ret = btrfs_submit_compressed_write(inode,
742 async_extent->start,
743 async_extent->ram_size,
744 ins.objectid,
745 ins.offset, async_extent->pages,
746 async_extent->nr_pages);
747
748 BUG_ON(ret); /* -ENOMEM */
749 alloc_hint = ins.objectid + ins.offset;
750 kfree(async_extent);
751 cond_resched();
752 }
753 ret = 0;
754 out:
755 return ret;
756 out_free:
757 kfree(async_extent);
758 goto out;
759 }
760
761 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
762 u64 num_bytes)
763 {
764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
765 struct extent_map *em;
766 u64 alloc_hint = 0;
767
768 read_lock(&em_tree->lock);
769 em = search_extent_mapping(em_tree, start, num_bytes);
770 if (em) {
771 /*
772 * if block start isn't an actual block number then find the
773 * first block in this inode and use that as a hint. If that
774 * block is also bogus then just don't worry about it.
775 */
776 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
777 free_extent_map(em);
778 em = search_extent_mapping(em_tree, 0, 0);
779 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
780 alloc_hint = em->block_start;
781 if (em)
782 free_extent_map(em);
783 } else {
784 alloc_hint = em->block_start;
785 free_extent_map(em);
786 }
787 }
788 read_unlock(&em_tree->lock);
789
790 return alloc_hint;
791 }
792
793 /*
794 * when extent_io.c finds a delayed allocation range in the file,
795 * the call backs end up in this code. The basic idea is to
796 * allocate extents on disk for the range, and create ordered data structs
797 * in ram to track those extents.
798 *
799 * locked_page is the page that writepage had locked already. We use
800 * it to make sure we don't do extra locks or unlocks.
801 *
802 * *page_started is set to one if we unlock locked_page and do everything
803 * required to start IO on it. It may be clean and already done with
804 * IO when we return.
805 */
806 static noinline int cow_file_range(struct inode *inode,
807 struct page *locked_page,
808 u64 start, u64 end, int *page_started,
809 unsigned long *nr_written,
810 int unlock)
811 {
812 struct btrfs_root *root = BTRFS_I(inode)->root;
813 struct btrfs_trans_handle *trans;
814 u64 alloc_hint = 0;
815 u64 num_bytes;
816 unsigned long ram_size;
817 u64 disk_num_bytes;
818 u64 cur_alloc_size;
819 u64 blocksize = root->sectorsize;
820 struct btrfs_key ins;
821 struct extent_map *em;
822 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
823 int ret = 0;
824
825 BUG_ON(btrfs_is_free_space_inode(root, inode));
826 trans = btrfs_join_transaction(root);
827 if (IS_ERR(trans)) {
828 extent_clear_unlock_delalloc(inode,
829 &BTRFS_I(inode)->io_tree,
830 start, end, NULL,
831 EXTENT_CLEAR_UNLOCK_PAGE |
832 EXTENT_CLEAR_UNLOCK |
833 EXTENT_CLEAR_DELALLOC |
834 EXTENT_CLEAR_DIRTY |
835 EXTENT_SET_WRITEBACK |
836 EXTENT_END_WRITEBACK);
837 return PTR_ERR(trans);
838 }
839 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
840
841 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
842 num_bytes = max(blocksize, num_bytes);
843 disk_num_bytes = num_bytes;
844 ret = 0;
845
846 /* if this is a small write inside eof, kick off defrag */
847 if (num_bytes < 64 * 1024 &&
848 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
849 btrfs_add_inode_defrag(trans, inode);
850
851 if (start == 0) {
852 /* lets try to make an inline extent */
853 ret = cow_file_range_inline(trans, root, inode,
854 start, end, 0, 0, NULL);
855 if (ret == 0) {
856 extent_clear_unlock_delalloc(inode,
857 &BTRFS_I(inode)->io_tree,
858 start, end, NULL,
859 EXTENT_CLEAR_UNLOCK_PAGE |
860 EXTENT_CLEAR_UNLOCK |
861 EXTENT_CLEAR_DELALLOC |
862 EXTENT_CLEAR_DIRTY |
863 EXTENT_SET_WRITEBACK |
864 EXTENT_END_WRITEBACK);
865
866 *nr_written = *nr_written +
867 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
868 *page_started = 1;
869 goto out;
870 } else if (ret < 0) {
871 btrfs_abort_transaction(trans, root, ret);
872 goto out_unlock;
873 }
874 }
875
876 BUG_ON(disk_num_bytes >
877 btrfs_super_total_bytes(root->fs_info->super_copy));
878
879 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
880 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
881
882 while (disk_num_bytes > 0) {
883 unsigned long op;
884
885 cur_alloc_size = disk_num_bytes;
886 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
887 root->sectorsize, 0, alloc_hint,
888 &ins, 1);
889 if (ret < 0) {
890 btrfs_abort_transaction(trans, root, ret);
891 goto out_unlock;
892 }
893
894 em = alloc_extent_map();
895 BUG_ON(!em); /* -ENOMEM */
896 em->start = start;
897 em->orig_start = em->start;
898 ram_size = ins.offset;
899 em->len = ins.offset;
900
901 em->block_start = ins.objectid;
902 em->block_len = ins.offset;
903 em->bdev = root->fs_info->fs_devices->latest_bdev;
904 set_bit(EXTENT_FLAG_PINNED, &em->flags);
905
906 while (1) {
907 write_lock(&em_tree->lock);
908 ret = add_extent_mapping(em_tree, em);
909 write_unlock(&em_tree->lock);
910 if (ret != -EEXIST) {
911 free_extent_map(em);
912 break;
913 }
914 btrfs_drop_extent_cache(inode, start,
915 start + ram_size - 1, 0);
916 }
917
918 cur_alloc_size = ins.offset;
919 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
920 ram_size, cur_alloc_size, 0);
921 BUG_ON(ret); /* -ENOMEM */
922
923 if (root->root_key.objectid ==
924 BTRFS_DATA_RELOC_TREE_OBJECTID) {
925 ret = btrfs_reloc_clone_csums(inode, start,
926 cur_alloc_size);
927 if (ret) {
928 btrfs_abort_transaction(trans, root, ret);
929 goto out_unlock;
930 }
931 }
932
933 if (disk_num_bytes < cur_alloc_size)
934 break;
935
936 /* we're not doing compressed IO, don't unlock the first
937 * page (which the caller expects to stay locked), don't
938 * clear any dirty bits and don't set any writeback bits
939 *
940 * Do set the Private2 bit so we know this page was properly
941 * setup for writepage
942 */
943 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
944 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
945 EXTENT_SET_PRIVATE2;
946
947 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
948 start, start + ram_size - 1,
949 locked_page, op);
950 disk_num_bytes -= cur_alloc_size;
951 num_bytes -= cur_alloc_size;
952 alloc_hint = ins.objectid + ins.offset;
953 start += cur_alloc_size;
954 }
955 ret = 0;
956 out:
957 btrfs_end_transaction(trans, root);
958
959 return ret;
960 out_unlock:
961 extent_clear_unlock_delalloc(inode,
962 &BTRFS_I(inode)->io_tree,
963 start, end, NULL,
964 EXTENT_CLEAR_UNLOCK_PAGE |
965 EXTENT_CLEAR_UNLOCK |
966 EXTENT_CLEAR_DELALLOC |
967 EXTENT_CLEAR_DIRTY |
968 EXTENT_SET_WRITEBACK |
969 EXTENT_END_WRITEBACK);
970
971 goto out;
972 }
973
974 /*
975 * work queue call back to started compression on a file and pages
976 */
977 static noinline void async_cow_start(struct btrfs_work *work)
978 {
979 struct async_cow *async_cow;
980 int num_added = 0;
981 async_cow = container_of(work, struct async_cow, work);
982
983 compress_file_range(async_cow->inode, async_cow->locked_page,
984 async_cow->start, async_cow->end, async_cow,
985 &num_added);
986 if (num_added == 0)
987 async_cow->inode = NULL;
988 }
989
990 /*
991 * work queue call back to submit previously compressed pages
992 */
993 static noinline void async_cow_submit(struct btrfs_work *work)
994 {
995 struct async_cow *async_cow;
996 struct btrfs_root *root;
997 unsigned long nr_pages;
998
999 async_cow = container_of(work, struct async_cow, work);
1000
1001 root = async_cow->root;
1002 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1003 PAGE_CACHE_SHIFT;
1004
1005 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
1006
1007 if (atomic_read(&root->fs_info->async_delalloc_pages) <
1008 5 * 1042 * 1024 &&
1009 waitqueue_active(&root->fs_info->async_submit_wait))
1010 wake_up(&root->fs_info->async_submit_wait);
1011
1012 if (async_cow->inode)
1013 submit_compressed_extents(async_cow->inode, async_cow);
1014 }
1015
1016 static noinline void async_cow_free(struct btrfs_work *work)
1017 {
1018 struct async_cow *async_cow;
1019 async_cow = container_of(work, struct async_cow, work);
1020 kfree(async_cow);
1021 }
1022
1023 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1024 u64 start, u64 end, int *page_started,
1025 unsigned long *nr_written)
1026 {
1027 struct async_cow *async_cow;
1028 struct btrfs_root *root = BTRFS_I(inode)->root;
1029 unsigned long nr_pages;
1030 u64 cur_end;
1031 int limit = 10 * 1024 * 1042;
1032
1033 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1034 1, 0, NULL, GFP_NOFS);
1035 while (start < end) {
1036 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1037 BUG_ON(!async_cow); /* -ENOMEM */
1038 async_cow->inode = inode;
1039 async_cow->root = root;
1040 async_cow->locked_page = locked_page;
1041 async_cow->start = start;
1042
1043 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1044 cur_end = end;
1045 else
1046 cur_end = min(end, start + 512 * 1024 - 1);
1047
1048 async_cow->end = cur_end;
1049 INIT_LIST_HEAD(&async_cow->extents);
1050
1051 async_cow->work.func = async_cow_start;
1052 async_cow->work.ordered_func = async_cow_submit;
1053 async_cow->work.ordered_free = async_cow_free;
1054 async_cow->work.flags = 0;
1055
1056 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1057 PAGE_CACHE_SHIFT;
1058 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1059
1060 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1061 &async_cow->work);
1062
1063 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1064 wait_event(root->fs_info->async_submit_wait,
1065 (atomic_read(&root->fs_info->async_delalloc_pages) <
1066 limit));
1067 }
1068
1069 while (atomic_read(&root->fs_info->async_submit_draining) &&
1070 atomic_read(&root->fs_info->async_delalloc_pages)) {
1071 wait_event(root->fs_info->async_submit_wait,
1072 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1073 0));
1074 }
1075
1076 *nr_written += nr_pages;
1077 start = cur_end + 1;
1078 }
1079 *page_started = 1;
1080 return 0;
1081 }
1082
1083 static noinline int csum_exist_in_range(struct btrfs_root *root,
1084 u64 bytenr, u64 num_bytes)
1085 {
1086 int ret;
1087 struct btrfs_ordered_sum *sums;
1088 LIST_HEAD(list);
1089
1090 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1091 bytenr + num_bytes - 1, &list, 0);
1092 if (ret == 0 && list_empty(&list))
1093 return 0;
1094
1095 while (!list_empty(&list)) {
1096 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1097 list_del(&sums->list);
1098 kfree(sums);
1099 }
1100 return 1;
1101 }
1102
1103 /*
1104 * when nowcow writeback call back. This checks for snapshots or COW copies
1105 * of the extents that exist in the file, and COWs the file as required.
1106 *
1107 * If no cow copies or snapshots exist, we write directly to the existing
1108 * blocks on disk
1109 */
1110 static noinline int run_delalloc_nocow(struct inode *inode,
1111 struct page *locked_page,
1112 u64 start, u64 end, int *page_started, int force,
1113 unsigned long *nr_written)
1114 {
1115 struct btrfs_root *root = BTRFS_I(inode)->root;
1116 struct btrfs_trans_handle *trans;
1117 struct extent_buffer *leaf;
1118 struct btrfs_path *path;
1119 struct btrfs_file_extent_item *fi;
1120 struct btrfs_key found_key;
1121 u64 cow_start;
1122 u64 cur_offset;
1123 u64 extent_end;
1124 u64 extent_offset;
1125 u64 disk_bytenr;
1126 u64 num_bytes;
1127 int extent_type;
1128 int ret, err;
1129 int type;
1130 int nocow;
1131 int check_prev = 1;
1132 bool nolock;
1133 u64 ino = btrfs_ino(inode);
1134
1135 path = btrfs_alloc_path();
1136 if (!path)
1137 return -ENOMEM;
1138
1139 nolock = btrfs_is_free_space_inode(root, inode);
1140
1141 if (nolock)
1142 trans = btrfs_join_transaction_nolock(root);
1143 else
1144 trans = btrfs_join_transaction(root);
1145
1146 if (IS_ERR(trans)) {
1147 btrfs_free_path(path);
1148 return PTR_ERR(trans);
1149 }
1150
1151 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1152
1153 cow_start = (u64)-1;
1154 cur_offset = start;
1155 while (1) {
1156 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1157 cur_offset, 0);
1158 if (ret < 0) {
1159 btrfs_abort_transaction(trans, root, ret);
1160 goto error;
1161 }
1162 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1163 leaf = path->nodes[0];
1164 btrfs_item_key_to_cpu(leaf, &found_key,
1165 path->slots[0] - 1);
1166 if (found_key.objectid == ino &&
1167 found_key.type == BTRFS_EXTENT_DATA_KEY)
1168 path->slots[0]--;
1169 }
1170 check_prev = 0;
1171 next_slot:
1172 leaf = path->nodes[0];
1173 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1174 ret = btrfs_next_leaf(root, path);
1175 if (ret < 0) {
1176 btrfs_abort_transaction(trans, root, ret);
1177 goto error;
1178 }
1179 if (ret > 0)
1180 break;
1181 leaf = path->nodes[0];
1182 }
1183
1184 nocow = 0;
1185 disk_bytenr = 0;
1186 num_bytes = 0;
1187 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1188
1189 if (found_key.objectid > ino ||
1190 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1191 found_key.offset > end)
1192 break;
1193
1194 if (found_key.offset > cur_offset) {
1195 extent_end = found_key.offset;
1196 extent_type = 0;
1197 goto out_check;
1198 }
1199
1200 fi = btrfs_item_ptr(leaf, path->slots[0],
1201 struct btrfs_file_extent_item);
1202 extent_type = btrfs_file_extent_type(leaf, fi);
1203
1204 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1205 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1206 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 extent_offset = btrfs_file_extent_offset(leaf, fi);
1208 extent_end = found_key.offset +
1209 btrfs_file_extent_num_bytes(leaf, fi);
1210 if (extent_end <= start) {
1211 path->slots[0]++;
1212 goto next_slot;
1213 }
1214 if (disk_bytenr == 0)
1215 goto out_check;
1216 if (btrfs_file_extent_compression(leaf, fi) ||
1217 btrfs_file_extent_encryption(leaf, fi) ||
1218 btrfs_file_extent_other_encoding(leaf, fi))
1219 goto out_check;
1220 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1221 goto out_check;
1222 if (btrfs_extent_readonly(root, disk_bytenr))
1223 goto out_check;
1224 if (btrfs_cross_ref_exist(trans, root, ino,
1225 found_key.offset -
1226 extent_offset, disk_bytenr))
1227 goto out_check;
1228 disk_bytenr += extent_offset;
1229 disk_bytenr += cur_offset - found_key.offset;
1230 num_bytes = min(end + 1, extent_end) - cur_offset;
1231 /*
1232 * force cow if csum exists in the range.
1233 * this ensure that csum for a given extent are
1234 * either valid or do not exist.
1235 */
1236 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1237 goto out_check;
1238 nocow = 1;
1239 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1240 extent_end = found_key.offset +
1241 btrfs_file_extent_inline_len(leaf, fi);
1242 extent_end = ALIGN(extent_end, root->sectorsize);
1243 } else {
1244 BUG_ON(1);
1245 }
1246 out_check:
1247 if (extent_end <= start) {
1248 path->slots[0]++;
1249 goto next_slot;
1250 }
1251 if (!nocow) {
1252 if (cow_start == (u64)-1)
1253 cow_start = cur_offset;
1254 cur_offset = extent_end;
1255 if (cur_offset > end)
1256 break;
1257 path->slots[0]++;
1258 goto next_slot;
1259 }
1260
1261 btrfs_release_path(path);
1262 if (cow_start != (u64)-1) {
1263 ret = cow_file_range(inode, locked_page, cow_start,
1264 found_key.offset - 1, page_started,
1265 nr_written, 1);
1266 if (ret) {
1267 btrfs_abort_transaction(trans, root, ret);
1268 goto error;
1269 }
1270 cow_start = (u64)-1;
1271 }
1272
1273 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1274 struct extent_map *em;
1275 struct extent_map_tree *em_tree;
1276 em_tree = &BTRFS_I(inode)->extent_tree;
1277 em = alloc_extent_map();
1278 BUG_ON(!em); /* -ENOMEM */
1279 em->start = cur_offset;
1280 em->orig_start = em->start;
1281 em->len = num_bytes;
1282 em->block_len = num_bytes;
1283 em->block_start = disk_bytenr;
1284 em->bdev = root->fs_info->fs_devices->latest_bdev;
1285 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1286 while (1) {
1287 write_lock(&em_tree->lock);
1288 ret = add_extent_mapping(em_tree, em);
1289 write_unlock(&em_tree->lock);
1290 if (ret != -EEXIST) {
1291 free_extent_map(em);
1292 break;
1293 }
1294 btrfs_drop_extent_cache(inode, em->start,
1295 em->start + em->len - 1, 0);
1296 }
1297 type = BTRFS_ORDERED_PREALLOC;
1298 } else {
1299 type = BTRFS_ORDERED_NOCOW;
1300 }
1301
1302 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1303 num_bytes, num_bytes, type);
1304 BUG_ON(ret); /* -ENOMEM */
1305
1306 if (root->root_key.objectid ==
1307 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1308 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1309 num_bytes);
1310 if (ret) {
1311 btrfs_abort_transaction(trans, root, ret);
1312 goto error;
1313 }
1314 }
1315
1316 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1317 cur_offset, cur_offset + num_bytes - 1,
1318 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1319 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1320 EXTENT_SET_PRIVATE2);
1321 cur_offset = extent_end;
1322 if (cur_offset > end)
1323 break;
1324 }
1325 btrfs_release_path(path);
1326
1327 if (cur_offset <= end && cow_start == (u64)-1)
1328 cow_start = cur_offset;
1329 if (cow_start != (u64)-1) {
1330 ret = cow_file_range(inode, locked_page, cow_start, end,
1331 page_started, nr_written, 1);
1332 if (ret) {
1333 btrfs_abort_transaction(trans, root, ret);
1334 goto error;
1335 }
1336 }
1337
1338 error:
1339 if (nolock) {
1340 err = btrfs_end_transaction_nolock(trans, root);
1341 } else {
1342 err = btrfs_end_transaction(trans, root);
1343 }
1344 if (!ret)
1345 ret = err;
1346
1347 btrfs_free_path(path);
1348 return ret;
1349 }
1350
1351 /*
1352 * extent_io.c call back to do delayed allocation processing
1353 */
1354 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1355 u64 start, u64 end, int *page_started,
1356 unsigned long *nr_written)
1357 {
1358 int ret;
1359 struct btrfs_root *root = BTRFS_I(inode)->root;
1360
1361 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1362 ret = run_delalloc_nocow(inode, locked_page, start, end,
1363 page_started, 1, nr_written);
1364 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1365 ret = run_delalloc_nocow(inode, locked_page, start, end,
1366 page_started, 0, nr_written);
1367 else if (!btrfs_test_opt(root, COMPRESS) &&
1368 !(BTRFS_I(inode)->force_compress) &&
1369 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1370 ret = cow_file_range(inode, locked_page, start, end,
1371 page_started, nr_written, 1);
1372 else
1373 ret = cow_file_range_async(inode, locked_page, start, end,
1374 page_started, nr_written);
1375 return ret;
1376 }
1377
1378 static void btrfs_split_extent_hook(struct inode *inode,
1379 struct extent_state *orig, u64 split)
1380 {
1381 /* not delalloc, ignore it */
1382 if (!(orig->state & EXTENT_DELALLOC))
1383 return;
1384
1385 spin_lock(&BTRFS_I(inode)->lock);
1386 BTRFS_I(inode)->outstanding_extents++;
1387 spin_unlock(&BTRFS_I(inode)->lock);
1388 }
1389
1390 /*
1391 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1392 * extents so we can keep track of new extents that are just merged onto old
1393 * extents, such as when we are doing sequential writes, so we can properly
1394 * account for the metadata space we'll need.
1395 */
1396 static void btrfs_merge_extent_hook(struct inode *inode,
1397 struct extent_state *new,
1398 struct extent_state *other)
1399 {
1400 /* not delalloc, ignore it */
1401 if (!(other->state & EXTENT_DELALLOC))
1402 return;
1403
1404 spin_lock(&BTRFS_I(inode)->lock);
1405 BTRFS_I(inode)->outstanding_extents--;
1406 spin_unlock(&BTRFS_I(inode)->lock);
1407 }
1408
1409 /*
1410 * extent_io.c set_bit_hook, used to track delayed allocation
1411 * bytes in this file, and to maintain the list of inodes that
1412 * have pending delalloc work to be done.
1413 */
1414 static void btrfs_set_bit_hook(struct inode *inode,
1415 struct extent_state *state, int *bits)
1416 {
1417
1418 /*
1419 * set_bit and clear bit hooks normally require _irqsave/restore
1420 * but in this case, we are only testing for the DELALLOC
1421 * bit, which is only set or cleared with irqs on
1422 */
1423 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1424 struct btrfs_root *root = BTRFS_I(inode)->root;
1425 u64 len = state->end + 1 - state->start;
1426 bool do_list = !btrfs_is_free_space_inode(root, inode);
1427
1428 if (*bits & EXTENT_FIRST_DELALLOC) {
1429 *bits &= ~EXTENT_FIRST_DELALLOC;
1430 } else {
1431 spin_lock(&BTRFS_I(inode)->lock);
1432 BTRFS_I(inode)->outstanding_extents++;
1433 spin_unlock(&BTRFS_I(inode)->lock);
1434 }
1435
1436 spin_lock(&root->fs_info->delalloc_lock);
1437 BTRFS_I(inode)->delalloc_bytes += len;
1438 root->fs_info->delalloc_bytes += len;
1439 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1440 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1441 &root->fs_info->delalloc_inodes);
1442 }
1443 spin_unlock(&root->fs_info->delalloc_lock);
1444 }
1445 }
1446
1447 /*
1448 * extent_io.c clear_bit_hook, see set_bit_hook for why
1449 */
1450 static void btrfs_clear_bit_hook(struct inode *inode,
1451 struct extent_state *state, int *bits)
1452 {
1453 /*
1454 * set_bit and clear bit hooks normally require _irqsave/restore
1455 * but in this case, we are only testing for the DELALLOC
1456 * bit, which is only set or cleared with irqs on
1457 */
1458 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1459 struct btrfs_root *root = BTRFS_I(inode)->root;
1460 u64 len = state->end + 1 - state->start;
1461 bool do_list = !btrfs_is_free_space_inode(root, inode);
1462
1463 if (*bits & EXTENT_FIRST_DELALLOC) {
1464 *bits &= ~EXTENT_FIRST_DELALLOC;
1465 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1466 spin_lock(&BTRFS_I(inode)->lock);
1467 BTRFS_I(inode)->outstanding_extents--;
1468 spin_unlock(&BTRFS_I(inode)->lock);
1469 }
1470
1471 if (*bits & EXTENT_DO_ACCOUNTING)
1472 btrfs_delalloc_release_metadata(inode, len);
1473
1474 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1475 && do_list)
1476 btrfs_free_reserved_data_space(inode, len);
1477
1478 spin_lock(&root->fs_info->delalloc_lock);
1479 root->fs_info->delalloc_bytes -= len;
1480 BTRFS_I(inode)->delalloc_bytes -= len;
1481
1482 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1483 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1484 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1485 }
1486 spin_unlock(&root->fs_info->delalloc_lock);
1487 }
1488 }
1489
1490 /*
1491 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1492 * we don't create bios that span stripes or chunks
1493 */
1494 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1495 size_t size, struct bio *bio,
1496 unsigned long bio_flags)
1497 {
1498 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1499 struct btrfs_mapping_tree *map_tree;
1500 u64 logical = (u64)bio->bi_sector << 9;
1501 u64 length = 0;
1502 u64 map_length;
1503 int ret;
1504
1505 if (bio_flags & EXTENT_BIO_COMPRESSED)
1506 return 0;
1507
1508 length = bio->bi_size;
1509 map_tree = &root->fs_info->mapping_tree;
1510 map_length = length;
1511 ret = btrfs_map_block(map_tree, READ, logical,
1512 &map_length, NULL, 0);
1513 /* Will always return 0 or 1 with map_multi == NULL */
1514 BUG_ON(ret < 0);
1515 if (map_length < length + size)
1516 return 1;
1517 return 0;
1518 }
1519
1520 /*
1521 * in order to insert checksums into the metadata in large chunks,
1522 * we wait until bio submission time. All the pages in the bio are
1523 * checksummed and sums are attached onto the ordered extent record.
1524 *
1525 * At IO completion time the cums attached on the ordered extent record
1526 * are inserted into the btree
1527 */
1528 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1529 struct bio *bio, int mirror_num,
1530 unsigned long bio_flags,
1531 u64 bio_offset)
1532 {
1533 struct btrfs_root *root = BTRFS_I(inode)->root;
1534 int ret = 0;
1535
1536 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1537 BUG_ON(ret); /* -ENOMEM */
1538 return 0;
1539 }
1540
1541 /*
1542 * in order to insert checksums into the metadata in large chunks,
1543 * we wait until bio submission time. All the pages in the bio are
1544 * checksummed and sums are attached onto the ordered extent record.
1545 *
1546 * At IO completion time the cums attached on the ordered extent record
1547 * are inserted into the btree
1548 */
1549 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1550 int mirror_num, unsigned long bio_flags,
1551 u64 bio_offset)
1552 {
1553 struct btrfs_root *root = BTRFS_I(inode)->root;
1554 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1555 }
1556
1557 /*
1558 * extent_io.c submission hook. This does the right thing for csum calculation
1559 * on write, or reading the csums from the tree before a read
1560 */
1561 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1562 int mirror_num, unsigned long bio_flags,
1563 u64 bio_offset)
1564 {
1565 struct btrfs_root *root = BTRFS_I(inode)->root;
1566 int ret = 0;
1567 int skip_sum;
1568 int metadata = 0;
1569
1570 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1571
1572 if (btrfs_is_free_space_inode(root, inode))
1573 metadata = 2;
1574
1575 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1576 if (ret)
1577 return ret;
1578
1579 if (!(rw & REQ_WRITE)) {
1580 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1581 return btrfs_submit_compressed_read(inode, bio,
1582 mirror_num, bio_flags);
1583 } else if (!skip_sum) {
1584 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1585 if (ret)
1586 return ret;
1587 }
1588 goto mapit;
1589 } else if (!skip_sum) {
1590 /* csum items have already been cloned */
1591 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1592 goto mapit;
1593 /* we're doing a write, do the async checksumming */
1594 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1595 inode, rw, bio, mirror_num,
1596 bio_flags, bio_offset,
1597 __btrfs_submit_bio_start,
1598 __btrfs_submit_bio_done);
1599 }
1600
1601 mapit:
1602 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1603 }
1604
1605 /*
1606 * given a list of ordered sums record them in the inode. This happens
1607 * at IO completion time based on sums calculated at bio submission time.
1608 */
1609 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1610 struct inode *inode, u64 file_offset,
1611 struct list_head *list)
1612 {
1613 struct btrfs_ordered_sum *sum;
1614
1615 list_for_each_entry(sum, list, list) {
1616 btrfs_csum_file_blocks(trans,
1617 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1618 }
1619 return 0;
1620 }
1621
1622 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1623 struct extent_state **cached_state)
1624 {
1625 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1626 WARN_ON(1);
1627 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1628 cached_state, GFP_NOFS);
1629 }
1630
1631 /* see btrfs_writepage_start_hook for details on why this is required */
1632 struct btrfs_writepage_fixup {
1633 struct page *page;
1634 struct btrfs_work work;
1635 };
1636
1637 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1638 {
1639 struct btrfs_writepage_fixup *fixup;
1640 struct btrfs_ordered_extent *ordered;
1641 struct extent_state *cached_state = NULL;
1642 struct page *page;
1643 struct inode *inode;
1644 u64 page_start;
1645 u64 page_end;
1646 int ret;
1647
1648 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1649 page = fixup->page;
1650 again:
1651 lock_page(page);
1652 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1653 ClearPageChecked(page);
1654 goto out_page;
1655 }
1656
1657 inode = page->mapping->host;
1658 page_start = page_offset(page);
1659 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1660
1661 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1662 &cached_state);
1663
1664 /* already ordered? We're done */
1665 if (PagePrivate2(page))
1666 goto out;
1667
1668 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1669 if (ordered) {
1670 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1671 page_end, &cached_state, GFP_NOFS);
1672 unlock_page(page);
1673 btrfs_start_ordered_extent(inode, ordered, 1);
1674 btrfs_put_ordered_extent(ordered);
1675 goto again;
1676 }
1677
1678 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1679 if (ret) {
1680 mapping_set_error(page->mapping, ret);
1681 end_extent_writepage(page, ret, page_start, page_end);
1682 ClearPageChecked(page);
1683 goto out;
1684 }
1685
1686 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1687 ClearPageChecked(page);
1688 set_page_dirty(page);
1689 out:
1690 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1691 &cached_state, GFP_NOFS);
1692 out_page:
1693 unlock_page(page);
1694 page_cache_release(page);
1695 kfree(fixup);
1696 }
1697
1698 /*
1699 * There are a few paths in the higher layers of the kernel that directly
1700 * set the page dirty bit without asking the filesystem if it is a
1701 * good idea. This causes problems because we want to make sure COW
1702 * properly happens and the data=ordered rules are followed.
1703 *
1704 * In our case any range that doesn't have the ORDERED bit set
1705 * hasn't been properly setup for IO. We kick off an async process
1706 * to fix it up. The async helper will wait for ordered extents, set
1707 * the delalloc bit and make it safe to write the page.
1708 */
1709 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1710 {
1711 struct inode *inode = page->mapping->host;
1712 struct btrfs_writepage_fixup *fixup;
1713 struct btrfs_root *root = BTRFS_I(inode)->root;
1714
1715 /* this page is properly in the ordered list */
1716 if (TestClearPagePrivate2(page))
1717 return 0;
1718
1719 if (PageChecked(page))
1720 return -EAGAIN;
1721
1722 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1723 if (!fixup)
1724 return -EAGAIN;
1725
1726 SetPageChecked(page);
1727 page_cache_get(page);
1728 fixup->work.func = btrfs_writepage_fixup_worker;
1729 fixup->page = page;
1730 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1731 return -EBUSY;
1732 }
1733
1734 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1735 struct inode *inode, u64 file_pos,
1736 u64 disk_bytenr, u64 disk_num_bytes,
1737 u64 num_bytes, u64 ram_bytes,
1738 u8 compression, u8 encryption,
1739 u16 other_encoding, int extent_type)
1740 {
1741 struct btrfs_root *root = BTRFS_I(inode)->root;
1742 struct btrfs_file_extent_item *fi;
1743 struct btrfs_path *path;
1744 struct extent_buffer *leaf;
1745 struct btrfs_key ins;
1746 u64 hint;
1747 int ret;
1748
1749 path = btrfs_alloc_path();
1750 if (!path)
1751 return -ENOMEM;
1752
1753 path->leave_spinning = 1;
1754
1755 /*
1756 * we may be replacing one extent in the tree with another.
1757 * The new extent is pinned in the extent map, and we don't want
1758 * to drop it from the cache until it is completely in the btree.
1759 *
1760 * So, tell btrfs_drop_extents to leave this extent in the cache.
1761 * the caller is expected to unpin it and allow it to be merged
1762 * with the others.
1763 */
1764 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1765 &hint, 0);
1766 if (ret)
1767 goto out;
1768
1769 ins.objectid = btrfs_ino(inode);
1770 ins.offset = file_pos;
1771 ins.type = BTRFS_EXTENT_DATA_KEY;
1772 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1773 if (ret)
1774 goto out;
1775 leaf = path->nodes[0];
1776 fi = btrfs_item_ptr(leaf, path->slots[0],
1777 struct btrfs_file_extent_item);
1778 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1779 btrfs_set_file_extent_type(leaf, fi, extent_type);
1780 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1781 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1782 btrfs_set_file_extent_offset(leaf, fi, 0);
1783 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1784 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1785 btrfs_set_file_extent_compression(leaf, fi, compression);
1786 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1787 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1788
1789 btrfs_unlock_up_safe(path, 1);
1790 btrfs_set_lock_blocking(leaf);
1791
1792 btrfs_mark_buffer_dirty(leaf);
1793
1794 inode_add_bytes(inode, num_bytes);
1795
1796 ins.objectid = disk_bytenr;
1797 ins.offset = disk_num_bytes;
1798 ins.type = BTRFS_EXTENT_ITEM_KEY;
1799 ret = btrfs_alloc_reserved_file_extent(trans, root,
1800 root->root_key.objectid,
1801 btrfs_ino(inode), file_pos, &ins);
1802 out:
1803 btrfs_free_path(path);
1804
1805 return ret;
1806 }
1807
1808 /*
1809 * helper function for btrfs_finish_ordered_io, this
1810 * just reads in some of the csum leaves to prime them into ram
1811 * before we start the transaction. It limits the amount of btree
1812 * reads required while inside the transaction.
1813 */
1814 /* as ordered data IO finishes, this gets called so we can finish
1815 * an ordered extent if the range of bytes in the file it covers are
1816 * fully written.
1817 */
1818 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1819 {
1820 struct btrfs_root *root = BTRFS_I(inode)->root;
1821 struct btrfs_trans_handle *trans = NULL;
1822 struct btrfs_ordered_extent *ordered_extent = NULL;
1823 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1824 struct extent_state *cached_state = NULL;
1825 int compress_type = 0;
1826 int ret;
1827 bool nolock;
1828
1829 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1830 end - start + 1);
1831 if (!ret)
1832 return 0;
1833 BUG_ON(!ordered_extent); /* Logic error */
1834
1835 nolock = btrfs_is_free_space_inode(root, inode);
1836
1837 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1838 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1839 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1840 if (!ret) {
1841 if (nolock)
1842 trans = btrfs_join_transaction_nolock(root);
1843 else
1844 trans = btrfs_join_transaction(root);
1845 if (IS_ERR(trans))
1846 return PTR_ERR(trans);
1847 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1848 ret = btrfs_update_inode_fallback(trans, root, inode);
1849 if (ret) /* -ENOMEM or corruption */
1850 btrfs_abort_transaction(trans, root, ret);
1851 }
1852 goto out;
1853 }
1854
1855 lock_extent_bits(io_tree, ordered_extent->file_offset,
1856 ordered_extent->file_offset + ordered_extent->len - 1,
1857 0, &cached_state);
1858
1859 if (nolock)
1860 trans = btrfs_join_transaction_nolock(root);
1861 else
1862 trans = btrfs_join_transaction(root);
1863 if (IS_ERR(trans)) {
1864 ret = PTR_ERR(trans);
1865 trans = NULL;
1866 goto out_unlock;
1867 }
1868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1869
1870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1871 compress_type = ordered_extent->compress_type;
1872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1873 BUG_ON(compress_type);
1874 ret = btrfs_mark_extent_written(trans, inode,
1875 ordered_extent->file_offset,
1876 ordered_extent->file_offset +
1877 ordered_extent->len);
1878 } else {
1879 BUG_ON(root == root->fs_info->tree_root);
1880 ret = insert_reserved_file_extent(trans, inode,
1881 ordered_extent->file_offset,
1882 ordered_extent->start,
1883 ordered_extent->disk_len,
1884 ordered_extent->len,
1885 ordered_extent->len,
1886 compress_type, 0, 0,
1887 BTRFS_FILE_EXTENT_REG);
1888 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1889 ordered_extent->file_offset,
1890 ordered_extent->len);
1891 }
1892 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1893 ordered_extent->file_offset +
1894 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1895 if (ret < 0) {
1896 btrfs_abort_transaction(trans, root, ret);
1897 goto out;
1898 }
1899
1900 add_pending_csums(trans, inode, ordered_extent->file_offset,
1901 &ordered_extent->list);
1902
1903 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1904 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1905 ret = btrfs_update_inode_fallback(trans, root, inode);
1906 if (ret) { /* -ENOMEM or corruption */
1907 btrfs_abort_transaction(trans, root, ret);
1908 goto out;
1909 }
1910 }
1911 ret = 0;
1912 out:
1913 if (root != root->fs_info->tree_root)
1914 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1915 if (trans) {
1916 if (nolock)
1917 btrfs_end_transaction_nolock(trans, root);
1918 else
1919 btrfs_end_transaction(trans, root);
1920 }
1921
1922 /* once for us */
1923 btrfs_put_ordered_extent(ordered_extent);
1924 /* once for the tree */
1925 btrfs_put_ordered_extent(ordered_extent);
1926
1927 return 0;
1928 out_unlock:
1929 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1930 ordered_extent->file_offset +
1931 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1932 goto out;
1933 }
1934
1935 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1936 struct extent_state *state, int uptodate)
1937 {
1938 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1939
1940 ClearPagePrivate2(page);
1941 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1942 }
1943
1944 /*
1945 * when reads are done, we need to check csums to verify the data is correct
1946 * if there's a match, we allow the bio to finish. If not, the code in
1947 * extent_io.c will try to find good copies for us.
1948 */
1949 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1950 struct extent_state *state)
1951 {
1952 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1953 struct inode *inode = page->mapping->host;
1954 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1955 char *kaddr;
1956 u64 private = ~(u32)0;
1957 int ret;
1958 struct btrfs_root *root = BTRFS_I(inode)->root;
1959 u32 csum = ~(u32)0;
1960
1961 if (PageChecked(page)) {
1962 ClearPageChecked(page);
1963 goto good;
1964 }
1965
1966 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1967 goto good;
1968
1969 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1970 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1971 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1972 GFP_NOFS);
1973 return 0;
1974 }
1975
1976 if (state && state->start == start) {
1977 private = state->private;
1978 ret = 0;
1979 } else {
1980 ret = get_state_private(io_tree, start, &private);
1981 }
1982 kaddr = kmap_atomic(page);
1983 if (ret)
1984 goto zeroit;
1985
1986 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1987 btrfs_csum_final(csum, (char *)&csum);
1988 if (csum != private)
1989 goto zeroit;
1990
1991 kunmap_atomic(kaddr);
1992 good:
1993 return 0;
1994
1995 zeroit:
1996 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1997 "private %llu\n",
1998 (unsigned long long)btrfs_ino(page->mapping->host),
1999 (unsigned long long)start, csum,
2000 (unsigned long long)private);
2001 memset(kaddr + offset, 1, end - start + 1);
2002 flush_dcache_page(page);
2003 kunmap_atomic(kaddr);
2004 if (private == 0)
2005 return 0;
2006 return -EIO;
2007 }
2008
2009 struct delayed_iput {
2010 struct list_head list;
2011 struct inode *inode;
2012 };
2013
2014 /* JDM: If this is fs-wide, why can't we add a pointer to
2015 * btrfs_inode instead and avoid the allocation? */
2016 void btrfs_add_delayed_iput(struct inode *inode)
2017 {
2018 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2019 struct delayed_iput *delayed;
2020
2021 if (atomic_add_unless(&inode->i_count, -1, 1))
2022 return;
2023
2024 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2025 delayed->inode = inode;
2026
2027 spin_lock(&fs_info->delayed_iput_lock);
2028 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2029 spin_unlock(&fs_info->delayed_iput_lock);
2030 }
2031
2032 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2033 {
2034 LIST_HEAD(list);
2035 struct btrfs_fs_info *fs_info = root->fs_info;
2036 struct delayed_iput *delayed;
2037 int empty;
2038
2039 spin_lock(&fs_info->delayed_iput_lock);
2040 empty = list_empty(&fs_info->delayed_iputs);
2041 spin_unlock(&fs_info->delayed_iput_lock);
2042 if (empty)
2043 return;
2044
2045 down_read(&root->fs_info->cleanup_work_sem);
2046 spin_lock(&fs_info->delayed_iput_lock);
2047 list_splice_init(&fs_info->delayed_iputs, &list);
2048 spin_unlock(&fs_info->delayed_iput_lock);
2049
2050 while (!list_empty(&list)) {
2051 delayed = list_entry(list.next, struct delayed_iput, list);
2052 list_del(&delayed->list);
2053 iput(delayed->inode);
2054 kfree(delayed);
2055 }
2056 up_read(&root->fs_info->cleanup_work_sem);
2057 }
2058
2059 enum btrfs_orphan_cleanup_state {
2060 ORPHAN_CLEANUP_STARTED = 1,
2061 ORPHAN_CLEANUP_DONE = 2,
2062 };
2063
2064 /*
2065 * This is called in transaction commit time. If there are no orphan
2066 * files in the subvolume, it removes orphan item and frees block_rsv
2067 * structure.
2068 */
2069 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2070 struct btrfs_root *root)
2071 {
2072 struct btrfs_block_rsv *block_rsv;
2073 int ret;
2074
2075 if (!list_empty(&root->orphan_list) ||
2076 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2077 return;
2078
2079 spin_lock(&root->orphan_lock);
2080 if (!list_empty(&root->orphan_list)) {
2081 spin_unlock(&root->orphan_lock);
2082 return;
2083 }
2084
2085 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2086 spin_unlock(&root->orphan_lock);
2087 return;
2088 }
2089
2090 block_rsv = root->orphan_block_rsv;
2091 root->orphan_block_rsv = NULL;
2092 spin_unlock(&root->orphan_lock);
2093
2094 if (root->orphan_item_inserted &&
2095 btrfs_root_refs(&root->root_item) > 0) {
2096 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2097 root->root_key.objectid);
2098 BUG_ON(ret);
2099 root->orphan_item_inserted = 0;
2100 }
2101
2102 if (block_rsv) {
2103 WARN_ON(block_rsv->size > 0);
2104 btrfs_free_block_rsv(root, block_rsv);
2105 }
2106 }
2107
2108 /*
2109 * This creates an orphan entry for the given inode in case something goes
2110 * wrong in the middle of an unlink/truncate.
2111 *
2112 * NOTE: caller of this function should reserve 5 units of metadata for
2113 * this function.
2114 */
2115 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2116 {
2117 struct btrfs_root *root = BTRFS_I(inode)->root;
2118 struct btrfs_block_rsv *block_rsv = NULL;
2119 int reserve = 0;
2120 int insert = 0;
2121 int ret;
2122
2123 if (!root->orphan_block_rsv) {
2124 block_rsv = btrfs_alloc_block_rsv(root);
2125 if (!block_rsv)
2126 return -ENOMEM;
2127 }
2128
2129 spin_lock(&root->orphan_lock);
2130 if (!root->orphan_block_rsv) {
2131 root->orphan_block_rsv = block_rsv;
2132 } else if (block_rsv) {
2133 btrfs_free_block_rsv(root, block_rsv);
2134 block_rsv = NULL;
2135 }
2136
2137 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2138 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2139 #if 0
2140 /*
2141 * For proper ENOSPC handling, we should do orphan
2142 * cleanup when mounting. But this introduces backward
2143 * compatibility issue.
2144 */
2145 if (!xchg(&root->orphan_item_inserted, 1))
2146 insert = 2;
2147 else
2148 insert = 1;
2149 #endif
2150 insert = 1;
2151 }
2152
2153 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2154 BTRFS_I(inode)->orphan_meta_reserved = 1;
2155 reserve = 1;
2156 }
2157 spin_unlock(&root->orphan_lock);
2158
2159 /* grab metadata reservation from transaction handle */
2160 if (reserve) {
2161 ret = btrfs_orphan_reserve_metadata(trans, inode);
2162 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2163 }
2164
2165 /* insert an orphan item to track this unlinked/truncated file */
2166 if (insert >= 1) {
2167 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2168 if (ret && ret != -EEXIST) {
2169 btrfs_abort_transaction(trans, root, ret);
2170 return ret;
2171 }
2172 ret = 0;
2173 }
2174
2175 /* insert an orphan item to track subvolume contains orphan files */
2176 if (insert >= 2) {
2177 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2178 root->root_key.objectid);
2179 if (ret && ret != -EEXIST) {
2180 btrfs_abort_transaction(trans, root, ret);
2181 return ret;
2182 }
2183 }
2184 return 0;
2185 }
2186
2187 /*
2188 * We have done the truncate/delete so we can go ahead and remove the orphan
2189 * item for this particular inode.
2190 */
2191 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2192 {
2193 struct btrfs_root *root = BTRFS_I(inode)->root;
2194 int delete_item = 0;
2195 int release_rsv = 0;
2196 int ret = 0;
2197
2198 spin_lock(&root->orphan_lock);
2199 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2200 list_del_init(&BTRFS_I(inode)->i_orphan);
2201 delete_item = 1;
2202 }
2203
2204 if (BTRFS_I(inode)->orphan_meta_reserved) {
2205 BTRFS_I(inode)->orphan_meta_reserved = 0;
2206 release_rsv = 1;
2207 }
2208 spin_unlock(&root->orphan_lock);
2209
2210 if (trans && delete_item) {
2211 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2212 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2213 }
2214
2215 if (release_rsv)
2216 btrfs_orphan_release_metadata(inode);
2217
2218 return 0;
2219 }
2220
2221 /*
2222 * this cleans up any orphans that may be left on the list from the last use
2223 * of this root.
2224 */
2225 int btrfs_orphan_cleanup(struct btrfs_root *root)
2226 {
2227 struct btrfs_path *path;
2228 struct extent_buffer *leaf;
2229 struct btrfs_key key, found_key;
2230 struct btrfs_trans_handle *trans;
2231 struct inode *inode;
2232 u64 last_objectid = 0;
2233 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2234
2235 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2236 return 0;
2237
2238 path = btrfs_alloc_path();
2239 if (!path) {
2240 ret = -ENOMEM;
2241 goto out;
2242 }
2243 path->reada = -1;
2244
2245 key.objectid = BTRFS_ORPHAN_OBJECTID;
2246 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2247 key.offset = (u64)-1;
2248
2249 while (1) {
2250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2251 if (ret < 0)
2252 goto out;
2253
2254 /*
2255 * if ret == 0 means we found what we were searching for, which
2256 * is weird, but possible, so only screw with path if we didn't
2257 * find the key and see if we have stuff that matches
2258 */
2259 if (ret > 0) {
2260 ret = 0;
2261 if (path->slots[0] == 0)
2262 break;
2263 path->slots[0]--;
2264 }
2265
2266 /* pull out the item */
2267 leaf = path->nodes[0];
2268 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2269
2270 /* make sure the item matches what we want */
2271 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2272 break;
2273 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2274 break;
2275
2276 /* release the path since we're done with it */
2277 btrfs_release_path(path);
2278
2279 /*
2280 * this is where we are basically btrfs_lookup, without the
2281 * crossing root thing. we store the inode number in the
2282 * offset of the orphan item.
2283 */
2284
2285 if (found_key.offset == last_objectid) {
2286 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2287 "stopping orphan cleanup\n");
2288 ret = -EINVAL;
2289 goto out;
2290 }
2291
2292 last_objectid = found_key.offset;
2293
2294 found_key.objectid = found_key.offset;
2295 found_key.type = BTRFS_INODE_ITEM_KEY;
2296 found_key.offset = 0;
2297 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2298 ret = PTR_RET(inode);
2299 if (ret && ret != -ESTALE)
2300 goto out;
2301
2302 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2303 struct btrfs_root *dead_root;
2304 struct btrfs_fs_info *fs_info = root->fs_info;
2305 int is_dead_root = 0;
2306
2307 /*
2308 * this is an orphan in the tree root. Currently these
2309 * could come from 2 sources:
2310 * a) a snapshot deletion in progress
2311 * b) a free space cache inode
2312 * We need to distinguish those two, as the snapshot
2313 * orphan must not get deleted.
2314 * find_dead_roots already ran before us, so if this
2315 * is a snapshot deletion, we should find the root
2316 * in the dead_roots list
2317 */
2318 spin_lock(&fs_info->trans_lock);
2319 list_for_each_entry(dead_root, &fs_info->dead_roots,
2320 root_list) {
2321 if (dead_root->root_key.objectid ==
2322 found_key.objectid) {
2323 is_dead_root = 1;
2324 break;
2325 }
2326 }
2327 spin_unlock(&fs_info->trans_lock);
2328 if (is_dead_root) {
2329 /* prevent this orphan from being found again */
2330 key.offset = found_key.objectid - 1;
2331 continue;
2332 }
2333 }
2334 /*
2335 * Inode is already gone but the orphan item is still there,
2336 * kill the orphan item.
2337 */
2338 if (ret == -ESTALE) {
2339 trans = btrfs_start_transaction(root, 1);
2340 if (IS_ERR(trans)) {
2341 ret = PTR_ERR(trans);
2342 goto out;
2343 }
2344 ret = btrfs_del_orphan_item(trans, root,
2345 found_key.objectid);
2346 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2347 btrfs_end_transaction(trans, root);
2348 continue;
2349 }
2350
2351 /*
2352 * add this inode to the orphan list so btrfs_orphan_del does
2353 * the proper thing when we hit it
2354 */
2355 spin_lock(&root->orphan_lock);
2356 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2357 spin_unlock(&root->orphan_lock);
2358
2359 /* if we have links, this was a truncate, lets do that */
2360 if (inode->i_nlink) {
2361 if (!S_ISREG(inode->i_mode)) {
2362 WARN_ON(1);
2363 iput(inode);
2364 continue;
2365 }
2366 nr_truncate++;
2367 ret = btrfs_truncate(inode);
2368 } else {
2369 nr_unlink++;
2370 }
2371
2372 /* this will do delete_inode and everything for us */
2373 iput(inode);
2374 if (ret)
2375 goto out;
2376 }
2377 /* release the path since we're done with it */
2378 btrfs_release_path(path);
2379
2380 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2381
2382 if (root->orphan_block_rsv)
2383 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2384 (u64)-1);
2385
2386 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2387 trans = btrfs_join_transaction(root);
2388 if (!IS_ERR(trans))
2389 btrfs_end_transaction(trans, root);
2390 }
2391
2392 if (nr_unlink)
2393 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2394 if (nr_truncate)
2395 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2396
2397 out:
2398 if (ret)
2399 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2400 btrfs_free_path(path);
2401 return ret;
2402 }
2403
2404 /*
2405 * very simple check to peek ahead in the leaf looking for xattrs. If we
2406 * don't find any xattrs, we know there can't be any acls.
2407 *
2408 * slot is the slot the inode is in, objectid is the objectid of the inode
2409 */
2410 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2411 int slot, u64 objectid)
2412 {
2413 u32 nritems = btrfs_header_nritems(leaf);
2414 struct btrfs_key found_key;
2415 int scanned = 0;
2416
2417 slot++;
2418 while (slot < nritems) {
2419 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2420
2421 /* we found a different objectid, there must not be acls */
2422 if (found_key.objectid != objectid)
2423 return 0;
2424
2425 /* we found an xattr, assume we've got an acl */
2426 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2427 return 1;
2428
2429 /*
2430 * we found a key greater than an xattr key, there can't
2431 * be any acls later on
2432 */
2433 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2434 return 0;
2435
2436 slot++;
2437 scanned++;
2438
2439 /*
2440 * it goes inode, inode backrefs, xattrs, extents,
2441 * so if there are a ton of hard links to an inode there can
2442 * be a lot of backrefs. Don't waste time searching too hard,
2443 * this is just an optimization
2444 */
2445 if (scanned >= 8)
2446 break;
2447 }
2448 /* we hit the end of the leaf before we found an xattr or
2449 * something larger than an xattr. We have to assume the inode
2450 * has acls
2451 */
2452 return 1;
2453 }
2454
2455 /*
2456 * read an inode from the btree into the in-memory inode
2457 */
2458 static void btrfs_read_locked_inode(struct inode *inode)
2459 {
2460 struct btrfs_path *path;
2461 struct extent_buffer *leaf;
2462 struct btrfs_inode_item *inode_item;
2463 struct btrfs_timespec *tspec;
2464 struct btrfs_root *root = BTRFS_I(inode)->root;
2465 struct btrfs_key location;
2466 int maybe_acls;
2467 u32 rdev;
2468 int ret;
2469 bool filled = false;
2470
2471 ret = btrfs_fill_inode(inode, &rdev);
2472 if (!ret)
2473 filled = true;
2474
2475 path = btrfs_alloc_path();
2476 if (!path)
2477 goto make_bad;
2478
2479 path->leave_spinning = 1;
2480 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2481
2482 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2483 if (ret)
2484 goto make_bad;
2485
2486 leaf = path->nodes[0];
2487
2488 if (filled)
2489 goto cache_acl;
2490
2491 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2492 struct btrfs_inode_item);
2493 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2494 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2495 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2496 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2497 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2498
2499 tspec = btrfs_inode_atime(inode_item);
2500 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2501 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2502
2503 tspec = btrfs_inode_mtime(inode_item);
2504 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2505 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2506
2507 tspec = btrfs_inode_ctime(inode_item);
2508 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2509 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2510
2511 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2512 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2513 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2514 inode->i_generation = BTRFS_I(inode)->generation;
2515 inode->i_rdev = 0;
2516 rdev = btrfs_inode_rdev(leaf, inode_item);
2517
2518 BTRFS_I(inode)->index_cnt = (u64)-1;
2519 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2520 cache_acl:
2521 /*
2522 * try to precache a NULL acl entry for files that don't have
2523 * any xattrs or acls
2524 */
2525 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2526 btrfs_ino(inode));
2527 if (!maybe_acls)
2528 cache_no_acl(inode);
2529
2530 btrfs_free_path(path);
2531
2532 switch (inode->i_mode & S_IFMT) {
2533 case S_IFREG:
2534 inode->i_mapping->a_ops = &btrfs_aops;
2535 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2536 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2537 inode->i_fop = &btrfs_file_operations;
2538 inode->i_op = &btrfs_file_inode_operations;
2539 break;
2540 case S_IFDIR:
2541 inode->i_fop = &btrfs_dir_file_operations;
2542 if (root == root->fs_info->tree_root)
2543 inode->i_op = &btrfs_dir_ro_inode_operations;
2544 else
2545 inode->i_op = &btrfs_dir_inode_operations;
2546 break;
2547 case S_IFLNK:
2548 inode->i_op = &btrfs_symlink_inode_operations;
2549 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2550 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2551 break;
2552 default:
2553 inode->i_op = &btrfs_special_inode_operations;
2554 init_special_inode(inode, inode->i_mode, rdev);
2555 break;
2556 }
2557
2558 btrfs_update_iflags(inode);
2559 return;
2560
2561 make_bad:
2562 btrfs_free_path(path);
2563 make_bad_inode(inode);
2564 }
2565
2566 /*
2567 * given a leaf and an inode, copy the inode fields into the leaf
2568 */
2569 static void fill_inode_item(struct btrfs_trans_handle *trans,
2570 struct extent_buffer *leaf,
2571 struct btrfs_inode_item *item,
2572 struct inode *inode)
2573 {
2574 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2575 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2576 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2577 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2578 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2579
2580 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2581 inode->i_atime.tv_sec);
2582 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2583 inode->i_atime.tv_nsec);
2584
2585 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2586 inode->i_mtime.tv_sec);
2587 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2588 inode->i_mtime.tv_nsec);
2589
2590 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2591 inode->i_ctime.tv_sec);
2592 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2593 inode->i_ctime.tv_nsec);
2594
2595 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2596 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2597 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2598 btrfs_set_inode_transid(leaf, item, trans->transid);
2599 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2600 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2601 btrfs_set_inode_block_group(leaf, item, 0);
2602 }
2603
2604 /*
2605 * copy everything in the in-memory inode into the btree.
2606 */
2607 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2608 struct btrfs_root *root, struct inode *inode)
2609 {
2610 struct btrfs_inode_item *inode_item;
2611 struct btrfs_path *path;
2612 struct extent_buffer *leaf;
2613 int ret;
2614
2615 path = btrfs_alloc_path();
2616 if (!path)
2617 return -ENOMEM;
2618
2619 path->leave_spinning = 1;
2620 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2621 1);
2622 if (ret) {
2623 if (ret > 0)
2624 ret = -ENOENT;
2625 goto failed;
2626 }
2627
2628 btrfs_unlock_up_safe(path, 1);
2629 leaf = path->nodes[0];
2630 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2631 struct btrfs_inode_item);
2632
2633 fill_inode_item(trans, leaf, inode_item, inode);
2634 btrfs_mark_buffer_dirty(leaf);
2635 btrfs_set_inode_last_trans(trans, inode);
2636 ret = 0;
2637 failed:
2638 btrfs_free_path(path);
2639 return ret;
2640 }
2641
2642 /*
2643 * copy everything in the in-memory inode into the btree.
2644 */
2645 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2646 struct btrfs_root *root, struct inode *inode)
2647 {
2648 int ret;
2649
2650 /*
2651 * If the inode is a free space inode, we can deadlock during commit
2652 * if we put it into the delayed code.
2653 *
2654 * The data relocation inode should also be directly updated
2655 * without delay
2656 */
2657 if (!btrfs_is_free_space_inode(root, inode)
2658 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2659 ret = btrfs_delayed_update_inode(trans, root, inode);
2660 if (!ret)
2661 btrfs_set_inode_last_trans(trans, inode);
2662 return ret;
2663 }
2664
2665 return btrfs_update_inode_item(trans, root, inode);
2666 }
2667
2668 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2669 struct btrfs_root *root, struct inode *inode)
2670 {
2671 int ret;
2672
2673 ret = btrfs_update_inode(trans, root, inode);
2674 if (ret == -ENOSPC)
2675 return btrfs_update_inode_item(trans, root, inode);
2676 return ret;
2677 }
2678
2679 /*
2680 * unlink helper that gets used here in inode.c and in the tree logging
2681 * recovery code. It remove a link in a directory with a given name, and
2682 * also drops the back refs in the inode to the directory
2683 */
2684 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2685 struct btrfs_root *root,
2686 struct inode *dir, struct inode *inode,
2687 const char *name, int name_len)
2688 {
2689 struct btrfs_path *path;
2690 int ret = 0;
2691 struct extent_buffer *leaf;
2692 struct btrfs_dir_item *di;
2693 struct btrfs_key key;
2694 u64 index;
2695 u64 ino = btrfs_ino(inode);
2696 u64 dir_ino = btrfs_ino(dir);
2697
2698 path = btrfs_alloc_path();
2699 if (!path) {
2700 ret = -ENOMEM;
2701 goto out;
2702 }
2703
2704 path->leave_spinning = 1;
2705 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2706 name, name_len, -1);
2707 if (IS_ERR(di)) {
2708 ret = PTR_ERR(di);
2709 goto err;
2710 }
2711 if (!di) {
2712 ret = -ENOENT;
2713 goto err;
2714 }
2715 leaf = path->nodes[0];
2716 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2717 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2718 if (ret)
2719 goto err;
2720 btrfs_release_path(path);
2721
2722 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2723 dir_ino, &index);
2724 if (ret) {
2725 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2726 "inode %llu parent %llu\n", name_len, name,
2727 (unsigned long long)ino, (unsigned long long)dir_ino);
2728 btrfs_abort_transaction(trans, root, ret);
2729 goto err;
2730 }
2731
2732 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2733 if (ret) {
2734 btrfs_abort_transaction(trans, root, ret);
2735 goto err;
2736 }
2737
2738 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2739 inode, dir_ino);
2740 if (ret != 0 && ret != -ENOENT) {
2741 btrfs_abort_transaction(trans, root, ret);
2742 goto err;
2743 }
2744
2745 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2746 dir, index);
2747 if (ret == -ENOENT)
2748 ret = 0;
2749 err:
2750 btrfs_free_path(path);
2751 if (ret)
2752 goto out;
2753
2754 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2755 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2756 btrfs_update_inode(trans, root, dir);
2757 out:
2758 return ret;
2759 }
2760
2761 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2762 struct btrfs_root *root,
2763 struct inode *dir, struct inode *inode,
2764 const char *name, int name_len)
2765 {
2766 int ret;
2767 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2768 if (!ret) {
2769 btrfs_drop_nlink(inode);
2770 ret = btrfs_update_inode(trans, root, inode);
2771 }
2772 return ret;
2773 }
2774
2775
2776 /* helper to check if there is any shared block in the path */
2777 static int check_path_shared(struct btrfs_root *root,
2778 struct btrfs_path *path)
2779 {
2780 struct extent_buffer *eb;
2781 int level;
2782 u64 refs = 1;
2783
2784 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2785 int ret;
2786
2787 if (!path->nodes[level])
2788 break;
2789 eb = path->nodes[level];
2790 if (!btrfs_block_can_be_shared(root, eb))
2791 continue;
2792 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2793 &refs, NULL);
2794 if (refs > 1)
2795 return 1;
2796 }
2797 return 0;
2798 }
2799
2800 /*
2801 * helper to start transaction for unlink and rmdir.
2802 *
2803 * unlink and rmdir are special in btrfs, they do not always free space.
2804 * so in enospc case, we should make sure they will free space before
2805 * allowing them to use the global metadata reservation.
2806 */
2807 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2808 struct dentry *dentry)
2809 {
2810 struct btrfs_trans_handle *trans;
2811 struct btrfs_root *root = BTRFS_I(dir)->root;
2812 struct btrfs_path *path;
2813 struct btrfs_inode_ref *ref;
2814 struct btrfs_dir_item *di;
2815 struct inode *inode = dentry->d_inode;
2816 u64 index;
2817 int check_link = 1;
2818 int err = -ENOSPC;
2819 int ret;
2820 u64 ino = btrfs_ino(inode);
2821 u64 dir_ino = btrfs_ino(dir);
2822
2823 /*
2824 * 1 for the possible orphan item
2825 * 1 for the dir item
2826 * 1 for the dir index
2827 * 1 for the inode ref
2828 * 1 for the inode ref in the tree log
2829 * 2 for the dir entries in the log
2830 * 1 for the inode
2831 */
2832 trans = btrfs_start_transaction(root, 8);
2833 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2834 return trans;
2835
2836 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2837 return ERR_PTR(-ENOSPC);
2838
2839 /* check if there is someone else holds reference */
2840 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2841 return ERR_PTR(-ENOSPC);
2842
2843 if (atomic_read(&inode->i_count) > 2)
2844 return ERR_PTR(-ENOSPC);
2845
2846 if (xchg(&root->fs_info->enospc_unlink, 1))
2847 return ERR_PTR(-ENOSPC);
2848
2849 path = btrfs_alloc_path();
2850 if (!path) {
2851 root->fs_info->enospc_unlink = 0;
2852 return ERR_PTR(-ENOMEM);
2853 }
2854
2855 /* 1 for the orphan item */
2856 trans = btrfs_start_transaction(root, 1);
2857 if (IS_ERR(trans)) {
2858 btrfs_free_path(path);
2859 root->fs_info->enospc_unlink = 0;
2860 return trans;
2861 }
2862
2863 path->skip_locking = 1;
2864 path->search_commit_root = 1;
2865
2866 ret = btrfs_lookup_inode(trans, root, path,
2867 &BTRFS_I(dir)->location, 0);
2868 if (ret < 0) {
2869 err = ret;
2870 goto out;
2871 }
2872 if (ret == 0) {
2873 if (check_path_shared(root, path))
2874 goto out;
2875 } else {
2876 check_link = 0;
2877 }
2878 btrfs_release_path(path);
2879
2880 ret = btrfs_lookup_inode(trans, root, path,
2881 &BTRFS_I(inode)->location, 0);
2882 if (ret < 0) {
2883 err = ret;
2884 goto out;
2885 }
2886 if (ret == 0) {
2887 if (check_path_shared(root, path))
2888 goto out;
2889 } else {
2890 check_link = 0;
2891 }
2892 btrfs_release_path(path);
2893
2894 if (ret == 0 && S_ISREG(inode->i_mode)) {
2895 ret = btrfs_lookup_file_extent(trans, root, path,
2896 ino, (u64)-1, 0);
2897 if (ret < 0) {
2898 err = ret;
2899 goto out;
2900 }
2901 BUG_ON(ret == 0); /* Corruption */
2902 if (check_path_shared(root, path))
2903 goto out;
2904 btrfs_release_path(path);
2905 }
2906
2907 if (!check_link) {
2908 err = 0;
2909 goto out;
2910 }
2911
2912 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2913 dentry->d_name.name, dentry->d_name.len, 0);
2914 if (IS_ERR(di)) {
2915 err = PTR_ERR(di);
2916 goto out;
2917 }
2918 if (di) {
2919 if (check_path_shared(root, path))
2920 goto out;
2921 } else {
2922 err = 0;
2923 goto out;
2924 }
2925 btrfs_release_path(path);
2926
2927 ref = btrfs_lookup_inode_ref(trans, root, path,
2928 dentry->d_name.name, dentry->d_name.len,
2929 ino, dir_ino, 0);
2930 if (IS_ERR(ref)) {
2931 err = PTR_ERR(ref);
2932 goto out;
2933 }
2934 BUG_ON(!ref); /* Logic error */
2935 if (check_path_shared(root, path))
2936 goto out;
2937 index = btrfs_inode_ref_index(path->nodes[0], ref);
2938 btrfs_release_path(path);
2939
2940 /*
2941 * This is a commit root search, if we can lookup inode item and other
2942 * relative items in the commit root, it means the transaction of
2943 * dir/file creation has been committed, and the dir index item that we
2944 * delay to insert has also been inserted into the commit root. So
2945 * we needn't worry about the delayed insertion of the dir index item
2946 * here.
2947 */
2948 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2949 dentry->d_name.name, dentry->d_name.len, 0);
2950 if (IS_ERR(di)) {
2951 err = PTR_ERR(di);
2952 goto out;
2953 }
2954 BUG_ON(ret == -ENOENT);
2955 if (check_path_shared(root, path))
2956 goto out;
2957
2958 err = 0;
2959 out:
2960 btrfs_free_path(path);
2961 /* Migrate the orphan reservation over */
2962 if (!err)
2963 err = btrfs_block_rsv_migrate(trans->block_rsv,
2964 &root->fs_info->global_block_rsv,
2965 trans->bytes_reserved);
2966
2967 if (err) {
2968 btrfs_end_transaction(trans, root);
2969 root->fs_info->enospc_unlink = 0;
2970 return ERR_PTR(err);
2971 }
2972
2973 trans->block_rsv = &root->fs_info->global_block_rsv;
2974 return trans;
2975 }
2976
2977 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2978 struct btrfs_root *root)
2979 {
2980 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2981 btrfs_block_rsv_release(root, trans->block_rsv,
2982 trans->bytes_reserved);
2983 trans->block_rsv = &root->fs_info->trans_block_rsv;
2984 BUG_ON(!root->fs_info->enospc_unlink);
2985 root->fs_info->enospc_unlink = 0;
2986 }
2987 btrfs_end_transaction(trans, root);
2988 }
2989
2990 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2991 {
2992 struct btrfs_root *root = BTRFS_I(dir)->root;
2993 struct btrfs_trans_handle *trans;
2994 struct inode *inode = dentry->d_inode;
2995 int ret;
2996 unsigned long nr = 0;
2997
2998 trans = __unlink_start_trans(dir, dentry);
2999 if (IS_ERR(trans))
3000 return PTR_ERR(trans);
3001
3002 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3003
3004 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3005 dentry->d_name.name, dentry->d_name.len);
3006 if (ret)
3007 goto out;
3008
3009 if (inode->i_nlink == 0) {
3010 ret = btrfs_orphan_add(trans, inode);
3011 if (ret)
3012 goto out;
3013 }
3014
3015 out:
3016 nr = trans->blocks_used;
3017 __unlink_end_trans(trans, root);
3018 btrfs_btree_balance_dirty(root, nr);
3019 return ret;
3020 }
3021
3022 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 struct inode *dir, u64 objectid,
3025 const char *name, int name_len)
3026 {
3027 struct btrfs_path *path;
3028 struct extent_buffer *leaf;
3029 struct btrfs_dir_item *di;
3030 struct btrfs_key key;
3031 u64 index;
3032 int ret;
3033 u64 dir_ino = btrfs_ino(dir);
3034
3035 path = btrfs_alloc_path();
3036 if (!path)
3037 return -ENOMEM;
3038
3039 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3040 name, name_len, -1);
3041 if (IS_ERR_OR_NULL(di)) {
3042 if (!di)
3043 ret = -ENOENT;
3044 else
3045 ret = PTR_ERR(di);
3046 goto out;
3047 }
3048
3049 leaf = path->nodes[0];
3050 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3051 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3052 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3053 if (ret) {
3054 btrfs_abort_transaction(trans, root, ret);
3055 goto out;
3056 }
3057 btrfs_release_path(path);
3058
3059 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3060 objectid, root->root_key.objectid,
3061 dir_ino, &index, name, name_len);
3062 if (ret < 0) {
3063 if (ret != -ENOENT) {
3064 btrfs_abort_transaction(trans, root, ret);
3065 goto out;
3066 }
3067 di = btrfs_search_dir_index_item(root, path, dir_ino,
3068 name, name_len);
3069 if (IS_ERR_OR_NULL(di)) {
3070 if (!di)
3071 ret = -ENOENT;
3072 else
3073 ret = PTR_ERR(di);
3074 btrfs_abort_transaction(trans, root, ret);
3075 goto out;
3076 }
3077
3078 leaf = path->nodes[0];
3079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3080 btrfs_release_path(path);
3081 index = key.offset;
3082 }
3083 btrfs_release_path(path);
3084
3085 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3086 if (ret) {
3087 btrfs_abort_transaction(trans, root, ret);
3088 goto out;
3089 }
3090
3091 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3092 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3093 ret = btrfs_update_inode(trans, root, dir);
3094 if (ret)
3095 btrfs_abort_transaction(trans, root, ret);
3096 out:
3097 btrfs_free_path(path);
3098 return ret;
3099 }
3100
3101 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3102 {
3103 struct inode *inode = dentry->d_inode;
3104 int err = 0;
3105 struct btrfs_root *root = BTRFS_I(dir)->root;
3106 struct btrfs_trans_handle *trans;
3107 unsigned long nr = 0;
3108
3109 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3110 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3111 return -ENOTEMPTY;
3112
3113 trans = __unlink_start_trans(dir, dentry);
3114 if (IS_ERR(trans))
3115 return PTR_ERR(trans);
3116
3117 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3118 err = btrfs_unlink_subvol(trans, root, dir,
3119 BTRFS_I(inode)->location.objectid,
3120 dentry->d_name.name,
3121 dentry->d_name.len);
3122 goto out;
3123 }
3124
3125 err = btrfs_orphan_add(trans, inode);
3126 if (err)
3127 goto out;
3128
3129 /* now the directory is empty */
3130 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3131 dentry->d_name.name, dentry->d_name.len);
3132 if (!err)
3133 btrfs_i_size_write(inode, 0);
3134 out:
3135 nr = trans->blocks_used;
3136 __unlink_end_trans(trans, root);
3137 btrfs_btree_balance_dirty(root, nr);
3138
3139 return err;
3140 }
3141
3142 /*
3143 * this can truncate away extent items, csum items and directory items.
3144 * It starts at a high offset and removes keys until it can't find
3145 * any higher than new_size
3146 *
3147 * csum items that cross the new i_size are truncated to the new size
3148 * as well.
3149 *
3150 * min_type is the minimum key type to truncate down to. If set to 0, this
3151 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3152 */
3153 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3154 struct btrfs_root *root,
3155 struct inode *inode,
3156 u64 new_size, u32 min_type)
3157 {
3158 struct btrfs_path *path;
3159 struct extent_buffer *leaf;
3160 struct btrfs_file_extent_item *fi;
3161 struct btrfs_key key;
3162 struct btrfs_key found_key;
3163 u64 extent_start = 0;
3164 u64 extent_num_bytes = 0;
3165 u64 extent_offset = 0;
3166 u64 item_end = 0;
3167 u64 mask = root->sectorsize - 1;
3168 u32 found_type = (u8)-1;
3169 int found_extent;
3170 int del_item;
3171 int pending_del_nr = 0;
3172 int pending_del_slot = 0;
3173 int extent_type = -1;
3174 int ret;
3175 int err = 0;
3176 u64 ino = btrfs_ino(inode);
3177
3178 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3179
3180 path = btrfs_alloc_path();
3181 if (!path)
3182 return -ENOMEM;
3183 path->reada = -1;
3184
3185 if (root->ref_cows || root == root->fs_info->tree_root)
3186 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3187
3188 /*
3189 * This function is also used to drop the items in the log tree before
3190 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3191 * it is used to drop the loged items. So we shouldn't kill the delayed
3192 * items.
3193 */
3194 if (min_type == 0 && root == BTRFS_I(inode)->root)
3195 btrfs_kill_delayed_inode_items(inode);
3196
3197 key.objectid = ino;
3198 key.offset = (u64)-1;
3199 key.type = (u8)-1;
3200
3201 search_again:
3202 path->leave_spinning = 1;
3203 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3204 if (ret < 0) {
3205 err = ret;
3206 goto out;
3207 }
3208
3209 if (ret > 0) {
3210 /* there are no items in the tree for us to truncate, we're
3211 * done
3212 */
3213 if (path->slots[0] == 0)
3214 goto out;
3215 path->slots[0]--;
3216 }
3217
3218 while (1) {
3219 fi = NULL;
3220 leaf = path->nodes[0];
3221 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3222 found_type = btrfs_key_type(&found_key);
3223
3224 if (found_key.objectid != ino)
3225 break;
3226
3227 if (found_type < min_type)
3228 break;
3229
3230 item_end = found_key.offset;
3231 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3232 fi = btrfs_item_ptr(leaf, path->slots[0],
3233 struct btrfs_file_extent_item);
3234 extent_type = btrfs_file_extent_type(leaf, fi);
3235 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3236 item_end +=
3237 btrfs_file_extent_num_bytes(leaf, fi);
3238 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3239 item_end += btrfs_file_extent_inline_len(leaf,
3240 fi);
3241 }
3242 item_end--;
3243 }
3244 if (found_type > min_type) {
3245 del_item = 1;
3246 } else {
3247 if (item_end < new_size)
3248 break;
3249 if (found_key.offset >= new_size)
3250 del_item = 1;
3251 else
3252 del_item = 0;
3253 }
3254 found_extent = 0;
3255 /* FIXME, shrink the extent if the ref count is only 1 */
3256 if (found_type != BTRFS_EXTENT_DATA_KEY)
3257 goto delete;
3258
3259 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3260 u64 num_dec;
3261 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3262 if (!del_item) {
3263 u64 orig_num_bytes =
3264 btrfs_file_extent_num_bytes(leaf, fi);
3265 extent_num_bytes = new_size -
3266 found_key.offset + root->sectorsize - 1;
3267 extent_num_bytes = extent_num_bytes &
3268 ~((u64)root->sectorsize - 1);
3269 btrfs_set_file_extent_num_bytes(leaf, fi,
3270 extent_num_bytes);
3271 num_dec = (orig_num_bytes -
3272 extent_num_bytes);
3273 if (root->ref_cows && extent_start != 0)
3274 inode_sub_bytes(inode, num_dec);
3275 btrfs_mark_buffer_dirty(leaf);
3276 } else {
3277 extent_num_bytes =
3278 btrfs_file_extent_disk_num_bytes(leaf,
3279 fi);
3280 extent_offset = found_key.offset -
3281 btrfs_file_extent_offset(leaf, fi);
3282
3283 /* FIXME blocksize != 4096 */
3284 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3285 if (extent_start != 0) {
3286 found_extent = 1;
3287 if (root->ref_cows)
3288 inode_sub_bytes(inode, num_dec);
3289 }
3290 }
3291 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3292 /*
3293 * we can't truncate inline items that have had
3294 * special encodings
3295 */
3296 if (!del_item &&
3297 btrfs_file_extent_compression(leaf, fi) == 0 &&
3298 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3299 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3300 u32 size = new_size - found_key.offset;
3301
3302 if (root->ref_cows) {
3303 inode_sub_bytes(inode, item_end + 1 -
3304 new_size);
3305 }
3306 size =
3307 btrfs_file_extent_calc_inline_size(size);
3308 btrfs_truncate_item(trans, root, path,
3309 size, 1);
3310 } else if (root->ref_cows) {
3311 inode_sub_bytes(inode, item_end + 1 -
3312 found_key.offset);
3313 }
3314 }
3315 delete:
3316 if (del_item) {
3317 if (!pending_del_nr) {
3318 /* no pending yet, add ourselves */
3319 pending_del_slot = path->slots[0];
3320 pending_del_nr = 1;
3321 } else if (pending_del_nr &&
3322 path->slots[0] + 1 == pending_del_slot) {
3323 /* hop on the pending chunk */
3324 pending_del_nr++;
3325 pending_del_slot = path->slots[0];
3326 } else {
3327 BUG();
3328 }
3329 } else {
3330 break;
3331 }
3332 if (found_extent && (root->ref_cows ||
3333 root == root->fs_info->tree_root)) {
3334 btrfs_set_path_blocking(path);
3335 ret = btrfs_free_extent(trans, root, extent_start,
3336 extent_num_bytes, 0,
3337 btrfs_header_owner(leaf),
3338 ino, extent_offset, 0);
3339 BUG_ON(ret);
3340 }
3341
3342 if (found_type == BTRFS_INODE_ITEM_KEY)
3343 break;
3344
3345 if (path->slots[0] == 0 ||
3346 path->slots[0] != pending_del_slot) {
3347 if (root->ref_cows &&
3348 BTRFS_I(inode)->location.objectid !=
3349 BTRFS_FREE_INO_OBJECTID) {
3350 err = -EAGAIN;
3351 goto out;
3352 }
3353 if (pending_del_nr) {
3354 ret = btrfs_del_items(trans, root, path,
3355 pending_del_slot,
3356 pending_del_nr);
3357 if (ret) {
3358 btrfs_abort_transaction(trans,
3359 root, ret);
3360 goto error;
3361 }
3362 pending_del_nr = 0;
3363 }
3364 btrfs_release_path(path);
3365 goto search_again;
3366 } else {
3367 path->slots[0]--;
3368 }
3369 }
3370 out:
3371 if (pending_del_nr) {
3372 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3373 pending_del_nr);
3374 if (ret)
3375 btrfs_abort_transaction(trans, root, ret);
3376 }
3377 error:
3378 btrfs_free_path(path);
3379 return err;
3380 }
3381
3382 /*
3383 * taken from block_truncate_page, but does cow as it zeros out
3384 * any bytes left in the last page in the file.
3385 */
3386 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3387 {
3388 struct inode *inode = mapping->host;
3389 struct btrfs_root *root = BTRFS_I(inode)->root;
3390 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3391 struct btrfs_ordered_extent *ordered;
3392 struct extent_state *cached_state = NULL;
3393 char *kaddr;
3394 u32 blocksize = root->sectorsize;
3395 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3396 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3397 struct page *page;
3398 gfp_t mask = btrfs_alloc_write_mask(mapping);
3399 int ret = 0;
3400 u64 page_start;
3401 u64 page_end;
3402
3403 if ((offset & (blocksize - 1)) == 0)
3404 goto out;
3405 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3406 if (ret)
3407 goto out;
3408
3409 ret = -ENOMEM;
3410 again:
3411 page = find_or_create_page(mapping, index, mask);
3412 if (!page) {
3413 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3414 goto out;
3415 }
3416
3417 page_start = page_offset(page);
3418 page_end = page_start + PAGE_CACHE_SIZE - 1;
3419
3420 if (!PageUptodate(page)) {
3421 ret = btrfs_readpage(NULL, page);
3422 lock_page(page);
3423 if (page->mapping != mapping) {
3424 unlock_page(page);
3425 page_cache_release(page);
3426 goto again;
3427 }
3428 if (!PageUptodate(page)) {
3429 ret = -EIO;
3430 goto out_unlock;
3431 }
3432 }
3433 wait_on_page_writeback(page);
3434
3435 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3436 set_page_extent_mapped(page);
3437
3438 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3439 if (ordered) {
3440 unlock_extent_cached(io_tree, page_start, page_end,
3441 &cached_state, GFP_NOFS);
3442 unlock_page(page);
3443 page_cache_release(page);
3444 btrfs_start_ordered_extent(inode, ordered, 1);
3445 btrfs_put_ordered_extent(ordered);
3446 goto again;
3447 }
3448
3449 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3450 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3451 0, 0, &cached_state, GFP_NOFS);
3452
3453 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3454 &cached_state);
3455 if (ret) {
3456 unlock_extent_cached(io_tree, page_start, page_end,
3457 &cached_state, GFP_NOFS);
3458 goto out_unlock;
3459 }
3460
3461 ret = 0;
3462 if (offset != PAGE_CACHE_SIZE) {
3463 kaddr = kmap(page);
3464 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3465 flush_dcache_page(page);
3466 kunmap(page);
3467 }
3468 ClearPageChecked(page);
3469 set_page_dirty(page);
3470 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3471 GFP_NOFS);
3472
3473 out_unlock:
3474 if (ret)
3475 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3476 unlock_page(page);
3477 page_cache_release(page);
3478 out:
3479 return ret;
3480 }
3481
3482 /*
3483 * This function puts in dummy file extents for the area we're creating a hole
3484 * for. So if we are truncating this file to a larger size we need to insert
3485 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3486 * the range between oldsize and size
3487 */
3488 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3489 {
3490 struct btrfs_trans_handle *trans;
3491 struct btrfs_root *root = BTRFS_I(inode)->root;
3492 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3493 struct extent_map *em = NULL;
3494 struct extent_state *cached_state = NULL;
3495 u64 mask = root->sectorsize - 1;
3496 u64 hole_start = (oldsize + mask) & ~mask;
3497 u64 block_end = (size + mask) & ~mask;
3498 u64 last_byte;
3499 u64 cur_offset;
3500 u64 hole_size;
3501 int err = 0;
3502
3503 if (size <= hole_start)
3504 return 0;
3505
3506 while (1) {
3507 struct btrfs_ordered_extent *ordered;
3508 btrfs_wait_ordered_range(inode, hole_start,
3509 block_end - hole_start);
3510 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3511 &cached_state);
3512 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3513 if (!ordered)
3514 break;
3515 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3516 &cached_state, GFP_NOFS);
3517 btrfs_put_ordered_extent(ordered);
3518 }
3519
3520 cur_offset = hole_start;
3521 while (1) {
3522 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3523 block_end - cur_offset, 0);
3524 if (IS_ERR(em)) {
3525 err = PTR_ERR(em);
3526 break;
3527 }
3528 last_byte = min(extent_map_end(em), block_end);
3529 last_byte = (last_byte + mask) & ~mask;
3530 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3531 u64 hint_byte = 0;
3532 hole_size = last_byte - cur_offset;
3533
3534 trans = btrfs_start_transaction(root, 3);
3535 if (IS_ERR(trans)) {
3536 err = PTR_ERR(trans);
3537 break;
3538 }
3539
3540 err = btrfs_drop_extents(trans, inode, cur_offset,
3541 cur_offset + hole_size,
3542 &hint_byte, 1);
3543 if (err) {
3544 btrfs_abort_transaction(trans, root, err);
3545 btrfs_end_transaction(trans, root);
3546 break;
3547 }
3548
3549 err = btrfs_insert_file_extent(trans, root,
3550 btrfs_ino(inode), cur_offset, 0,
3551 0, hole_size, 0, hole_size,
3552 0, 0, 0);
3553 if (err) {
3554 btrfs_abort_transaction(trans, root, err);
3555 btrfs_end_transaction(trans, root);
3556 break;
3557 }
3558
3559 btrfs_drop_extent_cache(inode, hole_start,
3560 last_byte - 1, 0);
3561
3562 btrfs_update_inode(trans, root, inode);
3563 btrfs_end_transaction(trans, root);
3564 }
3565 free_extent_map(em);
3566 em = NULL;
3567 cur_offset = last_byte;
3568 if (cur_offset >= block_end)
3569 break;
3570 }
3571
3572 free_extent_map(em);
3573 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3574 GFP_NOFS);
3575 return err;
3576 }
3577
3578 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3579 {
3580 struct btrfs_root *root = BTRFS_I(inode)->root;
3581 struct btrfs_trans_handle *trans;
3582 loff_t oldsize = i_size_read(inode);
3583 int ret;
3584
3585 if (newsize == oldsize)
3586 return 0;
3587
3588 if (newsize > oldsize) {
3589 truncate_pagecache(inode, oldsize, newsize);
3590 ret = btrfs_cont_expand(inode, oldsize, newsize);
3591 if (ret)
3592 return ret;
3593
3594 trans = btrfs_start_transaction(root, 1);
3595 if (IS_ERR(trans))
3596 return PTR_ERR(trans);
3597
3598 i_size_write(inode, newsize);
3599 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3600 ret = btrfs_update_inode(trans, root, inode);
3601 btrfs_end_transaction(trans, root);
3602 } else {
3603
3604 /*
3605 * We're truncating a file that used to have good data down to
3606 * zero. Make sure it gets into the ordered flush list so that
3607 * any new writes get down to disk quickly.
3608 */
3609 if (newsize == 0)
3610 BTRFS_I(inode)->ordered_data_close = 1;
3611
3612 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3613 truncate_setsize(inode, newsize);
3614 ret = btrfs_truncate(inode);
3615 }
3616
3617 return ret;
3618 }
3619
3620 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3621 {
3622 struct inode *inode = dentry->d_inode;
3623 struct btrfs_root *root = BTRFS_I(inode)->root;
3624 int err;
3625
3626 if (btrfs_root_readonly(root))
3627 return -EROFS;
3628
3629 err = inode_change_ok(inode, attr);
3630 if (err)
3631 return err;
3632
3633 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3634 err = btrfs_setsize(inode, attr->ia_size);
3635 if (err)
3636 return err;
3637 }
3638
3639 if (attr->ia_valid) {
3640 setattr_copy(inode, attr);
3641 err = btrfs_dirty_inode(inode);
3642
3643 if (!err && attr->ia_valid & ATTR_MODE)
3644 err = btrfs_acl_chmod(inode);
3645 }
3646
3647 return err;
3648 }
3649
3650 void btrfs_evict_inode(struct inode *inode)
3651 {
3652 struct btrfs_trans_handle *trans;
3653 struct btrfs_root *root = BTRFS_I(inode)->root;
3654 struct btrfs_block_rsv *rsv, *global_rsv;
3655 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3656 unsigned long nr;
3657 int ret;
3658
3659 trace_btrfs_inode_evict(inode);
3660
3661 truncate_inode_pages(&inode->i_data, 0);
3662 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3663 btrfs_is_free_space_inode(root, inode)))
3664 goto no_delete;
3665
3666 if (is_bad_inode(inode)) {
3667 btrfs_orphan_del(NULL, inode);
3668 goto no_delete;
3669 }
3670 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3671 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3672
3673 if (root->fs_info->log_root_recovering) {
3674 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3675 goto no_delete;
3676 }
3677
3678 if (inode->i_nlink > 0) {
3679 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3680 goto no_delete;
3681 }
3682
3683 rsv = btrfs_alloc_block_rsv(root);
3684 if (!rsv) {
3685 btrfs_orphan_del(NULL, inode);
3686 goto no_delete;
3687 }
3688 rsv->size = min_size;
3689 global_rsv = &root->fs_info->global_block_rsv;
3690
3691 btrfs_i_size_write(inode, 0);
3692
3693 /*
3694 * This is a bit simpler than btrfs_truncate since
3695 *
3696 * 1) We've already reserved our space for our orphan item in the
3697 * unlink.
3698 * 2) We're going to delete the inode item, so we don't need to update
3699 * it at all.
3700 *
3701 * So we just need to reserve some slack space in case we add bytes when
3702 * doing the truncate.
3703 */
3704 while (1) {
3705 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3706
3707 /*
3708 * Try and steal from the global reserve since we will
3709 * likely not use this space anyway, we want to try as
3710 * hard as possible to get this to work.
3711 */
3712 if (ret)
3713 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3714
3715 if (ret) {
3716 printk(KERN_WARNING "Could not get space for a "
3717 "delete, will truncate on mount %d\n", ret);
3718 btrfs_orphan_del(NULL, inode);
3719 btrfs_free_block_rsv(root, rsv);
3720 goto no_delete;
3721 }
3722
3723 trans = btrfs_start_transaction(root, 0);
3724 if (IS_ERR(trans)) {
3725 btrfs_orphan_del(NULL, inode);
3726 btrfs_free_block_rsv(root, rsv);
3727 goto no_delete;
3728 }
3729
3730 trans->block_rsv = rsv;
3731
3732 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3733 if (ret != -EAGAIN)
3734 break;
3735
3736 nr = trans->blocks_used;
3737 btrfs_end_transaction(trans, root);
3738 trans = NULL;
3739 btrfs_btree_balance_dirty(root, nr);
3740 }
3741
3742 btrfs_free_block_rsv(root, rsv);
3743
3744 if (ret == 0) {
3745 trans->block_rsv = root->orphan_block_rsv;
3746 ret = btrfs_orphan_del(trans, inode);
3747 BUG_ON(ret);
3748 }
3749
3750 trans->block_rsv = &root->fs_info->trans_block_rsv;
3751 if (!(root == root->fs_info->tree_root ||
3752 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3753 btrfs_return_ino(root, btrfs_ino(inode));
3754
3755 nr = trans->blocks_used;
3756 btrfs_end_transaction(trans, root);
3757 btrfs_btree_balance_dirty(root, nr);
3758 no_delete:
3759 end_writeback(inode);
3760 return;
3761 }
3762
3763 /*
3764 * this returns the key found in the dir entry in the location pointer.
3765 * If no dir entries were found, location->objectid is 0.
3766 */
3767 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3768 struct btrfs_key *location)
3769 {
3770 const char *name = dentry->d_name.name;
3771 int namelen = dentry->d_name.len;
3772 struct btrfs_dir_item *di;
3773 struct btrfs_path *path;
3774 struct btrfs_root *root = BTRFS_I(dir)->root;
3775 int ret = 0;
3776
3777 path = btrfs_alloc_path();
3778 if (!path)
3779 return -ENOMEM;
3780
3781 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3782 namelen, 0);
3783 if (IS_ERR(di))
3784 ret = PTR_ERR(di);
3785
3786 if (IS_ERR_OR_NULL(di))
3787 goto out_err;
3788
3789 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3790 out:
3791 btrfs_free_path(path);
3792 return ret;
3793 out_err:
3794 location->objectid = 0;
3795 goto out;
3796 }
3797
3798 /*
3799 * when we hit a tree root in a directory, the btrfs part of the inode
3800 * needs to be changed to reflect the root directory of the tree root. This
3801 * is kind of like crossing a mount point.
3802 */
3803 static int fixup_tree_root_location(struct btrfs_root *root,
3804 struct inode *dir,
3805 struct dentry *dentry,
3806 struct btrfs_key *location,
3807 struct btrfs_root **sub_root)
3808 {
3809 struct btrfs_path *path;
3810 struct btrfs_root *new_root;
3811 struct btrfs_root_ref *ref;
3812 struct extent_buffer *leaf;
3813 int ret;
3814 int err = 0;
3815
3816 path = btrfs_alloc_path();
3817 if (!path) {
3818 err = -ENOMEM;
3819 goto out;
3820 }
3821
3822 err = -ENOENT;
3823 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3824 BTRFS_I(dir)->root->root_key.objectid,
3825 location->objectid);
3826 if (ret) {
3827 if (ret < 0)
3828 err = ret;
3829 goto out;
3830 }
3831
3832 leaf = path->nodes[0];
3833 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3834 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3835 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3836 goto out;
3837
3838 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3839 (unsigned long)(ref + 1),
3840 dentry->d_name.len);
3841 if (ret)
3842 goto out;
3843
3844 btrfs_release_path(path);
3845
3846 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3847 if (IS_ERR(new_root)) {
3848 err = PTR_ERR(new_root);
3849 goto out;
3850 }
3851
3852 if (btrfs_root_refs(&new_root->root_item) == 0) {
3853 err = -ENOENT;
3854 goto out;
3855 }
3856
3857 *sub_root = new_root;
3858 location->objectid = btrfs_root_dirid(&new_root->root_item);
3859 location->type = BTRFS_INODE_ITEM_KEY;
3860 location->offset = 0;
3861 err = 0;
3862 out:
3863 btrfs_free_path(path);
3864 return err;
3865 }
3866
3867 static void inode_tree_add(struct inode *inode)
3868 {
3869 struct btrfs_root *root = BTRFS_I(inode)->root;
3870 struct btrfs_inode *entry;
3871 struct rb_node **p;
3872 struct rb_node *parent;
3873 u64 ino = btrfs_ino(inode);
3874 again:
3875 p = &root->inode_tree.rb_node;
3876 parent = NULL;
3877
3878 if (inode_unhashed(inode))
3879 return;
3880
3881 spin_lock(&root->inode_lock);
3882 while (*p) {
3883 parent = *p;
3884 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3885
3886 if (ino < btrfs_ino(&entry->vfs_inode))
3887 p = &parent->rb_left;
3888 else if (ino > btrfs_ino(&entry->vfs_inode))
3889 p = &parent->rb_right;
3890 else {
3891 WARN_ON(!(entry->vfs_inode.i_state &
3892 (I_WILL_FREE | I_FREEING)));
3893 rb_erase(parent, &root->inode_tree);
3894 RB_CLEAR_NODE(parent);
3895 spin_unlock(&root->inode_lock);
3896 goto again;
3897 }
3898 }
3899 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3900 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3901 spin_unlock(&root->inode_lock);
3902 }
3903
3904 static void inode_tree_del(struct inode *inode)
3905 {
3906 struct btrfs_root *root = BTRFS_I(inode)->root;
3907 int empty = 0;
3908
3909 spin_lock(&root->inode_lock);
3910 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3911 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3912 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3913 empty = RB_EMPTY_ROOT(&root->inode_tree);
3914 }
3915 spin_unlock(&root->inode_lock);
3916
3917 /*
3918 * Free space cache has inodes in the tree root, but the tree root has a
3919 * root_refs of 0, so this could end up dropping the tree root as a
3920 * snapshot, so we need the extra !root->fs_info->tree_root check to
3921 * make sure we don't drop it.
3922 */
3923 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3924 root != root->fs_info->tree_root) {
3925 synchronize_srcu(&root->fs_info->subvol_srcu);
3926 spin_lock(&root->inode_lock);
3927 empty = RB_EMPTY_ROOT(&root->inode_tree);
3928 spin_unlock(&root->inode_lock);
3929 if (empty)
3930 btrfs_add_dead_root(root);
3931 }
3932 }
3933
3934 void btrfs_invalidate_inodes(struct btrfs_root *root)
3935 {
3936 struct rb_node *node;
3937 struct rb_node *prev;
3938 struct btrfs_inode *entry;
3939 struct inode *inode;
3940 u64 objectid = 0;
3941
3942 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3943
3944 spin_lock(&root->inode_lock);
3945 again:
3946 node = root->inode_tree.rb_node;
3947 prev = NULL;
3948 while (node) {
3949 prev = node;
3950 entry = rb_entry(node, struct btrfs_inode, rb_node);
3951
3952 if (objectid < btrfs_ino(&entry->vfs_inode))
3953 node = node->rb_left;
3954 else if (objectid > btrfs_ino(&entry->vfs_inode))
3955 node = node->rb_right;
3956 else
3957 break;
3958 }
3959 if (!node) {
3960 while (prev) {
3961 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3962 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3963 node = prev;
3964 break;
3965 }
3966 prev = rb_next(prev);
3967 }
3968 }
3969 while (node) {
3970 entry = rb_entry(node, struct btrfs_inode, rb_node);
3971 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3972 inode = igrab(&entry->vfs_inode);
3973 if (inode) {
3974 spin_unlock(&root->inode_lock);
3975 if (atomic_read(&inode->i_count) > 1)
3976 d_prune_aliases(inode);
3977 /*
3978 * btrfs_drop_inode will have it removed from
3979 * the inode cache when its usage count
3980 * hits zero.
3981 */
3982 iput(inode);
3983 cond_resched();
3984 spin_lock(&root->inode_lock);
3985 goto again;
3986 }
3987
3988 if (cond_resched_lock(&root->inode_lock))
3989 goto again;
3990
3991 node = rb_next(node);
3992 }
3993 spin_unlock(&root->inode_lock);
3994 }
3995
3996 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3997 {
3998 struct btrfs_iget_args *args = p;
3999 inode->i_ino = args->ino;
4000 BTRFS_I(inode)->root = args->root;
4001 btrfs_set_inode_space_info(args->root, inode);
4002 return 0;
4003 }
4004
4005 static int btrfs_find_actor(struct inode *inode, void *opaque)
4006 {
4007 struct btrfs_iget_args *args = opaque;
4008 return args->ino == btrfs_ino(inode) &&
4009 args->root == BTRFS_I(inode)->root;
4010 }
4011
4012 static struct inode *btrfs_iget_locked(struct super_block *s,
4013 u64 objectid,
4014 struct btrfs_root *root)
4015 {
4016 struct inode *inode;
4017 struct btrfs_iget_args args;
4018 args.ino = objectid;
4019 args.root = root;
4020
4021 inode = iget5_locked(s, objectid, btrfs_find_actor,
4022 btrfs_init_locked_inode,
4023 (void *)&args);
4024 return inode;
4025 }
4026
4027 /* Get an inode object given its location and corresponding root.
4028 * Returns in *is_new if the inode was read from disk
4029 */
4030 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4031 struct btrfs_root *root, int *new)
4032 {
4033 struct inode *inode;
4034
4035 inode = btrfs_iget_locked(s, location->objectid, root);
4036 if (!inode)
4037 return ERR_PTR(-ENOMEM);
4038
4039 if (inode->i_state & I_NEW) {
4040 BTRFS_I(inode)->root = root;
4041 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4042 btrfs_read_locked_inode(inode);
4043 if (!is_bad_inode(inode)) {
4044 inode_tree_add(inode);
4045 unlock_new_inode(inode);
4046 if (new)
4047 *new = 1;
4048 } else {
4049 unlock_new_inode(inode);
4050 iput(inode);
4051 inode = ERR_PTR(-ESTALE);
4052 }
4053 }
4054
4055 return inode;
4056 }
4057
4058 static struct inode *new_simple_dir(struct super_block *s,
4059 struct btrfs_key *key,
4060 struct btrfs_root *root)
4061 {
4062 struct inode *inode = new_inode(s);
4063
4064 if (!inode)
4065 return ERR_PTR(-ENOMEM);
4066
4067 BTRFS_I(inode)->root = root;
4068 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4069 BTRFS_I(inode)->dummy_inode = 1;
4070
4071 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4072 inode->i_op = &simple_dir_inode_operations;
4073 inode->i_fop = &simple_dir_operations;
4074 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4075 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4076
4077 return inode;
4078 }
4079
4080 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4081 {
4082 struct inode *inode;
4083 struct btrfs_root *root = BTRFS_I(dir)->root;
4084 struct btrfs_root *sub_root = root;
4085 struct btrfs_key location;
4086 int index;
4087 int ret = 0;
4088
4089 if (dentry->d_name.len > BTRFS_NAME_LEN)
4090 return ERR_PTR(-ENAMETOOLONG);
4091
4092 if (unlikely(d_need_lookup(dentry))) {
4093 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4094 kfree(dentry->d_fsdata);
4095 dentry->d_fsdata = NULL;
4096 /* This thing is hashed, drop it for now */
4097 d_drop(dentry);
4098 } else {
4099 ret = btrfs_inode_by_name(dir, dentry, &location);
4100 }
4101
4102 if (ret < 0)
4103 return ERR_PTR(ret);
4104
4105 if (location.objectid == 0)
4106 return NULL;
4107
4108 if (location.type == BTRFS_INODE_ITEM_KEY) {
4109 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4110 return inode;
4111 }
4112
4113 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4114
4115 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4116 ret = fixup_tree_root_location(root, dir, dentry,
4117 &location, &sub_root);
4118 if (ret < 0) {
4119 if (ret != -ENOENT)
4120 inode = ERR_PTR(ret);
4121 else
4122 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4123 } else {
4124 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4125 }
4126 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4127
4128 if (!IS_ERR(inode) && root != sub_root) {
4129 down_read(&root->fs_info->cleanup_work_sem);
4130 if (!(inode->i_sb->s_flags & MS_RDONLY))
4131 ret = btrfs_orphan_cleanup(sub_root);
4132 up_read(&root->fs_info->cleanup_work_sem);
4133 if (ret)
4134 inode = ERR_PTR(ret);
4135 }
4136
4137 return inode;
4138 }
4139
4140 static int btrfs_dentry_delete(const struct dentry *dentry)
4141 {
4142 struct btrfs_root *root;
4143
4144 if (!dentry->d_inode && !IS_ROOT(dentry))
4145 dentry = dentry->d_parent;
4146
4147 if (dentry->d_inode) {
4148 root = BTRFS_I(dentry->d_inode)->root;
4149 if (btrfs_root_refs(&root->root_item) == 0)
4150 return 1;
4151 }
4152 return 0;
4153 }
4154
4155 static void btrfs_dentry_release(struct dentry *dentry)
4156 {
4157 if (dentry->d_fsdata)
4158 kfree(dentry->d_fsdata);
4159 }
4160
4161 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4162 struct nameidata *nd)
4163 {
4164 struct dentry *ret;
4165
4166 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4167 if (unlikely(d_need_lookup(dentry))) {
4168 spin_lock(&dentry->d_lock);
4169 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4170 spin_unlock(&dentry->d_lock);
4171 }
4172 return ret;
4173 }
4174
4175 unsigned char btrfs_filetype_table[] = {
4176 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4177 };
4178
4179 static int btrfs_real_readdir(struct file *filp, void *dirent,
4180 filldir_t filldir)
4181 {
4182 struct inode *inode = filp->f_dentry->d_inode;
4183 struct btrfs_root *root = BTRFS_I(inode)->root;
4184 struct btrfs_item *item;
4185 struct btrfs_dir_item *di;
4186 struct btrfs_key key;
4187 struct btrfs_key found_key;
4188 struct btrfs_path *path;
4189 struct list_head ins_list;
4190 struct list_head del_list;
4191 struct qstr q;
4192 int ret;
4193 struct extent_buffer *leaf;
4194 int slot;
4195 unsigned char d_type;
4196 int over = 0;
4197 u32 di_cur;
4198 u32 di_total;
4199 u32 di_len;
4200 int key_type = BTRFS_DIR_INDEX_KEY;
4201 char tmp_name[32];
4202 char *name_ptr;
4203 int name_len;
4204 int is_curr = 0; /* filp->f_pos points to the current index? */
4205
4206 /* FIXME, use a real flag for deciding about the key type */
4207 if (root->fs_info->tree_root == root)
4208 key_type = BTRFS_DIR_ITEM_KEY;
4209
4210 /* special case for "." */
4211 if (filp->f_pos == 0) {
4212 over = filldir(dirent, ".", 1,
4213 filp->f_pos, btrfs_ino(inode), DT_DIR);
4214 if (over)
4215 return 0;
4216 filp->f_pos = 1;
4217 }
4218 /* special case for .., just use the back ref */
4219 if (filp->f_pos == 1) {
4220 u64 pino = parent_ino(filp->f_path.dentry);
4221 over = filldir(dirent, "..", 2,
4222 filp->f_pos, pino, DT_DIR);
4223 if (over)
4224 return 0;
4225 filp->f_pos = 2;
4226 }
4227 path = btrfs_alloc_path();
4228 if (!path)
4229 return -ENOMEM;
4230
4231 path->reada = 1;
4232
4233 if (key_type == BTRFS_DIR_INDEX_KEY) {
4234 INIT_LIST_HEAD(&ins_list);
4235 INIT_LIST_HEAD(&del_list);
4236 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4237 }
4238
4239 btrfs_set_key_type(&key, key_type);
4240 key.offset = filp->f_pos;
4241 key.objectid = btrfs_ino(inode);
4242
4243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4244 if (ret < 0)
4245 goto err;
4246
4247 while (1) {
4248 leaf = path->nodes[0];
4249 slot = path->slots[0];
4250 if (slot >= btrfs_header_nritems(leaf)) {
4251 ret = btrfs_next_leaf(root, path);
4252 if (ret < 0)
4253 goto err;
4254 else if (ret > 0)
4255 break;
4256 continue;
4257 }
4258
4259 item = btrfs_item_nr(leaf, slot);
4260 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4261
4262 if (found_key.objectid != key.objectid)
4263 break;
4264 if (btrfs_key_type(&found_key) != key_type)
4265 break;
4266 if (found_key.offset < filp->f_pos)
4267 goto next;
4268 if (key_type == BTRFS_DIR_INDEX_KEY &&
4269 btrfs_should_delete_dir_index(&del_list,
4270 found_key.offset))
4271 goto next;
4272
4273 filp->f_pos = found_key.offset;
4274 is_curr = 1;
4275
4276 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4277 di_cur = 0;
4278 di_total = btrfs_item_size(leaf, item);
4279
4280 while (di_cur < di_total) {
4281 struct btrfs_key location;
4282 struct dentry *tmp;
4283
4284 if (verify_dir_item(root, leaf, di))
4285 break;
4286
4287 name_len = btrfs_dir_name_len(leaf, di);
4288 if (name_len <= sizeof(tmp_name)) {
4289 name_ptr = tmp_name;
4290 } else {
4291 name_ptr = kmalloc(name_len, GFP_NOFS);
4292 if (!name_ptr) {
4293 ret = -ENOMEM;
4294 goto err;
4295 }
4296 }
4297 read_extent_buffer(leaf, name_ptr,
4298 (unsigned long)(di + 1), name_len);
4299
4300 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4301 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4302
4303 q.name = name_ptr;
4304 q.len = name_len;
4305 q.hash = full_name_hash(q.name, q.len);
4306 tmp = d_lookup(filp->f_dentry, &q);
4307 if (!tmp) {
4308 struct btrfs_key *newkey;
4309
4310 newkey = kzalloc(sizeof(struct btrfs_key),
4311 GFP_NOFS);
4312 if (!newkey)
4313 goto no_dentry;
4314 tmp = d_alloc(filp->f_dentry, &q);
4315 if (!tmp) {
4316 kfree(newkey);
4317 dput(tmp);
4318 goto no_dentry;
4319 }
4320 memcpy(newkey, &location,
4321 sizeof(struct btrfs_key));
4322 tmp->d_fsdata = newkey;
4323 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4324 d_rehash(tmp);
4325 dput(tmp);
4326 } else {
4327 dput(tmp);
4328 }
4329 no_dentry:
4330 /* is this a reference to our own snapshot? If so
4331 * skip it
4332 */
4333 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4334 location.objectid == root->root_key.objectid) {
4335 over = 0;
4336 goto skip;
4337 }
4338 over = filldir(dirent, name_ptr, name_len,
4339 found_key.offset, location.objectid,
4340 d_type);
4341
4342 skip:
4343 if (name_ptr != tmp_name)
4344 kfree(name_ptr);
4345
4346 if (over)
4347 goto nopos;
4348 di_len = btrfs_dir_name_len(leaf, di) +
4349 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4350 di_cur += di_len;
4351 di = (struct btrfs_dir_item *)((char *)di + di_len);
4352 }
4353 next:
4354 path->slots[0]++;
4355 }
4356
4357 if (key_type == BTRFS_DIR_INDEX_KEY) {
4358 if (is_curr)
4359 filp->f_pos++;
4360 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4361 &ins_list);
4362 if (ret)
4363 goto nopos;
4364 }
4365
4366 /* Reached end of directory/root. Bump pos past the last item. */
4367 if (key_type == BTRFS_DIR_INDEX_KEY)
4368 /*
4369 * 32-bit glibc will use getdents64, but then strtol -
4370 * so the last number we can serve is this.
4371 */
4372 filp->f_pos = 0x7fffffff;
4373 else
4374 filp->f_pos++;
4375 nopos:
4376 ret = 0;
4377 err:
4378 if (key_type == BTRFS_DIR_INDEX_KEY)
4379 btrfs_put_delayed_items(&ins_list, &del_list);
4380 btrfs_free_path(path);
4381 return ret;
4382 }
4383
4384 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4385 {
4386 struct btrfs_root *root = BTRFS_I(inode)->root;
4387 struct btrfs_trans_handle *trans;
4388 int ret = 0;
4389 bool nolock = false;
4390
4391 if (BTRFS_I(inode)->dummy_inode)
4392 return 0;
4393
4394 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4395 nolock = true;
4396
4397 if (wbc->sync_mode == WB_SYNC_ALL) {
4398 if (nolock)
4399 trans = btrfs_join_transaction_nolock(root);
4400 else
4401 trans = btrfs_join_transaction(root);
4402 if (IS_ERR(trans))
4403 return PTR_ERR(trans);
4404 if (nolock)
4405 ret = btrfs_end_transaction_nolock(trans, root);
4406 else
4407 ret = btrfs_commit_transaction(trans, root);
4408 }
4409 return ret;
4410 }
4411
4412 /*
4413 * This is somewhat expensive, updating the tree every time the
4414 * inode changes. But, it is most likely to find the inode in cache.
4415 * FIXME, needs more benchmarking...there are no reasons other than performance
4416 * to keep or drop this code.
4417 */
4418 int btrfs_dirty_inode(struct inode *inode)
4419 {
4420 struct btrfs_root *root = BTRFS_I(inode)->root;
4421 struct btrfs_trans_handle *trans;
4422 int ret;
4423
4424 if (BTRFS_I(inode)->dummy_inode)
4425 return 0;
4426
4427 trans = btrfs_join_transaction(root);
4428 if (IS_ERR(trans))
4429 return PTR_ERR(trans);
4430
4431 ret = btrfs_update_inode(trans, root, inode);
4432 if (ret && ret == -ENOSPC) {
4433 /* whoops, lets try again with the full transaction */
4434 btrfs_end_transaction(trans, root);
4435 trans = btrfs_start_transaction(root, 1);
4436 if (IS_ERR(trans))
4437 return PTR_ERR(trans);
4438
4439 ret = btrfs_update_inode(trans, root, inode);
4440 }
4441 btrfs_end_transaction(trans, root);
4442 if (BTRFS_I(inode)->delayed_node)
4443 btrfs_balance_delayed_items(root);
4444
4445 return ret;
4446 }
4447
4448 /*
4449 * This is a copy of file_update_time. We need this so we can return error on
4450 * ENOSPC for updating the inode in the case of file write and mmap writes.
4451 */
4452 int btrfs_update_time(struct file *file)
4453 {
4454 struct inode *inode = file->f_path.dentry->d_inode;
4455 struct timespec now;
4456 int ret;
4457 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4458
4459 /* First try to exhaust all avenues to not sync */
4460 if (IS_NOCMTIME(inode))
4461 return 0;
4462
4463 now = current_fs_time(inode->i_sb);
4464 if (!timespec_equal(&inode->i_mtime, &now))
4465 sync_it = S_MTIME;
4466
4467 if (!timespec_equal(&inode->i_ctime, &now))
4468 sync_it |= S_CTIME;
4469
4470 if (IS_I_VERSION(inode))
4471 sync_it |= S_VERSION;
4472
4473 if (!sync_it)
4474 return 0;
4475
4476 /* Finally allowed to write? Takes lock. */
4477 if (mnt_want_write_file(file))
4478 return 0;
4479
4480 /* Only change inode inside the lock region */
4481 if (sync_it & S_VERSION)
4482 inode_inc_iversion(inode);
4483 if (sync_it & S_CTIME)
4484 inode->i_ctime = now;
4485 if (sync_it & S_MTIME)
4486 inode->i_mtime = now;
4487 ret = btrfs_dirty_inode(inode);
4488 if (!ret)
4489 mark_inode_dirty_sync(inode);
4490 mnt_drop_write(file->f_path.mnt);
4491 return ret;
4492 }
4493
4494 /*
4495 * find the highest existing sequence number in a directory
4496 * and then set the in-memory index_cnt variable to reflect
4497 * free sequence numbers
4498 */
4499 static int btrfs_set_inode_index_count(struct inode *inode)
4500 {
4501 struct btrfs_root *root = BTRFS_I(inode)->root;
4502 struct btrfs_key key, found_key;
4503 struct btrfs_path *path;
4504 struct extent_buffer *leaf;
4505 int ret;
4506
4507 key.objectid = btrfs_ino(inode);
4508 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4509 key.offset = (u64)-1;
4510
4511 path = btrfs_alloc_path();
4512 if (!path)
4513 return -ENOMEM;
4514
4515 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4516 if (ret < 0)
4517 goto out;
4518 /* FIXME: we should be able to handle this */
4519 if (ret == 0)
4520 goto out;
4521 ret = 0;
4522
4523 /*
4524 * MAGIC NUMBER EXPLANATION:
4525 * since we search a directory based on f_pos we have to start at 2
4526 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4527 * else has to start at 2
4528 */
4529 if (path->slots[0] == 0) {
4530 BTRFS_I(inode)->index_cnt = 2;
4531 goto out;
4532 }
4533
4534 path->slots[0]--;
4535
4536 leaf = path->nodes[0];
4537 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4538
4539 if (found_key.objectid != btrfs_ino(inode) ||
4540 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4541 BTRFS_I(inode)->index_cnt = 2;
4542 goto out;
4543 }
4544
4545 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4546 out:
4547 btrfs_free_path(path);
4548 return ret;
4549 }
4550
4551 /*
4552 * helper to find a free sequence number in a given directory. This current
4553 * code is very simple, later versions will do smarter things in the btree
4554 */
4555 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4556 {
4557 int ret = 0;
4558
4559 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4560 ret = btrfs_inode_delayed_dir_index_count(dir);
4561 if (ret) {
4562 ret = btrfs_set_inode_index_count(dir);
4563 if (ret)
4564 return ret;
4565 }
4566 }
4567
4568 *index = BTRFS_I(dir)->index_cnt;
4569 BTRFS_I(dir)->index_cnt++;
4570
4571 return ret;
4572 }
4573
4574 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4575 struct btrfs_root *root,
4576 struct inode *dir,
4577 const char *name, int name_len,
4578 u64 ref_objectid, u64 objectid,
4579 umode_t mode, u64 *index)
4580 {
4581 struct inode *inode;
4582 struct btrfs_inode_item *inode_item;
4583 struct btrfs_key *location;
4584 struct btrfs_path *path;
4585 struct btrfs_inode_ref *ref;
4586 struct btrfs_key key[2];
4587 u32 sizes[2];
4588 unsigned long ptr;
4589 int ret;
4590 int owner;
4591
4592 path = btrfs_alloc_path();
4593 if (!path)
4594 return ERR_PTR(-ENOMEM);
4595
4596 inode = new_inode(root->fs_info->sb);
4597 if (!inode) {
4598 btrfs_free_path(path);
4599 return ERR_PTR(-ENOMEM);
4600 }
4601
4602 /*
4603 * we have to initialize this early, so we can reclaim the inode
4604 * number if we fail afterwards in this function.
4605 */
4606 inode->i_ino = objectid;
4607
4608 if (dir) {
4609 trace_btrfs_inode_request(dir);
4610
4611 ret = btrfs_set_inode_index(dir, index);
4612 if (ret) {
4613 btrfs_free_path(path);
4614 iput(inode);
4615 return ERR_PTR(ret);
4616 }
4617 }
4618 /*
4619 * index_cnt is ignored for everything but a dir,
4620 * btrfs_get_inode_index_count has an explanation for the magic
4621 * number
4622 */
4623 BTRFS_I(inode)->index_cnt = 2;
4624 BTRFS_I(inode)->root = root;
4625 BTRFS_I(inode)->generation = trans->transid;
4626 inode->i_generation = BTRFS_I(inode)->generation;
4627 btrfs_set_inode_space_info(root, inode);
4628
4629 if (S_ISDIR(mode))
4630 owner = 0;
4631 else
4632 owner = 1;
4633
4634 key[0].objectid = objectid;
4635 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4636 key[0].offset = 0;
4637
4638 key[1].objectid = objectid;
4639 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4640 key[1].offset = ref_objectid;
4641
4642 sizes[0] = sizeof(struct btrfs_inode_item);
4643 sizes[1] = name_len + sizeof(*ref);
4644
4645 path->leave_spinning = 1;
4646 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4647 if (ret != 0)
4648 goto fail;
4649
4650 inode_init_owner(inode, dir, mode);
4651 inode_set_bytes(inode, 0);
4652 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4653 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4654 struct btrfs_inode_item);
4655 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4656
4657 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4658 struct btrfs_inode_ref);
4659 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4660 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4661 ptr = (unsigned long)(ref + 1);
4662 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4663
4664 btrfs_mark_buffer_dirty(path->nodes[0]);
4665 btrfs_free_path(path);
4666
4667 location = &BTRFS_I(inode)->location;
4668 location->objectid = objectid;
4669 location->offset = 0;
4670 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4671
4672 btrfs_inherit_iflags(inode, dir);
4673
4674 if (S_ISREG(mode)) {
4675 if (btrfs_test_opt(root, NODATASUM))
4676 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4677 if (btrfs_test_opt(root, NODATACOW) ||
4678 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4679 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4680 }
4681
4682 insert_inode_hash(inode);
4683 inode_tree_add(inode);
4684
4685 trace_btrfs_inode_new(inode);
4686 btrfs_set_inode_last_trans(trans, inode);
4687
4688 return inode;
4689 fail:
4690 if (dir)
4691 BTRFS_I(dir)->index_cnt--;
4692 btrfs_free_path(path);
4693 iput(inode);
4694 return ERR_PTR(ret);
4695 }
4696
4697 static inline u8 btrfs_inode_type(struct inode *inode)
4698 {
4699 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4700 }
4701
4702 /*
4703 * utility function to add 'inode' into 'parent_inode' with
4704 * a give name and a given sequence number.
4705 * if 'add_backref' is true, also insert a backref from the
4706 * inode to the parent directory.
4707 */
4708 int btrfs_add_link(struct btrfs_trans_handle *trans,
4709 struct inode *parent_inode, struct inode *inode,
4710 const char *name, int name_len, int add_backref, u64 index)
4711 {
4712 int ret = 0;
4713 struct btrfs_key key;
4714 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4715 u64 ino = btrfs_ino(inode);
4716 u64 parent_ino = btrfs_ino(parent_inode);
4717
4718 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4719 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4720 } else {
4721 key.objectid = ino;
4722 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4723 key.offset = 0;
4724 }
4725
4726 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4727 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4728 key.objectid, root->root_key.objectid,
4729 parent_ino, index, name, name_len);
4730 } else if (add_backref) {
4731 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4732 parent_ino, index);
4733 }
4734
4735 /* Nothing to clean up yet */
4736 if (ret)
4737 return ret;
4738
4739 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4740 parent_inode, &key,
4741 btrfs_inode_type(inode), index);
4742 if (ret == -EEXIST)
4743 goto fail_dir_item;
4744 else if (ret) {
4745 btrfs_abort_transaction(trans, root, ret);
4746 return ret;
4747 }
4748
4749 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4750 name_len * 2);
4751 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4752 ret = btrfs_update_inode(trans, root, parent_inode);
4753 if (ret)
4754 btrfs_abort_transaction(trans, root, ret);
4755 return ret;
4756
4757 fail_dir_item:
4758 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4759 u64 local_index;
4760 int err;
4761 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4762 key.objectid, root->root_key.objectid,
4763 parent_ino, &local_index, name, name_len);
4764
4765 } else if (add_backref) {
4766 u64 local_index;
4767 int err;
4768
4769 err = btrfs_del_inode_ref(trans, root, name, name_len,
4770 ino, parent_ino, &local_index);
4771 }
4772 return ret;
4773 }
4774
4775 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4776 struct inode *dir, struct dentry *dentry,
4777 struct inode *inode, int backref, u64 index)
4778 {
4779 int err = btrfs_add_link(trans, dir, inode,
4780 dentry->d_name.name, dentry->d_name.len,
4781 backref, index);
4782 if (err > 0)
4783 err = -EEXIST;
4784 return err;
4785 }
4786
4787 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4788 umode_t mode, dev_t rdev)
4789 {
4790 struct btrfs_trans_handle *trans;
4791 struct btrfs_root *root = BTRFS_I(dir)->root;
4792 struct inode *inode = NULL;
4793 int err;
4794 int drop_inode = 0;
4795 u64 objectid;
4796 unsigned long nr = 0;
4797 u64 index = 0;
4798
4799 if (!new_valid_dev(rdev))
4800 return -EINVAL;
4801
4802 /*
4803 * 2 for inode item and ref
4804 * 2 for dir items
4805 * 1 for xattr if selinux is on
4806 */
4807 trans = btrfs_start_transaction(root, 5);
4808 if (IS_ERR(trans))
4809 return PTR_ERR(trans);
4810
4811 err = btrfs_find_free_ino(root, &objectid);
4812 if (err)
4813 goto out_unlock;
4814
4815 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4816 dentry->d_name.len, btrfs_ino(dir), objectid,
4817 mode, &index);
4818 if (IS_ERR(inode)) {
4819 err = PTR_ERR(inode);
4820 goto out_unlock;
4821 }
4822
4823 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4824 if (err) {
4825 drop_inode = 1;
4826 goto out_unlock;
4827 }
4828
4829 /*
4830 * If the active LSM wants to access the inode during
4831 * d_instantiate it needs these. Smack checks to see
4832 * if the filesystem supports xattrs by looking at the
4833 * ops vector.
4834 */
4835
4836 inode->i_op = &btrfs_special_inode_operations;
4837 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4838 if (err)
4839 drop_inode = 1;
4840 else {
4841 init_special_inode(inode, inode->i_mode, rdev);
4842 btrfs_update_inode(trans, root, inode);
4843 d_instantiate(dentry, inode);
4844 }
4845 out_unlock:
4846 nr = trans->blocks_used;
4847 btrfs_end_transaction(trans, root);
4848 btrfs_btree_balance_dirty(root, nr);
4849 if (drop_inode) {
4850 inode_dec_link_count(inode);
4851 iput(inode);
4852 }
4853 return err;
4854 }
4855
4856 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4857 umode_t mode, struct nameidata *nd)
4858 {
4859 struct btrfs_trans_handle *trans;
4860 struct btrfs_root *root = BTRFS_I(dir)->root;
4861 struct inode *inode = NULL;
4862 int drop_inode = 0;
4863 int err;
4864 unsigned long nr = 0;
4865 u64 objectid;
4866 u64 index = 0;
4867
4868 /*
4869 * 2 for inode item and ref
4870 * 2 for dir items
4871 * 1 for xattr if selinux is on
4872 */
4873 trans = btrfs_start_transaction(root, 5);
4874 if (IS_ERR(trans))
4875 return PTR_ERR(trans);
4876
4877 err = btrfs_find_free_ino(root, &objectid);
4878 if (err)
4879 goto out_unlock;
4880
4881 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4882 dentry->d_name.len, btrfs_ino(dir), objectid,
4883 mode, &index);
4884 if (IS_ERR(inode)) {
4885 err = PTR_ERR(inode);
4886 goto out_unlock;
4887 }
4888
4889 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4890 if (err) {
4891 drop_inode = 1;
4892 goto out_unlock;
4893 }
4894
4895 /*
4896 * If the active LSM wants to access the inode during
4897 * d_instantiate it needs these. Smack checks to see
4898 * if the filesystem supports xattrs by looking at the
4899 * ops vector.
4900 */
4901 inode->i_fop = &btrfs_file_operations;
4902 inode->i_op = &btrfs_file_inode_operations;
4903
4904 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4905 if (err)
4906 drop_inode = 1;
4907 else {
4908 inode->i_mapping->a_ops = &btrfs_aops;
4909 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4910 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4911 d_instantiate(dentry, inode);
4912 }
4913 out_unlock:
4914 nr = trans->blocks_used;
4915 btrfs_end_transaction(trans, root);
4916 if (drop_inode) {
4917 inode_dec_link_count(inode);
4918 iput(inode);
4919 }
4920 btrfs_btree_balance_dirty(root, nr);
4921 return err;
4922 }
4923
4924 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4925 struct dentry *dentry)
4926 {
4927 struct btrfs_trans_handle *trans;
4928 struct btrfs_root *root = BTRFS_I(dir)->root;
4929 struct inode *inode = old_dentry->d_inode;
4930 u64 index;
4931 unsigned long nr = 0;
4932 int err;
4933 int drop_inode = 0;
4934
4935 /* do not allow sys_link's with other subvols of the same device */
4936 if (root->objectid != BTRFS_I(inode)->root->objectid)
4937 return -EXDEV;
4938
4939 if (inode->i_nlink == ~0U)
4940 return -EMLINK;
4941
4942 err = btrfs_set_inode_index(dir, &index);
4943 if (err)
4944 goto fail;
4945
4946 /*
4947 * 2 items for inode and inode ref
4948 * 2 items for dir items
4949 * 1 item for parent inode
4950 */
4951 trans = btrfs_start_transaction(root, 5);
4952 if (IS_ERR(trans)) {
4953 err = PTR_ERR(trans);
4954 goto fail;
4955 }
4956
4957 btrfs_inc_nlink(inode);
4958 inode->i_ctime = CURRENT_TIME;
4959 ihold(inode);
4960
4961 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4962
4963 if (err) {
4964 drop_inode = 1;
4965 } else {
4966 struct dentry *parent = dentry->d_parent;
4967 err = btrfs_update_inode(trans, root, inode);
4968 if (err)
4969 goto fail;
4970 d_instantiate(dentry, inode);
4971 btrfs_log_new_name(trans, inode, NULL, parent);
4972 }
4973
4974 nr = trans->blocks_used;
4975 btrfs_end_transaction(trans, root);
4976 fail:
4977 if (drop_inode) {
4978 inode_dec_link_count(inode);
4979 iput(inode);
4980 }
4981 btrfs_btree_balance_dirty(root, nr);
4982 return err;
4983 }
4984
4985 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4986 {
4987 struct inode *inode = NULL;
4988 struct btrfs_trans_handle *trans;
4989 struct btrfs_root *root = BTRFS_I(dir)->root;
4990 int err = 0;
4991 int drop_on_err = 0;
4992 u64 objectid = 0;
4993 u64 index = 0;
4994 unsigned long nr = 1;
4995
4996 /*
4997 * 2 items for inode and ref
4998 * 2 items for dir items
4999 * 1 for xattr if selinux is on
5000 */
5001 trans = btrfs_start_transaction(root, 5);
5002 if (IS_ERR(trans))
5003 return PTR_ERR(trans);
5004
5005 err = btrfs_find_free_ino(root, &objectid);
5006 if (err)
5007 goto out_fail;
5008
5009 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5010 dentry->d_name.len, btrfs_ino(dir), objectid,
5011 S_IFDIR | mode, &index);
5012 if (IS_ERR(inode)) {
5013 err = PTR_ERR(inode);
5014 goto out_fail;
5015 }
5016
5017 drop_on_err = 1;
5018
5019 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5020 if (err)
5021 goto out_fail;
5022
5023 inode->i_op = &btrfs_dir_inode_operations;
5024 inode->i_fop = &btrfs_dir_file_operations;
5025
5026 btrfs_i_size_write(inode, 0);
5027 err = btrfs_update_inode(trans, root, inode);
5028 if (err)
5029 goto out_fail;
5030
5031 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5032 dentry->d_name.len, 0, index);
5033 if (err)
5034 goto out_fail;
5035
5036 d_instantiate(dentry, inode);
5037 drop_on_err = 0;
5038
5039 out_fail:
5040 nr = trans->blocks_used;
5041 btrfs_end_transaction(trans, root);
5042 if (drop_on_err)
5043 iput(inode);
5044 btrfs_btree_balance_dirty(root, nr);
5045 return err;
5046 }
5047
5048 /* helper for btfs_get_extent. Given an existing extent in the tree,
5049 * and an extent that you want to insert, deal with overlap and insert
5050 * the new extent into the tree.
5051 */
5052 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5053 struct extent_map *existing,
5054 struct extent_map *em,
5055 u64 map_start, u64 map_len)
5056 {
5057 u64 start_diff;
5058
5059 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5060 start_diff = map_start - em->start;
5061 em->start = map_start;
5062 em->len = map_len;
5063 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5064 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5065 em->block_start += start_diff;
5066 em->block_len -= start_diff;
5067 }
5068 return add_extent_mapping(em_tree, em);
5069 }
5070
5071 static noinline int uncompress_inline(struct btrfs_path *path,
5072 struct inode *inode, struct page *page,
5073 size_t pg_offset, u64 extent_offset,
5074 struct btrfs_file_extent_item *item)
5075 {
5076 int ret;
5077 struct extent_buffer *leaf = path->nodes[0];
5078 char *tmp;
5079 size_t max_size;
5080 unsigned long inline_size;
5081 unsigned long ptr;
5082 int compress_type;
5083
5084 WARN_ON(pg_offset != 0);
5085 compress_type = btrfs_file_extent_compression(leaf, item);
5086 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5087 inline_size = btrfs_file_extent_inline_item_len(leaf,
5088 btrfs_item_nr(leaf, path->slots[0]));
5089 tmp = kmalloc(inline_size, GFP_NOFS);
5090 if (!tmp)
5091 return -ENOMEM;
5092 ptr = btrfs_file_extent_inline_start(item);
5093
5094 read_extent_buffer(leaf, tmp, ptr, inline_size);
5095
5096 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5097 ret = btrfs_decompress(compress_type, tmp, page,
5098 extent_offset, inline_size, max_size);
5099 if (ret) {
5100 char *kaddr = kmap_atomic(page);
5101 unsigned long copy_size = min_t(u64,
5102 PAGE_CACHE_SIZE - pg_offset,
5103 max_size - extent_offset);
5104 memset(kaddr + pg_offset, 0, copy_size);
5105 kunmap_atomic(kaddr);
5106 }
5107 kfree(tmp);
5108 return 0;
5109 }
5110
5111 /*
5112 * a bit scary, this does extent mapping from logical file offset to the disk.
5113 * the ugly parts come from merging extents from the disk with the in-ram
5114 * representation. This gets more complex because of the data=ordered code,
5115 * where the in-ram extents might be locked pending data=ordered completion.
5116 *
5117 * This also copies inline extents directly into the page.
5118 */
5119
5120 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5121 size_t pg_offset, u64 start, u64 len,
5122 int create)
5123 {
5124 int ret;
5125 int err = 0;
5126 u64 bytenr;
5127 u64 extent_start = 0;
5128 u64 extent_end = 0;
5129 u64 objectid = btrfs_ino(inode);
5130 u32 found_type;
5131 struct btrfs_path *path = NULL;
5132 struct btrfs_root *root = BTRFS_I(inode)->root;
5133 struct btrfs_file_extent_item *item;
5134 struct extent_buffer *leaf;
5135 struct btrfs_key found_key;
5136 struct extent_map *em = NULL;
5137 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5138 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5139 struct btrfs_trans_handle *trans = NULL;
5140 int compress_type;
5141
5142 again:
5143 read_lock(&em_tree->lock);
5144 em = lookup_extent_mapping(em_tree, start, len);
5145 if (em)
5146 em->bdev = root->fs_info->fs_devices->latest_bdev;
5147 read_unlock(&em_tree->lock);
5148
5149 if (em) {
5150 if (em->start > start || em->start + em->len <= start)
5151 free_extent_map(em);
5152 else if (em->block_start == EXTENT_MAP_INLINE && page)
5153 free_extent_map(em);
5154 else
5155 goto out;
5156 }
5157 em = alloc_extent_map();
5158 if (!em) {
5159 err = -ENOMEM;
5160 goto out;
5161 }
5162 em->bdev = root->fs_info->fs_devices->latest_bdev;
5163 em->start = EXTENT_MAP_HOLE;
5164 em->orig_start = EXTENT_MAP_HOLE;
5165 em->len = (u64)-1;
5166 em->block_len = (u64)-1;
5167
5168 if (!path) {
5169 path = btrfs_alloc_path();
5170 if (!path) {
5171 err = -ENOMEM;
5172 goto out;
5173 }
5174 /*
5175 * Chances are we'll be called again, so go ahead and do
5176 * readahead
5177 */
5178 path->reada = 1;
5179 }
5180
5181 ret = btrfs_lookup_file_extent(trans, root, path,
5182 objectid, start, trans != NULL);
5183 if (ret < 0) {
5184 err = ret;
5185 goto out;
5186 }
5187
5188 if (ret != 0) {
5189 if (path->slots[0] == 0)
5190 goto not_found;
5191 path->slots[0]--;
5192 }
5193
5194 leaf = path->nodes[0];
5195 item = btrfs_item_ptr(leaf, path->slots[0],
5196 struct btrfs_file_extent_item);
5197 /* are we inside the extent that was found? */
5198 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5199 found_type = btrfs_key_type(&found_key);
5200 if (found_key.objectid != objectid ||
5201 found_type != BTRFS_EXTENT_DATA_KEY) {
5202 goto not_found;
5203 }
5204
5205 found_type = btrfs_file_extent_type(leaf, item);
5206 extent_start = found_key.offset;
5207 compress_type = btrfs_file_extent_compression(leaf, item);
5208 if (found_type == BTRFS_FILE_EXTENT_REG ||
5209 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5210 extent_end = extent_start +
5211 btrfs_file_extent_num_bytes(leaf, item);
5212 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5213 size_t size;
5214 size = btrfs_file_extent_inline_len(leaf, item);
5215 extent_end = (extent_start + size + root->sectorsize - 1) &
5216 ~((u64)root->sectorsize - 1);
5217 }
5218
5219 if (start >= extent_end) {
5220 path->slots[0]++;
5221 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5222 ret = btrfs_next_leaf(root, path);
5223 if (ret < 0) {
5224 err = ret;
5225 goto out;
5226 }
5227 if (ret > 0)
5228 goto not_found;
5229 leaf = path->nodes[0];
5230 }
5231 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5232 if (found_key.objectid != objectid ||
5233 found_key.type != BTRFS_EXTENT_DATA_KEY)
5234 goto not_found;
5235 if (start + len <= found_key.offset)
5236 goto not_found;
5237 em->start = start;
5238 em->len = found_key.offset - start;
5239 goto not_found_em;
5240 }
5241
5242 if (found_type == BTRFS_FILE_EXTENT_REG ||
5243 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5244 em->start = extent_start;
5245 em->len = extent_end - extent_start;
5246 em->orig_start = extent_start -
5247 btrfs_file_extent_offset(leaf, item);
5248 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5249 if (bytenr == 0) {
5250 em->block_start = EXTENT_MAP_HOLE;
5251 goto insert;
5252 }
5253 if (compress_type != BTRFS_COMPRESS_NONE) {
5254 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5255 em->compress_type = compress_type;
5256 em->block_start = bytenr;
5257 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5258 item);
5259 } else {
5260 bytenr += btrfs_file_extent_offset(leaf, item);
5261 em->block_start = bytenr;
5262 em->block_len = em->len;
5263 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5264 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5265 }
5266 goto insert;
5267 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5268 unsigned long ptr;
5269 char *map;
5270 size_t size;
5271 size_t extent_offset;
5272 size_t copy_size;
5273
5274 em->block_start = EXTENT_MAP_INLINE;
5275 if (!page || create) {
5276 em->start = extent_start;
5277 em->len = extent_end - extent_start;
5278 goto out;
5279 }
5280
5281 size = btrfs_file_extent_inline_len(leaf, item);
5282 extent_offset = page_offset(page) + pg_offset - extent_start;
5283 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5284 size - extent_offset);
5285 em->start = extent_start + extent_offset;
5286 em->len = (copy_size + root->sectorsize - 1) &
5287 ~((u64)root->sectorsize - 1);
5288 em->orig_start = EXTENT_MAP_INLINE;
5289 if (compress_type) {
5290 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5291 em->compress_type = compress_type;
5292 }
5293 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5294 if (create == 0 && !PageUptodate(page)) {
5295 if (btrfs_file_extent_compression(leaf, item) !=
5296 BTRFS_COMPRESS_NONE) {
5297 ret = uncompress_inline(path, inode, page,
5298 pg_offset,
5299 extent_offset, item);
5300 BUG_ON(ret); /* -ENOMEM */
5301 } else {
5302 map = kmap(page);
5303 read_extent_buffer(leaf, map + pg_offset, ptr,
5304 copy_size);
5305 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5306 memset(map + pg_offset + copy_size, 0,
5307 PAGE_CACHE_SIZE - pg_offset -
5308 copy_size);
5309 }
5310 kunmap(page);
5311 }
5312 flush_dcache_page(page);
5313 } else if (create && PageUptodate(page)) {
5314 BUG();
5315 if (!trans) {
5316 kunmap(page);
5317 free_extent_map(em);
5318 em = NULL;
5319
5320 btrfs_release_path(path);
5321 trans = btrfs_join_transaction(root);
5322
5323 if (IS_ERR(trans))
5324 return ERR_CAST(trans);
5325 goto again;
5326 }
5327 map = kmap(page);
5328 write_extent_buffer(leaf, map + pg_offset, ptr,
5329 copy_size);
5330 kunmap(page);
5331 btrfs_mark_buffer_dirty(leaf);
5332 }
5333 set_extent_uptodate(io_tree, em->start,
5334 extent_map_end(em) - 1, NULL, GFP_NOFS);
5335 goto insert;
5336 } else {
5337 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5338 WARN_ON(1);
5339 }
5340 not_found:
5341 em->start = start;
5342 em->len = len;
5343 not_found_em:
5344 em->block_start = EXTENT_MAP_HOLE;
5345 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5346 insert:
5347 btrfs_release_path(path);
5348 if (em->start > start || extent_map_end(em) <= start) {
5349 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5350 "[%llu %llu]\n", (unsigned long long)em->start,
5351 (unsigned long long)em->len,
5352 (unsigned long long)start,
5353 (unsigned long long)len);
5354 err = -EIO;
5355 goto out;
5356 }
5357
5358 err = 0;
5359 write_lock(&em_tree->lock);
5360 ret = add_extent_mapping(em_tree, em);
5361 /* it is possible that someone inserted the extent into the tree
5362 * while we had the lock dropped. It is also possible that
5363 * an overlapping map exists in the tree
5364 */
5365 if (ret == -EEXIST) {
5366 struct extent_map *existing;
5367
5368 ret = 0;
5369
5370 existing = lookup_extent_mapping(em_tree, start, len);
5371 if (existing && (existing->start > start ||
5372 existing->start + existing->len <= start)) {
5373 free_extent_map(existing);
5374 existing = NULL;
5375 }
5376 if (!existing) {
5377 existing = lookup_extent_mapping(em_tree, em->start,
5378 em->len);
5379 if (existing) {
5380 err = merge_extent_mapping(em_tree, existing,
5381 em, start,
5382 root->sectorsize);
5383 free_extent_map(existing);
5384 if (err) {
5385 free_extent_map(em);
5386 em = NULL;
5387 }
5388 } else {
5389 err = -EIO;
5390 free_extent_map(em);
5391 em = NULL;
5392 }
5393 } else {
5394 free_extent_map(em);
5395 em = existing;
5396 err = 0;
5397 }
5398 }
5399 write_unlock(&em_tree->lock);
5400 out:
5401
5402 trace_btrfs_get_extent(root, em);
5403
5404 if (path)
5405 btrfs_free_path(path);
5406 if (trans) {
5407 ret = btrfs_end_transaction(trans, root);
5408 if (!err)
5409 err = ret;
5410 }
5411 if (err) {
5412 free_extent_map(em);
5413 return ERR_PTR(err);
5414 }
5415 BUG_ON(!em); /* Error is always set */
5416 return em;
5417 }
5418
5419 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5420 size_t pg_offset, u64 start, u64 len,
5421 int create)
5422 {
5423 struct extent_map *em;
5424 struct extent_map *hole_em = NULL;
5425 u64 range_start = start;
5426 u64 end;
5427 u64 found;
5428 u64 found_end;
5429 int err = 0;
5430
5431 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5432 if (IS_ERR(em))
5433 return em;
5434 if (em) {
5435 /*
5436 * if our em maps to a hole, there might
5437 * actually be delalloc bytes behind it
5438 */
5439 if (em->block_start != EXTENT_MAP_HOLE)
5440 return em;
5441 else
5442 hole_em = em;
5443 }
5444
5445 /* check to see if we've wrapped (len == -1 or similar) */
5446 end = start + len;
5447 if (end < start)
5448 end = (u64)-1;
5449 else
5450 end -= 1;
5451
5452 em = NULL;
5453
5454 /* ok, we didn't find anything, lets look for delalloc */
5455 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5456 end, len, EXTENT_DELALLOC, 1);
5457 found_end = range_start + found;
5458 if (found_end < range_start)
5459 found_end = (u64)-1;
5460
5461 /*
5462 * we didn't find anything useful, return
5463 * the original results from get_extent()
5464 */
5465 if (range_start > end || found_end <= start) {
5466 em = hole_em;
5467 hole_em = NULL;
5468 goto out;
5469 }
5470
5471 /* adjust the range_start to make sure it doesn't
5472 * go backwards from the start they passed in
5473 */
5474 range_start = max(start,range_start);
5475 found = found_end - range_start;
5476
5477 if (found > 0) {
5478 u64 hole_start = start;
5479 u64 hole_len = len;
5480
5481 em = alloc_extent_map();
5482 if (!em) {
5483 err = -ENOMEM;
5484 goto out;
5485 }
5486 /*
5487 * when btrfs_get_extent can't find anything it
5488 * returns one huge hole
5489 *
5490 * make sure what it found really fits our range, and
5491 * adjust to make sure it is based on the start from
5492 * the caller
5493 */
5494 if (hole_em) {
5495 u64 calc_end = extent_map_end(hole_em);
5496
5497 if (calc_end <= start || (hole_em->start > end)) {
5498 free_extent_map(hole_em);
5499 hole_em = NULL;
5500 } else {
5501 hole_start = max(hole_em->start, start);
5502 hole_len = calc_end - hole_start;
5503 }
5504 }
5505 em->bdev = NULL;
5506 if (hole_em && range_start > hole_start) {
5507 /* our hole starts before our delalloc, so we
5508 * have to return just the parts of the hole
5509 * that go until the delalloc starts
5510 */
5511 em->len = min(hole_len,
5512 range_start - hole_start);
5513 em->start = hole_start;
5514 em->orig_start = hole_start;
5515 /*
5516 * don't adjust block start at all,
5517 * it is fixed at EXTENT_MAP_HOLE
5518 */
5519 em->block_start = hole_em->block_start;
5520 em->block_len = hole_len;
5521 } else {
5522 em->start = range_start;
5523 em->len = found;
5524 em->orig_start = range_start;
5525 em->block_start = EXTENT_MAP_DELALLOC;
5526 em->block_len = found;
5527 }
5528 } else if (hole_em) {
5529 return hole_em;
5530 }
5531 out:
5532
5533 free_extent_map(hole_em);
5534 if (err) {
5535 free_extent_map(em);
5536 return ERR_PTR(err);
5537 }
5538 return em;
5539 }
5540
5541 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5542 struct extent_map *em,
5543 u64 start, u64 len)
5544 {
5545 struct btrfs_root *root = BTRFS_I(inode)->root;
5546 struct btrfs_trans_handle *trans;
5547 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5548 struct btrfs_key ins;
5549 u64 alloc_hint;
5550 int ret;
5551 bool insert = false;
5552
5553 /*
5554 * Ok if the extent map we looked up is a hole and is for the exact
5555 * range we want, there is no reason to allocate a new one, however if
5556 * it is not right then we need to free this one and drop the cache for
5557 * our range.
5558 */
5559 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5560 em->len != len) {
5561 free_extent_map(em);
5562 em = NULL;
5563 insert = true;
5564 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5565 }
5566
5567 trans = btrfs_join_transaction(root);
5568 if (IS_ERR(trans))
5569 return ERR_CAST(trans);
5570
5571 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5572 btrfs_add_inode_defrag(trans, inode);
5573
5574 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5575
5576 alloc_hint = get_extent_allocation_hint(inode, start, len);
5577 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5578 alloc_hint, &ins, 1);
5579 if (ret) {
5580 em = ERR_PTR(ret);
5581 goto out;
5582 }
5583
5584 if (!em) {
5585 em = alloc_extent_map();
5586 if (!em) {
5587 em = ERR_PTR(-ENOMEM);
5588 goto out;
5589 }
5590 }
5591
5592 em->start = start;
5593 em->orig_start = em->start;
5594 em->len = ins.offset;
5595
5596 em->block_start = ins.objectid;
5597 em->block_len = ins.offset;
5598 em->bdev = root->fs_info->fs_devices->latest_bdev;
5599
5600 /*
5601 * We need to do this because if we're using the original em we searched
5602 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5603 */
5604 em->flags = 0;
5605 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5606
5607 while (insert) {
5608 write_lock(&em_tree->lock);
5609 ret = add_extent_mapping(em_tree, em);
5610 write_unlock(&em_tree->lock);
5611 if (ret != -EEXIST)
5612 break;
5613 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5614 }
5615
5616 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5617 ins.offset, ins.offset, 0);
5618 if (ret) {
5619 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5620 em = ERR_PTR(ret);
5621 }
5622 out:
5623 btrfs_end_transaction(trans, root);
5624 return em;
5625 }
5626
5627 /*
5628 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5629 * block must be cow'd
5630 */
5631 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5632 struct inode *inode, u64 offset, u64 len)
5633 {
5634 struct btrfs_path *path;
5635 int ret;
5636 struct extent_buffer *leaf;
5637 struct btrfs_root *root = BTRFS_I(inode)->root;
5638 struct btrfs_file_extent_item *fi;
5639 struct btrfs_key key;
5640 u64 disk_bytenr;
5641 u64 backref_offset;
5642 u64 extent_end;
5643 u64 num_bytes;
5644 int slot;
5645 int found_type;
5646
5647 path = btrfs_alloc_path();
5648 if (!path)
5649 return -ENOMEM;
5650
5651 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5652 offset, 0);
5653 if (ret < 0)
5654 goto out;
5655
5656 slot = path->slots[0];
5657 if (ret == 1) {
5658 if (slot == 0) {
5659 /* can't find the item, must cow */
5660 ret = 0;
5661 goto out;
5662 }
5663 slot--;
5664 }
5665 ret = 0;
5666 leaf = path->nodes[0];
5667 btrfs_item_key_to_cpu(leaf, &key, slot);
5668 if (key.objectid != btrfs_ino(inode) ||
5669 key.type != BTRFS_EXTENT_DATA_KEY) {
5670 /* not our file or wrong item type, must cow */
5671 goto out;
5672 }
5673
5674 if (key.offset > offset) {
5675 /* Wrong offset, must cow */
5676 goto out;
5677 }
5678
5679 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5680 found_type = btrfs_file_extent_type(leaf, fi);
5681 if (found_type != BTRFS_FILE_EXTENT_REG &&
5682 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5683 /* not a regular extent, must cow */
5684 goto out;
5685 }
5686 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5687 backref_offset = btrfs_file_extent_offset(leaf, fi);
5688
5689 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5690 if (extent_end < offset + len) {
5691 /* extent doesn't include our full range, must cow */
5692 goto out;
5693 }
5694
5695 if (btrfs_extent_readonly(root, disk_bytenr))
5696 goto out;
5697
5698 /*
5699 * look for other files referencing this extent, if we
5700 * find any we must cow
5701 */
5702 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5703 key.offset - backref_offset, disk_bytenr))
5704 goto out;
5705
5706 /*
5707 * adjust disk_bytenr and num_bytes to cover just the bytes
5708 * in this extent we are about to write. If there
5709 * are any csums in that range we have to cow in order
5710 * to keep the csums correct
5711 */
5712 disk_bytenr += backref_offset;
5713 disk_bytenr += offset - key.offset;
5714 num_bytes = min(offset + len, extent_end) - offset;
5715 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5716 goto out;
5717 /*
5718 * all of the above have passed, it is safe to overwrite this extent
5719 * without cow
5720 */
5721 ret = 1;
5722 out:
5723 btrfs_free_path(path);
5724 return ret;
5725 }
5726
5727 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5728 struct buffer_head *bh_result, int create)
5729 {
5730 struct extent_map *em;
5731 struct btrfs_root *root = BTRFS_I(inode)->root;
5732 u64 start = iblock << inode->i_blkbits;
5733 u64 len = bh_result->b_size;
5734 struct btrfs_trans_handle *trans;
5735
5736 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5737 if (IS_ERR(em))
5738 return PTR_ERR(em);
5739
5740 /*
5741 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5742 * io. INLINE is special, and we could probably kludge it in here, but
5743 * it's still buffered so for safety lets just fall back to the generic
5744 * buffered path.
5745 *
5746 * For COMPRESSED we _have_ to read the entire extent in so we can
5747 * decompress it, so there will be buffering required no matter what we
5748 * do, so go ahead and fallback to buffered.
5749 *
5750 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5751 * to buffered IO. Don't blame me, this is the price we pay for using
5752 * the generic code.
5753 */
5754 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5755 em->block_start == EXTENT_MAP_INLINE) {
5756 free_extent_map(em);
5757 return -ENOTBLK;
5758 }
5759
5760 /* Just a good old fashioned hole, return */
5761 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5762 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5763 free_extent_map(em);
5764 /* DIO will do one hole at a time, so just unlock a sector */
5765 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5766 start + root->sectorsize - 1);
5767 return 0;
5768 }
5769
5770 /*
5771 * We don't allocate a new extent in the following cases
5772 *
5773 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5774 * existing extent.
5775 * 2) The extent is marked as PREALLOC. We're good to go here and can
5776 * just use the extent.
5777 *
5778 */
5779 if (!create) {
5780 len = em->len - (start - em->start);
5781 goto map;
5782 }
5783
5784 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5785 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5786 em->block_start != EXTENT_MAP_HOLE)) {
5787 int type;
5788 int ret;
5789 u64 block_start;
5790
5791 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5792 type = BTRFS_ORDERED_PREALLOC;
5793 else
5794 type = BTRFS_ORDERED_NOCOW;
5795 len = min(len, em->len - (start - em->start));
5796 block_start = em->block_start + (start - em->start);
5797
5798 /*
5799 * we're not going to log anything, but we do need
5800 * to make sure the current transaction stays open
5801 * while we look for nocow cross refs
5802 */
5803 trans = btrfs_join_transaction(root);
5804 if (IS_ERR(trans))
5805 goto must_cow;
5806
5807 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5808 ret = btrfs_add_ordered_extent_dio(inode, start,
5809 block_start, len, len, type);
5810 btrfs_end_transaction(trans, root);
5811 if (ret) {
5812 free_extent_map(em);
5813 return ret;
5814 }
5815 goto unlock;
5816 }
5817 btrfs_end_transaction(trans, root);
5818 }
5819 must_cow:
5820 /*
5821 * this will cow the extent, reset the len in case we changed
5822 * it above
5823 */
5824 len = bh_result->b_size;
5825 em = btrfs_new_extent_direct(inode, em, start, len);
5826 if (IS_ERR(em))
5827 return PTR_ERR(em);
5828 len = min(len, em->len - (start - em->start));
5829 unlock:
5830 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5831 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5832 0, NULL, GFP_NOFS);
5833 map:
5834 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5835 inode->i_blkbits;
5836 bh_result->b_size = len;
5837 bh_result->b_bdev = em->bdev;
5838 set_buffer_mapped(bh_result);
5839 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5840 set_buffer_new(bh_result);
5841
5842 free_extent_map(em);
5843
5844 return 0;
5845 }
5846
5847 struct btrfs_dio_private {
5848 struct inode *inode;
5849 u64 logical_offset;
5850 u64 disk_bytenr;
5851 u64 bytes;
5852 u32 *csums;
5853 void *private;
5854
5855 /* number of bios pending for this dio */
5856 atomic_t pending_bios;
5857
5858 /* IO errors */
5859 int errors;
5860
5861 struct bio *orig_bio;
5862 };
5863
5864 static void btrfs_endio_direct_read(struct bio *bio, int err)
5865 {
5866 struct btrfs_dio_private *dip = bio->bi_private;
5867 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5868 struct bio_vec *bvec = bio->bi_io_vec;
5869 struct inode *inode = dip->inode;
5870 struct btrfs_root *root = BTRFS_I(inode)->root;
5871 u64 start;
5872 u32 *private = dip->csums;
5873
5874 start = dip->logical_offset;
5875 do {
5876 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5877 struct page *page = bvec->bv_page;
5878 char *kaddr;
5879 u32 csum = ~(u32)0;
5880 unsigned long flags;
5881
5882 local_irq_save(flags);
5883 kaddr = kmap_atomic(page);
5884 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5885 csum, bvec->bv_len);
5886 btrfs_csum_final(csum, (char *)&csum);
5887 kunmap_atomic(kaddr);
5888 local_irq_restore(flags);
5889
5890 flush_dcache_page(bvec->bv_page);
5891 if (csum != *private) {
5892 printk(KERN_ERR "btrfs csum failed ino %llu off"
5893 " %llu csum %u private %u\n",
5894 (unsigned long long)btrfs_ino(inode),
5895 (unsigned long long)start,
5896 csum, *private);
5897 err = -EIO;
5898 }
5899 }
5900
5901 start += bvec->bv_len;
5902 private++;
5903 bvec++;
5904 } while (bvec <= bvec_end);
5905
5906 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5907 dip->logical_offset + dip->bytes - 1);
5908 bio->bi_private = dip->private;
5909
5910 kfree(dip->csums);
5911 kfree(dip);
5912
5913 /* If we had a csum failure make sure to clear the uptodate flag */
5914 if (err)
5915 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5916 dio_end_io(bio, err);
5917 }
5918
5919 static void btrfs_endio_direct_write(struct bio *bio, int err)
5920 {
5921 struct btrfs_dio_private *dip = bio->bi_private;
5922 struct inode *inode = dip->inode;
5923 struct btrfs_root *root = BTRFS_I(inode)->root;
5924 struct btrfs_trans_handle *trans;
5925 struct btrfs_ordered_extent *ordered = NULL;
5926 struct extent_state *cached_state = NULL;
5927 u64 ordered_offset = dip->logical_offset;
5928 u64 ordered_bytes = dip->bytes;
5929 int ret;
5930
5931 if (err)
5932 goto out_done;
5933 again:
5934 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5935 &ordered_offset,
5936 ordered_bytes);
5937 if (!ret)
5938 goto out_test;
5939
5940 BUG_ON(!ordered);
5941
5942 trans = btrfs_join_transaction(root);
5943 if (IS_ERR(trans)) {
5944 err = -ENOMEM;
5945 goto out;
5946 }
5947 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5948
5949 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5950 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5951 if (!ret)
5952 err = btrfs_update_inode_fallback(trans, root, inode);
5953 goto out;
5954 }
5955
5956 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5957 ordered->file_offset + ordered->len - 1, 0,
5958 &cached_state);
5959
5960 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5961 ret = btrfs_mark_extent_written(trans, inode,
5962 ordered->file_offset,
5963 ordered->file_offset +
5964 ordered->len);
5965 if (ret) {
5966 err = ret;
5967 goto out_unlock;
5968 }
5969 } else {
5970 ret = insert_reserved_file_extent(trans, inode,
5971 ordered->file_offset,
5972 ordered->start,
5973 ordered->disk_len,
5974 ordered->len,
5975 ordered->len,
5976 0, 0, 0,
5977 BTRFS_FILE_EXTENT_REG);
5978 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5979 ordered->file_offset, ordered->len);
5980 if (ret) {
5981 err = ret;
5982 WARN_ON(1);
5983 goto out_unlock;
5984 }
5985 }
5986
5987 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5988 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5989 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5990 btrfs_update_inode_fallback(trans, root, inode);
5991 ret = 0;
5992 out_unlock:
5993 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5994 ordered->file_offset + ordered->len - 1,
5995 &cached_state, GFP_NOFS);
5996 out:
5997 btrfs_delalloc_release_metadata(inode, ordered->len);
5998 btrfs_end_transaction(trans, root);
5999 ordered_offset = ordered->file_offset + ordered->len;
6000 btrfs_put_ordered_extent(ordered);
6001 btrfs_put_ordered_extent(ordered);
6002
6003 out_test:
6004 /*
6005 * our bio might span multiple ordered extents. If we haven't
6006 * completed the accounting for the whole dio, go back and try again
6007 */
6008 if (ordered_offset < dip->logical_offset + dip->bytes) {
6009 ordered_bytes = dip->logical_offset + dip->bytes -
6010 ordered_offset;
6011 goto again;
6012 }
6013 out_done:
6014 bio->bi_private = dip->private;
6015
6016 kfree(dip->csums);
6017 kfree(dip);
6018
6019 /* If we had an error make sure to clear the uptodate flag */
6020 if (err)
6021 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6022 dio_end_io(bio, err);
6023 }
6024
6025 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6026 struct bio *bio, int mirror_num,
6027 unsigned long bio_flags, u64 offset)
6028 {
6029 int ret;
6030 struct btrfs_root *root = BTRFS_I(inode)->root;
6031 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6032 BUG_ON(ret); /* -ENOMEM */
6033 return 0;
6034 }
6035
6036 static void btrfs_end_dio_bio(struct bio *bio, int err)
6037 {
6038 struct btrfs_dio_private *dip = bio->bi_private;
6039
6040 if (err) {
6041 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6042 "sector %#Lx len %u err no %d\n",
6043 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6044 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6045 dip->errors = 1;
6046
6047 /*
6048 * before atomic variable goto zero, we must make sure
6049 * dip->errors is perceived to be set.
6050 */
6051 smp_mb__before_atomic_dec();
6052 }
6053
6054 /* if there are more bios still pending for this dio, just exit */
6055 if (!atomic_dec_and_test(&dip->pending_bios))
6056 goto out;
6057
6058 if (dip->errors)
6059 bio_io_error(dip->orig_bio);
6060 else {
6061 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6062 bio_endio(dip->orig_bio, 0);
6063 }
6064 out:
6065 bio_put(bio);
6066 }
6067
6068 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6069 u64 first_sector, gfp_t gfp_flags)
6070 {
6071 int nr_vecs = bio_get_nr_vecs(bdev);
6072 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6073 }
6074
6075 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6076 int rw, u64 file_offset, int skip_sum,
6077 u32 *csums, int async_submit)
6078 {
6079 int write = rw & REQ_WRITE;
6080 struct btrfs_root *root = BTRFS_I(inode)->root;
6081 int ret;
6082
6083 bio_get(bio);
6084 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6085 if (ret)
6086 goto err;
6087
6088 if (skip_sum)
6089 goto map;
6090
6091 if (write && async_submit) {
6092 ret = btrfs_wq_submit_bio(root->fs_info,
6093 inode, rw, bio, 0, 0,
6094 file_offset,
6095 __btrfs_submit_bio_start_direct_io,
6096 __btrfs_submit_bio_done);
6097 goto err;
6098 } else if (write) {
6099 /*
6100 * If we aren't doing async submit, calculate the csum of the
6101 * bio now.
6102 */
6103 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6104 if (ret)
6105 goto err;
6106 } else if (!skip_sum) {
6107 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
6108 file_offset, csums);
6109 if (ret)
6110 goto err;
6111 }
6112
6113 map:
6114 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6115 err:
6116 bio_put(bio);
6117 return ret;
6118 }
6119
6120 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6121 int skip_sum)
6122 {
6123 struct inode *inode = dip->inode;
6124 struct btrfs_root *root = BTRFS_I(inode)->root;
6125 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6126 struct bio *bio;
6127 struct bio *orig_bio = dip->orig_bio;
6128 struct bio_vec *bvec = orig_bio->bi_io_vec;
6129 u64 start_sector = orig_bio->bi_sector;
6130 u64 file_offset = dip->logical_offset;
6131 u64 submit_len = 0;
6132 u64 map_length;
6133 int nr_pages = 0;
6134 u32 *csums = dip->csums;
6135 int ret = 0;
6136 int async_submit = 0;
6137 int write = rw & REQ_WRITE;
6138
6139 map_length = orig_bio->bi_size;
6140 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6141 &map_length, NULL, 0);
6142 if (ret) {
6143 bio_put(orig_bio);
6144 return -EIO;
6145 }
6146
6147 if (map_length >= orig_bio->bi_size) {
6148 bio = orig_bio;
6149 goto submit;
6150 }
6151
6152 async_submit = 1;
6153 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6154 if (!bio)
6155 return -ENOMEM;
6156 bio->bi_private = dip;
6157 bio->bi_end_io = btrfs_end_dio_bio;
6158 atomic_inc(&dip->pending_bios);
6159
6160 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6161 if (unlikely(map_length < submit_len + bvec->bv_len ||
6162 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6163 bvec->bv_offset) < bvec->bv_len)) {
6164 /*
6165 * inc the count before we submit the bio so
6166 * we know the end IO handler won't happen before
6167 * we inc the count. Otherwise, the dip might get freed
6168 * before we're done setting it up
6169 */
6170 atomic_inc(&dip->pending_bios);
6171 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6172 file_offset, skip_sum,
6173 csums, async_submit);
6174 if (ret) {
6175 bio_put(bio);
6176 atomic_dec(&dip->pending_bios);
6177 goto out_err;
6178 }
6179
6180 /* Write's use the ordered csums */
6181 if (!write && !skip_sum)
6182 csums = csums + nr_pages;
6183 start_sector += submit_len >> 9;
6184 file_offset += submit_len;
6185
6186 submit_len = 0;
6187 nr_pages = 0;
6188
6189 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6190 start_sector, GFP_NOFS);
6191 if (!bio)
6192 goto out_err;
6193 bio->bi_private = dip;
6194 bio->bi_end_io = btrfs_end_dio_bio;
6195
6196 map_length = orig_bio->bi_size;
6197 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6198 &map_length, NULL, 0);
6199 if (ret) {
6200 bio_put(bio);
6201 goto out_err;
6202 }
6203 } else {
6204 submit_len += bvec->bv_len;
6205 nr_pages ++;
6206 bvec++;
6207 }
6208 }
6209
6210 submit:
6211 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6212 csums, async_submit);
6213 if (!ret)
6214 return 0;
6215
6216 bio_put(bio);
6217 out_err:
6218 dip->errors = 1;
6219 /*
6220 * before atomic variable goto zero, we must
6221 * make sure dip->errors is perceived to be set.
6222 */
6223 smp_mb__before_atomic_dec();
6224 if (atomic_dec_and_test(&dip->pending_bios))
6225 bio_io_error(dip->orig_bio);
6226
6227 /* bio_end_io() will handle error, so we needn't return it */
6228 return 0;
6229 }
6230
6231 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6232 loff_t file_offset)
6233 {
6234 struct btrfs_root *root = BTRFS_I(inode)->root;
6235 struct btrfs_dio_private *dip;
6236 struct bio_vec *bvec = bio->bi_io_vec;
6237 int skip_sum;
6238 int write = rw & REQ_WRITE;
6239 int ret = 0;
6240
6241 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6242
6243 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6244 if (!dip) {
6245 ret = -ENOMEM;
6246 goto free_ordered;
6247 }
6248 dip->csums = NULL;
6249
6250 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6251 if (!write && !skip_sum) {
6252 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6253 if (!dip->csums) {
6254 kfree(dip);
6255 ret = -ENOMEM;
6256 goto free_ordered;
6257 }
6258 }
6259
6260 dip->private = bio->bi_private;
6261 dip->inode = inode;
6262 dip->logical_offset = file_offset;
6263
6264 dip->bytes = 0;
6265 do {
6266 dip->bytes += bvec->bv_len;
6267 bvec++;
6268 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6269
6270 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6271 bio->bi_private = dip;
6272 dip->errors = 0;
6273 dip->orig_bio = bio;
6274 atomic_set(&dip->pending_bios, 0);
6275
6276 if (write)
6277 bio->bi_end_io = btrfs_endio_direct_write;
6278 else
6279 bio->bi_end_io = btrfs_endio_direct_read;
6280
6281 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6282 if (!ret)
6283 return;
6284 free_ordered:
6285 /*
6286 * If this is a write, we need to clean up the reserved space and kill
6287 * the ordered extent.
6288 */
6289 if (write) {
6290 struct btrfs_ordered_extent *ordered;
6291 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6292 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6293 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6294 btrfs_free_reserved_extent(root, ordered->start,
6295 ordered->disk_len);
6296 btrfs_put_ordered_extent(ordered);
6297 btrfs_put_ordered_extent(ordered);
6298 }
6299 bio_endio(bio, ret);
6300 }
6301
6302 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6303 const struct iovec *iov, loff_t offset,
6304 unsigned long nr_segs)
6305 {
6306 int seg;
6307 int i;
6308 size_t size;
6309 unsigned long addr;
6310 unsigned blocksize_mask = root->sectorsize - 1;
6311 ssize_t retval = -EINVAL;
6312 loff_t end = offset;
6313
6314 if (offset & blocksize_mask)
6315 goto out;
6316
6317 /* Check the memory alignment. Blocks cannot straddle pages */
6318 for (seg = 0; seg < nr_segs; seg++) {
6319 addr = (unsigned long)iov[seg].iov_base;
6320 size = iov[seg].iov_len;
6321 end += size;
6322 if ((addr & blocksize_mask) || (size & blocksize_mask))
6323 goto out;
6324
6325 /* If this is a write we don't need to check anymore */
6326 if (rw & WRITE)
6327 continue;
6328
6329 /*
6330 * Check to make sure we don't have duplicate iov_base's in this
6331 * iovec, if so return EINVAL, otherwise we'll get csum errors
6332 * when reading back.
6333 */
6334 for (i = seg + 1; i < nr_segs; i++) {
6335 if (iov[seg].iov_base == iov[i].iov_base)
6336 goto out;
6337 }
6338 }
6339 retval = 0;
6340 out:
6341 return retval;
6342 }
6343 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6344 const struct iovec *iov, loff_t offset,
6345 unsigned long nr_segs)
6346 {
6347 struct file *file = iocb->ki_filp;
6348 struct inode *inode = file->f_mapping->host;
6349 struct btrfs_ordered_extent *ordered;
6350 struct extent_state *cached_state = NULL;
6351 u64 lockstart, lockend;
6352 ssize_t ret;
6353 int writing = rw & WRITE;
6354 int write_bits = 0;
6355 size_t count = iov_length(iov, nr_segs);
6356
6357 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6358 offset, nr_segs)) {
6359 return 0;
6360 }
6361
6362 lockstart = offset;
6363 lockend = offset + count - 1;
6364
6365 if (writing) {
6366 ret = btrfs_delalloc_reserve_space(inode, count);
6367 if (ret)
6368 goto out;
6369 }
6370
6371 while (1) {
6372 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6373 0, &cached_state);
6374 /*
6375 * We're concerned with the entire range that we're going to be
6376 * doing DIO to, so we need to make sure theres no ordered
6377 * extents in this range.
6378 */
6379 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6380 lockend - lockstart + 1);
6381 if (!ordered)
6382 break;
6383 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6384 &cached_state, GFP_NOFS);
6385 btrfs_start_ordered_extent(inode, ordered, 1);
6386 btrfs_put_ordered_extent(ordered);
6387 cond_resched();
6388 }
6389
6390 /*
6391 * we don't use btrfs_set_extent_delalloc because we don't want
6392 * the dirty or uptodate bits
6393 */
6394 if (writing) {
6395 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6396 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6397 EXTENT_DELALLOC, NULL, &cached_state,
6398 GFP_NOFS);
6399 if (ret) {
6400 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6401 lockend, EXTENT_LOCKED | write_bits,
6402 1, 0, &cached_state, GFP_NOFS);
6403 goto out;
6404 }
6405 }
6406
6407 free_extent_state(cached_state);
6408 cached_state = NULL;
6409
6410 ret = __blockdev_direct_IO(rw, iocb, inode,
6411 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6412 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6413 btrfs_submit_direct, 0);
6414
6415 if (ret < 0 && ret != -EIOCBQUEUED) {
6416 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6417 offset + iov_length(iov, nr_segs) - 1,
6418 EXTENT_LOCKED | write_bits, 1, 0,
6419 &cached_state, GFP_NOFS);
6420 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6421 /*
6422 * We're falling back to buffered, unlock the section we didn't
6423 * do IO on.
6424 */
6425 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6426 offset + iov_length(iov, nr_segs) - 1,
6427 EXTENT_LOCKED | write_bits, 1, 0,
6428 &cached_state, GFP_NOFS);
6429 }
6430 out:
6431 free_extent_state(cached_state);
6432 return ret;
6433 }
6434
6435 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6436 __u64 start, __u64 len)
6437 {
6438 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6439 }
6440
6441 int btrfs_readpage(struct file *file, struct page *page)
6442 {
6443 struct extent_io_tree *tree;
6444 tree = &BTRFS_I(page->mapping->host)->io_tree;
6445 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6446 }
6447
6448 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6449 {
6450 struct extent_io_tree *tree;
6451
6452
6453 if (current->flags & PF_MEMALLOC) {
6454 redirty_page_for_writepage(wbc, page);
6455 unlock_page(page);
6456 return 0;
6457 }
6458 tree = &BTRFS_I(page->mapping->host)->io_tree;
6459 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6460 }
6461
6462 int btrfs_writepages(struct address_space *mapping,
6463 struct writeback_control *wbc)
6464 {
6465 struct extent_io_tree *tree;
6466
6467 tree = &BTRFS_I(mapping->host)->io_tree;
6468 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6469 }
6470
6471 static int
6472 btrfs_readpages(struct file *file, struct address_space *mapping,
6473 struct list_head *pages, unsigned nr_pages)
6474 {
6475 struct extent_io_tree *tree;
6476 tree = &BTRFS_I(mapping->host)->io_tree;
6477 return extent_readpages(tree, mapping, pages, nr_pages,
6478 btrfs_get_extent);
6479 }
6480 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6481 {
6482 struct extent_io_tree *tree;
6483 struct extent_map_tree *map;
6484 int ret;
6485
6486 tree = &BTRFS_I(page->mapping->host)->io_tree;
6487 map = &BTRFS_I(page->mapping->host)->extent_tree;
6488 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6489 if (ret == 1) {
6490 ClearPagePrivate(page);
6491 set_page_private(page, 0);
6492 page_cache_release(page);
6493 }
6494 return ret;
6495 }
6496
6497 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6498 {
6499 if (PageWriteback(page) || PageDirty(page))
6500 return 0;
6501 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6502 }
6503
6504 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6505 {
6506 struct extent_io_tree *tree;
6507 struct btrfs_ordered_extent *ordered;
6508 struct extent_state *cached_state = NULL;
6509 u64 page_start = page_offset(page);
6510 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6511
6512
6513 /*
6514 * we have the page locked, so new writeback can't start,
6515 * and the dirty bit won't be cleared while we are here.
6516 *
6517 * Wait for IO on this page so that we can safely clear
6518 * the PagePrivate2 bit and do ordered accounting
6519 */
6520 wait_on_page_writeback(page);
6521
6522 tree = &BTRFS_I(page->mapping->host)->io_tree;
6523 if (offset) {
6524 btrfs_releasepage(page, GFP_NOFS);
6525 return;
6526 }
6527 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6528 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6529 page_offset(page));
6530 if (ordered) {
6531 /*
6532 * IO on this page will never be started, so we need
6533 * to account for any ordered extents now
6534 */
6535 clear_extent_bit(tree, page_start, page_end,
6536 EXTENT_DIRTY | EXTENT_DELALLOC |
6537 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6538 &cached_state, GFP_NOFS);
6539 /*
6540 * whoever cleared the private bit is responsible
6541 * for the finish_ordered_io
6542 */
6543 if (TestClearPagePrivate2(page)) {
6544 btrfs_finish_ordered_io(page->mapping->host,
6545 page_start, page_end);
6546 }
6547 btrfs_put_ordered_extent(ordered);
6548 cached_state = NULL;
6549 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6550 }
6551 clear_extent_bit(tree, page_start, page_end,
6552 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6553 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6554 __btrfs_releasepage(page, GFP_NOFS);
6555
6556 ClearPageChecked(page);
6557 if (PagePrivate(page)) {
6558 ClearPagePrivate(page);
6559 set_page_private(page, 0);
6560 page_cache_release(page);
6561 }
6562 }
6563
6564 /*
6565 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6566 * called from a page fault handler when a page is first dirtied. Hence we must
6567 * be careful to check for EOF conditions here. We set the page up correctly
6568 * for a written page which means we get ENOSPC checking when writing into
6569 * holes and correct delalloc and unwritten extent mapping on filesystems that
6570 * support these features.
6571 *
6572 * We are not allowed to take the i_mutex here so we have to play games to
6573 * protect against truncate races as the page could now be beyond EOF. Because
6574 * vmtruncate() writes the inode size before removing pages, once we have the
6575 * page lock we can determine safely if the page is beyond EOF. If it is not
6576 * beyond EOF, then the page is guaranteed safe against truncation until we
6577 * unlock the page.
6578 */
6579 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6580 {
6581 struct page *page = vmf->page;
6582 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6583 struct btrfs_root *root = BTRFS_I(inode)->root;
6584 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6585 struct btrfs_ordered_extent *ordered;
6586 struct extent_state *cached_state = NULL;
6587 char *kaddr;
6588 unsigned long zero_start;
6589 loff_t size;
6590 int ret;
6591 int reserved = 0;
6592 u64 page_start;
6593 u64 page_end;
6594
6595 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6596 if (!ret) {
6597 ret = btrfs_update_time(vma->vm_file);
6598 reserved = 1;
6599 }
6600 if (ret) {
6601 if (ret == -ENOMEM)
6602 ret = VM_FAULT_OOM;
6603 else /* -ENOSPC, -EIO, etc */
6604 ret = VM_FAULT_SIGBUS;
6605 if (reserved)
6606 goto out;
6607 goto out_noreserve;
6608 }
6609
6610 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6611 again:
6612 lock_page(page);
6613 size = i_size_read(inode);
6614 page_start = page_offset(page);
6615 page_end = page_start + PAGE_CACHE_SIZE - 1;
6616
6617 if ((page->mapping != inode->i_mapping) ||
6618 (page_start >= size)) {
6619 /* page got truncated out from underneath us */
6620 goto out_unlock;
6621 }
6622 wait_on_page_writeback(page);
6623
6624 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6625 set_page_extent_mapped(page);
6626
6627 /*
6628 * we can't set the delalloc bits if there are pending ordered
6629 * extents. Drop our locks and wait for them to finish
6630 */
6631 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6632 if (ordered) {
6633 unlock_extent_cached(io_tree, page_start, page_end,
6634 &cached_state, GFP_NOFS);
6635 unlock_page(page);
6636 btrfs_start_ordered_extent(inode, ordered, 1);
6637 btrfs_put_ordered_extent(ordered);
6638 goto again;
6639 }
6640
6641 /*
6642 * XXX - page_mkwrite gets called every time the page is dirtied, even
6643 * if it was already dirty, so for space accounting reasons we need to
6644 * clear any delalloc bits for the range we are fixing to save. There
6645 * is probably a better way to do this, but for now keep consistent with
6646 * prepare_pages in the normal write path.
6647 */
6648 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6649 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6650 0, 0, &cached_state, GFP_NOFS);
6651
6652 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6653 &cached_state);
6654 if (ret) {
6655 unlock_extent_cached(io_tree, page_start, page_end,
6656 &cached_state, GFP_NOFS);
6657 ret = VM_FAULT_SIGBUS;
6658 goto out_unlock;
6659 }
6660 ret = 0;
6661
6662 /* page is wholly or partially inside EOF */
6663 if (page_start + PAGE_CACHE_SIZE > size)
6664 zero_start = size & ~PAGE_CACHE_MASK;
6665 else
6666 zero_start = PAGE_CACHE_SIZE;
6667
6668 if (zero_start != PAGE_CACHE_SIZE) {
6669 kaddr = kmap(page);
6670 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6671 flush_dcache_page(page);
6672 kunmap(page);
6673 }
6674 ClearPageChecked(page);
6675 set_page_dirty(page);
6676 SetPageUptodate(page);
6677
6678 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6679 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6680
6681 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6682
6683 out_unlock:
6684 if (!ret)
6685 return VM_FAULT_LOCKED;
6686 unlock_page(page);
6687 out:
6688 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6689 out_noreserve:
6690 return ret;
6691 }
6692
6693 static int btrfs_truncate(struct inode *inode)
6694 {
6695 struct btrfs_root *root = BTRFS_I(inode)->root;
6696 struct btrfs_block_rsv *rsv;
6697 int ret;
6698 int err = 0;
6699 struct btrfs_trans_handle *trans;
6700 unsigned long nr;
6701 u64 mask = root->sectorsize - 1;
6702 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6703
6704 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6705 if (ret)
6706 return ret;
6707
6708 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6709 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6710
6711 /*
6712 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6713 * 3 things going on here
6714 *
6715 * 1) We need to reserve space for our orphan item and the space to
6716 * delete our orphan item. Lord knows we don't want to have a dangling
6717 * orphan item because we didn't reserve space to remove it.
6718 *
6719 * 2) We need to reserve space to update our inode.
6720 *
6721 * 3) We need to have something to cache all the space that is going to
6722 * be free'd up by the truncate operation, but also have some slack
6723 * space reserved in case it uses space during the truncate (thank you
6724 * very much snapshotting).
6725 *
6726 * And we need these to all be seperate. The fact is we can use alot of
6727 * space doing the truncate, and we have no earthly idea how much space
6728 * we will use, so we need the truncate reservation to be seperate so it
6729 * doesn't end up using space reserved for updating the inode or
6730 * removing the orphan item. We also need to be able to stop the
6731 * transaction and start a new one, which means we need to be able to
6732 * update the inode several times, and we have no idea of knowing how
6733 * many times that will be, so we can't just reserve 1 item for the
6734 * entirety of the opration, so that has to be done seperately as well.
6735 * Then there is the orphan item, which does indeed need to be held on
6736 * to for the whole operation, and we need nobody to touch this reserved
6737 * space except the orphan code.
6738 *
6739 * So that leaves us with
6740 *
6741 * 1) root->orphan_block_rsv - for the orphan deletion.
6742 * 2) rsv - for the truncate reservation, which we will steal from the
6743 * transaction reservation.
6744 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6745 * updating the inode.
6746 */
6747 rsv = btrfs_alloc_block_rsv(root);
6748 if (!rsv)
6749 return -ENOMEM;
6750 rsv->size = min_size;
6751
6752 /*
6753 * 1 for the truncate slack space
6754 * 1 for the orphan item we're going to add
6755 * 1 for the orphan item deletion
6756 * 1 for updating the inode.
6757 */
6758 trans = btrfs_start_transaction(root, 4);
6759 if (IS_ERR(trans)) {
6760 err = PTR_ERR(trans);
6761 goto out;
6762 }
6763
6764 /* Migrate the slack space for the truncate to our reserve */
6765 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6766 min_size);
6767 BUG_ON(ret);
6768
6769 ret = btrfs_orphan_add(trans, inode);
6770 if (ret) {
6771 btrfs_end_transaction(trans, root);
6772 goto out;
6773 }
6774
6775 /*
6776 * setattr is responsible for setting the ordered_data_close flag,
6777 * but that is only tested during the last file release. That
6778 * could happen well after the next commit, leaving a great big
6779 * window where new writes may get lost if someone chooses to write
6780 * to this file after truncating to zero
6781 *
6782 * The inode doesn't have any dirty data here, and so if we commit
6783 * this is a noop. If someone immediately starts writing to the inode
6784 * it is very likely we'll catch some of their writes in this
6785 * transaction, and the commit will find this file on the ordered
6786 * data list with good things to send down.
6787 *
6788 * This is a best effort solution, there is still a window where
6789 * using truncate to replace the contents of the file will
6790 * end up with a zero length file after a crash.
6791 */
6792 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6793 btrfs_add_ordered_operation(trans, root, inode);
6794
6795 while (1) {
6796 ret = btrfs_block_rsv_refill(root, rsv, min_size);
6797 if (ret) {
6798 /*
6799 * This can only happen with the original transaction we
6800 * started above, every other time we shouldn't have a
6801 * transaction started yet.
6802 */
6803 if (ret == -EAGAIN)
6804 goto end_trans;
6805 err = ret;
6806 break;
6807 }
6808
6809 if (!trans) {
6810 /* Just need the 1 for updating the inode */
6811 trans = btrfs_start_transaction(root, 1);
6812 if (IS_ERR(trans)) {
6813 ret = err = PTR_ERR(trans);
6814 trans = NULL;
6815 break;
6816 }
6817 }
6818
6819 trans->block_rsv = rsv;
6820
6821 ret = btrfs_truncate_inode_items(trans, root, inode,
6822 inode->i_size,
6823 BTRFS_EXTENT_DATA_KEY);
6824 if (ret != -EAGAIN) {
6825 err = ret;
6826 break;
6827 }
6828
6829 trans->block_rsv = &root->fs_info->trans_block_rsv;
6830 ret = btrfs_update_inode(trans, root, inode);
6831 if (ret) {
6832 err = ret;
6833 break;
6834 }
6835 end_trans:
6836 nr = trans->blocks_used;
6837 btrfs_end_transaction(trans, root);
6838 trans = NULL;
6839 btrfs_btree_balance_dirty(root, nr);
6840 }
6841
6842 if (ret == 0 && inode->i_nlink > 0) {
6843 trans->block_rsv = root->orphan_block_rsv;
6844 ret = btrfs_orphan_del(trans, inode);
6845 if (ret)
6846 err = ret;
6847 } else if (ret && inode->i_nlink > 0) {
6848 /*
6849 * Failed to do the truncate, remove us from the in memory
6850 * orphan list.
6851 */
6852 ret = btrfs_orphan_del(NULL, inode);
6853 }
6854
6855 if (trans) {
6856 trans->block_rsv = &root->fs_info->trans_block_rsv;
6857 ret = btrfs_update_inode(trans, root, inode);
6858 if (ret && !err)
6859 err = ret;
6860
6861 nr = trans->blocks_used;
6862 ret = btrfs_end_transaction(trans, root);
6863 btrfs_btree_balance_dirty(root, nr);
6864 }
6865
6866 out:
6867 btrfs_free_block_rsv(root, rsv);
6868
6869 if (ret && !err)
6870 err = ret;
6871
6872 return err;
6873 }
6874
6875 /*
6876 * create a new subvolume directory/inode (helper for the ioctl).
6877 */
6878 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6879 struct btrfs_root *new_root, u64 new_dirid)
6880 {
6881 struct inode *inode;
6882 int err;
6883 u64 index = 0;
6884
6885 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6886 new_dirid, new_dirid,
6887 S_IFDIR | (~current_umask() & S_IRWXUGO),
6888 &index);
6889 if (IS_ERR(inode))
6890 return PTR_ERR(inode);
6891 inode->i_op = &btrfs_dir_inode_operations;
6892 inode->i_fop = &btrfs_dir_file_operations;
6893
6894 set_nlink(inode, 1);
6895 btrfs_i_size_write(inode, 0);
6896
6897 err = btrfs_update_inode(trans, new_root, inode);
6898
6899 iput(inode);
6900 return err;
6901 }
6902
6903 struct inode *btrfs_alloc_inode(struct super_block *sb)
6904 {
6905 struct btrfs_inode *ei;
6906 struct inode *inode;
6907
6908 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6909 if (!ei)
6910 return NULL;
6911
6912 ei->root = NULL;
6913 ei->space_info = NULL;
6914 ei->generation = 0;
6915 ei->sequence = 0;
6916 ei->last_trans = 0;
6917 ei->last_sub_trans = 0;
6918 ei->logged_trans = 0;
6919 ei->delalloc_bytes = 0;
6920 ei->disk_i_size = 0;
6921 ei->flags = 0;
6922 ei->csum_bytes = 0;
6923 ei->index_cnt = (u64)-1;
6924 ei->last_unlink_trans = 0;
6925
6926 spin_lock_init(&ei->lock);
6927 ei->outstanding_extents = 0;
6928 ei->reserved_extents = 0;
6929
6930 ei->ordered_data_close = 0;
6931 ei->orphan_meta_reserved = 0;
6932 ei->dummy_inode = 0;
6933 ei->in_defrag = 0;
6934 ei->delalloc_meta_reserved = 0;
6935 ei->force_compress = BTRFS_COMPRESS_NONE;
6936
6937 ei->delayed_node = NULL;
6938
6939 inode = &ei->vfs_inode;
6940 extent_map_tree_init(&ei->extent_tree);
6941 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6942 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6943 ei->io_tree.track_uptodate = 1;
6944 ei->io_failure_tree.track_uptodate = 1;
6945 mutex_init(&ei->log_mutex);
6946 mutex_init(&ei->delalloc_mutex);
6947 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6948 INIT_LIST_HEAD(&ei->i_orphan);
6949 INIT_LIST_HEAD(&ei->delalloc_inodes);
6950 INIT_LIST_HEAD(&ei->ordered_operations);
6951 RB_CLEAR_NODE(&ei->rb_node);
6952
6953 return inode;
6954 }
6955
6956 static void btrfs_i_callback(struct rcu_head *head)
6957 {
6958 struct inode *inode = container_of(head, struct inode, i_rcu);
6959 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6960 }
6961
6962 void btrfs_destroy_inode(struct inode *inode)
6963 {
6964 struct btrfs_ordered_extent *ordered;
6965 struct btrfs_root *root = BTRFS_I(inode)->root;
6966
6967 WARN_ON(!list_empty(&inode->i_dentry));
6968 WARN_ON(inode->i_data.nrpages);
6969 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6970 WARN_ON(BTRFS_I(inode)->reserved_extents);
6971 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6972 WARN_ON(BTRFS_I(inode)->csum_bytes);
6973
6974 /*
6975 * This can happen where we create an inode, but somebody else also
6976 * created the same inode and we need to destroy the one we already
6977 * created.
6978 */
6979 if (!root)
6980 goto free;
6981
6982 /*
6983 * Make sure we're properly removed from the ordered operation
6984 * lists.
6985 */
6986 smp_mb();
6987 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6988 spin_lock(&root->fs_info->ordered_extent_lock);
6989 list_del_init(&BTRFS_I(inode)->ordered_operations);
6990 spin_unlock(&root->fs_info->ordered_extent_lock);
6991 }
6992
6993 spin_lock(&root->orphan_lock);
6994 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6995 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6996 (unsigned long long)btrfs_ino(inode));
6997 list_del_init(&BTRFS_I(inode)->i_orphan);
6998 }
6999 spin_unlock(&root->orphan_lock);
7000
7001 while (1) {
7002 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7003 if (!ordered)
7004 break;
7005 else {
7006 printk(KERN_ERR "btrfs found ordered "
7007 "extent %llu %llu on inode cleanup\n",
7008 (unsigned long long)ordered->file_offset,
7009 (unsigned long long)ordered->len);
7010 btrfs_remove_ordered_extent(inode, ordered);
7011 btrfs_put_ordered_extent(ordered);
7012 btrfs_put_ordered_extent(ordered);
7013 }
7014 }
7015 inode_tree_del(inode);
7016 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7017 free:
7018 btrfs_remove_delayed_node(inode);
7019 call_rcu(&inode->i_rcu, btrfs_i_callback);
7020 }
7021
7022 int btrfs_drop_inode(struct inode *inode)
7023 {
7024 struct btrfs_root *root = BTRFS_I(inode)->root;
7025
7026 if (btrfs_root_refs(&root->root_item) == 0 &&
7027 !btrfs_is_free_space_inode(root, inode))
7028 return 1;
7029 else
7030 return generic_drop_inode(inode);
7031 }
7032
7033 static void init_once(void *foo)
7034 {
7035 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7036
7037 inode_init_once(&ei->vfs_inode);
7038 }
7039
7040 void btrfs_destroy_cachep(void)
7041 {
7042 if (btrfs_inode_cachep)
7043 kmem_cache_destroy(btrfs_inode_cachep);
7044 if (btrfs_trans_handle_cachep)
7045 kmem_cache_destroy(btrfs_trans_handle_cachep);
7046 if (btrfs_transaction_cachep)
7047 kmem_cache_destroy(btrfs_transaction_cachep);
7048 if (btrfs_path_cachep)
7049 kmem_cache_destroy(btrfs_path_cachep);
7050 if (btrfs_free_space_cachep)
7051 kmem_cache_destroy(btrfs_free_space_cachep);
7052 }
7053
7054 int btrfs_init_cachep(void)
7055 {
7056 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7057 sizeof(struct btrfs_inode), 0,
7058 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7059 if (!btrfs_inode_cachep)
7060 goto fail;
7061
7062 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7063 sizeof(struct btrfs_trans_handle), 0,
7064 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7065 if (!btrfs_trans_handle_cachep)
7066 goto fail;
7067
7068 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7069 sizeof(struct btrfs_transaction), 0,
7070 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7071 if (!btrfs_transaction_cachep)
7072 goto fail;
7073
7074 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7075 sizeof(struct btrfs_path), 0,
7076 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7077 if (!btrfs_path_cachep)
7078 goto fail;
7079
7080 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7081 sizeof(struct btrfs_free_space), 0,
7082 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7083 if (!btrfs_free_space_cachep)
7084 goto fail;
7085
7086 return 0;
7087 fail:
7088 btrfs_destroy_cachep();
7089 return -ENOMEM;
7090 }
7091
7092 static int btrfs_getattr(struct vfsmount *mnt,
7093 struct dentry *dentry, struct kstat *stat)
7094 {
7095 struct inode *inode = dentry->d_inode;
7096 u32 blocksize = inode->i_sb->s_blocksize;
7097
7098 generic_fillattr(inode, stat);
7099 stat->dev = BTRFS_I(inode)->root->anon_dev;
7100 stat->blksize = PAGE_CACHE_SIZE;
7101 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7102 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7103 return 0;
7104 }
7105
7106 /*
7107 * If a file is moved, it will inherit the cow and compression flags of the new
7108 * directory.
7109 */
7110 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7111 {
7112 struct btrfs_inode *b_dir = BTRFS_I(dir);
7113 struct btrfs_inode *b_inode = BTRFS_I(inode);
7114
7115 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7116 b_inode->flags |= BTRFS_INODE_NODATACOW;
7117 else
7118 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7119
7120 if (b_dir->flags & BTRFS_INODE_COMPRESS)
7121 b_inode->flags |= BTRFS_INODE_COMPRESS;
7122 else
7123 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
7124 }
7125
7126 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7127 struct inode *new_dir, struct dentry *new_dentry)
7128 {
7129 struct btrfs_trans_handle *trans;
7130 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7131 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7132 struct inode *new_inode = new_dentry->d_inode;
7133 struct inode *old_inode = old_dentry->d_inode;
7134 struct timespec ctime = CURRENT_TIME;
7135 u64 index = 0;
7136 u64 root_objectid;
7137 int ret;
7138 u64 old_ino = btrfs_ino(old_inode);
7139
7140 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7141 return -EPERM;
7142
7143 /* we only allow rename subvolume link between subvolumes */
7144 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7145 return -EXDEV;
7146
7147 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7148 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7149 return -ENOTEMPTY;
7150
7151 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7152 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7153 return -ENOTEMPTY;
7154 /*
7155 * we're using rename to replace one file with another.
7156 * and the replacement file is large. Start IO on it now so
7157 * we don't add too much work to the end of the transaction
7158 */
7159 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7160 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7161 filemap_flush(old_inode->i_mapping);
7162
7163 /* close the racy window with snapshot create/destroy ioctl */
7164 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7165 down_read(&root->fs_info->subvol_sem);
7166 /*
7167 * We want to reserve the absolute worst case amount of items. So if
7168 * both inodes are subvols and we need to unlink them then that would
7169 * require 4 item modifications, but if they are both normal inodes it
7170 * would require 5 item modifications, so we'll assume their normal
7171 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7172 * should cover the worst case number of items we'll modify.
7173 */
7174 trans = btrfs_start_transaction(root, 20);
7175 if (IS_ERR(trans)) {
7176 ret = PTR_ERR(trans);
7177 goto out_notrans;
7178 }
7179
7180 if (dest != root)
7181 btrfs_record_root_in_trans(trans, dest);
7182
7183 ret = btrfs_set_inode_index(new_dir, &index);
7184 if (ret)
7185 goto out_fail;
7186
7187 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7188 /* force full log commit if subvolume involved. */
7189 root->fs_info->last_trans_log_full_commit = trans->transid;
7190 } else {
7191 ret = btrfs_insert_inode_ref(trans, dest,
7192 new_dentry->d_name.name,
7193 new_dentry->d_name.len,
7194 old_ino,
7195 btrfs_ino(new_dir), index);
7196 if (ret)
7197 goto out_fail;
7198 /*
7199 * this is an ugly little race, but the rename is required
7200 * to make sure that if we crash, the inode is either at the
7201 * old name or the new one. pinning the log transaction lets
7202 * us make sure we don't allow a log commit to come in after
7203 * we unlink the name but before we add the new name back in.
7204 */
7205 btrfs_pin_log_trans(root);
7206 }
7207 /*
7208 * make sure the inode gets flushed if it is replacing
7209 * something.
7210 */
7211 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7212 btrfs_add_ordered_operation(trans, root, old_inode);
7213
7214 old_dir->i_ctime = old_dir->i_mtime = ctime;
7215 new_dir->i_ctime = new_dir->i_mtime = ctime;
7216 old_inode->i_ctime = ctime;
7217
7218 if (old_dentry->d_parent != new_dentry->d_parent)
7219 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7220
7221 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7222 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7223 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7224 old_dentry->d_name.name,
7225 old_dentry->d_name.len);
7226 } else {
7227 ret = __btrfs_unlink_inode(trans, root, old_dir,
7228 old_dentry->d_inode,
7229 old_dentry->d_name.name,
7230 old_dentry->d_name.len);
7231 if (!ret)
7232 ret = btrfs_update_inode(trans, root, old_inode);
7233 }
7234 if (ret) {
7235 btrfs_abort_transaction(trans, root, ret);
7236 goto out_fail;
7237 }
7238
7239 if (new_inode) {
7240 new_inode->i_ctime = CURRENT_TIME;
7241 if (unlikely(btrfs_ino(new_inode) ==
7242 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7243 root_objectid = BTRFS_I(new_inode)->location.objectid;
7244 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7245 root_objectid,
7246 new_dentry->d_name.name,
7247 new_dentry->d_name.len);
7248 BUG_ON(new_inode->i_nlink == 0);
7249 } else {
7250 ret = btrfs_unlink_inode(trans, dest, new_dir,
7251 new_dentry->d_inode,
7252 new_dentry->d_name.name,
7253 new_dentry->d_name.len);
7254 }
7255 if (!ret && new_inode->i_nlink == 0) {
7256 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7257 BUG_ON(ret);
7258 }
7259 if (ret) {
7260 btrfs_abort_transaction(trans, root, ret);
7261 goto out_fail;
7262 }
7263 }
7264
7265 fixup_inode_flags(new_dir, old_inode);
7266
7267 ret = btrfs_add_link(trans, new_dir, old_inode,
7268 new_dentry->d_name.name,
7269 new_dentry->d_name.len, 0, index);
7270 if (ret) {
7271 btrfs_abort_transaction(trans, root, ret);
7272 goto out_fail;
7273 }
7274
7275 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7276 struct dentry *parent = new_dentry->d_parent;
7277 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7278 btrfs_end_log_trans(root);
7279 }
7280 out_fail:
7281 btrfs_end_transaction(trans, root);
7282 out_notrans:
7283 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7284 up_read(&root->fs_info->subvol_sem);
7285
7286 return ret;
7287 }
7288
7289 /*
7290 * some fairly slow code that needs optimization. This walks the list
7291 * of all the inodes with pending delalloc and forces them to disk.
7292 */
7293 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7294 {
7295 struct list_head *head = &root->fs_info->delalloc_inodes;
7296 struct btrfs_inode *binode;
7297 struct inode *inode;
7298
7299 if (root->fs_info->sb->s_flags & MS_RDONLY)
7300 return -EROFS;
7301
7302 spin_lock(&root->fs_info->delalloc_lock);
7303 while (!list_empty(head)) {
7304 binode = list_entry(head->next, struct btrfs_inode,
7305 delalloc_inodes);
7306 inode = igrab(&binode->vfs_inode);
7307 if (!inode)
7308 list_del_init(&binode->delalloc_inodes);
7309 spin_unlock(&root->fs_info->delalloc_lock);
7310 if (inode) {
7311 filemap_flush(inode->i_mapping);
7312 if (delay_iput)
7313 btrfs_add_delayed_iput(inode);
7314 else
7315 iput(inode);
7316 }
7317 cond_resched();
7318 spin_lock(&root->fs_info->delalloc_lock);
7319 }
7320 spin_unlock(&root->fs_info->delalloc_lock);
7321
7322 /* the filemap_flush will queue IO into the worker threads, but
7323 * we have to make sure the IO is actually started and that
7324 * ordered extents get created before we return
7325 */
7326 atomic_inc(&root->fs_info->async_submit_draining);
7327 while (atomic_read(&root->fs_info->nr_async_submits) ||
7328 atomic_read(&root->fs_info->async_delalloc_pages)) {
7329 wait_event(root->fs_info->async_submit_wait,
7330 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7331 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7332 }
7333 atomic_dec(&root->fs_info->async_submit_draining);
7334 return 0;
7335 }
7336
7337 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7338 const char *symname)
7339 {
7340 struct btrfs_trans_handle *trans;
7341 struct btrfs_root *root = BTRFS_I(dir)->root;
7342 struct btrfs_path *path;
7343 struct btrfs_key key;
7344 struct inode *inode = NULL;
7345 int err;
7346 int drop_inode = 0;
7347 u64 objectid;
7348 u64 index = 0 ;
7349 int name_len;
7350 int datasize;
7351 unsigned long ptr;
7352 struct btrfs_file_extent_item *ei;
7353 struct extent_buffer *leaf;
7354 unsigned long nr = 0;
7355
7356 name_len = strlen(symname) + 1;
7357 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7358 return -ENAMETOOLONG;
7359
7360 /*
7361 * 2 items for inode item and ref
7362 * 2 items for dir items
7363 * 1 item for xattr if selinux is on
7364 */
7365 trans = btrfs_start_transaction(root, 5);
7366 if (IS_ERR(trans))
7367 return PTR_ERR(trans);
7368
7369 err = btrfs_find_free_ino(root, &objectid);
7370 if (err)
7371 goto out_unlock;
7372
7373 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7374 dentry->d_name.len, btrfs_ino(dir), objectid,
7375 S_IFLNK|S_IRWXUGO, &index);
7376 if (IS_ERR(inode)) {
7377 err = PTR_ERR(inode);
7378 goto out_unlock;
7379 }
7380
7381 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7382 if (err) {
7383 drop_inode = 1;
7384 goto out_unlock;
7385 }
7386
7387 /*
7388 * If the active LSM wants to access the inode during
7389 * d_instantiate it needs these. Smack checks to see
7390 * if the filesystem supports xattrs by looking at the
7391 * ops vector.
7392 */
7393 inode->i_fop = &btrfs_file_operations;
7394 inode->i_op = &btrfs_file_inode_operations;
7395
7396 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7397 if (err)
7398 drop_inode = 1;
7399 else {
7400 inode->i_mapping->a_ops = &btrfs_aops;
7401 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7402 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7403 }
7404 if (drop_inode)
7405 goto out_unlock;
7406
7407 path = btrfs_alloc_path();
7408 if (!path) {
7409 err = -ENOMEM;
7410 drop_inode = 1;
7411 goto out_unlock;
7412 }
7413 key.objectid = btrfs_ino(inode);
7414 key.offset = 0;
7415 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7416 datasize = btrfs_file_extent_calc_inline_size(name_len);
7417 err = btrfs_insert_empty_item(trans, root, path, &key,
7418 datasize);
7419 if (err) {
7420 drop_inode = 1;
7421 btrfs_free_path(path);
7422 goto out_unlock;
7423 }
7424 leaf = path->nodes[0];
7425 ei = btrfs_item_ptr(leaf, path->slots[0],
7426 struct btrfs_file_extent_item);
7427 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7428 btrfs_set_file_extent_type(leaf, ei,
7429 BTRFS_FILE_EXTENT_INLINE);
7430 btrfs_set_file_extent_encryption(leaf, ei, 0);
7431 btrfs_set_file_extent_compression(leaf, ei, 0);
7432 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7433 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7434
7435 ptr = btrfs_file_extent_inline_start(ei);
7436 write_extent_buffer(leaf, symname, ptr, name_len);
7437 btrfs_mark_buffer_dirty(leaf);
7438 btrfs_free_path(path);
7439
7440 inode->i_op = &btrfs_symlink_inode_operations;
7441 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7442 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7443 inode_set_bytes(inode, name_len);
7444 btrfs_i_size_write(inode, name_len - 1);
7445 err = btrfs_update_inode(trans, root, inode);
7446 if (err)
7447 drop_inode = 1;
7448
7449 out_unlock:
7450 if (!err)
7451 d_instantiate(dentry, inode);
7452 nr = trans->blocks_used;
7453 btrfs_end_transaction(trans, root);
7454 if (drop_inode) {
7455 inode_dec_link_count(inode);
7456 iput(inode);
7457 }
7458 btrfs_btree_balance_dirty(root, nr);
7459 return err;
7460 }
7461
7462 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7463 u64 start, u64 num_bytes, u64 min_size,
7464 loff_t actual_len, u64 *alloc_hint,
7465 struct btrfs_trans_handle *trans)
7466 {
7467 struct btrfs_root *root = BTRFS_I(inode)->root;
7468 struct btrfs_key ins;
7469 u64 cur_offset = start;
7470 u64 i_size;
7471 int ret = 0;
7472 bool own_trans = true;
7473
7474 if (trans)
7475 own_trans = false;
7476 while (num_bytes > 0) {
7477 if (own_trans) {
7478 trans = btrfs_start_transaction(root, 3);
7479 if (IS_ERR(trans)) {
7480 ret = PTR_ERR(trans);
7481 break;
7482 }
7483 }
7484
7485 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7486 0, *alloc_hint, &ins, 1);
7487 if (ret) {
7488 if (own_trans)
7489 btrfs_end_transaction(trans, root);
7490 break;
7491 }
7492
7493 ret = insert_reserved_file_extent(trans, inode,
7494 cur_offset, ins.objectid,
7495 ins.offset, ins.offset,
7496 ins.offset, 0, 0, 0,
7497 BTRFS_FILE_EXTENT_PREALLOC);
7498 if (ret) {
7499 btrfs_abort_transaction(trans, root, ret);
7500 if (own_trans)
7501 btrfs_end_transaction(trans, root);
7502 break;
7503 }
7504 btrfs_drop_extent_cache(inode, cur_offset,
7505 cur_offset + ins.offset -1, 0);
7506
7507 num_bytes -= ins.offset;
7508 cur_offset += ins.offset;
7509 *alloc_hint = ins.objectid + ins.offset;
7510
7511 inode->i_ctime = CURRENT_TIME;
7512 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7513 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7514 (actual_len > inode->i_size) &&
7515 (cur_offset > inode->i_size)) {
7516 if (cur_offset > actual_len)
7517 i_size = actual_len;
7518 else
7519 i_size = cur_offset;
7520 i_size_write(inode, i_size);
7521 btrfs_ordered_update_i_size(inode, i_size, NULL);
7522 }
7523
7524 ret = btrfs_update_inode(trans, root, inode);
7525
7526 if (ret) {
7527 btrfs_abort_transaction(trans, root, ret);
7528 if (own_trans)
7529 btrfs_end_transaction(trans, root);
7530 break;
7531 }
7532
7533 if (own_trans)
7534 btrfs_end_transaction(trans, root);
7535 }
7536 return ret;
7537 }
7538
7539 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7540 u64 start, u64 num_bytes, u64 min_size,
7541 loff_t actual_len, u64 *alloc_hint)
7542 {
7543 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7544 min_size, actual_len, alloc_hint,
7545 NULL);
7546 }
7547
7548 int btrfs_prealloc_file_range_trans(struct inode *inode,
7549 struct btrfs_trans_handle *trans, int mode,
7550 u64 start, u64 num_bytes, u64 min_size,
7551 loff_t actual_len, u64 *alloc_hint)
7552 {
7553 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7554 min_size, actual_len, alloc_hint, trans);
7555 }
7556
7557 static int btrfs_set_page_dirty(struct page *page)
7558 {
7559 return __set_page_dirty_nobuffers(page);
7560 }
7561
7562 static int btrfs_permission(struct inode *inode, int mask)
7563 {
7564 struct btrfs_root *root = BTRFS_I(inode)->root;
7565 umode_t mode = inode->i_mode;
7566
7567 if (mask & MAY_WRITE &&
7568 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7569 if (btrfs_root_readonly(root))
7570 return -EROFS;
7571 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7572 return -EACCES;
7573 }
7574 return generic_permission(inode, mask);
7575 }
7576
7577 static const struct inode_operations btrfs_dir_inode_operations = {
7578 .getattr = btrfs_getattr,
7579 .lookup = btrfs_lookup,
7580 .create = btrfs_create,
7581 .unlink = btrfs_unlink,
7582 .link = btrfs_link,
7583 .mkdir = btrfs_mkdir,
7584 .rmdir = btrfs_rmdir,
7585 .rename = btrfs_rename,
7586 .symlink = btrfs_symlink,
7587 .setattr = btrfs_setattr,
7588 .mknod = btrfs_mknod,
7589 .setxattr = btrfs_setxattr,
7590 .getxattr = btrfs_getxattr,
7591 .listxattr = btrfs_listxattr,
7592 .removexattr = btrfs_removexattr,
7593 .permission = btrfs_permission,
7594 .get_acl = btrfs_get_acl,
7595 };
7596 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7597 .lookup = btrfs_lookup,
7598 .permission = btrfs_permission,
7599 .get_acl = btrfs_get_acl,
7600 };
7601
7602 static const struct file_operations btrfs_dir_file_operations = {
7603 .llseek = generic_file_llseek,
7604 .read = generic_read_dir,
7605 .readdir = btrfs_real_readdir,
7606 .unlocked_ioctl = btrfs_ioctl,
7607 #ifdef CONFIG_COMPAT
7608 .compat_ioctl = btrfs_ioctl,
7609 #endif
7610 .release = btrfs_release_file,
7611 .fsync = btrfs_sync_file,
7612 };
7613
7614 static struct extent_io_ops btrfs_extent_io_ops = {
7615 .fill_delalloc = run_delalloc_range,
7616 .submit_bio_hook = btrfs_submit_bio_hook,
7617 .merge_bio_hook = btrfs_merge_bio_hook,
7618 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7619 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7620 .writepage_start_hook = btrfs_writepage_start_hook,
7621 .set_bit_hook = btrfs_set_bit_hook,
7622 .clear_bit_hook = btrfs_clear_bit_hook,
7623 .merge_extent_hook = btrfs_merge_extent_hook,
7624 .split_extent_hook = btrfs_split_extent_hook,
7625 };
7626
7627 /*
7628 * btrfs doesn't support the bmap operation because swapfiles
7629 * use bmap to make a mapping of extents in the file. They assume
7630 * these extents won't change over the life of the file and they
7631 * use the bmap result to do IO directly to the drive.
7632 *
7633 * the btrfs bmap call would return logical addresses that aren't
7634 * suitable for IO and they also will change frequently as COW
7635 * operations happen. So, swapfile + btrfs == corruption.
7636 *
7637 * For now we're avoiding this by dropping bmap.
7638 */
7639 static const struct address_space_operations btrfs_aops = {
7640 .readpage = btrfs_readpage,
7641 .writepage = btrfs_writepage,
7642 .writepages = btrfs_writepages,
7643 .readpages = btrfs_readpages,
7644 .direct_IO = btrfs_direct_IO,
7645 .invalidatepage = btrfs_invalidatepage,
7646 .releasepage = btrfs_releasepage,
7647 .set_page_dirty = btrfs_set_page_dirty,
7648 .error_remove_page = generic_error_remove_page,
7649 };
7650
7651 static const struct address_space_operations btrfs_symlink_aops = {
7652 .readpage = btrfs_readpage,
7653 .writepage = btrfs_writepage,
7654 .invalidatepage = btrfs_invalidatepage,
7655 .releasepage = btrfs_releasepage,
7656 };
7657
7658 static const struct inode_operations btrfs_file_inode_operations = {
7659 .getattr = btrfs_getattr,
7660 .setattr = btrfs_setattr,
7661 .setxattr = btrfs_setxattr,
7662 .getxattr = btrfs_getxattr,
7663 .listxattr = btrfs_listxattr,
7664 .removexattr = btrfs_removexattr,
7665 .permission = btrfs_permission,
7666 .fiemap = btrfs_fiemap,
7667 .get_acl = btrfs_get_acl,
7668 };
7669 static const struct inode_operations btrfs_special_inode_operations = {
7670 .getattr = btrfs_getattr,
7671 .setattr = btrfs_setattr,
7672 .permission = btrfs_permission,
7673 .setxattr = btrfs_setxattr,
7674 .getxattr = btrfs_getxattr,
7675 .listxattr = btrfs_listxattr,
7676 .removexattr = btrfs_removexattr,
7677 .get_acl = btrfs_get_acl,
7678 };
7679 static const struct inode_operations btrfs_symlink_inode_operations = {
7680 .readlink = generic_readlink,
7681 .follow_link = page_follow_link_light,
7682 .put_link = page_put_link,
7683 .getattr = btrfs_getattr,
7684 .setattr = btrfs_setattr,
7685 .permission = btrfs_permission,
7686 .setxattr = btrfs_setxattr,
7687 .getxattr = btrfs_getxattr,
7688 .listxattr = btrfs_listxattr,
7689 .removexattr = btrfs_removexattr,
7690 .get_acl = btrfs_get_acl,
7691 };
7692
7693 const struct dentry_operations btrfs_dentry_operations = {
7694 .d_delete = btrfs_dentry_delete,
7695 .d_release = btrfs_dentry_release,
7696 };
This page took 0.446248 seconds and 6 git commands to generate.