Btrfs: put the right bio if we have an error
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
94
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
97 {
98 int err;
99
100 err = btrfs_init_acl(trans, inode, dir);
101 if (!err)
102 err = btrfs_xattr_security_init(trans, inode, dir);
103 return err;
104 }
105
106 /*
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
110 */
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
114 int compress_type,
115 struct page **compressed_pages)
116 {
117 struct btrfs_key key;
118 struct btrfs_path *path;
119 struct extent_buffer *leaf;
120 struct page *page = NULL;
121 char *kaddr;
122 unsigned long ptr;
123 struct btrfs_file_extent_item *ei;
124 int err = 0;
125 int ret;
126 size_t cur_size = size;
127 size_t datasize;
128 unsigned long offset;
129
130 if (compressed_size && compressed_pages)
131 cur_size = compressed_size;
132
133 path = btrfs_alloc_path();
134 if (!path)
135 return -ENOMEM;
136
137 path->leave_spinning = 1;
138 btrfs_set_trans_block_group(trans, inode);
139
140 key.objectid = inode->i_ino;
141 key.offset = start;
142 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
143 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145 inode_add_bytes(inode, size);
146 ret = btrfs_insert_empty_item(trans, root, path, &key,
147 datasize);
148 BUG_ON(ret);
149 if (ret) {
150 err = ret;
151 goto fail;
152 }
153 leaf = path->nodes[0];
154 ei = btrfs_item_ptr(leaf, path->slots[0],
155 struct btrfs_file_extent_item);
156 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158 btrfs_set_file_extent_encryption(leaf, ei, 0);
159 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161 ptr = btrfs_file_extent_inline_start(ei);
162
163 if (compress_type != BTRFS_COMPRESS_NONE) {
164 struct page *cpage;
165 int i = 0;
166 while (compressed_size > 0) {
167 cpage = compressed_pages[i];
168 cur_size = min_t(unsigned long, compressed_size,
169 PAGE_CACHE_SIZE);
170
171 kaddr = kmap_atomic(cpage, KM_USER0);
172 write_extent_buffer(leaf, kaddr, ptr, cur_size);
173 kunmap_atomic(kaddr, KM_USER0);
174
175 i++;
176 ptr += cur_size;
177 compressed_size -= cur_size;
178 }
179 btrfs_set_file_extent_compression(leaf, ei,
180 compress_type);
181 } else {
182 page = find_get_page(inode->i_mapping,
183 start >> PAGE_CACHE_SHIFT);
184 btrfs_set_file_extent_compression(leaf, ei, 0);
185 kaddr = kmap_atomic(page, KM_USER0);
186 offset = start & (PAGE_CACHE_SIZE - 1);
187 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188 kunmap_atomic(kaddr, KM_USER0);
189 page_cache_release(page);
190 }
191 btrfs_mark_buffer_dirty(leaf);
192 btrfs_free_path(path);
193
194 /*
195 * we're an inline extent, so nobody can
196 * extend the file past i_size without locking
197 * a page we already have locked.
198 *
199 * We must do any isize and inode updates
200 * before we unlock the pages. Otherwise we
201 * could end up racing with unlink.
202 */
203 BTRFS_I(inode)->disk_i_size = inode->i_size;
204 btrfs_update_inode(trans, root, inode);
205
206 return 0;
207 fail:
208 btrfs_free_path(path);
209 return err;
210 }
211
212
213 /*
214 * conditionally insert an inline extent into the file. This
215 * does the checks required to make sure the data is small enough
216 * to fit as an inline extent.
217 */
218 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
219 struct btrfs_root *root,
220 struct inode *inode, u64 start, u64 end,
221 size_t compressed_size, int compress_type,
222 struct page **compressed_pages)
223 {
224 u64 isize = i_size_read(inode);
225 u64 actual_end = min(end + 1, isize);
226 u64 inline_len = actual_end - start;
227 u64 aligned_end = (end + root->sectorsize - 1) &
228 ~((u64)root->sectorsize - 1);
229 u64 hint_byte;
230 u64 data_len = inline_len;
231 int ret;
232
233 if (compressed_size)
234 data_len = compressed_size;
235
236 if (start > 0 ||
237 actual_end >= PAGE_CACHE_SIZE ||
238 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239 (!compressed_size &&
240 (actual_end & (root->sectorsize - 1)) == 0) ||
241 end + 1 < isize ||
242 data_len > root->fs_info->max_inline) {
243 return 1;
244 }
245
246 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
247 &hint_byte, 1);
248 BUG_ON(ret);
249
250 if (isize > actual_end)
251 inline_len = min_t(u64, isize, actual_end);
252 ret = insert_inline_extent(trans, root, inode, start,
253 inline_len, compressed_size,
254 compress_type, compressed_pages);
255 BUG_ON(ret);
256 btrfs_delalloc_release_metadata(inode, end + 1 - start);
257 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
258 return 0;
259 }
260
261 struct async_extent {
262 u64 start;
263 u64 ram_size;
264 u64 compressed_size;
265 struct page **pages;
266 unsigned long nr_pages;
267 int compress_type;
268 struct list_head list;
269 };
270
271 struct async_cow {
272 struct inode *inode;
273 struct btrfs_root *root;
274 struct page *locked_page;
275 u64 start;
276 u64 end;
277 struct list_head extents;
278 struct btrfs_work work;
279 };
280
281 static noinline int add_async_extent(struct async_cow *cow,
282 u64 start, u64 ram_size,
283 u64 compressed_size,
284 struct page **pages,
285 unsigned long nr_pages,
286 int compress_type)
287 {
288 struct async_extent *async_extent;
289
290 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
291 BUG_ON(!async_extent);
292 async_extent->start = start;
293 async_extent->ram_size = ram_size;
294 async_extent->compressed_size = compressed_size;
295 async_extent->pages = pages;
296 async_extent->nr_pages = nr_pages;
297 async_extent->compress_type = compress_type;
298 list_add_tail(&async_extent->list, &cow->extents);
299 return 0;
300 }
301
302 /*
303 * we create compressed extents in two phases. The first
304 * phase compresses a range of pages that have already been
305 * locked (both pages and state bits are locked).
306 *
307 * This is done inside an ordered work queue, and the compression
308 * is spread across many cpus. The actual IO submission is step
309 * two, and the ordered work queue takes care of making sure that
310 * happens in the same order things were put onto the queue by
311 * writepages and friends.
312 *
313 * If this code finds it can't get good compression, it puts an
314 * entry onto the work queue to write the uncompressed bytes. This
315 * makes sure that both compressed inodes and uncompressed inodes
316 * are written in the same order that pdflush sent them down.
317 */
318 static noinline int compress_file_range(struct inode *inode,
319 struct page *locked_page,
320 u64 start, u64 end,
321 struct async_cow *async_cow,
322 int *num_added)
323 {
324 struct btrfs_root *root = BTRFS_I(inode)->root;
325 struct btrfs_trans_handle *trans;
326 u64 num_bytes;
327 u64 blocksize = root->sectorsize;
328 u64 actual_end;
329 u64 isize = i_size_read(inode);
330 int ret = 0;
331 struct page **pages = NULL;
332 unsigned long nr_pages;
333 unsigned long nr_pages_ret = 0;
334 unsigned long total_compressed = 0;
335 unsigned long total_in = 0;
336 unsigned long max_compressed = 128 * 1024;
337 unsigned long max_uncompressed = 128 * 1024;
338 int i;
339 int will_compress;
340 int compress_type = root->fs_info->compress_type;
341
342 actual_end = min_t(u64, isize, end + 1);
343 again:
344 will_compress = 0;
345 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
347
348 /*
349 * we don't want to send crud past the end of i_size through
350 * compression, that's just a waste of CPU time. So, if the
351 * end of the file is before the start of our current
352 * requested range of bytes, we bail out to the uncompressed
353 * cleanup code that can deal with all of this.
354 *
355 * It isn't really the fastest way to fix things, but this is a
356 * very uncommon corner.
357 */
358 if (actual_end <= start)
359 goto cleanup_and_bail_uncompressed;
360
361 total_compressed = actual_end - start;
362
363 /* we want to make sure that amount of ram required to uncompress
364 * an extent is reasonable, so we limit the total size in ram
365 * of a compressed extent to 128k. This is a crucial number
366 * because it also controls how easily we can spread reads across
367 * cpus for decompression.
368 *
369 * We also want to make sure the amount of IO required to do
370 * a random read is reasonably small, so we limit the size of
371 * a compressed extent to 128k.
372 */
373 total_compressed = min(total_compressed, max_uncompressed);
374 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
375 num_bytes = max(blocksize, num_bytes);
376 total_in = 0;
377 ret = 0;
378
379 /*
380 * we do compression for mount -o compress and when the
381 * inode has not been flagged as nocompress. This flag can
382 * change at any time if we discover bad compression ratios.
383 */
384 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
385 (btrfs_test_opt(root, COMPRESS) ||
386 (BTRFS_I(inode)->force_compress) ||
387 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
388 WARN_ON(pages);
389 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
390 BUG_ON(!pages);
391
392 if (BTRFS_I(inode)->force_compress)
393 compress_type = BTRFS_I(inode)->force_compress;
394
395 ret = btrfs_compress_pages(compress_type,
396 inode->i_mapping, start,
397 total_compressed, pages,
398 nr_pages, &nr_pages_ret,
399 &total_in,
400 &total_compressed,
401 max_compressed);
402
403 if (!ret) {
404 unsigned long offset = total_compressed &
405 (PAGE_CACHE_SIZE - 1);
406 struct page *page = pages[nr_pages_ret - 1];
407 char *kaddr;
408
409 /* zero the tail end of the last page, we might be
410 * sending it down to disk
411 */
412 if (offset) {
413 kaddr = kmap_atomic(page, KM_USER0);
414 memset(kaddr + offset, 0,
415 PAGE_CACHE_SIZE - offset);
416 kunmap_atomic(kaddr, KM_USER0);
417 }
418 will_compress = 1;
419 }
420 }
421 if (start == 0) {
422 trans = btrfs_join_transaction(root, 1);
423 BUG_ON(IS_ERR(trans));
424 btrfs_set_trans_block_group(trans, inode);
425 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
426
427 /* lets try to make an inline extent */
428 if (ret || total_in < (actual_end - start)) {
429 /* we didn't compress the entire range, try
430 * to make an uncompressed inline extent.
431 */
432 ret = cow_file_range_inline(trans, root, inode,
433 start, end, 0, 0, NULL);
434 } else {
435 /* try making a compressed inline extent */
436 ret = cow_file_range_inline(trans, root, inode,
437 start, end,
438 total_compressed,
439 compress_type, pages);
440 }
441 if (ret == 0) {
442 /*
443 * inline extent creation worked, we don't need
444 * to create any more async work items. Unlock
445 * and free up our temp pages.
446 */
447 extent_clear_unlock_delalloc(inode,
448 &BTRFS_I(inode)->io_tree,
449 start, end, NULL,
450 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
451 EXTENT_CLEAR_DELALLOC |
452 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
453
454 btrfs_end_transaction(trans, root);
455 goto free_pages_out;
456 }
457 btrfs_end_transaction(trans, root);
458 }
459
460 if (will_compress) {
461 /*
462 * we aren't doing an inline extent round the compressed size
463 * up to a block size boundary so the allocator does sane
464 * things
465 */
466 total_compressed = (total_compressed + blocksize - 1) &
467 ~(blocksize - 1);
468
469 /*
470 * one last check to make sure the compression is really a
471 * win, compare the page count read with the blocks on disk
472 */
473 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
474 ~(PAGE_CACHE_SIZE - 1);
475 if (total_compressed >= total_in) {
476 will_compress = 0;
477 } else {
478 num_bytes = total_in;
479 }
480 }
481 if (!will_compress && pages) {
482 /*
483 * the compression code ran but failed to make things smaller,
484 * free any pages it allocated and our page pointer array
485 */
486 for (i = 0; i < nr_pages_ret; i++) {
487 WARN_ON(pages[i]->mapping);
488 page_cache_release(pages[i]);
489 }
490 kfree(pages);
491 pages = NULL;
492 total_compressed = 0;
493 nr_pages_ret = 0;
494
495 /* flag the file so we don't compress in the future */
496 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
497 !(BTRFS_I(inode)->force_compress)) {
498 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
499 }
500 }
501 if (will_compress) {
502 *num_added += 1;
503
504 /* the async work queues will take care of doing actual
505 * allocation on disk for these compressed pages,
506 * and will submit them to the elevator.
507 */
508 add_async_extent(async_cow, start, num_bytes,
509 total_compressed, pages, nr_pages_ret,
510 compress_type);
511
512 if (start + num_bytes < end) {
513 start += num_bytes;
514 pages = NULL;
515 cond_resched();
516 goto again;
517 }
518 } else {
519 cleanup_and_bail_uncompressed:
520 /*
521 * No compression, but we still need to write the pages in
522 * the file we've been given so far. redirty the locked
523 * page if it corresponds to our extent and set things up
524 * for the async work queue to run cow_file_range to do
525 * the normal delalloc dance
526 */
527 if (page_offset(locked_page) >= start &&
528 page_offset(locked_page) <= end) {
529 __set_page_dirty_nobuffers(locked_page);
530 /* unlocked later on in the async handlers */
531 }
532 add_async_extent(async_cow, start, end - start + 1,
533 0, NULL, 0, BTRFS_COMPRESS_NONE);
534 *num_added += 1;
535 }
536
537 out:
538 return 0;
539
540 free_pages_out:
541 for (i = 0; i < nr_pages_ret; i++) {
542 WARN_ON(pages[i]->mapping);
543 page_cache_release(pages[i]);
544 }
545 kfree(pages);
546
547 goto out;
548 }
549
550 /*
551 * phase two of compressed writeback. This is the ordered portion
552 * of the code, which only gets called in the order the work was
553 * queued. We walk all the async extents created by compress_file_range
554 * and send them down to the disk.
555 */
556 static noinline int submit_compressed_extents(struct inode *inode,
557 struct async_cow *async_cow)
558 {
559 struct async_extent *async_extent;
560 u64 alloc_hint = 0;
561 struct btrfs_trans_handle *trans;
562 struct btrfs_key ins;
563 struct extent_map *em;
564 struct btrfs_root *root = BTRFS_I(inode)->root;
565 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566 struct extent_io_tree *io_tree;
567 int ret = 0;
568
569 if (list_empty(&async_cow->extents))
570 return 0;
571
572
573 while (!list_empty(&async_cow->extents)) {
574 async_extent = list_entry(async_cow->extents.next,
575 struct async_extent, list);
576 list_del(&async_extent->list);
577
578 io_tree = &BTRFS_I(inode)->io_tree;
579
580 retry:
581 /* did the compression code fall back to uncompressed IO? */
582 if (!async_extent->pages) {
583 int page_started = 0;
584 unsigned long nr_written = 0;
585
586 lock_extent(io_tree, async_extent->start,
587 async_extent->start +
588 async_extent->ram_size - 1, GFP_NOFS);
589
590 /* allocate blocks */
591 ret = cow_file_range(inode, async_cow->locked_page,
592 async_extent->start,
593 async_extent->start +
594 async_extent->ram_size - 1,
595 &page_started, &nr_written, 0);
596
597 /*
598 * if page_started, cow_file_range inserted an
599 * inline extent and took care of all the unlocking
600 * and IO for us. Otherwise, we need to submit
601 * all those pages down to the drive.
602 */
603 if (!page_started && !ret)
604 extent_write_locked_range(io_tree,
605 inode, async_extent->start,
606 async_extent->start +
607 async_extent->ram_size - 1,
608 btrfs_get_extent,
609 WB_SYNC_ALL);
610 kfree(async_extent);
611 cond_resched();
612 continue;
613 }
614
615 lock_extent(io_tree, async_extent->start,
616 async_extent->start + async_extent->ram_size - 1,
617 GFP_NOFS);
618
619 trans = btrfs_join_transaction(root, 1);
620 BUG_ON(IS_ERR(trans));
621 ret = btrfs_reserve_extent(trans, root,
622 async_extent->compressed_size,
623 async_extent->compressed_size,
624 0, alloc_hint,
625 (u64)-1, &ins, 1);
626 btrfs_end_transaction(trans, root);
627
628 if (ret) {
629 int i;
630 for (i = 0; i < async_extent->nr_pages; i++) {
631 WARN_ON(async_extent->pages[i]->mapping);
632 page_cache_release(async_extent->pages[i]);
633 }
634 kfree(async_extent->pages);
635 async_extent->nr_pages = 0;
636 async_extent->pages = NULL;
637 unlock_extent(io_tree, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, GFP_NOFS);
640 goto retry;
641 }
642
643 /*
644 * here we're doing allocation and writeback of the
645 * compressed pages
646 */
647 btrfs_drop_extent_cache(inode, async_extent->start,
648 async_extent->start +
649 async_extent->ram_size - 1, 0);
650
651 em = alloc_extent_map(GFP_NOFS);
652 BUG_ON(!em);
653 em->start = async_extent->start;
654 em->len = async_extent->ram_size;
655 em->orig_start = em->start;
656
657 em->block_start = ins.objectid;
658 em->block_len = ins.offset;
659 em->bdev = root->fs_info->fs_devices->latest_bdev;
660 em->compress_type = async_extent->compress_type;
661 set_bit(EXTENT_FLAG_PINNED, &em->flags);
662 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
663
664 while (1) {
665 write_lock(&em_tree->lock);
666 ret = add_extent_mapping(em_tree, em);
667 write_unlock(&em_tree->lock);
668 if (ret != -EEXIST) {
669 free_extent_map(em);
670 break;
671 }
672 btrfs_drop_extent_cache(inode, async_extent->start,
673 async_extent->start +
674 async_extent->ram_size - 1, 0);
675 }
676
677 ret = btrfs_add_ordered_extent_compress(inode,
678 async_extent->start,
679 ins.objectid,
680 async_extent->ram_size,
681 ins.offset,
682 BTRFS_ORDERED_COMPRESSED,
683 async_extent->compress_type);
684 BUG_ON(ret);
685
686 /*
687 * clear dirty, set writeback and unlock the pages.
688 */
689 extent_clear_unlock_delalloc(inode,
690 &BTRFS_I(inode)->io_tree,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
695 EXTENT_CLEAR_UNLOCK |
696 EXTENT_CLEAR_DELALLOC |
697 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
698
699 ret = btrfs_submit_compressed_write(inode,
700 async_extent->start,
701 async_extent->ram_size,
702 ins.objectid,
703 ins.offset, async_extent->pages,
704 async_extent->nr_pages);
705
706 BUG_ON(ret);
707 alloc_hint = ins.objectid + ins.offset;
708 kfree(async_extent);
709 cond_resched();
710 }
711
712 return 0;
713 }
714
715 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
716 u64 num_bytes)
717 {
718 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719 struct extent_map *em;
720 u64 alloc_hint = 0;
721
722 read_lock(&em_tree->lock);
723 em = search_extent_mapping(em_tree, start, num_bytes);
724 if (em) {
725 /*
726 * if block start isn't an actual block number then find the
727 * first block in this inode and use that as a hint. If that
728 * block is also bogus then just don't worry about it.
729 */
730 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
731 free_extent_map(em);
732 em = search_extent_mapping(em_tree, 0, 0);
733 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
734 alloc_hint = em->block_start;
735 if (em)
736 free_extent_map(em);
737 } else {
738 alloc_hint = em->block_start;
739 free_extent_map(em);
740 }
741 }
742 read_unlock(&em_tree->lock);
743
744 return alloc_hint;
745 }
746
747 /*
748 * when extent_io.c finds a delayed allocation range in the file,
749 * the call backs end up in this code. The basic idea is to
750 * allocate extents on disk for the range, and create ordered data structs
751 * in ram to track those extents.
752 *
753 * locked_page is the page that writepage had locked already. We use
754 * it to make sure we don't do extra locks or unlocks.
755 *
756 * *page_started is set to one if we unlock locked_page and do everything
757 * required to start IO on it. It may be clean and already done with
758 * IO when we return.
759 */
760 static noinline int cow_file_range(struct inode *inode,
761 struct page *locked_page,
762 u64 start, u64 end, int *page_started,
763 unsigned long *nr_written,
764 int unlock)
765 {
766 struct btrfs_root *root = BTRFS_I(inode)->root;
767 struct btrfs_trans_handle *trans;
768 u64 alloc_hint = 0;
769 u64 num_bytes;
770 unsigned long ram_size;
771 u64 disk_num_bytes;
772 u64 cur_alloc_size;
773 u64 blocksize = root->sectorsize;
774 struct btrfs_key ins;
775 struct extent_map *em;
776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777 int ret = 0;
778
779 BUG_ON(root == root->fs_info->tree_root);
780 trans = btrfs_join_transaction(root, 1);
781 BUG_ON(IS_ERR(trans));
782 btrfs_set_trans_block_group(trans, inode);
783 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
784
785 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
786 num_bytes = max(blocksize, num_bytes);
787 disk_num_bytes = num_bytes;
788 ret = 0;
789
790 if (start == 0) {
791 /* lets try to make an inline extent */
792 ret = cow_file_range_inline(trans, root, inode,
793 start, end, 0, 0, NULL);
794 if (ret == 0) {
795 extent_clear_unlock_delalloc(inode,
796 &BTRFS_I(inode)->io_tree,
797 start, end, NULL,
798 EXTENT_CLEAR_UNLOCK_PAGE |
799 EXTENT_CLEAR_UNLOCK |
800 EXTENT_CLEAR_DELALLOC |
801 EXTENT_CLEAR_DIRTY |
802 EXTENT_SET_WRITEBACK |
803 EXTENT_END_WRITEBACK);
804
805 *nr_written = *nr_written +
806 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
807 *page_started = 1;
808 ret = 0;
809 goto out;
810 }
811 }
812
813 BUG_ON(disk_num_bytes >
814 btrfs_super_total_bytes(&root->fs_info->super_copy));
815
816 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
817 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
818
819 while (disk_num_bytes > 0) {
820 unsigned long op;
821
822 cur_alloc_size = disk_num_bytes;
823 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
824 root->sectorsize, 0, alloc_hint,
825 (u64)-1, &ins, 1);
826 BUG_ON(ret);
827
828 em = alloc_extent_map(GFP_NOFS);
829 BUG_ON(!em);
830 em->start = start;
831 em->orig_start = em->start;
832 ram_size = ins.offset;
833 em->len = ins.offset;
834
835 em->block_start = ins.objectid;
836 em->block_len = ins.offset;
837 em->bdev = root->fs_info->fs_devices->latest_bdev;
838 set_bit(EXTENT_FLAG_PINNED, &em->flags);
839
840 while (1) {
841 write_lock(&em_tree->lock);
842 ret = add_extent_mapping(em_tree, em);
843 write_unlock(&em_tree->lock);
844 if (ret != -EEXIST) {
845 free_extent_map(em);
846 break;
847 }
848 btrfs_drop_extent_cache(inode, start,
849 start + ram_size - 1, 0);
850 }
851
852 cur_alloc_size = ins.offset;
853 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
854 ram_size, cur_alloc_size, 0);
855 BUG_ON(ret);
856
857 if (root->root_key.objectid ==
858 BTRFS_DATA_RELOC_TREE_OBJECTID) {
859 ret = btrfs_reloc_clone_csums(inode, start,
860 cur_alloc_size);
861 BUG_ON(ret);
862 }
863
864 if (disk_num_bytes < cur_alloc_size)
865 break;
866
867 /* we're not doing compressed IO, don't unlock the first
868 * page (which the caller expects to stay locked), don't
869 * clear any dirty bits and don't set any writeback bits
870 *
871 * Do set the Private2 bit so we know this page was properly
872 * setup for writepage
873 */
874 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
875 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
876 EXTENT_SET_PRIVATE2;
877
878 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
879 start, start + ram_size - 1,
880 locked_page, op);
881 disk_num_bytes -= cur_alloc_size;
882 num_bytes -= cur_alloc_size;
883 alloc_hint = ins.objectid + ins.offset;
884 start += cur_alloc_size;
885 }
886 out:
887 ret = 0;
888 btrfs_end_transaction(trans, root);
889
890 return ret;
891 }
892
893 /*
894 * work queue call back to started compression on a file and pages
895 */
896 static noinline void async_cow_start(struct btrfs_work *work)
897 {
898 struct async_cow *async_cow;
899 int num_added = 0;
900 async_cow = container_of(work, struct async_cow, work);
901
902 compress_file_range(async_cow->inode, async_cow->locked_page,
903 async_cow->start, async_cow->end, async_cow,
904 &num_added);
905 if (num_added == 0)
906 async_cow->inode = NULL;
907 }
908
909 /*
910 * work queue call back to submit previously compressed pages
911 */
912 static noinline void async_cow_submit(struct btrfs_work *work)
913 {
914 struct async_cow *async_cow;
915 struct btrfs_root *root;
916 unsigned long nr_pages;
917
918 async_cow = container_of(work, struct async_cow, work);
919
920 root = async_cow->root;
921 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
922 PAGE_CACHE_SHIFT;
923
924 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
925
926 if (atomic_read(&root->fs_info->async_delalloc_pages) <
927 5 * 1042 * 1024 &&
928 waitqueue_active(&root->fs_info->async_submit_wait))
929 wake_up(&root->fs_info->async_submit_wait);
930
931 if (async_cow->inode)
932 submit_compressed_extents(async_cow->inode, async_cow);
933 }
934
935 static noinline void async_cow_free(struct btrfs_work *work)
936 {
937 struct async_cow *async_cow;
938 async_cow = container_of(work, struct async_cow, work);
939 kfree(async_cow);
940 }
941
942 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
943 u64 start, u64 end, int *page_started,
944 unsigned long *nr_written)
945 {
946 struct async_cow *async_cow;
947 struct btrfs_root *root = BTRFS_I(inode)->root;
948 unsigned long nr_pages;
949 u64 cur_end;
950 int limit = 10 * 1024 * 1042;
951
952 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
953 1, 0, NULL, GFP_NOFS);
954 while (start < end) {
955 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
956 BUG_ON(!async_cow);
957 async_cow->inode = inode;
958 async_cow->root = root;
959 async_cow->locked_page = locked_page;
960 async_cow->start = start;
961
962 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
963 cur_end = end;
964 else
965 cur_end = min(end, start + 512 * 1024 - 1);
966
967 async_cow->end = cur_end;
968 INIT_LIST_HEAD(&async_cow->extents);
969
970 async_cow->work.func = async_cow_start;
971 async_cow->work.ordered_func = async_cow_submit;
972 async_cow->work.ordered_free = async_cow_free;
973 async_cow->work.flags = 0;
974
975 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976 PAGE_CACHE_SHIFT;
977 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978
979 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980 &async_cow->work);
981
982 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983 wait_event(root->fs_info->async_submit_wait,
984 (atomic_read(&root->fs_info->async_delalloc_pages) <
985 limit));
986 }
987
988 while (atomic_read(&root->fs_info->async_submit_draining) &&
989 atomic_read(&root->fs_info->async_delalloc_pages)) {
990 wait_event(root->fs_info->async_submit_wait,
991 (atomic_read(&root->fs_info->async_delalloc_pages) ==
992 0));
993 }
994
995 *nr_written += nr_pages;
996 start = cur_end + 1;
997 }
998 *page_started = 1;
999 return 0;
1000 }
1001
1002 static noinline int csum_exist_in_range(struct btrfs_root *root,
1003 u64 bytenr, u64 num_bytes)
1004 {
1005 int ret;
1006 struct btrfs_ordered_sum *sums;
1007 LIST_HEAD(list);
1008
1009 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010 bytenr + num_bytes - 1, &list);
1011 if (ret == 0 && list_empty(&list))
1012 return 0;
1013
1014 while (!list_empty(&list)) {
1015 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016 list_del(&sums->list);
1017 kfree(sums);
1018 }
1019 return 1;
1020 }
1021
1022 /*
1023 * when nowcow writeback call back. This checks for snapshots or COW copies
1024 * of the extents that exist in the file, and COWs the file as required.
1025 *
1026 * If no cow copies or snapshots exist, we write directly to the existing
1027 * blocks on disk
1028 */
1029 static noinline int run_delalloc_nocow(struct inode *inode,
1030 struct page *locked_page,
1031 u64 start, u64 end, int *page_started, int force,
1032 unsigned long *nr_written)
1033 {
1034 struct btrfs_root *root = BTRFS_I(inode)->root;
1035 struct btrfs_trans_handle *trans;
1036 struct extent_buffer *leaf;
1037 struct btrfs_path *path;
1038 struct btrfs_file_extent_item *fi;
1039 struct btrfs_key found_key;
1040 u64 cow_start;
1041 u64 cur_offset;
1042 u64 extent_end;
1043 u64 extent_offset;
1044 u64 disk_bytenr;
1045 u64 num_bytes;
1046 int extent_type;
1047 int ret;
1048 int type;
1049 int nocow;
1050 int check_prev = 1;
1051 bool nolock = false;
1052
1053 path = btrfs_alloc_path();
1054 BUG_ON(!path);
1055 if (root == root->fs_info->tree_root) {
1056 nolock = true;
1057 trans = btrfs_join_transaction_nolock(root, 1);
1058 } else {
1059 trans = btrfs_join_transaction(root, 1);
1060 }
1061 BUG_ON(IS_ERR(trans));
1062
1063 cow_start = (u64)-1;
1064 cur_offset = start;
1065 while (1) {
1066 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1067 cur_offset, 0);
1068 BUG_ON(ret < 0);
1069 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1070 leaf = path->nodes[0];
1071 btrfs_item_key_to_cpu(leaf, &found_key,
1072 path->slots[0] - 1);
1073 if (found_key.objectid == inode->i_ino &&
1074 found_key.type == BTRFS_EXTENT_DATA_KEY)
1075 path->slots[0]--;
1076 }
1077 check_prev = 0;
1078 next_slot:
1079 leaf = path->nodes[0];
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 BUG_ON(1);
1084 if (ret > 0)
1085 break;
1086 leaf = path->nodes[0];
1087 }
1088
1089 nocow = 0;
1090 disk_bytenr = 0;
1091 num_bytes = 0;
1092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1093
1094 if (found_key.objectid > inode->i_ino ||
1095 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1096 found_key.offset > end)
1097 break;
1098
1099 if (found_key.offset > cur_offset) {
1100 extent_end = found_key.offset;
1101 extent_type = 0;
1102 goto out_check;
1103 }
1104
1105 fi = btrfs_item_ptr(leaf, path->slots[0],
1106 struct btrfs_file_extent_item);
1107 extent_type = btrfs_file_extent_type(leaf, fi);
1108
1109 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1110 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1111 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1112 extent_offset = btrfs_file_extent_offset(leaf, fi);
1113 extent_end = found_key.offset +
1114 btrfs_file_extent_num_bytes(leaf, fi);
1115 if (extent_end <= start) {
1116 path->slots[0]++;
1117 goto next_slot;
1118 }
1119 if (disk_bytenr == 0)
1120 goto out_check;
1121 if (btrfs_file_extent_compression(leaf, fi) ||
1122 btrfs_file_extent_encryption(leaf, fi) ||
1123 btrfs_file_extent_other_encoding(leaf, fi))
1124 goto out_check;
1125 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1126 goto out_check;
1127 if (btrfs_extent_readonly(root, disk_bytenr))
1128 goto out_check;
1129 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1130 found_key.offset -
1131 extent_offset, disk_bytenr))
1132 goto out_check;
1133 disk_bytenr += extent_offset;
1134 disk_bytenr += cur_offset - found_key.offset;
1135 num_bytes = min(end + 1, extent_end) - cur_offset;
1136 /*
1137 * force cow if csum exists in the range.
1138 * this ensure that csum for a given extent are
1139 * either valid or do not exist.
1140 */
1141 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1142 goto out_check;
1143 nocow = 1;
1144 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1145 extent_end = found_key.offset +
1146 btrfs_file_extent_inline_len(leaf, fi);
1147 extent_end = ALIGN(extent_end, root->sectorsize);
1148 } else {
1149 BUG_ON(1);
1150 }
1151 out_check:
1152 if (extent_end <= start) {
1153 path->slots[0]++;
1154 goto next_slot;
1155 }
1156 if (!nocow) {
1157 if (cow_start == (u64)-1)
1158 cow_start = cur_offset;
1159 cur_offset = extent_end;
1160 if (cur_offset > end)
1161 break;
1162 path->slots[0]++;
1163 goto next_slot;
1164 }
1165
1166 btrfs_release_path(root, path);
1167 if (cow_start != (u64)-1) {
1168 ret = cow_file_range(inode, locked_page, cow_start,
1169 found_key.offset - 1, page_started,
1170 nr_written, 1);
1171 BUG_ON(ret);
1172 cow_start = (u64)-1;
1173 }
1174
1175 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1176 struct extent_map *em;
1177 struct extent_map_tree *em_tree;
1178 em_tree = &BTRFS_I(inode)->extent_tree;
1179 em = alloc_extent_map(GFP_NOFS);
1180 BUG_ON(!em);
1181 em->start = cur_offset;
1182 em->orig_start = em->start;
1183 em->len = num_bytes;
1184 em->block_len = num_bytes;
1185 em->block_start = disk_bytenr;
1186 em->bdev = root->fs_info->fs_devices->latest_bdev;
1187 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1188 while (1) {
1189 write_lock(&em_tree->lock);
1190 ret = add_extent_mapping(em_tree, em);
1191 write_unlock(&em_tree->lock);
1192 if (ret != -EEXIST) {
1193 free_extent_map(em);
1194 break;
1195 }
1196 btrfs_drop_extent_cache(inode, em->start,
1197 em->start + em->len - 1, 0);
1198 }
1199 type = BTRFS_ORDERED_PREALLOC;
1200 } else {
1201 type = BTRFS_ORDERED_NOCOW;
1202 }
1203
1204 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1205 num_bytes, num_bytes, type);
1206 BUG_ON(ret);
1207
1208 if (root->root_key.objectid ==
1209 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1210 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1211 num_bytes);
1212 BUG_ON(ret);
1213 }
1214
1215 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1216 cur_offset, cur_offset + num_bytes - 1,
1217 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1218 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1219 EXTENT_SET_PRIVATE2);
1220 cur_offset = extent_end;
1221 if (cur_offset > end)
1222 break;
1223 }
1224 btrfs_release_path(root, path);
1225
1226 if (cur_offset <= end && cow_start == (u64)-1)
1227 cow_start = cur_offset;
1228 if (cow_start != (u64)-1) {
1229 ret = cow_file_range(inode, locked_page, cow_start, end,
1230 page_started, nr_written, 1);
1231 BUG_ON(ret);
1232 }
1233
1234 if (nolock) {
1235 ret = btrfs_end_transaction_nolock(trans, root);
1236 BUG_ON(ret);
1237 } else {
1238 ret = btrfs_end_transaction(trans, root);
1239 BUG_ON(ret);
1240 }
1241 btrfs_free_path(path);
1242 return 0;
1243 }
1244
1245 /*
1246 * extent_io.c call back to do delayed allocation processing
1247 */
1248 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1249 u64 start, u64 end, int *page_started,
1250 unsigned long *nr_written)
1251 {
1252 int ret;
1253 struct btrfs_root *root = BTRFS_I(inode)->root;
1254
1255 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1256 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257 page_started, 1, nr_written);
1258 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1259 ret = run_delalloc_nocow(inode, locked_page, start, end,
1260 page_started, 0, nr_written);
1261 else if (!btrfs_test_opt(root, COMPRESS) &&
1262 !(BTRFS_I(inode)->force_compress) &&
1263 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1264 ret = cow_file_range(inode, locked_page, start, end,
1265 page_started, nr_written, 1);
1266 else
1267 ret = cow_file_range_async(inode, locked_page, start, end,
1268 page_started, nr_written);
1269 return ret;
1270 }
1271
1272 static int btrfs_split_extent_hook(struct inode *inode,
1273 struct extent_state *orig, u64 split)
1274 {
1275 /* not delalloc, ignore it */
1276 if (!(orig->state & EXTENT_DELALLOC))
1277 return 0;
1278
1279 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1280 return 0;
1281 }
1282
1283 /*
1284 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285 * extents so we can keep track of new extents that are just merged onto old
1286 * extents, such as when we are doing sequential writes, so we can properly
1287 * account for the metadata space we'll need.
1288 */
1289 static int btrfs_merge_extent_hook(struct inode *inode,
1290 struct extent_state *new,
1291 struct extent_state *other)
1292 {
1293 /* not delalloc, ignore it */
1294 if (!(other->state & EXTENT_DELALLOC))
1295 return 0;
1296
1297 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1298 return 0;
1299 }
1300
1301 /*
1302 * extent_io.c set_bit_hook, used to track delayed allocation
1303 * bytes in this file, and to maintain the list of inodes that
1304 * have pending delalloc work to be done.
1305 */
1306 static int btrfs_set_bit_hook(struct inode *inode,
1307 struct extent_state *state, int *bits)
1308 {
1309
1310 /*
1311 * set_bit and clear bit hooks normally require _irqsave/restore
1312 * but in this case, we are only testeing for the DELALLOC
1313 * bit, which is only set or cleared with irqs on
1314 */
1315 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1316 struct btrfs_root *root = BTRFS_I(inode)->root;
1317 u64 len = state->end + 1 - state->start;
1318 int do_list = (root->root_key.objectid !=
1319 BTRFS_ROOT_TREE_OBJECTID);
1320
1321 if (*bits & EXTENT_FIRST_DELALLOC)
1322 *bits &= ~EXTENT_FIRST_DELALLOC;
1323 else
1324 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1325
1326 spin_lock(&root->fs_info->delalloc_lock);
1327 BTRFS_I(inode)->delalloc_bytes += len;
1328 root->fs_info->delalloc_bytes += len;
1329 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331 &root->fs_info->delalloc_inodes);
1332 }
1333 spin_unlock(&root->fs_info->delalloc_lock);
1334 }
1335 return 0;
1336 }
1337
1338 /*
1339 * extent_io.c clear_bit_hook, see set_bit_hook for why
1340 */
1341 static int btrfs_clear_bit_hook(struct inode *inode,
1342 struct extent_state *state, int *bits)
1343 {
1344 /*
1345 * set_bit and clear bit hooks normally require _irqsave/restore
1346 * but in this case, we are only testeing for the DELALLOC
1347 * bit, which is only set or cleared with irqs on
1348 */
1349 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1350 struct btrfs_root *root = BTRFS_I(inode)->root;
1351 u64 len = state->end + 1 - state->start;
1352 int do_list = (root->root_key.objectid !=
1353 BTRFS_ROOT_TREE_OBJECTID);
1354
1355 if (*bits & EXTENT_FIRST_DELALLOC)
1356 *bits &= ~EXTENT_FIRST_DELALLOC;
1357 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1358 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1359
1360 if (*bits & EXTENT_DO_ACCOUNTING)
1361 btrfs_delalloc_release_metadata(inode, len);
1362
1363 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1364 && do_list)
1365 btrfs_free_reserved_data_space(inode, len);
1366
1367 spin_lock(&root->fs_info->delalloc_lock);
1368 root->fs_info->delalloc_bytes -= len;
1369 BTRFS_I(inode)->delalloc_bytes -= len;
1370
1371 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1372 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1373 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1374 }
1375 spin_unlock(&root->fs_info->delalloc_lock);
1376 }
1377 return 0;
1378 }
1379
1380 /*
1381 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382 * we don't create bios that span stripes or chunks
1383 */
1384 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1385 size_t size, struct bio *bio,
1386 unsigned long bio_flags)
1387 {
1388 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1389 struct btrfs_mapping_tree *map_tree;
1390 u64 logical = (u64)bio->bi_sector << 9;
1391 u64 length = 0;
1392 u64 map_length;
1393 int ret;
1394
1395 if (bio_flags & EXTENT_BIO_COMPRESSED)
1396 return 0;
1397
1398 length = bio->bi_size;
1399 map_tree = &root->fs_info->mapping_tree;
1400 map_length = length;
1401 ret = btrfs_map_block(map_tree, READ, logical,
1402 &map_length, NULL, 0);
1403
1404 if (map_length < length + size)
1405 return 1;
1406 return ret;
1407 }
1408
1409 /*
1410 * in order to insert checksums into the metadata in large chunks,
1411 * we wait until bio submission time. All the pages in the bio are
1412 * checksummed and sums are attached onto the ordered extent record.
1413 *
1414 * At IO completion time the cums attached on the ordered extent record
1415 * are inserted into the btree
1416 */
1417 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1418 struct bio *bio, int mirror_num,
1419 unsigned long bio_flags,
1420 u64 bio_offset)
1421 {
1422 struct btrfs_root *root = BTRFS_I(inode)->root;
1423 int ret = 0;
1424
1425 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1426 BUG_ON(ret);
1427 return 0;
1428 }
1429
1430 /*
1431 * in order to insert checksums into the metadata in large chunks,
1432 * we wait until bio submission time. All the pages in the bio are
1433 * checksummed and sums are attached onto the ordered extent record.
1434 *
1435 * At IO completion time the cums attached on the ordered extent record
1436 * are inserted into the btree
1437 */
1438 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1439 int mirror_num, unsigned long bio_flags,
1440 u64 bio_offset)
1441 {
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
1443 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1444 }
1445
1446 /*
1447 * extent_io.c submission hook. This does the right thing for csum calculation
1448 * on write, or reading the csums from the tree before a read
1449 */
1450 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1451 int mirror_num, unsigned long bio_flags,
1452 u64 bio_offset)
1453 {
1454 struct btrfs_root *root = BTRFS_I(inode)->root;
1455 int ret = 0;
1456 int skip_sum;
1457
1458 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1459
1460 if (root == root->fs_info->tree_root)
1461 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1462 else
1463 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1464 BUG_ON(ret);
1465
1466 if (!(rw & REQ_WRITE)) {
1467 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1468 return btrfs_submit_compressed_read(inode, bio,
1469 mirror_num, bio_flags);
1470 } else if (!skip_sum) {
1471 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1472 if (ret)
1473 return ret;
1474 }
1475 goto mapit;
1476 } else if (!skip_sum) {
1477 /* csum items have already been cloned */
1478 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479 goto mapit;
1480 /* we're doing a write, do the async checksumming */
1481 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1482 inode, rw, bio, mirror_num,
1483 bio_flags, bio_offset,
1484 __btrfs_submit_bio_start,
1485 __btrfs_submit_bio_done);
1486 }
1487
1488 mapit:
1489 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1490 }
1491
1492 /*
1493 * given a list of ordered sums record them in the inode. This happens
1494 * at IO completion time based on sums calculated at bio submission time.
1495 */
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497 struct inode *inode, u64 file_offset,
1498 struct list_head *list)
1499 {
1500 struct btrfs_ordered_sum *sum;
1501
1502 btrfs_set_trans_block_group(trans, inode);
1503
1504 list_for_each_entry(sum, list, list) {
1505 btrfs_csum_file_blocks(trans,
1506 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507 }
1508 return 0;
1509 }
1510
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1512 struct extent_state **cached_state)
1513 {
1514 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1515 WARN_ON(1);
1516 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1517 cached_state, GFP_NOFS);
1518 }
1519
1520 /* see btrfs_writepage_start_hook for details on why this is required */
1521 struct btrfs_writepage_fixup {
1522 struct page *page;
1523 struct btrfs_work work;
1524 };
1525
1526 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1527 {
1528 struct btrfs_writepage_fixup *fixup;
1529 struct btrfs_ordered_extent *ordered;
1530 struct extent_state *cached_state = NULL;
1531 struct page *page;
1532 struct inode *inode;
1533 u64 page_start;
1534 u64 page_end;
1535
1536 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1537 page = fixup->page;
1538 again:
1539 lock_page(page);
1540 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1541 ClearPageChecked(page);
1542 goto out_page;
1543 }
1544
1545 inode = page->mapping->host;
1546 page_start = page_offset(page);
1547 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1548
1549 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1550 &cached_state, GFP_NOFS);
1551
1552 /* already ordered? We're done */
1553 if (PagePrivate2(page))
1554 goto out;
1555
1556 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1557 if (ordered) {
1558 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1559 page_end, &cached_state, GFP_NOFS);
1560 unlock_page(page);
1561 btrfs_start_ordered_extent(inode, ordered, 1);
1562 goto again;
1563 }
1564
1565 BUG();
1566 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1567 ClearPageChecked(page);
1568 out:
1569 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1570 &cached_state, GFP_NOFS);
1571 out_page:
1572 unlock_page(page);
1573 page_cache_release(page);
1574 kfree(fixup);
1575 }
1576
1577 /*
1578 * There are a few paths in the higher layers of the kernel that directly
1579 * set the page dirty bit without asking the filesystem if it is a
1580 * good idea. This causes problems because we want to make sure COW
1581 * properly happens and the data=ordered rules are followed.
1582 *
1583 * In our case any range that doesn't have the ORDERED bit set
1584 * hasn't been properly setup for IO. We kick off an async process
1585 * to fix it up. The async helper will wait for ordered extents, set
1586 * the delalloc bit and make it safe to write the page.
1587 */
1588 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1589 {
1590 struct inode *inode = page->mapping->host;
1591 struct btrfs_writepage_fixup *fixup;
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
1593
1594 /* this page is properly in the ordered list */
1595 if (TestClearPagePrivate2(page))
1596 return 0;
1597
1598 if (PageChecked(page))
1599 return -EAGAIN;
1600
1601 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1602 if (!fixup)
1603 return -EAGAIN;
1604
1605 SetPageChecked(page);
1606 page_cache_get(page);
1607 fixup->work.func = btrfs_writepage_fixup_worker;
1608 fixup->page = page;
1609 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1610 return -EAGAIN;
1611 }
1612
1613 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1614 struct inode *inode, u64 file_pos,
1615 u64 disk_bytenr, u64 disk_num_bytes,
1616 u64 num_bytes, u64 ram_bytes,
1617 u8 compression, u8 encryption,
1618 u16 other_encoding, int extent_type)
1619 {
1620 struct btrfs_root *root = BTRFS_I(inode)->root;
1621 struct btrfs_file_extent_item *fi;
1622 struct btrfs_path *path;
1623 struct extent_buffer *leaf;
1624 struct btrfs_key ins;
1625 u64 hint;
1626 int ret;
1627
1628 path = btrfs_alloc_path();
1629 BUG_ON(!path);
1630
1631 path->leave_spinning = 1;
1632
1633 /*
1634 * we may be replacing one extent in the tree with another.
1635 * The new extent is pinned in the extent map, and we don't want
1636 * to drop it from the cache until it is completely in the btree.
1637 *
1638 * So, tell btrfs_drop_extents to leave this extent in the cache.
1639 * the caller is expected to unpin it and allow it to be merged
1640 * with the others.
1641 */
1642 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1643 &hint, 0);
1644 BUG_ON(ret);
1645
1646 ins.objectid = inode->i_ino;
1647 ins.offset = file_pos;
1648 ins.type = BTRFS_EXTENT_DATA_KEY;
1649 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1650 BUG_ON(ret);
1651 leaf = path->nodes[0];
1652 fi = btrfs_item_ptr(leaf, path->slots[0],
1653 struct btrfs_file_extent_item);
1654 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1655 btrfs_set_file_extent_type(leaf, fi, extent_type);
1656 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1657 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1658 btrfs_set_file_extent_offset(leaf, fi, 0);
1659 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1660 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1661 btrfs_set_file_extent_compression(leaf, fi, compression);
1662 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1663 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1664
1665 btrfs_unlock_up_safe(path, 1);
1666 btrfs_set_lock_blocking(leaf);
1667
1668 btrfs_mark_buffer_dirty(leaf);
1669
1670 inode_add_bytes(inode, num_bytes);
1671
1672 ins.objectid = disk_bytenr;
1673 ins.offset = disk_num_bytes;
1674 ins.type = BTRFS_EXTENT_ITEM_KEY;
1675 ret = btrfs_alloc_reserved_file_extent(trans, root,
1676 root->root_key.objectid,
1677 inode->i_ino, file_pos, &ins);
1678 BUG_ON(ret);
1679 btrfs_free_path(path);
1680
1681 return 0;
1682 }
1683
1684 /*
1685 * helper function for btrfs_finish_ordered_io, this
1686 * just reads in some of the csum leaves to prime them into ram
1687 * before we start the transaction. It limits the amount of btree
1688 * reads required while inside the transaction.
1689 */
1690 /* as ordered data IO finishes, this gets called so we can finish
1691 * an ordered extent if the range of bytes in the file it covers are
1692 * fully written.
1693 */
1694 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1695 {
1696 struct btrfs_root *root = BTRFS_I(inode)->root;
1697 struct btrfs_trans_handle *trans = NULL;
1698 struct btrfs_ordered_extent *ordered_extent = NULL;
1699 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1700 struct extent_state *cached_state = NULL;
1701 int compress_type = 0;
1702 int ret;
1703 bool nolock = false;
1704
1705 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1706 end - start + 1);
1707 if (!ret)
1708 return 0;
1709 BUG_ON(!ordered_extent);
1710
1711 nolock = (root == root->fs_info->tree_root);
1712
1713 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714 BUG_ON(!list_empty(&ordered_extent->list));
1715 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716 if (!ret) {
1717 if (nolock)
1718 trans = btrfs_join_transaction_nolock(root, 1);
1719 else
1720 trans = btrfs_join_transaction(root, 1);
1721 BUG_ON(IS_ERR(trans));
1722 btrfs_set_trans_block_group(trans, inode);
1723 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1724 ret = btrfs_update_inode(trans, root, inode);
1725 BUG_ON(ret);
1726 }
1727 goto out;
1728 }
1729
1730 lock_extent_bits(io_tree, ordered_extent->file_offset,
1731 ordered_extent->file_offset + ordered_extent->len - 1,
1732 0, &cached_state, GFP_NOFS);
1733
1734 if (nolock)
1735 trans = btrfs_join_transaction_nolock(root, 1);
1736 else
1737 trans = btrfs_join_transaction(root, 1);
1738 BUG_ON(IS_ERR(trans));
1739 btrfs_set_trans_block_group(trans, inode);
1740 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741
1742 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1743 compress_type = ordered_extent->compress_type;
1744 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1745 BUG_ON(compress_type);
1746 ret = btrfs_mark_extent_written(trans, inode,
1747 ordered_extent->file_offset,
1748 ordered_extent->file_offset +
1749 ordered_extent->len);
1750 BUG_ON(ret);
1751 } else {
1752 BUG_ON(root == root->fs_info->tree_root);
1753 ret = insert_reserved_file_extent(trans, inode,
1754 ordered_extent->file_offset,
1755 ordered_extent->start,
1756 ordered_extent->disk_len,
1757 ordered_extent->len,
1758 ordered_extent->len,
1759 compress_type, 0, 0,
1760 BTRFS_FILE_EXTENT_REG);
1761 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1762 ordered_extent->file_offset,
1763 ordered_extent->len);
1764 BUG_ON(ret);
1765 }
1766 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1767 ordered_extent->file_offset +
1768 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1769
1770 add_pending_csums(trans, inode, ordered_extent->file_offset,
1771 &ordered_extent->list);
1772
1773 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1774 if (!ret) {
1775 ret = btrfs_update_inode(trans, root, inode);
1776 BUG_ON(ret);
1777 }
1778 ret = 0;
1779 out:
1780 if (nolock) {
1781 if (trans)
1782 btrfs_end_transaction_nolock(trans, root);
1783 } else {
1784 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1785 if (trans)
1786 btrfs_end_transaction(trans, root);
1787 }
1788
1789 /* once for us */
1790 btrfs_put_ordered_extent(ordered_extent);
1791 /* once for the tree */
1792 btrfs_put_ordered_extent(ordered_extent);
1793
1794 return 0;
1795 }
1796
1797 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1798 struct extent_state *state, int uptodate)
1799 {
1800 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1801
1802 ClearPagePrivate2(page);
1803 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1804 }
1805
1806 /*
1807 * When IO fails, either with EIO or csum verification fails, we
1808 * try other mirrors that might have a good copy of the data. This
1809 * io_failure_record is used to record state as we go through all the
1810 * mirrors. If another mirror has good data, the page is set up to date
1811 * and things continue. If a good mirror can't be found, the original
1812 * bio end_io callback is called to indicate things have failed.
1813 */
1814 struct io_failure_record {
1815 struct page *page;
1816 u64 start;
1817 u64 len;
1818 u64 logical;
1819 unsigned long bio_flags;
1820 int last_mirror;
1821 };
1822
1823 static int btrfs_io_failed_hook(struct bio *failed_bio,
1824 struct page *page, u64 start, u64 end,
1825 struct extent_state *state)
1826 {
1827 struct io_failure_record *failrec = NULL;
1828 u64 private;
1829 struct extent_map *em;
1830 struct inode *inode = page->mapping->host;
1831 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1832 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1833 struct bio *bio;
1834 int num_copies;
1835 int ret;
1836 int rw;
1837 u64 logical;
1838
1839 ret = get_state_private(failure_tree, start, &private);
1840 if (ret) {
1841 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1842 if (!failrec)
1843 return -ENOMEM;
1844 failrec->start = start;
1845 failrec->len = end - start + 1;
1846 failrec->last_mirror = 0;
1847 failrec->bio_flags = 0;
1848
1849 read_lock(&em_tree->lock);
1850 em = lookup_extent_mapping(em_tree, start, failrec->len);
1851 if (em->start > start || em->start + em->len < start) {
1852 free_extent_map(em);
1853 em = NULL;
1854 }
1855 read_unlock(&em_tree->lock);
1856
1857 if (!em || IS_ERR(em)) {
1858 kfree(failrec);
1859 return -EIO;
1860 }
1861 logical = start - em->start;
1862 logical = em->block_start + logical;
1863 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1864 logical = em->block_start;
1865 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1866 extent_set_compress_type(&failrec->bio_flags,
1867 em->compress_type);
1868 }
1869 failrec->logical = logical;
1870 free_extent_map(em);
1871 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1872 EXTENT_DIRTY, GFP_NOFS);
1873 set_state_private(failure_tree, start,
1874 (u64)(unsigned long)failrec);
1875 } else {
1876 failrec = (struct io_failure_record *)(unsigned long)private;
1877 }
1878 num_copies = btrfs_num_copies(
1879 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1880 failrec->logical, failrec->len);
1881 failrec->last_mirror++;
1882 if (!state) {
1883 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1884 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1885 failrec->start,
1886 EXTENT_LOCKED);
1887 if (state && state->start != failrec->start)
1888 state = NULL;
1889 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1890 }
1891 if (!state || failrec->last_mirror > num_copies) {
1892 set_state_private(failure_tree, failrec->start, 0);
1893 clear_extent_bits(failure_tree, failrec->start,
1894 failrec->start + failrec->len - 1,
1895 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1896 kfree(failrec);
1897 return -EIO;
1898 }
1899 bio = bio_alloc(GFP_NOFS, 1);
1900 bio->bi_private = state;
1901 bio->bi_end_io = failed_bio->bi_end_io;
1902 bio->bi_sector = failrec->logical >> 9;
1903 bio->bi_bdev = failed_bio->bi_bdev;
1904 bio->bi_size = 0;
1905
1906 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1907 if (failed_bio->bi_rw & REQ_WRITE)
1908 rw = WRITE;
1909 else
1910 rw = READ;
1911
1912 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1913 failrec->last_mirror,
1914 failrec->bio_flags, 0);
1915 return ret;
1916 }
1917
1918 /*
1919 * each time an IO finishes, we do a fast check in the IO failure tree
1920 * to see if we need to process or clean up an io_failure_record
1921 */
1922 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1923 {
1924 u64 private;
1925 u64 private_failure;
1926 struct io_failure_record *failure;
1927 int ret;
1928
1929 private = 0;
1930 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1931 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1932 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1933 start, &private_failure);
1934 if (ret == 0) {
1935 failure = (struct io_failure_record *)(unsigned long)
1936 private_failure;
1937 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1938 failure->start, 0);
1939 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1940 failure->start,
1941 failure->start + failure->len - 1,
1942 EXTENT_DIRTY | EXTENT_LOCKED,
1943 GFP_NOFS);
1944 kfree(failure);
1945 }
1946 }
1947 return 0;
1948 }
1949
1950 /*
1951 * when reads are done, we need to check csums to verify the data is correct
1952 * if there's a match, we allow the bio to finish. If not, we go through
1953 * the io_failure_record routines to find good copies
1954 */
1955 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1956 struct extent_state *state)
1957 {
1958 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1959 struct inode *inode = page->mapping->host;
1960 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1961 char *kaddr;
1962 u64 private = ~(u32)0;
1963 int ret;
1964 struct btrfs_root *root = BTRFS_I(inode)->root;
1965 u32 csum = ~(u32)0;
1966
1967 if (PageChecked(page)) {
1968 ClearPageChecked(page);
1969 goto good;
1970 }
1971
1972 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1973 return 0;
1974
1975 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1976 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1977 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1978 GFP_NOFS);
1979 return 0;
1980 }
1981
1982 if (state && state->start == start) {
1983 private = state->private;
1984 ret = 0;
1985 } else {
1986 ret = get_state_private(io_tree, start, &private);
1987 }
1988 kaddr = kmap_atomic(page, KM_USER0);
1989 if (ret)
1990 goto zeroit;
1991
1992 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1993 btrfs_csum_final(csum, (char *)&csum);
1994 if (csum != private)
1995 goto zeroit;
1996
1997 kunmap_atomic(kaddr, KM_USER0);
1998 good:
1999 /* if the io failure tree for this inode is non-empty,
2000 * check to see if we've recovered from a failed IO
2001 */
2002 btrfs_clean_io_failures(inode, start);
2003 return 0;
2004
2005 zeroit:
2006 if (printk_ratelimit()) {
2007 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2008 "private %llu\n", page->mapping->host->i_ino,
2009 (unsigned long long)start, csum,
2010 (unsigned long long)private);
2011 }
2012 memset(kaddr + offset, 1, end - start + 1);
2013 flush_dcache_page(page);
2014 kunmap_atomic(kaddr, KM_USER0);
2015 if (private == 0)
2016 return 0;
2017 return -EIO;
2018 }
2019
2020 struct delayed_iput {
2021 struct list_head list;
2022 struct inode *inode;
2023 };
2024
2025 void btrfs_add_delayed_iput(struct inode *inode)
2026 {
2027 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2028 struct delayed_iput *delayed;
2029
2030 if (atomic_add_unless(&inode->i_count, -1, 1))
2031 return;
2032
2033 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2034 delayed->inode = inode;
2035
2036 spin_lock(&fs_info->delayed_iput_lock);
2037 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2038 spin_unlock(&fs_info->delayed_iput_lock);
2039 }
2040
2041 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2042 {
2043 LIST_HEAD(list);
2044 struct btrfs_fs_info *fs_info = root->fs_info;
2045 struct delayed_iput *delayed;
2046 int empty;
2047
2048 spin_lock(&fs_info->delayed_iput_lock);
2049 empty = list_empty(&fs_info->delayed_iputs);
2050 spin_unlock(&fs_info->delayed_iput_lock);
2051 if (empty)
2052 return;
2053
2054 down_read(&root->fs_info->cleanup_work_sem);
2055 spin_lock(&fs_info->delayed_iput_lock);
2056 list_splice_init(&fs_info->delayed_iputs, &list);
2057 spin_unlock(&fs_info->delayed_iput_lock);
2058
2059 while (!list_empty(&list)) {
2060 delayed = list_entry(list.next, struct delayed_iput, list);
2061 list_del(&delayed->list);
2062 iput(delayed->inode);
2063 kfree(delayed);
2064 }
2065 up_read(&root->fs_info->cleanup_work_sem);
2066 }
2067
2068 /*
2069 * calculate extra metadata reservation when snapshotting a subvolume
2070 * contains orphan files.
2071 */
2072 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2073 struct btrfs_pending_snapshot *pending,
2074 u64 *bytes_to_reserve)
2075 {
2076 struct btrfs_root *root;
2077 struct btrfs_block_rsv *block_rsv;
2078 u64 num_bytes;
2079 int index;
2080
2081 root = pending->root;
2082 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2083 return;
2084
2085 block_rsv = root->orphan_block_rsv;
2086
2087 /* orphan block reservation for the snapshot */
2088 num_bytes = block_rsv->size;
2089
2090 /*
2091 * after the snapshot is created, COWing tree blocks may use more
2092 * space than it frees. So we should make sure there is enough
2093 * reserved space.
2094 */
2095 index = trans->transid & 0x1;
2096 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2097 num_bytes += block_rsv->size -
2098 (block_rsv->reserved + block_rsv->freed[index]);
2099 }
2100
2101 *bytes_to_reserve += num_bytes;
2102 }
2103
2104 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2105 struct btrfs_pending_snapshot *pending)
2106 {
2107 struct btrfs_root *root = pending->root;
2108 struct btrfs_root *snap = pending->snap;
2109 struct btrfs_block_rsv *block_rsv;
2110 u64 num_bytes;
2111 int index;
2112 int ret;
2113
2114 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2115 return;
2116
2117 /* refill source subvolume's orphan block reservation */
2118 block_rsv = root->orphan_block_rsv;
2119 index = trans->transid & 0x1;
2120 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2121 num_bytes = block_rsv->size -
2122 (block_rsv->reserved + block_rsv->freed[index]);
2123 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2124 root->orphan_block_rsv,
2125 num_bytes);
2126 BUG_ON(ret);
2127 }
2128
2129 /* setup orphan block reservation for the snapshot */
2130 block_rsv = btrfs_alloc_block_rsv(snap);
2131 BUG_ON(!block_rsv);
2132
2133 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2134 snap->orphan_block_rsv = block_rsv;
2135
2136 num_bytes = root->orphan_block_rsv->size;
2137 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2138 block_rsv, num_bytes);
2139 BUG_ON(ret);
2140
2141 #if 0
2142 /* insert orphan item for the snapshot */
2143 WARN_ON(!root->orphan_item_inserted);
2144 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2145 snap->root_key.objectid);
2146 BUG_ON(ret);
2147 snap->orphan_item_inserted = 1;
2148 #endif
2149 }
2150
2151 enum btrfs_orphan_cleanup_state {
2152 ORPHAN_CLEANUP_STARTED = 1,
2153 ORPHAN_CLEANUP_DONE = 2,
2154 };
2155
2156 /*
2157 * This is called in transaction commmit time. If there are no orphan
2158 * files in the subvolume, it removes orphan item and frees block_rsv
2159 * structure.
2160 */
2161 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2162 struct btrfs_root *root)
2163 {
2164 int ret;
2165
2166 if (!list_empty(&root->orphan_list) ||
2167 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2168 return;
2169
2170 if (root->orphan_item_inserted &&
2171 btrfs_root_refs(&root->root_item) > 0) {
2172 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2173 root->root_key.objectid);
2174 BUG_ON(ret);
2175 root->orphan_item_inserted = 0;
2176 }
2177
2178 if (root->orphan_block_rsv) {
2179 WARN_ON(root->orphan_block_rsv->size > 0);
2180 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2181 root->orphan_block_rsv = NULL;
2182 }
2183 }
2184
2185 /*
2186 * This creates an orphan entry for the given inode in case something goes
2187 * wrong in the middle of an unlink/truncate.
2188 *
2189 * NOTE: caller of this function should reserve 5 units of metadata for
2190 * this function.
2191 */
2192 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2193 {
2194 struct btrfs_root *root = BTRFS_I(inode)->root;
2195 struct btrfs_block_rsv *block_rsv = NULL;
2196 int reserve = 0;
2197 int insert = 0;
2198 int ret;
2199
2200 if (!root->orphan_block_rsv) {
2201 block_rsv = btrfs_alloc_block_rsv(root);
2202 BUG_ON(!block_rsv);
2203 }
2204
2205 spin_lock(&root->orphan_lock);
2206 if (!root->orphan_block_rsv) {
2207 root->orphan_block_rsv = block_rsv;
2208 } else if (block_rsv) {
2209 btrfs_free_block_rsv(root, block_rsv);
2210 block_rsv = NULL;
2211 }
2212
2213 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2214 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2215 #if 0
2216 /*
2217 * For proper ENOSPC handling, we should do orphan
2218 * cleanup when mounting. But this introduces backward
2219 * compatibility issue.
2220 */
2221 if (!xchg(&root->orphan_item_inserted, 1))
2222 insert = 2;
2223 else
2224 insert = 1;
2225 #endif
2226 insert = 1;
2227 }
2228
2229 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2230 BTRFS_I(inode)->orphan_meta_reserved = 1;
2231 reserve = 1;
2232 }
2233 spin_unlock(&root->orphan_lock);
2234
2235 if (block_rsv)
2236 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2237
2238 /* grab metadata reservation from transaction handle */
2239 if (reserve) {
2240 ret = btrfs_orphan_reserve_metadata(trans, inode);
2241 BUG_ON(ret);
2242 }
2243
2244 /* insert an orphan item to track this unlinked/truncated file */
2245 if (insert >= 1) {
2246 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2247 BUG_ON(ret);
2248 }
2249
2250 /* insert an orphan item to track subvolume contains orphan files */
2251 if (insert >= 2) {
2252 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2253 root->root_key.objectid);
2254 BUG_ON(ret);
2255 }
2256 return 0;
2257 }
2258
2259 /*
2260 * We have done the truncate/delete so we can go ahead and remove the orphan
2261 * item for this particular inode.
2262 */
2263 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2264 {
2265 struct btrfs_root *root = BTRFS_I(inode)->root;
2266 int delete_item = 0;
2267 int release_rsv = 0;
2268 int ret = 0;
2269
2270 spin_lock(&root->orphan_lock);
2271 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2272 list_del_init(&BTRFS_I(inode)->i_orphan);
2273 delete_item = 1;
2274 }
2275
2276 if (BTRFS_I(inode)->orphan_meta_reserved) {
2277 BTRFS_I(inode)->orphan_meta_reserved = 0;
2278 release_rsv = 1;
2279 }
2280 spin_unlock(&root->orphan_lock);
2281
2282 if (trans && delete_item) {
2283 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2284 BUG_ON(ret);
2285 }
2286
2287 if (release_rsv)
2288 btrfs_orphan_release_metadata(inode);
2289
2290 return 0;
2291 }
2292
2293 /*
2294 * this cleans up any orphans that may be left on the list from the last use
2295 * of this root.
2296 */
2297 int btrfs_orphan_cleanup(struct btrfs_root *root)
2298 {
2299 struct btrfs_path *path;
2300 struct extent_buffer *leaf;
2301 struct btrfs_key key, found_key;
2302 struct btrfs_trans_handle *trans;
2303 struct inode *inode;
2304 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2305
2306 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2307 return 0;
2308
2309 path = btrfs_alloc_path();
2310 if (!path) {
2311 ret = -ENOMEM;
2312 goto out;
2313 }
2314 path->reada = -1;
2315
2316 key.objectid = BTRFS_ORPHAN_OBJECTID;
2317 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2318 key.offset = (u64)-1;
2319
2320 while (1) {
2321 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2322 if (ret < 0)
2323 goto out;
2324
2325 /*
2326 * if ret == 0 means we found what we were searching for, which
2327 * is weird, but possible, so only screw with path if we didnt
2328 * find the key and see if we have stuff that matches
2329 */
2330 if (ret > 0) {
2331 ret = 0;
2332 if (path->slots[0] == 0)
2333 break;
2334 path->slots[0]--;
2335 }
2336
2337 /* pull out the item */
2338 leaf = path->nodes[0];
2339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2340
2341 /* make sure the item matches what we want */
2342 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2343 break;
2344 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2345 break;
2346
2347 /* release the path since we're done with it */
2348 btrfs_release_path(root, path);
2349
2350 /*
2351 * this is where we are basically btrfs_lookup, without the
2352 * crossing root thing. we store the inode number in the
2353 * offset of the orphan item.
2354 */
2355 found_key.objectid = found_key.offset;
2356 found_key.type = BTRFS_INODE_ITEM_KEY;
2357 found_key.offset = 0;
2358 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2359 if (IS_ERR(inode)) {
2360 ret = PTR_ERR(inode);
2361 goto out;
2362 }
2363
2364 /*
2365 * add this inode to the orphan list so btrfs_orphan_del does
2366 * the proper thing when we hit it
2367 */
2368 spin_lock(&root->orphan_lock);
2369 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2370 spin_unlock(&root->orphan_lock);
2371
2372 /*
2373 * if this is a bad inode, means we actually succeeded in
2374 * removing the inode, but not the orphan record, which means
2375 * we need to manually delete the orphan since iput will just
2376 * do a destroy_inode
2377 */
2378 if (is_bad_inode(inode)) {
2379 trans = btrfs_start_transaction(root, 0);
2380 if (IS_ERR(trans)) {
2381 ret = PTR_ERR(trans);
2382 goto out;
2383 }
2384 btrfs_orphan_del(trans, inode);
2385 btrfs_end_transaction(trans, root);
2386 iput(inode);
2387 continue;
2388 }
2389
2390 /* if we have links, this was a truncate, lets do that */
2391 if (inode->i_nlink) {
2392 if (!S_ISREG(inode->i_mode)) {
2393 WARN_ON(1);
2394 iput(inode);
2395 continue;
2396 }
2397 nr_truncate++;
2398 ret = btrfs_truncate(inode);
2399 } else {
2400 nr_unlink++;
2401 }
2402
2403 /* this will do delete_inode and everything for us */
2404 iput(inode);
2405 if (ret)
2406 goto out;
2407 }
2408 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2409
2410 if (root->orphan_block_rsv)
2411 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2412 (u64)-1);
2413
2414 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2415 trans = btrfs_join_transaction(root, 1);
2416 if (!IS_ERR(trans))
2417 btrfs_end_transaction(trans, root);
2418 }
2419
2420 if (nr_unlink)
2421 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2422 if (nr_truncate)
2423 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2424
2425 out:
2426 if (ret)
2427 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2428 btrfs_free_path(path);
2429 return ret;
2430 }
2431
2432 /*
2433 * very simple check to peek ahead in the leaf looking for xattrs. If we
2434 * don't find any xattrs, we know there can't be any acls.
2435 *
2436 * slot is the slot the inode is in, objectid is the objectid of the inode
2437 */
2438 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2439 int slot, u64 objectid)
2440 {
2441 u32 nritems = btrfs_header_nritems(leaf);
2442 struct btrfs_key found_key;
2443 int scanned = 0;
2444
2445 slot++;
2446 while (slot < nritems) {
2447 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2448
2449 /* we found a different objectid, there must not be acls */
2450 if (found_key.objectid != objectid)
2451 return 0;
2452
2453 /* we found an xattr, assume we've got an acl */
2454 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2455 return 1;
2456
2457 /*
2458 * we found a key greater than an xattr key, there can't
2459 * be any acls later on
2460 */
2461 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2462 return 0;
2463
2464 slot++;
2465 scanned++;
2466
2467 /*
2468 * it goes inode, inode backrefs, xattrs, extents,
2469 * so if there are a ton of hard links to an inode there can
2470 * be a lot of backrefs. Don't waste time searching too hard,
2471 * this is just an optimization
2472 */
2473 if (scanned >= 8)
2474 break;
2475 }
2476 /* we hit the end of the leaf before we found an xattr or
2477 * something larger than an xattr. We have to assume the inode
2478 * has acls
2479 */
2480 return 1;
2481 }
2482
2483 /*
2484 * read an inode from the btree into the in-memory inode
2485 */
2486 static void btrfs_read_locked_inode(struct inode *inode)
2487 {
2488 struct btrfs_path *path;
2489 struct extent_buffer *leaf;
2490 struct btrfs_inode_item *inode_item;
2491 struct btrfs_timespec *tspec;
2492 struct btrfs_root *root = BTRFS_I(inode)->root;
2493 struct btrfs_key location;
2494 int maybe_acls;
2495 u64 alloc_group_block;
2496 u32 rdev;
2497 int ret;
2498
2499 path = btrfs_alloc_path();
2500 BUG_ON(!path);
2501 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2502
2503 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2504 if (ret)
2505 goto make_bad;
2506
2507 leaf = path->nodes[0];
2508 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2509 struct btrfs_inode_item);
2510
2511 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2512 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2513 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2514 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2515 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2516
2517 tspec = btrfs_inode_atime(inode_item);
2518 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520
2521 tspec = btrfs_inode_mtime(inode_item);
2522 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2523 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2524
2525 tspec = btrfs_inode_ctime(inode_item);
2526 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2527 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2528
2529 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2530 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2531 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2532 inode->i_generation = BTRFS_I(inode)->generation;
2533 inode->i_rdev = 0;
2534 rdev = btrfs_inode_rdev(leaf, inode_item);
2535
2536 BTRFS_I(inode)->index_cnt = (u64)-1;
2537 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2538
2539 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2540
2541 /*
2542 * try to precache a NULL acl entry for files that don't have
2543 * any xattrs or acls
2544 */
2545 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2546 if (!maybe_acls)
2547 cache_no_acl(inode);
2548
2549 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2550 alloc_group_block, 0);
2551 btrfs_free_path(path);
2552 inode_item = NULL;
2553
2554 switch (inode->i_mode & S_IFMT) {
2555 case S_IFREG:
2556 inode->i_mapping->a_ops = &btrfs_aops;
2557 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2558 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2559 inode->i_fop = &btrfs_file_operations;
2560 inode->i_op = &btrfs_file_inode_operations;
2561 break;
2562 case S_IFDIR:
2563 inode->i_fop = &btrfs_dir_file_operations;
2564 if (root == root->fs_info->tree_root)
2565 inode->i_op = &btrfs_dir_ro_inode_operations;
2566 else
2567 inode->i_op = &btrfs_dir_inode_operations;
2568 break;
2569 case S_IFLNK:
2570 inode->i_op = &btrfs_symlink_inode_operations;
2571 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2572 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2573 break;
2574 default:
2575 inode->i_op = &btrfs_special_inode_operations;
2576 init_special_inode(inode, inode->i_mode, rdev);
2577 break;
2578 }
2579
2580 btrfs_update_iflags(inode);
2581 return;
2582
2583 make_bad:
2584 btrfs_free_path(path);
2585 make_bad_inode(inode);
2586 }
2587
2588 /*
2589 * given a leaf and an inode, copy the inode fields into the leaf
2590 */
2591 static void fill_inode_item(struct btrfs_trans_handle *trans,
2592 struct extent_buffer *leaf,
2593 struct btrfs_inode_item *item,
2594 struct inode *inode)
2595 {
2596 if (!leaf->map_token)
2597 map_private_extent_buffer(leaf, (unsigned long)item,
2598 sizeof(struct btrfs_inode_item),
2599 &leaf->map_token, &leaf->kaddr,
2600 &leaf->map_start, &leaf->map_len,
2601 KM_USER1);
2602
2603 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2604 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2605 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2606 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2607 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2608
2609 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2610 inode->i_atime.tv_sec);
2611 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2612 inode->i_atime.tv_nsec);
2613
2614 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2615 inode->i_mtime.tv_sec);
2616 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2617 inode->i_mtime.tv_nsec);
2618
2619 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2620 inode->i_ctime.tv_sec);
2621 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2622 inode->i_ctime.tv_nsec);
2623
2624 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2625 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2626 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2627 btrfs_set_inode_transid(leaf, item, trans->transid);
2628 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2629 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2630 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2631
2632 if (leaf->map_token) {
2633 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2634 leaf->map_token = NULL;
2635 }
2636 }
2637
2638 /*
2639 * copy everything in the in-memory inode into the btree.
2640 */
2641 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2642 struct btrfs_root *root, struct inode *inode)
2643 {
2644 struct btrfs_inode_item *inode_item;
2645 struct btrfs_path *path;
2646 struct extent_buffer *leaf;
2647 int ret;
2648
2649 path = btrfs_alloc_path();
2650 BUG_ON(!path);
2651 path->leave_spinning = 1;
2652 ret = btrfs_lookup_inode(trans, root, path,
2653 &BTRFS_I(inode)->location, 1);
2654 if (ret) {
2655 if (ret > 0)
2656 ret = -ENOENT;
2657 goto failed;
2658 }
2659
2660 btrfs_unlock_up_safe(path, 1);
2661 leaf = path->nodes[0];
2662 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2663 struct btrfs_inode_item);
2664
2665 fill_inode_item(trans, leaf, inode_item, inode);
2666 btrfs_mark_buffer_dirty(leaf);
2667 btrfs_set_inode_last_trans(trans, inode);
2668 ret = 0;
2669 failed:
2670 btrfs_free_path(path);
2671 return ret;
2672 }
2673
2674
2675 /*
2676 * unlink helper that gets used here in inode.c and in the tree logging
2677 * recovery code. It remove a link in a directory with a given name, and
2678 * also drops the back refs in the inode to the directory
2679 */
2680 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2681 struct btrfs_root *root,
2682 struct inode *dir, struct inode *inode,
2683 const char *name, int name_len)
2684 {
2685 struct btrfs_path *path;
2686 int ret = 0;
2687 struct extent_buffer *leaf;
2688 struct btrfs_dir_item *di;
2689 struct btrfs_key key;
2690 u64 index;
2691
2692 path = btrfs_alloc_path();
2693 if (!path) {
2694 ret = -ENOMEM;
2695 goto out;
2696 }
2697
2698 path->leave_spinning = 1;
2699 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2700 name, name_len, -1);
2701 if (IS_ERR(di)) {
2702 ret = PTR_ERR(di);
2703 goto err;
2704 }
2705 if (!di) {
2706 ret = -ENOENT;
2707 goto err;
2708 }
2709 leaf = path->nodes[0];
2710 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2711 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2712 if (ret)
2713 goto err;
2714 btrfs_release_path(root, path);
2715
2716 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2717 inode->i_ino,
2718 dir->i_ino, &index);
2719 if (ret) {
2720 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2721 "inode %lu parent %lu\n", name_len, name,
2722 inode->i_ino, dir->i_ino);
2723 goto err;
2724 }
2725
2726 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2727 index, name, name_len, -1);
2728 if (IS_ERR(di)) {
2729 ret = PTR_ERR(di);
2730 goto err;
2731 }
2732 if (!di) {
2733 ret = -ENOENT;
2734 goto err;
2735 }
2736 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2737 btrfs_release_path(root, path);
2738
2739 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2740 inode, dir->i_ino);
2741 BUG_ON(ret != 0 && ret != -ENOENT);
2742
2743 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2744 dir, index);
2745 if (ret == -ENOENT)
2746 ret = 0;
2747 err:
2748 btrfs_free_path(path);
2749 if (ret)
2750 goto out;
2751
2752 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2753 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2754 btrfs_update_inode(trans, root, dir);
2755 out:
2756 return ret;
2757 }
2758
2759 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2760 struct btrfs_root *root,
2761 struct inode *dir, struct inode *inode,
2762 const char *name, int name_len)
2763 {
2764 int ret;
2765 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2766 if (!ret) {
2767 btrfs_drop_nlink(inode);
2768 ret = btrfs_update_inode(trans, root, inode);
2769 }
2770 return ret;
2771 }
2772
2773
2774 /* helper to check if there is any shared block in the path */
2775 static int check_path_shared(struct btrfs_root *root,
2776 struct btrfs_path *path)
2777 {
2778 struct extent_buffer *eb;
2779 int level;
2780 u64 refs = 1;
2781
2782 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2783 int ret;
2784
2785 if (!path->nodes[level])
2786 break;
2787 eb = path->nodes[level];
2788 if (!btrfs_block_can_be_shared(root, eb))
2789 continue;
2790 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2791 &refs, NULL);
2792 if (refs > 1)
2793 return 1;
2794 }
2795 return 0;
2796 }
2797
2798 /*
2799 * helper to start transaction for unlink and rmdir.
2800 *
2801 * unlink and rmdir are special in btrfs, they do not always free space.
2802 * so in enospc case, we should make sure they will free space before
2803 * allowing them to use the global metadata reservation.
2804 */
2805 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2806 struct dentry *dentry)
2807 {
2808 struct btrfs_trans_handle *trans;
2809 struct btrfs_root *root = BTRFS_I(dir)->root;
2810 struct btrfs_path *path;
2811 struct btrfs_inode_ref *ref;
2812 struct btrfs_dir_item *di;
2813 struct inode *inode = dentry->d_inode;
2814 u64 index;
2815 int check_link = 1;
2816 int err = -ENOSPC;
2817 int ret;
2818
2819 trans = btrfs_start_transaction(root, 10);
2820 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2821 return trans;
2822
2823 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2824 return ERR_PTR(-ENOSPC);
2825
2826 /* check if there is someone else holds reference */
2827 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2828 return ERR_PTR(-ENOSPC);
2829
2830 if (atomic_read(&inode->i_count) > 2)
2831 return ERR_PTR(-ENOSPC);
2832
2833 if (xchg(&root->fs_info->enospc_unlink, 1))
2834 return ERR_PTR(-ENOSPC);
2835
2836 path = btrfs_alloc_path();
2837 if (!path) {
2838 root->fs_info->enospc_unlink = 0;
2839 return ERR_PTR(-ENOMEM);
2840 }
2841
2842 trans = btrfs_start_transaction(root, 0);
2843 if (IS_ERR(trans)) {
2844 btrfs_free_path(path);
2845 root->fs_info->enospc_unlink = 0;
2846 return trans;
2847 }
2848
2849 path->skip_locking = 1;
2850 path->search_commit_root = 1;
2851
2852 ret = btrfs_lookup_inode(trans, root, path,
2853 &BTRFS_I(dir)->location, 0);
2854 if (ret < 0) {
2855 err = ret;
2856 goto out;
2857 }
2858 if (ret == 0) {
2859 if (check_path_shared(root, path))
2860 goto out;
2861 } else {
2862 check_link = 0;
2863 }
2864 btrfs_release_path(root, path);
2865
2866 ret = btrfs_lookup_inode(trans, root, path,
2867 &BTRFS_I(inode)->location, 0);
2868 if (ret < 0) {
2869 err = ret;
2870 goto out;
2871 }
2872 if (ret == 0) {
2873 if (check_path_shared(root, path))
2874 goto out;
2875 } else {
2876 check_link = 0;
2877 }
2878 btrfs_release_path(root, path);
2879
2880 if (ret == 0 && S_ISREG(inode->i_mode)) {
2881 ret = btrfs_lookup_file_extent(trans, root, path,
2882 inode->i_ino, (u64)-1, 0);
2883 if (ret < 0) {
2884 err = ret;
2885 goto out;
2886 }
2887 BUG_ON(ret == 0);
2888 if (check_path_shared(root, path))
2889 goto out;
2890 btrfs_release_path(root, path);
2891 }
2892
2893 if (!check_link) {
2894 err = 0;
2895 goto out;
2896 }
2897
2898 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2899 dentry->d_name.name, dentry->d_name.len, 0);
2900 if (IS_ERR(di)) {
2901 err = PTR_ERR(di);
2902 goto out;
2903 }
2904 if (di) {
2905 if (check_path_shared(root, path))
2906 goto out;
2907 } else {
2908 err = 0;
2909 goto out;
2910 }
2911 btrfs_release_path(root, path);
2912
2913 ref = btrfs_lookup_inode_ref(trans, root, path,
2914 dentry->d_name.name, dentry->d_name.len,
2915 inode->i_ino, dir->i_ino, 0);
2916 if (IS_ERR(ref)) {
2917 err = PTR_ERR(ref);
2918 goto out;
2919 }
2920 BUG_ON(!ref);
2921 if (check_path_shared(root, path))
2922 goto out;
2923 index = btrfs_inode_ref_index(path->nodes[0], ref);
2924 btrfs_release_path(root, path);
2925
2926 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2927 dentry->d_name.name, dentry->d_name.len, 0);
2928 if (IS_ERR(di)) {
2929 err = PTR_ERR(di);
2930 goto out;
2931 }
2932 BUG_ON(ret == -ENOENT);
2933 if (check_path_shared(root, path))
2934 goto out;
2935
2936 err = 0;
2937 out:
2938 btrfs_free_path(path);
2939 if (err) {
2940 btrfs_end_transaction(trans, root);
2941 root->fs_info->enospc_unlink = 0;
2942 return ERR_PTR(err);
2943 }
2944
2945 trans->block_rsv = &root->fs_info->global_block_rsv;
2946 return trans;
2947 }
2948
2949 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2950 struct btrfs_root *root)
2951 {
2952 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2953 BUG_ON(!root->fs_info->enospc_unlink);
2954 root->fs_info->enospc_unlink = 0;
2955 }
2956 btrfs_end_transaction_throttle(trans, root);
2957 }
2958
2959 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2960 {
2961 struct btrfs_root *root = BTRFS_I(dir)->root;
2962 struct btrfs_trans_handle *trans;
2963 struct inode *inode = dentry->d_inode;
2964 int ret;
2965 unsigned long nr = 0;
2966
2967 trans = __unlink_start_trans(dir, dentry);
2968 if (IS_ERR(trans))
2969 return PTR_ERR(trans);
2970
2971 btrfs_set_trans_block_group(trans, dir);
2972
2973 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2974
2975 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2976 dentry->d_name.name, dentry->d_name.len);
2977 BUG_ON(ret);
2978
2979 if (inode->i_nlink == 0) {
2980 ret = btrfs_orphan_add(trans, inode);
2981 BUG_ON(ret);
2982 }
2983
2984 nr = trans->blocks_used;
2985 __unlink_end_trans(trans, root);
2986 btrfs_btree_balance_dirty(root, nr);
2987 return ret;
2988 }
2989
2990 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2991 struct btrfs_root *root,
2992 struct inode *dir, u64 objectid,
2993 const char *name, int name_len)
2994 {
2995 struct btrfs_path *path;
2996 struct extent_buffer *leaf;
2997 struct btrfs_dir_item *di;
2998 struct btrfs_key key;
2999 u64 index;
3000 int ret;
3001
3002 path = btrfs_alloc_path();
3003 if (!path)
3004 return -ENOMEM;
3005
3006 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
3007 name, name_len, -1);
3008 BUG_ON(!di || IS_ERR(di));
3009
3010 leaf = path->nodes[0];
3011 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3012 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3013 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3014 BUG_ON(ret);
3015 btrfs_release_path(root, path);
3016
3017 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3018 objectid, root->root_key.objectid,
3019 dir->i_ino, &index, name, name_len);
3020 if (ret < 0) {
3021 BUG_ON(ret != -ENOENT);
3022 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3023 name, name_len);
3024 BUG_ON(!di || IS_ERR(di));
3025
3026 leaf = path->nodes[0];
3027 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3028 btrfs_release_path(root, path);
3029 index = key.offset;
3030 }
3031
3032 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3033 index, name, name_len, -1);
3034 BUG_ON(!di || IS_ERR(di));
3035
3036 leaf = path->nodes[0];
3037 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3038 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3039 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3040 BUG_ON(ret);
3041 btrfs_release_path(root, path);
3042
3043 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3044 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3045 ret = btrfs_update_inode(trans, root, dir);
3046 BUG_ON(ret);
3047
3048 btrfs_free_path(path);
3049 return 0;
3050 }
3051
3052 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3053 {
3054 struct inode *inode = dentry->d_inode;
3055 int err = 0;
3056 struct btrfs_root *root = BTRFS_I(dir)->root;
3057 struct btrfs_trans_handle *trans;
3058 unsigned long nr = 0;
3059
3060 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3061 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3062 return -ENOTEMPTY;
3063
3064 trans = __unlink_start_trans(dir, dentry);
3065 if (IS_ERR(trans))
3066 return PTR_ERR(trans);
3067
3068 btrfs_set_trans_block_group(trans, dir);
3069
3070 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3071 err = btrfs_unlink_subvol(trans, root, dir,
3072 BTRFS_I(inode)->location.objectid,
3073 dentry->d_name.name,
3074 dentry->d_name.len);
3075 goto out;
3076 }
3077
3078 err = btrfs_orphan_add(trans, inode);
3079 if (err)
3080 goto out;
3081
3082 /* now the directory is empty */
3083 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3084 dentry->d_name.name, dentry->d_name.len);
3085 if (!err)
3086 btrfs_i_size_write(inode, 0);
3087 out:
3088 nr = trans->blocks_used;
3089 __unlink_end_trans(trans, root);
3090 btrfs_btree_balance_dirty(root, nr);
3091
3092 return err;
3093 }
3094
3095 #if 0
3096 /*
3097 * when truncating bytes in a file, it is possible to avoid reading
3098 * the leaves that contain only checksum items. This can be the
3099 * majority of the IO required to delete a large file, but it must
3100 * be done carefully.
3101 *
3102 * The keys in the level just above the leaves are checked to make sure
3103 * the lowest key in a given leaf is a csum key, and starts at an offset
3104 * after the new size.
3105 *
3106 * Then the key for the next leaf is checked to make sure it also has
3107 * a checksum item for the same file. If it does, we know our target leaf
3108 * contains only checksum items, and it can be safely freed without reading
3109 * it.
3110 *
3111 * This is just an optimization targeted at large files. It may do
3112 * nothing. It will return 0 unless things went badly.
3113 */
3114 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3115 struct btrfs_root *root,
3116 struct btrfs_path *path,
3117 struct inode *inode, u64 new_size)
3118 {
3119 struct btrfs_key key;
3120 int ret;
3121 int nritems;
3122 struct btrfs_key found_key;
3123 struct btrfs_key other_key;
3124 struct btrfs_leaf_ref *ref;
3125 u64 leaf_gen;
3126 u64 leaf_start;
3127
3128 path->lowest_level = 1;
3129 key.objectid = inode->i_ino;
3130 key.type = BTRFS_CSUM_ITEM_KEY;
3131 key.offset = new_size;
3132 again:
3133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3134 if (ret < 0)
3135 goto out;
3136
3137 if (path->nodes[1] == NULL) {
3138 ret = 0;
3139 goto out;
3140 }
3141 ret = 0;
3142 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3143 nritems = btrfs_header_nritems(path->nodes[1]);
3144
3145 if (!nritems)
3146 goto out;
3147
3148 if (path->slots[1] >= nritems)
3149 goto next_node;
3150
3151 /* did we find a key greater than anything we want to delete? */
3152 if (found_key.objectid > inode->i_ino ||
3153 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3154 goto out;
3155
3156 /* we check the next key in the node to make sure the leave contains
3157 * only checksum items. This comparison doesn't work if our
3158 * leaf is the last one in the node
3159 */
3160 if (path->slots[1] + 1 >= nritems) {
3161 next_node:
3162 /* search forward from the last key in the node, this
3163 * will bring us into the next node in the tree
3164 */
3165 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3166
3167 /* unlikely, but we inc below, so check to be safe */
3168 if (found_key.offset == (u64)-1)
3169 goto out;
3170
3171 /* search_forward needs a path with locks held, do the
3172 * search again for the original key. It is possible
3173 * this will race with a balance and return a path that
3174 * we could modify, but this drop is just an optimization
3175 * and is allowed to miss some leaves.
3176 */
3177 btrfs_release_path(root, path);
3178 found_key.offset++;
3179
3180 /* setup a max key for search_forward */
3181 other_key.offset = (u64)-1;
3182 other_key.type = key.type;
3183 other_key.objectid = key.objectid;
3184
3185 path->keep_locks = 1;
3186 ret = btrfs_search_forward(root, &found_key, &other_key,
3187 path, 0, 0);
3188 path->keep_locks = 0;
3189 if (ret || found_key.objectid != key.objectid ||
3190 found_key.type != key.type) {
3191 ret = 0;
3192 goto out;
3193 }
3194
3195 key.offset = found_key.offset;
3196 btrfs_release_path(root, path);
3197 cond_resched();
3198 goto again;
3199 }
3200
3201 /* we know there's one more slot after us in the tree,
3202 * read that key so we can verify it is also a checksum item
3203 */
3204 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3205
3206 if (found_key.objectid < inode->i_ino)
3207 goto next_key;
3208
3209 if (found_key.type != key.type || found_key.offset < new_size)
3210 goto next_key;
3211
3212 /*
3213 * if the key for the next leaf isn't a csum key from this objectid,
3214 * we can't be sure there aren't good items inside this leaf.
3215 * Bail out
3216 */
3217 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3218 goto out;
3219
3220 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3221 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3222 /*
3223 * it is safe to delete this leaf, it contains only
3224 * csum items from this inode at an offset >= new_size
3225 */
3226 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3227 BUG_ON(ret);
3228
3229 if (root->ref_cows && leaf_gen < trans->transid) {
3230 ref = btrfs_alloc_leaf_ref(root, 0);
3231 if (ref) {
3232 ref->root_gen = root->root_key.offset;
3233 ref->bytenr = leaf_start;
3234 ref->owner = 0;
3235 ref->generation = leaf_gen;
3236 ref->nritems = 0;
3237
3238 btrfs_sort_leaf_ref(ref);
3239
3240 ret = btrfs_add_leaf_ref(root, ref, 0);
3241 WARN_ON(ret);
3242 btrfs_free_leaf_ref(root, ref);
3243 } else {
3244 WARN_ON(1);
3245 }
3246 }
3247 next_key:
3248 btrfs_release_path(root, path);
3249
3250 if (other_key.objectid == inode->i_ino &&
3251 other_key.type == key.type && other_key.offset > key.offset) {
3252 key.offset = other_key.offset;
3253 cond_resched();
3254 goto again;
3255 }
3256 ret = 0;
3257 out:
3258 /* fixup any changes we've made to the path */
3259 path->lowest_level = 0;
3260 path->keep_locks = 0;
3261 btrfs_release_path(root, path);
3262 return ret;
3263 }
3264
3265 #endif
3266
3267 /*
3268 * this can truncate away extent items, csum items and directory items.
3269 * It starts at a high offset and removes keys until it can't find
3270 * any higher than new_size
3271 *
3272 * csum items that cross the new i_size are truncated to the new size
3273 * as well.
3274 *
3275 * min_type is the minimum key type to truncate down to. If set to 0, this
3276 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3277 */
3278 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3279 struct btrfs_root *root,
3280 struct inode *inode,
3281 u64 new_size, u32 min_type)
3282 {
3283 struct btrfs_path *path;
3284 struct extent_buffer *leaf;
3285 struct btrfs_file_extent_item *fi;
3286 struct btrfs_key key;
3287 struct btrfs_key found_key;
3288 u64 extent_start = 0;
3289 u64 extent_num_bytes = 0;
3290 u64 extent_offset = 0;
3291 u64 item_end = 0;
3292 u64 mask = root->sectorsize - 1;
3293 u32 found_type = (u8)-1;
3294 int found_extent;
3295 int del_item;
3296 int pending_del_nr = 0;
3297 int pending_del_slot = 0;
3298 int extent_type = -1;
3299 int encoding;
3300 int ret;
3301 int err = 0;
3302
3303 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3304
3305 if (root->ref_cows || root == root->fs_info->tree_root)
3306 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3307
3308 path = btrfs_alloc_path();
3309 BUG_ON(!path);
3310 path->reada = -1;
3311
3312 key.objectid = inode->i_ino;
3313 key.offset = (u64)-1;
3314 key.type = (u8)-1;
3315
3316 search_again:
3317 path->leave_spinning = 1;
3318 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3319 if (ret < 0) {
3320 err = ret;
3321 goto out;
3322 }
3323
3324 if (ret > 0) {
3325 /* there are no items in the tree for us to truncate, we're
3326 * done
3327 */
3328 if (path->slots[0] == 0)
3329 goto out;
3330 path->slots[0]--;
3331 }
3332
3333 while (1) {
3334 fi = NULL;
3335 leaf = path->nodes[0];
3336 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3337 found_type = btrfs_key_type(&found_key);
3338 encoding = 0;
3339
3340 if (found_key.objectid != inode->i_ino)
3341 break;
3342
3343 if (found_type < min_type)
3344 break;
3345
3346 item_end = found_key.offset;
3347 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3348 fi = btrfs_item_ptr(leaf, path->slots[0],
3349 struct btrfs_file_extent_item);
3350 extent_type = btrfs_file_extent_type(leaf, fi);
3351 encoding = btrfs_file_extent_compression(leaf, fi);
3352 encoding |= btrfs_file_extent_encryption(leaf, fi);
3353 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3354
3355 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3356 item_end +=
3357 btrfs_file_extent_num_bytes(leaf, fi);
3358 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3359 item_end += btrfs_file_extent_inline_len(leaf,
3360 fi);
3361 }
3362 item_end--;
3363 }
3364 if (found_type > min_type) {
3365 del_item = 1;
3366 } else {
3367 if (item_end < new_size)
3368 break;
3369 if (found_key.offset >= new_size)
3370 del_item = 1;
3371 else
3372 del_item = 0;
3373 }
3374 found_extent = 0;
3375 /* FIXME, shrink the extent if the ref count is only 1 */
3376 if (found_type != BTRFS_EXTENT_DATA_KEY)
3377 goto delete;
3378
3379 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3380 u64 num_dec;
3381 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3382 if (!del_item && !encoding) {
3383 u64 orig_num_bytes =
3384 btrfs_file_extent_num_bytes(leaf, fi);
3385 extent_num_bytes = new_size -
3386 found_key.offset + root->sectorsize - 1;
3387 extent_num_bytes = extent_num_bytes &
3388 ~((u64)root->sectorsize - 1);
3389 btrfs_set_file_extent_num_bytes(leaf, fi,
3390 extent_num_bytes);
3391 num_dec = (orig_num_bytes -
3392 extent_num_bytes);
3393 if (root->ref_cows && extent_start != 0)
3394 inode_sub_bytes(inode, num_dec);
3395 btrfs_mark_buffer_dirty(leaf);
3396 } else {
3397 extent_num_bytes =
3398 btrfs_file_extent_disk_num_bytes(leaf,
3399 fi);
3400 extent_offset = found_key.offset -
3401 btrfs_file_extent_offset(leaf, fi);
3402
3403 /* FIXME blocksize != 4096 */
3404 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3405 if (extent_start != 0) {
3406 found_extent = 1;
3407 if (root->ref_cows)
3408 inode_sub_bytes(inode, num_dec);
3409 }
3410 }
3411 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3412 /*
3413 * we can't truncate inline items that have had
3414 * special encodings
3415 */
3416 if (!del_item &&
3417 btrfs_file_extent_compression(leaf, fi) == 0 &&
3418 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3419 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3420 u32 size = new_size - found_key.offset;
3421
3422 if (root->ref_cows) {
3423 inode_sub_bytes(inode, item_end + 1 -
3424 new_size);
3425 }
3426 size =
3427 btrfs_file_extent_calc_inline_size(size);
3428 ret = btrfs_truncate_item(trans, root, path,
3429 size, 1);
3430 BUG_ON(ret);
3431 } else if (root->ref_cows) {
3432 inode_sub_bytes(inode, item_end + 1 -
3433 found_key.offset);
3434 }
3435 }
3436 delete:
3437 if (del_item) {
3438 if (!pending_del_nr) {
3439 /* no pending yet, add ourselves */
3440 pending_del_slot = path->slots[0];
3441 pending_del_nr = 1;
3442 } else if (pending_del_nr &&
3443 path->slots[0] + 1 == pending_del_slot) {
3444 /* hop on the pending chunk */
3445 pending_del_nr++;
3446 pending_del_slot = path->slots[0];
3447 } else {
3448 BUG();
3449 }
3450 } else {
3451 break;
3452 }
3453 if (found_extent && (root->ref_cows ||
3454 root == root->fs_info->tree_root)) {
3455 btrfs_set_path_blocking(path);
3456 ret = btrfs_free_extent(trans, root, extent_start,
3457 extent_num_bytes, 0,
3458 btrfs_header_owner(leaf),
3459 inode->i_ino, extent_offset);
3460 BUG_ON(ret);
3461 }
3462
3463 if (found_type == BTRFS_INODE_ITEM_KEY)
3464 break;
3465
3466 if (path->slots[0] == 0 ||
3467 path->slots[0] != pending_del_slot) {
3468 if (root->ref_cows) {
3469 err = -EAGAIN;
3470 goto out;
3471 }
3472 if (pending_del_nr) {
3473 ret = btrfs_del_items(trans, root, path,
3474 pending_del_slot,
3475 pending_del_nr);
3476 BUG_ON(ret);
3477 pending_del_nr = 0;
3478 }
3479 btrfs_release_path(root, path);
3480 goto search_again;
3481 } else {
3482 path->slots[0]--;
3483 }
3484 }
3485 out:
3486 if (pending_del_nr) {
3487 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3488 pending_del_nr);
3489 BUG_ON(ret);
3490 }
3491 btrfs_free_path(path);
3492 return err;
3493 }
3494
3495 /*
3496 * taken from block_truncate_page, but does cow as it zeros out
3497 * any bytes left in the last page in the file.
3498 */
3499 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3500 {
3501 struct inode *inode = mapping->host;
3502 struct btrfs_root *root = BTRFS_I(inode)->root;
3503 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3504 struct btrfs_ordered_extent *ordered;
3505 struct extent_state *cached_state = NULL;
3506 char *kaddr;
3507 u32 blocksize = root->sectorsize;
3508 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3509 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3510 struct page *page;
3511 int ret = 0;
3512 u64 page_start;
3513 u64 page_end;
3514
3515 if ((offset & (blocksize - 1)) == 0)
3516 goto out;
3517 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3518 if (ret)
3519 goto out;
3520
3521 ret = -ENOMEM;
3522 again:
3523 page = grab_cache_page(mapping, index);
3524 if (!page) {
3525 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3526 goto out;
3527 }
3528
3529 page_start = page_offset(page);
3530 page_end = page_start + PAGE_CACHE_SIZE - 1;
3531
3532 if (!PageUptodate(page)) {
3533 ret = btrfs_readpage(NULL, page);
3534 lock_page(page);
3535 if (page->mapping != mapping) {
3536 unlock_page(page);
3537 page_cache_release(page);
3538 goto again;
3539 }
3540 if (!PageUptodate(page)) {
3541 ret = -EIO;
3542 goto out_unlock;
3543 }
3544 }
3545 wait_on_page_writeback(page);
3546
3547 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3548 GFP_NOFS);
3549 set_page_extent_mapped(page);
3550
3551 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3552 if (ordered) {
3553 unlock_extent_cached(io_tree, page_start, page_end,
3554 &cached_state, GFP_NOFS);
3555 unlock_page(page);
3556 page_cache_release(page);
3557 btrfs_start_ordered_extent(inode, ordered, 1);
3558 btrfs_put_ordered_extent(ordered);
3559 goto again;
3560 }
3561
3562 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3563 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3564 0, 0, &cached_state, GFP_NOFS);
3565
3566 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3567 &cached_state);
3568 if (ret) {
3569 unlock_extent_cached(io_tree, page_start, page_end,
3570 &cached_state, GFP_NOFS);
3571 goto out_unlock;
3572 }
3573
3574 ret = 0;
3575 if (offset != PAGE_CACHE_SIZE) {
3576 kaddr = kmap(page);
3577 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3578 flush_dcache_page(page);
3579 kunmap(page);
3580 }
3581 ClearPageChecked(page);
3582 set_page_dirty(page);
3583 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3584 GFP_NOFS);
3585
3586 out_unlock:
3587 if (ret)
3588 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3589 unlock_page(page);
3590 page_cache_release(page);
3591 out:
3592 return ret;
3593 }
3594
3595 /*
3596 * This function puts in dummy file extents for the area we're creating a hole
3597 * for. So if we are truncating this file to a larger size we need to insert
3598 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3599 * the range between oldsize and size
3600 */
3601 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3602 {
3603 struct btrfs_trans_handle *trans;
3604 struct btrfs_root *root = BTRFS_I(inode)->root;
3605 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3606 struct extent_map *em = NULL;
3607 struct extent_state *cached_state = NULL;
3608 u64 mask = root->sectorsize - 1;
3609 u64 hole_start = (oldsize + mask) & ~mask;
3610 u64 block_end = (size + mask) & ~mask;
3611 u64 last_byte;
3612 u64 cur_offset;
3613 u64 hole_size;
3614 int err = 0;
3615
3616 if (size <= hole_start)
3617 return 0;
3618
3619 while (1) {
3620 struct btrfs_ordered_extent *ordered;
3621 btrfs_wait_ordered_range(inode, hole_start,
3622 block_end - hole_start);
3623 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3624 &cached_state, GFP_NOFS);
3625 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3626 if (!ordered)
3627 break;
3628 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3629 &cached_state, GFP_NOFS);
3630 btrfs_put_ordered_extent(ordered);
3631 }
3632
3633 cur_offset = hole_start;
3634 while (1) {
3635 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3636 block_end - cur_offset, 0);
3637 BUG_ON(IS_ERR(em) || !em);
3638 last_byte = min(extent_map_end(em), block_end);
3639 last_byte = (last_byte + mask) & ~mask;
3640 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3641 u64 hint_byte = 0;
3642 hole_size = last_byte - cur_offset;
3643
3644 trans = btrfs_start_transaction(root, 2);
3645 if (IS_ERR(trans)) {
3646 err = PTR_ERR(trans);
3647 break;
3648 }
3649 btrfs_set_trans_block_group(trans, inode);
3650
3651 err = btrfs_drop_extents(trans, inode, cur_offset,
3652 cur_offset + hole_size,
3653 &hint_byte, 1);
3654 if (err)
3655 break;
3656
3657 err = btrfs_insert_file_extent(trans, root,
3658 inode->i_ino, cur_offset, 0,
3659 0, hole_size, 0, hole_size,
3660 0, 0, 0);
3661 if (err)
3662 break;
3663
3664 btrfs_drop_extent_cache(inode, hole_start,
3665 last_byte - 1, 0);
3666
3667 btrfs_end_transaction(trans, root);
3668 }
3669 free_extent_map(em);
3670 em = NULL;
3671 cur_offset = last_byte;
3672 if (cur_offset >= block_end)
3673 break;
3674 }
3675
3676 free_extent_map(em);
3677 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3678 GFP_NOFS);
3679 return err;
3680 }
3681
3682 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3683 {
3684 loff_t oldsize = i_size_read(inode);
3685 int ret;
3686
3687 if (newsize == oldsize)
3688 return 0;
3689
3690 if (newsize > oldsize) {
3691 i_size_write(inode, newsize);
3692 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3693 truncate_pagecache(inode, oldsize, newsize);
3694 ret = btrfs_cont_expand(inode, oldsize, newsize);
3695 if (ret) {
3696 btrfs_setsize(inode, oldsize);
3697 return ret;
3698 }
3699
3700 mark_inode_dirty(inode);
3701 } else {
3702
3703 /*
3704 * We're truncating a file that used to have good data down to
3705 * zero. Make sure it gets into the ordered flush list so that
3706 * any new writes get down to disk quickly.
3707 */
3708 if (newsize == 0)
3709 BTRFS_I(inode)->ordered_data_close = 1;
3710
3711 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3712 truncate_setsize(inode, newsize);
3713 ret = btrfs_truncate(inode);
3714 }
3715
3716 return ret;
3717 }
3718
3719 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3720 {
3721 struct inode *inode = dentry->d_inode;
3722 struct btrfs_root *root = BTRFS_I(inode)->root;
3723 int err;
3724
3725 if (btrfs_root_readonly(root))
3726 return -EROFS;
3727
3728 err = inode_change_ok(inode, attr);
3729 if (err)
3730 return err;
3731
3732 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3733 err = btrfs_setsize(inode, attr->ia_size);
3734 if (err)
3735 return err;
3736 }
3737
3738 if (attr->ia_valid) {
3739 setattr_copy(inode, attr);
3740 mark_inode_dirty(inode);
3741
3742 if (attr->ia_valid & ATTR_MODE)
3743 err = btrfs_acl_chmod(inode);
3744 }
3745
3746 return err;
3747 }
3748
3749 void btrfs_evict_inode(struct inode *inode)
3750 {
3751 struct btrfs_trans_handle *trans;
3752 struct btrfs_root *root = BTRFS_I(inode)->root;
3753 unsigned long nr;
3754 int ret;
3755
3756 trace_btrfs_inode_evict(inode);
3757
3758 truncate_inode_pages(&inode->i_data, 0);
3759 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3760 root == root->fs_info->tree_root))
3761 goto no_delete;
3762
3763 if (is_bad_inode(inode)) {
3764 btrfs_orphan_del(NULL, inode);
3765 goto no_delete;
3766 }
3767 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3768 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3769
3770 if (root->fs_info->log_root_recovering) {
3771 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3772 goto no_delete;
3773 }
3774
3775 if (inode->i_nlink > 0) {
3776 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3777 goto no_delete;
3778 }
3779
3780 btrfs_i_size_write(inode, 0);
3781
3782 while (1) {
3783 trans = btrfs_start_transaction(root, 0);
3784 BUG_ON(IS_ERR(trans));
3785 btrfs_set_trans_block_group(trans, inode);
3786 trans->block_rsv = root->orphan_block_rsv;
3787
3788 ret = btrfs_block_rsv_check(trans, root,
3789 root->orphan_block_rsv, 0, 5);
3790 if (ret) {
3791 BUG_ON(ret != -EAGAIN);
3792 ret = btrfs_commit_transaction(trans, root);
3793 BUG_ON(ret);
3794 continue;
3795 }
3796
3797 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3798 if (ret != -EAGAIN)
3799 break;
3800
3801 nr = trans->blocks_used;
3802 btrfs_end_transaction(trans, root);
3803 trans = NULL;
3804 btrfs_btree_balance_dirty(root, nr);
3805
3806 }
3807
3808 if (ret == 0) {
3809 ret = btrfs_orphan_del(trans, inode);
3810 BUG_ON(ret);
3811 }
3812
3813 nr = trans->blocks_used;
3814 btrfs_end_transaction(trans, root);
3815 btrfs_btree_balance_dirty(root, nr);
3816 no_delete:
3817 end_writeback(inode);
3818 return;
3819 }
3820
3821 /*
3822 * this returns the key found in the dir entry in the location pointer.
3823 * If no dir entries were found, location->objectid is 0.
3824 */
3825 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3826 struct btrfs_key *location)
3827 {
3828 const char *name = dentry->d_name.name;
3829 int namelen = dentry->d_name.len;
3830 struct btrfs_dir_item *di;
3831 struct btrfs_path *path;
3832 struct btrfs_root *root = BTRFS_I(dir)->root;
3833 int ret = 0;
3834
3835 path = btrfs_alloc_path();
3836 BUG_ON(!path);
3837
3838 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3839 namelen, 0);
3840 if (IS_ERR(di))
3841 ret = PTR_ERR(di);
3842
3843 if (!di || IS_ERR(di))
3844 goto out_err;
3845
3846 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3847 out:
3848 btrfs_free_path(path);
3849 return ret;
3850 out_err:
3851 location->objectid = 0;
3852 goto out;
3853 }
3854
3855 /*
3856 * when we hit a tree root in a directory, the btrfs part of the inode
3857 * needs to be changed to reflect the root directory of the tree root. This
3858 * is kind of like crossing a mount point.
3859 */
3860 static int fixup_tree_root_location(struct btrfs_root *root,
3861 struct inode *dir,
3862 struct dentry *dentry,
3863 struct btrfs_key *location,
3864 struct btrfs_root **sub_root)
3865 {
3866 struct btrfs_path *path;
3867 struct btrfs_root *new_root;
3868 struct btrfs_root_ref *ref;
3869 struct extent_buffer *leaf;
3870 int ret;
3871 int err = 0;
3872
3873 path = btrfs_alloc_path();
3874 if (!path) {
3875 err = -ENOMEM;
3876 goto out;
3877 }
3878
3879 err = -ENOENT;
3880 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3881 BTRFS_I(dir)->root->root_key.objectid,
3882 location->objectid);
3883 if (ret) {
3884 if (ret < 0)
3885 err = ret;
3886 goto out;
3887 }
3888
3889 leaf = path->nodes[0];
3890 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3891 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3892 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3893 goto out;
3894
3895 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3896 (unsigned long)(ref + 1),
3897 dentry->d_name.len);
3898 if (ret)
3899 goto out;
3900
3901 btrfs_release_path(root->fs_info->tree_root, path);
3902
3903 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3904 if (IS_ERR(new_root)) {
3905 err = PTR_ERR(new_root);
3906 goto out;
3907 }
3908
3909 if (btrfs_root_refs(&new_root->root_item) == 0) {
3910 err = -ENOENT;
3911 goto out;
3912 }
3913
3914 *sub_root = new_root;
3915 location->objectid = btrfs_root_dirid(&new_root->root_item);
3916 location->type = BTRFS_INODE_ITEM_KEY;
3917 location->offset = 0;
3918 err = 0;
3919 out:
3920 btrfs_free_path(path);
3921 return err;
3922 }
3923
3924 static void inode_tree_add(struct inode *inode)
3925 {
3926 struct btrfs_root *root = BTRFS_I(inode)->root;
3927 struct btrfs_inode *entry;
3928 struct rb_node **p;
3929 struct rb_node *parent;
3930 again:
3931 p = &root->inode_tree.rb_node;
3932 parent = NULL;
3933
3934 if (inode_unhashed(inode))
3935 return;
3936
3937 spin_lock(&root->inode_lock);
3938 while (*p) {
3939 parent = *p;
3940 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3941
3942 if (inode->i_ino < entry->vfs_inode.i_ino)
3943 p = &parent->rb_left;
3944 else if (inode->i_ino > entry->vfs_inode.i_ino)
3945 p = &parent->rb_right;
3946 else {
3947 WARN_ON(!(entry->vfs_inode.i_state &
3948 (I_WILL_FREE | I_FREEING)));
3949 rb_erase(parent, &root->inode_tree);
3950 RB_CLEAR_NODE(parent);
3951 spin_unlock(&root->inode_lock);
3952 goto again;
3953 }
3954 }
3955 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3956 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3957 spin_unlock(&root->inode_lock);
3958 }
3959
3960 static void inode_tree_del(struct inode *inode)
3961 {
3962 struct btrfs_root *root = BTRFS_I(inode)->root;
3963 int empty = 0;
3964
3965 spin_lock(&root->inode_lock);
3966 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3967 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3968 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3969 empty = RB_EMPTY_ROOT(&root->inode_tree);
3970 }
3971 spin_unlock(&root->inode_lock);
3972
3973 /*
3974 * Free space cache has inodes in the tree root, but the tree root has a
3975 * root_refs of 0, so this could end up dropping the tree root as a
3976 * snapshot, so we need the extra !root->fs_info->tree_root check to
3977 * make sure we don't drop it.
3978 */
3979 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3980 root != root->fs_info->tree_root) {
3981 synchronize_srcu(&root->fs_info->subvol_srcu);
3982 spin_lock(&root->inode_lock);
3983 empty = RB_EMPTY_ROOT(&root->inode_tree);
3984 spin_unlock(&root->inode_lock);
3985 if (empty)
3986 btrfs_add_dead_root(root);
3987 }
3988 }
3989
3990 int btrfs_invalidate_inodes(struct btrfs_root *root)
3991 {
3992 struct rb_node *node;
3993 struct rb_node *prev;
3994 struct btrfs_inode *entry;
3995 struct inode *inode;
3996 u64 objectid = 0;
3997
3998 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3999
4000 spin_lock(&root->inode_lock);
4001 again:
4002 node = root->inode_tree.rb_node;
4003 prev = NULL;
4004 while (node) {
4005 prev = node;
4006 entry = rb_entry(node, struct btrfs_inode, rb_node);
4007
4008 if (objectid < entry->vfs_inode.i_ino)
4009 node = node->rb_left;
4010 else if (objectid > entry->vfs_inode.i_ino)
4011 node = node->rb_right;
4012 else
4013 break;
4014 }
4015 if (!node) {
4016 while (prev) {
4017 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4018 if (objectid <= entry->vfs_inode.i_ino) {
4019 node = prev;
4020 break;
4021 }
4022 prev = rb_next(prev);
4023 }
4024 }
4025 while (node) {
4026 entry = rb_entry(node, struct btrfs_inode, rb_node);
4027 objectid = entry->vfs_inode.i_ino + 1;
4028 inode = igrab(&entry->vfs_inode);
4029 if (inode) {
4030 spin_unlock(&root->inode_lock);
4031 if (atomic_read(&inode->i_count) > 1)
4032 d_prune_aliases(inode);
4033 /*
4034 * btrfs_drop_inode will have it removed from
4035 * the inode cache when its usage count
4036 * hits zero.
4037 */
4038 iput(inode);
4039 cond_resched();
4040 spin_lock(&root->inode_lock);
4041 goto again;
4042 }
4043
4044 if (cond_resched_lock(&root->inode_lock))
4045 goto again;
4046
4047 node = rb_next(node);
4048 }
4049 spin_unlock(&root->inode_lock);
4050 return 0;
4051 }
4052
4053 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4054 {
4055 struct btrfs_iget_args *args = p;
4056 inode->i_ino = args->ino;
4057 BTRFS_I(inode)->root = args->root;
4058 btrfs_set_inode_space_info(args->root, inode);
4059 return 0;
4060 }
4061
4062 static int btrfs_find_actor(struct inode *inode, void *opaque)
4063 {
4064 struct btrfs_iget_args *args = opaque;
4065 return args->ino == inode->i_ino &&
4066 args->root == BTRFS_I(inode)->root;
4067 }
4068
4069 static struct inode *btrfs_iget_locked(struct super_block *s,
4070 u64 objectid,
4071 struct btrfs_root *root)
4072 {
4073 struct inode *inode;
4074 struct btrfs_iget_args args;
4075 args.ino = objectid;
4076 args.root = root;
4077
4078 inode = iget5_locked(s, objectid, btrfs_find_actor,
4079 btrfs_init_locked_inode,
4080 (void *)&args);
4081 return inode;
4082 }
4083
4084 /* Get an inode object given its location and corresponding root.
4085 * Returns in *is_new if the inode was read from disk
4086 */
4087 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4088 struct btrfs_root *root, int *new)
4089 {
4090 struct inode *inode;
4091
4092 inode = btrfs_iget_locked(s, location->objectid, root);
4093 if (!inode)
4094 return ERR_PTR(-ENOMEM);
4095
4096 if (inode->i_state & I_NEW) {
4097 BTRFS_I(inode)->root = root;
4098 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4099 btrfs_read_locked_inode(inode);
4100 inode_tree_add(inode);
4101 unlock_new_inode(inode);
4102 if (new)
4103 *new = 1;
4104 }
4105
4106 return inode;
4107 }
4108
4109 static struct inode *new_simple_dir(struct super_block *s,
4110 struct btrfs_key *key,
4111 struct btrfs_root *root)
4112 {
4113 struct inode *inode = new_inode(s);
4114
4115 if (!inode)
4116 return ERR_PTR(-ENOMEM);
4117
4118 BTRFS_I(inode)->root = root;
4119 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4120 BTRFS_I(inode)->dummy_inode = 1;
4121
4122 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4123 inode->i_op = &simple_dir_inode_operations;
4124 inode->i_fop = &simple_dir_operations;
4125 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4126 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4127
4128 return inode;
4129 }
4130
4131 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4132 {
4133 struct inode *inode;
4134 struct btrfs_root *root = BTRFS_I(dir)->root;
4135 struct btrfs_root *sub_root = root;
4136 struct btrfs_key location;
4137 int index;
4138 int ret;
4139
4140 if (dentry->d_name.len > BTRFS_NAME_LEN)
4141 return ERR_PTR(-ENAMETOOLONG);
4142
4143 ret = btrfs_inode_by_name(dir, dentry, &location);
4144
4145 if (ret < 0)
4146 return ERR_PTR(ret);
4147
4148 if (location.objectid == 0)
4149 return NULL;
4150
4151 if (location.type == BTRFS_INODE_ITEM_KEY) {
4152 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4153 return inode;
4154 }
4155
4156 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4157
4158 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4159 ret = fixup_tree_root_location(root, dir, dentry,
4160 &location, &sub_root);
4161 if (ret < 0) {
4162 if (ret != -ENOENT)
4163 inode = ERR_PTR(ret);
4164 else
4165 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4166 } else {
4167 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4168 }
4169 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4170
4171 if (!IS_ERR(inode) && root != sub_root) {
4172 down_read(&root->fs_info->cleanup_work_sem);
4173 if (!(inode->i_sb->s_flags & MS_RDONLY))
4174 ret = btrfs_orphan_cleanup(sub_root);
4175 up_read(&root->fs_info->cleanup_work_sem);
4176 if (ret)
4177 inode = ERR_PTR(ret);
4178 }
4179
4180 return inode;
4181 }
4182
4183 static int btrfs_dentry_delete(const struct dentry *dentry)
4184 {
4185 struct btrfs_root *root;
4186
4187 if (!dentry->d_inode && !IS_ROOT(dentry))
4188 dentry = dentry->d_parent;
4189
4190 if (dentry->d_inode) {
4191 root = BTRFS_I(dentry->d_inode)->root;
4192 if (btrfs_root_refs(&root->root_item) == 0)
4193 return 1;
4194 }
4195 return 0;
4196 }
4197
4198 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4199 struct nameidata *nd)
4200 {
4201 struct inode *inode;
4202
4203 inode = btrfs_lookup_dentry(dir, dentry);
4204 if (IS_ERR(inode))
4205 return ERR_CAST(inode);
4206
4207 return d_splice_alias(inode, dentry);
4208 }
4209
4210 static unsigned char btrfs_filetype_table[] = {
4211 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4212 };
4213
4214 static int btrfs_real_readdir(struct file *filp, void *dirent,
4215 filldir_t filldir)
4216 {
4217 struct inode *inode = filp->f_dentry->d_inode;
4218 struct btrfs_root *root = BTRFS_I(inode)->root;
4219 struct btrfs_item *item;
4220 struct btrfs_dir_item *di;
4221 struct btrfs_key key;
4222 struct btrfs_key found_key;
4223 struct btrfs_path *path;
4224 int ret;
4225 struct extent_buffer *leaf;
4226 int slot;
4227 unsigned char d_type;
4228 int over = 0;
4229 u32 di_cur;
4230 u32 di_total;
4231 u32 di_len;
4232 int key_type = BTRFS_DIR_INDEX_KEY;
4233 char tmp_name[32];
4234 char *name_ptr;
4235 int name_len;
4236
4237 /* FIXME, use a real flag for deciding about the key type */
4238 if (root->fs_info->tree_root == root)
4239 key_type = BTRFS_DIR_ITEM_KEY;
4240
4241 /* special case for "." */
4242 if (filp->f_pos == 0) {
4243 over = filldir(dirent, ".", 1,
4244 1, inode->i_ino,
4245 DT_DIR);
4246 if (over)
4247 return 0;
4248 filp->f_pos = 1;
4249 }
4250 /* special case for .., just use the back ref */
4251 if (filp->f_pos == 1) {
4252 u64 pino = parent_ino(filp->f_path.dentry);
4253 over = filldir(dirent, "..", 2,
4254 2, pino, DT_DIR);
4255 if (over)
4256 return 0;
4257 filp->f_pos = 2;
4258 }
4259 path = btrfs_alloc_path();
4260 path->reada = 2;
4261
4262 btrfs_set_key_type(&key, key_type);
4263 key.offset = filp->f_pos;
4264 key.objectid = inode->i_ino;
4265
4266 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4267 if (ret < 0)
4268 goto err;
4269
4270 while (1) {
4271 leaf = path->nodes[0];
4272 slot = path->slots[0];
4273 if (slot >= btrfs_header_nritems(leaf)) {
4274 ret = btrfs_next_leaf(root, path);
4275 if (ret < 0)
4276 goto err;
4277 else if (ret > 0)
4278 break;
4279 continue;
4280 }
4281
4282 item = btrfs_item_nr(leaf, slot);
4283 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4284
4285 if (found_key.objectid != key.objectid)
4286 break;
4287 if (btrfs_key_type(&found_key) != key_type)
4288 break;
4289 if (found_key.offset < filp->f_pos)
4290 goto next;
4291
4292 filp->f_pos = found_key.offset;
4293
4294 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4295 di_cur = 0;
4296 di_total = btrfs_item_size(leaf, item);
4297
4298 while (di_cur < di_total) {
4299 struct btrfs_key location;
4300
4301 if (verify_dir_item(root, leaf, di))
4302 break;
4303
4304 name_len = btrfs_dir_name_len(leaf, di);
4305 if (name_len <= sizeof(tmp_name)) {
4306 name_ptr = tmp_name;
4307 } else {
4308 name_ptr = kmalloc(name_len, GFP_NOFS);
4309 if (!name_ptr) {
4310 ret = -ENOMEM;
4311 goto err;
4312 }
4313 }
4314 read_extent_buffer(leaf, name_ptr,
4315 (unsigned long)(di + 1), name_len);
4316
4317 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4318 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4319
4320 /* is this a reference to our own snapshot? If so
4321 * skip it
4322 */
4323 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4324 location.objectid == root->root_key.objectid) {
4325 over = 0;
4326 goto skip;
4327 }
4328 over = filldir(dirent, name_ptr, name_len,
4329 found_key.offset, location.objectid,
4330 d_type);
4331
4332 skip:
4333 if (name_ptr != tmp_name)
4334 kfree(name_ptr);
4335
4336 if (over)
4337 goto nopos;
4338 di_len = btrfs_dir_name_len(leaf, di) +
4339 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4340 di_cur += di_len;
4341 di = (struct btrfs_dir_item *)((char *)di + di_len);
4342 }
4343 next:
4344 path->slots[0]++;
4345 }
4346
4347 /* Reached end of directory/root. Bump pos past the last item. */
4348 if (key_type == BTRFS_DIR_INDEX_KEY)
4349 /*
4350 * 32-bit glibc will use getdents64, but then strtol -
4351 * so the last number we can serve is this.
4352 */
4353 filp->f_pos = 0x7fffffff;
4354 else
4355 filp->f_pos++;
4356 nopos:
4357 ret = 0;
4358 err:
4359 btrfs_free_path(path);
4360 return ret;
4361 }
4362
4363 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4364 {
4365 struct btrfs_root *root = BTRFS_I(inode)->root;
4366 struct btrfs_trans_handle *trans;
4367 int ret = 0;
4368 bool nolock = false;
4369
4370 if (BTRFS_I(inode)->dummy_inode)
4371 return 0;
4372
4373 smp_mb();
4374 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4375
4376 if (wbc->sync_mode == WB_SYNC_ALL) {
4377 if (nolock)
4378 trans = btrfs_join_transaction_nolock(root, 1);
4379 else
4380 trans = btrfs_join_transaction(root, 1);
4381 if (IS_ERR(trans))
4382 return PTR_ERR(trans);
4383 btrfs_set_trans_block_group(trans, inode);
4384 if (nolock)
4385 ret = btrfs_end_transaction_nolock(trans, root);
4386 else
4387 ret = btrfs_commit_transaction(trans, root);
4388 }
4389 return ret;
4390 }
4391
4392 /*
4393 * This is somewhat expensive, updating the tree every time the
4394 * inode changes. But, it is most likely to find the inode in cache.
4395 * FIXME, needs more benchmarking...there are no reasons other than performance
4396 * to keep or drop this code.
4397 */
4398 void btrfs_dirty_inode(struct inode *inode)
4399 {
4400 struct btrfs_root *root = BTRFS_I(inode)->root;
4401 struct btrfs_trans_handle *trans;
4402 int ret;
4403
4404 if (BTRFS_I(inode)->dummy_inode)
4405 return;
4406
4407 trans = btrfs_join_transaction(root, 1);
4408 BUG_ON(IS_ERR(trans));
4409 btrfs_set_trans_block_group(trans, inode);
4410
4411 ret = btrfs_update_inode(trans, root, inode);
4412 if (ret && ret == -ENOSPC) {
4413 /* whoops, lets try again with the full transaction */
4414 btrfs_end_transaction(trans, root);
4415 trans = btrfs_start_transaction(root, 1);
4416 if (IS_ERR(trans)) {
4417 if (printk_ratelimit()) {
4418 printk(KERN_ERR "btrfs: fail to "
4419 "dirty inode %lu error %ld\n",
4420 inode->i_ino, PTR_ERR(trans));
4421 }
4422 return;
4423 }
4424 btrfs_set_trans_block_group(trans, inode);
4425
4426 ret = btrfs_update_inode(trans, root, inode);
4427 if (ret) {
4428 if (printk_ratelimit()) {
4429 printk(KERN_ERR "btrfs: fail to "
4430 "dirty inode %lu error %d\n",
4431 inode->i_ino, ret);
4432 }
4433 }
4434 }
4435 btrfs_end_transaction(trans, root);
4436 }
4437
4438 /*
4439 * find the highest existing sequence number in a directory
4440 * and then set the in-memory index_cnt variable to reflect
4441 * free sequence numbers
4442 */
4443 static int btrfs_set_inode_index_count(struct inode *inode)
4444 {
4445 struct btrfs_root *root = BTRFS_I(inode)->root;
4446 struct btrfs_key key, found_key;
4447 struct btrfs_path *path;
4448 struct extent_buffer *leaf;
4449 int ret;
4450
4451 key.objectid = inode->i_ino;
4452 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4453 key.offset = (u64)-1;
4454
4455 path = btrfs_alloc_path();
4456 if (!path)
4457 return -ENOMEM;
4458
4459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4460 if (ret < 0)
4461 goto out;
4462 /* FIXME: we should be able to handle this */
4463 if (ret == 0)
4464 goto out;
4465 ret = 0;
4466
4467 /*
4468 * MAGIC NUMBER EXPLANATION:
4469 * since we search a directory based on f_pos we have to start at 2
4470 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4471 * else has to start at 2
4472 */
4473 if (path->slots[0] == 0) {
4474 BTRFS_I(inode)->index_cnt = 2;
4475 goto out;
4476 }
4477
4478 path->slots[0]--;
4479
4480 leaf = path->nodes[0];
4481 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4482
4483 if (found_key.objectid != inode->i_ino ||
4484 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4485 BTRFS_I(inode)->index_cnt = 2;
4486 goto out;
4487 }
4488
4489 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4490 out:
4491 btrfs_free_path(path);
4492 return ret;
4493 }
4494
4495 /*
4496 * helper to find a free sequence number in a given directory. This current
4497 * code is very simple, later versions will do smarter things in the btree
4498 */
4499 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4500 {
4501 int ret = 0;
4502
4503 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4504 ret = btrfs_set_inode_index_count(dir);
4505 if (ret)
4506 return ret;
4507 }
4508
4509 *index = BTRFS_I(dir)->index_cnt;
4510 BTRFS_I(dir)->index_cnt++;
4511
4512 return ret;
4513 }
4514
4515 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4516 struct btrfs_root *root,
4517 struct inode *dir,
4518 const char *name, int name_len,
4519 u64 ref_objectid, u64 objectid,
4520 u64 alloc_hint, int mode, u64 *index)
4521 {
4522 struct inode *inode;
4523 struct btrfs_inode_item *inode_item;
4524 struct btrfs_key *location;
4525 struct btrfs_path *path;
4526 struct btrfs_inode_ref *ref;
4527 struct btrfs_key key[2];
4528 u32 sizes[2];
4529 unsigned long ptr;
4530 int ret;
4531 int owner;
4532
4533 path = btrfs_alloc_path();
4534 BUG_ON(!path);
4535
4536 inode = new_inode(root->fs_info->sb);
4537 if (!inode) {
4538 btrfs_free_path(path);
4539 return ERR_PTR(-ENOMEM);
4540 }
4541
4542 if (dir) {
4543 trace_btrfs_inode_request(dir);
4544
4545 ret = btrfs_set_inode_index(dir, index);
4546 if (ret) {
4547 btrfs_free_path(path);
4548 iput(inode);
4549 return ERR_PTR(ret);
4550 }
4551 }
4552 /*
4553 * index_cnt is ignored for everything but a dir,
4554 * btrfs_get_inode_index_count has an explanation for the magic
4555 * number
4556 */
4557 BTRFS_I(inode)->index_cnt = 2;
4558 BTRFS_I(inode)->root = root;
4559 BTRFS_I(inode)->generation = trans->transid;
4560 inode->i_generation = BTRFS_I(inode)->generation;
4561 btrfs_set_inode_space_info(root, inode);
4562
4563 if (mode & S_IFDIR)
4564 owner = 0;
4565 else
4566 owner = 1;
4567 BTRFS_I(inode)->block_group =
4568 btrfs_find_block_group(root, 0, alloc_hint, owner);
4569
4570 key[0].objectid = objectid;
4571 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4572 key[0].offset = 0;
4573
4574 key[1].objectid = objectid;
4575 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4576 key[1].offset = ref_objectid;
4577
4578 sizes[0] = sizeof(struct btrfs_inode_item);
4579 sizes[1] = name_len + sizeof(*ref);
4580
4581 path->leave_spinning = 1;
4582 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4583 if (ret != 0)
4584 goto fail;
4585
4586 inode_init_owner(inode, dir, mode);
4587 inode->i_ino = objectid;
4588 inode_set_bytes(inode, 0);
4589 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4590 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4591 struct btrfs_inode_item);
4592 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4593
4594 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4595 struct btrfs_inode_ref);
4596 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4597 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4598 ptr = (unsigned long)(ref + 1);
4599 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4600
4601 btrfs_mark_buffer_dirty(path->nodes[0]);
4602 btrfs_free_path(path);
4603
4604 location = &BTRFS_I(inode)->location;
4605 location->objectid = objectid;
4606 location->offset = 0;
4607 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4608
4609 btrfs_inherit_iflags(inode, dir);
4610
4611 if ((mode & S_IFREG)) {
4612 if (btrfs_test_opt(root, NODATASUM))
4613 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4614 if (btrfs_test_opt(root, NODATACOW) ||
4615 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4616 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4617 }
4618
4619 insert_inode_hash(inode);
4620 inode_tree_add(inode);
4621
4622 trace_btrfs_inode_new(inode);
4623
4624 return inode;
4625 fail:
4626 if (dir)
4627 BTRFS_I(dir)->index_cnt--;
4628 btrfs_free_path(path);
4629 iput(inode);
4630 return ERR_PTR(ret);
4631 }
4632
4633 static inline u8 btrfs_inode_type(struct inode *inode)
4634 {
4635 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4636 }
4637
4638 /*
4639 * utility function to add 'inode' into 'parent_inode' with
4640 * a give name and a given sequence number.
4641 * if 'add_backref' is true, also insert a backref from the
4642 * inode to the parent directory.
4643 */
4644 int btrfs_add_link(struct btrfs_trans_handle *trans,
4645 struct inode *parent_inode, struct inode *inode,
4646 const char *name, int name_len, int add_backref, u64 index)
4647 {
4648 int ret = 0;
4649 struct btrfs_key key;
4650 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4651
4652 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4653 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4654 } else {
4655 key.objectid = inode->i_ino;
4656 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4657 key.offset = 0;
4658 }
4659
4660 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4661 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4662 key.objectid, root->root_key.objectid,
4663 parent_inode->i_ino,
4664 index, name, name_len);
4665 } else if (add_backref) {
4666 ret = btrfs_insert_inode_ref(trans, root,
4667 name, name_len, inode->i_ino,
4668 parent_inode->i_ino, index);
4669 }
4670
4671 if (ret == 0) {
4672 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4673 parent_inode->i_ino, &key,
4674 btrfs_inode_type(inode), index);
4675 BUG_ON(ret);
4676
4677 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4678 name_len * 2);
4679 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4680 ret = btrfs_update_inode(trans, root, parent_inode);
4681 }
4682 return ret;
4683 }
4684
4685 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4686 struct inode *dir, struct dentry *dentry,
4687 struct inode *inode, int backref, u64 index)
4688 {
4689 int err = btrfs_add_link(trans, dir, inode,
4690 dentry->d_name.name, dentry->d_name.len,
4691 backref, index);
4692 if (!err) {
4693 d_instantiate(dentry, inode);
4694 return 0;
4695 }
4696 if (err > 0)
4697 err = -EEXIST;
4698 return err;
4699 }
4700
4701 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4702 int mode, dev_t rdev)
4703 {
4704 struct btrfs_trans_handle *trans;
4705 struct btrfs_root *root = BTRFS_I(dir)->root;
4706 struct inode *inode = NULL;
4707 int err;
4708 int drop_inode = 0;
4709 u64 objectid;
4710 unsigned long nr = 0;
4711 u64 index = 0;
4712
4713 if (!new_valid_dev(rdev))
4714 return -EINVAL;
4715
4716 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4717 if (err)
4718 return err;
4719
4720 /*
4721 * 2 for inode item and ref
4722 * 2 for dir items
4723 * 1 for xattr if selinux is on
4724 */
4725 trans = btrfs_start_transaction(root, 5);
4726 if (IS_ERR(trans))
4727 return PTR_ERR(trans);
4728
4729 btrfs_set_trans_block_group(trans, dir);
4730
4731 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4732 dentry->d_name.len, dir->i_ino, objectid,
4733 BTRFS_I(dir)->block_group, mode, &index);
4734 err = PTR_ERR(inode);
4735 if (IS_ERR(inode))
4736 goto out_unlock;
4737
4738 err = btrfs_init_inode_security(trans, inode, dir);
4739 if (err) {
4740 drop_inode = 1;
4741 goto out_unlock;
4742 }
4743
4744 btrfs_set_trans_block_group(trans, inode);
4745 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4746 if (err)
4747 drop_inode = 1;
4748 else {
4749 inode->i_op = &btrfs_special_inode_operations;
4750 init_special_inode(inode, inode->i_mode, rdev);
4751 btrfs_update_inode(trans, root, inode);
4752 }
4753 btrfs_update_inode_block_group(trans, inode);
4754 btrfs_update_inode_block_group(trans, dir);
4755 out_unlock:
4756 nr = trans->blocks_used;
4757 btrfs_end_transaction_throttle(trans, root);
4758 btrfs_btree_balance_dirty(root, nr);
4759 if (drop_inode) {
4760 inode_dec_link_count(inode);
4761 iput(inode);
4762 }
4763 return err;
4764 }
4765
4766 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4767 int mode, struct nameidata *nd)
4768 {
4769 struct btrfs_trans_handle *trans;
4770 struct btrfs_root *root = BTRFS_I(dir)->root;
4771 struct inode *inode = NULL;
4772 int drop_inode = 0;
4773 int err;
4774 unsigned long nr = 0;
4775 u64 objectid;
4776 u64 index = 0;
4777
4778 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4779 if (err)
4780 return err;
4781 /*
4782 * 2 for inode item and ref
4783 * 2 for dir items
4784 * 1 for xattr if selinux is on
4785 */
4786 trans = btrfs_start_transaction(root, 5);
4787 if (IS_ERR(trans))
4788 return PTR_ERR(trans);
4789
4790 btrfs_set_trans_block_group(trans, dir);
4791
4792 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4793 dentry->d_name.len, dir->i_ino, objectid,
4794 BTRFS_I(dir)->block_group, mode, &index);
4795 err = PTR_ERR(inode);
4796 if (IS_ERR(inode))
4797 goto out_unlock;
4798
4799 err = btrfs_init_inode_security(trans, inode, dir);
4800 if (err) {
4801 drop_inode = 1;
4802 goto out_unlock;
4803 }
4804
4805 btrfs_set_trans_block_group(trans, inode);
4806 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4807 if (err)
4808 drop_inode = 1;
4809 else {
4810 inode->i_mapping->a_ops = &btrfs_aops;
4811 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4812 inode->i_fop = &btrfs_file_operations;
4813 inode->i_op = &btrfs_file_inode_operations;
4814 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4815 }
4816 btrfs_update_inode_block_group(trans, inode);
4817 btrfs_update_inode_block_group(trans, dir);
4818 out_unlock:
4819 nr = trans->blocks_used;
4820 btrfs_end_transaction_throttle(trans, root);
4821 if (drop_inode) {
4822 inode_dec_link_count(inode);
4823 iput(inode);
4824 }
4825 btrfs_btree_balance_dirty(root, nr);
4826 return err;
4827 }
4828
4829 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4830 struct dentry *dentry)
4831 {
4832 struct btrfs_trans_handle *trans;
4833 struct btrfs_root *root = BTRFS_I(dir)->root;
4834 struct inode *inode = old_dentry->d_inode;
4835 u64 index;
4836 unsigned long nr = 0;
4837 int err;
4838 int drop_inode = 0;
4839
4840 if (inode->i_nlink == 0)
4841 return -ENOENT;
4842
4843 /* do not allow sys_link's with other subvols of the same device */
4844 if (root->objectid != BTRFS_I(inode)->root->objectid)
4845 return -EXDEV;
4846
4847 if (inode->i_nlink == ~0U)
4848 return -EMLINK;
4849
4850 err = btrfs_set_inode_index(dir, &index);
4851 if (err)
4852 goto fail;
4853
4854 /*
4855 * 2 items for inode and inode ref
4856 * 2 items for dir items
4857 * 1 item for parent inode
4858 */
4859 trans = btrfs_start_transaction(root, 5);
4860 if (IS_ERR(trans)) {
4861 err = PTR_ERR(trans);
4862 goto fail;
4863 }
4864
4865 btrfs_inc_nlink(inode);
4866 inode->i_ctime = CURRENT_TIME;
4867
4868 btrfs_set_trans_block_group(trans, dir);
4869 ihold(inode);
4870
4871 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4872
4873 if (err) {
4874 drop_inode = 1;
4875 } else {
4876 struct dentry *parent = dget_parent(dentry);
4877 btrfs_update_inode_block_group(trans, dir);
4878 err = btrfs_update_inode(trans, root, inode);
4879 BUG_ON(err);
4880 btrfs_log_new_name(trans, inode, NULL, parent);
4881 dput(parent);
4882 }
4883
4884 nr = trans->blocks_used;
4885 btrfs_end_transaction_throttle(trans, root);
4886 fail:
4887 if (drop_inode) {
4888 inode_dec_link_count(inode);
4889 iput(inode);
4890 }
4891 btrfs_btree_balance_dirty(root, nr);
4892 return err;
4893 }
4894
4895 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4896 {
4897 struct inode *inode = NULL;
4898 struct btrfs_trans_handle *trans;
4899 struct btrfs_root *root = BTRFS_I(dir)->root;
4900 int err = 0;
4901 int drop_on_err = 0;
4902 u64 objectid = 0;
4903 u64 index = 0;
4904 unsigned long nr = 1;
4905
4906 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4907 if (err)
4908 return err;
4909
4910 /*
4911 * 2 items for inode and ref
4912 * 2 items for dir items
4913 * 1 for xattr if selinux is on
4914 */
4915 trans = btrfs_start_transaction(root, 5);
4916 if (IS_ERR(trans))
4917 return PTR_ERR(trans);
4918 btrfs_set_trans_block_group(trans, dir);
4919
4920 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4921 dentry->d_name.len, dir->i_ino, objectid,
4922 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4923 &index);
4924 if (IS_ERR(inode)) {
4925 err = PTR_ERR(inode);
4926 goto out_fail;
4927 }
4928
4929 drop_on_err = 1;
4930
4931 err = btrfs_init_inode_security(trans, inode, dir);
4932 if (err)
4933 goto out_fail;
4934
4935 inode->i_op = &btrfs_dir_inode_operations;
4936 inode->i_fop = &btrfs_dir_file_operations;
4937 btrfs_set_trans_block_group(trans, inode);
4938
4939 btrfs_i_size_write(inode, 0);
4940 err = btrfs_update_inode(trans, root, inode);
4941 if (err)
4942 goto out_fail;
4943
4944 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4945 dentry->d_name.len, 0, index);
4946 if (err)
4947 goto out_fail;
4948
4949 d_instantiate(dentry, inode);
4950 drop_on_err = 0;
4951 btrfs_update_inode_block_group(trans, inode);
4952 btrfs_update_inode_block_group(trans, dir);
4953
4954 out_fail:
4955 nr = trans->blocks_used;
4956 btrfs_end_transaction_throttle(trans, root);
4957 if (drop_on_err)
4958 iput(inode);
4959 btrfs_btree_balance_dirty(root, nr);
4960 return err;
4961 }
4962
4963 /* helper for btfs_get_extent. Given an existing extent in the tree,
4964 * and an extent that you want to insert, deal with overlap and insert
4965 * the new extent into the tree.
4966 */
4967 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4968 struct extent_map *existing,
4969 struct extent_map *em,
4970 u64 map_start, u64 map_len)
4971 {
4972 u64 start_diff;
4973
4974 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4975 start_diff = map_start - em->start;
4976 em->start = map_start;
4977 em->len = map_len;
4978 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4979 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4980 em->block_start += start_diff;
4981 em->block_len -= start_diff;
4982 }
4983 return add_extent_mapping(em_tree, em);
4984 }
4985
4986 static noinline int uncompress_inline(struct btrfs_path *path,
4987 struct inode *inode, struct page *page,
4988 size_t pg_offset, u64 extent_offset,
4989 struct btrfs_file_extent_item *item)
4990 {
4991 int ret;
4992 struct extent_buffer *leaf = path->nodes[0];
4993 char *tmp;
4994 size_t max_size;
4995 unsigned long inline_size;
4996 unsigned long ptr;
4997 int compress_type;
4998
4999 WARN_ON(pg_offset != 0);
5000 compress_type = btrfs_file_extent_compression(leaf, item);
5001 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5002 inline_size = btrfs_file_extent_inline_item_len(leaf,
5003 btrfs_item_nr(leaf, path->slots[0]));
5004 tmp = kmalloc(inline_size, GFP_NOFS);
5005 if (!tmp)
5006 return -ENOMEM;
5007 ptr = btrfs_file_extent_inline_start(item);
5008
5009 read_extent_buffer(leaf, tmp, ptr, inline_size);
5010
5011 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5012 ret = btrfs_decompress(compress_type, tmp, page,
5013 extent_offset, inline_size, max_size);
5014 if (ret) {
5015 char *kaddr = kmap_atomic(page, KM_USER0);
5016 unsigned long copy_size = min_t(u64,
5017 PAGE_CACHE_SIZE - pg_offset,
5018 max_size - extent_offset);
5019 memset(kaddr + pg_offset, 0, copy_size);
5020 kunmap_atomic(kaddr, KM_USER0);
5021 }
5022 kfree(tmp);
5023 return 0;
5024 }
5025
5026 /*
5027 * a bit scary, this does extent mapping from logical file offset to the disk.
5028 * the ugly parts come from merging extents from the disk with the in-ram
5029 * representation. This gets more complex because of the data=ordered code,
5030 * where the in-ram extents might be locked pending data=ordered completion.
5031 *
5032 * This also copies inline extents directly into the page.
5033 */
5034
5035 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5036 size_t pg_offset, u64 start, u64 len,
5037 int create)
5038 {
5039 int ret;
5040 int err = 0;
5041 u64 bytenr;
5042 u64 extent_start = 0;
5043 u64 extent_end = 0;
5044 u64 objectid = inode->i_ino;
5045 u32 found_type;
5046 struct btrfs_path *path = NULL;
5047 struct btrfs_root *root = BTRFS_I(inode)->root;
5048 struct btrfs_file_extent_item *item;
5049 struct extent_buffer *leaf;
5050 struct btrfs_key found_key;
5051 struct extent_map *em = NULL;
5052 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5053 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5054 struct btrfs_trans_handle *trans = NULL;
5055 int compress_type;
5056
5057 again:
5058 read_lock(&em_tree->lock);
5059 em = lookup_extent_mapping(em_tree, start, len);
5060 if (em)
5061 em->bdev = root->fs_info->fs_devices->latest_bdev;
5062 read_unlock(&em_tree->lock);
5063
5064 if (em) {
5065 if (em->start > start || em->start + em->len <= start)
5066 free_extent_map(em);
5067 else if (em->block_start == EXTENT_MAP_INLINE && page)
5068 free_extent_map(em);
5069 else
5070 goto out;
5071 }
5072 em = alloc_extent_map(GFP_NOFS);
5073 if (!em) {
5074 err = -ENOMEM;
5075 goto out;
5076 }
5077 em->bdev = root->fs_info->fs_devices->latest_bdev;
5078 em->start = EXTENT_MAP_HOLE;
5079 em->orig_start = EXTENT_MAP_HOLE;
5080 em->len = (u64)-1;
5081 em->block_len = (u64)-1;
5082
5083 if (!path) {
5084 path = btrfs_alloc_path();
5085 BUG_ON(!path);
5086 }
5087
5088 ret = btrfs_lookup_file_extent(trans, root, path,
5089 objectid, start, trans != NULL);
5090 if (ret < 0) {
5091 err = ret;
5092 goto out;
5093 }
5094
5095 if (ret != 0) {
5096 if (path->slots[0] == 0)
5097 goto not_found;
5098 path->slots[0]--;
5099 }
5100
5101 leaf = path->nodes[0];
5102 item = btrfs_item_ptr(leaf, path->slots[0],
5103 struct btrfs_file_extent_item);
5104 /* are we inside the extent that was found? */
5105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5106 found_type = btrfs_key_type(&found_key);
5107 if (found_key.objectid != objectid ||
5108 found_type != BTRFS_EXTENT_DATA_KEY) {
5109 goto not_found;
5110 }
5111
5112 found_type = btrfs_file_extent_type(leaf, item);
5113 extent_start = found_key.offset;
5114 compress_type = btrfs_file_extent_compression(leaf, item);
5115 if (found_type == BTRFS_FILE_EXTENT_REG ||
5116 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5117 extent_end = extent_start +
5118 btrfs_file_extent_num_bytes(leaf, item);
5119 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5120 size_t size;
5121 size = btrfs_file_extent_inline_len(leaf, item);
5122 extent_end = (extent_start + size + root->sectorsize - 1) &
5123 ~((u64)root->sectorsize - 1);
5124 }
5125
5126 if (start >= extent_end) {
5127 path->slots[0]++;
5128 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5129 ret = btrfs_next_leaf(root, path);
5130 if (ret < 0) {
5131 err = ret;
5132 goto out;
5133 }
5134 if (ret > 0)
5135 goto not_found;
5136 leaf = path->nodes[0];
5137 }
5138 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5139 if (found_key.objectid != objectid ||
5140 found_key.type != BTRFS_EXTENT_DATA_KEY)
5141 goto not_found;
5142 if (start + len <= found_key.offset)
5143 goto not_found;
5144 em->start = start;
5145 em->len = found_key.offset - start;
5146 goto not_found_em;
5147 }
5148
5149 if (found_type == BTRFS_FILE_EXTENT_REG ||
5150 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5151 em->start = extent_start;
5152 em->len = extent_end - extent_start;
5153 em->orig_start = extent_start -
5154 btrfs_file_extent_offset(leaf, item);
5155 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5156 if (bytenr == 0) {
5157 em->block_start = EXTENT_MAP_HOLE;
5158 goto insert;
5159 }
5160 if (compress_type != BTRFS_COMPRESS_NONE) {
5161 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5162 em->compress_type = compress_type;
5163 em->block_start = bytenr;
5164 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5165 item);
5166 } else {
5167 bytenr += btrfs_file_extent_offset(leaf, item);
5168 em->block_start = bytenr;
5169 em->block_len = em->len;
5170 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5171 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5172 }
5173 goto insert;
5174 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5175 unsigned long ptr;
5176 char *map;
5177 size_t size;
5178 size_t extent_offset;
5179 size_t copy_size;
5180
5181 em->block_start = EXTENT_MAP_INLINE;
5182 if (!page || create) {
5183 em->start = extent_start;
5184 em->len = extent_end - extent_start;
5185 goto out;
5186 }
5187
5188 size = btrfs_file_extent_inline_len(leaf, item);
5189 extent_offset = page_offset(page) + pg_offset - extent_start;
5190 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5191 size - extent_offset);
5192 em->start = extent_start + extent_offset;
5193 em->len = (copy_size + root->sectorsize - 1) &
5194 ~((u64)root->sectorsize - 1);
5195 em->orig_start = EXTENT_MAP_INLINE;
5196 if (compress_type) {
5197 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5198 em->compress_type = compress_type;
5199 }
5200 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5201 if (create == 0 && !PageUptodate(page)) {
5202 if (btrfs_file_extent_compression(leaf, item) !=
5203 BTRFS_COMPRESS_NONE) {
5204 ret = uncompress_inline(path, inode, page,
5205 pg_offset,
5206 extent_offset, item);
5207 BUG_ON(ret);
5208 } else {
5209 map = kmap(page);
5210 read_extent_buffer(leaf, map + pg_offset, ptr,
5211 copy_size);
5212 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5213 memset(map + pg_offset + copy_size, 0,
5214 PAGE_CACHE_SIZE - pg_offset -
5215 copy_size);
5216 }
5217 kunmap(page);
5218 }
5219 flush_dcache_page(page);
5220 } else if (create && PageUptodate(page)) {
5221 WARN_ON(1);
5222 if (!trans) {
5223 kunmap(page);
5224 free_extent_map(em);
5225 em = NULL;
5226 btrfs_release_path(root, path);
5227 trans = btrfs_join_transaction(root, 1);
5228 if (IS_ERR(trans))
5229 return ERR_CAST(trans);
5230 goto again;
5231 }
5232 map = kmap(page);
5233 write_extent_buffer(leaf, map + pg_offset, ptr,
5234 copy_size);
5235 kunmap(page);
5236 btrfs_mark_buffer_dirty(leaf);
5237 }
5238 set_extent_uptodate(io_tree, em->start,
5239 extent_map_end(em) - 1, NULL, GFP_NOFS);
5240 goto insert;
5241 } else {
5242 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5243 WARN_ON(1);
5244 }
5245 not_found:
5246 em->start = start;
5247 em->len = len;
5248 not_found_em:
5249 em->block_start = EXTENT_MAP_HOLE;
5250 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5251 insert:
5252 btrfs_release_path(root, path);
5253 if (em->start > start || extent_map_end(em) <= start) {
5254 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5255 "[%llu %llu]\n", (unsigned long long)em->start,
5256 (unsigned long long)em->len,
5257 (unsigned long long)start,
5258 (unsigned long long)len);
5259 err = -EIO;
5260 goto out;
5261 }
5262
5263 err = 0;
5264 write_lock(&em_tree->lock);
5265 ret = add_extent_mapping(em_tree, em);
5266 /* it is possible that someone inserted the extent into the tree
5267 * while we had the lock dropped. It is also possible that
5268 * an overlapping map exists in the tree
5269 */
5270 if (ret == -EEXIST) {
5271 struct extent_map *existing;
5272
5273 ret = 0;
5274
5275 existing = lookup_extent_mapping(em_tree, start, len);
5276 if (existing && (existing->start > start ||
5277 existing->start + existing->len <= start)) {
5278 free_extent_map(existing);
5279 existing = NULL;
5280 }
5281 if (!existing) {
5282 existing = lookup_extent_mapping(em_tree, em->start,
5283 em->len);
5284 if (existing) {
5285 err = merge_extent_mapping(em_tree, existing,
5286 em, start,
5287 root->sectorsize);
5288 free_extent_map(existing);
5289 if (err) {
5290 free_extent_map(em);
5291 em = NULL;
5292 }
5293 } else {
5294 err = -EIO;
5295 free_extent_map(em);
5296 em = NULL;
5297 }
5298 } else {
5299 free_extent_map(em);
5300 em = existing;
5301 err = 0;
5302 }
5303 }
5304 write_unlock(&em_tree->lock);
5305 out:
5306
5307 trace_btrfs_get_extent(root, em);
5308
5309 if (path)
5310 btrfs_free_path(path);
5311 if (trans) {
5312 ret = btrfs_end_transaction(trans, root);
5313 if (!err)
5314 err = ret;
5315 }
5316 if (err) {
5317 free_extent_map(em);
5318 return ERR_PTR(err);
5319 }
5320 return em;
5321 }
5322
5323 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5324 size_t pg_offset, u64 start, u64 len,
5325 int create)
5326 {
5327 struct extent_map *em;
5328 struct extent_map *hole_em = NULL;
5329 u64 range_start = start;
5330 u64 end;
5331 u64 found;
5332 u64 found_end;
5333 int err = 0;
5334
5335 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5336 if (IS_ERR(em))
5337 return em;
5338 if (em) {
5339 /*
5340 * if our em maps to a hole, there might
5341 * actually be delalloc bytes behind it
5342 */
5343 if (em->block_start != EXTENT_MAP_HOLE)
5344 return em;
5345 else
5346 hole_em = em;
5347 }
5348
5349 /* check to see if we've wrapped (len == -1 or similar) */
5350 end = start + len;
5351 if (end < start)
5352 end = (u64)-1;
5353 else
5354 end -= 1;
5355
5356 em = NULL;
5357
5358 /* ok, we didn't find anything, lets look for delalloc */
5359 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5360 end, len, EXTENT_DELALLOC, 1);
5361 found_end = range_start + found;
5362 if (found_end < range_start)
5363 found_end = (u64)-1;
5364
5365 /*
5366 * we didn't find anything useful, return
5367 * the original results from get_extent()
5368 */
5369 if (range_start > end || found_end <= start) {
5370 em = hole_em;
5371 hole_em = NULL;
5372 goto out;
5373 }
5374
5375 /* adjust the range_start to make sure it doesn't
5376 * go backwards from the start they passed in
5377 */
5378 range_start = max(start,range_start);
5379 found = found_end - range_start;
5380
5381 if (found > 0) {
5382 u64 hole_start = start;
5383 u64 hole_len = len;
5384
5385 em = alloc_extent_map(GFP_NOFS);
5386 if (!em) {
5387 err = -ENOMEM;
5388 goto out;
5389 }
5390 /*
5391 * when btrfs_get_extent can't find anything it
5392 * returns one huge hole
5393 *
5394 * make sure what it found really fits our range, and
5395 * adjust to make sure it is based on the start from
5396 * the caller
5397 */
5398 if (hole_em) {
5399 u64 calc_end = extent_map_end(hole_em);
5400
5401 if (calc_end <= start || (hole_em->start > end)) {
5402 free_extent_map(hole_em);
5403 hole_em = NULL;
5404 } else {
5405 hole_start = max(hole_em->start, start);
5406 hole_len = calc_end - hole_start;
5407 }
5408 }
5409 em->bdev = NULL;
5410 if (hole_em && range_start > hole_start) {
5411 /* our hole starts before our delalloc, so we
5412 * have to return just the parts of the hole
5413 * that go until the delalloc starts
5414 */
5415 em->len = min(hole_len,
5416 range_start - hole_start);
5417 em->start = hole_start;
5418 em->orig_start = hole_start;
5419 /*
5420 * don't adjust block start at all,
5421 * it is fixed at EXTENT_MAP_HOLE
5422 */
5423 em->block_start = hole_em->block_start;
5424 em->block_len = hole_len;
5425 } else {
5426 em->start = range_start;
5427 em->len = found;
5428 em->orig_start = range_start;
5429 em->block_start = EXTENT_MAP_DELALLOC;
5430 em->block_len = found;
5431 }
5432 } else if (hole_em) {
5433 return hole_em;
5434 }
5435 out:
5436
5437 free_extent_map(hole_em);
5438 if (err) {
5439 free_extent_map(em);
5440 return ERR_PTR(err);
5441 }
5442 return em;
5443 }
5444
5445 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5446 struct extent_map *em,
5447 u64 start, u64 len)
5448 {
5449 struct btrfs_root *root = BTRFS_I(inode)->root;
5450 struct btrfs_trans_handle *trans;
5451 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5452 struct btrfs_key ins;
5453 u64 alloc_hint;
5454 int ret;
5455 bool insert = false;
5456
5457 /*
5458 * Ok if the extent map we looked up is a hole and is for the exact
5459 * range we want, there is no reason to allocate a new one, however if
5460 * it is not right then we need to free this one and drop the cache for
5461 * our range.
5462 */
5463 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5464 em->len != len) {
5465 free_extent_map(em);
5466 em = NULL;
5467 insert = true;
5468 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5469 }
5470
5471 trans = btrfs_join_transaction(root, 0);
5472 if (IS_ERR(trans))
5473 return ERR_CAST(trans);
5474
5475 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5476
5477 alloc_hint = get_extent_allocation_hint(inode, start, len);
5478 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5479 alloc_hint, (u64)-1, &ins, 1);
5480 if (ret) {
5481 em = ERR_PTR(ret);
5482 goto out;
5483 }
5484
5485 if (!em) {
5486 em = alloc_extent_map(GFP_NOFS);
5487 if (!em) {
5488 em = ERR_PTR(-ENOMEM);
5489 goto out;
5490 }
5491 }
5492
5493 em->start = start;
5494 em->orig_start = em->start;
5495 em->len = ins.offset;
5496
5497 em->block_start = ins.objectid;
5498 em->block_len = ins.offset;
5499 em->bdev = root->fs_info->fs_devices->latest_bdev;
5500
5501 /*
5502 * We need to do this because if we're using the original em we searched
5503 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5504 */
5505 em->flags = 0;
5506 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5507
5508 while (insert) {
5509 write_lock(&em_tree->lock);
5510 ret = add_extent_mapping(em_tree, em);
5511 write_unlock(&em_tree->lock);
5512 if (ret != -EEXIST)
5513 break;
5514 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5515 }
5516
5517 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5518 ins.offset, ins.offset, 0);
5519 if (ret) {
5520 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5521 em = ERR_PTR(ret);
5522 }
5523 out:
5524 btrfs_end_transaction(trans, root);
5525 return em;
5526 }
5527
5528 /*
5529 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5530 * block must be cow'd
5531 */
5532 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5533 struct inode *inode, u64 offset, u64 len)
5534 {
5535 struct btrfs_path *path;
5536 int ret;
5537 struct extent_buffer *leaf;
5538 struct btrfs_root *root = BTRFS_I(inode)->root;
5539 struct btrfs_file_extent_item *fi;
5540 struct btrfs_key key;
5541 u64 disk_bytenr;
5542 u64 backref_offset;
5543 u64 extent_end;
5544 u64 num_bytes;
5545 int slot;
5546 int found_type;
5547
5548 path = btrfs_alloc_path();
5549 if (!path)
5550 return -ENOMEM;
5551
5552 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5553 offset, 0);
5554 if (ret < 0)
5555 goto out;
5556
5557 slot = path->slots[0];
5558 if (ret == 1) {
5559 if (slot == 0) {
5560 /* can't find the item, must cow */
5561 ret = 0;
5562 goto out;
5563 }
5564 slot--;
5565 }
5566 ret = 0;
5567 leaf = path->nodes[0];
5568 btrfs_item_key_to_cpu(leaf, &key, slot);
5569 if (key.objectid != inode->i_ino ||
5570 key.type != BTRFS_EXTENT_DATA_KEY) {
5571 /* not our file or wrong item type, must cow */
5572 goto out;
5573 }
5574
5575 if (key.offset > offset) {
5576 /* Wrong offset, must cow */
5577 goto out;
5578 }
5579
5580 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5581 found_type = btrfs_file_extent_type(leaf, fi);
5582 if (found_type != BTRFS_FILE_EXTENT_REG &&
5583 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5584 /* not a regular extent, must cow */
5585 goto out;
5586 }
5587 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5588 backref_offset = btrfs_file_extent_offset(leaf, fi);
5589
5590 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5591 if (extent_end < offset + len) {
5592 /* extent doesn't include our full range, must cow */
5593 goto out;
5594 }
5595
5596 if (btrfs_extent_readonly(root, disk_bytenr))
5597 goto out;
5598
5599 /*
5600 * look for other files referencing this extent, if we
5601 * find any we must cow
5602 */
5603 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5604 key.offset - backref_offset, disk_bytenr))
5605 goto out;
5606
5607 /*
5608 * adjust disk_bytenr and num_bytes to cover just the bytes
5609 * in this extent we are about to write. If there
5610 * are any csums in that range we have to cow in order
5611 * to keep the csums correct
5612 */
5613 disk_bytenr += backref_offset;
5614 disk_bytenr += offset - key.offset;
5615 num_bytes = min(offset + len, extent_end) - offset;
5616 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5617 goto out;
5618 /*
5619 * all of the above have passed, it is safe to overwrite this extent
5620 * without cow
5621 */
5622 ret = 1;
5623 out:
5624 btrfs_free_path(path);
5625 return ret;
5626 }
5627
5628 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5629 struct buffer_head *bh_result, int create)
5630 {
5631 struct extent_map *em;
5632 struct btrfs_root *root = BTRFS_I(inode)->root;
5633 u64 start = iblock << inode->i_blkbits;
5634 u64 len = bh_result->b_size;
5635 struct btrfs_trans_handle *trans;
5636
5637 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5638 if (IS_ERR(em))
5639 return PTR_ERR(em);
5640
5641 /*
5642 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5643 * io. INLINE is special, and we could probably kludge it in here, but
5644 * it's still buffered so for safety lets just fall back to the generic
5645 * buffered path.
5646 *
5647 * For COMPRESSED we _have_ to read the entire extent in so we can
5648 * decompress it, so there will be buffering required no matter what we
5649 * do, so go ahead and fallback to buffered.
5650 *
5651 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5652 * to buffered IO. Don't blame me, this is the price we pay for using
5653 * the generic code.
5654 */
5655 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5656 em->block_start == EXTENT_MAP_INLINE) {
5657 free_extent_map(em);
5658 return -ENOTBLK;
5659 }
5660
5661 /* Just a good old fashioned hole, return */
5662 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5663 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5664 free_extent_map(em);
5665 /* DIO will do one hole at a time, so just unlock a sector */
5666 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5667 start + root->sectorsize - 1, GFP_NOFS);
5668 return 0;
5669 }
5670
5671 /*
5672 * We don't allocate a new extent in the following cases
5673 *
5674 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5675 * existing extent.
5676 * 2) The extent is marked as PREALLOC. We're good to go here and can
5677 * just use the extent.
5678 *
5679 */
5680 if (!create) {
5681 len = em->len - (start - em->start);
5682 goto map;
5683 }
5684
5685 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5686 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5687 em->block_start != EXTENT_MAP_HOLE)) {
5688 int type;
5689 int ret;
5690 u64 block_start;
5691
5692 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5693 type = BTRFS_ORDERED_PREALLOC;
5694 else
5695 type = BTRFS_ORDERED_NOCOW;
5696 len = min(len, em->len - (start - em->start));
5697 block_start = em->block_start + (start - em->start);
5698
5699 /*
5700 * we're not going to log anything, but we do need
5701 * to make sure the current transaction stays open
5702 * while we look for nocow cross refs
5703 */
5704 trans = btrfs_join_transaction(root, 0);
5705 if (IS_ERR(trans))
5706 goto must_cow;
5707
5708 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5709 ret = btrfs_add_ordered_extent_dio(inode, start,
5710 block_start, len, len, type);
5711 btrfs_end_transaction(trans, root);
5712 if (ret) {
5713 free_extent_map(em);
5714 return ret;
5715 }
5716 goto unlock;
5717 }
5718 btrfs_end_transaction(trans, root);
5719 }
5720 must_cow:
5721 /*
5722 * this will cow the extent, reset the len in case we changed
5723 * it above
5724 */
5725 len = bh_result->b_size;
5726 em = btrfs_new_extent_direct(inode, em, start, len);
5727 if (IS_ERR(em))
5728 return PTR_ERR(em);
5729 len = min(len, em->len - (start - em->start));
5730 unlock:
5731 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5732 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5733 0, NULL, GFP_NOFS);
5734 map:
5735 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5736 inode->i_blkbits;
5737 bh_result->b_size = len;
5738 bh_result->b_bdev = em->bdev;
5739 set_buffer_mapped(bh_result);
5740 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5741 set_buffer_new(bh_result);
5742
5743 free_extent_map(em);
5744
5745 return 0;
5746 }
5747
5748 struct btrfs_dio_private {
5749 struct inode *inode;
5750 u64 logical_offset;
5751 u64 disk_bytenr;
5752 u64 bytes;
5753 u32 *csums;
5754 void *private;
5755
5756 /* number of bios pending for this dio */
5757 atomic_t pending_bios;
5758
5759 /* IO errors */
5760 int errors;
5761
5762 struct bio *orig_bio;
5763 };
5764
5765 static void btrfs_endio_direct_read(struct bio *bio, int err)
5766 {
5767 struct btrfs_dio_private *dip = bio->bi_private;
5768 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5769 struct bio_vec *bvec = bio->bi_io_vec;
5770 struct inode *inode = dip->inode;
5771 struct btrfs_root *root = BTRFS_I(inode)->root;
5772 u64 start;
5773 u32 *private = dip->csums;
5774
5775 start = dip->logical_offset;
5776 do {
5777 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5778 struct page *page = bvec->bv_page;
5779 char *kaddr;
5780 u32 csum = ~(u32)0;
5781 unsigned long flags;
5782
5783 local_irq_save(flags);
5784 kaddr = kmap_atomic(page, KM_IRQ0);
5785 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5786 csum, bvec->bv_len);
5787 btrfs_csum_final(csum, (char *)&csum);
5788 kunmap_atomic(kaddr, KM_IRQ0);
5789 local_irq_restore(flags);
5790
5791 flush_dcache_page(bvec->bv_page);
5792 if (csum != *private) {
5793 printk(KERN_ERR "btrfs csum failed ino %lu off"
5794 " %llu csum %u private %u\n",
5795 inode->i_ino, (unsigned long long)start,
5796 csum, *private);
5797 err = -EIO;
5798 }
5799 }
5800
5801 start += bvec->bv_len;
5802 private++;
5803 bvec++;
5804 } while (bvec <= bvec_end);
5805
5806 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5807 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5808 bio->bi_private = dip->private;
5809
5810 kfree(dip->csums);
5811 kfree(dip);
5812
5813 /* If we had a csum failure make sure to clear the uptodate flag */
5814 if (err)
5815 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5816 dio_end_io(bio, err);
5817 }
5818
5819 static void btrfs_endio_direct_write(struct bio *bio, int err)
5820 {
5821 struct btrfs_dio_private *dip = bio->bi_private;
5822 struct inode *inode = dip->inode;
5823 struct btrfs_root *root = BTRFS_I(inode)->root;
5824 struct btrfs_trans_handle *trans;
5825 struct btrfs_ordered_extent *ordered = NULL;
5826 struct extent_state *cached_state = NULL;
5827 u64 ordered_offset = dip->logical_offset;
5828 u64 ordered_bytes = dip->bytes;
5829 int ret;
5830
5831 if (err)
5832 goto out_done;
5833 again:
5834 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5835 &ordered_offset,
5836 ordered_bytes);
5837 if (!ret)
5838 goto out_test;
5839
5840 BUG_ON(!ordered);
5841
5842 trans = btrfs_join_transaction(root, 1);
5843 if (IS_ERR(trans)) {
5844 err = -ENOMEM;
5845 goto out;
5846 }
5847 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5848
5849 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5850 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5851 if (!ret)
5852 ret = btrfs_update_inode(trans, root, inode);
5853 err = ret;
5854 goto out;
5855 }
5856
5857 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5858 ordered->file_offset + ordered->len - 1, 0,
5859 &cached_state, GFP_NOFS);
5860
5861 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5862 ret = btrfs_mark_extent_written(trans, inode,
5863 ordered->file_offset,
5864 ordered->file_offset +
5865 ordered->len);
5866 if (ret) {
5867 err = ret;
5868 goto out_unlock;
5869 }
5870 } else {
5871 ret = insert_reserved_file_extent(trans, inode,
5872 ordered->file_offset,
5873 ordered->start,
5874 ordered->disk_len,
5875 ordered->len,
5876 ordered->len,
5877 0, 0, 0,
5878 BTRFS_FILE_EXTENT_REG);
5879 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5880 ordered->file_offset, ordered->len);
5881 if (ret) {
5882 err = ret;
5883 WARN_ON(1);
5884 goto out_unlock;
5885 }
5886 }
5887
5888 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5889 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5890 if (!ret)
5891 btrfs_update_inode(trans, root, inode);
5892 ret = 0;
5893 out_unlock:
5894 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5895 ordered->file_offset + ordered->len - 1,
5896 &cached_state, GFP_NOFS);
5897 out:
5898 btrfs_delalloc_release_metadata(inode, ordered->len);
5899 btrfs_end_transaction(trans, root);
5900 ordered_offset = ordered->file_offset + ordered->len;
5901 btrfs_put_ordered_extent(ordered);
5902 btrfs_put_ordered_extent(ordered);
5903
5904 out_test:
5905 /*
5906 * our bio might span multiple ordered extents. If we haven't
5907 * completed the accounting for the whole dio, go back and try again
5908 */
5909 if (ordered_offset < dip->logical_offset + dip->bytes) {
5910 ordered_bytes = dip->logical_offset + dip->bytes -
5911 ordered_offset;
5912 goto again;
5913 }
5914 out_done:
5915 bio->bi_private = dip->private;
5916
5917 kfree(dip->csums);
5918 kfree(dip);
5919
5920 /* If we had an error make sure to clear the uptodate flag */
5921 if (err)
5922 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5923 dio_end_io(bio, err);
5924 }
5925
5926 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5927 struct bio *bio, int mirror_num,
5928 unsigned long bio_flags, u64 offset)
5929 {
5930 int ret;
5931 struct btrfs_root *root = BTRFS_I(inode)->root;
5932 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5933 BUG_ON(ret);
5934 return 0;
5935 }
5936
5937 static void btrfs_end_dio_bio(struct bio *bio, int err)
5938 {
5939 struct btrfs_dio_private *dip = bio->bi_private;
5940
5941 if (err) {
5942 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5943 "sector %#Lx len %u err no %d\n",
5944 dip->inode->i_ino, bio->bi_rw,
5945 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5946 dip->errors = 1;
5947
5948 /*
5949 * before atomic variable goto zero, we must make sure
5950 * dip->errors is perceived to be set.
5951 */
5952 smp_mb__before_atomic_dec();
5953 }
5954
5955 /* if there are more bios still pending for this dio, just exit */
5956 if (!atomic_dec_and_test(&dip->pending_bios))
5957 goto out;
5958
5959 if (dip->errors)
5960 bio_io_error(dip->orig_bio);
5961 else {
5962 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5963 bio_endio(dip->orig_bio, 0);
5964 }
5965 out:
5966 bio_put(bio);
5967 }
5968
5969 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5970 u64 first_sector, gfp_t gfp_flags)
5971 {
5972 int nr_vecs = bio_get_nr_vecs(bdev);
5973 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5974 }
5975
5976 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5977 int rw, u64 file_offset, int skip_sum,
5978 u32 *csums, int async_submit)
5979 {
5980 int write = rw & REQ_WRITE;
5981 struct btrfs_root *root = BTRFS_I(inode)->root;
5982 int ret;
5983
5984 bio_get(bio);
5985 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5986 if (ret)
5987 goto err;
5988
5989 if (skip_sum)
5990 goto map;
5991
5992 if (write && async_submit) {
5993 ret = btrfs_wq_submit_bio(root->fs_info,
5994 inode, rw, bio, 0, 0,
5995 file_offset,
5996 __btrfs_submit_bio_start_direct_io,
5997 __btrfs_submit_bio_done);
5998 goto err;
5999 } else if (write) {
6000 /*
6001 * If we aren't doing async submit, calculate the csum of the
6002 * bio now.
6003 */
6004 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6005 if (ret)
6006 goto err;
6007 } else if (!skip_sum) {
6008 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
6009 file_offset, csums);
6010 if (ret)
6011 goto err;
6012 }
6013
6014 map:
6015 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6016 err:
6017 bio_put(bio);
6018 return ret;
6019 }
6020
6021 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6022 int skip_sum)
6023 {
6024 struct inode *inode = dip->inode;
6025 struct btrfs_root *root = BTRFS_I(inode)->root;
6026 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6027 struct bio *bio;
6028 struct bio *orig_bio = dip->orig_bio;
6029 struct bio_vec *bvec = orig_bio->bi_io_vec;
6030 u64 start_sector = orig_bio->bi_sector;
6031 u64 file_offset = dip->logical_offset;
6032 u64 submit_len = 0;
6033 u64 map_length;
6034 int nr_pages = 0;
6035 u32 *csums = dip->csums;
6036 int ret = 0;
6037 int async_submit = 0;
6038 int write = rw & REQ_WRITE;
6039
6040 map_length = orig_bio->bi_size;
6041 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6042 &map_length, NULL, 0);
6043 if (ret) {
6044 bio_put(orig_bio);
6045 return -EIO;
6046 }
6047
6048 if (map_length >= orig_bio->bi_size) {
6049 bio = orig_bio;
6050 goto submit;
6051 }
6052
6053 async_submit = 1;
6054 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6055 if (!bio)
6056 return -ENOMEM;
6057 bio->bi_private = dip;
6058 bio->bi_end_io = btrfs_end_dio_bio;
6059 atomic_inc(&dip->pending_bios);
6060
6061 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6062 if (unlikely(map_length < submit_len + bvec->bv_len ||
6063 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6064 bvec->bv_offset) < bvec->bv_len)) {
6065 /*
6066 * inc the count before we submit the bio so
6067 * we know the end IO handler won't happen before
6068 * we inc the count. Otherwise, the dip might get freed
6069 * before we're done setting it up
6070 */
6071 atomic_inc(&dip->pending_bios);
6072 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6073 file_offset, skip_sum,
6074 csums, async_submit);
6075 if (ret) {
6076 bio_put(bio);
6077 atomic_dec(&dip->pending_bios);
6078 goto out_err;
6079 }
6080
6081 /* Write's use the ordered csums */
6082 if (!write && !skip_sum)
6083 csums = csums + nr_pages;
6084 start_sector += submit_len >> 9;
6085 file_offset += submit_len;
6086
6087 submit_len = 0;
6088 nr_pages = 0;
6089
6090 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6091 start_sector, GFP_NOFS);
6092 if (!bio)
6093 goto out_err;
6094 bio->bi_private = dip;
6095 bio->bi_end_io = btrfs_end_dio_bio;
6096
6097 map_length = orig_bio->bi_size;
6098 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6099 &map_length, NULL, 0);
6100 if (ret) {
6101 bio_put(bio);
6102 goto out_err;
6103 }
6104 } else {
6105 submit_len += bvec->bv_len;
6106 nr_pages ++;
6107 bvec++;
6108 }
6109 }
6110
6111 submit:
6112 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6113 csums, async_submit);
6114 if (!ret)
6115 return 0;
6116
6117 bio_put(bio);
6118 out_err:
6119 dip->errors = 1;
6120 /*
6121 * before atomic variable goto zero, we must
6122 * make sure dip->errors is perceived to be set.
6123 */
6124 smp_mb__before_atomic_dec();
6125 if (atomic_dec_and_test(&dip->pending_bios))
6126 bio_io_error(dip->orig_bio);
6127
6128 /* bio_end_io() will handle error, so we needn't return it */
6129 return 0;
6130 }
6131
6132 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6133 loff_t file_offset)
6134 {
6135 struct btrfs_root *root = BTRFS_I(inode)->root;
6136 struct btrfs_dio_private *dip;
6137 struct bio_vec *bvec = bio->bi_io_vec;
6138 int skip_sum;
6139 int write = rw & REQ_WRITE;
6140 int ret = 0;
6141
6142 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6143
6144 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6145 if (!dip) {
6146 ret = -ENOMEM;
6147 goto free_ordered;
6148 }
6149 dip->csums = NULL;
6150
6151 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6152 if (!write && !skip_sum) {
6153 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6154 if (!dip->csums) {
6155 kfree(dip);
6156 ret = -ENOMEM;
6157 goto free_ordered;
6158 }
6159 }
6160
6161 dip->private = bio->bi_private;
6162 dip->inode = inode;
6163 dip->logical_offset = file_offset;
6164
6165 dip->bytes = 0;
6166 do {
6167 dip->bytes += bvec->bv_len;
6168 bvec++;
6169 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6170
6171 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6172 bio->bi_private = dip;
6173 dip->errors = 0;
6174 dip->orig_bio = bio;
6175 atomic_set(&dip->pending_bios, 0);
6176
6177 if (write)
6178 bio->bi_end_io = btrfs_endio_direct_write;
6179 else
6180 bio->bi_end_io = btrfs_endio_direct_read;
6181
6182 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6183 if (!ret)
6184 return;
6185 free_ordered:
6186 /*
6187 * If this is a write, we need to clean up the reserved space and kill
6188 * the ordered extent.
6189 */
6190 if (write) {
6191 struct btrfs_ordered_extent *ordered;
6192 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6193 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6194 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6195 btrfs_free_reserved_extent(root, ordered->start,
6196 ordered->disk_len);
6197 btrfs_put_ordered_extent(ordered);
6198 btrfs_put_ordered_extent(ordered);
6199 }
6200 bio_endio(bio, ret);
6201 }
6202
6203 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6204 const struct iovec *iov, loff_t offset,
6205 unsigned long nr_segs)
6206 {
6207 int seg;
6208 int i;
6209 size_t size;
6210 unsigned long addr;
6211 unsigned blocksize_mask = root->sectorsize - 1;
6212 ssize_t retval = -EINVAL;
6213 loff_t end = offset;
6214
6215 if (offset & blocksize_mask)
6216 goto out;
6217
6218 /* Check the memory alignment. Blocks cannot straddle pages */
6219 for (seg = 0; seg < nr_segs; seg++) {
6220 addr = (unsigned long)iov[seg].iov_base;
6221 size = iov[seg].iov_len;
6222 end += size;
6223 if ((addr & blocksize_mask) || (size & blocksize_mask))
6224 goto out;
6225
6226 /* If this is a write we don't need to check anymore */
6227 if (rw & WRITE)
6228 continue;
6229
6230 /*
6231 * Check to make sure we don't have duplicate iov_base's in this
6232 * iovec, if so return EINVAL, otherwise we'll get csum errors
6233 * when reading back.
6234 */
6235 for (i = seg + 1; i < nr_segs; i++) {
6236 if (iov[seg].iov_base == iov[i].iov_base)
6237 goto out;
6238 }
6239 }
6240 retval = 0;
6241 out:
6242 return retval;
6243 }
6244 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6245 const struct iovec *iov, loff_t offset,
6246 unsigned long nr_segs)
6247 {
6248 struct file *file = iocb->ki_filp;
6249 struct inode *inode = file->f_mapping->host;
6250 struct btrfs_ordered_extent *ordered;
6251 struct extent_state *cached_state = NULL;
6252 u64 lockstart, lockend;
6253 ssize_t ret;
6254 int writing = rw & WRITE;
6255 int write_bits = 0;
6256 size_t count = iov_length(iov, nr_segs);
6257
6258 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6259 offset, nr_segs)) {
6260 return 0;
6261 }
6262
6263 lockstart = offset;
6264 lockend = offset + count - 1;
6265
6266 if (writing) {
6267 ret = btrfs_delalloc_reserve_space(inode, count);
6268 if (ret)
6269 goto out;
6270 }
6271
6272 while (1) {
6273 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6274 0, &cached_state, GFP_NOFS);
6275 /*
6276 * We're concerned with the entire range that we're going to be
6277 * doing DIO to, so we need to make sure theres no ordered
6278 * extents in this range.
6279 */
6280 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6281 lockend - lockstart + 1);
6282 if (!ordered)
6283 break;
6284 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6285 &cached_state, GFP_NOFS);
6286 btrfs_start_ordered_extent(inode, ordered, 1);
6287 btrfs_put_ordered_extent(ordered);
6288 cond_resched();
6289 }
6290
6291 /*
6292 * we don't use btrfs_set_extent_delalloc because we don't want
6293 * the dirty or uptodate bits
6294 */
6295 if (writing) {
6296 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6297 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6298 EXTENT_DELALLOC, 0, NULL, &cached_state,
6299 GFP_NOFS);
6300 if (ret) {
6301 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6302 lockend, EXTENT_LOCKED | write_bits,
6303 1, 0, &cached_state, GFP_NOFS);
6304 goto out;
6305 }
6306 }
6307
6308 free_extent_state(cached_state);
6309 cached_state = NULL;
6310
6311 ret = __blockdev_direct_IO(rw, iocb, inode,
6312 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6313 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6314 btrfs_submit_direct, 0);
6315
6316 if (ret < 0 && ret != -EIOCBQUEUED) {
6317 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6318 offset + iov_length(iov, nr_segs) - 1,
6319 EXTENT_LOCKED | write_bits, 1, 0,
6320 &cached_state, GFP_NOFS);
6321 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6322 /*
6323 * We're falling back to buffered, unlock the section we didn't
6324 * do IO on.
6325 */
6326 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6327 offset + iov_length(iov, nr_segs) - 1,
6328 EXTENT_LOCKED | write_bits, 1, 0,
6329 &cached_state, GFP_NOFS);
6330 }
6331 out:
6332 free_extent_state(cached_state);
6333 return ret;
6334 }
6335
6336 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6337 __u64 start, __u64 len)
6338 {
6339 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6340 }
6341
6342 int btrfs_readpage(struct file *file, struct page *page)
6343 {
6344 struct extent_io_tree *tree;
6345 tree = &BTRFS_I(page->mapping->host)->io_tree;
6346 return extent_read_full_page(tree, page, btrfs_get_extent);
6347 }
6348
6349 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6350 {
6351 struct extent_io_tree *tree;
6352
6353
6354 if (current->flags & PF_MEMALLOC) {
6355 redirty_page_for_writepage(wbc, page);
6356 unlock_page(page);
6357 return 0;
6358 }
6359 tree = &BTRFS_I(page->mapping->host)->io_tree;
6360 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6361 }
6362
6363 int btrfs_writepages(struct address_space *mapping,
6364 struct writeback_control *wbc)
6365 {
6366 struct extent_io_tree *tree;
6367
6368 tree = &BTRFS_I(mapping->host)->io_tree;
6369 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6370 }
6371
6372 static int
6373 btrfs_readpages(struct file *file, struct address_space *mapping,
6374 struct list_head *pages, unsigned nr_pages)
6375 {
6376 struct extent_io_tree *tree;
6377 tree = &BTRFS_I(mapping->host)->io_tree;
6378 return extent_readpages(tree, mapping, pages, nr_pages,
6379 btrfs_get_extent);
6380 }
6381 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6382 {
6383 struct extent_io_tree *tree;
6384 struct extent_map_tree *map;
6385 int ret;
6386
6387 tree = &BTRFS_I(page->mapping->host)->io_tree;
6388 map = &BTRFS_I(page->mapping->host)->extent_tree;
6389 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6390 if (ret == 1) {
6391 ClearPagePrivate(page);
6392 set_page_private(page, 0);
6393 page_cache_release(page);
6394 }
6395 return ret;
6396 }
6397
6398 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6399 {
6400 if (PageWriteback(page) || PageDirty(page))
6401 return 0;
6402 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6403 }
6404
6405 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6406 {
6407 struct extent_io_tree *tree;
6408 struct btrfs_ordered_extent *ordered;
6409 struct extent_state *cached_state = NULL;
6410 u64 page_start = page_offset(page);
6411 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6412
6413
6414 /*
6415 * we have the page locked, so new writeback can't start,
6416 * and the dirty bit won't be cleared while we are here.
6417 *
6418 * Wait for IO on this page so that we can safely clear
6419 * the PagePrivate2 bit and do ordered accounting
6420 */
6421 wait_on_page_writeback(page);
6422
6423 tree = &BTRFS_I(page->mapping->host)->io_tree;
6424 if (offset) {
6425 btrfs_releasepage(page, GFP_NOFS);
6426 return;
6427 }
6428 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6429 GFP_NOFS);
6430 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6431 page_offset(page));
6432 if (ordered) {
6433 /*
6434 * IO on this page will never be started, so we need
6435 * to account for any ordered extents now
6436 */
6437 clear_extent_bit(tree, page_start, page_end,
6438 EXTENT_DIRTY | EXTENT_DELALLOC |
6439 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6440 &cached_state, GFP_NOFS);
6441 /*
6442 * whoever cleared the private bit is responsible
6443 * for the finish_ordered_io
6444 */
6445 if (TestClearPagePrivate2(page)) {
6446 btrfs_finish_ordered_io(page->mapping->host,
6447 page_start, page_end);
6448 }
6449 btrfs_put_ordered_extent(ordered);
6450 cached_state = NULL;
6451 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6452 GFP_NOFS);
6453 }
6454 clear_extent_bit(tree, page_start, page_end,
6455 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6456 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6457 __btrfs_releasepage(page, GFP_NOFS);
6458
6459 ClearPageChecked(page);
6460 if (PagePrivate(page)) {
6461 ClearPagePrivate(page);
6462 set_page_private(page, 0);
6463 page_cache_release(page);
6464 }
6465 }
6466
6467 /*
6468 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6469 * called from a page fault handler when a page is first dirtied. Hence we must
6470 * be careful to check for EOF conditions here. We set the page up correctly
6471 * for a written page which means we get ENOSPC checking when writing into
6472 * holes and correct delalloc and unwritten extent mapping on filesystems that
6473 * support these features.
6474 *
6475 * We are not allowed to take the i_mutex here so we have to play games to
6476 * protect against truncate races as the page could now be beyond EOF. Because
6477 * vmtruncate() writes the inode size before removing pages, once we have the
6478 * page lock we can determine safely if the page is beyond EOF. If it is not
6479 * beyond EOF, then the page is guaranteed safe against truncation until we
6480 * unlock the page.
6481 */
6482 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6483 {
6484 struct page *page = vmf->page;
6485 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6486 struct btrfs_root *root = BTRFS_I(inode)->root;
6487 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6488 struct btrfs_ordered_extent *ordered;
6489 struct extent_state *cached_state = NULL;
6490 char *kaddr;
6491 unsigned long zero_start;
6492 loff_t size;
6493 int ret;
6494 u64 page_start;
6495 u64 page_end;
6496
6497 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6498 if (ret) {
6499 if (ret == -ENOMEM)
6500 ret = VM_FAULT_OOM;
6501 else /* -ENOSPC, -EIO, etc */
6502 ret = VM_FAULT_SIGBUS;
6503 goto out;
6504 }
6505
6506 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6507 again:
6508 lock_page(page);
6509 size = i_size_read(inode);
6510 page_start = page_offset(page);
6511 page_end = page_start + PAGE_CACHE_SIZE - 1;
6512
6513 if ((page->mapping != inode->i_mapping) ||
6514 (page_start >= size)) {
6515 /* page got truncated out from underneath us */
6516 goto out_unlock;
6517 }
6518 wait_on_page_writeback(page);
6519
6520 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6521 GFP_NOFS);
6522 set_page_extent_mapped(page);
6523
6524 /*
6525 * we can't set the delalloc bits if there are pending ordered
6526 * extents. Drop our locks and wait for them to finish
6527 */
6528 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6529 if (ordered) {
6530 unlock_extent_cached(io_tree, page_start, page_end,
6531 &cached_state, GFP_NOFS);
6532 unlock_page(page);
6533 btrfs_start_ordered_extent(inode, ordered, 1);
6534 btrfs_put_ordered_extent(ordered);
6535 goto again;
6536 }
6537
6538 /*
6539 * XXX - page_mkwrite gets called every time the page is dirtied, even
6540 * if it was already dirty, so for space accounting reasons we need to
6541 * clear any delalloc bits for the range we are fixing to save. There
6542 * is probably a better way to do this, but for now keep consistent with
6543 * prepare_pages in the normal write path.
6544 */
6545 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6546 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6547 0, 0, &cached_state, GFP_NOFS);
6548
6549 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6550 &cached_state);
6551 if (ret) {
6552 unlock_extent_cached(io_tree, page_start, page_end,
6553 &cached_state, GFP_NOFS);
6554 ret = VM_FAULT_SIGBUS;
6555 goto out_unlock;
6556 }
6557 ret = 0;
6558
6559 /* page is wholly or partially inside EOF */
6560 if (page_start + PAGE_CACHE_SIZE > size)
6561 zero_start = size & ~PAGE_CACHE_MASK;
6562 else
6563 zero_start = PAGE_CACHE_SIZE;
6564
6565 if (zero_start != PAGE_CACHE_SIZE) {
6566 kaddr = kmap(page);
6567 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6568 flush_dcache_page(page);
6569 kunmap(page);
6570 }
6571 ClearPageChecked(page);
6572 set_page_dirty(page);
6573 SetPageUptodate(page);
6574
6575 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6576 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6577
6578 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6579
6580 out_unlock:
6581 if (!ret)
6582 return VM_FAULT_LOCKED;
6583 unlock_page(page);
6584 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6585 out:
6586 return ret;
6587 }
6588
6589 static int btrfs_truncate(struct inode *inode)
6590 {
6591 struct btrfs_root *root = BTRFS_I(inode)->root;
6592 int ret;
6593 int err = 0;
6594 struct btrfs_trans_handle *trans;
6595 unsigned long nr;
6596 u64 mask = root->sectorsize - 1;
6597
6598 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6599 if (ret)
6600 return ret;
6601
6602 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6603 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6604
6605 trans = btrfs_start_transaction(root, 5);
6606 if (IS_ERR(trans))
6607 return PTR_ERR(trans);
6608
6609 btrfs_set_trans_block_group(trans, inode);
6610
6611 ret = btrfs_orphan_add(trans, inode);
6612 if (ret) {
6613 btrfs_end_transaction(trans, root);
6614 return ret;
6615 }
6616
6617 nr = trans->blocks_used;
6618 btrfs_end_transaction(trans, root);
6619 btrfs_btree_balance_dirty(root, nr);
6620
6621 /* Now start a transaction for the truncate */
6622 trans = btrfs_start_transaction(root, 0);
6623 if (IS_ERR(trans))
6624 return PTR_ERR(trans);
6625 btrfs_set_trans_block_group(trans, inode);
6626 trans->block_rsv = root->orphan_block_rsv;
6627
6628 /*
6629 * setattr is responsible for setting the ordered_data_close flag,
6630 * but that is only tested during the last file release. That
6631 * could happen well after the next commit, leaving a great big
6632 * window where new writes may get lost if someone chooses to write
6633 * to this file after truncating to zero
6634 *
6635 * The inode doesn't have any dirty data here, and so if we commit
6636 * this is a noop. If someone immediately starts writing to the inode
6637 * it is very likely we'll catch some of their writes in this
6638 * transaction, and the commit will find this file on the ordered
6639 * data list with good things to send down.
6640 *
6641 * This is a best effort solution, there is still a window where
6642 * using truncate to replace the contents of the file will
6643 * end up with a zero length file after a crash.
6644 */
6645 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6646 btrfs_add_ordered_operation(trans, root, inode);
6647
6648 while (1) {
6649 if (!trans) {
6650 trans = btrfs_start_transaction(root, 0);
6651 if (IS_ERR(trans))
6652 return PTR_ERR(trans);
6653 btrfs_set_trans_block_group(trans, inode);
6654 trans->block_rsv = root->orphan_block_rsv;
6655 }
6656
6657 ret = btrfs_block_rsv_check(trans, root,
6658 root->orphan_block_rsv, 0, 5);
6659 if (ret == -EAGAIN) {
6660 ret = btrfs_commit_transaction(trans, root);
6661 if (ret)
6662 return ret;
6663 trans = NULL;
6664 continue;
6665 } else if (ret) {
6666 err = ret;
6667 break;
6668 }
6669
6670 ret = btrfs_truncate_inode_items(trans, root, inode,
6671 inode->i_size,
6672 BTRFS_EXTENT_DATA_KEY);
6673 if (ret != -EAGAIN) {
6674 err = ret;
6675 break;
6676 }
6677
6678 ret = btrfs_update_inode(trans, root, inode);
6679 if (ret) {
6680 err = ret;
6681 break;
6682 }
6683
6684 nr = trans->blocks_used;
6685 btrfs_end_transaction(trans, root);
6686 trans = NULL;
6687 btrfs_btree_balance_dirty(root, nr);
6688 }
6689
6690 if (ret == 0 && inode->i_nlink > 0) {
6691 ret = btrfs_orphan_del(trans, inode);
6692 if (ret)
6693 err = ret;
6694 } else if (ret && inode->i_nlink > 0) {
6695 /*
6696 * Failed to do the truncate, remove us from the in memory
6697 * orphan list.
6698 */
6699 ret = btrfs_orphan_del(NULL, inode);
6700 }
6701
6702 ret = btrfs_update_inode(trans, root, inode);
6703 if (ret && !err)
6704 err = ret;
6705
6706 nr = trans->blocks_used;
6707 ret = btrfs_end_transaction_throttle(trans, root);
6708 if (ret && !err)
6709 err = ret;
6710 btrfs_btree_balance_dirty(root, nr);
6711
6712 return err;
6713 }
6714
6715 /*
6716 * create a new subvolume directory/inode (helper for the ioctl).
6717 */
6718 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6719 struct btrfs_root *new_root,
6720 u64 new_dirid, u64 alloc_hint)
6721 {
6722 struct inode *inode;
6723 int err;
6724 u64 index = 0;
6725
6726 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6727 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6728 if (IS_ERR(inode))
6729 return PTR_ERR(inode);
6730 inode->i_op = &btrfs_dir_inode_operations;
6731 inode->i_fop = &btrfs_dir_file_operations;
6732
6733 inode->i_nlink = 1;
6734 btrfs_i_size_write(inode, 0);
6735
6736 err = btrfs_update_inode(trans, new_root, inode);
6737 BUG_ON(err);
6738
6739 iput(inode);
6740 return 0;
6741 }
6742
6743 /* helper function for file defrag and space balancing. This
6744 * forces readahead on a given range of bytes in an inode
6745 */
6746 unsigned long btrfs_force_ra(struct address_space *mapping,
6747 struct file_ra_state *ra, struct file *file,
6748 pgoff_t offset, pgoff_t last_index)
6749 {
6750 pgoff_t req_size = last_index - offset + 1;
6751
6752 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6753 return offset + req_size;
6754 }
6755
6756 struct inode *btrfs_alloc_inode(struct super_block *sb)
6757 {
6758 struct btrfs_inode *ei;
6759 struct inode *inode;
6760
6761 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6762 if (!ei)
6763 return NULL;
6764
6765 ei->root = NULL;
6766 ei->space_info = NULL;
6767 ei->generation = 0;
6768 ei->sequence = 0;
6769 ei->last_trans = 0;
6770 ei->last_sub_trans = 0;
6771 ei->logged_trans = 0;
6772 ei->delalloc_bytes = 0;
6773 ei->reserved_bytes = 0;
6774 ei->disk_i_size = 0;
6775 ei->flags = 0;
6776 ei->index_cnt = (u64)-1;
6777 ei->last_unlink_trans = 0;
6778
6779 atomic_set(&ei->outstanding_extents, 0);
6780 atomic_set(&ei->reserved_extents, 0);
6781
6782 ei->ordered_data_close = 0;
6783 ei->orphan_meta_reserved = 0;
6784 ei->dummy_inode = 0;
6785 ei->force_compress = BTRFS_COMPRESS_NONE;
6786
6787 inode = &ei->vfs_inode;
6788 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6789 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6790 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6791 mutex_init(&ei->log_mutex);
6792 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6793 INIT_LIST_HEAD(&ei->i_orphan);
6794 INIT_LIST_HEAD(&ei->delalloc_inodes);
6795 INIT_LIST_HEAD(&ei->ordered_operations);
6796 RB_CLEAR_NODE(&ei->rb_node);
6797
6798 return inode;
6799 }
6800
6801 static void btrfs_i_callback(struct rcu_head *head)
6802 {
6803 struct inode *inode = container_of(head, struct inode, i_rcu);
6804 INIT_LIST_HEAD(&inode->i_dentry);
6805 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6806 }
6807
6808 void btrfs_destroy_inode(struct inode *inode)
6809 {
6810 struct btrfs_ordered_extent *ordered;
6811 struct btrfs_root *root = BTRFS_I(inode)->root;
6812
6813 WARN_ON(!list_empty(&inode->i_dentry));
6814 WARN_ON(inode->i_data.nrpages);
6815 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6816 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6817
6818 /*
6819 * This can happen where we create an inode, but somebody else also
6820 * created the same inode and we need to destroy the one we already
6821 * created.
6822 */
6823 if (!root)
6824 goto free;
6825
6826 /*
6827 * Make sure we're properly removed from the ordered operation
6828 * lists.
6829 */
6830 smp_mb();
6831 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6832 spin_lock(&root->fs_info->ordered_extent_lock);
6833 list_del_init(&BTRFS_I(inode)->ordered_operations);
6834 spin_unlock(&root->fs_info->ordered_extent_lock);
6835 }
6836
6837 if (root == root->fs_info->tree_root) {
6838 struct btrfs_block_group_cache *block_group;
6839
6840 block_group = btrfs_lookup_block_group(root->fs_info,
6841 BTRFS_I(inode)->block_group);
6842 if (block_group && block_group->inode == inode) {
6843 spin_lock(&block_group->lock);
6844 block_group->inode = NULL;
6845 spin_unlock(&block_group->lock);
6846 btrfs_put_block_group(block_group);
6847 } else if (block_group) {
6848 btrfs_put_block_group(block_group);
6849 }
6850 }
6851
6852 spin_lock(&root->orphan_lock);
6853 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6854 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6855 inode->i_ino);
6856 list_del_init(&BTRFS_I(inode)->i_orphan);
6857 }
6858 spin_unlock(&root->orphan_lock);
6859
6860 while (1) {
6861 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6862 if (!ordered)
6863 break;
6864 else {
6865 printk(KERN_ERR "btrfs found ordered "
6866 "extent %llu %llu on inode cleanup\n",
6867 (unsigned long long)ordered->file_offset,
6868 (unsigned long long)ordered->len);
6869 btrfs_remove_ordered_extent(inode, ordered);
6870 btrfs_put_ordered_extent(ordered);
6871 btrfs_put_ordered_extent(ordered);
6872 }
6873 }
6874 inode_tree_del(inode);
6875 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6876 free:
6877 call_rcu(&inode->i_rcu, btrfs_i_callback);
6878 }
6879
6880 int btrfs_drop_inode(struct inode *inode)
6881 {
6882 struct btrfs_root *root = BTRFS_I(inode)->root;
6883
6884 if (btrfs_root_refs(&root->root_item) == 0 &&
6885 root != root->fs_info->tree_root)
6886 return 1;
6887 else
6888 return generic_drop_inode(inode);
6889 }
6890
6891 static void init_once(void *foo)
6892 {
6893 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6894
6895 inode_init_once(&ei->vfs_inode);
6896 }
6897
6898 void btrfs_destroy_cachep(void)
6899 {
6900 if (btrfs_inode_cachep)
6901 kmem_cache_destroy(btrfs_inode_cachep);
6902 if (btrfs_trans_handle_cachep)
6903 kmem_cache_destroy(btrfs_trans_handle_cachep);
6904 if (btrfs_transaction_cachep)
6905 kmem_cache_destroy(btrfs_transaction_cachep);
6906 if (btrfs_path_cachep)
6907 kmem_cache_destroy(btrfs_path_cachep);
6908 if (btrfs_free_space_cachep)
6909 kmem_cache_destroy(btrfs_free_space_cachep);
6910 }
6911
6912 int btrfs_init_cachep(void)
6913 {
6914 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6915 sizeof(struct btrfs_inode), 0,
6916 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6917 if (!btrfs_inode_cachep)
6918 goto fail;
6919
6920 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6921 sizeof(struct btrfs_trans_handle), 0,
6922 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6923 if (!btrfs_trans_handle_cachep)
6924 goto fail;
6925
6926 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6927 sizeof(struct btrfs_transaction), 0,
6928 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6929 if (!btrfs_transaction_cachep)
6930 goto fail;
6931
6932 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6933 sizeof(struct btrfs_path), 0,
6934 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6935 if (!btrfs_path_cachep)
6936 goto fail;
6937
6938 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6939 sizeof(struct btrfs_free_space), 0,
6940 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6941 if (!btrfs_free_space_cachep)
6942 goto fail;
6943
6944 return 0;
6945 fail:
6946 btrfs_destroy_cachep();
6947 return -ENOMEM;
6948 }
6949
6950 static int btrfs_getattr(struct vfsmount *mnt,
6951 struct dentry *dentry, struct kstat *stat)
6952 {
6953 struct inode *inode = dentry->d_inode;
6954 generic_fillattr(inode, stat);
6955 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6956 stat->blksize = PAGE_CACHE_SIZE;
6957 stat->blocks = (inode_get_bytes(inode) +
6958 BTRFS_I(inode)->delalloc_bytes) >> 9;
6959 return 0;
6960 }
6961
6962 /*
6963 * If a file is moved, it will inherit the cow and compression flags of the new
6964 * directory.
6965 */
6966 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6967 {
6968 struct btrfs_inode *b_dir = BTRFS_I(dir);
6969 struct btrfs_inode *b_inode = BTRFS_I(inode);
6970
6971 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6972 b_inode->flags |= BTRFS_INODE_NODATACOW;
6973 else
6974 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6975
6976 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6977 b_inode->flags |= BTRFS_INODE_COMPRESS;
6978 else
6979 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6980 }
6981
6982 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6983 struct inode *new_dir, struct dentry *new_dentry)
6984 {
6985 struct btrfs_trans_handle *trans;
6986 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6987 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6988 struct inode *new_inode = new_dentry->d_inode;
6989 struct inode *old_inode = old_dentry->d_inode;
6990 struct timespec ctime = CURRENT_TIME;
6991 u64 index = 0;
6992 u64 root_objectid;
6993 int ret;
6994
6995 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6996 return -EPERM;
6997
6998 /* we only allow rename subvolume link between subvolumes */
6999 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7000 return -EXDEV;
7001
7002 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7003 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
7004 return -ENOTEMPTY;
7005
7006 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7007 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7008 return -ENOTEMPTY;
7009 /*
7010 * we're using rename to replace one file with another.
7011 * and the replacement file is large. Start IO on it now so
7012 * we don't add too much work to the end of the transaction
7013 */
7014 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7015 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7016 filemap_flush(old_inode->i_mapping);
7017
7018 /* close the racy window with snapshot create/destroy ioctl */
7019 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7020 down_read(&root->fs_info->subvol_sem);
7021 /*
7022 * We want to reserve the absolute worst case amount of items. So if
7023 * both inodes are subvols and we need to unlink them then that would
7024 * require 4 item modifications, but if they are both normal inodes it
7025 * would require 5 item modifications, so we'll assume their normal
7026 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7027 * should cover the worst case number of items we'll modify.
7028 */
7029 trans = btrfs_start_transaction(root, 20);
7030 if (IS_ERR(trans)) {
7031 ret = PTR_ERR(trans);
7032 goto out_notrans;
7033 }
7034
7035 btrfs_set_trans_block_group(trans, new_dir);
7036
7037 if (dest != root)
7038 btrfs_record_root_in_trans(trans, dest);
7039
7040 ret = btrfs_set_inode_index(new_dir, &index);
7041 if (ret)
7042 goto out_fail;
7043
7044 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7045 /* force full log commit if subvolume involved. */
7046 root->fs_info->last_trans_log_full_commit = trans->transid;
7047 } else {
7048 ret = btrfs_insert_inode_ref(trans, dest,
7049 new_dentry->d_name.name,
7050 new_dentry->d_name.len,
7051 old_inode->i_ino,
7052 new_dir->i_ino, index);
7053 if (ret)
7054 goto out_fail;
7055 /*
7056 * this is an ugly little race, but the rename is required
7057 * to make sure that if we crash, the inode is either at the
7058 * old name or the new one. pinning the log transaction lets
7059 * us make sure we don't allow a log commit to come in after
7060 * we unlink the name but before we add the new name back in.
7061 */
7062 btrfs_pin_log_trans(root);
7063 }
7064 /*
7065 * make sure the inode gets flushed if it is replacing
7066 * something.
7067 */
7068 if (new_inode && new_inode->i_size &&
7069 old_inode && S_ISREG(old_inode->i_mode)) {
7070 btrfs_add_ordered_operation(trans, root, old_inode);
7071 }
7072
7073 old_dir->i_ctime = old_dir->i_mtime = ctime;
7074 new_dir->i_ctime = new_dir->i_mtime = ctime;
7075 old_inode->i_ctime = ctime;
7076
7077 if (old_dentry->d_parent != new_dentry->d_parent)
7078 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7079
7080 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7081 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7082 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7083 old_dentry->d_name.name,
7084 old_dentry->d_name.len);
7085 } else {
7086 ret = __btrfs_unlink_inode(trans, root, old_dir,
7087 old_dentry->d_inode,
7088 old_dentry->d_name.name,
7089 old_dentry->d_name.len);
7090 if (!ret)
7091 ret = btrfs_update_inode(trans, root, old_inode);
7092 }
7093 BUG_ON(ret);
7094
7095 if (new_inode) {
7096 new_inode->i_ctime = CURRENT_TIME;
7097 if (unlikely(new_inode->i_ino ==
7098 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7099 root_objectid = BTRFS_I(new_inode)->location.objectid;
7100 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7101 root_objectid,
7102 new_dentry->d_name.name,
7103 new_dentry->d_name.len);
7104 BUG_ON(new_inode->i_nlink == 0);
7105 } else {
7106 ret = btrfs_unlink_inode(trans, dest, new_dir,
7107 new_dentry->d_inode,
7108 new_dentry->d_name.name,
7109 new_dentry->d_name.len);
7110 }
7111 BUG_ON(ret);
7112 if (new_inode->i_nlink == 0) {
7113 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7114 BUG_ON(ret);
7115 }
7116 }
7117
7118 fixup_inode_flags(new_dir, old_inode);
7119
7120 ret = btrfs_add_link(trans, new_dir, old_inode,
7121 new_dentry->d_name.name,
7122 new_dentry->d_name.len, 0, index);
7123 BUG_ON(ret);
7124
7125 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7126 struct dentry *parent = dget_parent(new_dentry);
7127 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7128 dput(parent);
7129 btrfs_end_log_trans(root);
7130 }
7131 out_fail:
7132 btrfs_end_transaction_throttle(trans, root);
7133 out_notrans:
7134 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7135 up_read(&root->fs_info->subvol_sem);
7136
7137 return ret;
7138 }
7139
7140 /*
7141 * some fairly slow code that needs optimization. This walks the list
7142 * of all the inodes with pending delalloc and forces them to disk.
7143 */
7144 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7145 {
7146 struct list_head *head = &root->fs_info->delalloc_inodes;
7147 struct btrfs_inode *binode;
7148 struct inode *inode;
7149
7150 if (root->fs_info->sb->s_flags & MS_RDONLY)
7151 return -EROFS;
7152
7153 spin_lock(&root->fs_info->delalloc_lock);
7154 while (!list_empty(head)) {
7155 binode = list_entry(head->next, struct btrfs_inode,
7156 delalloc_inodes);
7157 inode = igrab(&binode->vfs_inode);
7158 if (!inode)
7159 list_del_init(&binode->delalloc_inodes);
7160 spin_unlock(&root->fs_info->delalloc_lock);
7161 if (inode) {
7162 filemap_flush(inode->i_mapping);
7163 if (delay_iput)
7164 btrfs_add_delayed_iput(inode);
7165 else
7166 iput(inode);
7167 }
7168 cond_resched();
7169 spin_lock(&root->fs_info->delalloc_lock);
7170 }
7171 spin_unlock(&root->fs_info->delalloc_lock);
7172
7173 /* the filemap_flush will queue IO into the worker threads, but
7174 * we have to make sure the IO is actually started and that
7175 * ordered extents get created before we return
7176 */
7177 atomic_inc(&root->fs_info->async_submit_draining);
7178 while (atomic_read(&root->fs_info->nr_async_submits) ||
7179 atomic_read(&root->fs_info->async_delalloc_pages)) {
7180 wait_event(root->fs_info->async_submit_wait,
7181 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7182 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7183 }
7184 atomic_dec(&root->fs_info->async_submit_draining);
7185 return 0;
7186 }
7187
7188 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7189 int sync)
7190 {
7191 struct btrfs_inode *binode;
7192 struct inode *inode = NULL;
7193
7194 spin_lock(&root->fs_info->delalloc_lock);
7195 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7196 binode = list_entry(root->fs_info->delalloc_inodes.next,
7197 struct btrfs_inode, delalloc_inodes);
7198 inode = igrab(&binode->vfs_inode);
7199 if (inode) {
7200 list_move_tail(&binode->delalloc_inodes,
7201 &root->fs_info->delalloc_inodes);
7202 break;
7203 }
7204
7205 list_del_init(&binode->delalloc_inodes);
7206 cond_resched_lock(&root->fs_info->delalloc_lock);
7207 }
7208 spin_unlock(&root->fs_info->delalloc_lock);
7209
7210 if (inode) {
7211 if (sync) {
7212 filemap_write_and_wait(inode->i_mapping);
7213 /*
7214 * We have to do this because compression doesn't
7215 * actually set PG_writeback until it submits the pages
7216 * for IO, which happens in an async thread, so we could
7217 * race and not actually wait for any writeback pages
7218 * because they've not been submitted yet. Technically
7219 * this could still be the case for the ordered stuff
7220 * since the async thread may not have started to do its
7221 * work yet. If this becomes the case then we need to
7222 * figure out a way to make sure that in writepage we
7223 * wait for any async pages to be submitted before
7224 * returning so that fdatawait does what its supposed to
7225 * do.
7226 */
7227 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7228 } else {
7229 filemap_flush(inode->i_mapping);
7230 }
7231 if (delay_iput)
7232 btrfs_add_delayed_iput(inode);
7233 else
7234 iput(inode);
7235 return 1;
7236 }
7237 return 0;
7238 }
7239
7240 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7241 const char *symname)
7242 {
7243 struct btrfs_trans_handle *trans;
7244 struct btrfs_root *root = BTRFS_I(dir)->root;
7245 struct btrfs_path *path;
7246 struct btrfs_key key;
7247 struct inode *inode = NULL;
7248 int err;
7249 int drop_inode = 0;
7250 u64 objectid;
7251 u64 index = 0 ;
7252 int name_len;
7253 int datasize;
7254 unsigned long ptr;
7255 struct btrfs_file_extent_item *ei;
7256 struct extent_buffer *leaf;
7257 unsigned long nr = 0;
7258
7259 name_len = strlen(symname) + 1;
7260 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7261 return -ENAMETOOLONG;
7262
7263 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7264 if (err)
7265 return err;
7266 /*
7267 * 2 items for inode item and ref
7268 * 2 items for dir items
7269 * 1 item for xattr if selinux is on
7270 */
7271 trans = btrfs_start_transaction(root, 5);
7272 if (IS_ERR(trans))
7273 return PTR_ERR(trans);
7274
7275 btrfs_set_trans_block_group(trans, dir);
7276
7277 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7278 dentry->d_name.len, dir->i_ino, objectid,
7279 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7280 &index);
7281 err = PTR_ERR(inode);
7282 if (IS_ERR(inode))
7283 goto out_unlock;
7284
7285 err = btrfs_init_inode_security(trans, inode, dir);
7286 if (err) {
7287 drop_inode = 1;
7288 goto out_unlock;
7289 }
7290
7291 btrfs_set_trans_block_group(trans, inode);
7292 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7293 if (err)
7294 drop_inode = 1;
7295 else {
7296 inode->i_mapping->a_ops = &btrfs_aops;
7297 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7298 inode->i_fop = &btrfs_file_operations;
7299 inode->i_op = &btrfs_file_inode_operations;
7300 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7301 }
7302 btrfs_update_inode_block_group(trans, inode);
7303 btrfs_update_inode_block_group(trans, dir);
7304 if (drop_inode)
7305 goto out_unlock;
7306
7307 path = btrfs_alloc_path();
7308 BUG_ON(!path);
7309 key.objectid = inode->i_ino;
7310 key.offset = 0;
7311 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7312 datasize = btrfs_file_extent_calc_inline_size(name_len);
7313 err = btrfs_insert_empty_item(trans, root, path, &key,
7314 datasize);
7315 if (err) {
7316 drop_inode = 1;
7317 goto out_unlock;
7318 }
7319 leaf = path->nodes[0];
7320 ei = btrfs_item_ptr(leaf, path->slots[0],
7321 struct btrfs_file_extent_item);
7322 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7323 btrfs_set_file_extent_type(leaf, ei,
7324 BTRFS_FILE_EXTENT_INLINE);
7325 btrfs_set_file_extent_encryption(leaf, ei, 0);
7326 btrfs_set_file_extent_compression(leaf, ei, 0);
7327 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7328 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7329
7330 ptr = btrfs_file_extent_inline_start(ei);
7331 write_extent_buffer(leaf, symname, ptr, name_len);
7332 btrfs_mark_buffer_dirty(leaf);
7333 btrfs_free_path(path);
7334
7335 inode->i_op = &btrfs_symlink_inode_operations;
7336 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7337 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7338 inode_set_bytes(inode, name_len);
7339 btrfs_i_size_write(inode, name_len - 1);
7340 err = btrfs_update_inode(trans, root, inode);
7341 if (err)
7342 drop_inode = 1;
7343
7344 out_unlock:
7345 nr = trans->blocks_used;
7346 btrfs_end_transaction_throttle(trans, root);
7347 if (drop_inode) {
7348 inode_dec_link_count(inode);
7349 iput(inode);
7350 }
7351 btrfs_btree_balance_dirty(root, nr);
7352 return err;
7353 }
7354
7355 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7356 u64 start, u64 num_bytes, u64 min_size,
7357 loff_t actual_len, u64 *alloc_hint,
7358 struct btrfs_trans_handle *trans)
7359 {
7360 struct btrfs_root *root = BTRFS_I(inode)->root;
7361 struct btrfs_key ins;
7362 u64 cur_offset = start;
7363 u64 i_size;
7364 int ret = 0;
7365 bool own_trans = true;
7366
7367 if (trans)
7368 own_trans = false;
7369 while (num_bytes > 0) {
7370 if (own_trans) {
7371 trans = btrfs_start_transaction(root, 3);
7372 if (IS_ERR(trans)) {
7373 ret = PTR_ERR(trans);
7374 break;
7375 }
7376 }
7377
7378 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7379 0, *alloc_hint, (u64)-1, &ins, 1);
7380 if (ret) {
7381 if (own_trans)
7382 btrfs_end_transaction(trans, root);
7383 break;
7384 }
7385
7386 ret = insert_reserved_file_extent(trans, inode,
7387 cur_offset, ins.objectid,
7388 ins.offset, ins.offset,
7389 ins.offset, 0, 0, 0,
7390 BTRFS_FILE_EXTENT_PREALLOC);
7391 BUG_ON(ret);
7392 btrfs_drop_extent_cache(inode, cur_offset,
7393 cur_offset + ins.offset -1, 0);
7394
7395 num_bytes -= ins.offset;
7396 cur_offset += ins.offset;
7397 *alloc_hint = ins.objectid + ins.offset;
7398
7399 inode->i_ctime = CURRENT_TIME;
7400 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7401 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7402 (actual_len > inode->i_size) &&
7403 (cur_offset > inode->i_size)) {
7404 if (cur_offset > actual_len)
7405 i_size = actual_len;
7406 else
7407 i_size = cur_offset;
7408 i_size_write(inode, i_size);
7409 btrfs_ordered_update_i_size(inode, i_size, NULL);
7410 }
7411
7412 ret = btrfs_update_inode(trans, root, inode);
7413 BUG_ON(ret);
7414
7415 if (own_trans)
7416 btrfs_end_transaction(trans, root);
7417 }
7418 return ret;
7419 }
7420
7421 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7422 u64 start, u64 num_bytes, u64 min_size,
7423 loff_t actual_len, u64 *alloc_hint)
7424 {
7425 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7426 min_size, actual_len, alloc_hint,
7427 NULL);
7428 }
7429
7430 int btrfs_prealloc_file_range_trans(struct inode *inode,
7431 struct btrfs_trans_handle *trans, int mode,
7432 u64 start, u64 num_bytes, u64 min_size,
7433 loff_t actual_len, u64 *alloc_hint)
7434 {
7435 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7436 min_size, actual_len, alloc_hint, trans);
7437 }
7438
7439 static int btrfs_set_page_dirty(struct page *page)
7440 {
7441 return __set_page_dirty_nobuffers(page);
7442 }
7443
7444 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7445 {
7446 struct btrfs_root *root = BTRFS_I(inode)->root;
7447
7448 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7449 return -EROFS;
7450 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7451 return -EACCES;
7452 return generic_permission(inode, mask, flags, btrfs_check_acl);
7453 }
7454
7455 static const struct inode_operations btrfs_dir_inode_operations = {
7456 .getattr = btrfs_getattr,
7457 .lookup = btrfs_lookup,
7458 .create = btrfs_create,
7459 .unlink = btrfs_unlink,
7460 .link = btrfs_link,
7461 .mkdir = btrfs_mkdir,
7462 .rmdir = btrfs_rmdir,
7463 .rename = btrfs_rename,
7464 .symlink = btrfs_symlink,
7465 .setattr = btrfs_setattr,
7466 .mknod = btrfs_mknod,
7467 .setxattr = btrfs_setxattr,
7468 .getxattr = btrfs_getxattr,
7469 .listxattr = btrfs_listxattr,
7470 .removexattr = btrfs_removexattr,
7471 .permission = btrfs_permission,
7472 };
7473 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7474 .lookup = btrfs_lookup,
7475 .permission = btrfs_permission,
7476 };
7477
7478 static const struct file_operations btrfs_dir_file_operations = {
7479 .llseek = generic_file_llseek,
7480 .read = generic_read_dir,
7481 .readdir = btrfs_real_readdir,
7482 .unlocked_ioctl = btrfs_ioctl,
7483 #ifdef CONFIG_COMPAT
7484 .compat_ioctl = btrfs_ioctl,
7485 #endif
7486 .release = btrfs_release_file,
7487 .fsync = btrfs_sync_file,
7488 };
7489
7490 static struct extent_io_ops btrfs_extent_io_ops = {
7491 .fill_delalloc = run_delalloc_range,
7492 .submit_bio_hook = btrfs_submit_bio_hook,
7493 .merge_bio_hook = btrfs_merge_bio_hook,
7494 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7495 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7496 .writepage_start_hook = btrfs_writepage_start_hook,
7497 .readpage_io_failed_hook = btrfs_io_failed_hook,
7498 .set_bit_hook = btrfs_set_bit_hook,
7499 .clear_bit_hook = btrfs_clear_bit_hook,
7500 .merge_extent_hook = btrfs_merge_extent_hook,
7501 .split_extent_hook = btrfs_split_extent_hook,
7502 };
7503
7504 /*
7505 * btrfs doesn't support the bmap operation because swapfiles
7506 * use bmap to make a mapping of extents in the file. They assume
7507 * these extents won't change over the life of the file and they
7508 * use the bmap result to do IO directly to the drive.
7509 *
7510 * the btrfs bmap call would return logical addresses that aren't
7511 * suitable for IO and they also will change frequently as COW
7512 * operations happen. So, swapfile + btrfs == corruption.
7513 *
7514 * For now we're avoiding this by dropping bmap.
7515 */
7516 static const struct address_space_operations btrfs_aops = {
7517 .readpage = btrfs_readpage,
7518 .writepage = btrfs_writepage,
7519 .writepages = btrfs_writepages,
7520 .readpages = btrfs_readpages,
7521 .sync_page = block_sync_page,
7522 .direct_IO = btrfs_direct_IO,
7523 .invalidatepage = btrfs_invalidatepage,
7524 .releasepage = btrfs_releasepage,
7525 .set_page_dirty = btrfs_set_page_dirty,
7526 .error_remove_page = generic_error_remove_page,
7527 };
7528
7529 static const struct address_space_operations btrfs_symlink_aops = {
7530 .readpage = btrfs_readpage,
7531 .writepage = btrfs_writepage,
7532 .invalidatepage = btrfs_invalidatepage,
7533 .releasepage = btrfs_releasepage,
7534 };
7535
7536 static const struct inode_operations btrfs_file_inode_operations = {
7537 .getattr = btrfs_getattr,
7538 .setattr = btrfs_setattr,
7539 .setxattr = btrfs_setxattr,
7540 .getxattr = btrfs_getxattr,
7541 .listxattr = btrfs_listxattr,
7542 .removexattr = btrfs_removexattr,
7543 .permission = btrfs_permission,
7544 .fiemap = btrfs_fiemap,
7545 };
7546 static const struct inode_operations btrfs_special_inode_operations = {
7547 .getattr = btrfs_getattr,
7548 .setattr = btrfs_setattr,
7549 .permission = btrfs_permission,
7550 .setxattr = btrfs_setxattr,
7551 .getxattr = btrfs_getxattr,
7552 .listxattr = btrfs_listxattr,
7553 .removexattr = btrfs_removexattr,
7554 };
7555 static const struct inode_operations btrfs_symlink_inode_operations = {
7556 .readlink = generic_readlink,
7557 .follow_link = page_follow_link_light,
7558 .put_link = page_put_link,
7559 .getattr = btrfs_getattr,
7560 .permission = btrfs_permission,
7561 .setxattr = btrfs_setxattr,
7562 .getxattr = btrfs_getxattr,
7563 .listxattr = btrfs_listxattr,
7564 .removexattr = btrfs_removexattr,
7565 };
7566
7567 const struct dentry_operations btrfs_dentry_operations = {
7568 .d_delete = btrfs_dentry_delete,
7569 };
This page took 0.29003 seconds and 6 git commands to generate.