Btrfs: Fix bookend extent race v2
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "compat.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57 };
58
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_bit_radix_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74
75 #define S_SHIFT 12
76 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
78 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
79 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
80 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
81 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
82 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
83 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
84 };
85
86 static void btrfs_truncate(struct inode *inode);
87 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
88
89 /*
90 * a very lame attempt at stopping writes when the FS is 85% full. There
91 * are countless ways this is incorrect, but it is better than nothing.
92 */
93 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
94 int for_del)
95 {
96 u64 total;
97 u64 used;
98 u64 thresh;
99 unsigned long flags;
100 int ret = 0;
101
102 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
103 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
104 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
105 if (for_del)
106 thresh = total * 90;
107 else
108 thresh = total * 85;
109
110 do_div(thresh, 100);
111
112 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
113 ret = -ENOSPC;
114 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
115 return ret;
116 }
117
118 /*
119 * this does all the hard work for inserting an inline extent into
120 * the btree. The caller should have done a btrfs_drop_extents so that
121 * no overlapping inline items exist in the btree
122 */
123 static int noinline insert_inline_extent(struct btrfs_trans_handle *trans,
124 struct btrfs_root *root, struct inode *inode,
125 u64 start, size_t size, size_t compressed_size,
126 struct page **compressed_pages)
127 {
128 struct btrfs_key key;
129 struct btrfs_path *path;
130 struct extent_buffer *leaf;
131 struct page *page = NULL;
132 char *kaddr;
133 unsigned long ptr;
134 struct btrfs_file_extent_item *ei;
135 int err = 0;
136 int ret;
137 size_t cur_size = size;
138 size_t datasize;
139 unsigned long offset;
140 int use_compress = 0;
141
142 if (compressed_size && compressed_pages) {
143 use_compress = 1;
144 cur_size = compressed_size;
145 }
146
147 path = btrfs_alloc_path(); if (!path)
148 return -ENOMEM;
149
150 btrfs_set_trans_block_group(trans, inode);
151
152 key.objectid = inode->i_ino;
153 key.offset = start;
154 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
155 inode_add_bytes(inode, size);
156 datasize = btrfs_file_extent_calc_inline_size(cur_size);
157
158 inode_add_bytes(inode, size);
159 ret = btrfs_insert_empty_item(trans, root, path, &key,
160 datasize);
161 BUG_ON(ret);
162 if (ret) {
163 err = ret;
164 printk("got bad ret %d\n", ret);
165 goto fail;
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
177 if (use_compress) {
178 struct page *cpage;
179 int i = 0;
180 while(compressed_size > 0) {
181 cpage = compressed_pages[i];
182 cur_size = min(compressed_size,
183 PAGE_CACHE_SIZE);
184
185 kaddr = kmap(cpage);
186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 kunmap(cpage);
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
194 BTRFS_COMPRESS_ZLIB);
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
199 kaddr = kmap_atomic(page, KM_USER0);
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 kunmap_atomic(kaddr, KM_USER0);
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_free_path(path);
207
208 BTRFS_I(inode)->disk_i_size = inode->i_size;
209 btrfs_update_inode(trans, root, inode);
210 return 0;
211 fail:
212 btrfs_free_path(path);
213 return err;
214 }
215
216
217 /*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
222 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
225 size_t compressed_size,
226 struct page **compressed_pages)
227 {
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
233 u64 hint_byte;
234 u64 data_len = inline_len;
235 int ret;
236
237 if (compressed_size)
238 data_len = compressed_size;
239
240 if (start > 0 ||
241 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
242 (!compressed_size &&
243 (actual_end & (root->sectorsize - 1)) == 0) ||
244 end + 1 < isize ||
245 data_len > root->fs_info->max_inline) {
246 return 1;
247 }
248
249 ret = btrfs_drop_extents(trans, root, inode, start,
250 aligned_end, aligned_end, &hint_byte);
251 BUG_ON(ret);
252
253 if (isize > actual_end)
254 inline_len = min_t(u64, isize, actual_end);
255 ret = insert_inline_extent(trans, root, inode, start,
256 inline_len, compressed_size,
257 compressed_pages);
258 BUG_ON(ret);
259 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
260 return 0;
261 }
262
263 /*
264 * when extent_io.c finds a delayed allocation range in the file,
265 * the call backs end up in this code. The basic idea is to
266 * allocate extents on disk for the range, and create ordered data structs
267 * in ram to track those extents.
268 *
269 * locked_page is the page that writepage had locked already. We use
270 * it to make sure we don't do extra locks or unlocks.
271 *
272 * *page_started is set to one if we unlock locked_page and do everything
273 * required to start IO on it. It may be clean and already done with
274 * IO when we return.
275 */
276 static int cow_file_range(struct inode *inode, struct page *locked_page,
277 u64 start, u64 end, int *page_started)
278 {
279 struct btrfs_root *root = BTRFS_I(inode)->root;
280 struct btrfs_trans_handle *trans;
281 u64 alloc_hint = 0;
282 u64 num_bytes;
283 unsigned long ram_size;
284 u64 orig_start;
285 u64 disk_num_bytes;
286 u64 cur_alloc_size;
287 u64 blocksize = root->sectorsize;
288 u64 actual_end;
289 struct btrfs_key ins;
290 struct extent_map *em;
291 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
292 int ret = 0;
293 struct page **pages = NULL;
294 unsigned long nr_pages;
295 unsigned long nr_pages_ret = 0;
296 unsigned long total_compressed = 0;
297 unsigned long total_in = 0;
298 unsigned long max_compressed = 128 * 1024;
299 unsigned long max_uncompressed = 256 * 1024;
300 int i;
301 int will_compress;
302
303 trans = btrfs_join_transaction(root, 1);
304 BUG_ON(!trans);
305 btrfs_set_trans_block_group(trans, inode);
306 orig_start = start;
307
308 /*
309 * compression made this loop a bit ugly, but the basic idea is to
310 * compress some pages but keep the total size of the compressed
311 * extent relatively small. If compression is off, this goto target
312 * is never used.
313 */
314 again:
315 will_compress = 0;
316 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
317 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
318
319 actual_end = min_t(u64, i_size_read(inode), end + 1);
320 total_compressed = actual_end - start;
321
322 /* we want to make sure that amount of ram required to uncompress
323 * an extent is reasonable, so we limit the total size in ram
324 * of a compressed extent to 256k
325 */
326 total_compressed = min(total_compressed, max_uncompressed);
327 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
328 num_bytes = max(blocksize, num_bytes);
329 disk_num_bytes = num_bytes;
330 total_in = 0;
331 ret = 0;
332
333 /* we do compression for mount -o compress and when the
334 * inode has not been flagged as nocompress
335 */
336 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
337 btrfs_test_opt(root, COMPRESS)) {
338 WARN_ON(pages);
339 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
340
341 /* we want to make sure the amount of IO required to satisfy
342 * a random read is reasonably small, so we limit the size
343 * of a compressed extent to 128k
344 */
345 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
346 total_compressed, pages,
347 nr_pages, &nr_pages_ret,
348 &total_in,
349 &total_compressed,
350 max_compressed);
351
352 if (!ret) {
353 unsigned long offset = total_compressed &
354 (PAGE_CACHE_SIZE - 1);
355 struct page *page = pages[nr_pages_ret - 1];
356 char *kaddr;
357
358 /* zero the tail end of the last page, we might be
359 * sending it down to disk
360 */
361 if (offset) {
362 kaddr = kmap_atomic(page, KM_USER0);
363 memset(kaddr + offset, 0,
364 PAGE_CACHE_SIZE - offset);
365 kunmap_atomic(kaddr, KM_USER0);
366 }
367 will_compress = 1;
368 }
369 }
370 if (start == 0) {
371 /* lets try to make an inline extent */
372 if (ret || total_in < (end - start + 1)) {
373 /* we didn't compress the entire range, try
374 * to make an uncompressed inline extent. This
375 * is almost sure to fail, but maybe inline sizes
376 * will get bigger later
377 */
378 ret = cow_file_range_inline(trans, root, inode,
379 start, end, 0, NULL);
380 } else {
381 ret = cow_file_range_inline(trans, root, inode,
382 start, end,
383 total_compressed, pages);
384 }
385 if (ret == 0) {
386 extent_clear_unlock_delalloc(inode,
387 &BTRFS_I(inode)->io_tree,
388 start, end, NULL,
389 1, 1, 1);
390 *page_started = 1;
391 ret = 0;
392 goto free_pages_out;
393 }
394 }
395
396 if (will_compress) {
397 /*
398 * we aren't doing an inline extent round the compressed size
399 * up to a block size boundary so the allocator does sane
400 * things
401 */
402 total_compressed = (total_compressed + blocksize - 1) &
403 ~(blocksize - 1);
404
405 /*
406 * one last check to make sure the compression is really a
407 * win, compare the page count read with the blocks on disk
408 */
409 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
410 ~(PAGE_CACHE_SIZE - 1);
411 if (total_compressed >= total_in) {
412 will_compress = 0;
413 } else {
414 disk_num_bytes = total_compressed;
415 num_bytes = total_in;
416 }
417 }
418 if (!will_compress && pages) {
419 /*
420 * the compression code ran but failed to make things smaller,
421 * free any pages it allocated and our page pointer array
422 */
423 for (i = 0; i < nr_pages_ret; i++) {
424 page_cache_release(pages[i]);
425 }
426 kfree(pages);
427 pages = NULL;
428 total_compressed = 0;
429 nr_pages_ret = 0;
430
431 /* flag the file so we don't compress in the future */
432 btrfs_set_flag(inode, NOCOMPRESS);
433 }
434
435 BUG_ON(disk_num_bytes >
436 btrfs_super_total_bytes(&root->fs_info->super_copy));
437
438 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
439
440 while(disk_num_bytes > 0) {
441 unsigned long min_bytes;
442
443 /*
444 * the max size of a compressed extent is pretty small,
445 * make the code a little less complex by forcing
446 * the allocator to find a whole compressed extent at once
447 */
448 if (will_compress)
449 min_bytes = disk_num_bytes;
450 else
451 min_bytes = root->sectorsize;
452
453 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
454 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
455 min_bytes, 0, alloc_hint,
456 (u64)-1, &ins, 1);
457 if (ret) {
458 WARN_ON(1);
459 goto free_pages_out_fail;
460 }
461 em = alloc_extent_map(GFP_NOFS);
462 em->start = start;
463
464 if (will_compress) {
465 ram_size = num_bytes;
466 em->len = num_bytes;
467 } else {
468 /* ramsize == disk size */
469 ram_size = ins.offset;
470 em->len = ins.offset;
471 }
472
473 em->block_start = ins.objectid;
474 em->block_len = ins.offset;
475 em->bdev = root->fs_info->fs_devices->latest_bdev;
476 set_bit(EXTENT_FLAG_PINNED, &em->flags);
477
478 if (will_compress)
479 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
480
481 while(1) {
482 spin_lock(&em_tree->lock);
483 ret = add_extent_mapping(em_tree, em);
484 spin_unlock(&em_tree->lock);
485 if (ret != -EEXIST) {
486 free_extent_map(em);
487 break;
488 }
489 btrfs_drop_extent_cache(inode, start,
490 start + ram_size - 1, 0);
491 }
492
493 cur_alloc_size = ins.offset;
494 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
495 ram_size, cur_alloc_size, 0,
496 will_compress);
497 BUG_ON(ret);
498
499 if (disk_num_bytes < cur_alloc_size) {
500 printk("num_bytes %Lu cur_alloc %Lu\n", disk_num_bytes,
501 cur_alloc_size);
502 break;
503 }
504
505 if (will_compress) {
506 /*
507 * we're doing compression, we and we need to
508 * submit the compressed extents down to the device.
509 *
510 * We lock down all the file pages, clearing their
511 * dirty bits and setting them writeback. Everyone
512 * that wants to modify the page will wait on the
513 * ordered extent above.
514 *
515 * The writeback bits on the file pages are
516 * cleared when the compressed pages are on disk
517 */
518 btrfs_end_transaction(trans, root);
519
520 if (start <= page_offset(locked_page) &&
521 page_offset(locked_page) < start + ram_size) {
522 *page_started = 1;
523 }
524
525 extent_clear_unlock_delalloc(inode,
526 &BTRFS_I(inode)->io_tree,
527 start,
528 start + ram_size - 1,
529 NULL, 1, 1, 0);
530
531 ret = btrfs_submit_compressed_write(inode, start,
532 ram_size, ins.objectid,
533 cur_alloc_size, pages,
534 nr_pages_ret);
535
536 BUG_ON(ret);
537 trans = btrfs_join_transaction(root, 1);
538 if (start + ram_size < end) {
539 start += ram_size;
540 alloc_hint = ins.objectid + ins.offset;
541 /* pages will be freed at end_bio time */
542 pages = NULL;
543 goto again;
544 } else {
545 /* we've written everything, time to go */
546 break;
547 }
548 }
549 /* we're not doing compressed IO, don't unlock the first
550 * page (which the caller expects to stay locked), don't
551 * clear any dirty bits and don't set any writeback bits
552 */
553 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
554 start, start + ram_size - 1,
555 locked_page, 0, 0, 0);
556 disk_num_bytes -= cur_alloc_size;
557 num_bytes -= cur_alloc_size;
558 alloc_hint = ins.objectid + ins.offset;
559 start += cur_alloc_size;
560 }
561
562 ret = 0;
563 out:
564 btrfs_end_transaction(trans, root);
565
566 return ret;
567
568 free_pages_out_fail:
569 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
570 start, end, locked_page, 0, 0, 0);
571 free_pages_out:
572 for (i = 0; i < nr_pages_ret; i++)
573 page_cache_release(pages[i]);
574 if (pages)
575 kfree(pages);
576
577 goto out;
578 }
579
580 /*
581 * when nowcow writeback call back. This checks for snapshots or COW copies
582 * of the extents that exist in the file, and COWs the file as required.
583 *
584 * If no cow copies or snapshots exist, we write directly to the existing
585 * blocks on disk
586 */
587 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
588 u64 start, u64 end, int *page_started)
589 {
590 u64 extent_start;
591 u64 extent_end;
592 u64 bytenr;
593 u64 loops = 0;
594 u64 total_fs_bytes;
595 struct btrfs_root *root = BTRFS_I(inode)->root;
596 struct btrfs_block_group_cache *block_group;
597 struct btrfs_trans_handle *trans;
598 struct extent_buffer *leaf;
599 int found_type;
600 struct btrfs_path *path;
601 struct btrfs_file_extent_item *item;
602 int ret;
603 int err = 0;
604 struct btrfs_key found_key;
605
606 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
607 path = btrfs_alloc_path();
608 BUG_ON(!path);
609 trans = btrfs_join_transaction(root, 1);
610 BUG_ON(!trans);
611 again:
612 ret = btrfs_lookup_file_extent(NULL, root, path,
613 inode->i_ino, start, 0);
614 if (ret < 0) {
615 err = ret;
616 goto out;
617 }
618
619 if (ret != 0) {
620 if (path->slots[0] == 0)
621 goto not_found;
622 path->slots[0]--;
623 }
624
625 leaf = path->nodes[0];
626 item = btrfs_item_ptr(leaf, path->slots[0],
627 struct btrfs_file_extent_item);
628
629 /* are we inside the extent that was found? */
630 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
631 found_type = btrfs_key_type(&found_key);
632 if (found_key.objectid != inode->i_ino ||
633 found_type != BTRFS_EXTENT_DATA_KEY)
634 goto not_found;
635
636 found_type = btrfs_file_extent_type(leaf, item);
637 extent_start = found_key.offset;
638 if (found_type == BTRFS_FILE_EXTENT_REG) {
639 u64 extent_num_bytes;
640
641 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
642 extent_end = extent_start + extent_num_bytes;
643 err = 0;
644
645 if (btrfs_file_extent_compression(leaf, item) ||
646 btrfs_file_extent_encryption(leaf,item) ||
647 btrfs_file_extent_other_encoding(leaf, item))
648 goto not_found;
649
650 if (loops && start != extent_start)
651 goto not_found;
652
653 if (start < extent_start || start >= extent_end)
654 goto not_found;
655
656 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
657 if (bytenr == 0)
658 goto not_found;
659
660 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
661 goto not_found;
662 /*
663 * we may be called by the resizer, make sure we're inside
664 * the limits of the FS
665 */
666 block_group = btrfs_lookup_block_group(root->fs_info,
667 bytenr);
668 if (!block_group || block_group->ro)
669 goto not_found;
670
671 bytenr += btrfs_file_extent_offset(leaf, item);
672 extent_num_bytes = min(end + 1, extent_end) - start;
673 ret = btrfs_add_ordered_extent(inode, start, bytenr,
674 extent_num_bytes,
675 extent_num_bytes, 1, 0);
676 if (ret) {
677 err = ret;
678 goto out;
679 }
680
681 btrfs_release_path(root, path);
682 start = extent_end;
683 if (start <= end) {
684 loops++;
685 goto again;
686 }
687 } else {
688 not_found:
689 btrfs_end_transaction(trans, root);
690 btrfs_free_path(path);
691 return cow_file_range(inode, locked_page, start, end,
692 page_started);
693 }
694 out:
695 WARN_ON(err);
696 btrfs_end_transaction(trans, root);
697 btrfs_free_path(path);
698 return err;
699 }
700
701 /*
702 * extent_io.c call back to do delayed allocation processing
703 */
704 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
705 u64 start, u64 end, int *page_started)
706 {
707 struct btrfs_root *root = BTRFS_I(inode)->root;
708 int ret;
709
710 if (btrfs_test_opt(root, NODATACOW) ||
711 btrfs_test_flag(inode, NODATACOW))
712 ret = run_delalloc_nocow(inode, locked_page, start, end,
713 page_started);
714 else
715 ret = cow_file_range(inode, locked_page, start, end,
716 page_started);
717
718 return ret;
719 }
720
721 /*
722 * extent_io.c set_bit_hook, used to track delayed allocation
723 * bytes in this file, and to maintain the list of inodes that
724 * have pending delalloc work to be done.
725 */
726 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
727 unsigned long old, unsigned long bits)
728 {
729 unsigned long flags;
730 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
731 struct btrfs_root *root = BTRFS_I(inode)->root;
732 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
733 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
734 root->fs_info->delalloc_bytes += end - start + 1;
735 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
736 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
737 &root->fs_info->delalloc_inodes);
738 }
739 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
740 }
741 return 0;
742 }
743
744 /*
745 * extent_io.c clear_bit_hook, see set_bit_hook for why
746 */
747 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
748 unsigned long old, unsigned long bits)
749 {
750 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
751 struct btrfs_root *root = BTRFS_I(inode)->root;
752 unsigned long flags;
753
754 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
755 if (end - start + 1 > root->fs_info->delalloc_bytes) {
756 printk("warning: delalloc account %Lu %Lu\n",
757 end - start + 1, root->fs_info->delalloc_bytes);
758 root->fs_info->delalloc_bytes = 0;
759 BTRFS_I(inode)->delalloc_bytes = 0;
760 } else {
761 root->fs_info->delalloc_bytes -= end - start + 1;
762 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
763 }
764 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
765 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
766 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
767 }
768 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
769 }
770 return 0;
771 }
772
773 /*
774 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
775 * we don't create bios that span stripes or chunks
776 */
777 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
778 size_t size, struct bio *bio,
779 unsigned long bio_flags)
780 {
781 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
782 struct btrfs_mapping_tree *map_tree;
783 u64 logical = (u64)bio->bi_sector << 9;
784 u64 length = 0;
785 u64 map_length;
786 int ret;
787
788 length = bio->bi_size;
789 map_tree = &root->fs_info->mapping_tree;
790 map_length = length;
791 ret = btrfs_map_block(map_tree, READ, logical,
792 &map_length, NULL, 0);
793
794 if (map_length < length + size) {
795 return 1;
796 }
797 return 0;
798 }
799
800 /*
801 * in order to insert checksums into the metadata in large chunks,
802 * we wait until bio submission time. All the pages in the bio are
803 * checksummed and sums are attached onto the ordered extent record.
804 *
805 * At IO completion time the cums attached on the ordered extent record
806 * are inserted into the btree
807 */
808 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
809 int mirror_num, unsigned long bio_flags)
810 {
811 struct btrfs_root *root = BTRFS_I(inode)->root;
812 int ret = 0;
813
814 ret = btrfs_csum_one_bio(root, inode, bio);
815 BUG_ON(ret);
816
817 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
818 }
819
820 /*
821 * extent_io.c submission hook. This does the right thing for csum calculation on write,
822 * or reading the csums from the tree before a read
823 */
824 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
825 int mirror_num, unsigned long bio_flags)
826 {
827 struct btrfs_root *root = BTRFS_I(inode)->root;
828 int ret = 0;
829 int skip_sum;
830
831 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
832 BUG_ON(ret);
833
834 skip_sum = btrfs_test_opt(root, NODATASUM) ||
835 btrfs_test_flag(inode, NODATASUM);
836
837 if (!(rw & (1 << BIO_RW))) {
838 if (!skip_sum)
839 btrfs_lookup_bio_sums(root, inode, bio);
840
841 if (bio_flags & EXTENT_BIO_COMPRESSED)
842 return btrfs_submit_compressed_read(inode, bio,
843 mirror_num, bio_flags);
844 goto mapit;
845 } else if (!skip_sum) {
846 /* we're doing a write, do the async checksumming */
847 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
848 inode, rw, bio, mirror_num,
849 bio_flags, __btrfs_submit_bio_hook);
850 }
851
852 mapit:
853 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
854 }
855
856 /*
857 * given a list of ordered sums record them in the inode. This happens
858 * at IO completion time based on sums calculated at bio submission time.
859 */
860 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
861 struct inode *inode, u64 file_offset,
862 struct list_head *list)
863 {
864 struct list_head *cur;
865 struct btrfs_ordered_sum *sum;
866
867 btrfs_set_trans_block_group(trans, inode);
868 list_for_each(cur, list) {
869 sum = list_entry(cur, struct btrfs_ordered_sum, list);
870 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
871 inode, sum);
872 }
873 return 0;
874 }
875
876 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
877 {
878 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
879 GFP_NOFS);
880 }
881
882 /* see btrfs_writepage_start_hook for details on why this is required */
883 struct btrfs_writepage_fixup {
884 struct page *page;
885 struct btrfs_work work;
886 };
887
888 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
889 {
890 struct btrfs_writepage_fixup *fixup;
891 struct btrfs_ordered_extent *ordered;
892 struct page *page;
893 struct inode *inode;
894 u64 page_start;
895 u64 page_end;
896
897 fixup = container_of(work, struct btrfs_writepage_fixup, work);
898 page = fixup->page;
899 again:
900 lock_page(page);
901 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
902 ClearPageChecked(page);
903 goto out_page;
904 }
905
906 inode = page->mapping->host;
907 page_start = page_offset(page);
908 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
909
910 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
911
912 /* already ordered? We're done */
913 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
914 EXTENT_ORDERED, 0)) {
915 goto out;
916 }
917
918 ordered = btrfs_lookup_ordered_extent(inode, page_start);
919 if (ordered) {
920 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
921 page_end, GFP_NOFS);
922 unlock_page(page);
923 btrfs_start_ordered_extent(inode, ordered, 1);
924 goto again;
925 }
926
927 btrfs_set_extent_delalloc(inode, page_start, page_end);
928 ClearPageChecked(page);
929 out:
930 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
931 out_page:
932 unlock_page(page);
933 page_cache_release(page);
934 }
935
936 /*
937 * There are a few paths in the higher layers of the kernel that directly
938 * set the page dirty bit without asking the filesystem if it is a
939 * good idea. This causes problems because we want to make sure COW
940 * properly happens and the data=ordered rules are followed.
941 *
942 * In our case any range that doesn't have the ORDERED bit set
943 * hasn't been properly setup for IO. We kick off an async process
944 * to fix it up. The async helper will wait for ordered extents, set
945 * the delalloc bit and make it safe to write the page.
946 */
947 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
948 {
949 struct inode *inode = page->mapping->host;
950 struct btrfs_writepage_fixup *fixup;
951 struct btrfs_root *root = BTRFS_I(inode)->root;
952 int ret;
953
954 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
955 EXTENT_ORDERED, 0);
956 if (ret)
957 return 0;
958
959 if (PageChecked(page))
960 return -EAGAIN;
961
962 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
963 if (!fixup)
964 return -EAGAIN;
965
966 SetPageChecked(page);
967 page_cache_get(page);
968 fixup->work.func = btrfs_writepage_fixup_worker;
969 fixup->page = page;
970 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
971 return -EAGAIN;
972 }
973
974 /* as ordered data IO finishes, this gets called so we can finish
975 * an ordered extent if the range of bytes in the file it covers are
976 * fully written.
977 */
978 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
979 {
980 struct btrfs_root *root = BTRFS_I(inode)->root;
981 struct btrfs_trans_handle *trans;
982 struct btrfs_ordered_extent *ordered_extent;
983 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
984 struct btrfs_file_extent_item *extent_item;
985 struct btrfs_path *path = NULL;
986 struct extent_buffer *leaf;
987 u64 alloc_hint = 0;
988 struct list_head list;
989 struct btrfs_key ins;
990 int ret;
991
992 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
993 if (!ret)
994 return 0;
995
996 trans = btrfs_join_transaction(root, 1);
997
998 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
999 BUG_ON(!ordered_extent);
1000 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1001 goto nocow;
1002
1003 path = btrfs_alloc_path();
1004 BUG_ON(!path);
1005
1006 lock_extent(io_tree, ordered_extent->file_offset,
1007 ordered_extent->file_offset + ordered_extent->len - 1,
1008 GFP_NOFS);
1009
1010 INIT_LIST_HEAD(&list);
1011
1012 ret = btrfs_drop_extents(trans, root, inode,
1013 ordered_extent->file_offset,
1014 ordered_extent->file_offset +
1015 ordered_extent->len,
1016 ordered_extent->file_offset, &alloc_hint);
1017 BUG_ON(ret);
1018
1019 ins.objectid = inode->i_ino;
1020 ins.offset = ordered_extent->file_offset;
1021 ins.type = BTRFS_EXTENT_DATA_KEY;
1022 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1023 sizeof(*extent_item));
1024 BUG_ON(ret);
1025 leaf = path->nodes[0];
1026 extent_item = btrfs_item_ptr(leaf, path->slots[0],
1027 struct btrfs_file_extent_item);
1028 btrfs_set_file_extent_generation(leaf, extent_item, trans->transid);
1029 btrfs_set_file_extent_type(leaf, extent_item, BTRFS_FILE_EXTENT_REG);
1030 btrfs_set_file_extent_disk_bytenr(leaf, extent_item,
1031 ordered_extent->start);
1032 btrfs_set_file_extent_disk_num_bytes(leaf, extent_item,
1033 ordered_extent->disk_len);
1034 btrfs_set_file_extent_offset(leaf, extent_item, 0);
1035
1036 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1037 btrfs_set_file_extent_compression(leaf, extent_item, 1);
1038 else
1039 btrfs_set_file_extent_compression(leaf, extent_item, 0);
1040 btrfs_set_file_extent_encryption(leaf, extent_item, 0);
1041 btrfs_set_file_extent_other_encoding(leaf, extent_item, 0);
1042
1043 /* ram bytes = extent_num_bytes for now */
1044 btrfs_set_file_extent_num_bytes(leaf, extent_item,
1045 ordered_extent->len);
1046 btrfs_set_file_extent_ram_bytes(leaf, extent_item,
1047 ordered_extent->len);
1048 btrfs_mark_buffer_dirty(leaf);
1049
1050 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
1051 ordered_extent->file_offset +
1052 ordered_extent->len - 1, 0);
1053
1054 ins.objectid = ordered_extent->start;
1055 ins.offset = ordered_extent->disk_len;
1056 ins.type = BTRFS_EXTENT_ITEM_KEY;
1057 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1058 root->root_key.objectid,
1059 trans->transid, inode->i_ino, &ins);
1060 BUG_ON(ret);
1061 btrfs_release_path(root, path);
1062
1063 inode_add_bytes(inode, ordered_extent->len);
1064 unlock_extent(io_tree, ordered_extent->file_offset,
1065 ordered_extent->file_offset + ordered_extent->len - 1,
1066 GFP_NOFS);
1067 nocow:
1068 add_pending_csums(trans, inode, ordered_extent->file_offset,
1069 &ordered_extent->list);
1070
1071 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1072 btrfs_ordered_update_i_size(inode, ordered_extent);
1073 btrfs_update_inode(trans, root, inode);
1074 btrfs_remove_ordered_extent(inode, ordered_extent);
1075 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1076
1077 /* once for us */
1078 btrfs_put_ordered_extent(ordered_extent);
1079 /* once for the tree */
1080 btrfs_put_ordered_extent(ordered_extent);
1081
1082 btrfs_end_transaction(trans, root);
1083 if (path)
1084 btrfs_free_path(path);
1085 return 0;
1086 }
1087
1088 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1089 struct extent_state *state, int uptodate)
1090 {
1091 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1092 }
1093
1094 /*
1095 * When IO fails, either with EIO or csum verification fails, we
1096 * try other mirrors that might have a good copy of the data. This
1097 * io_failure_record is used to record state as we go through all the
1098 * mirrors. If another mirror has good data, the page is set up to date
1099 * and things continue. If a good mirror can't be found, the original
1100 * bio end_io callback is called to indicate things have failed.
1101 */
1102 struct io_failure_record {
1103 struct page *page;
1104 u64 start;
1105 u64 len;
1106 u64 logical;
1107 int last_mirror;
1108 };
1109
1110 int btrfs_io_failed_hook(struct bio *failed_bio,
1111 struct page *page, u64 start, u64 end,
1112 struct extent_state *state)
1113 {
1114 struct io_failure_record *failrec = NULL;
1115 u64 private;
1116 struct extent_map *em;
1117 struct inode *inode = page->mapping->host;
1118 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1119 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1120 struct bio *bio;
1121 int num_copies;
1122 int ret;
1123 int rw;
1124 u64 logical;
1125 unsigned long bio_flags = 0;
1126
1127 ret = get_state_private(failure_tree, start, &private);
1128 if (ret) {
1129 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1130 if (!failrec)
1131 return -ENOMEM;
1132 failrec->start = start;
1133 failrec->len = end - start + 1;
1134 failrec->last_mirror = 0;
1135
1136 spin_lock(&em_tree->lock);
1137 em = lookup_extent_mapping(em_tree, start, failrec->len);
1138 if (em->start > start || em->start + em->len < start) {
1139 free_extent_map(em);
1140 em = NULL;
1141 }
1142 spin_unlock(&em_tree->lock);
1143
1144 if (!em || IS_ERR(em)) {
1145 kfree(failrec);
1146 return -EIO;
1147 }
1148 logical = start - em->start;
1149 logical = em->block_start + logical;
1150 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1151 bio_flags = EXTENT_BIO_COMPRESSED;
1152 failrec->logical = logical;
1153 free_extent_map(em);
1154 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1155 EXTENT_DIRTY, GFP_NOFS);
1156 set_state_private(failure_tree, start,
1157 (u64)(unsigned long)failrec);
1158 } else {
1159 failrec = (struct io_failure_record *)(unsigned long)private;
1160 }
1161 num_copies = btrfs_num_copies(
1162 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1163 failrec->logical, failrec->len);
1164 failrec->last_mirror++;
1165 if (!state) {
1166 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
1167 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1168 failrec->start,
1169 EXTENT_LOCKED);
1170 if (state && state->start != failrec->start)
1171 state = NULL;
1172 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
1173 }
1174 if (!state || failrec->last_mirror > num_copies) {
1175 set_state_private(failure_tree, failrec->start, 0);
1176 clear_extent_bits(failure_tree, failrec->start,
1177 failrec->start + failrec->len - 1,
1178 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1179 kfree(failrec);
1180 return -EIO;
1181 }
1182 bio = bio_alloc(GFP_NOFS, 1);
1183 bio->bi_private = state;
1184 bio->bi_end_io = failed_bio->bi_end_io;
1185 bio->bi_sector = failrec->logical >> 9;
1186 bio->bi_bdev = failed_bio->bi_bdev;
1187 bio->bi_size = 0;
1188 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1189 if (failed_bio->bi_rw & (1 << BIO_RW))
1190 rw = WRITE;
1191 else
1192 rw = READ;
1193
1194 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1195 failrec->last_mirror,
1196 bio_flags);
1197 return 0;
1198 }
1199
1200 /*
1201 * each time an IO finishes, we do a fast check in the IO failure tree
1202 * to see if we need to process or clean up an io_failure_record
1203 */
1204 int btrfs_clean_io_failures(struct inode *inode, u64 start)
1205 {
1206 u64 private;
1207 u64 private_failure;
1208 struct io_failure_record *failure;
1209 int ret;
1210
1211 private = 0;
1212 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1213 (u64)-1, 1, EXTENT_DIRTY)) {
1214 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1215 start, &private_failure);
1216 if (ret == 0) {
1217 failure = (struct io_failure_record *)(unsigned long)
1218 private_failure;
1219 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1220 failure->start, 0);
1221 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1222 failure->start,
1223 failure->start + failure->len - 1,
1224 EXTENT_DIRTY | EXTENT_LOCKED,
1225 GFP_NOFS);
1226 kfree(failure);
1227 }
1228 }
1229 return 0;
1230 }
1231
1232 /*
1233 * when reads are done, we need to check csums to verify the data is correct
1234 * if there's a match, we allow the bio to finish. If not, we go through
1235 * the io_failure_record routines to find good copies
1236 */
1237 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1238 struct extent_state *state)
1239 {
1240 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1241 struct inode *inode = page->mapping->host;
1242 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1243 char *kaddr;
1244 u64 private = ~(u32)0;
1245 int ret;
1246 struct btrfs_root *root = BTRFS_I(inode)->root;
1247 u32 csum = ~(u32)0;
1248 unsigned long flags;
1249
1250 if (btrfs_test_opt(root, NODATASUM) ||
1251 btrfs_test_flag(inode, NODATASUM))
1252 return 0;
1253 if (state && state->start == start) {
1254 private = state->private;
1255 ret = 0;
1256 } else {
1257 ret = get_state_private(io_tree, start, &private);
1258 }
1259 local_irq_save(flags);
1260 kaddr = kmap_atomic(page, KM_IRQ0);
1261 if (ret) {
1262 goto zeroit;
1263 }
1264 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1265 btrfs_csum_final(csum, (char *)&csum);
1266 if (csum != private) {
1267 goto zeroit;
1268 }
1269 kunmap_atomic(kaddr, KM_IRQ0);
1270 local_irq_restore(flags);
1271
1272 /* if the io failure tree for this inode is non-empty,
1273 * check to see if we've recovered from a failed IO
1274 */
1275 btrfs_clean_io_failures(inode, start);
1276 return 0;
1277
1278 zeroit:
1279 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
1280 page->mapping->host->i_ino, (unsigned long long)start, csum,
1281 private);
1282 memset(kaddr + offset, 1, end - start + 1);
1283 flush_dcache_page(page);
1284 kunmap_atomic(kaddr, KM_IRQ0);
1285 local_irq_restore(flags);
1286 if (private == 0)
1287 return 0;
1288 return -EIO;
1289 }
1290
1291 /*
1292 * This creates an orphan entry for the given inode in case something goes
1293 * wrong in the middle of an unlink/truncate.
1294 */
1295 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1296 {
1297 struct btrfs_root *root = BTRFS_I(inode)->root;
1298 int ret = 0;
1299
1300 spin_lock(&root->list_lock);
1301
1302 /* already on the orphan list, we're good */
1303 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1304 spin_unlock(&root->list_lock);
1305 return 0;
1306 }
1307
1308 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1309
1310 spin_unlock(&root->list_lock);
1311
1312 /*
1313 * insert an orphan item to track this unlinked/truncated file
1314 */
1315 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1316
1317 return ret;
1318 }
1319
1320 /*
1321 * We have done the truncate/delete so we can go ahead and remove the orphan
1322 * item for this particular inode.
1323 */
1324 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1325 {
1326 struct btrfs_root *root = BTRFS_I(inode)->root;
1327 int ret = 0;
1328
1329 spin_lock(&root->list_lock);
1330
1331 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1332 spin_unlock(&root->list_lock);
1333 return 0;
1334 }
1335
1336 list_del_init(&BTRFS_I(inode)->i_orphan);
1337 if (!trans) {
1338 spin_unlock(&root->list_lock);
1339 return 0;
1340 }
1341
1342 spin_unlock(&root->list_lock);
1343
1344 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1345
1346 return ret;
1347 }
1348
1349 /*
1350 * this cleans up any orphans that may be left on the list from the last use
1351 * of this root.
1352 */
1353 void btrfs_orphan_cleanup(struct btrfs_root *root)
1354 {
1355 struct btrfs_path *path;
1356 struct extent_buffer *leaf;
1357 struct btrfs_item *item;
1358 struct btrfs_key key, found_key;
1359 struct btrfs_trans_handle *trans;
1360 struct inode *inode;
1361 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1362
1363 /* don't do orphan cleanup if the fs is readonly. */
1364 if (root->fs_info->sb->s_flags & MS_RDONLY)
1365 return;
1366
1367 path = btrfs_alloc_path();
1368 if (!path)
1369 return;
1370 path->reada = -1;
1371
1372 key.objectid = BTRFS_ORPHAN_OBJECTID;
1373 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1374 key.offset = (u64)-1;
1375
1376
1377 while (1) {
1378 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1379 if (ret < 0) {
1380 printk(KERN_ERR "Error searching slot for orphan: %d"
1381 "\n", ret);
1382 break;
1383 }
1384
1385 /*
1386 * if ret == 0 means we found what we were searching for, which
1387 * is weird, but possible, so only screw with path if we didnt
1388 * find the key and see if we have stuff that matches
1389 */
1390 if (ret > 0) {
1391 if (path->slots[0] == 0)
1392 break;
1393 path->slots[0]--;
1394 }
1395
1396 /* pull out the item */
1397 leaf = path->nodes[0];
1398 item = btrfs_item_nr(leaf, path->slots[0]);
1399 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1400
1401 /* make sure the item matches what we want */
1402 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1403 break;
1404 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1405 break;
1406
1407 /* release the path since we're done with it */
1408 btrfs_release_path(root, path);
1409
1410 /*
1411 * this is where we are basically btrfs_lookup, without the
1412 * crossing root thing. we store the inode number in the
1413 * offset of the orphan item.
1414 */
1415 inode = btrfs_iget_locked(root->fs_info->sb,
1416 found_key.offset, root);
1417 if (!inode)
1418 break;
1419
1420 if (inode->i_state & I_NEW) {
1421 BTRFS_I(inode)->root = root;
1422
1423 /* have to set the location manually */
1424 BTRFS_I(inode)->location.objectid = inode->i_ino;
1425 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1426 BTRFS_I(inode)->location.offset = 0;
1427
1428 btrfs_read_locked_inode(inode);
1429 unlock_new_inode(inode);
1430 }
1431
1432 /*
1433 * add this inode to the orphan list so btrfs_orphan_del does
1434 * the proper thing when we hit it
1435 */
1436 spin_lock(&root->list_lock);
1437 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1438 spin_unlock(&root->list_lock);
1439
1440 /*
1441 * if this is a bad inode, means we actually succeeded in
1442 * removing the inode, but not the orphan record, which means
1443 * we need to manually delete the orphan since iput will just
1444 * do a destroy_inode
1445 */
1446 if (is_bad_inode(inode)) {
1447 trans = btrfs_start_transaction(root, 1);
1448 btrfs_orphan_del(trans, inode);
1449 btrfs_end_transaction(trans, root);
1450 iput(inode);
1451 continue;
1452 }
1453
1454 /* if we have links, this was a truncate, lets do that */
1455 if (inode->i_nlink) {
1456 nr_truncate++;
1457 btrfs_truncate(inode);
1458 } else {
1459 nr_unlink++;
1460 }
1461
1462 /* this will do delete_inode and everything for us */
1463 iput(inode);
1464 }
1465
1466 if (nr_unlink)
1467 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1468 if (nr_truncate)
1469 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1470
1471 btrfs_free_path(path);
1472 }
1473
1474 /*
1475 * read an inode from the btree into the in-memory inode
1476 */
1477 void btrfs_read_locked_inode(struct inode *inode)
1478 {
1479 struct btrfs_path *path;
1480 struct extent_buffer *leaf;
1481 struct btrfs_inode_item *inode_item;
1482 struct btrfs_timespec *tspec;
1483 struct btrfs_root *root = BTRFS_I(inode)->root;
1484 struct btrfs_key location;
1485 u64 alloc_group_block;
1486 u32 rdev;
1487 int ret;
1488
1489 path = btrfs_alloc_path();
1490 BUG_ON(!path);
1491 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1492
1493 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1494 if (ret)
1495 goto make_bad;
1496
1497 leaf = path->nodes[0];
1498 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1499 struct btrfs_inode_item);
1500
1501 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1502 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1503 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1504 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1505 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1506
1507 tspec = btrfs_inode_atime(inode_item);
1508 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1509 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1510
1511 tspec = btrfs_inode_mtime(inode_item);
1512 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1513 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1514
1515 tspec = btrfs_inode_ctime(inode_item);
1516 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1517 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1518
1519 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1520 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1521 inode->i_generation = BTRFS_I(inode)->generation;
1522 inode->i_rdev = 0;
1523 rdev = btrfs_inode_rdev(leaf, inode_item);
1524
1525 BTRFS_I(inode)->index_cnt = (u64)-1;
1526
1527 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1528 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1529 alloc_group_block);
1530 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1531 if (!BTRFS_I(inode)->block_group) {
1532 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1533 NULL, 0,
1534 BTRFS_BLOCK_GROUP_METADATA, 0);
1535 }
1536 btrfs_free_path(path);
1537 inode_item = NULL;
1538
1539 switch (inode->i_mode & S_IFMT) {
1540 case S_IFREG:
1541 inode->i_mapping->a_ops = &btrfs_aops;
1542 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1543 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1544 inode->i_fop = &btrfs_file_operations;
1545 inode->i_op = &btrfs_file_inode_operations;
1546 break;
1547 case S_IFDIR:
1548 inode->i_fop = &btrfs_dir_file_operations;
1549 if (root == root->fs_info->tree_root)
1550 inode->i_op = &btrfs_dir_ro_inode_operations;
1551 else
1552 inode->i_op = &btrfs_dir_inode_operations;
1553 break;
1554 case S_IFLNK:
1555 inode->i_op = &btrfs_symlink_inode_operations;
1556 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1557 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1558 break;
1559 default:
1560 init_special_inode(inode, inode->i_mode, rdev);
1561 break;
1562 }
1563 return;
1564
1565 make_bad:
1566 btrfs_free_path(path);
1567 make_bad_inode(inode);
1568 }
1569
1570 /*
1571 * given a leaf and an inode, copy the inode fields into the leaf
1572 */
1573 static void fill_inode_item(struct btrfs_trans_handle *trans,
1574 struct extent_buffer *leaf,
1575 struct btrfs_inode_item *item,
1576 struct inode *inode)
1577 {
1578 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1579 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1580 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1581 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1582 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1583
1584 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1585 inode->i_atime.tv_sec);
1586 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1587 inode->i_atime.tv_nsec);
1588
1589 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1590 inode->i_mtime.tv_sec);
1591 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1592 inode->i_mtime.tv_nsec);
1593
1594 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1595 inode->i_ctime.tv_sec);
1596 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1597 inode->i_ctime.tv_nsec);
1598
1599 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
1600 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1601 btrfs_set_inode_transid(leaf, item, trans->transid);
1602 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1603 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1604 btrfs_set_inode_block_group(leaf, item,
1605 BTRFS_I(inode)->block_group->key.objectid);
1606 }
1607
1608 /*
1609 * copy everything in the in-memory inode into the btree.
1610 */
1611 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1612 struct btrfs_root *root,
1613 struct inode *inode)
1614 {
1615 struct btrfs_inode_item *inode_item;
1616 struct btrfs_path *path;
1617 struct extent_buffer *leaf;
1618 int ret;
1619
1620 path = btrfs_alloc_path();
1621 BUG_ON(!path);
1622 ret = btrfs_lookup_inode(trans, root, path,
1623 &BTRFS_I(inode)->location, 1);
1624 if (ret) {
1625 if (ret > 0)
1626 ret = -ENOENT;
1627 goto failed;
1628 }
1629
1630 leaf = path->nodes[0];
1631 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1632 struct btrfs_inode_item);
1633
1634 fill_inode_item(trans, leaf, inode_item, inode);
1635 btrfs_mark_buffer_dirty(leaf);
1636 btrfs_set_inode_last_trans(trans, inode);
1637 ret = 0;
1638 failed:
1639 btrfs_free_path(path);
1640 return ret;
1641 }
1642
1643
1644 /*
1645 * unlink helper that gets used here in inode.c and in the tree logging
1646 * recovery code. It remove a link in a directory with a given name, and
1647 * also drops the back refs in the inode to the directory
1648 */
1649 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1650 struct btrfs_root *root,
1651 struct inode *dir, struct inode *inode,
1652 const char *name, int name_len)
1653 {
1654 struct btrfs_path *path;
1655 int ret = 0;
1656 struct extent_buffer *leaf;
1657 struct btrfs_dir_item *di;
1658 struct btrfs_key key;
1659 u64 index;
1660
1661 path = btrfs_alloc_path();
1662 if (!path) {
1663 ret = -ENOMEM;
1664 goto err;
1665 }
1666
1667 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1668 name, name_len, -1);
1669 if (IS_ERR(di)) {
1670 ret = PTR_ERR(di);
1671 goto err;
1672 }
1673 if (!di) {
1674 ret = -ENOENT;
1675 goto err;
1676 }
1677 leaf = path->nodes[0];
1678 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1679 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1680 if (ret)
1681 goto err;
1682 btrfs_release_path(root, path);
1683
1684 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1685 inode->i_ino,
1686 dir->i_ino, &index);
1687 if (ret) {
1688 printk("failed to delete reference to %.*s, "
1689 "inode %lu parent %lu\n", name_len, name,
1690 inode->i_ino, dir->i_ino);
1691 goto err;
1692 }
1693
1694 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1695 index, name, name_len, -1);
1696 if (IS_ERR(di)) {
1697 ret = PTR_ERR(di);
1698 goto err;
1699 }
1700 if (!di) {
1701 ret = -ENOENT;
1702 goto err;
1703 }
1704 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1705 btrfs_release_path(root, path);
1706
1707 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1708 inode, dir->i_ino);
1709 BUG_ON(ret != 0 && ret != -ENOENT);
1710 if (ret != -ENOENT)
1711 BTRFS_I(dir)->log_dirty_trans = trans->transid;
1712
1713 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1714 dir, index);
1715 BUG_ON(ret);
1716 err:
1717 btrfs_free_path(path);
1718 if (ret)
1719 goto out;
1720
1721 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1722 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1723 btrfs_update_inode(trans, root, dir);
1724 btrfs_drop_nlink(inode);
1725 ret = btrfs_update_inode(trans, root, inode);
1726 dir->i_sb->s_dirt = 1;
1727 out:
1728 return ret;
1729 }
1730
1731 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1732 {
1733 struct btrfs_root *root;
1734 struct btrfs_trans_handle *trans;
1735 struct inode *inode = dentry->d_inode;
1736 int ret;
1737 unsigned long nr = 0;
1738
1739 root = BTRFS_I(dir)->root;
1740
1741 ret = btrfs_check_free_space(root, 1, 1);
1742 if (ret)
1743 goto fail;
1744
1745 trans = btrfs_start_transaction(root, 1);
1746
1747 btrfs_set_trans_block_group(trans, dir);
1748 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1749 dentry->d_name.name, dentry->d_name.len);
1750
1751 if (inode->i_nlink == 0)
1752 ret = btrfs_orphan_add(trans, inode);
1753
1754 nr = trans->blocks_used;
1755
1756 btrfs_end_transaction_throttle(trans, root);
1757 fail:
1758 btrfs_btree_balance_dirty(root, nr);
1759 return ret;
1760 }
1761
1762 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1763 {
1764 struct inode *inode = dentry->d_inode;
1765 int err = 0;
1766 int ret;
1767 struct btrfs_root *root = BTRFS_I(dir)->root;
1768 struct btrfs_trans_handle *trans;
1769 unsigned long nr = 0;
1770
1771 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1772 return -ENOTEMPTY;
1773 }
1774
1775 ret = btrfs_check_free_space(root, 1, 1);
1776 if (ret)
1777 goto fail;
1778
1779 trans = btrfs_start_transaction(root, 1);
1780 btrfs_set_trans_block_group(trans, dir);
1781
1782 err = btrfs_orphan_add(trans, inode);
1783 if (err)
1784 goto fail_trans;
1785
1786 /* now the directory is empty */
1787 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1788 dentry->d_name.name, dentry->d_name.len);
1789 if (!err) {
1790 btrfs_i_size_write(inode, 0);
1791 }
1792
1793 fail_trans:
1794 nr = trans->blocks_used;
1795 ret = btrfs_end_transaction_throttle(trans, root);
1796 fail:
1797 btrfs_btree_balance_dirty(root, nr);
1798
1799 if (ret && !err)
1800 err = ret;
1801 return err;
1802 }
1803
1804 /*
1805 * when truncating bytes in a file, it is possible to avoid reading
1806 * the leaves that contain only checksum items. This can be the
1807 * majority of the IO required to delete a large file, but it must
1808 * be done carefully.
1809 *
1810 * The keys in the level just above the leaves are checked to make sure
1811 * the lowest key in a given leaf is a csum key, and starts at an offset
1812 * after the new size.
1813 *
1814 * Then the key for the next leaf is checked to make sure it also has
1815 * a checksum item for the same file. If it does, we know our target leaf
1816 * contains only checksum items, and it can be safely freed without reading
1817 * it.
1818 *
1819 * This is just an optimization targeted at large files. It may do
1820 * nothing. It will return 0 unless things went badly.
1821 */
1822 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
1823 struct btrfs_root *root,
1824 struct btrfs_path *path,
1825 struct inode *inode, u64 new_size)
1826 {
1827 struct btrfs_key key;
1828 int ret;
1829 int nritems;
1830 struct btrfs_key found_key;
1831 struct btrfs_key other_key;
1832 struct btrfs_leaf_ref *ref;
1833 u64 leaf_gen;
1834 u64 leaf_start;
1835
1836 path->lowest_level = 1;
1837 key.objectid = inode->i_ino;
1838 key.type = BTRFS_CSUM_ITEM_KEY;
1839 key.offset = new_size;
1840 again:
1841 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1842 if (ret < 0)
1843 goto out;
1844
1845 if (path->nodes[1] == NULL) {
1846 ret = 0;
1847 goto out;
1848 }
1849 ret = 0;
1850 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
1851 nritems = btrfs_header_nritems(path->nodes[1]);
1852
1853 if (!nritems)
1854 goto out;
1855
1856 if (path->slots[1] >= nritems)
1857 goto next_node;
1858
1859 /* did we find a key greater than anything we want to delete? */
1860 if (found_key.objectid > inode->i_ino ||
1861 (found_key.objectid == inode->i_ino && found_key.type > key.type))
1862 goto out;
1863
1864 /* we check the next key in the node to make sure the leave contains
1865 * only checksum items. This comparison doesn't work if our
1866 * leaf is the last one in the node
1867 */
1868 if (path->slots[1] + 1 >= nritems) {
1869 next_node:
1870 /* search forward from the last key in the node, this
1871 * will bring us into the next node in the tree
1872 */
1873 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
1874
1875 /* unlikely, but we inc below, so check to be safe */
1876 if (found_key.offset == (u64)-1)
1877 goto out;
1878
1879 /* search_forward needs a path with locks held, do the
1880 * search again for the original key. It is possible
1881 * this will race with a balance and return a path that
1882 * we could modify, but this drop is just an optimization
1883 * and is allowed to miss some leaves.
1884 */
1885 btrfs_release_path(root, path);
1886 found_key.offset++;
1887
1888 /* setup a max key for search_forward */
1889 other_key.offset = (u64)-1;
1890 other_key.type = key.type;
1891 other_key.objectid = key.objectid;
1892
1893 path->keep_locks = 1;
1894 ret = btrfs_search_forward(root, &found_key, &other_key,
1895 path, 0, 0);
1896 path->keep_locks = 0;
1897 if (ret || found_key.objectid != key.objectid ||
1898 found_key.type != key.type) {
1899 ret = 0;
1900 goto out;
1901 }
1902
1903 key.offset = found_key.offset;
1904 btrfs_release_path(root, path);
1905 cond_resched();
1906 goto again;
1907 }
1908
1909 /* we know there's one more slot after us in the tree,
1910 * read that key so we can verify it is also a checksum item
1911 */
1912 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
1913
1914 if (found_key.objectid < inode->i_ino)
1915 goto next_key;
1916
1917 if (found_key.type != key.type || found_key.offset < new_size)
1918 goto next_key;
1919
1920 /*
1921 * if the key for the next leaf isn't a csum key from this objectid,
1922 * we can't be sure there aren't good items inside this leaf.
1923 * Bail out
1924 */
1925 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
1926 goto out;
1927
1928 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
1929 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
1930 /*
1931 * it is safe to delete this leaf, it contains only
1932 * csum items from this inode at an offset >= new_size
1933 */
1934 ret = btrfs_del_leaf(trans, root, path, leaf_start);
1935 BUG_ON(ret);
1936
1937 if (root->ref_cows && leaf_gen < trans->transid) {
1938 ref = btrfs_alloc_leaf_ref(root, 0);
1939 if (ref) {
1940 ref->root_gen = root->root_key.offset;
1941 ref->bytenr = leaf_start;
1942 ref->owner = 0;
1943 ref->generation = leaf_gen;
1944 ref->nritems = 0;
1945
1946 ret = btrfs_add_leaf_ref(root, ref, 0);
1947 WARN_ON(ret);
1948 btrfs_free_leaf_ref(root, ref);
1949 } else {
1950 WARN_ON(1);
1951 }
1952 }
1953 next_key:
1954 btrfs_release_path(root, path);
1955
1956 if (other_key.objectid == inode->i_ino &&
1957 other_key.type == key.type && other_key.offset > key.offset) {
1958 key.offset = other_key.offset;
1959 cond_resched();
1960 goto again;
1961 }
1962 ret = 0;
1963 out:
1964 /* fixup any changes we've made to the path */
1965 path->lowest_level = 0;
1966 path->keep_locks = 0;
1967 btrfs_release_path(root, path);
1968 return ret;
1969 }
1970
1971 /*
1972 * this can truncate away extent items, csum items and directory items.
1973 * It starts at a high offset and removes keys until it can't find
1974 * any higher than new_size
1975 *
1976 * csum items that cross the new i_size are truncated to the new size
1977 * as well.
1978 *
1979 * min_type is the minimum key type to truncate down to. If set to 0, this
1980 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1981 */
1982 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1983 struct btrfs_root *root,
1984 struct inode *inode,
1985 u64 new_size, u32 min_type)
1986 {
1987 int ret;
1988 struct btrfs_path *path;
1989 struct btrfs_key key;
1990 struct btrfs_key found_key;
1991 u32 found_type;
1992 struct extent_buffer *leaf;
1993 struct btrfs_file_extent_item *fi;
1994 u64 extent_start = 0;
1995 u64 extent_num_bytes = 0;
1996 u64 item_end = 0;
1997 u64 root_gen = 0;
1998 u64 root_owner = 0;
1999 int found_extent;
2000 int del_item;
2001 int pending_del_nr = 0;
2002 int pending_del_slot = 0;
2003 int extent_type = -1;
2004 u64 mask = root->sectorsize - 1;
2005
2006 if (root->ref_cows)
2007 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2008 path = btrfs_alloc_path();
2009 path->reada = -1;
2010 BUG_ON(!path);
2011
2012 /* FIXME, add redo link to tree so we don't leak on crash */
2013 key.objectid = inode->i_ino;
2014 key.offset = (u64)-1;
2015 key.type = (u8)-1;
2016
2017 btrfs_init_path(path);
2018
2019 ret = drop_csum_leaves(trans, root, path, inode, new_size);
2020 BUG_ON(ret);
2021
2022 search_again:
2023 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2024 if (ret < 0) {
2025 goto error;
2026 }
2027 if (ret > 0) {
2028 /* there are no items in the tree for us to truncate, we're
2029 * done
2030 */
2031 if (path->slots[0] == 0) {
2032 ret = 0;
2033 goto error;
2034 }
2035 path->slots[0]--;
2036 }
2037
2038 while(1) {
2039 fi = NULL;
2040 leaf = path->nodes[0];
2041 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2042 found_type = btrfs_key_type(&found_key);
2043
2044 if (found_key.objectid != inode->i_ino)
2045 break;
2046
2047 if (found_type < min_type)
2048 break;
2049
2050 item_end = found_key.offset;
2051 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2052 fi = btrfs_item_ptr(leaf, path->slots[0],
2053 struct btrfs_file_extent_item);
2054 extent_type = btrfs_file_extent_type(leaf, fi);
2055 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2056 item_end +=
2057 btrfs_file_extent_num_bytes(leaf, fi);
2058 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2059 item_end += btrfs_file_extent_inline_len(leaf,
2060 fi);
2061 }
2062 item_end--;
2063 }
2064 if (found_type == BTRFS_CSUM_ITEM_KEY) {
2065 ret = btrfs_csum_truncate(trans, root, path,
2066 new_size);
2067 BUG_ON(ret);
2068 }
2069 if (item_end < new_size) {
2070 if (found_type == BTRFS_DIR_ITEM_KEY) {
2071 found_type = BTRFS_INODE_ITEM_KEY;
2072 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
2073 found_type = BTRFS_CSUM_ITEM_KEY;
2074 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
2075 found_type = BTRFS_XATTR_ITEM_KEY;
2076 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
2077 found_type = BTRFS_INODE_REF_KEY;
2078 } else if (found_type) {
2079 found_type--;
2080 } else {
2081 break;
2082 }
2083 btrfs_set_key_type(&key, found_type);
2084 goto next;
2085 }
2086 if (found_key.offset >= new_size)
2087 del_item = 1;
2088 else
2089 del_item = 0;
2090 found_extent = 0;
2091
2092 /* FIXME, shrink the extent if the ref count is only 1 */
2093 if (found_type != BTRFS_EXTENT_DATA_KEY)
2094 goto delete;
2095
2096 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2097 u64 num_dec;
2098 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2099 if (!del_item) {
2100 u64 orig_num_bytes =
2101 btrfs_file_extent_num_bytes(leaf, fi);
2102 extent_num_bytes = new_size -
2103 found_key.offset + root->sectorsize - 1;
2104 extent_num_bytes = extent_num_bytes &
2105 ~((u64)root->sectorsize - 1);
2106 btrfs_set_file_extent_num_bytes(leaf, fi,
2107 extent_num_bytes);
2108 num_dec = (orig_num_bytes -
2109 extent_num_bytes);
2110 if (root->ref_cows && extent_start != 0)
2111 inode_sub_bytes(inode, num_dec);
2112 btrfs_mark_buffer_dirty(leaf);
2113 } else {
2114 extent_num_bytes =
2115 btrfs_file_extent_disk_num_bytes(leaf,
2116 fi);
2117 /* FIXME blocksize != 4096 */
2118 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2119 if (extent_start != 0) {
2120 found_extent = 1;
2121 if (root->ref_cows)
2122 inode_sub_bytes(inode, num_dec);
2123 }
2124 root_gen = btrfs_header_generation(leaf);
2125 root_owner = btrfs_header_owner(leaf);
2126 }
2127 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2128 /*
2129 * we can't truncate inline items that have had
2130 * special encodings
2131 */
2132 if (!del_item &&
2133 btrfs_file_extent_compression(leaf, fi) == 0 &&
2134 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2135 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2136 u32 size = new_size - found_key.offset;
2137
2138 if (root->ref_cows) {
2139 inode_sub_bytes(inode, item_end + 1 -
2140 new_size);
2141 }
2142 size =
2143 btrfs_file_extent_calc_inline_size(size);
2144 ret = btrfs_truncate_item(trans, root, path,
2145 size, 1);
2146 BUG_ON(ret);
2147 } else if (root->ref_cows) {
2148 inode_sub_bytes(inode, item_end + 1 -
2149 found_key.offset);
2150 }
2151 }
2152 delete:
2153 if (del_item) {
2154 if (!pending_del_nr) {
2155 /* no pending yet, add ourselves */
2156 pending_del_slot = path->slots[0];
2157 pending_del_nr = 1;
2158 } else if (pending_del_nr &&
2159 path->slots[0] + 1 == pending_del_slot) {
2160 /* hop on the pending chunk */
2161 pending_del_nr++;
2162 pending_del_slot = path->slots[0];
2163 } else {
2164 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
2165 }
2166 } else {
2167 break;
2168 }
2169 if (found_extent) {
2170 ret = btrfs_free_extent(trans, root, extent_start,
2171 extent_num_bytes,
2172 leaf->start, root_owner,
2173 root_gen, inode->i_ino, 0);
2174 BUG_ON(ret);
2175 }
2176 next:
2177 if (path->slots[0] == 0) {
2178 if (pending_del_nr)
2179 goto del_pending;
2180 btrfs_release_path(root, path);
2181 goto search_again;
2182 }
2183
2184 path->slots[0]--;
2185 if (pending_del_nr &&
2186 path->slots[0] + 1 != pending_del_slot) {
2187 struct btrfs_key debug;
2188 del_pending:
2189 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2190 pending_del_slot);
2191 ret = btrfs_del_items(trans, root, path,
2192 pending_del_slot,
2193 pending_del_nr);
2194 BUG_ON(ret);
2195 pending_del_nr = 0;
2196 btrfs_release_path(root, path);
2197 goto search_again;
2198 }
2199 }
2200 ret = 0;
2201 error:
2202 if (pending_del_nr) {
2203 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2204 pending_del_nr);
2205 }
2206 btrfs_free_path(path);
2207 inode->i_sb->s_dirt = 1;
2208 return ret;
2209 }
2210
2211 /*
2212 * taken from block_truncate_page, but does cow as it zeros out
2213 * any bytes left in the last page in the file.
2214 */
2215 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2216 {
2217 struct inode *inode = mapping->host;
2218 struct btrfs_root *root = BTRFS_I(inode)->root;
2219 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2220 struct btrfs_ordered_extent *ordered;
2221 char *kaddr;
2222 u32 blocksize = root->sectorsize;
2223 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2224 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2225 struct page *page;
2226 int ret = 0;
2227 u64 page_start;
2228 u64 page_end;
2229
2230 if ((offset & (blocksize - 1)) == 0)
2231 goto out;
2232
2233 ret = -ENOMEM;
2234 again:
2235 page = grab_cache_page(mapping, index);
2236 if (!page)
2237 goto out;
2238
2239 page_start = page_offset(page);
2240 page_end = page_start + PAGE_CACHE_SIZE - 1;
2241
2242 if (!PageUptodate(page)) {
2243 ret = btrfs_readpage(NULL, page);
2244 lock_page(page);
2245 if (page->mapping != mapping) {
2246 unlock_page(page);
2247 page_cache_release(page);
2248 goto again;
2249 }
2250 if (!PageUptodate(page)) {
2251 ret = -EIO;
2252 goto out_unlock;
2253 }
2254 }
2255 wait_on_page_writeback(page);
2256
2257 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2258 set_page_extent_mapped(page);
2259
2260 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2261 if (ordered) {
2262 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2263 unlock_page(page);
2264 page_cache_release(page);
2265 btrfs_start_ordered_extent(inode, ordered, 1);
2266 btrfs_put_ordered_extent(ordered);
2267 goto again;
2268 }
2269
2270 btrfs_set_extent_delalloc(inode, page_start, page_end);
2271 ret = 0;
2272 if (offset != PAGE_CACHE_SIZE) {
2273 kaddr = kmap(page);
2274 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2275 flush_dcache_page(page);
2276 kunmap(page);
2277 }
2278 ClearPageChecked(page);
2279 set_page_dirty(page);
2280 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2281
2282 out_unlock:
2283 unlock_page(page);
2284 page_cache_release(page);
2285 out:
2286 return ret;
2287 }
2288
2289 int btrfs_cont_expand(struct inode *inode, loff_t size)
2290 {
2291 struct btrfs_trans_handle *trans;
2292 struct btrfs_root *root = BTRFS_I(inode)->root;
2293 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2294 struct extent_map *em;
2295 u64 mask = root->sectorsize - 1;
2296 u64 hole_start = (inode->i_size + mask) & ~mask;
2297 u64 block_end = (size + mask) & ~mask;
2298 u64 last_byte;
2299 u64 cur_offset;
2300 u64 hole_size;
2301 int err;
2302
2303 if (size <= hole_start)
2304 return 0;
2305
2306 err = btrfs_check_free_space(root, 1, 0);
2307 if (err)
2308 return err;
2309
2310 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2311
2312 while (1) {
2313 struct btrfs_ordered_extent *ordered;
2314 btrfs_wait_ordered_range(inode, hole_start,
2315 block_end - hole_start);
2316 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2317 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2318 if (!ordered)
2319 break;
2320 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2321 btrfs_put_ordered_extent(ordered);
2322 }
2323
2324 trans = btrfs_start_transaction(root, 1);
2325 btrfs_set_trans_block_group(trans, inode);
2326
2327 cur_offset = hole_start;
2328 while (1) {
2329 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2330 block_end - cur_offset, 0);
2331 BUG_ON(IS_ERR(em) || !em);
2332 last_byte = min(extent_map_end(em), block_end);
2333 last_byte = (last_byte + mask) & ~mask;
2334 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2335 hole_size = last_byte - cur_offset;
2336 err = btrfs_insert_file_extent(trans, root,
2337 inode->i_ino, cur_offset, 0,
2338 0, hole_size, 0, hole_size,
2339 0, 0, 0);
2340 btrfs_drop_extent_cache(inode, hole_start,
2341 last_byte - 1, 0);
2342 }
2343 free_extent_map(em);
2344 cur_offset = last_byte;
2345 if (err || cur_offset >= block_end)
2346 break;
2347 }
2348
2349 btrfs_end_transaction(trans, root);
2350 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2351 return err;
2352 }
2353
2354 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2355 {
2356 struct inode *inode = dentry->d_inode;
2357 int err;
2358
2359 err = inode_change_ok(inode, attr);
2360 if (err)
2361 return err;
2362
2363 if (S_ISREG(inode->i_mode) &&
2364 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2365 err = btrfs_cont_expand(inode, attr->ia_size);
2366 if (err)
2367 return err;
2368 }
2369
2370 err = inode_setattr(inode, attr);
2371
2372 if (!err && ((attr->ia_valid & ATTR_MODE)))
2373 err = btrfs_acl_chmod(inode);
2374 return err;
2375 }
2376
2377 void btrfs_delete_inode(struct inode *inode)
2378 {
2379 struct btrfs_trans_handle *trans;
2380 struct btrfs_root *root = BTRFS_I(inode)->root;
2381 unsigned long nr;
2382 int ret;
2383
2384 truncate_inode_pages(&inode->i_data, 0);
2385 if (is_bad_inode(inode)) {
2386 btrfs_orphan_del(NULL, inode);
2387 goto no_delete;
2388 }
2389 btrfs_wait_ordered_range(inode, 0, (u64)-1);
2390
2391 btrfs_i_size_write(inode, 0);
2392 trans = btrfs_start_transaction(root, 1);
2393
2394 btrfs_set_trans_block_group(trans, inode);
2395 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2396 if (ret) {
2397 btrfs_orphan_del(NULL, inode);
2398 goto no_delete_lock;
2399 }
2400
2401 btrfs_orphan_del(trans, inode);
2402
2403 nr = trans->blocks_used;
2404 clear_inode(inode);
2405
2406 btrfs_end_transaction(trans, root);
2407 btrfs_btree_balance_dirty(root, nr);
2408 return;
2409
2410 no_delete_lock:
2411 nr = trans->blocks_used;
2412 btrfs_end_transaction(trans, root);
2413 btrfs_btree_balance_dirty(root, nr);
2414 no_delete:
2415 clear_inode(inode);
2416 }
2417
2418 /*
2419 * this returns the key found in the dir entry in the location pointer.
2420 * If no dir entries were found, location->objectid is 0.
2421 */
2422 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2423 struct btrfs_key *location)
2424 {
2425 const char *name = dentry->d_name.name;
2426 int namelen = dentry->d_name.len;
2427 struct btrfs_dir_item *di;
2428 struct btrfs_path *path;
2429 struct btrfs_root *root = BTRFS_I(dir)->root;
2430 int ret = 0;
2431
2432 path = btrfs_alloc_path();
2433 BUG_ON(!path);
2434
2435 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2436 namelen, 0);
2437 if (IS_ERR(di))
2438 ret = PTR_ERR(di);
2439 if (!di || IS_ERR(di)) {
2440 goto out_err;
2441 }
2442 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2443 out:
2444 btrfs_free_path(path);
2445 return ret;
2446 out_err:
2447 location->objectid = 0;
2448 goto out;
2449 }
2450
2451 /*
2452 * when we hit a tree root in a directory, the btrfs part of the inode
2453 * needs to be changed to reflect the root directory of the tree root. This
2454 * is kind of like crossing a mount point.
2455 */
2456 static int fixup_tree_root_location(struct btrfs_root *root,
2457 struct btrfs_key *location,
2458 struct btrfs_root **sub_root,
2459 struct dentry *dentry)
2460 {
2461 struct btrfs_root_item *ri;
2462
2463 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2464 return 0;
2465 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2466 return 0;
2467
2468 *sub_root = btrfs_read_fs_root(root->fs_info, location,
2469 dentry->d_name.name,
2470 dentry->d_name.len);
2471 if (IS_ERR(*sub_root))
2472 return PTR_ERR(*sub_root);
2473
2474 ri = &(*sub_root)->root_item;
2475 location->objectid = btrfs_root_dirid(ri);
2476 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2477 location->offset = 0;
2478
2479 return 0;
2480 }
2481
2482 static noinline void init_btrfs_i(struct inode *inode)
2483 {
2484 struct btrfs_inode *bi = BTRFS_I(inode);
2485
2486 bi->i_acl = NULL;
2487 bi->i_default_acl = NULL;
2488
2489 bi->generation = 0;
2490 bi->last_trans = 0;
2491 bi->logged_trans = 0;
2492 bi->delalloc_bytes = 0;
2493 bi->disk_i_size = 0;
2494 bi->flags = 0;
2495 bi->index_cnt = (u64)-1;
2496 bi->log_dirty_trans = 0;
2497 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2498 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2499 inode->i_mapping, GFP_NOFS);
2500 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2501 inode->i_mapping, GFP_NOFS);
2502 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2503 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2504 mutex_init(&BTRFS_I(inode)->csum_mutex);
2505 mutex_init(&BTRFS_I(inode)->extent_mutex);
2506 mutex_init(&BTRFS_I(inode)->log_mutex);
2507 }
2508
2509 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2510 {
2511 struct btrfs_iget_args *args = p;
2512 inode->i_ino = args->ino;
2513 init_btrfs_i(inode);
2514 BTRFS_I(inode)->root = args->root;
2515 return 0;
2516 }
2517
2518 static int btrfs_find_actor(struct inode *inode, void *opaque)
2519 {
2520 struct btrfs_iget_args *args = opaque;
2521 return (args->ino == inode->i_ino &&
2522 args->root == BTRFS_I(inode)->root);
2523 }
2524
2525 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2526 struct btrfs_root *root, int wait)
2527 {
2528 struct inode *inode;
2529 struct btrfs_iget_args args;
2530 args.ino = objectid;
2531 args.root = root;
2532
2533 if (wait) {
2534 inode = ilookup5(s, objectid, btrfs_find_actor,
2535 (void *)&args);
2536 } else {
2537 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
2538 (void *)&args);
2539 }
2540 return inode;
2541 }
2542
2543 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
2544 struct btrfs_root *root)
2545 {
2546 struct inode *inode;
2547 struct btrfs_iget_args args;
2548 args.ino = objectid;
2549 args.root = root;
2550
2551 inode = iget5_locked(s, objectid, btrfs_find_actor,
2552 btrfs_init_locked_inode,
2553 (void *)&args);
2554 return inode;
2555 }
2556
2557 /* Get an inode object given its location and corresponding root.
2558 * Returns in *is_new if the inode was read from disk
2559 */
2560 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
2561 struct btrfs_root *root, int *is_new)
2562 {
2563 struct inode *inode;
2564
2565 inode = btrfs_iget_locked(s, location->objectid, root);
2566 if (!inode)
2567 return ERR_PTR(-EACCES);
2568
2569 if (inode->i_state & I_NEW) {
2570 BTRFS_I(inode)->root = root;
2571 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
2572 btrfs_read_locked_inode(inode);
2573 unlock_new_inode(inode);
2574 if (is_new)
2575 *is_new = 1;
2576 } else {
2577 if (is_new)
2578 *is_new = 0;
2579 }
2580
2581 return inode;
2582 }
2583
2584 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
2585 struct nameidata *nd)
2586 {
2587 struct inode * inode;
2588 struct btrfs_inode *bi = BTRFS_I(dir);
2589 struct btrfs_root *root = bi->root;
2590 struct btrfs_root *sub_root = root;
2591 struct btrfs_key location;
2592 int ret, new, do_orphan = 0;
2593
2594 if (dentry->d_name.len > BTRFS_NAME_LEN)
2595 return ERR_PTR(-ENAMETOOLONG);
2596
2597 ret = btrfs_inode_by_name(dir, dentry, &location);
2598
2599 if (ret < 0)
2600 return ERR_PTR(ret);
2601
2602 inode = NULL;
2603 if (location.objectid) {
2604 ret = fixup_tree_root_location(root, &location, &sub_root,
2605 dentry);
2606 if (ret < 0)
2607 return ERR_PTR(ret);
2608 if (ret > 0)
2609 return ERR_PTR(-ENOENT);
2610 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
2611 if (IS_ERR(inode))
2612 return ERR_CAST(inode);
2613
2614 /* the inode and parent dir are two different roots */
2615 if (new && root != sub_root) {
2616 igrab(inode);
2617 sub_root->inode = inode;
2618 do_orphan = 1;
2619 }
2620 }
2621
2622 if (unlikely(do_orphan))
2623 btrfs_orphan_cleanup(sub_root);
2624
2625 return d_splice_alias(inode, dentry);
2626 }
2627
2628 static unsigned char btrfs_filetype_table[] = {
2629 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
2630 };
2631
2632 static int btrfs_real_readdir(struct file *filp, void *dirent,
2633 filldir_t filldir)
2634 {
2635 struct inode *inode = filp->f_dentry->d_inode;
2636 struct btrfs_root *root = BTRFS_I(inode)->root;
2637 struct btrfs_item *item;
2638 struct btrfs_dir_item *di;
2639 struct btrfs_key key;
2640 struct btrfs_key found_key;
2641 struct btrfs_path *path;
2642 int ret;
2643 u32 nritems;
2644 struct extent_buffer *leaf;
2645 int slot;
2646 int advance;
2647 unsigned char d_type;
2648 int over = 0;
2649 u32 di_cur;
2650 u32 di_total;
2651 u32 di_len;
2652 int key_type = BTRFS_DIR_INDEX_KEY;
2653 char tmp_name[32];
2654 char *name_ptr;
2655 int name_len;
2656
2657 /* FIXME, use a real flag for deciding about the key type */
2658 if (root->fs_info->tree_root == root)
2659 key_type = BTRFS_DIR_ITEM_KEY;
2660
2661 /* special case for "." */
2662 if (filp->f_pos == 0) {
2663 over = filldir(dirent, ".", 1,
2664 1, inode->i_ino,
2665 DT_DIR);
2666 if (over)
2667 return 0;
2668 filp->f_pos = 1;
2669 }
2670 /* special case for .., just use the back ref */
2671 if (filp->f_pos == 1) {
2672 u64 pino = parent_ino(filp->f_path.dentry);
2673 over = filldir(dirent, "..", 2,
2674 2, pino, DT_DIR);
2675 if (over)
2676 return 0;
2677 filp->f_pos = 2;
2678 }
2679
2680 path = btrfs_alloc_path();
2681 path->reada = 2;
2682
2683 btrfs_set_key_type(&key, key_type);
2684 key.offset = filp->f_pos;
2685 key.objectid = inode->i_ino;
2686
2687 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2688 if (ret < 0)
2689 goto err;
2690 advance = 0;
2691
2692 while (1) {
2693 leaf = path->nodes[0];
2694 nritems = btrfs_header_nritems(leaf);
2695 slot = path->slots[0];
2696 if (advance || slot >= nritems) {
2697 if (slot >= nritems - 1) {
2698 ret = btrfs_next_leaf(root, path);
2699 if (ret)
2700 break;
2701 leaf = path->nodes[0];
2702 nritems = btrfs_header_nritems(leaf);
2703 slot = path->slots[0];
2704 } else {
2705 slot++;
2706 path->slots[0]++;
2707 }
2708 }
2709 advance = 1;
2710 item = btrfs_item_nr(leaf, slot);
2711 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2712
2713 if (found_key.objectid != key.objectid)
2714 break;
2715 if (btrfs_key_type(&found_key) != key_type)
2716 break;
2717 if (found_key.offset < filp->f_pos)
2718 continue;
2719
2720 filp->f_pos = found_key.offset;
2721
2722 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2723 di_cur = 0;
2724 di_total = btrfs_item_size(leaf, item);
2725
2726 while (di_cur < di_total) {
2727 struct btrfs_key location;
2728
2729 name_len = btrfs_dir_name_len(leaf, di);
2730 if (name_len <= sizeof(tmp_name)) {
2731 name_ptr = tmp_name;
2732 } else {
2733 name_ptr = kmalloc(name_len, GFP_NOFS);
2734 if (!name_ptr) {
2735 ret = -ENOMEM;
2736 goto err;
2737 }
2738 }
2739 read_extent_buffer(leaf, name_ptr,
2740 (unsigned long)(di + 1), name_len);
2741
2742 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2743 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2744 over = filldir(dirent, name_ptr, name_len,
2745 found_key.offset, location.objectid,
2746 d_type);
2747
2748 if (name_ptr != tmp_name)
2749 kfree(name_ptr);
2750
2751 if (over)
2752 goto nopos;
2753
2754 di_len = btrfs_dir_name_len(leaf, di) +
2755 btrfs_dir_data_len(leaf, di) + sizeof(*di);
2756 di_cur += di_len;
2757 di = (struct btrfs_dir_item *)((char *)di + di_len);
2758 }
2759 }
2760
2761 /* Reached end of directory/root. Bump pos past the last item. */
2762 if (key_type == BTRFS_DIR_INDEX_KEY)
2763 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2764 else
2765 filp->f_pos++;
2766 nopos:
2767 ret = 0;
2768 err:
2769 btrfs_free_path(path);
2770 return ret;
2771 }
2772
2773 int btrfs_write_inode(struct inode *inode, int wait)
2774 {
2775 struct btrfs_root *root = BTRFS_I(inode)->root;
2776 struct btrfs_trans_handle *trans;
2777 int ret = 0;
2778
2779 if (root->fs_info->closing > 1)
2780 return 0;
2781
2782 if (wait) {
2783 trans = btrfs_join_transaction(root, 1);
2784 btrfs_set_trans_block_group(trans, inode);
2785 ret = btrfs_commit_transaction(trans, root);
2786 }
2787 return ret;
2788 }
2789
2790 /*
2791 * This is somewhat expensive, updating the tree every time the
2792 * inode changes. But, it is most likely to find the inode in cache.
2793 * FIXME, needs more benchmarking...there are no reasons other than performance
2794 * to keep or drop this code.
2795 */
2796 void btrfs_dirty_inode(struct inode *inode)
2797 {
2798 struct btrfs_root *root = BTRFS_I(inode)->root;
2799 struct btrfs_trans_handle *trans;
2800
2801 trans = btrfs_join_transaction(root, 1);
2802 btrfs_set_trans_block_group(trans, inode);
2803 btrfs_update_inode(trans, root, inode);
2804 btrfs_end_transaction(trans, root);
2805 }
2806
2807 /*
2808 * find the highest existing sequence number in a directory
2809 * and then set the in-memory index_cnt variable to reflect
2810 * free sequence numbers
2811 */
2812 static int btrfs_set_inode_index_count(struct inode *inode)
2813 {
2814 struct btrfs_root *root = BTRFS_I(inode)->root;
2815 struct btrfs_key key, found_key;
2816 struct btrfs_path *path;
2817 struct extent_buffer *leaf;
2818 int ret;
2819
2820 key.objectid = inode->i_ino;
2821 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2822 key.offset = (u64)-1;
2823
2824 path = btrfs_alloc_path();
2825 if (!path)
2826 return -ENOMEM;
2827
2828 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2829 if (ret < 0)
2830 goto out;
2831 /* FIXME: we should be able to handle this */
2832 if (ret == 0)
2833 goto out;
2834 ret = 0;
2835
2836 /*
2837 * MAGIC NUMBER EXPLANATION:
2838 * since we search a directory based on f_pos we have to start at 2
2839 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2840 * else has to start at 2
2841 */
2842 if (path->slots[0] == 0) {
2843 BTRFS_I(inode)->index_cnt = 2;
2844 goto out;
2845 }
2846
2847 path->slots[0]--;
2848
2849 leaf = path->nodes[0];
2850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2851
2852 if (found_key.objectid != inode->i_ino ||
2853 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2854 BTRFS_I(inode)->index_cnt = 2;
2855 goto out;
2856 }
2857
2858 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2859 out:
2860 btrfs_free_path(path);
2861 return ret;
2862 }
2863
2864 /*
2865 * helper to find a free sequence number in a given directory. This current
2866 * code is very simple, later versions will do smarter things in the btree
2867 */
2868 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2869 u64 *index)
2870 {
2871 int ret = 0;
2872
2873 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2874 ret = btrfs_set_inode_index_count(dir);
2875 if (ret) {
2876 return ret;
2877 }
2878 }
2879
2880 *index = BTRFS_I(dir)->index_cnt;
2881 BTRFS_I(dir)->index_cnt++;
2882
2883 return ret;
2884 }
2885
2886 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2887 struct btrfs_root *root,
2888 struct inode *dir,
2889 const char *name, int name_len,
2890 u64 ref_objectid,
2891 u64 objectid,
2892 struct btrfs_block_group_cache *group,
2893 int mode, u64 *index)
2894 {
2895 struct inode *inode;
2896 struct btrfs_inode_item *inode_item;
2897 struct btrfs_block_group_cache *new_inode_group;
2898 struct btrfs_key *location;
2899 struct btrfs_path *path;
2900 struct btrfs_inode_ref *ref;
2901 struct btrfs_key key[2];
2902 u32 sizes[2];
2903 unsigned long ptr;
2904 int ret;
2905 int owner;
2906
2907 path = btrfs_alloc_path();
2908 BUG_ON(!path);
2909
2910 inode = new_inode(root->fs_info->sb);
2911 if (!inode)
2912 return ERR_PTR(-ENOMEM);
2913
2914 if (dir) {
2915 ret = btrfs_set_inode_index(dir, inode, index);
2916 if (ret)
2917 return ERR_PTR(ret);
2918 }
2919 /*
2920 * index_cnt is ignored for everything but a dir,
2921 * btrfs_get_inode_index_count has an explanation for the magic
2922 * number
2923 */
2924 init_btrfs_i(inode);
2925 BTRFS_I(inode)->index_cnt = 2;
2926 BTRFS_I(inode)->root = root;
2927 BTRFS_I(inode)->generation = trans->transid;
2928
2929 if (mode & S_IFDIR)
2930 owner = 0;
2931 else
2932 owner = 1;
2933 new_inode_group = btrfs_find_block_group(root, group, 0,
2934 BTRFS_BLOCK_GROUP_METADATA, owner);
2935 if (!new_inode_group) {
2936 printk("find_block group failed\n");
2937 new_inode_group = group;
2938 }
2939 BTRFS_I(inode)->block_group = new_inode_group;
2940
2941 key[0].objectid = objectid;
2942 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2943 key[0].offset = 0;
2944
2945 key[1].objectid = objectid;
2946 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2947 key[1].offset = ref_objectid;
2948
2949 sizes[0] = sizeof(struct btrfs_inode_item);
2950 sizes[1] = name_len + sizeof(*ref);
2951
2952 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2953 if (ret != 0)
2954 goto fail;
2955
2956 if (objectid > root->highest_inode)
2957 root->highest_inode = objectid;
2958
2959 inode->i_uid = current->fsuid;
2960 inode->i_gid = current->fsgid;
2961 inode->i_mode = mode;
2962 inode->i_ino = objectid;
2963 inode_set_bytes(inode, 0);
2964 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2965 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2966 struct btrfs_inode_item);
2967 fill_inode_item(trans, path->nodes[0], inode_item, inode);
2968
2969 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2970 struct btrfs_inode_ref);
2971 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2972 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2973 ptr = (unsigned long)(ref + 1);
2974 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2975
2976 btrfs_mark_buffer_dirty(path->nodes[0]);
2977 btrfs_free_path(path);
2978
2979 location = &BTRFS_I(inode)->location;
2980 location->objectid = objectid;
2981 location->offset = 0;
2982 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2983
2984 insert_inode_hash(inode);
2985 return inode;
2986 fail:
2987 if (dir)
2988 BTRFS_I(dir)->index_cnt--;
2989 btrfs_free_path(path);
2990 return ERR_PTR(ret);
2991 }
2992
2993 static inline u8 btrfs_inode_type(struct inode *inode)
2994 {
2995 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2996 }
2997
2998 /*
2999 * utility function to add 'inode' into 'parent_inode' with
3000 * a give name and a given sequence number.
3001 * if 'add_backref' is true, also insert a backref from the
3002 * inode to the parent directory.
3003 */
3004 int btrfs_add_link(struct btrfs_trans_handle *trans,
3005 struct inode *parent_inode, struct inode *inode,
3006 const char *name, int name_len, int add_backref, u64 index)
3007 {
3008 int ret;
3009 struct btrfs_key key;
3010 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3011
3012 key.objectid = inode->i_ino;
3013 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3014 key.offset = 0;
3015
3016 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3017 parent_inode->i_ino,
3018 &key, btrfs_inode_type(inode),
3019 index);
3020 if (ret == 0) {
3021 if (add_backref) {
3022 ret = btrfs_insert_inode_ref(trans, root,
3023 name, name_len,
3024 inode->i_ino,
3025 parent_inode->i_ino,
3026 index);
3027 }
3028 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3029 name_len * 2);
3030 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3031 ret = btrfs_update_inode(trans, root, parent_inode);
3032 }
3033 return ret;
3034 }
3035
3036 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3037 struct dentry *dentry, struct inode *inode,
3038 int backref, u64 index)
3039 {
3040 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3041 inode, dentry->d_name.name,
3042 dentry->d_name.len, backref, index);
3043 if (!err) {
3044 d_instantiate(dentry, inode);
3045 return 0;
3046 }
3047 if (err > 0)
3048 err = -EEXIST;
3049 return err;
3050 }
3051
3052 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3053 int mode, dev_t rdev)
3054 {
3055 struct btrfs_trans_handle *trans;
3056 struct btrfs_root *root = BTRFS_I(dir)->root;
3057 struct inode *inode = NULL;
3058 int err;
3059 int drop_inode = 0;
3060 u64 objectid;
3061 unsigned long nr = 0;
3062 u64 index = 0;
3063
3064 if (!new_valid_dev(rdev))
3065 return -EINVAL;
3066
3067 err = btrfs_check_free_space(root, 1, 0);
3068 if (err)
3069 goto fail;
3070
3071 trans = btrfs_start_transaction(root, 1);
3072 btrfs_set_trans_block_group(trans, dir);
3073
3074 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3075 if (err) {
3076 err = -ENOSPC;
3077 goto out_unlock;
3078 }
3079
3080 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3081 dentry->d_name.len,
3082 dentry->d_parent->d_inode->i_ino, objectid,
3083 BTRFS_I(dir)->block_group, mode, &index);
3084 err = PTR_ERR(inode);
3085 if (IS_ERR(inode))
3086 goto out_unlock;
3087
3088 err = btrfs_init_acl(inode, dir);
3089 if (err) {
3090 drop_inode = 1;
3091 goto out_unlock;
3092 }
3093
3094 btrfs_set_trans_block_group(trans, inode);
3095 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3096 if (err)
3097 drop_inode = 1;
3098 else {
3099 inode->i_op = &btrfs_special_inode_operations;
3100 init_special_inode(inode, inode->i_mode, rdev);
3101 btrfs_update_inode(trans, root, inode);
3102 }
3103 dir->i_sb->s_dirt = 1;
3104 btrfs_update_inode_block_group(trans, inode);
3105 btrfs_update_inode_block_group(trans, dir);
3106 out_unlock:
3107 nr = trans->blocks_used;
3108 btrfs_end_transaction_throttle(trans, root);
3109 fail:
3110 if (drop_inode) {
3111 inode_dec_link_count(inode);
3112 iput(inode);
3113 }
3114 btrfs_btree_balance_dirty(root, nr);
3115 return err;
3116 }
3117
3118 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3119 int mode, struct nameidata *nd)
3120 {
3121 struct btrfs_trans_handle *trans;
3122 struct btrfs_root *root = BTRFS_I(dir)->root;
3123 struct inode *inode = NULL;
3124 int err;
3125 int drop_inode = 0;
3126 unsigned long nr = 0;
3127 u64 objectid;
3128 u64 index = 0;
3129
3130 err = btrfs_check_free_space(root, 1, 0);
3131 if (err)
3132 goto fail;
3133 trans = btrfs_start_transaction(root, 1);
3134 btrfs_set_trans_block_group(trans, dir);
3135
3136 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3137 if (err) {
3138 err = -ENOSPC;
3139 goto out_unlock;
3140 }
3141
3142 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3143 dentry->d_name.len,
3144 dentry->d_parent->d_inode->i_ino,
3145 objectid, BTRFS_I(dir)->block_group, mode,
3146 &index);
3147 err = PTR_ERR(inode);
3148 if (IS_ERR(inode))
3149 goto out_unlock;
3150
3151 err = btrfs_init_acl(inode, dir);
3152 if (err) {
3153 drop_inode = 1;
3154 goto out_unlock;
3155 }
3156
3157 btrfs_set_trans_block_group(trans, inode);
3158 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3159 if (err)
3160 drop_inode = 1;
3161 else {
3162 inode->i_mapping->a_ops = &btrfs_aops;
3163 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3164 inode->i_fop = &btrfs_file_operations;
3165 inode->i_op = &btrfs_file_inode_operations;
3166 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3167 }
3168 dir->i_sb->s_dirt = 1;
3169 btrfs_update_inode_block_group(trans, inode);
3170 btrfs_update_inode_block_group(trans, dir);
3171 out_unlock:
3172 nr = trans->blocks_used;
3173 btrfs_end_transaction_throttle(trans, root);
3174 fail:
3175 if (drop_inode) {
3176 inode_dec_link_count(inode);
3177 iput(inode);
3178 }
3179 btrfs_btree_balance_dirty(root, nr);
3180 return err;
3181 }
3182
3183 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3184 struct dentry *dentry)
3185 {
3186 struct btrfs_trans_handle *trans;
3187 struct btrfs_root *root = BTRFS_I(dir)->root;
3188 struct inode *inode = old_dentry->d_inode;
3189 u64 index;
3190 unsigned long nr = 0;
3191 int err;
3192 int drop_inode = 0;
3193
3194 if (inode->i_nlink == 0)
3195 return -ENOENT;
3196
3197 btrfs_inc_nlink(inode);
3198 err = btrfs_check_free_space(root, 1, 0);
3199 if (err)
3200 goto fail;
3201 err = btrfs_set_inode_index(dir, inode, &index);
3202 if (err)
3203 goto fail;
3204
3205 trans = btrfs_start_transaction(root, 1);
3206
3207 btrfs_set_trans_block_group(trans, dir);
3208 atomic_inc(&inode->i_count);
3209
3210 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3211
3212 if (err)
3213 drop_inode = 1;
3214
3215 dir->i_sb->s_dirt = 1;
3216 btrfs_update_inode_block_group(trans, dir);
3217 err = btrfs_update_inode(trans, root, inode);
3218
3219 if (err)
3220 drop_inode = 1;
3221
3222 nr = trans->blocks_used;
3223 btrfs_end_transaction_throttle(trans, root);
3224 fail:
3225 if (drop_inode) {
3226 inode_dec_link_count(inode);
3227 iput(inode);
3228 }
3229 btrfs_btree_balance_dirty(root, nr);
3230 return err;
3231 }
3232
3233 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3234 {
3235 struct inode *inode = NULL;
3236 struct btrfs_trans_handle *trans;
3237 struct btrfs_root *root = BTRFS_I(dir)->root;
3238 int err = 0;
3239 int drop_on_err = 0;
3240 u64 objectid = 0;
3241 u64 index = 0;
3242 unsigned long nr = 1;
3243
3244 err = btrfs_check_free_space(root, 1, 0);
3245 if (err)
3246 goto out_unlock;
3247
3248 trans = btrfs_start_transaction(root, 1);
3249 btrfs_set_trans_block_group(trans, dir);
3250
3251 if (IS_ERR(trans)) {
3252 err = PTR_ERR(trans);
3253 goto out_unlock;
3254 }
3255
3256 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3257 if (err) {
3258 err = -ENOSPC;
3259 goto out_unlock;
3260 }
3261
3262 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3263 dentry->d_name.len,
3264 dentry->d_parent->d_inode->i_ino, objectid,
3265 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3266 &index);
3267 if (IS_ERR(inode)) {
3268 err = PTR_ERR(inode);
3269 goto out_fail;
3270 }
3271
3272 drop_on_err = 1;
3273
3274 err = btrfs_init_acl(inode, dir);
3275 if (err)
3276 goto out_fail;
3277
3278 inode->i_op = &btrfs_dir_inode_operations;
3279 inode->i_fop = &btrfs_dir_file_operations;
3280 btrfs_set_trans_block_group(trans, inode);
3281
3282 btrfs_i_size_write(inode, 0);
3283 err = btrfs_update_inode(trans, root, inode);
3284 if (err)
3285 goto out_fail;
3286
3287 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3288 inode, dentry->d_name.name,
3289 dentry->d_name.len, 0, index);
3290 if (err)
3291 goto out_fail;
3292
3293 d_instantiate(dentry, inode);
3294 drop_on_err = 0;
3295 dir->i_sb->s_dirt = 1;
3296 btrfs_update_inode_block_group(trans, inode);
3297 btrfs_update_inode_block_group(trans, dir);
3298
3299 out_fail:
3300 nr = trans->blocks_used;
3301 btrfs_end_transaction_throttle(trans, root);
3302
3303 out_unlock:
3304 if (drop_on_err)
3305 iput(inode);
3306 btrfs_btree_balance_dirty(root, nr);
3307 return err;
3308 }
3309
3310 /* helper for btfs_get_extent. Given an existing extent in the tree,
3311 * and an extent that you want to insert, deal with overlap and insert
3312 * the new extent into the tree.
3313 */
3314 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3315 struct extent_map *existing,
3316 struct extent_map *em,
3317 u64 map_start, u64 map_len)
3318 {
3319 u64 start_diff;
3320
3321 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3322 start_diff = map_start - em->start;
3323 em->start = map_start;
3324 em->len = map_len;
3325 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3326 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3327 em->block_start += start_diff;
3328 em->block_len -= start_diff;
3329 }
3330 return add_extent_mapping(em_tree, em);
3331 }
3332
3333 static noinline int uncompress_inline(struct btrfs_path *path,
3334 struct inode *inode, struct page *page,
3335 size_t pg_offset, u64 extent_offset,
3336 struct btrfs_file_extent_item *item)
3337 {
3338 int ret;
3339 struct extent_buffer *leaf = path->nodes[0];
3340 char *tmp;
3341 size_t max_size;
3342 unsigned long inline_size;
3343 unsigned long ptr;
3344
3345 WARN_ON(pg_offset != 0);
3346 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3347 inline_size = btrfs_file_extent_inline_item_len(leaf,
3348 btrfs_item_nr(leaf, path->slots[0]));
3349 tmp = kmalloc(inline_size, GFP_NOFS);
3350 ptr = btrfs_file_extent_inline_start(item);
3351
3352 read_extent_buffer(leaf, tmp, ptr, inline_size);
3353
3354 max_size = min(PAGE_CACHE_SIZE, max_size);
3355 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3356 inline_size, max_size);
3357 if (ret) {
3358 char *kaddr = kmap_atomic(page, KM_USER0);
3359 unsigned long copy_size = min_t(u64,
3360 PAGE_CACHE_SIZE - pg_offset,
3361 max_size - extent_offset);
3362 memset(kaddr + pg_offset, 0, copy_size);
3363 kunmap_atomic(kaddr, KM_USER0);
3364 }
3365 kfree(tmp);
3366 return 0;
3367 }
3368
3369 /*
3370 * a bit scary, this does extent mapping from logical file offset to the disk.
3371 * the ugly parts come from merging extents from the disk with the
3372 * in-ram representation. This gets more complex because of the data=ordered code,
3373 * where the in-ram extents might be locked pending data=ordered completion.
3374 *
3375 * This also copies inline extents directly into the page.
3376 */
3377 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3378 size_t pg_offset, u64 start, u64 len,
3379 int create)
3380 {
3381 int ret;
3382 int err = 0;
3383 u64 bytenr;
3384 u64 extent_start = 0;
3385 u64 extent_end = 0;
3386 u64 objectid = inode->i_ino;
3387 u32 found_type;
3388 struct btrfs_path *path = NULL;
3389 struct btrfs_root *root = BTRFS_I(inode)->root;
3390 struct btrfs_file_extent_item *item;
3391 struct extent_buffer *leaf;
3392 struct btrfs_key found_key;
3393 struct extent_map *em = NULL;
3394 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3395 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3396 struct btrfs_trans_handle *trans = NULL;
3397 int compressed;
3398
3399 again:
3400 spin_lock(&em_tree->lock);
3401 em = lookup_extent_mapping(em_tree, start, len);
3402 if (em)
3403 em->bdev = root->fs_info->fs_devices->latest_bdev;
3404 spin_unlock(&em_tree->lock);
3405
3406 if (em) {
3407 if (em->start > start || em->start + em->len <= start)
3408 free_extent_map(em);
3409 else if (em->block_start == EXTENT_MAP_INLINE && page)
3410 free_extent_map(em);
3411 else
3412 goto out;
3413 }
3414 em = alloc_extent_map(GFP_NOFS);
3415 if (!em) {
3416 err = -ENOMEM;
3417 goto out;
3418 }
3419 em->bdev = root->fs_info->fs_devices->latest_bdev;
3420 em->start = EXTENT_MAP_HOLE;
3421 em->len = (u64)-1;
3422 em->block_len = (u64)-1;
3423
3424 if (!path) {
3425 path = btrfs_alloc_path();
3426 BUG_ON(!path);
3427 }
3428
3429 ret = btrfs_lookup_file_extent(trans, root, path,
3430 objectid, start, trans != NULL);
3431 if (ret < 0) {
3432 err = ret;
3433 goto out;
3434 }
3435
3436 if (ret != 0) {
3437 if (path->slots[0] == 0)
3438 goto not_found;
3439 path->slots[0]--;
3440 }
3441
3442 leaf = path->nodes[0];
3443 item = btrfs_item_ptr(leaf, path->slots[0],
3444 struct btrfs_file_extent_item);
3445 /* are we inside the extent that was found? */
3446 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3447 found_type = btrfs_key_type(&found_key);
3448 if (found_key.objectid != objectid ||
3449 found_type != BTRFS_EXTENT_DATA_KEY) {
3450 goto not_found;
3451 }
3452
3453 found_type = btrfs_file_extent_type(leaf, item);
3454 extent_start = found_key.offset;
3455 compressed = btrfs_file_extent_compression(leaf, item);
3456 if (found_type == BTRFS_FILE_EXTENT_REG) {
3457 extent_end = extent_start +
3458 btrfs_file_extent_num_bytes(leaf, item);
3459 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3460 size_t size;
3461 size = btrfs_file_extent_inline_len(leaf, item);
3462 extent_end = (extent_start + size + root->sectorsize - 1) &
3463 ~((u64)root->sectorsize - 1);
3464 }
3465
3466 if (start >= extent_end) {
3467 path->slots[0]++;
3468 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3469 ret = btrfs_next_leaf(root, path);
3470 if (ret < 0) {
3471 err = ret;
3472 goto out;
3473 }
3474 if (ret > 0)
3475 goto not_found;
3476 leaf = path->nodes[0];
3477 }
3478 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3479 if (found_key.objectid != objectid ||
3480 found_key.type != BTRFS_EXTENT_DATA_KEY)
3481 goto not_found;
3482 if (start + len <= found_key.offset)
3483 goto not_found;
3484 em->start = start;
3485 em->len = found_key.offset - start;
3486 goto not_found_em;
3487 }
3488
3489 if (found_type == BTRFS_FILE_EXTENT_REG) {
3490 em->start = extent_start;
3491 em->len = extent_end - extent_start;
3492 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3493 if (bytenr == 0) {
3494 em->block_start = EXTENT_MAP_HOLE;
3495 goto insert;
3496 }
3497 if (compressed) {
3498 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3499 em->block_start = bytenr;
3500 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
3501 item);
3502 } else {
3503 bytenr += btrfs_file_extent_offset(leaf, item);
3504 em->block_start = bytenr;
3505 em->block_len = em->len;
3506 }
3507 goto insert;
3508 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3509 unsigned long ptr;
3510 char *map;
3511 size_t size;
3512 size_t extent_offset;
3513 size_t copy_size;
3514
3515 em->block_start = EXTENT_MAP_INLINE;
3516 if (!page || create) {
3517 em->start = extent_start;
3518 em->len = extent_end - extent_start;
3519 goto out;
3520 }
3521
3522 size = btrfs_file_extent_inline_len(leaf, item);
3523 extent_offset = page_offset(page) + pg_offset - extent_start;
3524 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3525 size - extent_offset);
3526 em->start = extent_start + extent_offset;
3527 em->len = (copy_size + root->sectorsize - 1) &
3528 ~((u64)root->sectorsize - 1);
3529 if (compressed)
3530 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3531 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
3532 if (create == 0 && !PageUptodate(page)) {
3533 if (btrfs_file_extent_compression(leaf, item) ==
3534 BTRFS_COMPRESS_ZLIB) {
3535 ret = uncompress_inline(path, inode, page,
3536 pg_offset,
3537 extent_offset, item);
3538 BUG_ON(ret);
3539 } else {
3540 map = kmap(page);
3541 read_extent_buffer(leaf, map + pg_offset, ptr,
3542 copy_size);
3543 kunmap(page);
3544 }
3545 flush_dcache_page(page);
3546 } else if (create && PageUptodate(page)) {
3547 if (!trans) {
3548 kunmap(page);
3549 free_extent_map(em);
3550 em = NULL;
3551 btrfs_release_path(root, path);
3552 trans = btrfs_join_transaction(root, 1);
3553 goto again;
3554 }
3555 map = kmap(page);
3556 write_extent_buffer(leaf, map + pg_offset, ptr,
3557 copy_size);
3558 kunmap(page);
3559 btrfs_mark_buffer_dirty(leaf);
3560 }
3561 set_extent_uptodate(io_tree, em->start,
3562 extent_map_end(em) - 1, GFP_NOFS);
3563 goto insert;
3564 } else {
3565 printk("unkknown found_type %d\n", found_type);
3566 WARN_ON(1);
3567 }
3568 not_found:
3569 em->start = start;
3570 em->len = len;
3571 not_found_em:
3572 em->block_start = EXTENT_MAP_HOLE;
3573 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
3574 insert:
3575 btrfs_release_path(root, path);
3576 if (em->start > start || extent_map_end(em) <= start) {
3577 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
3578 err = -EIO;
3579 goto out;
3580 }
3581
3582 err = 0;
3583 spin_lock(&em_tree->lock);
3584 ret = add_extent_mapping(em_tree, em);
3585 /* it is possible that someone inserted the extent into the tree
3586 * while we had the lock dropped. It is also possible that
3587 * an overlapping map exists in the tree
3588 */
3589 if (ret == -EEXIST) {
3590 struct extent_map *existing;
3591
3592 ret = 0;
3593
3594 existing = lookup_extent_mapping(em_tree, start, len);
3595 if (existing && (existing->start > start ||
3596 existing->start + existing->len <= start)) {
3597 free_extent_map(existing);
3598 existing = NULL;
3599 }
3600 if (!existing) {
3601 existing = lookup_extent_mapping(em_tree, em->start,
3602 em->len);
3603 if (existing) {
3604 err = merge_extent_mapping(em_tree, existing,
3605 em, start,
3606 root->sectorsize);
3607 free_extent_map(existing);
3608 if (err) {
3609 free_extent_map(em);
3610 em = NULL;
3611 }
3612 } else {
3613 err = -EIO;
3614 printk("failing to insert %Lu %Lu\n",
3615 start, len);
3616 free_extent_map(em);
3617 em = NULL;
3618 }
3619 } else {
3620 free_extent_map(em);
3621 em = existing;
3622 err = 0;
3623 }
3624 }
3625 spin_unlock(&em_tree->lock);
3626 out:
3627 if (path)
3628 btrfs_free_path(path);
3629 if (trans) {
3630 ret = btrfs_end_transaction(trans, root);
3631 if (!err) {
3632 err = ret;
3633 }
3634 }
3635 if (err) {
3636 free_extent_map(em);
3637 WARN_ON(1);
3638 return ERR_PTR(err);
3639 }
3640 return em;
3641 }
3642
3643 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
3644 const struct iovec *iov, loff_t offset,
3645 unsigned long nr_segs)
3646 {
3647 return -EINVAL;
3648 }
3649
3650 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3651 {
3652 return extent_bmap(mapping, iblock, btrfs_get_extent);
3653 }
3654
3655 int btrfs_readpage(struct file *file, struct page *page)
3656 {
3657 struct extent_io_tree *tree;
3658 tree = &BTRFS_I(page->mapping->host)->io_tree;
3659 return extent_read_full_page(tree, page, btrfs_get_extent);
3660 }
3661
3662 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3663 {
3664 struct extent_io_tree *tree;
3665
3666
3667 if (current->flags & PF_MEMALLOC) {
3668 redirty_page_for_writepage(wbc, page);
3669 unlock_page(page);
3670 return 0;
3671 }
3672 tree = &BTRFS_I(page->mapping->host)->io_tree;
3673 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3674 }
3675
3676 int btrfs_writepages(struct address_space *mapping,
3677 struct writeback_control *wbc)
3678 {
3679 struct extent_io_tree *tree;
3680 tree = &BTRFS_I(mapping->host)->io_tree;
3681 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3682 }
3683
3684 static int
3685 btrfs_readpages(struct file *file, struct address_space *mapping,
3686 struct list_head *pages, unsigned nr_pages)
3687 {
3688 struct extent_io_tree *tree;
3689 tree = &BTRFS_I(mapping->host)->io_tree;
3690 return extent_readpages(tree, mapping, pages, nr_pages,
3691 btrfs_get_extent);
3692 }
3693 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3694 {
3695 struct extent_io_tree *tree;
3696 struct extent_map_tree *map;
3697 int ret;
3698
3699 tree = &BTRFS_I(page->mapping->host)->io_tree;
3700 map = &BTRFS_I(page->mapping->host)->extent_tree;
3701 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3702 if (ret == 1) {
3703 ClearPagePrivate(page);
3704 set_page_private(page, 0);
3705 page_cache_release(page);
3706 }
3707 return ret;
3708 }
3709
3710 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3711 {
3712 if (PageWriteback(page) || PageDirty(page))
3713 return 0;
3714 return __btrfs_releasepage(page, gfp_flags);
3715 }
3716
3717 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3718 {
3719 struct extent_io_tree *tree;
3720 struct btrfs_ordered_extent *ordered;
3721 u64 page_start = page_offset(page);
3722 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3723
3724 wait_on_page_writeback(page);
3725 tree = &BTRFS_I(page->mapping->host)->io_tree;
3726 if (offset) {
3727 btrfs_releasepage(page, GFP_NOFS);
3728 return;
3729 }
3730
3731 lock_extent(tree, page_start, page_end, GFP_NOFS);
3732 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3733 page_offset(page));
3734 if (ordered) {
3735 /*
3736 * IO on this page will never be started, so we need
3737 * to account for any ordered extents now
3738 */
3739 clear_extent_bit(tree, page_start, page_end,
3740 EXTENT_DIRTY | EXTENT_DELALLOC |
3741 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3742 btrfs_finish_ordered_io(page->mapping->host,
3743 page_start, page_end);
3744 btrfs_put_ordered_extent(ordered);
3745 lock_extent(tree, page_start, page_end, GFP_NOFS);
3746 }
3747 clear_extent_bit(tree, page_start, page_end,
3748 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3749 EXTENT_ORDERED,
3750 1, 1, GFP_NOFS);
3751 __btrfs_releasepage(page, GFP_NOFS);
3752
3753 ClearPageChecked(page);
3754 if (PagePrivate(page)) {
3755 ClearPagePrivate(page);
3756 set_page_private(page, 0);
3757 page_cache_release(page);
3758 }
3759 }
3760
3761 /*
3762 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3763 * called from a page fault handler when a page is first dirtied. Hence we must
3764 * be careful to check for EOF conditions here. We set the page up correctly
3765 * for a written page which means we get ENOSPC checking when writing into
3766 * holes and correct delalloc and unwritten extent mapping on filesystems that
3767 * support these features.
3768 *
3769 * We are not allowed to take the i_mutex here so we have to play games to
3770 * protect against truncate races as the page could now be beyond EOF. Because
3771 * vmtruncate() writes the inode size before removing pages, once we have the
3772 * page lock we can determine safely if the page is beyond EOF. If it is not
3773 * beyond EOF, then the page is guaranteed safe against truncation until we
3774 * unlock the page.
3775 */
3776 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3777 {
3778 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3779 struct btrfs_root *root = BTRFS_I(inode)->root;
3780 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3781 struct btrfs_ordered_extent *ordered;
3782 char *kaddr;
3783 unsigned long zero_start;
3784 loff_t size;
3785 int ret;
3786 u64 page_start;
3787 u64 page_end;
3788
3789 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3790 if (ret)
3791 goto out;
3792
3793 ret = -EINVAL;
3794 again:
3795 lock_page(page);
3796 size = i_size_read(inode);
3797 page_start = page_offset(page);
3798 page_end = page_start + PAGE_CACHE_SIZE - 1;
3799
3800 if ((page->mapping != inode->i_mapping) ||
3801 (page_start >= size)) {
3802 /* page got truncated out from underneath us */
3803 goto out_unlock;
3804 }
3805 wait_on_page_writeback(page);
3806
3807 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3808 set_page_extent_mapped(page);
3809
3810 /*
3811 * we can't set the delalloc bits if there are pending ordered
3812 * extents. Drop our locks and wait for them to finish
3813 */
3814 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3815 if (ordered) {
3816 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3817 unlock_page(page);
3818 btrfs_start_ordered_extent(inode, ordered, 1);
3819 btrfs_put_ordered_extent(ordered);
3820 goto again;
3821 }
3822
3823 btrfs_set_extent_delalloc(inode, page_start, page_end);
3824 ret = 0;
3825
3826 /* page is wholly or partially inside EOF */
3827 if (page_start + PAGE_CACHE_SIZE > size)
3828 zero_start = size & ~PAGE_CACHE_MASK;
3829 else
3830 zero_start = PAGE_CACHE_SIZE;
3831
3832 if (zero_start != PAGE_CACHE_SIZE) {
3833 kaddr = kmap(page);
3834 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3835 flush_dcache_page(page);
3836 kunmap(page);
3837 }
3838 ClearPageChecked(page);
3839 set_page_dirty(page);
3840 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3841
3842 out_unlock:
3843 unlock_page(page);
3844 out:
3845 return ret;
3846 }
3847
3848 static void btrfs_truncate(struct inode *inode)
3849 {
3850 struct btrfs_root *root = BTRFS_I(inode)->root;
3851 int ret;
3852 struct btrfs_trans_handle *trans;
3853 unsigned long nr;
3854 u64 mask = root->sectorsize - 1;
3855
3856 if (!S_ISREG(inode->i_mode))
3857 return;
3858 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3859 return;
3860
3861 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3862 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3863
3864 trans = btrfs_start_transaction(root, 1);
3865 btrfs_set_trans_block_group(trans, inode);
3866 btrfs_i_size_write(inode, inode->i_size);
3867
3868 ret = btrfs_orphan_add(trans, inode);
3869 if (ret)
3870 goto out;
3871 /* FIXME, add redo link to tree so we don't leak on crash */
3872 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3873 BTRFS_EXTENT_DATA_KEY);
3874 btrfs_update_inode(trans, root, inode);
3875
3876 ret = btrfs_orphan_del(trans, inode);
3877 BUG_ON(ret);
3878
3879 out:
3880 nr = trans->blocks_used;
3881 ret = btrfs_end_transaction_throttle(trans, root);
3882 BUG_ON(ret);
3883 btrfs_btree_balance_dirty(root, nr);
3884 }
3885
3886 /*
3887 * Invalidate a single dcache entry at the root of the filesystem.
3888 * Needed after creation of snapshot or subvolume.
3889 */
3890 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3891 int namelen)
3892 {
3893 struct dentry *alias, *entry;
3894 struct qstr qstr;
3895
3896 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3897 if (alias) {
3898 qstr.name = name;
3899 qstr.len = namelen;
3900 /* change me if btrfs ever gets a d_hash operation */
3901 qstr.hash = full_name_hash(qstr.name, qstr.len);
3902 entry = d_lookup(alias, &qstr);
3903 dput(alias);
3904 if (entry) {
3905 d_invalidate(entry);
3906 dput(entry);
3907 }
3908 }
3909 }
3910
3911 /*
3912 * create a new subvolume directory/inode (helper for the ioctl).
3913 */
3914 int btrfs_create_subvol_root(struct btrfs_root *new_root, struct dentry *dentry,
3915 struct btrfs_trans_handle *trans, u64 new_dirid,
3916 struct btrfs_block_group_cache *block_group)
3917 {
3918 struct inode *inode;
3919 int error;
3920 u64 index = 0;
3921
3922 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3923 new_dirid, block_group, S_IFDIR | 0700, &index);
3924 if (IS_ERR(inode))
3925 return PTR_ERR(inode);
3926 inode->i_op = &btrfs_dir_inode_operations;
3927 inode->i_fop = &btrfs_dir_file_operations;
3928 new_root->inode = inode;
3929
3930 inode->i_nlink = 1;
3931 btrfs_i_size_write(inode, 0);
3932
3933 error = btrfs_update_inode(trans, new_root, inode);
3934 if (error)
3935 return error;
3936
3937 d_instantiate(dentry, inode);
3938 return 0;
3939 }
3940
3941 /* helper function for file defrag and space balancing. This
3942 * forces readahead on a given range of bytes in an inode
3943 */
3944 unsigned long btrfs_force_ra(struct address_space *mapping,
3945 struct file_ra_state *ra, struct file *file,
3946 pgoff_t offset, pgoff_t last_index)
3947 {
3948 pgoff_t req_size = last_index - offset + 1;
3949
3950 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3951 return offset + req_size;
3952 }
3953
3954 struct inode *btrfs_alloc_inode(struct super_block *sb)
3955 {
3956 struct btrfs_inode *ei;
3957
3958 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3959 if (!ei)
3960 return NULL;
3961 ei->last_trans = 0;
3962 ei->logged_trans = 0;
3963 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3964 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3965 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3966 INIT_LIST_HEAD(&ei->i_orphan);
3967 return &ei->vfs_inode;
3968 }
3969
3970 void btrfs_destroy_inode(struct inode *inode)
3971 {
3972 struct btrfs_ordered_extent *ordered;
3973 WARN_ON(!list_empty(&inode->i_dentry));
3974 WARN_ON(inode->i_data.nrpages);
3975
3976 if (BTRFS_I(inode)->i_acl &&
3977 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3978 posix_acl_release(BTRFS_I(inode)->i_acl);
3979 if (BTRFS_I(inode)->i_default_acl &&
3980 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3981 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3982
3983 spin_lock(&BTRFS_I(inode)->root->list_lock);
3984 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3985 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3986 " list\n", inode->i_ino);
3987 dump_stack();
3988 }
3989 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3990
3991 while(1) {
3992 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3993 if (!ordered)
3994 break;
3995 else {
3996 printk("found ordered extent %Lu %Lu\n",
3997 ordered->file_offset, ordered->len);
3998 btrfs_remove_ordered_extent(inode, ordered);
3999 btrfs_put_ordered_extent(ordered);
4000 btrfs_put_ordered_extent(ordered);
4001 }
4002 }
4003 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4004 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4005 }
4006
4007 static void init_once(void *foo)
4008 {
4009 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4010
4011 inode_init_once(&ei->vfs_inode);
4012 }
4013
4014 void btrfs_destroy_cachep(void)
4015 {
4016 if (btrfs_inode_cachep)
4017 kmem_cache_destroy(btrfs_inode_cachep);
4018 if (btrfs_trans_handle_cachep)
4019 kmem_cache_destroy(btrfs_trans_handle_cachep);
4020 if (btrfs_transaction_cachep)
4021 kmem_cache_destroy(btrfs_transaction_cachep);
4022 if (btrfs_bit_radix_cachep)
4023 kmem_cache_destroy(btrfs_bit_radix_cachep);
4024 if (btrfs_path_cachep)
4025 kmem_cache_destroy(btrfs_path_cachep);
4026 }
4027
4028 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4029 unsigned long extra_flags,
4030 void (*ctor)(void *))
4031 {
4032 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4033 SLAB_MEM_SPREAD | extra_flags), ctor);
4034 }
4035
4036 int btrfs_init_cachep(void)
4037 {
4038 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4039 sizeof(struct btrfs_inode),
4040 0, init_once);
4041 if (!btrfs_inode_cachep)
4042 goto fail;
4043 btrfs_trans_handle_cachep =
4044 btrfs_cache_create("btrfs_trans_handle_cache",
4045 sizeof(struct btrfs_trans_handle),
4046 0, NULL);
4047 if (!btrfs_trans_handle_cachep)
4048 goto fail;
4049 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4050 sizeof(struct btrfs_transaction),
4051 0, NULL);
4052 if (!btrfs_transaction_cachep)
4053 goto fail;
4054 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4055 sizeof(struct btrfs_path),
4056 0, NULL);
4057 if (!btrfs_path_cachep)
4058 goto fail;
4059 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4060 SLAB_DESTROY_BY_RCU, NULL);
4061 if (!btrfs_bit_radix_cachep)
4062 goto fail;
4063 return 0;
4064 fail:
4065 btrfs_destroy_cachep();
4066 return -ENOMEM;
4067 }
4068
4069 static int btrfs_getattr(struct vfsmount *mnt,
4070 struct dentry *dentry, struct kstat *stat)
4071 {
4072 struct inode *inode = dentry->d_inode;
4073 generic_fillattr(inode, stat);
4074 stat->blksize = PAGE_CACHE_SIZE;
4075 stat->blocks = (inode_get_bytes(inode) +
4076 BTRFS_I(inode)->delalloc_bytes) >> 9;
4077 return 0;
4078 }
4079
4080 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
4081 struct inode * new_dir,struct dentry *new_dentry)
4082 {
4083 struct btrfs_trans_handle *trans;
4084 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4085 struct inode *new_inode = new_dentry->d_inode;
4086 struct inode *old_inode = old_dentry->d_inode;
4087 struct timespec ctime = CURRENT_TIME;
4088 u64 index = 0;
4089 int ret;
4090
4091 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4092 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4093 return -ENOTEMPTY;
4094 }
4095
4096 ret = btrfs_check_free_space(root, 1, 0);
4097 if (ret)
4098 goto out_unlock;
4099
4100 trans = btrfs_start_transaction(root, 1);
4101
4102 btrfs_set_trans_block_group(trans, new_dir);
4103
4104 btrfs_inc_nlink(old_dentry->d_inode);
4105 old_dir->i_ctime = old_dir->i_mtime = ctime;
4106 new_dir->i_ctime = new_dir->i_mtime = ctime;
4107 old_inode->i_ctime = ctime;
4108
4109 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4110 old_dentry->d_name.name,
4111 old_dentry->d_name.len);
4112 if (ret)
4113 goto out_fail;
4114
4115 if (new_inode) {
4116 new_inode->i_ctime = CURRENT_TIME;
4117 ret = btrfs_unlink_inode(trans, root, new_dir,
4118 new_dentry->d_inode,
4119 new_dentry->d_name.name,
4120 new_dentry->d_name.len);
4121 if (ret)
4122 goto out_fail;
4123 if (new_inode->i_nlink == 0) {
4124 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4125 if (ret)
4126 goto out_fail;
4127 }
4128
4129 }
4130 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
4131 if (ret)
4132 goto out_fail;
4133
4134 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4135 old_inode, new_dentry->d_name.name,
4136 new_dentry->d_name.len, 1, index);
4137 if (ret)
4138 goto out_fail;
4139
4140 out_fail:
4141 btrfs_end_transaction_throttle(trans, root);
4142 out_unlock:
4143 return ret;
4144 }
4145
4146 /*
4147 * some fairly slow code that needs optimization. This walks the list
4148 * of all the inodes with pending delalloc and forces them to disk.
4149 */
4150 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4151 {
4152 struct list_head *head = &root->fs_info->delalloc_inodes;
4153 struct btrfs_inode *binode;
4154 struct inode *inode;
4155 unsigned long flags;
4156
4157 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4158 while(!list_empty(head)) {
4159 binode = list_entry(head->next, struct btrfs_inode,
4160 delalloc_inodes);
4161 inode = igrab(&binode->vfs_inode);
4162 if (!inode)
4163 list_del_init(&binode->delalloc_inodes);
4164 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4165 if (inode) {
4166 filemap_flush(inode->i_mapping);
4167 iput(inode);
4168 }
4169 cond_resched();
4170 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4171 }
4172 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4173
4174 /* the filemap_flush will queue IO into the worker threads, but
4175 * we have to make sure the IO is actually started and that
4176 * ordered extents get created before we return
4177 */
4178 atomic_inc(&root->fs_info->async_submit_draining);
4179 while(atomic_read(&root->fs_info->nr_async_submits)) {
4180 wait_event(root->fs_info->async_submit_wait,
4181 (atomic_read(&root->fs_info->nr_async_submits) == 0));
4182 }
4183 atomic_dec(&root->fs_info->async_submit_draining);
4184 return 0;
4185 }
4186
4187 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4188 const char *symname)
4189 {
4190 struct btrfs_trans_handle *trans;
4191 struct btrfs_root *root = BTRFS_I(dir)->root;
4192 struct btrfs_path *path;
4193 struct btrfs_key key;
4194 struct inode *inode = NULL;
4195 int err;
4196 int drop_inode = 0;
4197 u64 objectid;
4198 u64 index = 0 ;
4199 int name_len;
4200 int datasize;
4201 unsigned long ptr;
4202 struct btrfs_file_extent_item *ei;
4203 struct extent_buffer *leaf;
4204 unsigned long nr = 0;
4205
4206 name_len = strlen(symname) + 1;
4207 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4208 return -ENAMETOOLONG;
4209
4210 err = btrfs_check_free_space(root, 1, 0);
4211 if (err)
4212 goto out_fail;
4213
4214 trans = btrfs_start_transaction(root, 1);
4215 btrfs_set_trans_block_group(trans, dir);
4216
4217 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4218 if (err) {
4219 err = -ENOSPC;
4220 goto out_unlock;
4221 }
4222
4223 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4224 dentry->d_name.len,
4225 dentry->d_parent->d_inode->i_ino, objectid,
4226 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4227 &index);
4228 err = PTR_ERR(inode);
4229 if (IS_ERR(inode))
4230 goto out_unlock;
4231
4232 err = btrfs_init_acl(inode, dir);
4233 if (err) {
4234 drop_inode = 1;
4235 goto out_unlock;
4236 }
4237
4238 btrfs_set_trans_block_group(trans, inode);
4239 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4240 if (err)
4241 drop_inode = 1;
4242 else {
4243 inode->i_mapping->a_ops = &btrfs_aops;
4244 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4245 inode->i_fop = &btrfs_file_operations;
4246 inode->i_op = &btrfs_file_inode_operations;
4247 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4248 }
4249 dir->i_sb->s_dirt = 1;
4250 btrfs_update_inode_block_group(trans, inode);
4251 btrfs_update_inode_block_group(trans, dir);
4252 if (drop_inode)
4253 goto out_unlock;
4254
4255 path = btrfs_alloc_path();
4256 BUG_ON(!path);
4257 key.objectid = inode->i_ino;
4258 key.offset = 0;
4259 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4260 datasize = btrfs_file_extent_calc_inline_size(name_len);
4261 err = btrfs_insert_empty_item(trans, root, path, &key,
4262 datasize);
4263 if (err) {
4264 drop_inode = 1;
4265 goto out_unlock;
4266 }
4267 leaf = path->nodes[0];
4268 ei = btrfs_item_ptr(leaf, path->slots[0],
4269 struct btrfs_file_extent_item);
4270 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4271 btrfs_set_file_extent_type(leaf, ei,
4272 BTRFS_FILE_EXTENT_INLINE);
4273 btrfs_set_file_extent_encryption(leaf, ei, 0);
4274 btrfs_set_file_extent_compression(leaf, ei, 0);
4275 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4276 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4277
4278 ptr = btrfs_file_extent_inline_start(ei);
4279 write_extent_buffer(leaf, symname, ptr, name_len);
4280 btrfs_mark_buffer_dirty(leaf);
4281 btrfs_free_path(path);
4282
4283 inode->i_op = &btrfs_symlink_inode_operations;
4284 inode->i_mapping->a_ops = &btrfs_symlink_aops;
4285 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4286 btrfs_i_size_write(inode, name_len - 1);
4287 err = btrfs_update_inode(trans, root, inode);
4288 if (err)
4289 drop_inode = 1;
4290
4291 out_unlock:
4292 nr = trans->blocks_used;
4293 btrfs_end_transaction_throttle(trans, root);
4294 out_fail:
4295 if (drop_inode) {
4296 inode_dec_link_count(inode);
4297 iput(inode);
4298 }
4299 btrfs_btree_balance_dirty(root, nr);
4300 return err;
4301 }
4302
4303 static int btrfs_set_page_dirty(struct page *page)
4304 {
4305 return __set_page_dirty_nobuffers(page);
4306 }
4307
4308 static int btrfs_permission(struct inode *inode, int mask)
4309 {
4310 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4311 return -EACCES;
4312 return generic_permission(inode, mask, btrfs_check_acl);
4313 }
4314
4315 static struct inode_operations btrfs_dir_inode_operations = {
4316 .lookup = btrfs_lookup,
4317 .create = btrfs_create,
4318 .unlink = btrfs_unlink,
4319 .link = btrfs_link,
4320 .mkdir = btrfs_mkdir,
4321 .rmdir = btrfs_rmdir,
4322 .rename = btrfs_rename,
4323 .symlink = btrfs_symlink,
4324 .setattr = btrfs_setattr,
4325 .mknod = btrfs_mknod,
4326 .setxattr = btrfs_setxattr,
4327 .getxattr = btrfs_getxattr,
4328 .listxattr = btrfs_listxattr,
4329 .removexattr = btrfs_removexattr,
4330 .permission = btrfs_permission,
4331 };
4332 static struct inode_operations btrfs_dir_ro_inode_operations = {
4333 .lookup = btrfs_lookup,
4334 .permission = btrfs_permission,
4335 };
4336 static struct file_operations btrfs_dir_file_operations = {
4337 .llseek = generic_file_llseek,
4338 .read = generic_read_dir,
4339 .readdir = btrfs_real_readdir,
4340 .unlocked_ioctl = btrfs_ioctl,
4341 #ifdef CONFIG_COMPAT
4342 .compat_ioctl = btrfs_ioctl,
4343 #endif
4344 .release = btrfs_release_file,
4345 .fsync = btrfs_sync_file,
4346 };
4347
4348 static struct extent_io_ops btrfs_extent_io_ops = {
4349 .fill_delalloc = run_delalloc_range,
4350 .submit_bio_hook = btrfs_submit_bio_hook,
4351 .merge_bio_hook = btrfs_merge_bio_hook,
4352 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4353 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4354 .writepage_start_hook = btrfs_writepage_start_hook,
4355 .readpage_io_failed_hook = btrfs_io_failed_hook,
4356 .set_bit_hook = btrfs_set_bit_hook,
4357 .clear_bit_hook = btrfs_clear_bit_hook,
4358 };
4359
4360 static struct address_space_operations btrfs_aops = {
4361 .readpage = btrfs_readpage,
4362 .writepage = btrfs_writepage,
4363 .writepages = btrfs_writepages,
4364 .readpages = btrfs_readpages,
4365 .sync_page = block_sync_page,
4366 .bmap = btrfs_bmap,
4367 .direct_IO = btrfs_direct_IO,
4368 .invalidatepage = btrfs_invalidatepage,
4369 .releasepage = btrfs_releasepage,
4370 .set_page_dirty = btrfs_set_page_dirty,
4371 };
4372
4373 static struct address_space_operations btrfs_symlink_aops = {
4374 .readpage = btrfs_readpage,
4375 .writepage = btrfs_writepage,
4376 .invalidatepage = btrfs_invalidatepage,
4377 .releasepage = btrfs_releasepage,
4378 };
4379
4380 static struct inode_operations btrfs_file_inode_operations = {
4381 .truncate = btrfs_truncate,
4382 .getattr = btrfs_getattr,
4383 .setattr = btrfs_setattr,
4384 .setxattr = btrfs_setxattr,
4385 .getxattr = btrfs_getxattr,
4386 .listxattr = btrfs_listxattr,
4387 .removexattr = btrfs_removexattr,
4388 .permission = btrfs_permission,
4389 };
4390 static struct inode_operations btrfs_special_inode_operations = {
4391 .getattr = btrfs_getattr,
4392 .setattr = btrfs_setattr,
4393 .permission = btrfs_permission,
4394 .setxattr = btrfs_setxattr,
4395 .getxattr = btrfs_getxattr,
4396 .listxattr = btrfs_listxattr,
4397 .removexattr = btrfs_removexattr,
4398 };
4399 static struct inode_operations btrfs_symlink_inode_operations = {
4400 .readlink = generic_readlink,
4401 .follow_link = page_follow_link_light,
4402 .put_link = page_put_link,
4403 .permission = btrfs_permission,
4404 };
This page took 0.115583 seconds and 6 git commands to generate.