Btrfs: extent_map and data=ordered fixes for space balancing
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "compat.h"
50 #include "tree-log.h"
51
52 struct btrfs_iget_args {
53 u64 ino;
54 struct btrfs_root *root;
55 };
56
57 static struct inode_operations btrfs_dir_inode_operations;
58 static struct inode_operations btrfs_symlink_inode_operations;
59 static struct inode_operations btrfs_dir_ro_inode_operations;
60 static struct inode_operations btrfs_special_inode_operations;
61 static struct inode_operations btrfs_file_inode_operations;
62 static struct address_space_operations btrfs_aops;
63 static struct address_space_operations btrfs_symlink_aops;
64 static struct file_operations btrfs_dir_file_operations;
65 static struct extent_io_ops btrfs_extent_io_ops;
66
67 static struct kmem_cache *btrfs_inode_cachep;
68 struct kmem_cache *btrfs_trans_handle_cachep;
69 struct kmem_cache *btrfs_transaction_cachep;
70 struct kmem_cache *btrfs_bit_radix_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85
86 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
87 int for_del)
88 {
89 u64 total;
90 u64 used;
91 u64 thresh;
92 unsigned long flags;
93 int ret = 0;
94
95 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
96 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
97 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
98 if (for_del)
99 thresh = total * 90;
100 else
101 thresh = total * 85;
102
103 do_div(thresh, 100);
104
105 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
106 ret = -ENOSPC;
107 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
108 return ret;
109 }
110
111 static int cow_file_range(struct inode *inode, u64 start, u64 end)
112 {
113 struct btrfs_root *root = BTRFS_I(inode)->root;
114 struct btrfs_trans_handle *trans;
115 u64 alloc_hint = 0;
116 u64 num_bytes;
117 u64 cur_alloc_size;
118 u64 blocksize = root->sectorsize;
119 u64 orig_num_bytes;
120 struct btrfs_key ins;
121 struct extent_map *em;
122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123 int ret = 0;
124
125 trans = btrfs_join_transaction(root, 1);
126 BUG_ON(!trans);
127 btrfs_set_trans_block_group(trans, inode);
128
129 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
130 num_bytes = max(blocksize, num_bytes);
131 orig_num_bytes = num_bytes;
132
133 if (alloc_hint == EXTENT_MAP_INLINE)
134 goto out;
135
136 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
137 mutex_lock(&BTRFS_I(inode)->extent_mutex);
138 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
139 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
140
141 while(num_bytes > 0) {
142 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
143 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
144 root->sectorsize, 0, alloc_hint,
145 (u64)-1, &ins, 1);
146 if (ret) {
147 WARN_ON(1);
148 goto out;
149 }
150 em = alloc_extent_map(GFP_NOFS);
151 em->start = start;
152 em->len = ins.offset;
153 em->block_start = ins.objectid;
154 em->bdev = root->fs_info->fs_devices->latest_bdev;
155 mutex_lock(&BTRFS_I(inode)->extent_mutex);
156 set_bit(EXTENT_FLAG_PINNED, &em->flags);
157 while(1) {
158 spin_lock(&em_tree->lock);
159 ret = add_extent_mapping(em_tree, em);
160 spin_unlock(&em_tree->lock);
161 if (ret != -EEXIST) {
162 free_extent_map(em);
163 break;
164 }
165 btrfs_drop_extent_cache(inode, start,
166 start + ins.offset - 1, 0);
167 }
168 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
169
170 cur_alloc_size = ins.offset;
171 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
172 ins.offset, 0);
173 BUG_ON(ret);
174 if (num_bytes < cur_alloc_size) {
175 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
176 cur_alloc_size);
177 break;
178 }
179 num_bytes -= cur_alloc_size;
180 alloc_hint = ins.objectid + ins.offset;
181 start += cur_alloc_size;
182 }
183 out:
184 btrfs_end_transaction(trans, root);
185 return ret;
186 }
187
188 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
189 {
190 u64 extent_start;
191 u64 extent_end;
192 u64 bytenr;
193 u64 loops = 0;
194 u64 total_fs_bytes;
195 struct btrfs_root *root = BTRFS_I(inode)->root;
196 struct btrfs_block_group_cache *block_group;
197 struct btrfs_trans_handle *trans;
198 struct extent_buffer *leaf;
199 int found_type;
200 struct btrfs_path *path;
201 struct btrfs_file_extent_item *item;
202 int ret;
203 int err = 0;
204 struct btrfs_key found_key;
205
206 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
207 path = btrfs_alloc_path();
208 BUG_ON(!path);
209 trans = btrfs_join_transaction(root, 1);
210 BUG_ON(!trans);
211 again:
212 ret = btrfs_lookup_file_extent(NULL, root, path,
213 inode->i_ino, start, 0);
214 if (ret < 0) {
215 err = ret;
216 goto out;
217 }
218
219 if (ret != 0) {
220 if (path->slots[0] == 0)
221 goto not_found;
222 path->slots[0]--;
223 }
224
225 leaf = path->nodes[0];
226 item = btrfs_item_ptr(leaf, path->slots[0],
227 struct btrfs_file_extent_item);
228
229 /* are we inside the extent that was found? */
230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 found_type = btrfs_key_type(&found_key);
232 if (found_key.objectid != inode->i_ino ||
233 found_type != BTRFS_EXTENT_DATA_KEY)
234 goto not_found;
235
236 found_type = btrfs_file_extent_type(leaf, item);
237 extent_start = found_key.offset;
238 if (found_type == BTRFS_FILE_EXTENT_REG) {
239 u64 extent_num_bytes;
240
241 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
242 extent_end = extent_start + extent_num_bytes;
243 err = 0;
244
245 if (loops && start != extent_start)
246 goto not_found;
247
248 if (start < extent_start || start >= extent_end)
249 goto not_found;
250
251 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
252 if (bytenr == 0)
253 goto not_found;
254
255 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
256 goto not_found;
257 /*
258 * we may be called by the resizer, make sure we're inside
259 * the limits of the FS
260 */
261 block_group = btrfs_lookup_block_group(root->fs_info,
262 bytenr);
263 if (!block_group || block_group->ro)
264 goto not_found;
265
266 bytenr += btrfs_file_extent_offset(leaf, item);
267 extent_num_bytes = min(end + 1, extent_end) - start;
268 ret = btrfs_add_ordered_extent(inode, start, bytenr,
269 extent_num_bytes, 1);
270 if (ret) {
271 err = ret;
272 goto out;
273 }
274
275 btrfs_release_path(root, path);
276 start = extent_end;
277 if (start <= end) {
278 loops++;
279 goto again;
280 }
281 } else {
282 not_found:
283 btrfs_end_transaction(trans, root);
284 btrfs_free_path(path);
285 return cow_file_range(inode, start, end);
286 }
287 out:
288 WARN_ON(err);
289 btrfs_end_transaction(trans, root);
290 btrfs_free_path(path);
291 return err;
292 }
293
294 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
295 {
296 struct btrfs_root *root = BTRFS_I(inode)->root;
297 int ret;
298
299 if (btrfs_test_opt(root, NODATACOW) ||
300 btrfs_test_flag(inode, NODATACOW))
301 ret = run_delalloc_nocow(inode, start, end);
302 else
303 ret = cow_file_range(inode, start, end);
304
305 return ret;
306 }
307
308 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
309 unsigned long old, unsigned long bits)
310 {
311 unsigned long flags;
312 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
313 struct btrfs_root *root = BTRFS_I(inode)->root;
314 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
315 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
316 root->fs_info->delalloc_bytes += end - start + 1;
317 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
318 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
319 &root->fs_info->delalloc_inodes);
320 }
321 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
322 }
323 return 0;
324 }
325
326 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
327 unsigned long old, unsigned long bits)
328 {
329 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
330 struct btrfs_root *root = BTRFS_I(inode)->root;
331 unsigned long flags;
332
333 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
334 if (end - start + 1 > root->fs_info->delalloc_bytes) {
335 printk("warning: delalloc account %Lu %Lu\n",
336 end - start + 1, root->fs_info->delalloc_bytes);
337 root->fs_info->delalloc_bytes = 0;
338 BTRFS_I(inode)->delalloc_bytes = 0;
339 } else {
340 root->fs_info->delalloc_bytes -= end - start + 1;
341 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
342 }
343 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
344 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
345 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
346 }
347 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
348 }
349 return 0;
350 }
351
352 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
353 size_t size, struct bio *bio)
354 {
355 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
356 struct btrfs_mapping_tree *map_tree;
357 u64 logical = bio->bi_sector << 9;
358 u64 length = 0;
359 u64 map_length;
360 int ret;
361
362 length = bio->bi_size;
363 map_tree = &root->fs_info->mapping_tree;
364 map_length = length;
365 ret = btrfs_map_block(map_tree, READ, logical,
366 &map_length, NULL, 0);
367
368 if (map_length < length + size) {
369 return 1;
370 }
371 return 0;
372 }
373
374 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
375 int mirror_num)
376 {
377 struct btrfs_root *root = BTRFS_I(inode)->root;
378 int ret = 0;
379
380 ret = btrfs_csum_one_bio(root, inode, bio);
381 BUG_ON(ret);
382
383 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
384 }
385
386 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
387 int mirror_num)
388 {
389 struct btrfs_root *root = BTRFS_I(inode)->root;
390 int ret = 0;
391
392 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393 BUG_ON(ret);
394
395 if (btrfs_test_opt(root, NODATASUM) ||
396 btrfs_test_flag(inode, NODATASUM)) {
397 goto mapit;
398 }
399
400 if (!(rw & (1 << BIO_RW))) {
401 btrfs_lookup_bio_sums(root, inode, bio);
402 goto mapit;
403 }
404 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
405 inode, rw, bio, mirror_num,
406 __btrfs_submit_bio_hook);
407 mapit:
408 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
409 }
410
411 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
412 struct inode *inode, u64 file_offset,
413 struct list_head *list)
414 {
415 struct list_head *cur;
416 struct btrfs_ordered_sum *sum;
417
418 btrfs_set_trans_block_group(trans, inode);
419 list_for_each(cur, list) {
420 sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
422 inode, sum);
423 }
424 return 0;
425 }
426
427 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
428 {
429 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
430 GFP_NOFS);
431 }
432
433 struct btrfs_writepage_fixup {
434 struct page *page;
435 struct btrfs_work work;
436 };
437
438 /* see btrfs_writepage_start_hook for details on why this is required */
439 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
440 {
441 struct btrfs_writepage_fixup *fixup;
442 struct btrfs_ordered_extent *ordered;
443 struct page *page;
444 struct inode *inode;
445 u64 page_start;
446 u64 page_end;
447
448 fixup = container_of(work, struct btrfs_writepage_fixup, work);
449 page = fixup->page;
450 again:
451 lock_page(page);
452 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
453 ClearPageChecked(page);
454 goto out_page;
455 }
456
457 inode = page->mapping->host;
458 page_start = page_offset(page);
459 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
460
461 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
462
463 /* already ordered? We're done */
464 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
465 EXTENT_ORDERED, 0)) {
466 goto out;
467 }
468
469 ordered = btrfs_lookup_ordered_extent(inode, page_start);
470 if (ordered) {
471 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
472 page_end, GFP_NOFS);
473 unlock_page(page);
474 btrfs_start_ordered_extent(inode, ordered, 1);
475 goto again;
476 }
477
478 btrfs_set_extent_delalloc(inode, page_start, page_end);
479 ClearPageChecked(page);
480 out:
481 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
482 out_page:
483 unlock_page(page);
484 page_cache_release(page);
485 }
486
487 /*
488 * There are a few paths in the higher layers of the kernel that directly
489 * set the page dirty bit without asking the filesystem if it is a
490 * good idea. This causes problems because we want to make sure COW
491 * properly happens and the data=ordered rules are followed.
492 *
493 * In our case any range that doesn't have the EXTENT_ORDERED bit set
494 * hasn't been properly setup for IO. We kick off an async process
495 * to fix it up. The async helper will wait for ordered extents, set
496 * the delalloc bit and make it safe to write the page.
497 */
498 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
499 {
500 struct inode *inode = page->mapping->host;
501 struct btrfs_writepage_fixup *fixup;
502 struct btrfs_root *root = BTRFS_I(inode)->root;
503 int ret;
504
505 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
506 EXTENT_ORDERED, 0);
507 if (ret)
508 return 0;
509
510 if (PageChecked(page))
511 return -EAGAIN;
512
513 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
514 if (!fixup)
515 return -EAGAIN;
516
517 SetPageChecked(page);
518 page_cache_get(page);
519 fixup->work.func = btrfs_writepage_fixup_worker;
520 fixup->page = page;
521 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
522 return -EAGAIN;
523 }
524
525 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
526 {
527 struct btrfs_root *root = BTRFS_I(inode)->root;
528 struct btrfs_trans_handle *trans;
529 struct btrfs_ordered_extent *ordered_extent;
530 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
531 struct btrfs_file_extent_item *extent_item;
532 struct btrfs_path *path = NULL;
533 struct extent_buffer *leaf;
534 u64 alloc_hint = 0;
535 struct list_head list;
536 struct btrfs_key ins;
537 int ret;
538
539 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
540 if (!ret)
541 return 0;
542
543 trans = btrfs_join_transaction(root, 1);
544
545 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
546 BUG_ON(!ordered_extent);
547 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
548 goto nocow;
549
550 path = btrfs_alloc_path();
551 BUG_ON(!path);
552
553 lock_extent(io_tree, ordered_extent->file_offset,
554 ordered_extent->file_offset + ordered_extent->len - 1,
555 GFP_NOFS);
556
557 INIT_LIST_HEAD(&list);
558
559 mutex_lock(&BTRFS_I(inode)->extent_mutex);
560
561 ret = btrfs_drop_extents(trans, root, inode,
562 ordered_extent->file_offset,
563 ordered_extent->file_offset +
564 ordered_extent->len,
565 ordered_extent->file_offset, &alloc_hint);
566 BUG_ON(ret);
567
568 ins.objectid = inode->i_ino;
569 ins.offset = ordered_extent->file_offset;
570 ins.type = BTRFS_EXTENT_DATA_KEY;
571 ret = btrfs_insert_empty_item(trans, root, path, &ins,
572 sizeof(*extent_item));
573 BUG_ON(ret);
574 leaf = path->nodes[0];
575 extent_item = btrfs_item_ptr(leaf, path->slots[0],
576 struct btrfs_file_extent_item);
577 btrfs_set_file_extent_generation(leaf, extent_item, trans->transid);
578 btrfs_set_file_extent_type(leaf, extent_item, BTRFS_FILE_EXTENT_REG);
579 btrfs_set_file_extent_disk_bytenr(leaf, extent_item,
580 ordered_extent->start);
581 btrfs_set_file_extent_disk_num_bytes(leaf, extent_item,
582 ordered_extent->len);
583 btrfs_set_file_extent_offset(leaf, extent_item, 0);
584 btrfs_set_file_extent_num_bytes(leaf, extent_item,
585 ordered_extent->len);
586 btrfs_mark_buffer_dirty(leaf);
587
588 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
589 ordered_extent->file_offset +
590 ordered_extent->len - 1, 0);
591 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
592
593 ins.objectid = ordered_extent->start;
594 ins.offset = ordered_extent->len;
595 ins.type = BTRFS_EXTENT_ITEM_KEY;
596 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
597 root->root_key.objectid,
598 trans->transid, inode->i_ino,
599 ordered_extent->file_offset, &ins);
600 BUG_ON(ret);
601 btrfs_release_path(root, path);
602
603 inode->i_blocks += ordered_extent->len >> 9;
604 unlock_extent(io_tree, ordered_extent->file_offset,
605 ordered_extent->file_offset + ordered_extent->len - 1,
606 GFP_NOFS);
607 nocow:
608 add_pending_csums(trans, inode, ordered_extent->file_offset,
609 &ordered_extent->list);
610
611 mutex_lock(&BTRFS_I(inode)->extent_mutex);
612 btrfs_ordered_update_i_size(inode, ordered_extent);
613 btrfs_update_inode(trans, root, inode);
614 btrfs_remove_ordered_extent(inode, ordered_extent);
615 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
616
617 /* once for us */
618 btrfs_put_ordered_extent(ordered_extent);
619 /* once for the tree */
620 btrfs_put_ordered_extent(ordered_extent);
621
622 btrfs_end_transaction(trans, root);
623 if (path)
624 btrfs_free_path(path);
625 return 0;
626 }
627
628 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
629 struct extent_state *state, int uptodate)
630 {
631 return btrfs_finish_ordered_io(page->mapping->host, start, end);
632 }
633
634 struct io_failure_record {
635 struct page *page;
636 u64 start;
637 u64 len;
638 u64 logical;
639 int last_mirror;
640 };
641
642 int btrfs_io_failed_hook(struct bio *failed_bio,
643 struct page *page, u64 start, u64 end,
644 struct extent_state *state)
645 {
646 struct io_failure_record *failrec = NULL;
647 u64 private;
648 struct extent_map *em;
649 struct inode *inode = page->mapping->host;
650 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
651 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
652 struct bio *bio;
653 int num_copies;
654 int ret;
655 int rw;
656 u64 logical;
657
658 ret = get_state_private(failure_tree, start, &private);
659 if (ret) {
660 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
661 if (!failrec)
662 return -ENOMEM;
663 failrec->start = start;
664 failrec->len = end - start + 1;
665 failrec->last_mirror = 0;
666
667 spin_lock(&em_tree->lock);
668 em = lookup_extent_mapping(em_tree, start, failrec->len);
669 if (em->start > start || em->start + em->len < start) {
670 free_extent_map(em);
671 em = NULL;
672 }
673 spin_unlock(&em_tree->lock);
674
675 if (!em || IS_ERR(em)) {
676 kfree(failrec);
677 return -EIO;
678 }
679 logical = start - em->start;
680 logical = em->block_start + logical;
681 failrec->logical = logical;
682 free_extent_map(em);
683 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
684 EXTENT_DIRTY, GFP_NOFS);
685 set_state_private(failure_tree, start,
686 (u64)(unsigned long)failrec);
687 } else {
688 failrec = (struct io_failure_record *)(unsigned long)private;
689 }
690 num_copies = btrfs_num_copies(
691 &BTRFS_I(inode)->root->fs_info->mapping_tree,
692 failrec->logical, failrec->len);
693 failrec->last_mirror++;
694 if (!state) {
695 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
696 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
697 failrec->start,
698 EXTENT_LOCKED);
699 if (state && state->start != failrec->start)
700 state = NULL;
701 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
702 }
703 if (!state || failrec->last_mirror > num_copies) {
704 set_state_private(failure_tree, failrec->start, 0);
705 clear_extent_bits(failure_tree, failrec->start,
706 failrec->start + failrec->len - 1,
707 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
708 kfree(failrec);
709 return -EIO;
710 }
711 bio = bio_alloc(GFP_NOFS, 1);
712 bio->bi_private = state;
713 bio->bi_end_io = failed_bio->bi_end_io;
714 bio->bi_sector = failrec->logical >> 9;
715 bio->bi_bdev = failed_bio->bi_bdev;
716 bio->bi_size = 0;
717 bio_add_page(bio, page, failrec->len, start - page_offset(page));
718 if (failed_bio->bi_rw & (1 << BIO_RW))
719 rw = WRITE;
720 else
721 rw = READ;
722
723 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
724 failrec->last_mirror);
725 return 0;
726 }
727
728 int btrfs_clean_io_failures(struct inode *inode, u64 start)
729 {
730 u64 private;
731 u64 private_failure;
732 struct io_failure_record *failure;
733 int ret;
734
735 private = 0;
736 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
737 (u64)-1, 1, EXTENT_DIRTY)) {
738 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
739 start, &private_failure);
740 if (ret == 0) {
741 failure = (struct io_failure_record *)(unsigned long)
742 private_failure;
743 set_state_private(&BTRFS_I(inode)->io_failure_tree,
744 failure->start, 0);
745 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
746 failure->start,
747 failure->start + failure->len - 1,
748 EXTENT_DIRTY | EXTENT_LOCKED,
749 GFP_NOFS);
750 kfree(failure);
751 }
752 }
753 return 0;
754 }
755
756 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
757 struct extent_state *state)
758 {
759 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
760 struct inode *inode = page->mapping->host;
761 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
762 char *kaddr;
763 u64 private = ~(u32)0;
764 int ret;
765 struct btrfs_root *root = BTRFS_I(inode)->root;
766 u32 csum = ~(u32)0;
767 unsigned long flags;
768
769 if (btrfs_test_opt(root, NODATASUM) ||
770 btrfs_test_flag(inode, NODATASUM))
771 return 0;
772 if (state && state->start == start) {
773 private = state->private;
774 ret = 0;
775 } else {
776 ret = get_state_private(io_tree, start, &private);
777 }
778 local_irq_save(flags);
779 kaddr = kmap_atomic(page, KM_IRQ0);
780 if (ret) {
781 goto zeroit;
782 }
783 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
784 btrfs_csum_final(csum, (char *)&csum);
785 if (csum != private) {
786 goto zeroit;
787 }
788 kunmap_atomic(kaddr, KM_IRQ0);
789 local_irq_restore(flags);
790
791 /* if the io failure tree for this inode is non-empty,
792 * check to see if we've recovered from a failed IO
793 */
794 btrfs_clean_io_failures(inode, start);
795 return 0;
796
797 zeroit:
798 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
799 page->mapping->host->i_ino, (unsigned long long)start, csum,
800 private);
801 memset(kaddr + offset, 1, end - start + 1);
802 flush_dcache_page(page);
803 kunmap_atomic(kaddr, KM_IRQ0);
804 local_irq_restore(flags);
805 if (private == 0)
806 return 0;
807 return -EIO;
808 }
809
810 /*
811 * This creates an orphan entry for the given inode in case something goes
812 * wrong in the middle of an unlink/truncate.
813 */
814 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
815 {
816 struct btrfs_root *root = BTRFS_I(inode)->root;
817 int ret = 0;
818
819 spin_lock(&root->list_lock);
820
821 /* already on the orphan list, we're good */
822 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
823 spin_unlock(&root->list_lock);
824 return 0;
825 }
826
827 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
828
829 spin_unlock(&root->list_lock);
830
831 /*
832 * insert an orphan item to track this unlinked/truncated file
833 */
834 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
835
836 return ret;
837 }
838
839 /*
840 * We have done the truncate/delete so we can go ahead and remove the orphan
841 * item for this particular inode.
842 */
843 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
844 {
845 struct btrfs_root *root = BTRFS_I(inode)->root;
846 int ret = 0;
847
848 spin_lock(&root->list_lock);
849
850 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
851 spin_unlock(&root->list_lock);
852 return 0;
853 }
854
855 list_del_init(&BTRFS_I(inode)->i_orphan);
856 if (!trans) {
857 spin_unlock(&root->list_lock);
858 return 0;
859 }
860
861 spin_unlock(&root->list_lock);
862
863 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
864
865 return ret;
866 }
867
868 /*
869 * this cleans up any orphans that may be left on the list from the last use
870 * of this root.
871 */
872 void btrfs_orphan_cleanup(struct btrfs_root *root)
873 {
874 struct btrfs_path *path;
875 struct extent_buffer *leaf;
876 struct btrfs_item *item;
877 struct btrfs_key key, found_key;
878 struct btrfs_trans_handle *trans;
879 struct inode *inode;
880 int ret = 0, nr_unlink = 0, nr_truncate = 0;
881
882 /* don't do orphan cleanup if the fs is readonly. */
883 if (root->fs_info->sb->s_flags & MS_RDONLY)
884 return;
885
886 path = btrfs_alloc_path();
887 if (!path)
888 return;
889 path->reada = -1;
890
891 key.objectid = BTRFS_ORPHAN_OBJECTID;
892 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
893 key.offset = (u64)-1;
894
895
896 while (1) {
897 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
898 if (ret < 0) {
899 printk(KERN_ERR "Error searching slot for orphan: %d"
900 "\n", ret);
901 break;
902 }
903
904 /*
905 * if ret == 0 means we found what we were searching for, which
906 * is weird, but possible, so only screw with path if we didnt
907 * find the key and see if we have stuff that matches
908 */
909 if (ret > 0) {
910 if (path->slots[0] == 0)
911 break;
912 path->slots[0]--;
913 }
914
915 /* pull out the item */
916 leaf = path->nodes[0];
917 item = btrfs_item_nr(leaf, path->slots[0]);
918 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
919
920 /* make sure the item matches what we want */
921 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
922 break;
923 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
924 break;
925
926 /* release the path since we're done with it */
927 btrfs_release_path(root, path);
928
929 /*
930 * this is where we are basically btrfs_lookup, without the
931 * crossing root thing. we store the inode number in the
932 * offset of the orphan item.
933 */
934 inode = btrfs_iget_locked(root->fs_info->sb,
935 found_key.offset, root);
936 if (!inode)
937 break;
938
939 if (inode->i_state & I_NEW) {
940 BTRFS_I(inode)->root = root;
941
942 /* have to set the location manually */
943 BTRFS_I(inode)->location.objectid = inode->i_ino;
944 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
945 BTRFS_I(inode)->location.offset = 0;
946
947 btrfs_read_locked_inode(inode);
948 unlock_new_inode(inode);
949 }
950
951 /*
952 * add this inode to the orphan list so btrfs_orphan_del does
953 * the proper thing when we hit it
954 */
955 spin_lock(&root->list_lock);
956 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
957 spin_unlock(&root->list_lock);
958
959 /*
960 * if this is a bad inode, means we actually succeeded in
961 * removing the inode, but not the orphan record, which means
962 * we need to manually delete the orphan since iput will just
963 * do a destroy_inode
964 */
965 if (is_bad_inode(inode)) {
966 trans = btrfs_start_transaction(root, 1);
967 btrfs_orphan_del(trans, inode);
968 btrfs_end_transaction(trans, root);
969 iput(inode);
970 continue;
971 }
972
973 /* if we have links, this was a truncate, lets do that */
974 if (inode->i_nlink) {
975 nr_truncate++;
976 btrfs_truncate(inode);
977 } else {
978 nr_unlink++;
979 }
980
981 /* this will do delete_inode and everything for us */
982 iput(inode);
983 }
984
985 if (nr_unlink)
986 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
987 if (nr_truncate)
988 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
989
990 btrfs_free_path(path);
991 }
992
993 void btrfs_read_locked_inode(struct inode *inode)
994 {
995 struct btrfs_path *path;
996 struct extent_buffer *leaf;
997 struct btrfs_inode_item *inode_item;
998 struct btrfs_timespec *tspec;
999 struct btrfs_root *root = BTRFS_I(inode)->root;
1000 struct btrfs_key location;
1001 u64 alloc_group_block;
1002 u32 rdev;
1003 int ret;
1004
1005 path = btrfs_alloc_path();
1006 BUG_ON(!path);
1007 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1008
1009 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1010 if (ret)
1011 goto make_bad;
1012
1013 leaf = path->nodes[0];
1014 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1015 struct btrfs_inode_item);
1016
1017 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1018 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1019 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1020 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1021 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1022
1023 tspec = btrfs_inode_atime(inode_item);
1024 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1025 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1026
1027 tspec = btrfs_inode_mtime(inode_item);
1028 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1029 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1030
1031 tspec = btrfs_inode_ctime(inode_item);
1032 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1033 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1034
1035 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1036 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1037 inode->i_generation = BTRFS_I(inode)->generation;
1038 inode->i_rdev = 0;
1039 rdev = btrfs_inode_rdev(leaf, inode_item);
1040
1041 BTRFS_I(inode)->index_cnt = (u64)-1;
1042
1043 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1044 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1045 alloc_group_block);
1046 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1047 if (!BTRFS_I(inode)->block_group) {
1048 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1049 NULL, 0,
1050 BTRFS_BLOCK_GROUP_METADATA, 0);
1051 }
1052 btrfs_free_path(path);
1053 inode_item = NULL;
1054
1055 switch (inode->i_mode & S_IFMT) {
1056 case S_IFREG:
1057 inode->i_mapping->a_ops = &btrfs_aops;
1058 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1059 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1060 inode->i_fop = &btrfs_file_operations;
1061 inode->i_op = &btrfs_file_inode_operations;
1062 break;
1063 case S_IFDIR:
1064 inode->i_fop = &btrfs_dir_file_operations;
1065 if (root == root->fs_info->tree_root)
1066 inode->i_op = &btrfs_dir_ro_inode_operations;
1067 else
1068 inode->i_op = &btrfs_dir_inode_operations;
1069 break;
1070 case S_IFLNK:
1071 inode->i_op = &btrfs_symlink_inode_operations;
1072 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1073 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1074 break;
1075 default:
1076 init_special_inode(inode, inode->i_mode, rdev);
1077 break;
1078 }
1079 return;
1080
1081 make_bad:
1082 btrfs_free_path(path);
1083 make_bad_inode(inode);
1084 }
1085
1086 static void fill_inode_item(struct btrfs_trans_handle *trans,
1087 struct extent_buffer *leaf,
1088 struct btrfs_inode_item *item,
1089 struct inode *inode)
1090 {
1091 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1092 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1093 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1094 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1095 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1096
1097 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1098 inode->i_atime.tv_sec);
1099 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1100 inode->i_atime.tv_nsec);
1101
1102 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1103 inode->i_mtime.tv_sec);
1104 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1105 inode->i_mtime.tv_nsec);
1106
1107 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1108 inode->i_ctime.tv_sec);
1109 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1110 inode->i_ctime.tv_nsec);
1111
1112 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1113 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1114 btrfs_set_inode_transid(leaf, item, trans->transid);
1115 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1116 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1117 btrfs_set_inode_block_group(leaf, item,
1118 BTRFS_I(inode)->block_group->key.objectid);
1119 }
1120
1121 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1122 struct btrfs_root *root,
1123 struct inode *inode)
1124 {
1125 struct btrfs_inode_item *inode_item;
1126 struct btrfs_path *path;
1127 struct extent_buffer *leaf;
1128 int ret;
1129
1130 path = btrfs_alloc_path();
1131 BUG_ON(!path);
1132 ret = btrfs_lookup_inode(trans, root, path,
1133 &BTRFS_I(inode)->location, 1);
1134 if (ret) {
1135 if (ret > 0)
1136 ret = -ENOENT;
1137 goto failed;
1138 }
1139
1140 leaf = path->nodes[0];
1141 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1142 struct btrfs_inode_item);
1143
1144 fill_inode_item(trans, leaf, inode_item, inode);
1145 btrfs_mark_buffer_dirty(leaf);
1146 btrfs_set_inode_last_trans(trans, inode);
1147 ret = 0;
1148 failed:
1149 btrfs_free_path(path);
1150 return ret;
1151 }
1152
1153
1154 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1155 struct btrfs_root *root,
1156 struct inode *dir, struct inode *inode,
1157 const char *name, int name_len)
1158 {
1159 struct btrfs_path *path;
1160 int ret = 0;
1161 struct extent_buffer *leaf;
1162 struct btrfs_dir_item *di;
1163 struct btrfs_key key;
1164 u64 index;
1165
1166 path = btrfs_alloc_path();
1167 if (!path) {
1168 ret = -ENOMEM;
1169 goto err;
1170 }
1171
1172 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1173 name, name_len, -1);
1174 if (IS_ERR(di)) {
1175 ret = PTR_ERR(di);
1176 goto err;
1177 }
1178 if (!di) {
1179 ret = -ENOENT;
1180 goto err;
1181 }
1182 leaf = path->nodes[0];
1183 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1184 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1185 if (ret)
1186 goto err;
1187 btrfs_release_path(root, path);
1188
1189 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1190 inode->i_ino,
1191 dir->i_ino, &index);
1192 if (ret) {
1193 printk("failed to delete reference to %.*s, "
1194 "inode %lu parent %lu\n", name_len, name,
1195 inode->i_ino, dir->i_ino);
1196 goto err;
1197 }
1198
1199 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1200 index, name, name_len, -1);
1201 if (IS_ERR(di)) {
1202 ret = PTR_ERR(di);
1203 goto err;
1204 }
1205 if (!di) {
1206 ret = -ENOENT;
1207 goto err;
1208 }
1209 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1210 btrfs_release_path(root, path);
1211
1212 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1213 inode, dir->i_ino);
1214 BUG_ON(ret != 0 && ret != -ENOENT);
1215 if (ret != -ENOENT)
1216 BTRFS_I(dir)->log_dirty_trans = trans->transid;
1217
1218 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1219 dir, index);
1220 BUG_ON(ret);
1221 err:
1222 btrfs_free_path(path);
1223 if (ret)
1224 goto out;
1225
1226 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1227 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1228 btrfs_update_inode(trans, root, dir);
1229 btrfs_drop_nlink(inode);
1230 ret = btrfs_update_inode(trans, root, inode);
1231 dir->i_sb->s_dirt = 1;
1232 out:
1233 return ret;
1234 }
1235
1236 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1237 {
1238 struct btrfs_root *root;
1239 struct btrfs_trans_handle *trans;
1240 struct inode *inode = dentry->d_inode;
1241 int ret;
1242 unsigned long nr = 0;
1243
1244 root = BTRFS_I(dir)->root;
1245
1246 ret = btrfs_check_free_space(root, 1, 1);
1247 if (ret)
1248 goto fail;
1249
1250 trans = btrfs_start_transaction(root, 1);
1251
1252 btrfs_set_trans_block_group(trans, dir);
1253 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1254 dentry->d_name.name, dentry->d_name.len);
1255
1256 if (inode->i_nlink == 0)
1257 ret = btrfs_orphan_add(trans, inode);
1258
1259 nr = trans->blocks_used;
1260
1261 btrfs_end_transaction_throttle(trans, root);
1262 fail:
1263 btrfs_btree_balance_dirty(root, nr);
1264 return ret;
1265 }
1266
1267 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1268 {
1269 struct inode *inode = dentry->d_inode;
1270 int err = 0;
1271 int ret;
1272 struct btrfs_root *root = BTRFS_I(dir)->root;
1273 struct btrfs_trans_handle *trans;
1274 unsigned long nr = 0;
1275
1276 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1277 return -ENOTEMPTY;
1278 }
1279
1280 ret = btrfs_check_free_space(root, 1, 1);
1281 if (ret)
1282 goto fail;
1283
1284 trans = btrfs_start_transaction(root, 1);
1285 btrfs_set_trans_block_group(trans, dir);
1286
1287 err = btrfs_orphan_add(trans, inode);
1288 if (err)
1289 goto fail_trans;
1290
1291 /* now the directory is empty */
1292 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1293 dentry->d_name.name, dentry->d_name.len);
1294 if (!err) {
1295 btrfs_i_size_write(inode, 0);
1296 }
1297
1298 fail_trans:
1299 nr = trans->blocks_used;
1300 ret = btrfs_end_transaction_throttle(trans, root);
1301 fail:
1302 btrfs_btree_balance_dirty(root, nr);
1303
1304 if (ret && !err)
1305 err = ret;
1306 return err;
1307 }
1308
1309 /*
1310 * this can truncate away extent items, csum items and directory items.
1311 * It starts at a high offset and removes keys until it can't find
1312 * any higher than i_size.
1313 *
1314 * csum items that cross the new i_size are truncated to the new size
1315 * as well.
1316 *
1317 * min_type is the minimum key type to truncate down to. If set to 0, this
1318 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1319 */
1320 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1321 struct btrfs_root *root,
1322 struct inode *inode,
1323 u64 new_size, u32 min_type)
1324 {
1325 int ret;
1326 struct btrfs_path *path;
1327 struct btrfs_key key;
1328 struct btrfs_key found_key;
1329 u32 found_type;
1330 struct extent_buffer *leaf;
1331 struct btrfs_file_extent_item *fi;
1332 u64 extent_start = 0;
1333 u64 extent_num_bytes = 0;
1334 u64 item_end = 0;
1335 u64 root_gen = 0;
1336 u64 root_owner = 0;
1337 int found_extent;
1338 int del_item;
1339 int pending_del_nr = 0;
1340 int pending_del_slot = 0;
1341 int extent_type = -1;
1342 u64 mask = root->sectorsize - 1;
1343
1344 if (root->ref_cows)
1345 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
1346 path = btrfs_alloc_path();
1347 path->reada = -1;
1348 BUG_ON(!path);
1349
1350 /* FIXME, add redo link to tree so we don't leak on crash */
1351 key.objectid = inode->i_ino;
1352 key.offset = (u64)-1;
1353 key.type = (u8)-1;
1354
1355 btrfs_init_path(path);
1356 search_again:
1357 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1358 if (ret < 0) {
1359 goto error;
1360 }
1361 if (ret > 0) {
1362 /* there are no items in the tree for us to truncate, we're
1363 * done
1364 */
1365 if (path->slots[0] == 0) {
1366 ret = 0;
1367 goto error;
1368 }
1369 path->slots[0]--;
1370 }
1371
1372 while(1) {
1373 fi = NULL;
1374 leaf = path->nodes[0];
1375 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1376 found_type = btrfs_key_type(&found_key);
1377
1378 if (found_key.objectid != inode->i_ino)
1379 break;
1380
1381 if (found_type < min_type)
1382 break;
1383
1384 item_end = found_key.offset;
1385 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1386 fi = btrfs_item_ptr(leaf, path->slots[0],
1387 struct btrfs_file_extent_item);
1388 extent_type = btrfs_file_extent_type(leaf, fi);
1389 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1390 item_end +=
1391 btrfs_file_extent_num_bytes(leaf, fi);
1392 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1393 struct btrfs_item *item = btrfs_item_nr(leaf,
1394 path->slots[0]);
1395 item_end += btrfs_file_extent_inline_len(leaf,
1396 item);
1397 }
1398 item_end--;
1399 }
1400 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1401 ret = btrfs_csum_truncate(trans, root, path,
1402 new_size);
1403 BUG_ON(ret);
1404 }
1405 if (item_end < new_size) {
1406 if (found_type == BTRFS_DIR_ITEM_KEY) {
1407 found_type = BTRFS_INODE_ITEM_KEY;
1408 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1409 found_type = BTRFS_CSUM_ITEM_KEY;
1410 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1411 found_type = BTRFS_XATTR_ITEM_KEY;
1412 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1413 found_type = BTRFS_INODE_REF_KEY;
1414 } else if (found_type) {
1415 found_type--;
1416 } else {
1417 break;
1418 }
1419 btrfs_set_key_type(&key, found_type);
1420 goto next;
1421 }
1422 if (found_key.offset >= new_size)
1423 del_item = 1;
1424 else
1425 del_item = 0;
1426 found_extent = 0;
1427
1428 /* FIXME, shrink the extent if the ref count is only 1 */
1429 if (found_type != BTRFS_EXTENT_DATA_KEY)
1430 goto delete;
1431
1432 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1433 u64 num_dec;
1434 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1435 if (!del_item) {
1436 u64 orig_num_bytes =
1437 btrfs_file_extent_num_bytes(leaf, fi);
1438 extent_num_bytes = new_size -
1439 found_key.offset + root->sectorsize - 1;
1440 extent_num_bytes = extent_num_bytes &
1441 ~((u64)root->sectorsize - 1);
1442 btrfs_set_file_extent_num_bytes(leaf, fi,
1443 extent_num_bytes);
1444 num_dec = (orig_num_bytes -
1445 extent_num_bytes);
1446 if (root->ref_cows && extent_start != 0)
1447 dec_i_blocks(inode, num_dec);
1448 btrfs_mark_buffer_dirty(leaf);
1449 } else {
1450 extent_num_bytes =
1451 btrfs_file_extent_disk_num_bytes(leaf,
1452 fi);
1453 /* FIXME blocksize != 4096 */
1454 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1455 if (extent_start != 0) {
1456 found_extent = 1;
1457 if (root->ref_cows)
1458 dec_i_blocks(inode, num_dec);
1459 }
1460 root_gen = btrfs_header_generation(leaf);
1461 root_owner = btrfs_header_owner(leaf);
1462 }
1463 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1464 if (!del_item) {
1465 u32 size = new_size - found_key.offset;
1466
1467 if (root->ref_cows) {
1468 dec_i_blocks(inode, item_end + 1 -
1469 found_key.offset - size);
1470 }
1471 size =
1472 btrfs_file_extent_calc_inline_size(size);
1473 ret = btrfs_truncate_item(trans, root, path,
1474 size, 1);
1475 BUG_ON(ret);
1476 } else if (root->ref_cows) {
1477 dec_i_blocks(inode, item_end + 1 -
1478 found_key.offset);
1479 }
1480 }
1481 delete:
1482 if (del_item) {
1483 if (!pending_del_nr) {
1484 /* no pending yet, add ourselves */
1485 pending_del_slot = path->slots[0];
1486 pending_del_nr = 1;
1487 } else if (pending_del_nr &&
1488 path->slots[0] + 1 == pending_del_slot) {
1489 /* hop on the pending chunk */
1490 pending_del_nr++;
1491 pending_del_slot = path->slots[0];
1492 } else {
1493 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1494 }
1495 } else {
1496 break;
1497 }
1498 if (found_extent) {
1499 ret = btrfs_free_extent(trans, root, extent_start,
1500 extent_num_bytes,
1501 leaf->start, root_owner,
1502 root_gen, inode->i_ino,
1503 found_key.offset, 0);
1504 BUG_ON(ret);
1505 }
1506 next:
1507 if (path->slots[0] == 0) {
1508 if (pending_del_nr)
1509 goto del_pending;
1510 btrfs_release_path(root, path);
1511 goto search_again;
1512 }
1513
1514 path->slots[0]--;
1515 if (pending_del_nr &&
1516 path->slots[0] + 1 != pending_del_slot) {
1517 struct btrfs_key debug;
1518 del_pending:
1519 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1520 pending_del_slot);
1521 ret = btrfs_del_items(trans, root, path,
1522 pending_del_slot,
1523 pending_del_nr);
1524 BUG_ON(ret);
1525 pending_del_nr = 0;
1526 btrfs_release_path(root, path);
1527 goto search_again;
1528 }
1529 }
1530 ret = 0;
1531 error:
1532 if (pending_del_nr) {
1533 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1534 pending_del_nr);
1535 }
1536 btrfs_free_path(path);
1537 inode->i_sb->s_dirt = 1;
1538 return ret;
1539 }
1540
1541 /*
1542 * taken from block_truncate_page, but does cow as it zeros out
1543 * any bytes left in the last page in the file.
1544 */
1545 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1546 {
1547 struct inode *inode = mapping->host;
1548 struct btrfs_root *root = BTRFS_I(inode)->root;
1549 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1550 struct btrfs_ordered_extent *ordered;
1551 char *kaddr;
1552 u32 blocksize = root->sectorsize;
1553 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1554 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1555 struct page *page;
1556 int ret = 0;
1557 u64 page_start;
1558 u64 page_end;
1559
1560 if ((offset & (blocksize - 1)) == 0)
1561 goto out;
1562
1563 ret = -ENOMEM;
1564 again:
1565 page = grab_cache_page(mapping, index);
1566 if (!page)
1567 goto out;
1568
1569 page_start = page_offset(page);
1570 page_end = page_start + PAGE_CACHE_SIZE - 1;
1571
1572 if (!PageUptodate(page)) {
1573 ret = btrfs_readpage(NULL, page);
1574 lock_page(page);
1575 if (page->mapping != mapping) {
1576 unlock_page(page);
1577 page_cache_release(page);
1578 goto again;
1579 }
1580 if (!PageUptodate(page)) {
1581 ret = -EIO;
1582 goto out_unlock;
1583 }
1584 }
1585 wait_on_page_writeback(page);
1586
1587 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1588 set_page_extent_mapped(page);
1589
1590 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1591 if (ordered) {
1592 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1593 unlock_page(page);
1594 page_cache_release(page);
1595 btrfs_start_ordered_extent(inode, ordered, 1);
1596 btrfs_put_ordered_extent(ordered);
1597 goto again;
1598 }
1599
1600 btrfs_set_extent_delalloc(inode, page_start, page_end);
1601 ret = 0;
1602 if (offset != PAGE_CACHE_SIZE) {
1603 kaddr = kmap(page);
1604 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1605 flush_dcache_page(page);
1606 kunmap(page);
1607 }
1608 ClearPageChecked(page);
1609 set_page_dirty(page);
1610 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1611
1612 out_unlock:
1613 unlock_page(page);
1614 page_cache_release(page);
1615 out:
1616 return ret;
1617 }
1618
1619 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1620 {
1621 struct inode *inode = dentry->d_inode;
1622 int err;
1623
1624 err = inode_change_ok(inode, attr);
1625 if (err)
1626 return err;
1627
1628 if (S_ISREG(inode->i_mode) &&
1629 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1630 struct btrfs_trans_handle *trans;
1631 struct btrfs_root *root = BTRFS_I(inode)->root;
1632 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1633
1634 u64 mask = root->sectorsize - 1;
1635 u64 hole_start = (inode->i_size + mask) & ~mask;
1636 u64 block_end = (attr->ia_size + mask) & ~mask;
1637 u64 hole_size;
1638 u64 alloc_hint = 0;
1639
1640 if (attr->ia_size <= hole_start)
1641 goto out;
1642
1643 err = btrfs_check_free_space(root, 1, 0);
1644 if (err)
1645 goto fail;
1646
1647 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1648
1649 hole_size = block_end - hole_start;
1650 while(1) {
1651 struct btrfs_ordered_extent *ordered;
1652 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1653
1654 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1655 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
1656 if (ordered) {
1657 unlock_extent(io_tree, hole_start,
1658 block_end - 1, GFP_NOFS);
1659 btrfs_put_ordered_extent(ordered);
1660 } else {
1661 break;
1662 }
1663 }
1664
1665 trans = btrfs_start_transaction(root, 1);
1666 btrfs_set_trans_block_group(trans, inode);
1667 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1668 err = btrfs_drop_extents(trans, root, inode,
1669 hole_start, block_end, hole_start,
1670 &alloc_hint);
1671
1672 if (alloc_hint != EXTENT_MAP_INLINE) {
1673 err = btrfs_insert_file_extent(trans, root,
1674 inode->i_ino,
1675 hole_start, 0, 0,
1676 hole_size, 0);
1677 btrfs_drop_extent_cache(inode, hole_start,
1678 (u64)-1, 0);
1679 btrfs_check_file(root, inode);
1680 }
1681 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1682 btrfs_end_transaction(trans, root);
1683 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1684 if (err)
1685 return err;
1686 }
1687 out:
1688 err = inode_setattr(inode, attr);
1689
1690 if (!err && ((attr->ia_valid & ATTR_MODE)))
1691 err = btrfs_acl_chmod(inode);
1692 fail:
1693 return err;
1694 }
1695
1696 void btrfs_delete_inode(struct inode *inode)
1697 {
1698 struct btrfs_trans_handle *trans;
1699 struct btrfs_root *root = BTRFS_I(inode)->root;
1700 unsigned long nr;
1701 int ret;
1702
1703 truncate_inode_pages(&inode->i_data, 0);
1704 if (is_bad_inode(inode)) {
1705 btrfs_orphan_del(NULL, inode);
1706 goto no_delete;
1707 }
1708 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1709
1710 btrfs_i_size_write(inode, 0);
1711 trans = btrfs_start_transaction(root, 1);
1712
1713 btrfs_set_trans_block_group(trans, inode);
1714 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
1715 if (ret) {
1716 btrfs_orphan_del(NULL, inode);
1717 goto no_delete_lock;
1718 }
1719
1720 btrfs_orphan_del(trans, inode);
1721
1722 nr = trans->blocks_used;
1723 clear_inode(inode);
1724
1725 btrfs_end_transaction(trans, root);
1726 btrfs_btree_balance_dirty(root, nr);
1727 return;
1728
1729 no_delete_lock:
1730 nr = trans->blocks_used;
1731 btrfs_end_transaction(trans, root);
1732 btrfs_btree_balance_dirty(root, nr);
1733 no_delete:
1734 clear_inode(inode);
1735 }
1736
1737 /*
1738 * this returns the key found in the dir entry in the location pointer.
1739 * If no dir entries were found, location->objectid is 0.
1740 */
1741 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1742 struct btrfs_key *location)
1743 {
1744 const char *name = dentry->d_name.name;
1745 int namelen = dentry->d_name.len;
1746 struct btrfs_dir_item *di;
1747 struct btrfs_path *path;
1748 struct btrfs_root *root = BTRFS_I(dir)->root;
1749 int ret = 0;
1750
1751 path = btrfs_alloc_path();
1752 BUG_ON(!path);
1753
1754 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1755 namelen, 0);
1756 if (IS_ERR(di))
1757 ret = PTR_ERR(di);
1758 if (!di || IS_ERR(di)) {
1759 goto out_err;
1760 }
1761 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1762 out:
1763 btrfs_free_path(path);
1764 return ret;
1765 out_err:
1766 location->objectid = 0;
1767 goto out;
1768 }
1769
1770 /*
1771 * when we hit a tree root in a directory, the btrfs part of the inode
1772 * needs to be changed to reflect the root directory of the tree root. This
1773 * is kind of like crossing a mount point.
1774 */
1775 static int fixup_tree_root_location(struct btrfs_root *root,
1776 struct btrfs_key *location,
1777 struct btrfs_root **sub_root,
1778 struct dentry *dentry)
1779 {
1780 struct btrfs_root_item *ri;
1781
1782 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1783 return 0;
1784 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1785 return 0;
1786
1787 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1788 dentry->d_name.name,
1789 dentry->d_name.len);
1790 if (IS_ERR(*sub_root))
1791 return PTR_ERR(*sub_root);
1792
1793 ri = &(*sub_root)->root_item;
1794 location->objectid = btrfs_root_dirid(ri);
1795 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1796 location->offset = 0;
1797
1798 return 0;
1799 }
1800
1801 static noinline void init_btrfs_i(struct inode *inode)
1802 {
1803 struct btrfs_inode *bi = BTRFS_I(inode);
1804
1805 bi->i_acl = NULL;
1806 bi->i_default_acl = NULL;
1807
1808 bi->generation = 0;
1809 bi->last_trans = 0;
1810 bi->logged_trans = 0;
1811 bi->delalloc_bytes = 0;
1812 bi->disk_i_size = 0;
1813 bi->flags = 0;
1814 bi->index_cnt = (u64)-1;
1815 bi->log_dirty_trans = 0;
1816 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1817 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1818 inode->i_mapping, GFP_NOFS);
1819 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1820 inode->i_mapping, GFP_NOFS);
1821 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1822 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1823 mutex_init(&BTRFS_I(inode)->csum_mutex);
1824 mutex_init(&BTRFS_I(inode)->extent_mutex);
1825 mutex_init(&BTRFS_I(inode)->log_mutex);
1826 }
1827
1828 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1829 {
1830 struct btrfs_iget_args *args = p;
1831 inode->i_ino = args->ino;
1832 init_btrfs_i(inode);
1833 BTRFS_I(inode)->root = args->root;
1834 return 0;
1835 }
1836
1837 static int btrfs_find_actor(struct inode *inode, void *opaque)
1838 {
1839 struct btrfs_iget_args *args = opaque;
1840 return (args->ino == inode->i_ino &&
1841 args->root == BTRFS_I(inode)->root);
1842 }
1843
1844 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1845 struct btrfs_root *root, int wait)
1846 {
1847 struct inode *inode;
1848 struct btrfs_iget_args args;
1849 args.ino = objectid;
1850 args.root = root;
1851
1852 if (wait) {
1853 inode = ilookup5(s, objectid, btrfs_find_actor,
1854 (void *)&args);
1855 } else {
1856 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
1857 (void *)&args);
1858 }
1859 return inode;
1860 }
1861
1862 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1863 struct btrfs_root *root)
1864 {
1865 struct inode *inode;
1866 struct btrfs_iget_args args;
1867 args.ino = objectid;
1868 args.root = root;
1869
1870 inode = iget5_locked(s, objectid, btrfs_find_actor,
1871 btrfs_init_locked_inode,
1872 (void *)&args);
1873 return inode;
1874 }
1875
1876 /* Get an inode object given its location and corresponding root.
1877 * Returns in *is_new if the inode was read from disk
1878 */
1879 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
1880 struct btrfs_root *root, int *is_new)
1881 {
1882 struct inode *inode;
1883
1884 inode = btrfs_iget_locked(s, location->objectid, root);
1885 if (!inode)
1886 return ERR_PTR(-EACCES);
1887
1888 if (inode->i_state & I_NEW) {
1889 BTRFS_I(inode)->root = root;
1890 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
1891 btrfs_read_locked_inode(inode);
1892 unlock_new_inode(inode);
1893 if (is_new)
1894 *is_new = 1;
1895 } else {
1896 if (is_new)
1897 *is_new = 0;
1898 }
1899
1900 return inode;
1901 }
1902
1903 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1904 struct nameidata *nd)
1905 {
1906 struct inode * inode;
1907 struct btrfs_inode *bi = BTRFS_I(dir);
1908 struct btrfs_root *root = bi->root;
1909 struct btrfs_root *sub_root = root;
1910 struct btrfs_key location;
1911 int ret, new, do_orphan = 0;
1912
1913 if (dentry->d_name.len > BTRFS_NAME_LEN)
1914 return ERR_PTR(-ENAMETOOLONG);
1915
1916 ret = btrfs_inode_by_name(dir, dentry, &location);
1917
1918 if (ret < 0)
1919 return ERR_PTR(ret);
1920
1921 inode = NULL;
1922 if (location.objectid) {
1923 ret = fixup_tree_root_location(root, &location, &sub_root,
1924 dentry);
1925 if (ret < 0)
1926 return ERR_PTR(ret);
1927 if (ret > 0)
1928 return ERR_PTR(-ENOENT);
1929 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
1930 if (IS_ERR(inode))
1931 return ERR_CAST(inode);
1932
1933 /* the inode and parent dir are two different roots */
1934 if (new && root != sub_root) {
1935 igrab(inode);
1936 sub_root->inode = inode;
1937 do_orphan = 1;
1938 }
1939 }
1940
1941 if (unlikely(do_orphan))
1942 btrfs_orphan_cleanup(sub_root);
1943
1944 return d_splice_alias(inode, dentry);
1945 }
1946
1947 static unsigned char btrfs_filetype_table[] = {
1948 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1949 };
1950
1951 static int btrfs_real_readdir(struct file *filp, void *dirent,
1952 filldir_t filldir)
1953 {
1954 struct inode *inode = filp->f_dentry->d_inode;
1955 struct btrfs_root *root = BTRFS_I(inode)->root;
1956 struct btrfs_item *item;
1957 struct btrfs_dir_item *di;
1958 struct btrfs_key key;
1959 struct btrfs_key found_key;
1960 struct btrfs_path *path;
1961 int ret;
1962 u32 nritems;
1963 struct extent_buffer *leaf;
1964 int slot;
1965 int advance;
1966 unsigned char d_type;
1967 int over = 0;
1968 u32 di_cur;
1969 u32 di_total;
1970 u32 di_len;
1971 int key_type = BTRFS_DIR_INDEX_KEY;
1972 char tmp_name[32];
1973 char *name_ptr;
1974 int name_len;
1975
1976 /* FIXME, use a real flag for deciding about the key type */
1977 if (root->fs_info->tree_root == root)
1978 key_type = BTRFS_DIR_ITEM_KEY;
1979
1980 /* special case for "." */
1981 if (filp->f_pos == 0) {
1982 over = filldir(dirent, ".", 1,
1983 1, inode->i_ino,
1984 DT_DIR);
1985 if (over)
1986 return 0;
1987 filp->f_pos = 1;
1988 }
1989 /* special case for .., just use the back ref */
1990 if (filp->f_pos == 1) {
1991 u64 pino = parent_ino(filp->f_path.dentry);
1992 over = filldir(dirent, "..", 2,
1993 2, pino, DT_DIR);
1994 if (over)
1995 return 0;
1996 filp->f_pos = 2;
1997 }
1998
1999 path = btrfs_alloc_path();
2000 path->reada = 2;
2001
2002 btrfs_set_key_type(&key, key_type);
2003 key.offset = filp->f_pos;
2004 key.objectid = inode->i_ino;
2005
2006 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2007 if (ret < 0)
2008 goto err;
2009 advance = 0;
2010
2011 while (1) {
2012 leaf = path->nodes[0];
2013 nritems = btrfs_header_nritems(leaf);
2014 slot = path->slots[0];
2015 if (advance || slot >= nritems) {
2016 if (slot >= nritems - 1) {
2017 ret = btrfs_next_leaf(root, path);
2018 if (ret)
2019 break;
2020 leaf = path->nodes[0];
2021 nritems = btrfs_header_nritems(leaf);
2022 slot = path->slots[0];
2023 } else {
2024 slot++;
2025 path->slots[0]++;
2026 }
2027 }
2028 advance = 1;
2029 item = btrfs_item_nr(leaf, slot);
2030 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2031
2032 if (found_key.objectid != key.objectid)
2033 break;
2034 if (btrfs_key_type(&found_key) != key_type)
2035 break;
2036 if (found_key.offset < filp->f_pos)
2037 continue;
2038
2039 filp->f_pos = found_key.offset;
2040
2041 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2042 di_cur = 0;
2043 di_total = btrfs_item_size(leaf, item);
2044
2045 while (di_cur < di_total) {
2046 struct btrfs_key location;
2047
2048 name_len = btrfs_dir_name_len(leaf, di);
2049 if (name_len <= sizeof(tmp_name)) {
2050 name_ptr = tmp_name;
2051 } else {
2052 name_ptr = kmalloc(name_len, GFP_NOFS);
2053 if (!name_ptr) {
2054 ret = -ENOMEM;
2055 goto err;
2056 }
2057 }
2058 read_extent_buffer(leaf, name_ptr,
2059 (unsigned long)(di + 1), name_len);
2060
2061 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2062 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2063 over = filldir(dirent, name_ptr, name_len,
2064 found_key.offset, location.objectid,
2065 d_type);
2066
2067 if (name_ptr != tmp_name)
2068 kfree(name_ptr);
2069
2070 if (over)
2071 goto nopos;
2072
2073 di_len = btrfs_dir_name_len(leaf, di) +
2074 btrfs_dir_data_len(leaf, di) + sizeof(*di);
2075 di_cur += di_len;
2076 di = (struct btrfs_dir_item *)((char *)di + di_len);
2077 }
2078 }
2079
2080 /* Reached end of directory/root. Bump pos past the last item. */
2081 if (key_type == BTRFS_DIR_INDEX_KEY)
2082 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2083 else
2084 filp->f_pos++;
2085 nopos:
2086 ret = 0;
2087 err:
2088 btrfs_free_path(path);
2089 return ret;
2090 }
2091
2092 int btrfs_write_inode(struct inode *inode, int wait)
2093 {
2094 struct btrfs_root *root = BTRFS_I(inode)->root;
2095 struct btrfs_trans_handle *trans;
2096 int ret = 0;
2097
2098 if (root->fs_info->closing > 1)
2099 return 0;
2100
2101 if (wait) {
2102 trans = btrfs_join_transaction(root, 1);
2103 btrfs_set_trans_block_group(trans, inode);
2104 ret = btrfs_commit_transaction(trans, root);
2105 }
2106 return ret;
2107 }
2108
2109 /*
2110 * This is somewhat expensive, updating the tree every time the
2111 * inode changes. But, it is most likely to find the inode in cache.
2112 * FIXME, needs more benchmarking...there are no reasons other than performance
2113 * to keep or drop this code.
2114 */
2115 void btrfs_dirty_inode(struct inode *inode)
2116 {
2117 struct btrfs_root *root = BTRFS_I(inode)->root;
2118 struct btrfs_trans_handle *trans;
2119
2120 trans = btrfs_join_transaction(root, 1);
2121 btrfs_set_trans_block_group(trans, inode);
2122 btrfs_update_inode(trans, root, inode);
2123 btrfs_end_transaction(trans, root);
2124 }
2125
2126 static int btrfs_set_inode_index_count(struct inode *inode)
2127 {
2128 struct btrfs_root *root = BTRFS_I(inode)->root;
2129 struct btrfs_key key, found_key;
2130 struct btrfs_path *path;
2131 struct extent_buffer *leaf;
2132 int ret;
2133
2134 key.objectid = inode->i_ino;
2135 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2136 key.offset = (u64)-1;
2137
2138 path = btrfs_alloc_path();
2139 if (!path)
2140 return -ENOMEM;
2141
2142 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2143 if (ret < 0)
2144 goto out;
2145 /* FIXME: we should be able to handle this */
2146 if (ret == 0)
2147 goto out;
2148 ret = 0;
2149
2150 /*
2151 * MAGIC NUMBER EXPLANATION:
2152 * since we search a directory based on f_pos we have to start at 2
2153 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2154 * else has to start at 2
2155 */
2156 if (path->slots[0] == 0) {
2157 BTRFS_I(inode)->index_cnt = 2;
2158 goto out;
2159 }
2160
2161 path->slots[0]--;
2162
2163 leaf = path->nodes[0];
2164 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2165
2166 if (found_key.objectid != inode->i_ino ||
2167 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2168 BTRFS_I(inode)->index_cnt = 2;
2169 goto out;
2170 }
2171
2172 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2173 out:
2174 btrfs_free_path(path);
2175 return ret;
2176 }
2177
2178 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2179 u64 *index)
2180 {
2181 int ret = 0;
2182
2183 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2184 ret = btrfs_set_inode_index_count(dir);
2185 if (ret) {
2186 return ret;
2187 }
2188 }
2189
2190 *index = BTRFS_I(dir)->index_cnt;
2191 BTRFS_I(dir)->index_cnt++;
2192
2193 return ret;
2194 }
2195
2196 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2197 struct btrfs_root *root,
2198 struct inode *dir,
2199 const char *name, int name_len,
2200 u64 ref_objectid,
2201 u64 objectid,
2202 struct btrfs_block_group_cache *group,
2203 int mode, u64 *index)
2204 {
2205 struct inode *inode;
2206 struct btrfs_inode_item *inode_item;
2207 struct btrfs_block_group_cache *new_inode_group;
2208 struct btrfs_key *location;
2209 struct btrfs_path *path;
2210 struct btrfs_inode_ref *ref;
2211 struct btrfs_key key[2];
2212 u32 sizes[2];
2213 unsigned long ptr;
2214 int ret;
2215 int owner;
2216
2217 path = btrfs_alloc_path();
2218 BUG_ON(!path);
2219
2220 inode = new_inode(root->fs_info->sb);
2221 if (!inode)
2222 return ERR_PTR(-ENOMEM);
2223
2224 if (dir) {
2225 ret = btrfs_set_inode_index(dir, inode, index);
2226 if (ret)
2227 return ERR_PTR(ret);
2228 }
2229 /*
2230 * index_cnt is ignored for everything but a dir,
2231 * btrfs_get_inode_index_count has an explanation for the magic
2232 * number
2233 */
2234 init_btrfs_i(inode);
2235 BTRFS_I(inode)->index_cnt = 2;
2236 BTRFS_I(inode)->root = root;
2237 BTRFS_I(inode)->generation = trans->transid;
2238
2239 if (mode & S_IFDIR)
2240 owner = 0;
2241 else
2242 owner = 1;
2243 new_inode_group = btrfs_find_block_group(root, group, 0,
2244 BTRFS_BLOCK_GROUP_METADATA, owner);
2245 if (!new_inode_group) {
2246 printk("find_block group failed\n");
2247 new_inode_group = group;
2248 }
2249 BTRFS_I(inode)->block_group = new_inode_group;
2250
2251 key[0].objectid = objectid;
2252 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2253 key[0].offset = 0;
2254
2255 key[1].objectid = objectid;
2256 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2257 key[1].offset = ref_objectid;
2258
2259 sizes[0] = sizeof(struct btrfs_inode_item);
2260 sizes[1] = name_len + sizeof(*ref);
2261
2262 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2263 if (ret != 0)
2264 goto fail;
2265
2266 if (objectid > root->highest_inode)
2267 root->highest_inode = objectid;
2268
2269 inode->i_uid = current->fsuid;
2270 inode->i_gid = current->fsgid;
2271 inode->i_mode = mode;
2272 inode->i_ino = objectid;
2273 inode->i_blocks = 0;
2274 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2275 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2276 struct btrfs_inode_item);
2277 fill_inode_item(trans, path->nodes[0], inode_item, inode);
2278
2279 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2280 struct btrfs_inode_ref);
2281 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2282 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2283 ptr = (unsigned long)(ref + 1);
2284 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2285
2286 btrfs_mark_buffer_dirty(path->nodes[0]);
2287 btrfs_free_path(path);
2288
2289 location = &BTRFS_I(inode)->location;
2290 location->objectid = objectid;
2291 location->offset = 0;
2292 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2293
2294 insert_inode_hash(inode);
2295 return inode;
2296 fail:
2297 if (dir)
2298 BTRFS_I(dir)->index_cnt--;
2299 btrfs_free_path(path);
2300 return ERR_PTR(ret);
2301 }
2302
2303 static inline u8 btrfs_inode_type(struct inode *inode)
2304 {
2305 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2306 }
2307
2308 int btrfs_add_link(struct btrfs_trans_handle *trans,
2309 struct inode *parent_inode, struct inode *inode,
2310 const char *name, int name_len, int add_backref, u64 index)
2311 {
2312 int ret;
2313 struct btrfs_key key;
2314 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
2315
2316 key.objectid = inode->i_ino;
2317 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2318 key.offset = 0;
2319
2320 ret = btrfs_insert_dir_item(trans, root, name, name_len,
2321 parent_inode->i_ino,
2322 &key, btrfs_inode_type(inode),
2323 index);
2324 if (ret == 0) {
2325 if (add_backref) {
2326 ret = btrfs_insert_inode_ref(trans, root,
2327 name, name_len,
2328 inode->i_ino,
2329 parent_inode->i_ino,
2330 index);
2331 }
2332 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2333 name_len * 2);
2334 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2335 ret = btrfs_update_inode(trans, root, parent_inode);
2336 }
2337 return ret;
2338 }
2339
2340 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2341 struct dentry *dentry, struct inode *inode,
2342 int backref, u64 index)
2343 {
2344 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2345 inode, dentry->d_name.name,
2346 dentry->d_name.len, backref, index);
2347 if (!err) {
2348 d_instantiate(dentry, inode);
2349 return 0;
2350 }
2351 if (err > 0)
2352 err = -EEXIST;
2353 return err;
2354 }
2355
2356 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2357 int mode, dev_t rdev)
2358 {
2359 struct btrfs_trans_handle *trans;
2360 struct btrfs_root *root = BTRFS_I(dir)->root;
2361 struct inode *inode = NULL;
2362 int err;
2363 int drop_inode = 0;
2364 u64 objectid;
2365 unsigned long nr = 0;
2366 u64 index = 0;
2367
2368 if (!new_valid_dev(rdev))
2369 return -EINVAL;
2370
2371 err = btrfs_check_free_space(root, 1, 0);
2372 if (err)
2373 goto fail;
2374
2375 trans = btrfs_start_transaction(root, 1);
2376 btrfs_set_trans_block_group(trans, dir);
2377
2378 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2379 if (err) {
2380 err = -ENOSPC;
2381 goto out_unlock;
2382 }
2383
2384 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2385 dentry->d_name.len,
2386 dentry->d_parent->d_inode->i_ino, objectid,
2387 BTRFS_I(dir)->block_group, mode, &index);
2388 err = PTR_ERR(inode);
2389 if (IS_ERR(inode))
2390 goto out_unlock;
2391
2392 err = btrfs_init_acl(inode, dir);
2393 if (err) {
2394 drop_inode = 1;
2395 goto out_unlock;
2396 }
2397
2398 btrfs_set_trans_block_group(trans, inode);
2399 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2400 if (err)
2401 drop_inode = 1;
2402 else {
2403 inode->i_op = &btrfs_special_inode_operations;
2404 init_special_inode(inode, inode->i_mode, rdev);
2405 btrfs_update_inode(trans, root, inode);
2406 }
2407 dir->i_sb->s_dirt = 1;
2408 btrfs_update_inode_block_group(trans, inode);
2409 btrfs_update_inode_block_group(trans, dir);
2410 out_unlock:
2411 nr = trans->blocks_used;
2412 btrfs_end_transaction_throttle(trans, root);
2413 fail:
2414 if (drop_inode) {
2415 inode_dec_link_count(inode);
2416 iput(inode);
2417 }
2418 btrfs_btree_balance_dirty(root, nr);
2419 return err;
2420 }
2421
2422 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2423 int mode, struct nameidata *nd)
2424 {
2425 struct btrfs_trans_handle *trans;
2426 struct btrfs_root *root = BTRFS_I(dir)->root;
2427 struct inode *inode = NULL;
2428 int err;
2429 int drop_inode = 0;
2430 unsigned long nr = 0;
2431 u64 objectid;
2432 u64 index = 0;
2433
2434 err = btrfs_check_free_space(root, 1, 0);
2435 if (err)
2436 goto fail;
2437 trans = btrfs_start_transaction(root, 1);
2438 btrfs_set_trans_block_group(trans, dir);
2439
2440 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2441 if (err) {
2442 err = -ENOSPC;
2443 goto out_unlock;
2444 }
2445
2446 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2447 dentry->d_name.len,
2448 dentry->d_parent->d_inode->i_ino,
2449 objectid, BTRFS_I(dir)->block_group, mode,
2450 &index);
2451 err = PTR_ERR(inode);
2452 if (IS_ERR(inode))
2453 goto out_unlock;
2454
2455 err = btrfs_init_acl(inode, dir);
2456 if (err) {
2457 drop_inode = 1;
2458 goto out_unlock;
2459 }
2460
2461 btrfs_set_trans_block_group(trans, inode);
2462 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2463 if (err)
2464 drop_inode = 1;
2465 else {
2466 inode->i_mapping->a_ops = &btrfs_aops;
2467 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2468 inode->i_fop = &btrfs_file_operations;
2469 inode->i_op = &btrfs_file_inode_operations;
2470 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2471 }
2472 dir->i_sb->s_dirt = 1;
2473 btrfs_update_inode_block_group(trans, inode);
2474 btrfs_update_inode_block_group(trans, dir);
2475 out_unlock:
2476 nr = trans->blocks_used;
2477 btrfs_end_transaction_throttle(trans, root);
2478 fail:
2479 if (drop_inode) {
2480 inode_dec_link_count(inode);
2481 iput(inode);
2482 }
2483 btrfs_btree_balance_dirty(root, nr);
2484 return err;
2485 }
2486
2487 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2488 struct dentry *dentry)
2489 {
2490 struct btrfs_trans_handle *trans;
2491 struct btrfs_root *root = BTRFS_I(dir)->root;
2492 struct inode *inode = old_dentry->d_inode;
2493 u64 index;
2494 unsigned long nr = 0;
2495 int err;
2496 int drop_inode = 0;
2497
2498 if (inode->i_nlink == 0)
2499 return -ENOENT;
2500
2501 btrfs_inc_nlink(inode);
2502 err = btrfs_check_free_space(root, 1, 0);
2503 if (err)
2504 goto fail;
2505 err = btrfs_set_inode_index(dir, inode, &index);
2506 if (err)
2507 goto fail;
2508
2509 trans = btrfs_start_transaction(root, 1);
2510
2511 btrfs_set_trans_block_group(trans, dir);
2512 atomic_inc(&inode->i_count);
2513
2514 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2515
2516 if (err)
2517 drop_inode = 1;
2518
2519 dir->i_sb->s_dirt = 1;
2520 btrfs_update_inode_block_group(trans, dir);
2521 err = btrfs_update_inode(trans, root, inode);
2522
2523 if (err)
2524 drop_inode = 1;
2525
2526 nr = trans->blocks_used;
2527 btrfs_end_transaction_throttle(trans, root);
2528 fail:
2529 if (drop_inode) {
2530 inode_dec_link_count(inode);
2531 iput(inode);
2532 }
2533 btrfs_btree_balance_dirty(root, nr);
2534 return err;
2535 }
2536
2537 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2538 {
2539 struct inode *inode = NULL;
2540 struct btrfs_trans_handle *trans;
2541 struct btrfs_root *root = BTRFS_I(dir)->root;
2542 int err = 0;
2543 int drop_on_err = 0;
2544 u64 objectid = 0;
2545 u64 index = 0;
2546 unsigned long nr = 1;
2547
2548 err = btrfs_check_free_space(root, 1, 0);
2549 if (err)
2550 goto out_unlock;
2551
2552 trans = btrfs_start_transaction(root, 1);
2553 btrfs_set_trans_block_group(trans, dir);
2554
2555 if (IS_ERR(trans)) {
2556 err = PTR_ERR(trans);
2557 goto out_unlock;
2558 }
2559
2560 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2561 if (err) {
2562 err = -ENOSPC;
2563 goto out_unlock;
2564 }
2565
2566 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2567 dentry->d_name.len,
2568 dentry->d_parent->d_inode->i_ino, objectid,
2569 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2570 &index);
2571 if (IS_ERR(inode)) {
2572 err = PTR_ERR(inode);
2573 goto out_fail;
2574 }
2575
2576 drop_on_err = 1;
2577
2578 err = btrfs_init_acl(inode, dir);
2579 if (err)
2580 goto out_fail;
2581
2582 inode->i_op = &btrfs_dir_inode_operations;
2583 inode->i_fop = &btrfs_dir_file_operations;
2584 btrfs_set_trans_block_group(trans, inode);
2585
2586 btrfs_i_size_write(inode, 0);
2587 err = btrfs_update_inode(trans, root, inode);
2588 if (err)
2589 goto out_fail;
2590
2591 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2592 inode, dentry->d_name.name,
2593 dentry->d_name.len, 0, index);
2594 if (err)
2595 goto out_fail;
2596
2597 d_instantiate(dentry, inode);
2598 drop_on_err = 0;
2599 dir->i_sb->s_dirt = 1;
2600 btrfs_update_inode_block_group(trans, inode);
2601 btrfs_update_inode_block_group(trans, dir);
2602
2603 out_fail:
2604 nr = trans->blocks_used;
2605 btrfs_end_transaction_throttle(trans, root);
2606
2607 out_unlock:
2608 if (drop_on_err)
2609 iput(inode);
2610 btrfs_btree_balance_dirty(root, nr);
2611 return err;
2612 }
2613
2614 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2615 struct extent_map *existing,
2616 struct extent_map *em,
2617 u64 map_start, u64 map_len)
2618 {
2619 u64 start_diff;
2620
2621 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2622 start_diff = map_start - em->start;
2623 em->start = map_start;
2624 em->len = map_len;
2625 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2626 em->block_start += start_diff;
2627 return add_extent_mapping(em_tree, em);
2628 }
2629
2630 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2631 size_t pg_offset, u64 start, u64 len,
2632 int create)
2633 {
2634 int ret;
2635 int err = 0;
2636 u64 bytenr;
2637 u64 extent_start = 0;
2638 u64 extent_end = 0;
2639 u64 objectid = inode->i_ino;
2640 u32 found_type;
2641 struct btrfs_path *path = NULL;
2642 struct btrfs_root *root = BTRFS_I(inode)->root;
2643 struct btrfs_file_extent_item *item;
2644 struct extent_buffer *leaf;
2645 struct btrfs_key found_key;
2646 struct extent_map *em = NULL;
2647 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2648 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2649 struct btrfs_trans_handle *trans = NULL;
2650
2651 again:
2652 spin_lock(&em_tree->lock);
2653 em = lookup_extent_mapping(em_tree, start, len);
2654 if (em)
2655 em->bdev = root->fs_info->fs_devices->latest_bdev;
2656 spin_unlock(&em_tree->lock);
2657
2658 if (em) {
2659 if (em->start > start || em->start + em->len <= start)
2660 free_extent_map(em);
2661 else if (em->block_start == EXTENT_MAP_INLINE && page)
2662 free_extent_map(em);
2663 else
2664 goto out;
2665 }
2666 em = alloc_extent_map(GFP_NOFS);
2667 if (!em) {
2668 err = -ENOMEM;
2669 goto out;
2670 }
2671 em->bdev = root->fs_info->fs_devices->latest_bdev;
2672 em->start = EXTENT_MAP_HOLE;
2673 em->len = (u64)-1;
2674
2675 if (!path) {
2676 path = btrfs_alloc_path();
2677 BUG_ON(!path);
2678 }
2679
2680 ret = btrfs_lookup_file_extent(trans, root, path,
2681 objectid, start, trans != NULL);
2682 if (ret < 0) {
2683 err = ret;
2684 goto out;
2685 }
2686
2687 if (ret != 0) {
2688 if (path->slots[0] == 0)
2689 goto not_found;
2690 path->slots[0]--;
2691 }
2692
2693 leaf = path->nodes[0];
2694 item = btrfs_item_ptr(leaf, path->slots[0],
2695 struct btrfs_file_extent_item);
2696 /* are we inside the extent that was found? */
2697 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2698 found_type = btrfs_key_type(&found_key);
2699 if (found_key.objectid != objectid ||
2700 found_type != BTRFS_EXTENT_DATA_KEY) {
2701 goto not_found;
2702 }
2703
2704 found_type = btrfs_file_extent_type(leaf, item);
2705 extent_start = found_key.offset;
2706 if (found_type == BTRFS_FILE_EXTENT_REG) {
2707 extent_end = extent_start +
2708 btrfs_file_extent_num_bytes(leaf, item);
2709 err = 0;
2710 if (start < extent_start || start >= extent_end) {
2711 em->start = start;
2712 if (start < extent_start) {
2713 if (start + len <= extent_start)
2714 goto not_found;
2715 em->len = extent_end - extent_start;
2716 } else {
2717 em->len = len;
2718 }
2719 goto not_found_em;
2720 }
2721 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2722 if (bytenr == 0) {
2723 em->start = extent_start;
2724 em->len = extent_end - extent_start;
2725 em->block_start = EXTENT_MAP_HOLE;
2726 goto insert;
2727 }
2728 bytenr += btrfs_file_extent_offset(leaf, item);
2729 em->block_start = bytenr;
2730 em->start = extent_start;
2731 em->len = extent_end - extent_start;
2732 goto insert;
2733 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2734 u64 page_start;
2735 unsigned long ptr;
2736 char *map;
2737 size_t size;
2738 size_t extent_offset;
2739 size_t copy_size;
2740
2741 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2742 path->slots[0]));
2743 extent_end = (extent_start + size + root->sectorsize - 1) &
2744 ~((u64)root->sectorsize - 1);
2745 if (start < extent_start || start >= extent_end) {
2746 em->start = start;
2747 if (start < extent_start) {
2748 if (start + len <= extent_start)
2749 goto not_found;
2750 em->len = extent_end - extent_start;
2751 } else {
2752 em->len = len;
2753 }
2754 goto not_found_em;
2755 }
2756 em->block_start = EXTENT_MAP_INLINE;
2757
2758 if (!page) {
2759 em->start = extent_start;
2760 em->len = size;
2761 goto out;
2762 }
2763
2764 page_start = page_offset(page) + pg_offset;
2765 extent_offset = page_start - extent_start;
2766 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2767 size - extent_offset);
2768 em->start = extent_start + extent_offset;
2769 em->len = (copy_size + root->sectorsize - 1) &
2770 ~((u64)root->sectorsize - 1);
2771 map = kmap(page);
2772 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2773 if (create == 0 && !PageUptodate(page)) {
2774 read_extent_buffer(leaf, map + pg_offset, ptr,
2775 copy_size);
2776 flush_dcache_page(page);
2777 } else if (create && PageUptodate(page)) {
2778 if (!trans) {
2779 kunmap(page);
2780 free_extent_map(em);
2781 em = NULL;
2782 btrfs_release_path(root, path);
2783 trans = btrfs_join_transaction(root, 1);
2784 goto again;
2785 }
2786 write_extent_buffer(leaf, map + pg_offset, ptr,
2787 copy_size);
2788 btrfs_mark_buffer_dirty(leaf);
2789 }
2790 kunmap(page);
2791 set_extent_uptodate(io_tree, em->start,
2792 extent_map_end(em) - 1, GFP_NOFS);
2793 goto insert;
2794 } else {
2795 printk("unkknown found_type %d\n", found_type);
2796 WARN_ON(1);
2797 }
2798 not_found:
2799 em->start = start;
2800 em->len = len;
2801 not_found_em:
2802 em->block_start = EXTENT_MAP_HOLE;
2803 insert:
2804 btrfs_release_path(root, path);
2805 if (em->start > start || extent_map_end(em) <= start) {
2806 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2807 err = -EIO;
2808 goto out;
2809 }
2810
2811 err = 0;
2812 spin_lock(&em_tree->lock);
2813 ret = add_extent_mapping(em_tree, em);
2814 /* it is possible that someone inserted the extent into the tree
2815 * while we had the lock dropped. It is also possible that
2816 * an overlapping map exists in the tree
2817 */
2818 if (ret == -EEXIST) {
2819 struct extent_map *existing;
2820
2821 ret = 0;
2822
2823 existing = lookup_extent_mapping(em_tree, start, len);
2824 if (existing && (existing->start > start ||
2825 existing->start + existing->len <= start)) {
2826 free_extent_map(existing);
2827 existing = NULL;
2828 }
2829 if (!existing) {
2830 existing = lookup_extent_mapping(em_tree, em->start,
2831 em->len);
2832 if (existing) {
2833 err = merge_extent_mapping(em_tree, existing,
2834 em, start,
2835 root->sectorsize);
2836 free_extent_map(existing);
2837 if (err) {
2838 free_extent_map(em);
2839 em = NULL;
2840 }
2841 } else {
2842 err = -EIO;
2843 printk("failing to insert %Lu %Lu\n",
2844 start, len);
2845 free_extent_map(em);
2846 em = NULL;
2847 }
2848 } else {
2849 free_extent_map(em);
2850 em = existing;
2851 err = 0;
2852 }
2853 }
2854 spin_unlock(&em_tree->lock);
2855 out:
2856 if (path)
2857 btrfs_free_path(path);
2858 if (trans) {
2859 ret = btrfs_end_transaction(trans, root);
2860 if (!err) {
2861 err = ret;
2862 }
2863 }
2864 if (err) {
2865 free_extent_map(em);
2866 WARN_ON(1);
2867 return ERR_PTR(err);
2868 }
2869 return em;
2870 }
2871
2872 #if 0 /* waiting for O_DIRECT reads */
2873 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2874 struct buffer_head *bh_result, int create)
2875 {
2876 struct extent_map *em;
2877 u64 start = (u64)iblock << inode->i_blkbits;
2878 struct btrfs_multi_bio *multi = NULL;
2879 struct btrfs_root *root = BTRFS_I(inode)->root;
2880 u64 len;
2881 u64 logical;
2882 u64 map_length;
2883 int ret = 0;
2884
2885 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2886
2887 if (!em || IS_ERR(em))
2888 goto out;
2889
2890 if (em->start > start || em->start + em->len <= start) {
2891 goto out;
2892 }
2893
2894 if (em->block_start == EXTENT_MAP_INLINE) {
2895 ret = -EINVAL;
2896 goto out;
2897 }
2898
2899 len = em->start + em->len - start;
2900 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2901
2902 if (em->block_start == EXTENT_MAP_HOLE ||
2903 em->block_start == EXTENT_MAP_DELALLOC) {
2904 bh_result->b_size = len;
2905 goto out;
2906 }
2907
2908 logical = start - em->start;
2909 logical = em->block_start + logical;
2910
2911 map_length = len;
2912 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2913 logical, &map_length, &multi, 0);
2914 BUG_ON(ret);
2915 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2916 bh_result->b_size = min(map_length, len);
2917
2918 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2919 set_buffer_mapped(bh_result);
2920 kfree(multi);
2921 out:
2922 free_extent_map(em);
2923 return ret;
2924 }
2925 #endif
2926
2927 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2928 const struct iovec *iov, loff_t offset,
2929 unsigned long nr_segs)
2930 {
2931 return -EINVAL;
2932 #if 0
2933 struct file *file = iocb->ki_filp;
2934 struct inode *inode = file->f_mapping->host;
2935
2936 if (rw == WRITE)
2937 return -EINVAL;
2938
2939 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2940 offset, nr_segs, btrfs_get_block, NULL);
2941 #endif
2942 }
2943
2944 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2945 {
2946 return extent_bmap(mapping, iblock, btrfs_get_extent);
2947 }
2948
2949 int btrfs_readpage(struct file *file, struct page *page)
2950 {
2951 struct extent_io_tree *tree;
2952 tree = &BTRFS_I(page->mapping->host)->io_tree;
2953 return extent_read_full_page(tree, page, btrfs_get_extent);
2954 }
2955
2956 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2957 {
2958 struct extent_io_tree *tree;
2959
2960
2961 if (current->flags & PF_MEMALLOC) {
2962 redirty_page_for_writepage(wbc, page);
2963 unlock_page(page);
2964 return 0;
2965 }
2966 tree = &BTRFS_I(page->mapping->host)->io_tree;
2967 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2968 }
2969
2970 int btrfs_writepages(struct address_space *mapping,
2971 struct writeback_control *wbc)
2972 {
2973 struct extent_io_tree *tree;
2974 tree = &BTRFS_I(mapping->host)->io_tree;
2975 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2976 }
2977
2978 static int
2979 btrfs_readpages(struct file *file, struct address_space *mapping,
2980 struct list_head *pages, unsigned nr_pages)
2981 {
2982 struct extent_io_tree *tree;
2983 tree = &BTRFS_I(mapping->host)->io_tree;
2984 return extent_readpages(tree, mapping, pages, nr_pages,
2985 btrfs_get_extent);
2986 }
2987 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2988 {
2989 struct extent_io_tree *tree;
2990 struct extent_map_tree *map;
2991 int ret;
2992
2993 tree = &BTRFS_I(page->mapping->host)->io_tree;
2994 map = &BTRFS_I(page->mapping->host)->extent_tree;
2995 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
2996 if (ret == 1) {
2997 ClearPagePrivate(page);
2998 set_page_private(page, 0);
2999 page_cache_release(page);
3000 }
3001 return ret;
3002 }
3003
3004 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3005 {
3006 if (PageWriteback(page) || PageDirty(page))
3007 return 0;
3008 return __btrfs_releasepage(page, gfp_flags);
3009 }
3010
3011 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3012 {
3013 struct extent_io_tree *tree;
3014 struct btrfs_ordered_extent *ordered;
3015 u64 page_start = page_offset(page);
3016 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3017
3018 wait_on_page_writeback(page);
3019 tree = &BTRFS_I(page->mapping->host)->io_tree;
3020 if (offset) {
3021 btrfs_releasepage(page, GFP_NOFS);
3022 return;
3023 }
3024
3025 lock_extent(tree, page_start, page_end, GFP_NOFS);
3026 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3027 page_offset(page));
3028 if (ordered) {
3029 /*
3030 * IO on this page will never be started, so we need
3031 * to account for any ordered extents now
3032 */
3033 clear_extent_bit(tree, page_start, page_end,
3034 EXTENT_DIRTY | EXTENT_DELALLOC |
3035 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3036 btrfs_finish_ordered_io(page->mapping->host,
3037 page_start, page_end);
3038 btrfs_put_ordered_extent(ordered);
3039 lock_extent(tree, page_start, page_end, GFP_NOFS);
3040 }
3041 clear_extent_bit(tree, page_start, page_end,
3042 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3043 EXTENT_ORDERED,
3044 1, 1, GFP_NOFS);
3045 __btrfs_releasepage(page, GFP_NOFS);
3046
3047 ClearPageChecked(page);
3048 if (PagePrivate(page)) {
3049 ClearPagePrivate(page);
3050 set_page_private(page, 0);
3051 page_cache_release(page);
3052 }
3053 }
3054
3055 /*
3056 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3057 * called from a page fault handler when a page is first dirtied. Hence we must
3058 * be careful to check for EOF conditions here. We set the page up correctly
3059 * for a written page which means we get ENOSPC checking when writing into
3060 * holes and correct delalloc and unwritten extent mapping on filesystems that
3061 * support these features.
3062 *
3063 * We are not allowed to take the i_mutex here so we have to play games to
3064 * protect against truncate races as the page could now be beyond EOF. Because
3065 * vmtruncate() writes the inode size before removing pages, once we have the
3066 * page lock we can determine safely if the page is beyond EOF. If it is not
3067 * beyond EOF, then the page is guaranteed safe against truncation until we
3068 * unlock the page.
3069 */
3070 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3071 {
3072 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3073 struct btrfs_root *root = BTRFS_I(inode)->root;
3074 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3075 struct btrfs_ordered_extent *ordered;
3076 char *kaddr;
3077 unsigned long zero_start;
3078 loff_t size;
3079 int ret;
3080 u64 page_start;
3081 u64 page_end;
3082
3083 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3084 if (ret)
3085 goto out;
3086
3087 ret = -EINVAL;
3088 again:
3089 lock_page(page);
3090 size = i_size_read(inode);
3091 page_start = page_offset(page);
3092 page_end = page_start + PAGE_CACHE_SIZE - 1;
3093
3094 if ((page->mapping != inode->i_mapping) ||
3095 (page_start >= size)) {
3096 /* page got truncated out from underneath us */
3097 goto out_unlock;
3098 }
3099 wait_on_page_writeback(page);
3100
3101 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3102 set_page_extent_mapped(page);
3103
3104 /*
3105 * we can't set the delalloc bits if there are pending ordered
3106 * extents. Drop our locks and wait for them to finish
3107 */
3108 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3109 if (ordered) {
3110 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3111 unlock_page(page);
3112 btrfs_start_ordered_extent(inode, ordered, 1);
3113 btrfs_put_ordered_extent(ordered);
3114 goto again;
3115 }
3116
3117 btrfs_set_extent_delalloc(inode, page_start, page_end);
3118 ret = 0;
3119
3120 /* page is wholly or partially inside EOF */
3121 if (page_start + PAGE_CACHE_SIZE > size)
3122 zero_start = size & ~PAGE_CACHE_MASK;
3123 else
3124 zero_start = PAGE_CACHE_SIZE;
3125
3126 if (zero_start != PAGE_CACHE_SIZE) {
3127 kaddr = kmap(page);
3128 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3129 flush_dcache_page(page);
3130 kunmap(page);
3131 }
3132 ClearPageChecked(page);
3133 set_page_dirty(page);
3134 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3135
3136 out_unlock:
3137 unlock_page(page);
3138 out:
3139 return ret;
3140 }
3141
3142 static void btrfs_truncate(struct inode *inode)
3143 {
3144 struct btrfs_root *root = BTRFS_I(inode)->root;
3145 int ret;
3146 struct btrfs_trans_handle *trans;
3147 unsigned long nr;
3148 u64 mask = root->sectorsize - 1;
3149
3150 if (!S_ISREG(inode->i_mode))
3151 return;
3152 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3153 return;
3154
3155 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3156 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3157
3158 trans = btrfs_start_transaction(root, 1);
3159 btrfs_set_trans_block_group(trans, inode);
3160 btrfs_i_size_write(inode, inode->i_size);
3161
3162 ret = btrfs_orphan_add(trans, inode);
3163 if (ret)
3164 goto out;
3165 /* FIXME, add redo link to tree so we don't leak on crash */
3166 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3167 BTRFS_EXTENT_DATA_KEY);
3168 btrfs_update_inode(trans, root, inode);
3169
3170 ret = btrfs_orphan_del(trans, inode);
3171 BUG_ON(ret);
3172
3173 out:
3174 nr = trans->blocks_used;
3175 ret = btrfs_end_transaction_throttle(trans, root);
3176 BUG_ON(ret);
3177 btrfs_btree_balance_dirty(root, nr);
3178 }
3179
3180 /*
3181 * Invalidate a single dcache entry at the root of the filesystem.
3182 * Needed after creation of snapshot or subvolume.
3183 */
3184 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3185 int namelen)
3186 {
3187 struct dentry *alias, *entry;
3188 struct qstr qstr;
3189
3190 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3191 if (alias) {
3192 qstr.name = name;
3193 qstr.len = namelen;
3194 /* change me if btrfs ever gets a d_hash operation */
3195 qstr.hash = full_name_hash(qstr.name, qstr.len);
3196 entry = d_lookup(alias, &qstr);
3197 dput(alias);
3198 if (entry) {
3199 d_invalidate(entry);
3200 dput(entry);
3201 }
3202 }
3203 }
3204
3205 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3206 struct btrfs_trans_handle *trans, u64 new_dirid,
3207 struct btrfs_block_group_cache *block_group)
3208 {
3209 struct inode *inode;
3210 u64 index = 0;
3211
3212 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3213 new_dirid, block_group, S_IFDIR | 0700, &index);
3214 if (IS_ERR(inode))
3215 return PTR_ERR(inode);
3216 inode->i_op = &btrfs_dir_inode_operations;
3217 inode->i_fop = &btrfs_dir_file_operations;
3218 new_root->inode = inode;
3219
3220 inode->i_nlink = 1;
3221 btrfs_i_size_write(inode, 0);
3222
3223 return btrfs_update_inode(trans, new_root, inode);
3224 }
3225
3226 unsigned long btrfs_force_ra(struct address_space *mapping,
3227 struct file_ra_state *ra, struct file *file,
3228 pgoff_t offset, pgoff_t last_index)
3229 {
3230 pgoff_t req_size = last_index - offset + 1;
3231
3232 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3233 return offset + req_size;
3234 }
3235
3236 struct inode *btrfs_alloc_inode(struct super_block *sb)
3237 {
3238 struct btrfs_inode *ei;
3239
3240 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3241 if (!ei)
3242 return NULL;
3243 ei->last_trans = 0;
3244 ei->logged_trans = 0;
3245 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3246 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3247 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3248 INIT_LIST_HEAD(&ei->i_orphan);
3249 return &ei->vfs_inode;
3250 }
3251
3252 void btrfs_destroy_inode(struct inode *inode)
3253 {
3254 struct btrfs_ordered_extent *ordered;
3255 WARN_ON(!list_empty(&inode->i_dentry));
3256 WARN_ON(inode->i_data.nrpages);
3257
3258 if (BTRFS_I(inode)->i_acl &&
3259 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3260 posix_acl_release(BTRFS_I(inode)->i_acl);
3261 if (BTRFS_I(inode)->i_default_acl &&
3262 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3263 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3264
3265 spin_lock(&BTRFS_I(inode)->root->list_lock);
3266 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3267 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3268 " list\n", inode->i_ino);
3269 dump_stack();
3270 }
3271 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3272
3273 while(1) {
3274 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3275 if (!ordered)
3276 break;
3277 else {
3278 printk("found ordered extent %Lu %Lu\n",
3279 ordered->file_offset, ordered->len);
3280 btrfs_remove_ordered_extent(inode, ordered);
3281 btrfs_put_ordered_extent(ordered);
3282 btrfs_put_ordered_extent(ordered);
3283 }
3284 }
3285 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
3286 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3287 }
3288
3289 static void init_once(void *foo)
3290 {
3291 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3292
3293 inode_init_once(&ei->vfs_inode);
3294 }
3295
3296 void btrfs_destroy_cachep(void)
3297 {
3298 if (btrfs_inode_cachep)
3299 kmem_cache_destroy(btrfs_inode_cachep);
3300 if (btrfs_trans_handle_cachep)
3301 kmem_cache_destroy(btrfs_trans_handle_cachep);
3302 if (btrfs_transaction_cachep)
3303 kmem_cache_destroy(btrfs_transaction_cachep);
3304 if (btrfs_bit_radix_cachep)
3305 kmem_cache_destroy(btrfs_bit_radix_cachep);
3306 if (btrfs_path_cachep)
3307 kmem_cache_destroy(btrfs_path_cachep);
3308 }
3309
3310 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3311 unsigned long extra_flags,
3312 void (*ctor)(void *))
3313 {
3314 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3315 SLAB_MEM_SPREAD | extra_flags), ctor);
3316 }
3317
3318 int btrfs_init_cachep(void)
3319 {
3320 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3321 sizeof(struct btrfs_inode),
3322 0, init_once);
3323 if (!btrfs_inode_cachep)
3324 goto fail;
3325 btrfs_trans_handle_cachep =
3326 btrfs_cache_create("btrfs_trans_handle_cache",
3327 sizeof(struct btrfs_trans_handle),
3328 0, NULL);
3329 if (!btrfs_trans_handle_cachep)
3330 goto fail;
3331 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3332 sizeof(struct btrfs_transaction),
3333 0, NULL);
3334 if (!btrfs_transaction_cachep)
3335 goto fail;
3336 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3337 sizeof(struct btrfs_path),
3338 0, NULL);
3339 if (!btrfs_path_cachep)
3340 goto fail;
3341 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3342 SLAB_DESTROY_BY_RCU, NULL);
3343 if (!btrfs_bit_radix_cachep)
3344 goto fail;
3345 return 0;
3346 fail:
3347 btrfs_destroy_cachep();
3348 return -ENOMEM;
3349 }
3350
3351 static int btrfs_getattr(struct vfsmount *mnt,
3352 struct dentry *dentry, struct kstat *stat)
3353 {
3354 struct inode *inode = dentry->d_inode;
3355 generic_fillattr(inode, stat);
3356 stat->blksize = PAGE_CACHE_SIZE;
3357 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3358 return 0;
3359 }
3360
3361 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3362 struct inode * new_dir,struct dentry *new_dentry)
3363 {
3364 struct btrfs_trans_handle *trans;
3365 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3366 struct inode *new_inode = new_dentry->d_inode;
3367 struct inode *old_inode = old_dentry->d_inode;
3368 struct timespec ctime = CURRENT_TIME;
3369 u64 index = 0;
3370 int ret;
3371
3372 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3373 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3374 return -ENOTEMPTY;
3375 }
3376
3377 ret = btrfs_check_free_space(root, 1, 0);
3378 if (ret)
3379 goto out_unlock;
3380
3381 trans = btrfs_start_transaction(root, 1);
3382
3383 btrfs_set_trans_block_group(trans, new_dir);
3384
3385 btrfs_inc_nlink(old_dentry->d_inode);
3386 old_dir->i_ctime = old_dir->i_mtime = ctime;
3387 new_dir->i_ctime = new_dir->i_mtime = ctime;
3388 old_inode->i_ctime = ctime;
3389
3390 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
3391 old_dentry->d_name.name,
3392 old_dentry->d_name.len);
3393 if (ret)
3394 goto out_fail;
3395
3396 if (new_inode) {
3397 new_inode->i_ctime = CURRENT_TIME;
3398 ret = btrfs_unlink_inode(trans, root, new_dir,
3399 new_dentry->d_inode,
3400 new_dentry->d_name.name,
3401 new_dentry->d_name.len);
3402 if (ret)
3403 goto out_fail;
3404 if (new_inode->i_nlink == 0) {
3405 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
3406 if (ret)
3407 goto out_fail;
3408 }
3409
3410 }
3411 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3412 if (ret)
3413 goto out_fail;
3414
3415 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
3416 old_inode, new_dentry->d_name.name,
3417 new_dentry->d_name.len, 1, index);
3418 if (ret)
3419 goto out_fail;
3420
3421 out_fail:
3422 btrfs_end_transaction_throttle(trans, root);
3423 out_unlock:
3424 return ret;
3425 }
3426
3427 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3428 {
3429 struct list_head *head = &root->fs_info->delalloc_inodes;
3430 struct btrfs_inode *binode;
3431 struct inode *inode;
3432 unsigned long flags;
3433
3434 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3435 while(!list_empty(head)) {
3436 binode = list_entry(head->next, struct btrfs_inode,
3437 delalloc_inodes);
3438 inode = igrab(&binode->vfs_inode);
3439 if (!inode)
3440 list_del_init(&binode->delalloc_inodes);
3441 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3442 if (inode) {
3443 filemap_write_and_wait(inode->i_mapping);
3444 iput(inode);
3445 }
3446 cond_resched();
3447 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3448 }
3449 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3450 return 0;
3451 }
3452
3453 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3454 const char *symname)
3455 {
3456 struct btrfs_trans_handle *trans;
3457 struct btrfs_root *root = BTRFS_I(dir)->root;
3458 struct btrfs_path *path;
3459 struct btrfs_key key;
3460 struct inode *inode = NULL;
3461 int err;
3462 int drop_inode = 0;
3463 u64 objectid;
3464 u64 index = 0 ;
3465 int name_len;
3466 int datasize;
3467 unsigned long ptr;
3468 struct btrfs_file_extent_item *ei;
3469 struct extent_buffer *leaf;
3470 unsigned long nr = 0;
3471
3472 name_len = strlen(symname) + 1;
3473 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3474 return -ENAMETOOLONG;
3475
3476 err = btrfs_check_free_space(root, 1, 0);
3477 if (err)
3478 goto out_fail;
3479
3480 trans = btrfs_start_transaction(root, 1);
3481 btrfs_set_trans_block_group(trans, dir);
3482
3483 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3484 if (err) {
3485 err = -ENOSPC;
3486 goto out_unlock;
3487 }
3488
3489 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3490 dentry->d_name.len,
3491 dentry->d_parent->d_inode->i_ino, objectid,
3492 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3493 &index);
3494 err = PTR_ERR(inode);
3495 if (IS_ERR(inode))
3496 goto out_unlock;
3497
3498 err = btrfs_init_acl(inode, dir);
3499 if (err) {
3500 drop_inode = 1;
3501 goto out_unlock;
3502 }
3503
3504 btrfs_set_trans_block_group(trans, inode);
3505 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3506 if (err)
3507 drop_inode = 1;
3508 else {
3509 inode->i_mapping->a_ops = &btrfs_aops;
3510 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3511 inode->i_fop = &btrfs_file_operations;
3512 inode->i_op = &btrfs_file_inode_operations;
3513 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3514 }
3515 dir->i_sb->s_dirt = 1;
3516 btrfs_update_inode_block_group(trans, inode);
3517 btrfs_update_inode_block_group(trans, dir);
3518 if (drop_inode)
3519 goto out_unlock;
3520
3521 path = btrfs_alloc_path();
3522 BUG_ON(!path);
3523 key.objectid = inode->i_ino;
3524 key.offset = 0;
3525 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3526 datasize = btrfs_file_extent_calc_inline_size(name_len);
3527 err = btrfs_insert_empty_item(trans, root, path, &key,
3528 datasize);
3529 if (err) {
3530 drop_inode = 1;
3531 goto out_unlock;
3532 }
3533 leaf = path->nodes[0];
3534 ei = btrfs_item_ptr(leaf, path->slots[0],
3535 struct btrfs_file_extent_item);
3536 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3537 btrfs_set_file_extent_type(leaf, ei,
3538 BTRFS_FILE_EXTENT_INLINE);
3539 ptr = btrfs_file_extent_inline_start(ei);
3540 write_extent_buffer(leaf, symname, ptr, name_len);
3541 btrfs_mark_buffer_dirty(leaf);
3542 btrfs_free_path(path);
3543
3544 inode->i_op = &btrfs_symlink_inode_operations;
3545 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3546 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3547 btrfs_i_size_write(inode, name_len - 1);
3548 err = btrfs_update_inode(trans, root, inode);
3549 if (err)
3550 drop_inode = 1;
3551
3552 out_unlock:
3553 nr = trans->blocks_used;
3554 btrfs_end_transaction_throttle(trans, root);
3555 out_fail:
3556 if (drop_inode) {
3557 inode_dec_link_count(inode);
3558 iput(inode);
3559 }
3560 btrfs_btree_balance_dirty(root, nr);
3561 return err;
3562 }
3563
3564 static int btrfs_set_page_dirty(struct page *page)
3565 {
3566 return __set_page_dirty_nobuffers(page);
3567 }
3568
3569 static int btrfs_permission(struct inode *inode, int mask)
3570 {
3571 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3572 return -EACCES;
3573 return generic_permission(inode, mask, btrfs_check_acl);
3574 }
3575
3576 static struct inode_operations btrfs_dir_inode_operations = {
3577 .lookup = btrfs_lookup,
3578 .create = btrfs_create,
3579 .unlink = btrfs_unlink,
3580 .link = btrfs_link,
3581 .mkdir = btrfs_mkdir,
3582 .rmdir = btrfs_rmdir,
3583 .rename = btrfs_rename,
3584 .symlink = btrfs_symlink,
3585 .setattr = btrfs_setattr,
3586 .mknod = btrfs_mknod,
3587 .setxattr = btrfs_setxattr,
3588 .getxattr = btrfs_getxattr,
3589 .listxattr = btrfs_listxattr,
3590 .removexattr = btrfs_removexattr,
3591 .permission = btrfs_permission,
3592 };
3593 static struct inode_operations btrfs_dir_ro_inode_operations = {
3594 .lookup = btrfs_lookup,
3595 .permission = btrfs_permission,
3596 };
3597 static struct file_operations btrfs_dir_file_operations = {
3598 .llseek = generic_file_llseek,
3599 .read = generic_read_dir,
3600 .readdir = btrfs_real_readdir,
3601 .unlocked_ioctl = btrfs_ioctl,
3602 #ifdef CONFIG_COMPAT
3603 .compat_ioctl = btrfs_ioctl,
3604 #endif
3605 .release = btrfs_release_file,
3606 .fsync = btrfs_sync_file,
3607 };
3608
3609 static struct extent_io_ops btrfs_extent_io_ops = {
3610 .fill_delalloc = run_delalloc_range,
3611 .submit_bio_hook = btrfs_submit_bio_hook,
3612 .merge_bio_hook = btrfs_merge_bio_hook,
3613 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3614 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3615 .writepage_start_hook = btrfs_writepage_start_hook,
3616 .readpage_io_failed_hook = btrfs_io_failed_hook,
3617 .set_bit_hook = btrfs_set_bit_hook,
3618 .clear_bit_hook = btrfs_clear_bit_hook,
3619 };
3620
3621 static struct address_space_operations btrfs_aops = {
3622 .readpage = btrfs_readpage,
3623 .writepage = btrfs_writepage,
3624 .writepages = btrfs_writepages,
3625 .readpages = btrfs_readpages,
3626 .sync_page = block_sync_page,
3627 .bmap = btrfs_bmap,
3628 .direct_IO = btrfs_direct_IO,
3629 .invalidatepage = btrfs_invalidatepage,
3630 .releasepage = btrfs_releasepage,
3631 .set_page_dirty = btrfs_set_page_dirty,
3632 };
3633
3634 static struct address_space_operations btrfs_symlink_aops = {
3635 .readpage = btrfs_readpage,
3636 .writepage = btrfs_writepage,
3637 .invalidatepage = btrfs_invalidatepage,
3638 .releasepage = btrfs_releasepage,
3639 };
3640
3641 static struct inode_operations btrfs_file_inode_operations = {
3642 .truncate = btrfs_truncate,
3643 .getattr = btrfs_getattr,
3644 .setattr = btrfs_setattr,
3645 .setxattr = btrfs_setxattr,
3646 .getxattr = btrfs_getxattr,
3647 .listxattr = btrfs_listxattr,
3648 .removexattr = btrfs_removexattr,
3649 .permission = btrfs_permission,
3650 };
3651 static struct inode_operations btrfs_special_inode_operations = {
3652 .getattr = btrfs_getattr,
3653 .setattr = btrfs_setattr,
3654 .permission = btrfs_permission,
3655 .setxattr = btrfs_setxattr,
3656 .getxattr = btrfs_getxattr,
3657 .listxattr = btrfs_listxattr,
3658 .removexattr = btrfs_removexattr,
3659 };
3660 static struct inode_operations btrfs_symlink_inode_operations = {
3661 .readlink = generic_readlink,
3662 .follow_link = page_follow_link_light,
3663 .put_link = page_put_link,
3664 .permission = btrfs_permission,
3665 };
This page took 0.160824 seconds and 6 git commands to generate.