Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56 };
57
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
92 {
93 int err;
94
95 err = btrfs_init_acl(inode, dir);
96 if (!err)
97 err = btrfs_xattr_security_init(inode, dir);
98 return err;
99 }
100
101 /*
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
105 */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
110 {
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
115 char *kaddr;
116 unsigned long ptr;
117 struct btrfs_file_extent_item *ei;
118 int err = 0;
119 int ret;
120 size_t cur_size = size;
121 size_t datasize;
122 unsigned long offset;
123 int use_compress = 0;
124
125 if (compressed_size && compressed_pages) {
126 use_compress = 1;
127 cur_size = compressed_size;
128 }
129
130 path = btrfs_alloc_path();
131 if (!path)
132 return -ENOMEM;
133
134 path->leave_spinning = 1;
135 btrfs_set_trans_block_group(trans, inode);
136
137 key.objectid = inode->i_ino;
138 key.offset = start;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
144 datasize);
145 BUG_ON(ret);
146 if (ret) {
147 err = ret;
148 goto fail;
149 }
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
159
160 if (use_compress) {
161 struct page *cpage;
162 int i = 0;
163 while (compressed_size > 0) {
164 cpage = compressed_pages[i];
165 cur_size = min_t(unsigned long, compressed_size,
166 PAGE_CACHE_SIZE);
167
168 kaddr = kmap_atomic(cpage, KM_USER0);
169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
170 kunmap_atomic(kaddr, KM_USER0);
171
172 i++;
173 ptr += cur_size;
174 compressed_size -= cur_size;
175 }
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
178 } else {
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
187 }
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
190
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
193 return 0;
194 fail:
195 btrfs_free_path(path);
196 return err;
197 }
198
199
200 /*
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
204 */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
210 {
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
216 u64 hint_byte;
217 u64 data_len = inline_len;
218 int ret;
219
220 if (compressed_size)
221 data_len = compressed_size;
222
223 if (start > 0 ||
224 actual_end >= PAGE_CACHE_SIZE ||
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 (!compressed_size &&
227 (actual_end & (root->sectorsize - 1)) == 0) ||
228 end + 1 < isize ||
229 data_len > root->fs_info->max_inline) {
230 return 1;
231 }
232
233 ret = btrfs_drop_extents(trans, root, inode, start,
234 aligned_end, aligned_end, start,
235 &hint_byte, 1);
236 BUG_ON(ret);
237
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
244 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245 return 0;
246 }
247
248 struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
255 };
256
257 struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
265 };
266
267 static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
272 {
273 struct async_extent *async_extent;
274
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
283 }
284
285 /*
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
289 *
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
295 *
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
300 */
301 static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
306 {
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
309 u64 num_bytes;
310 u64 orig_start;
311 u64 disk_num_bytes;
312 u64 blocksize = root->sectorsize;
313 u64 actual_end;
314 u64 isize = i_size_read(inode);
315 int ret = 0;
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
322 unsigned long max_uncompressed = 128 * 1024;
323 int i;
324 int will_compress;
325
326 orig_start = start;
327
328 actual_end = min_t(u64, isize, end + 1);
329 again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333
334 /*
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
340 *
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
343 */
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
346
347 total_compressed = actual_end - start;
348
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
354 *
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
358 */
359 total_compressed = min(total_compressed, max_uncompressed);
360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361 num_bytes = max(blocksize, num_bytes);
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
365
366 /*
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
370 */
371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
382
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
388
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
391 */
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
397 }
398 will_compress = 1;
399 }
400 }
401 if (start == 0) {
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
405
406 /* lets try to make an inline extent */
407 if (ret || total_in < (actual_end - start)) {
408 /* we didn't compress the entire range, try
409 * to make an uncompressed inline extent.
410 */
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
414 /* try making a compressed inline extent */
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
418 }
419 btrfs_end_transaction(trans, root);
420 if (ret == 0) {
421 /*
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
425 */
426 extent_clear_unlock_delalloc(inode,
427 &BTRFS_I(inode)->io_tree,
428 start, end, NULL,
429 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
430 EXTENT_CLEAR_DELALLOC |
431 EXTENT_CLEAR_ACCOUNTING |
432 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
433 ret = 0;
434 goto free_pages_out;
435 }
436 }
437
438 if (will_compress) {
439 /*
440 * we aren't doing an inline extent round the compressed size
441 * up to a block size boundary so the allocator does sane
442 * things
443 */
444 total_compressed = (total_compressed + blocksize - 1) &
445 ~(blocksize - 1);
446
447 /*
448 * one last check to make sure the compression is really a
449 * win, compare the page count read with the blocks on disk
450 */
451 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
452 ~(PAGE_CACHE_SIZE - 1);
453 if (total_compressed >= total_in) {
454 will_compress = 0;
455 } else {
456 disk_num_bytes = total_compressed;
457 num_bytes = total_in;
458 }
459 }
460 if (!will_compress && pages) {
461 /*
462 * the compression code ran but failed to make things smaller,
463 * free any pages it allocated and our page pointer array
464 */
465 for (i = 0; i < nr_pages_ret; i++) {
466 WARN_ON(pages[i]->mapping);
467 page_cache_release(pages[i]);
468 }
469 kfree(pages);
470 pages = NULL;
471 total_compressed = 0;
472 nr_pages_ret = 0;
473
474 /* flag the file so we don't compress in the future */
475 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
476 }
477 if (will_compress) {
478 *num_added += 1;
479
480 /* the async work queues will take care of doing actual
481 * allocation on disk for these compressed pages,
482 * and will submit them to the elevator.
483 */
484 add_async_extent(async_cow, start, num_bytes,
485 total_compressed, pages, nr_pages_ret);
486
487 if (start + num_bytes < end && start + num_bytes < actual_end) {
488 start += num_bytes;
489 pages = NULL;
490 cond_resched();
491 goto again;
492 }
493 } else {
494 cleanup_and_bail_uncompressed:
495 /*
496 * No compression, but we still need to write the pages in
497 * the file we've been given so far. redirty the locked
498 * page if it corresponds to our extent and set things up
499 * for the async work queue to run cow_file_range to do
500 * the normal delalloc dance
501 */
502 if (page_offset(locked_page) >= start &&
503 page_offset(locked_page) <= end) {
504 __set_page_dirty_nobuffers(locked_page);
505 /* unlocked later on in the async handlers */
506 }
507 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
508 *num_added += 1;
509 }
510
511 out:
512 return 0;
513
514 free_pages_out:
515 for (i = 0; i < nr_pages_ret; i++) {
516 WARN_ON(pages[i]->mapping);
517 page_cache_release(pages[i]);
518 }
519 kfree(pages);
520
521 goto out;
522 }
523
524 /*
525 * phase two of compressed writeback. This is the ordered portion
526 * of the code, which only gets called in the order the work was
527 * queued. We walk all the async extents created by compress_file_range
528 * and send them down to the disk.
529 */
530 static noinline int submit_compressed_extents(struct inode *inode,
531 struct async_cow *async_cow)
532 {
533 struct async_extent *async_extent;
534 u64 alloc_hint = 0;
535 struct btrfs_trans_handle *trans;
536 struct btrfs_key ins;
537 struct extent_map *em;
538 struct btrfs_root *root = BTRFS_I(inode)->root;
539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540 struct extent_io_tree *io_tree;
541 int ret = 0;
542
543 if (list_empty(&async_cow->extents))
544 return 0;
545
546 trans = btrfs_join_transaction(root, 1);
547
548 while (!list_empty(&async_cow->extents)) {
549 async_extent = list_entry(async_cow->extents.next,
550 struct async_extent, list);
551 list_del(&async_extent->list);
552
553 io_tree = &BTRFS_I(inode)->io_tree;
554
555 retry:
556 /* did the compression code fall back to uncompressed IO? */
557 if (!async_extent->pages) {
558 int page_started = 0;
559 unsigned long nr_written = 0;
560
561 lock_extent(io_tree, async_extent->start,
562 async_extent->start +
563 async_extent->ram_size - 1, GFP_NOFS);
564
565 /* allocate blocks */
566 ret = cow_file_range(inode, async_cow->locked_page,
567 async_extent->start,
568 async_extent->start +
569 async_extent->ram_size - 1,
570 &page_started, &nr_written, 0);
571
572 /*
573 * if page_started, cow_file_range inserted an
574 * inline extent and took care of all the unlocking
575 * and IO for us. Otherwise, we need to submit
576 * all those pages down to the drive.
577 */
578 if (!page_started && !ret)
579 extent_write_locked_range(io_tree,
580 inode, async_extent->start,
581 async_extent->start +
582 async_extent->ram_size - 1,
583 btrfs_get_extent,
584 WB_SYNC_ALL);
585 kfree(async_extent);
586 cond_resched();
587 continue;
588 }
589
590 lock_extent(io_tree, async_extent->start,
591 async_extent->start + async_extent->ram_size - 1,
592 GFP_NOFS);
593 /*
594 * here we're doing allocation and writeback of the
595 * compressed pages
596 */
597 btrfs_drop_extent_cache(inode, async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1, 0);
600
601 ret = btrfs_reserve_extent(trans, root,
602 async_extent->compressed_size,
603 async_extent->compressed_size,
604 0, alloc_hint,
605 (u64)-1, &ins, 1);
606 if (ret) {
607 int i;
608 for (i = 0; i < async_extent->nr_pages; i++) {
609 WARN_ON(async_extent->pages[i]->mapping);
610 page_cache_release(async_extent->pages[i]);
611 }
612 kfree(async_extent->pages);
613 async_extent->nr_pages = 0;
614 async_extent->pages = NULL;
615 unlock_extent(io_tree, async_extent->start,
616 async_extent->start +
617 async_extent->ram_size - 1, GFP_NOFS);
618 goto retry;
619 }
620
621 em = alloc_extent_map(GFP_NOFS);
622 em->start = async_extent->start;
623 em->len = async_extent->ram_size;
624 em->orig_start = em->start;
625
626 em->block_start = ins.objectid;
627 em->block_len = ins.offset;
628 em->bdev = root->fs_info->fs_devices->latest_bdev;
629 set_bit(EXTENT_FLAG_PINNED, &em->flags);
630 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
631
632 while (1) {
633 write_lock(&em_tree->lock);
634 ret = add_extent_mapping(em_tree, em);
635 write_unlock(&em_tree->lock);
636 if (ret != -EEXIST) {
637 free_extent_map(em);
638 break;
639 }
640 btrfs_drop_extent_cache(inode, async_extent->start,
641 async_extent->start +
642 async_extent->ram_size - 1, 0);
643 }
644
645 ret = btrfs_add_ordered_extent(inode, async_extent->start,
646 ins.objectid,
647 async_extent->ram_size,
648 ins.offset,
649 BTRFS_ORDERED_COMPRESSED);
650 BUG_ON(ret);
651
652 btrfs_end_transaction(trans, root);
653
654 /*
655 * clear dirty, set writeback and unlock the pages.
656 */
657 extent_clear_unlock_delalloc(inode,
658 &BTRFS_I(inode)->io_tree,
659 async_extent->start,
660 async_extent->start +
661 async_extent->ram_size - 1,
662 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
663 EXTENT_CLEAR_UNLOCK |
664 EXTENT_CLEAR_DELALLOC |
665 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
666
667 ret = btrfs_submit_compressed_write(inode,
668 async_extent->start,
669 async_extent->ram_size,
670 ins.objectid,
671 ins.offset, async_extent->pages,
672 async_extent->nr_pages);
673
674 BUG_ON(ret);
675 trans = btrfs_join_transaction(root, 1);
676 alloc_hint = ins.objectid + ins.offset;
677 kfree(async_extent);
678 cond_resched();
679 }
680
681 btrfs_end_transaction(trans, root);
682 return 0;
683 }
684
685 /*
686 * when extent_io.c finds a delayed allocation range in the file,
687 * the call backs end up in this code. The basic idea is to
688 * allocate extents on disk for the range, and create ordered data structs
689 * in ram to track those extents.
690 *
691 * locked_page is the page that writepage had locked already. We use
692 * it to make sure we don't do extra locks or unlocks.
693 *
694 * *page_started is set to one if we unlock locked_page and do everything
695 * required to start IO on it. It may be clean and already done with
696 * IO when we return.
697 */
698 static noinline int cow_file_range(struct inode *inode,
699 struct page *locked_page,
700 u64 start, u64 end, int *page_started,
701 unsigned long *nr_written,
702 int unlock)
703 {
704 struct btrfs_root *root = BTRFS_I(inode)->root;
705 struct btrfs_trans_handle *trans;
706 u64 alloc_hint = 0;
707 u64 num_bytes;
708 unsigned long ram_size;
709 u64 disk_num_bytes;
710 u64 cur_alloc_size;
711 u64 blocksize = root->sectorsize;
712 u64 actual_end;
713 u64 isize = i_size_read(inode);
714 struct btrfs_key ins;
715 struct extent_map *em;
716 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
717 int ret = 0;
718
719 trans = btrfs_join_transaction(root, 1);
720 BUG_ON(!trans);
721 btrfs_set_trans_block_group(trans, inode);
722
723 actual_end = min_t(u64, isize, end + 1);
724
725 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
726 num_bytes = max(blocksize, num_bytes);
727 disk_num_bytes = num_bytes;
728 ret = 0;
729
730 if (start == 0) {
731 /* lets try to make an inline extent */
732 ret = cow_file_range_inline(trans, root, inode,
733 start, end, 0, NULL);
734 if (ret == 0) {
735 extent_clear_unlock_delalloc(inode,
736 &BTRFS_I(inode)->io_tree,
737 start, end, NULL,
738 EXTENT_CLEAR_UNLOCK_PAGE |
739 EXTENT_CLEAR_UNLOCK |
740 EXTENT_CLEAR_DELALLOC |
741 EXTENT_CLEAR_ACCOUNTING |
742 EXTENT_CLEAR_DIRTY |
743 EXTENT_SET_WRITEBACK |
744 EXTENT_END_WRITEBACK);
745 *nr_written = *nr_written +
746 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
747 *page_started = 1;
748 ret = 0;
749 goto out;
750 }
751 }
752
753 BUG_ON(disk_num_bytes >
754 btrfs_super_total_bytes(&root->fs_info->super_copy));
755
756
757 read_lock(&BTRFS_I(inode)->extent_tree.lock);
758 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
759 start, num_bytes);
760 if (em) {
761 /*
762 * if block start isn't an actual block number then find the
763 * first block in this inode and use that as a hint. If that
764 * block is also bogus then just don't worry about it.
765 */
766 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
767 free_extent_map(em);
768 em = search_extent_mapping(em_tree, 0, 0);
769 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
770 alloc_hint = em->block_start;
771 if (em)
772 free_extent_map(em);
773 } else {
774 alloc_hint = em->block_start;
775 free_extent_map(em);
776 }
777 }
778 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
779 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
780
781 while (disk_num_bytes > 0) {
782 unsigned long op;
783
784 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
785 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
786 root->sectorsize, 0, alloc_hint,
787 (u64)-1, &ins, 1);
788 BUG_ON(ret);
789
790 em = alloc_extent_map(GFP_NOFS);
791 em->start = start;
792 em->orig_start = em->start;
793 ram_size = ins.offset;
794 em->len = ins.offset;
795
796 em->block_start = ins.objectid;
797 em->block_len = ins.offset;
798 em->bdev = root->fs_info->fs_devices->latest_bdev;
799 set_bit(EXTENT_FLAG_PINNED, &em->flags);
800
801 while (1) {
802 write_lock(&em_tree->lock);
803 ret = add_extent_mapping(em_tree, em);
804 write_unlock(&em_tree->lock);
805 if (ret != -EEXIST) {
806 free_extent_map(em);
807 break;
808 }
809 btrfs_drop_extent_cache(inode, start,
810 start + ram_size - 1, 0);
811 }
812
813 cur_alloc_size = ins.offset;
814 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
815 ram_size, cur_alloc_size, 0);
816 BUG_ON(ret);
817
818 if (root->root_key.objectid ==
819 BTRFS_DATA_RELOC_TREE_OBJECTID) {
820 ret = btrfs_reloc_clone_csums(inode, start,
821 cur_alloc_size);
822 BUG_ON(ret);
823 }
824
825 if (disk_num_bytes < cur_alloc_size)
826 break;
827
828 /* we're not doing compressed IO, don't unlock the first
829 * page (which the caller expects to stay locked), don't
830 * clear any dirty bits and don't set any writeback bits
831 *
832 * Do set the Private2 bit so we know this page was properly
833 * setup for writepage
834 */
835 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
836 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
837 EXTENT_SET_PRIVATE2;
838
839 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
840 start, start + ram_size - 1,
841 locked_page, op);
842 disk_num_bytes -= cur_alloc_size;
843 num_bytes -= cur_alloc_size;
844 alloc_hint = ins.objectid + ins.offset;
845 start += cur_alloc_size;
846 }
847 out:
848 ret = 0;
849 btrfs_end_transaction(trans, root);
850
851 return ret;
852 }
853
854 /*
855 * work queue call back to started compression on a file and pages
856 */
857 static noinline void async_cow_start(struct btrfs_work *work)
858 {
859 struct async_cow *async_cow;
860 int num_added = 0;
861 async_cow = container_of(work, struct async_cow, work);
862
863 compress_file_range(async_cow->inode, async_cow->locked_page,
864 async_cow->start, async_cow->end, async_cow,
865 &num_added);
866 if (num_added == 0)
867 async_cow->inode = NULL;
868 }
869
870 /*
871 * work queue call back to submit previously compressed pages
872 */
873 static noinline void async_cow_submit(struct btrfs_work *work)
874 {
875 struct async_cow *async_cow;
876 struct btrfs_root *root;
877 unsigned long nr_pages;
878
879 async_cow = container_of(work, struct async_cow, work);
880
881 root = async_cow->root;
882 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
883 PAGE_CACHE_SHIFT;
884
885 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
886
887 if (atomic_read(&root->fs_info->async_delalloc_pages) <
888 5 * 1042 * 1024 &&
889 waitqueue_active(&root->fs_info->async_submit_wait))
890 wake_up(&root->fs_info->async_submit_wait);
891
892 if (async_cow->inode)
893 submit_compressed_extents(async_cow->inode, async_cow);
894 }
895
896 static noinline void async_cow_free(struct btrfs_work *work)
897 {
898 struct async_cow *async_cow;
899 async_cow = container_of(work, struct async_cow, work);
900 kfree(async_cow);
901 }
902
903 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
904 u64 start, u64 end, int *page_started,
905 unsigned long *nr_written)
906 {
907 struct async_cow *async_cow;
908 struct btrfs_root *root = BTRFS_I(inode)->root;
909 unsigned long nr_pages;
910 u64 cur_end;
911 int limit = 10 * 1024 * 1042;
912
913 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
914 1, 0, NULL, GFP_NOFS);
915 while (start < end) {
916 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
917 async_cow->inode = inode;
918 async_cow->root = root;
919 async_cow->locked_page = locked_page;
920 async_cow->start = start;
921
922 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
923 cur_end = end;
924 else
925 cur_end = min(end, start + 512 * 1024 - 1);
926
927 async_cow->end = cur_end;
928 INIT_LIST_HEAD(&async_cow->extents);
929
930 async_cow->work.func = async_cow_start;
931 async_cow->work.ordered_func = async_cow_submit;
932 async_cow->work.ordered_free = async_cow_free;
933 async_cow->work.flags = 0;
934
935 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
936 PAGE_CACHE_SHIFT;
937 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
938
939 btrfs_queue_worker(&root->fs_info->delalloc_workers,
940 &async_cow->work);
941
942 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
943 wait_event(root->fs_info->async_submit_wait,
944 (atomic_read(&root->fs_info->async_delalloc_pages) <
945 limit));
946 }
947
948 while (atomic_read(&root->fs_info->async_submit_draining) &&
949 atomic_read(&root->fs_info->async_delalloc_pages)) {
950 wait_event(root->fs_info->async_submit_wait,
951 (atomic_read(&root->fs_info->async_delalloc_pages) ==
952 0));
953 }
954
955 *nr_written += nr_pages;
956 start = cur_end + 1;
957 }
958 *page_started = 1;
959 return 0;
960 }
961
962 static noinline int csum_exist_in_range(struct btrfs_root *root,
963 u64 bytenr, u64 num_bytes)
964 {
965 int ret;
966 struct btrfs_ordered_sum *sums;
967 LIST_HEAD(list);
968
969 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
970 bytenr + num_bytes - 1, &list);
971 if (ret == 0 && list_empty(&list))
972 return 0;
973
974 while (!list_empty(&list)) {
975 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
976 list_del(&sums->list);
977 kfree(sums);
978 }
979 return 1;
980 }
981
982 /*
983 * when nowcow writeback call back. This checks for snapshots or COW copies
984 * of the extents that exist in the file, and COWs the file as required.
985 *
986 * If no cow copies or snapshots exist, we write directly to the existing
987 * blocks on disk
988 */
989 static noinline int run_delalloc_nocow(struct inode *inode,
990 struct page *locked_page,
991 u64 start, u64 end, int *page_started, int force,
992 unsigned long *nr_written)
993 {
994 struct btrfs_root *root = BTRFS_I(inode)->root;
995 struct btrfs_trans_handle *trans;
996 struct extent_buffer *leaf;
997 struct btrfs_path *path;
998 struct btrfs_file_extent_item *fi;
999 struct btrfs_key found_key;
1000 u64 cow_start;
1001 u64 cur_offset;
1002 u64 extent_end;
1003 u64 extent_offset;
1004 u64 disk_bytenr;
1005 u64 num_bytes;
1006 int extent_type;
1007 int ret;
1008 int type;
1009 int nocow;
1010 int check_prev = 1;
1011
1012 path = btrfs_alloc_path();
1013 BUG_ON(!path);
1014 trans = btrfs_join_transaction(root, 1);
1015 BUG_ON(!trans);
1016
1017 cow_start = (u64)-1;
1018 cur_offset = start;
1019 while (1) {
1020 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1021 cur_offset, 0);
1022 BUG_ON(ret < 0);
1023 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1024 leaf = path->nodes[0];
1025 btrfs_item_key_to_cpu(leaf, &found_key,
1026 path->slots[0] - 1);
1027 if (found_key.objectid == inode->i_ino &&
1028 found_key.type == BTRFS_EXTENT_DATA_KEY)
1029 path->slots[0]--;
1030 }
1031 check_prev = 0;
1032 next_slot:
1033 leaf = path->nodes[0];
1034 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1035 ret = btrfs_next_leaf(root, path);
1036 if (ret < 0)
1037 BUG_ON(1);
1038 if (ret > 0)
1039 break;
1040 leaf = path->nodes[0];
1041 }
1042
1043 nocow = 0;
1044 disk_bytenr = 0;
1045 num_bytes = 0;
1046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1047
1048 if (found_key.objectid > inode->i_ino ||
1049 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1050 found_key.offset > end)
1051 break;
1052
1053 if (found_key.offset > cur_offset) {
1054 extent_end = found_key.offset;
1055 extent_type = 0;
1056 goto out_check;
1057 }
1058
1059 fi = btrfs_item_ptr(leaf, path->slots[0],
1060 struct btrfs_file_extent_item);
1061 extent_type = btrfs_file_extent_type(leaf, fi);
1062
1063 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1064 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1065 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1066 extent_offset = btrfs_file_extent_offset(leaf, fi);
1067 extent_end = found_key.offset +
1068 btrfs_file_extent_num_bytes(leaf, fi);
1069 if (extent_end <= start) {
1070 path->slots[0]++;
1071 goto next_slot;
1072 }
1073 if (disk_bytenr == 0)
1074 goto out_check;
1075 if (btrfs_file_extent_compression(leaf, fi) ||
1076 btrfs_file_extent_encryption(leaf, fi) ||
1077 btrfs_file_extent_other_encoding(leaf, fi))
1078 goto out_check;
1079 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1080 goto out_check;
1081 if (btrfs_extent_readonly(root, disk_bytenr))
1082 goto out_check;
1083 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1084 found_key.offset -
1085 extent_offset, disk_bytenr))
1086 goto out_check;
1087 disk_bytenr += extent_offset;
1088 disk_bytenr += cur_offset - found_key.offset;
1089 num_bytes = min(end + 1, extent_end) - cur_offset;
1090 /*
1091 * force cow if csum exists in the range.
1092 * this ensure that csum for a given extent are
1093 * either valid or do not exist.
1094 */
1095 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1096 goto out_check;
1097 nocow = 1;
1098 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1099 extent_end = found_key.offset +
1100 btrfs_file_extent_inline_len(leaf, fi);
1101 extent_end = ALIGN(extent_end, root->sectorsize);
1102 } else {
1103 BUG_ON(1);
1104 }
1105 out_check:
1106 if (extent_end <= start) {
1107 path->slots[0]++;
1108 goto next_slot;
1109 }
1110 if (!nocow) {
1111 if (cow_start == (u64)-1)
1112 cow_start = cur_offset;
1113 cur_offset = extent_end;
1114 if (cur_offset > end)
1115 break;
1116 path->slots[0]++;
1117 goto next_slot;
1118 }
1119
1120 btrfs_release_path(root, path);
1121 if (cow_start != (u64)-1) {
1122 ret = cow_file_range(inode, locked_page, cow_start,
1123 found_key.offset - 1, page_started,
1124 nr_written, 1);
1125 BUG_ON(ret);
1126 cow_start = (u64)-1;
1127 }
1128
1129 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1130 struct extent_map *em;
1131 struct extent_map_tree *em_tree;
1132 em_tree = &BTRFS_I(inode)->extent_tree;
1133 em = alloc_extent_map(GFP_NOFS);
1134 em->start = cur_offset;
1135 em->orig_start = em->start;
1136 em->len = num_bytes;
1137 em->block_len = num_bytes;
1138 em->block_start = disk_bytenr;
1139 em->bdev = root->fs_info->fs_devices->latest_bdev;
1140 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1141 while (1) {
1142 write_lock(&em_tree->lock);
1143 ret = add_extent_mapping(em_tree, em);
1144 write_unlock(&em_tree->lock);
1145 if (ret != -EEXIST) {
1146 free_extent_map(em);
1147 break;
1148 }
1149 btrfs_drop_extent_cache(inode, em->start,
1150 em->start + em->len - 1, 0);
1151 }
1152 type = BTRFS_ORDERED_PREALLOC;
1153 } else {
1154 type = BTRFS_ORDERED_NOCOW;
1155 }
1156
1157 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1158 num_bytes, num_bytes, type);
1159 BUG_ON(ret);
1160
1161 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1162 cur_offset, cur_offset + num_bytes - 1,
1163 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1164 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1165 EXTENT_SET_PRIVATE2);
1166 cur_offset = extent_end;
1167 if (cur_offset > end)
1168 break;
1169 }
1170 btrfs_release_path(root, path);
1171
1172 if (cur_offset <= end && cow_start == (u64)-1)
1173 cow_start = cur_offset;
1174 if (cow_start != (u64)-1) {
1175 ret = cow_file_range(inode, locked_page, cow_start, end,
1176 page_started, nr_written, 1);
1177 BUG_ON(ret);
1178 }
1179
1180 ret = btrfs_end_transaction(trans, root);
1181 BUG_ON(ret);
1182 btrfs_free_path(path);
1183 return 0;
1184 }
1185
1186 /*
1187 * extent_io.c call back to do delayed allocation processing
1188 */
1189 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1190 u64 start, u64 end, int *page_started,
1191 unsigned long *nr_written)
1192 {
1193 int ret;
1194 struct btrfs_root *root = BTRFS_I(inode)->root;
1195
1196 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1197 ret = run_delalloc_nocow(inode, locked_page, start, end,
1198 page_started, 1, nr_written);
1199 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1200 ret = run_delalloc_nocow(inode, locked_page, start, end,
1201 page_started, 0, nr_written);
1202 else if (!btrfs_test_opt(root, COMPRESS))
1203 ret = cow_file_range(inode, locked_page, start, end,
1204 page_started, nr_written, 1);
1205 else
1206 ret = cow_file_range_async(inode, locked_page, start, end,
1207 page_started, nr_written);
1208 return ret;
1209 }
1210
1211 static int btrfs_split_extent_hook(struct inode *inode,
1212 struct extent_state *orig, u64 split)
1213 {
1214 struct btrfs_root *root = BTRFS_I(inode)->root;
1215 u64 size;
1216
1217 if (!(orig->state & EXTENT_DELALLOC))
1218 return 0;
1219
1220 size = orig->end - orig->start + 1;
1221 if (size > root->fs_info->max_extent) {
1222 u64 num_extents;
1223 u64 new_size;
1224
1225 new_size = orig->end - split + 1;
1226 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1227 root->fs_info->max_extent);
1228
1229 /*
1230 * if we break a large extent up then leave oustanding_extents
1231 * be, since we've already accounted for the large extent.
1232 */
1233 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1234 root->fs_info->max_extent) < num_extents)
1235 return 0;
1236 }
1237
1238 spin_lock(&BTRFS_I(inode)->accounting_lock);
1239 BTRFS_I(inode)->outstanding_extents++;
1240 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1241
1242 return 0;
1243 }
1244
1245 /*
1246 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1247 * extents so we can keep track of new extents that are just merged onto old
1248 * extents, such as when we are doing sequential writes, so we can properly
1249 * account for the metadata space we'll need.
1250 */
1251 static int btrfs_merge_extent_hook(struct inode *inode,
1252 struct extent_state *new,
1253 struct extent_state *other)
1254 {
1255 struct btrfs_root *root = BTRFS_I(inode)->root;
1256 u64 new_size, old_size;
1257 u64 num_extents;
1258
1259 /* not delalloc, ignore it */
1260 if (!(other->state & EXTENT_DELALLOC))
1261 return 0;
1262
1263 old_size = other->end - other->start + 1;
1264 if (new->start < other->start)
1265 new_size = other->end - new->start + 1;
1266 else
1267 new_size = new->end - other->start + 1;
1268
1269 /* we're not bigger than the max, unreserve the space and go */
1270 if (new_size <= root->fs_info->max_extent) {
1271 spin_lock(&BTRFS_I(inode)->accounting_lock);
1272 BTRFS_I(inode)->outstanding_extents--;
1273 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1274 return 0;
1275 }
1276
1277 /*
1278 * If we grew by another max_extent, just return, we want to keep that
1279 * reserved amount.
1280 */
1281 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1282 root->fs_info->max_extent);
1283 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1284 root->fs_info->max_extent) > num_extents)
1285 return 0;
1286
1287 spin_lock(&BTRFS_I(inode)->accounting_lock);
1288 BTRFS_I(inode)->outstanding_extents--;
1289 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1290
1291 return 0;
1292 }
1293
1294 /*
1295 * extent_io.c set_bit_hook, used to track delayed allocation
1296 * bytes in this file, and to maintain the list of inodes that
1297 * have pending delalloc work to be done.
1298 */
1299 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1300 unsigned long old, unsigned long bits)
1301 {
1302
1303 /*
1304 * set_bit and clear bit hooks normally require _irqsave/restore
1305 * but in this case, we are only testeing for the DELALLOC
1306 * bit, which is only set or cleared with irqs on
1307 */
1308 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1309 struct btrfs_root *root = BTRFS_I(inode)->root;
1310
1311 spin_lock(&BTRFS_I(inode)->accounting_lock);
1312 BTRFS_I(inode)->outstanding_extents++;
1313 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1314 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1315 spin_lock(&root->fs_info->delalloc_lock);
1316 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1317 root->fs_info->delalloc_bytes += end - start + 1;
1318 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1319 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1320 &root->fs_info->delalloc_inodes);
1321 }
1322 spin_unlock(&root->fs_info->delalloc_lock);
1323 }
1324 return 0;
1325 }
1326
1327 /*
1328 * extent_io.c clear_bit_hook, see set_bit_hook for why
1329 */
1330 static int btrfs_clear_bit_hook(struct inode *inode,
1331 struct extent_state *state, unsigned long bits)
1332 {
1333 /*
1334 * set_bit and clear bit hooks normally require _irqsave/restore
1335 * but in this case, we are only testeing for the DELALLOC
1336 * bit, which is only set or cleared with irqs on
1337 */
1338 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1339 struct btrfs_root *root = BTRFS_I(inode)->root;
1340
1341 if (bits & EXTENT_DO_ACCOUNTING) {
1342 spin_lock(&BTRFS_I(inode)->accounting_lock);
1343 BTRFS_I(inode)->outstanding_extents--;
1344 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1345 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1346 }
1347
1348 spin_lock(&root->fs_info->delalloc_lock);
1349 if (state->end - state->start + 1 >
1350 root->fs_info->delalloc_bytes) {
1351 printk(KERN_INFO "btrfs warning: delalloc account "
1352 "%llu %llu\n",
1353 (unsigned long long)
1354 state->end - state->start + 1,
1355 (unsigned long long)
1356 root->fs_info->delalloc_bytes);
1357 btrfs_delalloc_free_space(root, inode, (u64)-1);
1358 root->fs_info->delalloc_bytes = 0;
1359 BTRFS_I(inode)->delalloc_bytes = 0;
1360 } else {
1361 btrfs_delalloc_free_space(root, inode,
1362 state->end -
1363 state->start + 1);
1364 root->fs_info->delalloc_bytes -= state->end -
1365 state->start + 1;
1366 BTRFS_I(inode)->delalloc_bytes -= state->end -
1367 state->start + 1;
1368 }
1369 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1370 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1371 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1372 }
1373 spin_unlock(&root->fs_info->delalloc_lock);
1374 }
1375 return 0;
1376 }
1377
1378 /*
1379 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1380 * we don't create bios that span stripes or chunks
1381 */
1382 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1383 size_t size, struct bio *bio,
1384 unsigned long bio_flags)
1385 {
1386 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1387 struct btrfs_mapping_tree *map_tree;
1388 u64 logical = (u64)bio->bi_sector << 9;
1389 u64 length = 0;
1390 u64 map_length;
1391 int ret;
1392
1393 if (bio_flags & EXTENT_BIO_COMPRESSED)
1394 return 0;
1395
1396 length = bio->bi_size;
1397 map_tree = &root->fs_info->mapping_tree;
1398 map_length = length;
1399 ret = btrfs_map_block(map_tree, READ, logical,
1400 &map_length, NULL, 0);
1401
1402 if (map_length < length + size)
1403 return 1;
1404 return 0;
1405 }
1406
1407 /*
1408 * in order to insert checksums into the metadata in large chunks,
1409 * we wait until bio submission time. All the pages in the bio are
1410 * checksummed and sums are attached onto the ordered extent record.
1411 *
1412 * At IO completion time the cums attached on the ordered extent record
1413 * are inserted into the btree
1414 */
1415 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1416 struct bio *bio, int mirror_num,
1417 unsigned long bio_flags)
1418 {
1419 struct btrfs_root *root = BTRFS_I(inode)->root;
1420 int ret = 0;
1421
1422 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1423 BUG_ON(ret);
1424 return 0;
1425 }
1426
1427 /*
1428 * in order to insert checksums into the metadata in large chunks,
1429 * we wait until bio submission time. All the pages in the bio are
1430 * checksummed and sums are attached onto the ordered extent record.
1431 *
1432 * At IO completion time the cums attached on the ordered extent record
1433 * are inserted into the btree
1434 */
1435 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1436 int mirror_num, unsigned long bio_flags)
1437 {
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
1439 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1440 }
1441
1442 /*
1443 * extent_io.c submission hook. This does the right thing for csum calculation
1444 * on write, or reading the csums from the tree before a read
1445 */
1446 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1447 int mirror_num, unsigned long bio_flags)
1448 {
1449 struct btrfs_root *root = BTRFS_I(inode)->root;
1450 int ret = 0;
1451 int skip_sum;
1452
1453 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1454
1455 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1456 BUG_ON(ret);
1457
1458 if (!(rw & (1 << BIO_RW))) {
1459 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1460 return btrfs_submit_compressed_read(inode, bio,
1461 mirror_num, bio_flags);
1462 } else if (!skip_sum)
1463 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1464 goto mapit;
1465 } else if (!skip_sum) {
1466 /* csum items have already been cloned */
1467 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1468 goto mapit;
1469 /* we're doing a write, do the async checksumming */
1470 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1471 inode, rw, bio, mirror_num,
1472 bio_flags, __btrfs_submit_bio_start,
1473 __btrfs_submit_bio_done);
1474 }
1475
1476 mapit:
1477 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1478 }
1479
1480 /*
1481 * given a list of ordered sums record them in the inode. This happens
1482 * at IO completion time based on sums calculated at bio submission time.
1483 */
1484 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1485 struct inode *inode, u64 file_offset,
1486 struct list_head *list)
1487 {
1488 struct btrfs_ordered_sum *sum;
1489
1490 btrfs_set_trans_block_group(trans, inode);
1491
1492 list_for_each_entry(sum, list, list) {
1493 btrfs_csum_file_blocks(trans,
1494 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1495 }
1496 return 0;
1497 }
1498
1499 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1500 {
1501 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1502 WARN_ON(1);
1503 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1504 GFP_NOFS);
1505 }
1506
1507 /* see btrfs_writepage_start_hook for details on why this is required */
1508 struct btrfs_writepage_fixup {
1509 struct page *page;
1510 struct btrfs_work work;
1511 };
1512
1513 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1514 {
1515 struct btrfs_writepage_fixup *fixup;
1516 struct btrfs_ordered_extent *ordered;
1517 struct page *page;
1518 struct inode *inode;
1519 u64 page_start;
1520 u64 page_end;
1521
1522 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1523 page = fixup->page;
1524 again:
1525 lock_page(page);
1526 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1527 ClearPageChecked(page);
1528 goto out_page;
1529 }
1530
1531 inode = page->mapping->host;
1532 page_start = page_offset(page);
1533 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1534
1535 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1536
1537 /* already ordered? We're done */
1538 if (PagePrivate2(page))
1539 goto out;
1540
1541 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1542 if (ordered) {
1543 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1544 page_end, GFP_NOFS);
1545 unlock_page(page);
1546 btrfs_start_ordered_extent(inode, ordered, 1);
1547 goto again;
1548 }
1549
1550 btrfs_set_extent_delalloc(inode, page_start, page_end);
1551 ClearPageChecked(page);
1552 out:
1553 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1554 out_page:
1555 unlock_page(page);
1556 page_cache_release(page);
1557 }
1558
1559 /*
1560 * There are a few paths in the higher layers of the kernel that directly
1561 * set the page dirty bit without asking the filesystem if it is a
1562 * good idea. This causes problems because we want to make sure COW
1563 * properly happens and the data=ordered rules are followed.
1564 *
1565 * In our case any range that doesn't have the ORDERED bit set
1566 * hasn't been properly setup for IO. We kick off an async process
1567 * to fix it up. The async helper will wait for ordered extents, set
1568 * the delalloc bit and make it safe to write the page.
1569 */
1570 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1571 {
1572 struct inode *inode = page->mapping->host;
1573 struct btrfs_writepage_fixup *fixup;
1574 struct btrfs_root *root = BTRFS_I(inode)->root;
1575
1576 /* this page is properly in the ordered list */
1577 if (TestClearPagePrivate2(page))
1578 return 0;
1579
1580 if (PageChecked(page))
1581 return -EAGAIN;
1582
1583 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1584 if (!fixup)
1585 return -EAGAIN;
1586
1587 SetPageChecked(page);
1588 page_cache_get(page);
1589 fixup->work.func = btrfs_writepage_fixup_worker;
1590 fixup->page = page;
1591 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1592 return -EAGAIN;
1593 }
1594
1595 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1596 struct inode *inode, u64 file_pos,
1597 u64 disk_bytenr, u64 disk_num_bytes,
1598 u64 num_bytes, u64 ram_bytes,
1599 u64 locked_end,
1600 u8 compression, u8 encryption,
1601 u16 other_encoding, int extent_type)
1602 {
1603 struct btrfs_root *root = BTRFS_I(inode)->root;
1604 struct btrfs_file_extent_item *fi;
1605 struct btrfs_path *path;
1606 struct extent_buffer *leaf;
1607 struct btrfs_key ins;
1608 u64 hint;
1609 int ret;
1610
1611 path = btrfs_alloc_path();
1612 BUG_ON(!path);
1613
1614 path->leave_spinning = 1;
1615
1616 /*
1617 * we may be replacing one extent in the tree with another.
1618 * The new extent is pinned in the extent map, and we don't want
1619 * to drop it from the cache until it is completely in the btree.
1620 *
1621 * So, tell btrfs_drop_extents to leave this extent in the cache.
1622 * the caller is expected to unpin it and allow it to be merged
1623 * with the others.
1624 */
1625 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1626 file_pos + num_bytes, locked_end,
1627 file_pos, &hint, 0);
1628 BUG_ON(ret);
1629
1630 ins.objectid = inode->i_ino;
1631 ins.offset = file_pos;
1632 ins.type = BTRFS_EXTENT_DATA_KEY;
1633 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1634 BUG_ON(ret);
1635 leaf = path->nodes[0];
1636 fi = btrfs_item_ptr(leaf, path->slots[0],
1637 struct btrfs_file_extent_item);
1638 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1639 btrfs_set_file_extent_type(leaf, fi, extent_type);
1640 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1641 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1642 btrfs_set_file_extent_offset(leaf, fi, 0);
1643 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1644 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1645 btrfs_set_file_extent_compression(leaf, fi, compression);
1646 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1647 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1648
1649 btrfs_unlock_up_safe(path, 1);
1650 btrfs_set_lock_blocking(leaf);
1651
1652 btrfs_mark_buffer_dirty(leaf);
1653
1654 inode_add_bytes(inode, num_bytes);
1655
1656 ins.objectid = disk_bytenr;
1657 ins.offset = disk_num_bytes;
1658 ins.type = BTRFS_EXTENT_ITEM_KEY;
1659 ret = btrfs_alloc_reserved_file_extent(trans, root,
1660 root->root_key.objectid,
1661 inode->i_ino, file_pos, &ins);
1662 BUG_ON(ret);
1663 btrfs_free_path(path);
1664
1665 return 0;
1666 }
1667
1668 /*
1669 * helper function for btrfs_finish_ordered_io, this
1670 * just reads in some of the csum leaves to prime them into ram
1671 * before we start the transaction. It limits the amount of btree
1672 * reads required while inside the transaction.
1673 */
1674 static noinline void reada_csum(struct btrfs_root *root,
1675 struct btrfs_path *path,
1676 struct btrfs_ordered_extent *ordered_extent)
1677 {
1678 struct btrfs_ordered_sum *sum;
1679 u64 bytenr;
1680
1681 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1682 list);
1683 bytenr = sum->sums[0].bytenr;
1684
1685 /*
1686 * we don't care about the results, the point of this search is
1687 * just to get the btree leaves into ram
1688 */
1689 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1690 }
1691
1692 /* as ordered data IO finishes, this gets called so we can finish
1693 * an ordered extent if the range of bytes in the file it covers are
1694 * fully written.
1695 */
1696 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1697 {
1698 struct btrfs_root *root = BTRFS_I(inode)->root;
1699 struct btrfs_trans_handle *trans;
1700 struct btrfs_ordered_extent *ordered_extent = NULL;
1701 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1702 struct btrfs_path *path;
1703 int compressed = 0;
1704 int ret;
1705
1706 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1707 if (!ret)
1708 return 0;
1709
1710 /*
1711 * before we join the transaction, try to do some of our IO.
1712 * This will limit the amount of IO that we have to do with
1713 * the transaction running. We're unlikely to need to do any
1714 * IO if the file extents are new, the disk_i_size checks
1715 * covers the most common case.
1716 */
1717 if (start < BTRFS_I(inode)->disk_i_size) {
1718 path = btrfs_alloc_path();
1719 if (path) {
1720 ret = btrfs_lookup_file_extent(NULL, root, path,
1721 inode->i_ino,
1722 start, 0);
1723 ordered_extent = btrfs_lookup_ordered_extent(inode,
1724 start);
1725 if (!list_empty(&ordered_extent->list)) {
1726 btrfs_release_path(root, path);
1727 reada_csum(root, path, ordered_extent);
1728 }
1729 btrfs_free_path(path);
1730 }
1731 }
1732
1733 trans = btrfs_join_transaction(root, 1);
1734
1735 if (!ordered_extent)
1736 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1737 BUG_ON(!ordered_extent);
1738 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1739 goto nocow;
1740
1741 lock_extent(io_tree, ordered_extent->file_offset,
1742 ordered_extent->file_offset + ordered_extent->len - 1,
1743 GFP_NOFS);
1744
1745 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1746 compressed = 1;
1747 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1748 BUG_ON(compressed);
1749 ret = btrfs_mark_extent_written(trans, root, inode,
1750 ordered_extent->file_offset,
1751 ordered_extent->file_offset +
1752 ordered_extent->len);
1753 BUG_ON(ret);
1754 } else {
1755 ret = insert_reserved_file_extent(trans, inode,
1756 ordered_extent->file_offset,
1757 ordered_extent->start,
1758 ordered_extent->disk_len,
1759 ordered_extent->len,
1760 ordered_extent->len,
1761 ordered_extent->file_offset +
1762 ordered_extent->len,
1763 compressed, 0, 0,
1764 BTRFS_FILE_EXTENT_REG);
1765 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1766 ordered_extent->file_offset,
1767 ordered_extent->len);
1768 BUG_ON(ret);
1769 }
1770 unlock_extent(io_tree, ordered_extent->file_offset,
1771 ordered_extent->file_offset + ordered_extent->len - 1,
1772 GFP_NOFS);
1773 nocow:
1774 add_pending_csums(trans, inode, ordered_extent->file_offset,
1775 &ordered_extent->list);
1776
1777 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1778 btrfs_ordered_update_i_size(inode, ordered_extent);
1779 btrfs_update_inode(trans, root, inode);
1780 btrfs_remove_ordered_extent(inode, ordered_extent);
1781 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1782
1783 /* once for us */
1784 btrfs_put_ordered_extent(ordered_extent);
1785 /* once for the tree */
1786 btrfs_put_ordered_extent(ordered_extent);
1787
1788 btrfs_end_transaction(trans, root);
1789 return 0;
1790 }
1791
1792 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1793 struct extent_state *state, int uptodate)
1794 {
1795 ClearPagePrivate2(page);
1796 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1797 }
1798
1799 /*
1800 * When IO fails, either with EIO or csum verification fails, we
1801 * try other mirrors that might have a good copy of the data. This
1802 * io_failure_record is used to record state as we go through all the
1803 * mirrors. If another mirror has good data, the page is set up to date
1804 * and things continue. If a good mirror can't be found, the original
1805 * bio end_io callback is called to indicate things have failed.
1806 */
1807 struct io_failure_record {
1808 struct page *page;
1809 u64 start;
1810 u64 len;
1811 u64 logical;
1812 unsigned long bio_flags;
1813 int last_mirror;
1814 };
1815
1816 static int btrfs_io_failed_hook(struct bio *failed_bio,
1817 struct page *page, u64 start, u64 end,
1818 struct extent_state *state)
1819 {
1820 struct io_failure_record *failrec = NULL;
1821 u64 private;
1822 struct extent_map *em;
1823 struct inode *inode = page->mapping->host;
1824 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1825 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1826 struct bio *bio;
1827 int num_copies;
1828 int ret;
1829 int rw;
1830 u64 logical;
1831
1832 ret = get_state_private(failure_tree, start, &private);
1833 if (ret) {
1834 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1835 if (!failrec)
1836 return -ENOMEM;
1837 failrec->start = start;
1838 failrec->len = end - start + 1;
1839 failrec->last_mirror = 0;
1840 failrec->bio_flags = 0;
1841
1842 read_lock(&em_tree->lock);
1843 em = lookup_extent_mapping(em_tree, start, failrec->len);
1844 if (em->start > start || em->start + em->len < start) {
1845 free_extent_map(em);
1846 em = NULL;
1847 }
1848 read_unlock(&em_tree->lock);
1849
1850 if (!em || IS_ERR(em)) {
1851 kfree(failrec);
1852 return -EIO;
1853 }
1854 logical = start - em->start;
1855 logical = em->block_start + logical;
1856 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1857 logical = em->block_start;
1858 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1859 }
1860 failrec->logical = logical;
1861 free_extent_map(em);
1862 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1863 EXTENT_DIRTY, GFP_NOFS);
1864 set_state_private(failure_tree, start,
1865 (u64)(unsigned long)failrec);
1866 } else {
1867 failrec = (struct io_failure_record *)(unsigned long)private;
1868 }
1869 num_copies = btrfs_num_copies(
1870 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1871 failrec->logical, failrec->len);
1872 failrec->last_mirror++;
1873 if (!state) {
1874 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1875 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1876 failrec->start,
1877 EXTENT_LOCKED);
1878 if (state && state->start != failrec->start)
1879 state = NULL;
1880 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1881 }
1882 if (!state || failrec->last_mirror > num_copies) {
1883 set_state_private(failure_tree, failrec->start, 0);
1884 clear_extent_bits(failure_tree, failrec->start,
1885 failrec->start + failrec->len - 1,
1886 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1887 kfree(failrec);
1888 return -EIO;
1889 }
1890 bio = bio_alloc(GFP_NOFS, 1);
1891 bio->bi_private = state;
1892 bio->bi_end_io = failed_bio->bi_end_io;
1893 bio->bi_sector = failrec->logical >> 9;
1894 bio->bi_bdev = failed_bio->bi_bdev;
1895 bio->bi_size = 0;
1896
1897 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1898 if (failed_bio->bi_rw & (1 << BIO_RW))
1899 rw = WRITE;
1900 else
1901 rw = READ;
1902
1903 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1904 failrec->last_mirror,
1905 failrec->bio_flags);
1906 return 0;
1907 }
1908
1909 /*
1910 * each time an IO finishes, we do a fast check in the IO failure tree
1911 * to see if we need to process or clean up an io_failure_record
1912 */
1913 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1914 {
1915 u64 private;
1916 u64 private_failure;
1917 struct io_failure_record *failure;
1918 int ret;
1919
1920 private = 0;
1921 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1922 (u64)-1, 1, EXTENT_DIRTY)) {
1923 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1924 start, &private_failure);
1925 if (ret == 0) {
1926 failure = (struct io_failure_record *)(unsigned long)
1927 private_failure;
1928 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1929 failure->start, 0);
1930 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1931 failure->start,
1932 failure->start + failure->len - 1,
1933 EXTENT_DIRTY | EXTENT_LOCKED,
1934 GFP_NOFS);
1935 kfree(failure);
1936 }
1937 }
1938 return 0;
1939 }
1940
1941 /*
1942 * when reads are done, we need to check csums to verify the data is correct
1943 * if there's a match, we allow the bio to finish. If not, we go through
1944 * the io_failure_record routines to find good copies
1945 */
1946 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1947 struct extent_state *state)
1948 {
1949 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1950 struct inode *inode = page->mapping->host;
1951 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1952 char *kaddr;
1953 u64 private = ~(u32)0;
1954 int ret;
1955 struct btrfs_root *root = BTRFS_I(inode)->root;
1956 u32 csum = ~(u32)0;
1957
1958 if (PageChecked(page)) {
1959 ClearPageChecked(page);
1960 goto good;
1961 }
1962
1963 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1964 return 0;
1965
1966 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1967 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1968 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1969 GFP_NOFS);
1970 return 0;
1971 }
1972
1973 if (state && state->start == start) {
1974 private = state->private;
1975 ret = 0;
1976 } else {
1977 ret = get_state_private(io_tree, start, &private);
1978 }
1979 kaddr = kmap_atomic(page, KM_USER0);
1980 if (ret)
1981 goto zeroit;
1982
1983 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1984 btrfs_csum_final(csum, (char *)&csum);
1985 if (csum != private)
1986 goto zeroit;
1987
1988 kunmap_atomic(kaddr, KM_USER0);
1989 good:
1990 /* if the io failure tree for this inode is non-empty,
1991 * check to see if we've recovered from a failed IO
1992 */
1993 btrfs_clean_io_failures(inode, start);
1994 return 0;
1995
1996 zeroit:
1997 if (printk_ratelimit()) {
1998 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1999 "private %llu\n", page->mapping->host->i_ino,
2000 (unsigned long long)start, csum,
2001 (unsigned long long)private);
2002 }
2003 memset(kaddr + offset, 1, end - start + 1);
2004 flush_dcache_page(page);
2005 kunmap_atomic(kaddr, KM_USER0);
2006 if (private == 0)
2007 return 0;
2008 return -EIO;
2009 }
2010
2011 /*
2012 * This creates an orphan entry for the given inode in case something goes
2013 * wrong in the middle of an unlink/truncate.
2014 */
2015 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2016 {
2017 struct btrfs_root *root = BTRFS_I(inode)->root;
2018 int ret = 0;
2019
2020 spin_lock(&root->list_lock);
2021
2022 /* already on the orphan list, we're good */
2023 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2024 spin_unlock(&root->list_lock);
2025 return 0;
2026 }
2027
2028 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2029
2030 spin_unlock(&root->list_lock);
2031
2032 /*
2033 * insert an orphan item to track this unlinked/truncated file
2034 */
2035 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2036
2037 return ret;
2038 }
2039
2040 /*
2041 * We have done the truncate/delete so we can go ahead and remove the orphan
2042 * item for this particular inode.
2043 */
2044 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2045 {
2046 struct btrfs_root *root = BTRFS_I(inode)->root;
2047 int ret = 0;
2048
2049 spin_lock(&root->list_lock);
2050
2051 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2052 spin_unlock(&root->list_lock);
2053 return 0;
2054 }
2055
2056 list_del_init(&BTRFS_I(inode)->i_orphan);
2057 if (!trans) {
2058 spin_unlock(&root->list_lock);
2059 return 0;
2060 }
2061
2062 spin_unlock(&root->list_lock);
2063
2064 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2065
2066 return ret;
2067 }
2068
2069 /*
2070 * this cleans up any orphans that may be left on the list from the last use
2071 * of this root.
2072 */
2073 void btrfs_orphan_cleanup(struct btrfs_root *root)
2074 {
2075 struct btrfs_path *path;
2076 struct extent_buffer *leaf;
2077 struct btrfs_item *item;
2078 struct btrfs_key key, found_key;
2079 struct btrfs_trans_handle *trans;
2080 struct inode *inode;
2081 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2082
2083 path = btrfs_alloc_path();
2084 if (!path)
2085 return;
2086 path->reada = -1;
2087
2088 key.objectid = BTRFS_ORPHAN_OBJECTID;
2089 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2090 key.offset = (u64)-1;
2091
2092
2093 while (1) {
2094 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2095 if (ret < 0) {
2096 printk(KERN_ERR "Error searching slot for orphan: %d"
2097 "\n", ret);
2098 break;
2099 }
2100
2101 /*
2102 * if ret == 0 means we found what we were searching for, which
2103 * is weird, but possible, so only screw with path if we didnt
2104 * find the key and see if we have stuff that matches
2105 */
2106 if (ret > 0) {
2107 if (path->slots[0] == 0)
2108 break;
2109 path->slots[0]--;
2110 }
2111
2112 /* pull out the item */
2113 leaf = path->nodes[0];
2114 item = btrfs_item_nr(leaf, path->slots[0]);
2115 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2116
2117 /* make sure the item matches what we want */
2118 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2119 break;
2120 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2121 break;
2122
2123 /* release the path since we're done with it */
2124 btrfs_release_path(root, path);
2125
2126 /*
2127 * this is where we are basically btrfs_lookup, without the
2128 * crossing root thing. we store the inode number in the
2129 * offset of the orphan item.
2130 */
2131 found_key.objectid = found_key.offset;
2132 found_key.type = BTRFS_INODE_ITEM_KEY;
2133 found_key.offset = 0;
2134 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2135 if (IS_ERR(inode))
2136 break;
2137
2138 /*
2139 * add this inode to the orphan list so btrfs_orphan_del does
2140 * the proper thing when we hit it
2141 */
2142 spin_lock(&root->list_lock);
2143 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2144 spin_unlock(&root->list_lock);
2145
2146 /*
2147 * if this is a bad inode, means we actually succeeded in
2148 * removing the inode, but not the orphan record, which means
2149 * we need to manually delete the orphan since iput will just
2150 * do a destroy_inode
2151 */
2152 if (is_bad_inode(inode)) {
2153 trans = btrfs_start_transaction(root, 1);
2154 btrfs_orphan_del(trans, inode);
2155 btrfs_end_transaction(trans, root);
2156 iput(inode);
2157 continue;
2158 }
2159
2160 /* if we have links, this was a truncate, lets do that */
2161 if (inode->i_nlink) {
2162 nr_truncate++;
2163 btrfs_truncate(inode);
2164 } else {
2165 nr_unlink++;
2166 }
2167
2168 /* this will do delete_inode and everything for us */
2169 iput(inode);
2170 }
2171
2172 if (nr_unlink)
2173 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2174 if (nr_truncate)
2175 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2176
2177 btrfs_free_path(path);
2178 }
2179
2180 /*
2181 * very simple check to peek ahead in the leaf looking for xattrs. If we
2182 * don't find any xattrs, we know there can't be any acls.
2183 *
2184 * slot is the slot the inode is in, objectid is the objectid of the inode
2185 */
2186 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2187 int slot, u64 objectid)
2188 {
2189 u32 nritems = btrfs_header_nritems(leaf);
2190 struct btrfs_key found_key;
2191 int scanned = 0;
2192
2193 slot++;
2194 while (slot < nritems) {
2195 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2196
2197 /* we found a different objectid, there must not be acls */
2198 if (found_key.objectid != objectid)
2199 return 0;
2200
2201 /* we found an xattr, assume we've got an acl */
2202 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2203 return 1;
2204
2205 /*
2206 * we found a key greater than an xattr key, there can't
2207 * be any acls later on
2208 */
2209 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2210 return 0;
2211
2212 slot++;
2213 scanned++;
2214
2215 /*
2216 * it goes inode, inode backrefs, xattrs, extents,
2217 * so if there are a ton of hard links to an inode there can
2218 * be a lot of backrefs. Don't waste time searching too hard,
2219 * this is just an optimization
2220 */
2221 if (scanned >= 8)
2222 break;
2223 }
2224 /* we hit the end of the leaf before we found an xattr or
2225 * something larger than an xattr. We have to assume the inode
2226 * has acls
2227 */
2228 return 1;
2229 }
2230
2231 /*
2232 * read an inode from the btree into the in-memory inode
2233 */
2234 static void btrfs_read_locked_inode(struct inode *inode)
2235 {
2236 struct btrfs_path *path;
2237 struct extent_buffer *leaf;
2238 struct btrfs_inode_item *inode_item;
2239 struct btrfs_timespec *tspec;
2240 struct btrfs_root *root = BTRFS_I(inode)->root;
2241 struct btrfs_key location;
2242 int maybe_acls;
2243 u64 alloc_group_block;
2244 u32 rdev;
2245 int ret;
2246
2247 path = btrfs_alloc_path();
2248 BUG_ON(!path);
2249 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2250
2251 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2252 if (ret)
2253 goto make_bad;
2254
2255 leaf = path->nodes[0];
2256 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2257 struct btrfs_inode_item);
2258
2259 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2260 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2261 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2262 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2263 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2264
2265 tspec = btrfs_inode_atime(inode_item);
2266 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2267 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2268
2269 tspec = btrfs_inode_mtime(inode_item);
2270 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2271 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2272
2273 tspec = btrfs_inode_ctime(inode_item);
2274 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2275 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2276
2277 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2278 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2279 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2280 inode->i_generation = BTRFS_I(inode)->generation;
2281 inode->i_rdev = 0;
2282 rdev = btrfs_inode_rdev(leaf, inode_item);
2283
2284 BTRFS_I(inode)->index_cnt = (u64)-1;
2285 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2286
2287 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2288
2289 /*
2290 * try to precache a NULL acl entry for files that don't have
2291 * any xattrs or acls
2292 */
2293 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2294 if (!maybe_acls)
2295 cache_no_acl(inode);
2296
2297 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2298 alloc_group_block, 0);
2299 btrfs_free_path(path);
2300 inode_item = NULL;
2301
2302 switch (inode->i_mode & S_IFMT) {
2303 case S_IFREG:
2304 inode->i_mapping->a_ops = &btrfs_aops;
2305 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2306 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2307 inode->i_fop = &btrfs_file_operations;
2308 inode->i_op = &btrfs_file_inode_operations;
2309 break;
2310 case S_IFDIR:
2311 inode->i_fop = &btrfs_dir_file_operations;
2312 if (root == root->fs_info->tree_root)
2313 inode->i_op = &btrfs_dir_ro_inode_operations;
2314 else
2315 inode->i_op = &btrfs_dir_inode_operations;
2316 break;
2317 case S_IFLNK:
2318 inode->i_op = &btrfs_symlink_inode_operations;
2319 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2320 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2321 break;
2322 default:
2323 inode->i_op = &btrfs_special_inode_operations;
2324 init_special_inode(inode, inode->i_mode, rdev);
2325 break;
2326 }
2327
2328 btrfs_update_iflags(inode);
2329 return;
2330
2331 make_bad:
2332 btrfs_free_path(path);
2333 make_bad_inode(inode);
2334 }
2335
2336 /*
2337 * given a leaf and an inode, copy the inode fields into the leaf
2338 */
2339 static void fill_inode_item(struct btrfs_trans_handle *trans,
2340 struct extent_buffer *leaf,
2341 struct btrfs_inode_item *item,
2342 struct inode *inode)
2343 {
2344 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2345 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2346 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2347 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2348 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2349
2350 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2351 inode->i_atime.tv_sec);
2352 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2353 inode->i_atime.tv_nsec);
2354
2355 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2356 inode->i_mtime.tv_sec);
2357 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2358 inode->i_mtime.tv_nsec);
2359
2360 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2361 inode->i_ctime.tv_sec);
2362 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2363 inode->i_ctime.tv_nsec);
2364
2365 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2366 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2367 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2368 btrfs_set_inode_transid(leaf, item, trans->transid);
2369 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2370 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2371 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2372 }
2373
2374 /*
2375 * copy everything in the in-memory inode into the btree.
2376 */
2377 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2378 struct btrfs_root *root, struct inode *inode)
2379 {
2380 struct btrfs_inode_item *inode_item;
2381 struct btrfs_path *path;
2382 struct extent_buffer *leaf;
2383 int ret;
2384
2385 path = btrfs_alloc_path();
2386 BUG_ON(!path);
2387 path->leave_spinning = 1;
2388 ret = btrfs_lookup_inode(trans, root, path,
2389 &BTRFS_I(inode)->location, 1);
2390 if (ret) {
2391 if (ret > 0)
2392 ret = -ENOENT;
2393 goto failed;
2394 }
2395
2396 btrfs_unlock_up_safe(path, 1);
2397 leaf = path->nodes[0];
2398 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2399 struct btrfs_inode_item);
2400
2401 fill_inode_item(trans, leaf, inode_item, inode);
2402 btrfs_mark_buffer_dirty(leaf);
2403 btrfs_set_inode_last_trans(trans, inode);
2404 ret = 0;
2405 failed:
2406 btrfs_free_path(path);
2407 return ret;
2408 }
2409
2410
2411 /*
2412 * unlink helper that gets used here in inode.c and in the tree logging
2413 * recovery code. It remove a link in a directory with a given name, and
2414 * also drops the back refs in the inode to the directory
2415 */
2416 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2417 struct btrfs_root *root,
2418 struct inode *dir, struct inode *inode,
2419 const char *name, int name_len)
2420 {
2421 struct btrfs_path *path;
2422 int ret = 0;
2423 struct extent_buffer *leaf;
2424 struct btrfs_dir_item *di;
2425 struct btrfs_key key;
2426 u64 index;
2427
2428 path = btrfs_alloc_path();
2429 if (!path) {
2430 ret = -ENOMEM;
2431 goto err;
2432 }
2433
2434 path->leave_spinning = 1;
2435 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2436 name, name_len, -1);
2437 if (IS_ERR(di)) {
2438 ret = PTR_ERR(di);
2439 goto err;
2440 }
2441 if (!di) {
2442 ret = -ENOENT;
2443 goto err;
2444 }
2445 leaf = path->nodes[0];
2446 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2447 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2448 if (ret)
2449 goto err;
2450 btrfs_release_path(root, path);
2451
2452 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2453 inode->i_ino,
2454 dir->i_ino, &index);
2455 if (ret) {
2456 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2457 "inode %lu parent %lu\n", name_len, name,
2458 inode->i_ino, dir->i_ino);
2459 goto err;
2460 }
2461
2462 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2463 index, name, name_len, -1);
2464 if (IS_ERR(di)) {
2465 ret = PTR_ERR(di);
2466 goto err;
2467 }
2468 if (!di) {
2469 ret = -ENOENT;
2470 goto err;
2471 }
2472 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2473 btrfs_release_path(root, path);
2474
2475 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2476 inode, dir->i_ino);
2477 BUG_ON(ret != 0 && ret != -ENOENT);
2478
2479 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2480 dir, index);
2481 BUG_ON(ret);
2482 err:
2483 btrfs_free_path(path);
2484 if (ret)
2485 goto out;
2486
2487 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2488 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2489 btrfs_update_inode(trans, root, dir);
2490 btrfs_drop_nlink(inode);
2491 ret = btrfs_update_inode(trans, root, inode);
2492 out:
2493 return ret;
2494 }
2495
2496 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2497 {
2498 struct btrfs_root *root;
2499 struct btrfs_trans_handle *trans;
2500 struct inode *inode = dentry->d_inode;
2501 int ret;
2502 unsigned long nr = 0;
2503
2504 root = BTRFS_I(dir)->root;
2505
2506 /*
2507 * 5 items for unlink inode
2508 * 1 for orphan
2509 */
2510 ret = btrfs_reserve_metadata_space(root, 6);
2511 if (ret)
2512 return ret;
2513
2514 trans = btrfs_start_transaction(root, 1);
2515 if (IS_ERR(trans)) {
2516 btrfs_unreserve_metadata_space(root, 6);
2517 return PTR_ERR(trans);
2518 }
2519
2520 btrfs_set_trans_block_group(trans, dir);
2521
2522 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2523
2524 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2525 dentry->d_name.name, dentry->d_name.len);
2526
2527 if (inode->i_nlink == 0)
2528 ret = btrfs_orphan_add(trans, inode);
2529
2530 nr = trans->blocks_used;
2531
2532 btrfs_end_transaction_throttle(trans, root);
2533 btrfs_unreserve_metadata_space(root, 6);
2534 btrfs_btree_balance_dirty(root, nr);
2535 return ret;
2536 }
2537
2538 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2539 struct btrfs_root *root,
2540 struct inode *dir, u64 objectid,
2541 const char *name, int name_len)
2542 {
2543 struct btrfs_path *path;
2544 struct extent_buffer *leaf;
2545 struct btrfs_dir_item *di;
2546 struct btrfs_key key;
2547 u64 index;
2548 int ret;
2549
2550 path = btrfs_alloc_path();
2551 if (!path)
2552 return -ENOMEM;
2553
2554 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2555 name, name_len, -1);
2556 BUG_ON(!di || IS_ERR(di));
2557
2558 leaf = path->nodes[0];
2559 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2560 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2561 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2562 BUG_ON(ret);
2563 btrfs_release_path(root, path);
2564
2565 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2566 objectid, root->root_key.objectid,
2567 dir->i_ino, &index, name, name_len);
2568 if (ret < 0) {
2569 BUG_ON(ret != -ENOENT);
2570 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2571 name, name_len);
2572 BUG_ON(!di || IS_ERR(di));
2573
2574 leaf = path->nodes[0];
2575 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576 btrfs_release_path(root, path);
2577 index = key.offset;
2578 }
2579
2580 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2581 index, name, name_len, -1);
2582 BUG_ON(!di || IS_ERR(di));
2583
2584 leaf = path->nodes[0];
2585 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2586 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2587 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2588 BUG_ON(ret);
2589 btrfs_release_path(root, path);
2590
2591 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2592 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2593 ret = btrfs_update_inode(trans, root, dir);
2594 BUG_ON(ret);
2595 dir->i_sb->s_dirt = 1;
2596
2597 btrfs_free_path(path);
2598 return 0;
2599 }
2600
2601 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2602 {
2603 struct inode *inode = dentry->d_inode;
2604 int err = 0;
2605 int ret;
2606 struct btrfs_root *root = BTRFS_I(dir)->root;
2607 struct btrfs_trans_handle *trans;
2608 unsigned long nr = 0;
2609
2610 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2611 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2612 return -ENOTEMPTY;
2613
2614 ret = btrfs_reserve_metadata_space(root, 5);
2615 if (ret)
2616 return ret;
2617
2618 trans = btrfs_start_transaction(root, 1);
2619 if (IS_ERR(trans)) {
2620 btrfs_unreserve_metadata_space(root, 5);
2621 return PTR_ERR(trans);
2622 }
2623
2624 btrfs_set_trans_block_group(trans, dir);
2625
2626 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2627 err = btrfs_unlink_subvol(trans, root, dir,
2628 BTRFS_I(inode)->location.objectid,
2629 dentry->d_name.name,
2630 dentry->d_name.len);
2631 goto out;
2632 }
2633
2634 err = btrfs_orphan_add(trans, inode);
2635 if (err)
2636 goto out;
2637
2638 /* now the directory is empty */
2639 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2640 dentry->d_name.name, dentry->d_name.len);
2641 if (!err)
2642 btrfs_i_size_write(inode, 0);
2643 out:
2644 nr = trans->blocks_used;
2645 ret = btrfs_end_transaction_throttle(trans, root);
2646 btrfs_unreserve_metadata_space(root, 5);
2647 btrfs_btree_balance_dirty(root, nr);
2648
2649 if (ret && !err)
2650 err = ret;
2651 return err;
2652 }
2653
2654 #if 0
2655 /*
2656 * when truncating bytes in a file, it is possible to avoid reading
2657 * the leaves that contain only checksum items. This can be the
2658 * majority of the IO required to delete a large file, but it must
2659 * be done carefully.
2660 *
2661 * The keys in the level just above the leaves are checked to make sure
2662 * the lowest key in a given leaf is a csum key, and starts at an offset
2663 * after the new size.
2664 *
2665 * Then the key for the next leaf is checked to make sure it also has
2666 * a checksum item for the same file. If it does, we know our target leaf
2667 * contains only checksum items, and it can be safely freed without reading
2668 * it.
2669 *
2670 * This is just an optimization targeted at large files. It may do
2671 * nothing. It will return 0 unless things went badly.
2672 */
2673 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2674 struct btrfs_root *root,
2675 struct btrfs_path *path,
2676 struct inode *inode, u64 new_size)
2677 {
2678 struct btrfs_key key;
2679 int ret;
2680 int nritems;
2681 struct btrfs_key found_key;
2682 struct btrfs_key other_key;
2683 struct btrfs_leaf_ref *ref;
2684 u64 leaf_gen;
2685 u64 leaf_start;
2686
2687 path->lowest_level = 1;
2688 key.objectid = inode->i_ino;
2689 key.type = BTRFS_CSUM_ITEM_KEY;
2690 key.offset = new_size;
2691 again:
2692 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2693 if (ret < 0)
2694 goto out;
2695
2696 if (path->nodes[1] == NULL) {
2697 ret = 0;
2698 goto out;
2699 }
2700 ret = 0;
2701 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2702 nritems = btrfs_header_nritems(path->nodes[1]);
2703
2704 if (!nritems)
2705 goto out;
2706
2707 if (path->slots[1] >= nritems)
2708 goto next_node;
2709
2710 /* did we find a key greater than anything we want to delete? */
2711 if (found_key.objectid > inode->i_ino ||
2712 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2713 goto out;
2714
2715 /* we check the next key in the node to make sure the leave contains
2716 * only checksum items. This comparison doesn't work if our
2717 * leaf is the last one in the node
2718 */
2719 if (path->slots[1] + 1 >= nritems) {
2720 next_node:
2721 /* search forward from the last key in the node, this
2722 * will bring us into the next node in the tree
2723 */
2724 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2725
2726 /* unlikely, but we inc below, so check to be safe */
2727 if (found_key.offset == (u64)-1)
2728 goto out;
2729
2730 /* search_forward needs a path with locks held, do the
2731 * search again for the original key. It is possible
2732 * this will race with a balance and return a path that
2733 * we could modify, but this drop is just an optimization
2734 * and is allowed to miss some leaves.
2735 */
2736 btrfs_release_path(root, path);
2737 found_key.offset++;
2738
2739 /* setup a max key for search_forward */
2740 other_key.offset = (u64)-1;
2741 other_key.type = key.type;
2742 other_key.objectid = key.objectid;
2743
2744 path->keep_locks = 1;
2745 ret = btrfs_search_forward(root, &found_key, &other_key,
2746 path, 0, 0);
2747 path->keep_locks = 0;
2748 if (ret || found_key.objectid != key.objectid ||
2749 found_key.type != key.type) {
2750 ret = 0;
2751 goto out;
2752 }
2753
2754 key.offset = found_key.offset;
2755 btrfs_release_path(root, path);
2756 cond_resched();
2757 goto again;
2758 }
2759
2760 /* we know there's one more slot after us in the tree,
2761 * read that key so we can verify it is also a checksum item
2762 */
2763 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2764
2765 if (found_key.objectid < inode->i_ino)
2766 goto next_key;
2767
2768 if (found_key.type != key.type || found_key.offset < new_size)
2769 goto next_key;
2770
2771 /*
2772 * if the key for the next leaf isn't a csum key from this objectid,
2773 * we can't be sure there aren't good items inside this leaf.
2774 * Bail out
2775 */
2776 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2777 goto out;
2778
2779 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2780 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2781 /*
2782 * it is safe to delete this leaf, it contains only
2783 * csum items from this inode at an offset >= new_size
2784 */
2785 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2786 BUG_ON(ret);
2787
2788 if (root->ref_cows && leaf_gen < trans->transid) {
2789 ref = btrfs_alloc_leaf_ref(root, 0);
2790 if (ref) {
2791 ref->root_gen = root->root_key.offset;
2792 ref->bytenr = leaf_start;
2793 ref->owner = 0;
2794 ref->generation = leaf_gen;
2795 ref->nritems = 0;
2796
2797 btrfs_sort_leaf_ref(ref);
2798
2799 ret = btrfs_add_leaf_ref(root, ref, 0);
2800 WARN_ON(ret);
2801 btrfs_free_leaf_ref(root, ref);
2802 } else {
2803 WARN_ON(1);
2804 }
2805 }
2806 next_key:
2807 btrfs_release_path(root, path);
2808
2809 if (other_key.objectid == inode->i_ino &&
2810 other_key.type == key.type && other_key.offset > key.offset) {
2811 key.offset = other_key.offset;
2812 cond_resched();
2813 goto again;
2814 }
2815 ret = 0;
2816 out:
2817 /* fixup any changes we've made to the path */
2818 path->lowest_level = 0;
2819 path->keep_locks = 0;
2820 btrfs_release_path(root, path);
2821 return ret;
2822 }
2823
2824 #endif
2825
2826 /*
2827 * this can truncate away extent items, csum items and directory items.
2828 * It starts at a high offset and removes keys until it can't find
2829 * any higher than new_size
2830 *
2831 * csum items that cross the new i_size are truncated to the new size
2832 * as well.
2833 *
2834 * min_type is the minimum key type to truncate down to. If set to 0, this
2835 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2836 */
2837 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2838 struct btrfs_root *root,
2839 struct inode *inode,
2840 u64 new_size, u32 min_type)
2841 {
2842 int ret;
2843 struct btrfs_path *path;
2844 struct btrfs_key key;
2845 struct btrfs_key found_key;
2846 u32 found_type = (u8)-1;
2847 struct extent_buffer *leaf;
2848 struct btrfs_file_extent_item *fi;
2849 u64 extent_start = 0;
2850 u64 extent_num_bytes = 0;
2851 u64 extent_offset = 0;
2852 u64 item_end = 0;
2853 int found_extent;
2854 int del_item;
2855 int pending_del_nr = 0;
2856 int pending_del_slot = 0;
2857 int extent_type = -1;
2858 int encoding;
2859 u64 mask = root->sectorsize - 1;
2860
2861 if (root->ref_cows)
2862 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2863 path = btrfs_alloc_path();
2864 BUG_ON(!path);
2865 path->reada = -1;
2866
2867 /* FIXME, add redo link to tree so we don't leak on crash */
2868 key.objectid = inode->i_ino;
2869 key.offset = (u64)-1;
2870 key.type = (u8)-1;
2871
2872 search_again:
2873 path->leave_spinning = 1;
2874 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2875 if (ret < 0)
2876 goto error;
2877
2878 if (ret > 0) {
2879 /* there are no items in the tree for us to truncate, we're
2880 * done
2881 */
2882 if (path->slots[0] == 0) {
2883 ret = 0;
2884 goto error;
2885 }
2886 path->slots[0]--;
2887 }
2888
2889 while (1) {
2890 fi = NULL;
2891 leaf = path->nodes[0];
2892 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2893 found_type = btrfs_key_type(&found_key);
2894 encoding = 0;
2895
2896 if (found_key.objectid != inode->i_ino)
2897 break;
2898
2899 if (found_type < min_type)
2900 break;
2901
2902 item_end = found_key.offset;
2903 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2904 fi = btrfs_item_ptr(leaf, path->slots[0],
2905 struct btrfs_file_extent_item);
2906 extent_type = btrfs_file_extent_type(leaf, fi);
2907 encoding = btrfs_file_extent_compression(leaf, fi);
2908 encoding |= btrfs_file_extent_encryption(leaf, fi);
2909 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2910
2911 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2912 item_end +=
2913 btrfs_file_extent_num_bytes(leaf, fi);
2914 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2915 item_end += btrfs_file_extent_inline_len(leaf,
2916 fi);
2917 }
2918 item_end--;
2919 }
2920 if (item_end < new_size) {
2921 if (found_type == BTRFS_DIR_ITEM_KEY)
2922 found_type = BTRFS_INODE_ITEM_KEY;
2923 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2924 found_type = BTRFS_EXTENT_DATA_KEY;
2925 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2926 found_type = BTRFS_XATTR_ITEM_KEY;
2927 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2928 found_type = BTRFS_INODE_REF_KEY;
2929 else if (found_type)
2930 found_type--;
2931 else
2932 break;
2933 btrfs_set_key_type(&key, found_type);
2934 goto next;
2935 }
2936 if (found_key.offset >= new_size)
2937 del_item = 1;
2938 else
2939 del_item = 0;
2940 found_extent = 0;
2941
2942 /* FIXME, shrink the extent if the ref count is only 1 */
2943 if (found_type != BTRFS_EXTENT_DATA_KEY)
2944 goto delete;
2945
2946 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2947 u64 num_dec;
2948 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2949 if (!del_item && !encoding) {
2950 u64 orig_num_bytes =
2951 btrfs_file_extent_num_bytes(leaf, fi);
2952 extent_num_bytes = new_size -
2953 found_key.offset + root->sectorsize - 1;
2954 extent_num_bytes = extent_num_bytes &
2955 ~((u64)root->sectorsize - 1);
2956 btrfs_set_file_extent_num_bytes(leaf, fi,
2957 extent_num_bytes);
2958 num_dec = (orig_num_bytes -
2959 extent_num_bytes);
2960 if (root->ref_cows && extent_start != 0)
2961 inode_sub_bytes(inode, num_dec);
2962 btrfs_mark_buffer_dirty(leaf);
2963 } else {
2964 extent_num_bytes =
2965 btrfs_file_extent_disk_num_bytes(leaf,
2966 fi);
2967 extent_offset = found_key.offset -
2968 btrfs_file_extent_offset(leaf, fi);
2969
2970 /* FIXME blocksize != 4096 */
2971 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2972 if (extent_start != 0) {
2973 found_extent = 1;
2974 if (root->ref_cows)
2975 inode_sub_bytes(inode, num_dec);
2976 }
2977 }
2978 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2979 /*
2980 * we can't truncate inline items that have had
2981 * special encodings
2982 */
2983 if (!del_item &&
2984 btrfs_file_extent_compression(leaf, fi) == 0 &&
2985 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2986 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2987 u32 size = new_size - found_key.offset;
2988
2989 if (root->ref_cows) {
2990 inode_sub_bytes(inode, item_end + 1 -
2991 new_size);
2992 }
2993 size =
2994 btrfs_file_extent_calc_inline_size(size);
2995 ret = btrfs_truncate_item(trans, root, path,
2996 size, 1);
2997 BUG_ON(ret);
2998 } else if (root->ref_cows) {
2999 inode_sub_bytes(inode, item_end + 1 -
3000 found_key.offset);
3001 }
3002 }
3003 delete:
3004 if (del_item) {
3005 if (!pending_del_nr) {
3006 /* no pending yet, add ourselves */
3007 pending_del_slot = path->slots[0];
3008 pending_del_nr = 1;
3009 } else if (pending_del_nr &&
3010 path->slots[0] + 1 == pending_del_slot) {
3011 /* hop on the pending chunk */
3012 pending_del_nr++;
3013 pending_del_slot = path->slots[0];
3014 } else {
3015 BUG();
3016 }
3017 } else {
3018 break;
3019 }
3020 if (found_extent && root->ref_cows) {
3021 btrfs_set_path_blocking(path);
3022 ret = btrfs_free_extent(trans, root, extent_start,
3023 extent_num_bytes, 0,
3024 btrfs_header_owner(leaf),
3025 inode->i_ino, extent_offset);
3026 BUG_ON(ret);
3027 }
3028 next:
3029 if (path->slots[0] == 0) {
3030 if (pending_del_nr)
3031 goto del_pending;
3032 btrfs_release_path(root, path);
3033 if (found_type == BTRFS_INODE_ITEM_KEY)
3034 break;
3035 goto search_again;
3036 }
3037
3038 path->slots[0]--;
3039 if (pending_del_nr &&
3040 path->slots[0] + 1 != pending_del_slot) {
3041 struct btrfs_key debug;
3042 del_pending:
3043 btrfs_item_key_to_cpu(path->nodes[0], &debug,
3044 pending_del_slot);
3045 ret = btrfs_del_items(trans, root, path,
3046 pending_del_slot,
3047 pending_del_nr);
3048 BUG_ON(ret);
3049 pending_del_nr = 0;
3050 btrfs_release_path(root, path);
3051 if (found_type == BTRFS_INODE_ITEM_KEY)
3052 break;
3053 goto search_again;
3054 }
3055 }
3056 ret = 0;
3057 error:
3058 if (pending_del_nr) {
3059 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3060 pending_del_nr);
3061 }
3062 btrfs_free_path(path);
3063 return ret;
3064 }
3065
3066 /*
3067 * taken from block_truncate_page, but does cow as it zeros out
3068 * any bytes left in the last page in the file.
3069 */
3070 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3071 {
3072 struct inode *inode = mapping->host;
3073 struct btrfs_root *root = BTRFS_I(inode)->root;
3074 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3075 struct btrfs_ordered_extent *ordered;
3076 char *kaddr;
3077 u32 blocksize = root->sectorsize;
3078 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3079 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3080 struct page *page;
3081 int ret = 0;
3082 u64 page_start;
3083 u64 page_end;
3084
3085 if ((offset & (blocksize - 1)) == 0)
3086 goto out;
3087 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3088 if (ret)
3089 goto out;
3090
3091 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3092 if (ret)
3093 goto out;
3094
3095 ret = -ENOMEM;
3096 again:
3097 page = grab_cache_page(mapping, index);
3098 if (!page) {
3099 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3100 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3101 goto out;
3102 }
3103
3104 page_start = page_offset(page);
3105 page_end = page_start + PAGE_CACHE_SIZE - 1;
3106
3107 if (!PageUptodate(page)) {
3108 ret = btrfs_readpage(NULL, page);
3109 lock_page(page);
3110 if (page->mapping != mapping) {
3111 unlock_page(page);
3112 page_cache_release(page);
3113 goto again;
3114 }
3115 if (!PageUptodate(page)) {
3116 ret = -EIO;
3117 goto out_unlock;
3118 }
3119 }
3120 wait_on_page_writeback(page);
3121
3122 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3123 set_page_extent_mapped(page);
3124
3125 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3126 if (ordered) {
3127 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3128 unlock_page(page);
3129 page_cache_release(page);
3130 btrfs_start_ordered_extent(inode, ordered, 1);
3131 btrfs_put_ordered_extent(ordered);
3132 goto again;
3133 }
3134
3135 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3136 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3137 GFP_NOFS);
3138
3139 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3140 if (ret) {
3141 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3142 goto out_unlock;
3143 }
3144
3145 ret = 0;
3146 if (offset != PAGE_CACHE_SIZE) {
3147 kaddr = kmap(page);
3148 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3149 flush_dcache_page(page);
3150 kunmap(page);
3151 }
3152 ClearPageChecked(page);
3153 set_page_dirty(page);
3154 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3155
3156 out_unlock:
3157 if (ret)
3158 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3159 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3160 unlock_page(page);
3161 page_cache_release(page);
3162 out:
3163 return ret;
3164 }
3165
3166 int btrfs_cont_expand(struct inode *inode, loff_t size)
3167 {
3168 struct btrfs_trans_handle *trans;
3169 struct btrfs_root *root = BTRFS_I(inode)->root;
3170 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3171 struct extent_map *em;
3172 u64 mask = root->sectorsize - 1;
3173 u64 hole_start = (inode->i_size + mask) & ~mask;
3174 u64 block_end = (size + mask) & ~mask;
3175 u64 last_byte;
3176 u64 cur_offset;
3177 u64 hole_size;
3178 int err = 0;
3179
3180 if (size <= hole_start)
3181 return 0;
3182
3183 err = btrfs_truncate_page(inode->i_mapping, inode->i_size);
3184 if (err)
3185 return err;
3186
3187 while (1) {
3188 struct btrfs_ordered_extent *ordered;
3189 btrfs_wait_ordered_range(inode, hole_start,
3190 block_end - hole_start);
3191 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3192 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3193 if (!ordered)
3194 break;
3195 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3196 btrfs_put_ordered_extent(ordered);
3197 }
3198
3199 trans = btrfs_start_transaction(root, 1);
3200 btrfs_set_trans_block_group(trans, inode);
3201
3202 cur_offset = hole_start;
3203 while (1) {
3204 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3205 block_end - cur_offset, 0);
3206 BUG_ON(IS_ERR(em) || !em);
3207 last_byte = min(extent_map_end(em), block_end);
3208 last_byte = (last_byte + mask) & ~mask;
3209 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3210 u64 hint_byte = 0;
3211 hole_size = last_byte - cur_offset;
3212 err = btrfs_drop_extents(trans, root, inode,
3213 cur_offset,
3214 cur_offset + hole_size,
3215 block_end,
3216 cur_offset, &hint_byte, 1);
3217 if (err)
3218 break;
3219
3220 err = btrfs_reserve_metadata_space(root, 1);
3221 if (err)
3222 break;
3223
3224 err = btrfs_insert_file_extent(trans, root,
3225 inode->i_ino, cur_offset, 0,
3226 0, hole_size, 0, hole_size,
3227 0, 0, 0);
3228 btrfs_drop_extent_cache(inode, hole_start,
3229 last_byte - 1, 0);
3230 btrfs_unreserve_metadata_space(root, 1);
3231 }
3232 free_extent_map(em);
3233 cur_offset = last_byte;
3234 if (err || cur_offset >= block_end)
3235 break;
3236 }
3237
3238 btrfs_end_transaction(trans, root);
3239 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3240 return err;
3241 }
3242
3243 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3244 {
3245 struct inode *inode = dentry->d_inode;
3246 int err;
3247
3248 err = inode_change_ok(inode, attr);
3249 if (err)
3250 return err;
3251
3252 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3253 if (attr->ia_size > inode->i_size) {
3254 err = btrfs_cont_expand(inode, attr->ia_size);
3255 if (err)
3256 return err;
3257 } else if (inode->i_size > 0 &&
3258 attr->ia_size == 0) {
3259
3260 /* we're truncating a file that used to have good
3261 * data down to zero. Make sure it gets into
3262 * the ordered flush list so that any new writes
3263 * get down to disk quickly.
3264 */
3265 BTRFS_I(inode)->ordered_data_close = 1;
3266 }
3267 }
3268
3269 err = inode_setattr(inode, attr);
3270
3271 if (!err && ((attr->ia_valid & ATTR_MODE)))
3272 err = btrfs_acl_chmod(inode);
3273 return err;
3274 }
3275
3276 void btrfs_delete_inode(struct inode *inode)
3277 {
3278 struct btrfs_trans_handle *trans;
3279 struct btrfs_root *root = BTRFS_I(inode)->root;
3280 unsigned long nr;
3281 int ret;
3282
3283 truncate_inode_pages(&inode->i_data, 0);
3284 if (is_bad_inode(inode)) {
3285 btrfs_orphan_del(NULL, inode);
3286 goto no_delete;
3287 }
3288 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3289
3290 if (inode->i_nlink > 0) {
3291 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3292 goto no_delete;
3293 }
3294
3295 btrfs_i_size_write(inode, 0);
3296 trans = btrfs_join_transaction(root, 1);
3297
3298 btrfs_set_trans_block_group(trans, inode);
3299 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3300 if (ret) {
3301 btrfs_orphan_del(NULL, inode);
3302 goto no_delete_lock;
3303 }
3304
3305 btrfs_orphan_del(trans, inode);
3306
3307 nr = trans->blocks_used;
3308 clear_inode(inode);
3309
3310 btrfs_end_transaction(trans, root);
3311 btrfs_btree_balance_dirty(root, nr);
3312 return;
3313
3314 no_delete_lock:
3315 nr = trans->blocks_used;
3316 btrfs_end_transaction(trans, root);
3317 btrfs_btree_balance_dirty(root, nr);
3318 no_delete:
3319 clear_inode(inode);
3320 }
3321
3322 /*
3323 * this returns the key found in the dir entry in the location pointer.
3324 * If no dir entries were found, location->objectid is 0.
3325 */
3326 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3327 struct btrfs_key *location)
3328 {
3329 const char *name = dentry->d_name.name;
3330 int namelen = dentry->d_name.len;
3331 struct btrfs_dir_item *di;
3332 struct btrfs_path *path;
3333 struct btrfs_root *root = BTRFS_I(dir)->root;
3334 int ret = 0;
3335
3336 path = btrfs_alloc_path();
3337 BUG_ON(!path);
3338
3339 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3340 namelen, 0);
3341 if (IS_ERR(di))
3342 ret = PTR_ERR(di);
3343
3344 if (!di || IS_ERR(di))
3345 goto out_err;
3346
3347 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3348 out:
3349 btrfs_free_path(path);
3350 return ret;
3351 out_err:
3352 location->objectid = 0;
3353 goto out;
3354 }
3355
3356 /*
3357 * when we hit a tree root in a directory, the btrfs part of the inode
3358 * needs to be changed to reflect the root directory of the tree root. This
3359 * is kind of like crossing a mount point.
3360 */
3361 static int fixup_tree_root_location(struct btrfs_root *root,
3362 struct inode *dir,
3363 struct dentry *dentry,
3364 struct btrfs_key *location,
3365 struct btrfs_root **sub_root)
3366 {
3367 struct btrfs_path *path;
3368 struct btrfs_root *new_root;
3369 struct btrfs_root_ref *ref;
3370 struct extent_buffer *leaf;
3371 int ret;
3372 int err = 0;
3373
3374 path = btrfs_alloc_path();
3375 if (!path) {
3376 err = -ENOMEM;
3377 goto out;
3378 }
3379
3380 err = -ENOENT;
3381 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3382 BTRFS_I(dir)->root->root_key.objectid,
3383 location->objectid);
3384 if (ret) {
3385 if (ret < 0)
3386 err = ret;
3387 goto out;
3388 }
3389
3390 leaf = path->nodes[0];
3391 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3392 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3393 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3394 goto out;
3395
3396 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3397 (unsigned long)(ref + 1),
3398 dentry->d_name.len);
3399 if (ret)
3400 goto out;
3401
3402 btrfs_release_path(root->fs_info->tree_root, path);
3403
3404 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3405 if (IS_ERR(new_root)) {
3406 err = PTR_ERR(new_root);
3407 goto out;
3408 }
3409
3410 if (btrfs_root_refs(&new_root->root_item) == 0) {
3411 err = -ENOENT;
3412 goto out;
3413 }
3414
3415 *sub_root = new_root;
3416 location->objectid = btrfs_root_dirid(&new_root->root_item);
3417 location->type = BTRFS_INODE_ITEM_KEY;
3418 location->offset = 0;
3419 err = 0;
3420 out:
3421 btrfs_free_path(path);
3422 return err;
3423 }
3424
3425 static void inode_tree_add(struct inode *inode)
3426 {
3427 struct btrfs_root *root = BTRFS_I(inode)->root;
3428 struct btrfs_inode *entry;
3429 struct rb_node **p;
3430 struct rb_node *parent;
3431 again:
3432 p = &root->inode_tree.rb_node;
3433 parent = NULL;
3434
3435 if (hlist_unhashed(&inode->i_hash))
3436 return;
3437
3438 spin_lock(&root->inode_lock);
3439 while (*p) {
3440 parent = *p;
3441 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3442
3443 if (inode->i_ino < entry->vfs_inode.i_ino)
3444 p = &parent->rb_left;
3445 else if (inode->i_ino > entry->vfs_inode.i_ino)
3446 p = &parent->rb_right;
3447 else {
3448 WARN_ON(!(entry->vfs_inode.i_state &
3449 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3450 rb_erase(parent, &root->inode_tree);
3451 RB_CLEAR_NODE(parent);
3452 spin_unlock(&root->inode_lock);
3453 goto again;
3454 }
3455 }
3456 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3457 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3458 spin_unlock(&root->inode_lock);
3459 }
3460
3461 static void inode_tree_del(struct inode *inode)
3462 {
3463 struct btrfs_root *root = BTRFS_I(inode)->root;
3464 int empty = 0;
3465
3466 spin_lock(&root->inode_lock);
3467 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3468 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3469 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3470 empty = RB_EMPTY_ROOT(&root->inode_tree);
3471 }
3472 spin_unlock(&root->inode_lock);
3473
3474 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3475 synchronize_srcu(&root->fs_info->subvol_srcu);
3476 spin_lock(&root->inode_lock);
3477 empty = RB_EMPTY_ROOT(&root->inode_tree);
3478 spin_unlock(&root->inode_lock);
3479 if (empty)
3480 btrfs_add_dead_root(root);
3481 }
3482 }
3483
3484 int btrfs_invalidate_inodes(struct btrfs_root *root)
3485 {
3486 struct rb_node *node;
3487 struct rb_node *prev;
3488 struct btrfs_inode *entry;
3489 struct inode *inode;
3490 u64 objectid = 0;
3491
3492 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3493
3494 spin_lock(&root->inode_lock);
3495 again:
3496 node = root->inode_tree.rb_node;
3497 prev = NULL;
3498 while (node) {
3499 prev = node;
3500 entry = rb_entry(node, struct btrfs_inode, rb_node);
3501
3502 if (objectid < entry->vfs_inode.i_ino)
3503 node = node->rb_left;
3504 else if (objectid > entry->vfs_inode.i_ino)
3505 node = node->rb_right;
3506 else
3507 break;
3508 }
3509 if (!node) {
3510 while (prev) {
3511 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3512 if (objectid <= entry->vfs_inode.i_ino) {
3513 node = prev;
3514 break;
3515 }
3516 prev = rb_next(prev);
3517 }
3518 }
3519 while (node) {
3520 entry = rb_entry(node, struct btrfs_inode, rb_node);
3521 objectid = entry->vfs_inode.i_ino + 1;
3522 inode = igrab(&entry->vfs_inode);
3523 if (inode) {
3524 spin_unlock(&root->inode_lock);
3525 if (atomic_read(&inode->i_count) > 1)
3526 d_prune_aliases(inode);
3527 /*
3528 * btrfs_drop_inode will remove it from
3529 * the inode cache when its usage count
3530 * hits zero.
3531 */
3532 iput(inode);
3533 cond_resched();
3534 spin_lock(&root->inode_lock);
3535 goto again;
3536 }
3537
3538 if (cond_resched_lock(&root->inode_lock))
3539 goto again;
3540
3541 node = rb_next(node);
3542 }
3543 spin_unlock(&root->inode_lock);
3544 return 0;
3545 }
3546
3547 static noinline void init_btrfs_i(struct inode *inode)
3548 {
3549 struct btrfs_inode *bi = BTRFS_I(inode);
3550
3551 bi->generation = 0;
3552 bi->sequence = 0;
3553 bi->last_trans = 0;
3554 bi->last_sub_trans = 0;
3555 bi->logged_trans = 0;
3556 bi->delalloc_bytes = 0;
3557 bi->reserved_bytes = 0;
3558 bi->disk_i_size = 0;
3559 bi->flags = 0;
3560 bi->index_cnt = (u64)-1;
3561 bi->last_unlink_trans = 0;
3562 bi->ordered_data_close = 0;
3563 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3564 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3565 inode->i_mapping, GFP_NOFS);
3566 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3567 inode->i_mapping, GFP_NOFS);
3568 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3569 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3570 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3571 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3572 mutex_init(&BTRFS_I(inode)->extent_mutex);
3573 mutex_init(&BTRFS_I(inode)->log_mutex);
3574 }
3575
3576 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3577 {
3578 struct btrfs_iget_args *args = p;
3579 inode->i_ino = args->ino;
3580 init_btrfs_i(inode);
3581 BTRFS_I(inode)->root = args->root;
3582 btrfs_set_inode_space_info(args->root, inode);
3583 return 0;
3584 }
3585
3586 static int btrfs_find_actor(struct inode *inode, void *opaque)
3587 {
3588 struct btrfs_iget_args *args = opaque;
3589 return args->ino == inode->i_ino &&
3590 args->root == BTRFS_I(inode)->root;
3591 }
3592
3593 static struct inode *btrfs_iget_locked(struct super_block *s,
3594 u64 objectid,
3595 struct btrfs_root *root)
3596 {
3597 struct inode *inode;
3598 struct btrfs_iget_args args;
3599 args.ino = objectid;
3600 args.root = root;
3601
3602 inode = iget5_locked(s, objectid, btrfs_find_actor,
3603 btrfs_init_locked_inode,
3604 (void *)&args);
3605 return inode;
3606 }
3607
3608 /* Get an inode object given its location and corresponding root.
3609 * Returns in *is_new if the inode was read from disk
3610 */
3611 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3612 struct btrfs_root *root)
3613 {
3614 struct inode *inode;
3615
3616 inode = btrfs_iget_locked(s, location->objectid, root);
3617 if (!inode)
3618 return ERR_PTR(-ENOMEM);
3619
3620 if (inode->i_state & I_NEW) {
3621 BTRFS_I(inode)->root = root;
3622 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3623 btrfs_read_locked_inode(inode);
3624
3625 inode_tree_add(inode);
3626 unlock_new_inode(inode);
3627 }
3628
3629 return inode;
3630 }
3631
3632 static struct inode *new_simple_dir(struct super_block *s,
3633 struct btrfs_key *key,
3634 struct btrfs_root *root)
3635 {
3636 struct inode *inode = new_inode(s);
3637
3638 if (!inode)
3639 return ERR_PTR(-ENOMEM);
3640
3641 init_btrfs_i(inode);
3642
3643 BTRFS_I(inode)->root = root;
3644 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3645 BTRFS_I(inode)->dummy_inode = 1;
3646
3647 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3648 inode->i_op = &simple_dir_inode_operations;
3649 inode->i_fop = &simple_dir_operations;
3650 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3651 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3652
3653 return inode;
3654 }
3655
3656 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3657 {
3658 struct inode *inode;
3659 struct btrfs_root *root = BTRFS_I(dir)->root;
3660 struct btrfs_root *sub_root = root;
3661 struct btrfs_key location;
3662 int index;
3663 int ret;
3664
3665 dentry->d_op = &btrfs_dentry_operations;
3666
3667 if (dentry->d_name.len > BTRFS_NAME_LEN)
3668 return ERR_PTR(-ENAMETOOLONG);
3669
3670 ret = btrfs_inode_by_name(dir, dentry, &location);
3671
3672 if (ret < 0)
3673 return ERR_PTR(ret);
3674
3675 if (location.objectid == 0)
3676 return NULL;
3677
3678 if (location.type == BTRFS_INODE_ITEM_KEY) {
3679 inode = btrfs_iget(dir->i_sb, &location, root);
3680 return inode;
3681 }
3682
3683 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3684
3685 index = srcu_read_lock(&root->fs_info->subvol_srcu);
3686 ret = fixup_tree_root_location(root, dir, dentry,
3687 &location, &sub_root);
3688 if (ret < 0) {
3689 if (ret != -ENOENT)
3690 inode = ERR_PTR(ret);
3691 else
3692 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3693 } else {
3694 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3695 }
3696 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3697
3698 return inode;
3699 }
3700
3701 static int btrfs_dentry_delete(struct dentry *dentry)
3702 {
3703 struct btrfs_root *root;
3704
3705 if (!dentry->d_inode && !IS_ROOT(dentry))
3706 dentry = dentry->d_parent;
3707
3708 if (dentry->d_inode) {
3709 root = BTRFS_I(dentry->d_inode)->root;
3710 if (btrfs_root_refs(&root->root_item) == 0)
3711 return 1;
3712 }
3713 return 0;
3714 }
3715
3716 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3717 struct nameidata *nd)
3718 {
3719 struct inode *inode;
3720
3721 inode = btrfs_lookup_dentry(dir, dentry);
3722 if (IS_ERR(inode))
3723 return ERR_CAST(inode);
3724
3725 return d_splice_alias(inode, dentry);
3726 }
3727
3728 static unsigned char btrfs_filetype_table[] = {
3729 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3730 };
3731
3732 static int btrfs_real_readdir(struct file *filp, void *dirent,
3733 filldir_t filldir)
3734 {
3735 struct inode *inode = filp->f_dentry->d_inode;
3736 struct btrfs_root *root = BTRFS_I(inode)->root;
3737 struct btrfs_item *item;
3738 struct btrfs_dir_item *di;
3739 struct btrfs_key key;
3740 struct btrfs_key found_key;
3741 struct btrfs_path *path;
3742 int ret;
3743 u32 nritems;
3744 struct extent_buffer *leaf;
3745 int slot;
3746 int advance;
3747 unsigned char d_type;
3748 int over = 0;
3749 u32 di_cur;
3750 u32 di_total;
3751 u32 di_len;
3752 int key_type = BTRFS_DIR_INDEX_KEY;
3753 char tmp_name[32];
3754 char *name_ptr;
3755 int name_len;
3756
3757 /* FIXME, use a real flag for deciding about the key type */
3758 if (root->fs_info->tree_root == root)
3759 key_type = BTRFS_DIR_ITEM_KEY;
3760
3761 /* special case for "." */
3762 if (filp->f_pos == 0) {
3763 over = filldir(dirent, ".", 1,
3764 1, inode->i_ino,
3765 DT_DIR);
3766 if (over)
3767 return 0;
3768 filp->f_pos = 1;
3769 }
3770 /* special case for .., just use the back ref */
3771 if (filp->f_pos == 1) {
3772 u64 pino = parent_ino(filp->f_path.dentry);
3773 over = filldir(dirent, "..", 2,
3774 2, pino, DT_DIR);
3775 if (over)
3776 return 0;
3777 filp->f_pos = 2;
3778 }
3779 path = btrfs_alloc_path();
3780 path->reada = 2;
3781
3782 btrfs_set_key_type(&key, key_type);
3783 key.offset = filp->f_pos;
3784 key.objectid = inode->i_ino;
3785
3786 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3787 if (ret < 0)
3788 goto err;
3789 advance = 0;
3790
3791 while (1) {
3792 leaf = path->nodes[0];
3793 nritems = btrfs_header_nritems(leaf);
3794 slot = path->slots[0];
3795 if (advance || slot >= nritems) {
3796 if (slot >= nritems - 1) {
3797 ret = btrfs_next_leaf(root, path);
3798 if (ret)
3799 break;
3800 leaf = path->nodes[0];
3801 nritems = btrfs_header_nritems(leaf);
3802 slot = path->slots[0];
3803 } else {
3804 slot++;
3805 path->slots[0]++;
3806 }
3807 }
3808
3809 advance = 1;
3810 item = btrfs_item_nr(leaf, slot);
3811 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3812
3813 if (found_key.objectid != key.objectid)
3814 break;
3815 if (btrfs_key_type(&found_key) != key_type)
3816 break;
3817 if (found_key.offset < filp->f_pos)
3818 continue;
3819
3820 filp->f_pos = found_key.offset;
3821
3822 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3823 di_cur = 0;
3824 di_total = btrfs_item_size(leaf, item);
3825
3826 while (di_cur < di_total) {
3827 struct btrfs_key location;
3828
3829 name_len = btrfs_dir_name_len(leaf, di);
3830 if (name_len <= sizeof(tmp_name)) {
3831 name_ptr = tmp_name;
3832 } else {
3833 name_ptr = kmalloc(name_len, GFP_NOFS);
3834 if (!name_ptr) {
3835 ret = -ENOMEM;
3836 goto err;
3837 }
3838 }
3839 read_extent_buffer(leaf, name_ptr,
3840 (unsigned long)(di + 1), name_len);
3841
3842 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3843 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3844
3845 /* is this a reference to our own snapshot? If so
3846 * skip it
3847 */
3848 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3849 location.objectid == root->root_key.objectid) {
3850 over = 0;
3851 goto skip;
3852 }
3853 over = filldir(dirent, name_ptr, name_len,
3854 found_key.offset, location.objectid,
3855 d_type);
3856
3857 skip:
3858 if (name_ptr != tmp_name)
3859 kfree(name_ptr);
3860
3861 if (over)
3862 goto nopos;
3863 di_len = btrfs_dir_name_len(leaf, di) +
3864 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3865 di_cur += di_len;
3866 di = (struct btrfs_dir_item *)((char *)di + di_len);
3867 }
3868 }
3869
3870 /* Reached end of directory/root. Bump pos past the last item. */
3871 if (key_type == BTRFS_DIR_INDEX_KEY)
3872 filp->f_pos = INT_LIMIT(off_t);
3873 else
3874 filp->f_pos++;
3875 nopos:
3876 ret = 0;
3877 err:
3878 btrfs_free_path(path);
3879 return ret;
3880 }
3881
3882 int btrfs_write_inode(struct inode *inode, int wait)
3883 {
3884 struct btrfs_root *root = BTRFS_I(inode)->root;
3885 struct btrfs_trans_handle *trans;
3886 int ret = 0;
3887
3888 if (root->fs_info->btree_inode == inode)
3889 return 0;
3890
3891 if (wait) {
3892 trans = btrfs_join_transaction(root, 1);
3893 btrfs_set_trans_block_group(trans, inode);
3894 ret = btrfs_commit_transaction(trans, root);
3895 }
3896 return ret;
3897 }
3898
3899 /*
3900 * This is somewhat expensive, updating the tree every time the
3901 * inode changes. But, it is most likely to find the inode in cache.
3902 * FIXME, needs more benchmarking...there are no reasons other than performance
3903 * to keep or drop this code.
3904 */
3905 void btrfs_dirty_inode(struct inode *inode)
3906 {
3907 struct btrfs_root *root = BTRFS_I(inode)->root;
3908 struct btrfs_trans_handle *trans;
3909
3910 trans = btrfs_join_transaction(root, 1);
3911 btrfs_set_trans_block_group(trans, inode);
3912 btrfs_update_inode(trans, root, inode);
3913 btrfs_end_transaction(trans, root);
3914 }
3915
3916 /*
3917 * find the highest existing sequence number in a directory
3918 * and then set the in-memory index_cnt variable to reflect
3919 * free sequence numbers
3920 */
3921 static int btrfs_set_inode_index_count(struct inode *inode)
3922 {
3923 struct btrfs_root *root = BTRFS_I(inode)->root;
3924 struct btrfs_key key, found_key;
3925 struct btrfs_path *path;
3926 struct extent_buffer *leaf;
3927 int ret;
3928
3929 key.objectid = inode->i_ino;
3930 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3931 key.offset = (u64)-1;
3932
3933 path = btrfs_alloc_path();
3934 if (!path)
3935 return -ENOMEM;
3936
3937 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3938 if (ret < 0)
3939 goto out;
3940 /* FIXME: we should be able to handle this */
3941 if (ret == 0)
3942 goto out;
3943 ret = 0;
3944
3945 /*
3946 * MAGIC NUMBER EXPLANATION:
3947 * since we search a directory based on f_pos we have to start at 2
3948 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3949 * else has to start at 2
3950 */
3951 if (path->slots[0] == 0) {
3952 BTRFS_I(inode)->index_cnt = 2;
3953 goto out;
3954 }
3955
3956 path->slots[0]--;
3957
3958 leaf = path->nodes[0];
3959 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3960
3961 if (found_key.objectid != inode->i_ino ||
3962 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3963 BTRFS_I(inode)->index_cnt = 2;
3964 goto out;
3965 }
3966
3967 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3968 out:
3969 btrfs_free_path(path);
3970 return ret;
3971 }
3972
3973 /*
3974 * helper to find a free sequence number in a given directory. This current
3975 * code is very simple, later versions will do smarter things in the btree
3976 */
3977 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3978 {
3979 int ret = 0;
3980
3981 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3982 ret = btrfs_set_inode_index_count(dir);
3983 if (ret)
3984 return ret;
3985 }
3986
3987 *index = BTRFS_I(dir)->index_cnt;
3988 BTRFS_I(dir)->index_cnt++;
3989
3990 return ret;
3991 }
3992
3993 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3994 struct btrfs_root *root,
3995 struct inode *dir,
3996 const char *name, int name_len,
3997 u64 ref_objectid, u64 objectid,
3998 u64 alloc_hint, int mode, u64 *index)
3999 {
4000 struct inode *inode;
4001 struct btrfs_inode_item *inode_item;
4002 struct btrfs_key *location;
4003 struct btrfs_path *path;
4004 struct btrfs_inode_ref *ref;
4005 struct btrfs_key key[2];
4006 u32 sizes[2];
4007 unsigned long ptr;
4008 int ret;
4009 int owner;
4010
4011 path = btrfs_alloc_path();
4012 BUG_ON(!path);
4013
4014 inode = new_inode(root->fs_info->sb);
4015 if (!inode)
4016 return ERR_PTR(-ENOMEM);
4017
4018 if (dir) {
4019 ret = btrfs_set_inode_index(dir, index);
4020 if (ret) {
4021 iput(inode);
4022 return ERR_PTR(ret);
4023 }
4024 }
4025 /*
4026 * index_cnt is ignored for everything but a dir,
4027 * btrfs_get_inode_index_count has an explanation for the magic
4028 * number
4029 */
4030 init_btrfs_i(inode);
4031 BTRFS_I(inode)->index_cnt = 2;
4032 BTRFS_I(inode)->root = root;
4033 BTRFS_I(inode)->generation = trans->transid;
4034 btrfs_set_inode_space_info(root, inode);
4035
4036 if (mode & S_IFDIR)
4037 owner = 0;
4038 else
4039 owner = 1;
4040 BTRFS_I(inode)->block_group =
4041 btrfs_find_block_group(root, 0, alloc_hint, owner);
4042
4043 key[0].objectid = objectid;
4044 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4045 key[0].offset = 0;
4046
4047 key[1].objectid = objectid;
4048 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4049 key[1].offset = ref_objectid;
4050
4051 sizes[0] = sizeof(struct btrfs_inode_item);
4052 sizes[1] = name_len + sizeof(*ref);
4053
4054 path->leave_spinning = 1;
4055 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4056 if (ret != 0)
4057 goto fail;
4058
4059 inode->i_uid = current_fsuid();
4060
4061 if (dir && (dir->i_mode & S_ISGID)) {
4062 inode->i_gid = dir->i_gid;
4063 if (S_ISDIR(mode))
4064 mode |= S_ISGID;
4065 } else
4066 inode->i_gid = current_fsgid();
4067
4068 inode->i_mode = mode;
4069 inode->i_ino = objectid;
4070 inode_set_bytes(inode, 0);
4071 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4072 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4073 struct btrfs_inode_item);
4074 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4075
4076 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4077 struct btrfs_inode_ref);
4078 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4079 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4080 ptr = (unsigned long)(ref + 1);
4081 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4082
4083 btrfs_mark_buffer_dirty(path->nodes[0]);
4084 btrfs_free_path(path);
4085
4086 location = &BTRFS_I(inode)->location;
4087 location->objectid = objectid;
4088 location->offset = 0;
4089 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4090
4091 btrfs_inherit_iflags(inode, dir);
4092
4093 if ((mode & S_IFREG)) {
4094 if (btrfs_test_opt(root, NODATASUM))
4095 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4096 if (btrfs_test_opt(root, NODATACOW))
4097 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4098 }
4099
4100 insert_inode_hash(inode);
4101 inode_tree_add(inode);
4102 return inode;
4103 fail:
4104 if (dir)
4105 BTRFS_I(dir)->index_cnt--;
4106 btrfs_free_path(path);
4107 iput(inode);
4108 return ERR_PTR(ret);
4109 }
4110
4111 static inline u8 btrfs_inode_type(struct inode *inode)
4112 {
4113 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4114 }
4115
4116 /*
4117 * utility function to add 'inode' into 'parent_inode' with
4118 * a give name and a given sequence number.
4119 * if 'add_backref' is true, also insert a backref from the
4120 * inode to the parent directory.
4121 */
4122 int btrfs_add_link(struct btrfs_trans_handle *trans,
4123 struct inode *parent_inode, struct inode *inode,
4124 const char *name, int name_len, int add_backref, u64 index)
4125 {
4126 int ret = 0;
4127 struct btrfs_key key;
4128 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4129
4130 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4131 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4132 } else {
4133 key.objectid = inode->i_ino;
4134 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4135 key.offset = 0;
4136 }
4137
4138 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4139 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4140 key.objectid, root->root_key.objectid,
4141 parent_inode->i_ino,
4142 index, name, name_len);
4143 } else if (add_backref) {
4144 ret = btrfs_insert_inode_ref(trans, root,
4145 name, name_len, inode->i_ino,
4146 parent_inode->i_ino, index);
4147 }
4148
4149 if (ret == 0) {
4150 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4151 parent_inode->i_ino, &key,
4152 btrfs_inode_type(inode), index);
4153 BUG_ON(ret);
4154
4155 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4156 name_len * 2);
4157 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4158 ret = btrfs_update_inode(trans, root, parent_inode);
4159 }
4160 return ret;
4161 }
4162
4163 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4164 struct dentry *dentry, struct inode *inode,
4165 int backref, u64 index)
4166 {
4167 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4168 inode, dentry->d_name.name,
4169 dentry->d_name.len, backref, index);
4170 if (!err) {
4171 d_instantiate(dentry, inode);
4172 return 0;
4173 }
4174 if (err > 0)
4175 err = -EEXIST;
4176 return err;
4177 }
4178
4179 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4180 int mode, dev_t rdev)
4181 {
4182 struct btrfs_trans_handle *trans;
4183 struct btrfs_root *root = BTRFS_I(dir)->root;
4184 struct inode *inode = NULL;
4185 int err;
4186 int drop_inode = 0;
4187 u64 objectid;
4188 unsigned long nr = 0;
4189 u64 index = 0;
4190
4191 if (!new_valid_dev(rdev))
4192 return -EINVAL;
4193
4194 /*
4195 * 2 for inode item and ref
4196 * 2 for dir items
4197 * 1 for xattr if selinux is on
4198 */
4199 err = btrfs_reserve_metadata_space(root, 5);
4200 if (err)
4201 return err;
4202
4203 trans = btrfs_start_transaction(root, 1);
4204 if (!trans)
4205 goto fail;
4206 btrfs_set_trans_block_group(trans, dir);
4207
4208 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4209 if (err) {
4210 err = -ENOSPC;
4211 goto out_unlock;
4212 }
4213
4214 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4215 dentry->d_name.len,
4216 dentry->d_parent->d_inode->i_ino, objectid,
4217 BTRFS_I(dir)->block_group, mode, &index);
4218 err = PTR_ERR(inode);
4219 if (IS_ERR(inode))
4220 goto out_unlock;
4221
4222 err = btrfs_init_inode_security(inode, dir);
4223 if (err) {
4224 drop_inode = 1;
4225 goto out_unlock;
4226 }
4227
4228 btrfs_set_trans_block_group(trans, inode);
4229 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4230 if (err)
4231 drop_inode = 1;
4232 else {
4233 inode->i_op = &btrfs_special_inode_operations;
4234 init_special_inode(inode, inode->i_mode, rdev);
4235 btrfs_update_inode(trans, root, inode);
4236 }
4237 btrfs_update_inode_block_group(trans, inode);
4238 btrfs_update_inode_block_group(trans, dir);
4239 out_unlock:
4240 nr = trans->blocks_used;
4241 btrfs_end_transaction_throttle(trans, root);
4242 fail:
4243 btrfs_unreserve_metadata_space(root, 5);
4244 if (drop_inode) {
4245 inode_dec_link_count(inode);
4246 iput(inode);
4247 }
4248 btrfs_btree_balance_dirty(root, nr);
4249 return err;
4250 }
4251
4252 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4253 int mode, struct nameidata *nd)
4254 {
4255 struct btrfs_trans_handle *trans;
4256 struct btrfs_root *root = BTRFS_I(dir)->root;
4257 struct inode *inode = NULL;
4258 int err;
4259 int drop_inode = 0;
4260 unsigned long nr = 0;
4261 u64 objectid;
4262 u64 index = 0;
4263
4264 /*
4265 * 2 for inode item and ref
4266 * 2 for dir items
4267 * 1 for xattr if selinux is on
4268 */
4269 err = btrfs_reserve_metadata_space(root, 5);
4270 if (err)
4271 return err;
4272
4273 trans = btrfs_start_transaction(root, 1);
4274 if (!trans)
4275 goto fail;
4276 btrfs_set_trans_block_group(trans, dir);
4277
4278 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4279 if (err) {
4280 err = -ENOSPC;
4281 goto out_unlock;
4282 }
4283
4284 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4285 dentry->d_name.len,
4286 dentry->d_parent->d_inode->i_ino,
4287 objectid, BTRFS_I(dir)->block_group, mode,
4288 &index);
4289 err = PTR_ERR(inode);
4290 if (IS_ERR(inode))
4291 goto out_unlock;
4292
4293 err = btrfs_init_inode_security(inode, dir);
4294 if (err) {
4295 drop_inode = 1;
4296 goto out_unlock;
4297 }
4298
4299 btrfs_set_trans_block_group(trans, inode);
4300 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4301 if (err)
4302 drop_inode = 1;
4303 else {
4304 inode->i_mapping->a_ops = &btrfs_aops;
4305 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4306 inode->i_fop = &btrfs_file_operations;
4307 inode->i_op = &btrfs_file_inode_operations;
4308 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4309 }
4310 btrfs_update_inode_block_group(trans, inode);
4311 btrfs_update_inode_block_group(trans, dir);
4312 out_unlock:
4313 nr = trans->blocks_used;
4314 btrfs_end_transaction_throttle(trans, root);
4315 fail:
4316 btrfs_unreserve_metadata_space(root, 5);
4317 if (drop_inode) {
4318 inode_dec_link_count(inode);
4319 iput(inode);
4320 }
4321 btrfs_btree_balance_dirty(root, nr);
4322 return err;
4323 }
4324
4325 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4326 struct dentry *dentry)
4327 {
4328 struct btrfs_trans_handle *trans;
4329 struct btrfs_root *root = BTRFS_I(dir)->root;
4330 struct inode *inode = old_dentry->d_inode;
4331 u64 index;
4332 unsigned long nr = 0;
4333 int err;
4334 int drop_inode = 0;
4335
4336 if (inode->i_nlink == 0)
4337 return -ENOENT;
4338
4339 /*
4340 * 1 item for inode ref
4341 * 2 items for dir items
4342 */
4343 err = btrfs_reserve_metadata_space(root, 3);
4344 if (err)
4345 return err;
4346
4347 btrfs_inc_nlink(inode);
4348
4349 err = btrfs_set_inode_index(dir, &index);
4350 if (err)
4351 goto fail;
4352
4353 trans = btrfs_start_transaction(root, 1);
4354
4355 btrfs_set_trans_block_group(trans, dir);
4356 atomic_inc(&inode->i_count);
4357
4358 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4359
4360 if (err) {
4361 drop_inode = 1;
4362 } else {
4363 btrfs_update_inode_block_group(trans, dir);
4364 err = btrfs_update_inode(trans, root, inode);
4365 BUG_ON(err);
4366 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4367 }
4368
4369 nr = trans->blocks_used;
4370 btrfs_end_transaction_throttle(trans, root);
4371 fail:
4372 btrfs_unreserve_metadata_space(root, 3);
4373 if (drop_inode) {
4374 inode_dec_link_count(inode);
4375 iput(inode);
4376 }
4377 btrfs_btree_balance_dirty(root, nr);
4378 return err;
4379 }
4380
4381 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4382 {
4383 struct inode *inode = NULL;
4384 struct btrfs_trans_handle *trans;
4385 struct btrfs_root *root = BTRFS_I(dir)->root;
4386 int err = 0;
4387 int drop_on_err = 0;
4388 u64 objectid = 0;
4389 u64 index = 0;
4390 unsigned long nr = 1;
4391
4392 /*
4393 * 2 items for inode and ref
4394 * 2 items for dir items
4395 * 1 for xattr if selinux is on
4396 */
4397 err = btrfs_reserve_metadata_space(root, 5);
4398 if (err)
4399 return err;
4400
4401 trans = btrfs_start_transaction(root, 1);
4402 if (!trans) {
4403 err = -ENOMEM;
4404 goto out_unlock;
4405 }
4406 btrfs_set_trans_block_group(trans, dir);
4407
4408 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4409 if (err) {
4410 err = -ENOSPC;
4411 goto out_unlock;
4412 }
4413
4414 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4415 dentry->d_name.len,
4416 dentry->d_parent->d_inode->i_ino, objectid,
4417 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4418 &index);
4419 if (IS_ERR(inode)) {
4420 err = PTR_ERR(inode);
4421 goto out_fail;
4422 }
4423
4424 drop_on_err = 1;
4425
4426 err = btrfs_init_inode_security(inode, dir);
4427 if (err)
4428 goto out_fail;
4429
4430 inode->i_op = &btrfs_dir_inode_operations;
4431 inode->i_fop = &btrfs_dir_file_operations;
4432 btrfs_set_trans_block_group(trans, inode);
4433
4434 btrfs_i_size_write(inode, 0);
4435 err = btrfs_update_inode(trans, root, inode);
4436 if (err)
4437 goto out_fail;
4438
4439 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4440 inode, dentry->d_name.name,
4441 dentry->d_name.len, 0, index);
4442 if (err)
4443 goto out_fail;
4444
4445 d_instantiate(dentry, inode);
4446 drop_on_err = 0;
4447 btrfs_update_inode_block_group(trans, inode);
4448 btrfs_update_inode_block_group(trans, dir);
4449
4450 out_fail:
4451 nr = trans->blocks_used;
4452 btrfs_end_transaction_throttle(trans, root);
4453
4454 out_unlock:
4455 btrfs_unreserve_metadata_space(root, 5);
4456 if (drop_on_err)
4457 iput(inode);
4458 btrfs_btree_balance_dirty(root, nr);
4459 return err;
4460 }
4461
4462 /* helper for btfs_get_extent. Given an existing extent in the tree,
4463 * and an extent that you want to insert, deal with overlap and insert
4464 * the new extent into the tree.
4465 */
4466 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4467 struct extent_map *existing,
4468 struct extent_map *em,
4469 u64 map_start, u64 map_len)
4470 {
4471 u64 start_diff;
4472
4473 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4474 start_diff = map_start - em->start;
4475 em->start = map_start;
4476 em->len = map_len;
4477 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4478 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4479 em->block_start += start_diff;
4480 em->block_len -= start_diff;
4481 }
4482 return add_extent_mapping(em_tree, em);
4483 }
4484
4485 static noinline int uncompress_inline(struct btrfs_path *path,
4486 struct inode *inode, struct page *page,
4487 size_t pg_offset, u64 extent_offset,
4488 struct btrfs_file_extent_item *item)
4489 {
4490 int ret;
4491 struct extent_buffer *leaf = path->nodes[0];
4492 char *tmp;
4493 size_t max_size;
4494 unsigned long inline_size;
4495 unsigned long ptr;
4496
4497 WARN_ON(pg_offset != 0);
4498 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4499 inline_size = btrfs_file_extent_inline_item_len(leaf,
4500 btrfs_item_nr(leaf, path->slots[0]));
4501 tmp = kmalloc(inline_size, GFP_NOFS);
4502 ptr = btrfs_file_extent_inline_start(item);
4503
4504 read_extent_buffer(leaf, tmp, ptr, inline_size);
4505
4506 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4507 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4508 inline_size, max_size);
4509 if (ret) {
4510 char *kaddr = kmap_atomic(page, KM_USER0);
4511 unsigned long copy_size = min_t(u64,
4512 PAGE_CACHE_SIZE - pg_offset,
4513 max_size - extent_offset);
4514 memset(kaddr + pg_offset, 0, copy_size);
4515 kunmap_atomic(kaddr, KM_USER0);
4516 }
4517 kfree(tmp);
4518 return 0;
4519 }
4520
4521 /*
4522 * a bit scary, this does extent mapping from logical file offset to the disk.
4523 * the ugly parts come from merging extents from the disk with the in-ram
4524 * representation. This gets more complex because of the data=ordered code,
4525 * where the in-ram extents might be locked pending data=ordered completion.
4526 *
4527 * This also copies inline extents directly into the page.
4528 */
4529
4530 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4531 size_t pg_offset, u64 start, u64 len,
4532 int create)
4533 {
4534 int ret;
4535 int err = 0;
4536 u64 bytenr;
4537 u64 extent_start = 0;
4538 u64 extent_end = 0;
4539 u64 objectid = inode->i_ino;
4540 u32 found_type;
4541 struct btrfs_path *path = NULL;
4542 struct btrfs_root *root = BTRFS_I(inode)->root;
4543 struct btrfs_file_extent_item *item;
4544 struct extent_buffer *leaf;
4545 struct btrfs_key found_key;
4546 struct extent_map *em = NULL;
4547 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4548 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4549 struct btrfs_trans_handle *trans = NULL;
4550 int compressed;
4551
4552 again:
4553 read_lock(&em_tree->lock);
4554 em = lookup_extent_mapping(em_tree, start, len);
4555 if (em)
4556 em->bdev = root->fs_info->fs_devices->latest_bdev;
4557 read_unlock(&em_tree->lock);
4558
4559 if (em) {
4560 if (em->start > start || em->start + em->len <= start)
4561 free_extent_map(em);
4562 else if (em->block_start == EXTENT_MAP_INLINE && page)
4563 free_extent_map(em);
4564 else
4565 goto out;
4566 }
4567 em = alloc_extent_map(GFP_NOFS);
4568 if (!em) {
4569 err = -ENOMEM;
4570 goto out;
4571 }
4572 em->bdev = root->fs_info->fs_devices->latest_bdev;
4573 em->start = EXTENT_MAP_HOLE;
4574 em->orig_start = EXTENT_MAP_HOLE;
4575 em->len = (u64)-1;
4576 em->block_len = (u64)-1;
4577
4578 if (!path) {
4579 path = btrfs_alloc_path();
4580 BUG_ON(!path);
4581 }
4582
4583 ret = btrfs_lookup_file_extent(trans, root, path,
4584 objectid, start, trans != NULL);
4585 if (ret < 0) {
4586 err = ret;
4587 goto out;
4588 }
4589
4590 if (ret != 0) {
4591 if (path->slots[0] == 0)
4592 goto not_found;
4593 path->slots[0]--;
4594 }
4595
4596 leaf = path->nodes[0];
4597 item = btrfs_item_ptr(leaf, path->slots[0],
4598 struct btrfs_file_extent_item);
4599 /* are we inside the extent that was found? */
4600 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4601 found_type = btrfs_key_type(&found_key);
4602 if (found_key.objectid != objectid ||
4603 found_type != BTRFS_EXTENT_DATA_KEY) {
4604 goto not_found;
4605 }
4606
4607 found_type = btrfs_file_extent_type(leaf, item);
4608 extent_start = found_key.offset;
4609 compressed = btrfs_file_extent_compression(leaf, item);
4610 if (found_type == BTRFS_FILE_EXTENT_REG ||
4611 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4612 extent_end = extent_start +
4613 btrfs_file_extent_num_bytes(leaf, item);
4614 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4615 size_t size;
4616 size = btrfs_file_extent_inline_len(leaf, item);
4617 extent_end = (extent_start + size + root->sectorsize - 1) &
4618 ~((u64)root->sectorsize - 1);
4619 }
4620
4621 if (start >= extent_end) {
4622 path->slots[0]++;
4623 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4624 ret = btrfs_next_leaf(root, path);
4625 if (ret < 0) {
4626 err = ret;
4627 goto out;
4628 }
4629 if (ret > 0)
4630 goto not_found;
4631 leaf = path->nodes[0];
4632 }
4633 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4634 if (found_key.objectid != objectid ||
4635 found_key.type != BTRFS_EXTENT_DATA_KEY)
4636 goto not_found;
4637 if (start + len <= found_key.offset)
4638 goto not_found;
4639 em->start = start;
4640 em->len = found_key.offset - start;
4641 goto not_found_em;
4642 }
4643
4644 if (found_type == BTRFS_FILE_EXTENT_REG ||
4645 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4646 em->start = extent_start;
4647 em->len = extent_end - extent_start;
4648 em->orig_start = extent_start -
4649 btrfs_file_extent_offset(leaf, item);
4650 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4651 if (bytenr == 0) {
4652 em->block_start = EXTENT_MAP_HOLE;
4653 goto insert;
4654 }
4655 if (compressed) {
4656 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4657 em->block_start = bytenr;
4658 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4659 item);
4660 } else {
4661 bytenr += btrfs_file_extent_offset(leaf, item);
4662 em->block_start = bytenr;
4663 em->block_len = em->len;
4664 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4665 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4666 }
4667 goto insert;
4668 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4669 unsigned long ptr;
4670 char *map;
4671 size_t size;
4672 size_t extent_offset;
4673 size_t copy_size;
4674
4675 em->block_start = EXTENT_MAP_INLINE;
4676 if (!page || create) {
4677 em->start = extent_start;
4678 em->len = extent_end - extent_start;
4679 goto out;
4680 }
4681
4682 size = btrfs_file_extent_inline_len(leaf, item);
4683 extent_offset = page_offset(page) + pg_offset - extent_start;
4684 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4685 size - extent_offset);
4686 em->start = extent_start + extent_offset;
4687 em->len = (copy_size + root->sectorsize - 1) &
4688 ~((u64)root->sectorsize - 1);
4689 em->orig_start = EXTENT_MAP_INLINE;
4690 if (compressed)
4691 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4692 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4693 if (create == 0 && !PageUptodate(page)) {
4694 if (btrfs_file_extent_compression(leaf, item) ==
4695 BTRFS_COMPRESS_ZLIB) {
4696 ret = uncompress_inline(path, inode, page,
4697 pg_offset,
4698 extent_offset, item);
4699 BUG_ON(ret);
4700 } else {
4701 map = kmap(page);
4702 read_extent_buffer(leaf, map + pg_offset, ptr,
4703 copy_size);
4704 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4705 memset(map + pg_offset + copy_size, 0,
4706 PAGE_CACHE_SIZE - pg_offset -
4707 copy_size);
4708 }
4709 kunmap(page);
4710 }
4711 flush_dcache_page(page);
4712 } else if (create && PageUptodate(page)) {
4713 if (!trans) {
4714 kunmap(page);
4715 free_extent_map(em);
4716 em = NULL;
4717 btrfs_release_path(root, path);
4718 trans = btrfs_join_transaction(root, 1);
4719 goto again;
4720 }
4721 map = kmap(page);
4722 write_extent_buffer(leaf, map + pg_offset, ptr,
4723 copy_size);
4724 kunmap(page);
4725 btrfs_mark_buffer_dirty(leaf);
4726 }
4727 set_extent_uptodate(io_tree, em->start,
4728 extent_map_end(em) - 1, GFP_NOFS);
4729 goto insert;
4730 } else {
4731 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4732 WARN_ON(1);
4733 }
4734 not_found:
4735 em->start = start;
4736 em->len = len;
4737 not_found_em:
4738 em->block_start = EXTENT_MAP_HOLE;
4739 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4740 insert:
4741 btrfs_release_path(root, path);
4742 if (em->start > start || extent_map_end(em) <= start) {
4743 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4744 "[%llu %llu]\n", (unsigned long long)em->start,
4745 (unsigned long long)em->len,
4746 (unsigned long long)start,
4747 (unsigned long long)len);
4748 err = -EIO;
4749 goto out;
4750 }
4751
4752 err = 0;
4753 write_lock(&em_tree->lock);
4754 ret = add_extent_mapping(em_tree, em);
4755 /* it is possible that someone inserted the extent into the tree
4756 * while we had the lock dropped. It is also possible that
4757 * an overlapping map exists in the tree
4758 */
4759 if (ret == -EEXIST) {
4760 struct extent_map *existing;
4761
4762 ret = 0;
4763
4764 existing = lookup_extent_mapping(em_tree, start, len);
4765 if (existing && (existing->start > start ||
4766 existing->start + existing->len <= start)) {
4767 free_extent_map(existing);
4768 existing = NULL;
4769 }
4770 if (!existing) {
4771 existing = lookup_extent_mapping(em_tree, em->start,
4772 em->len);
4773 if (existing) {
4774 err = merge_extent_mapping(em_tree, existing,
4775 em, start,
4776 root->sectorsize);
4777 free_extent_map(existing);
4778 if (err) {
4779 free_extent_map(em);
4780 em = NULL;
4781 }
4782 } else {
4783 err = -EIO;
4784 free_extent_map(em);
4785 em = NULL;
4786 }
4787 } else {
4788 free_extent_map(em);
4789 em = existing;
4790 err = 0;
4791 }
4792 }
4793 write_unlock(&em_tree->lock);
4794 out:
4795 if (path)
4796 btrfs_free_path(path);
4797 if (trans) {
4798 ret = btrfs_end_transaction(trans, root);
4799 if (!err)
4800 err = ret;
4801 }
4802 if (err) {
4803 free_extent_map(em);
4804 return ERR_PTR(err);
4805 }
4806 return em;
4807 }
4808
4809 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4810 const struct iovec *iov, loff_t offset,
4811 unsigned long nr_segs)
4812 {
4813 return -EINVAL;
4814 }
4815
4816 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4817 __u64 start, __u64 len)
4818 {
4819 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4820 }
4821
4822 int btrfs_readpage(struct file *file, struct page *page)
4823 {
4824 struct extent_io_tree *tree;
4825 tree = &BTRFS_I(page->mapping->host)->io_tree;
4826 return extent_read_full_page(tree, page, btrfs_get_extent);
4827 }
4828
4829 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4830 {
4831 struct extent_io_tree *tree;
4832
4833
4834 if (current->flags & PF_MEMALLOC) {
4835 redirty_page_for_writepage(wbc, page);
4836 unlock_page(page);
4837 return 0;
4838 }
4839 tree = &BTRFS_I(page->mapping->host)->io_tree;
4840 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4841 }
4842
4843 int btrfs_writepages(struct address_space *mapping,
4844 struct writeback_control *wbc)
4845 {
4846 struct extent_io_tree *tree;
4847
4848 tree = &BTRFS_I(mapping->host)->io_tree;
4849 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4850 }
4851
4852 static int
4853 btrfs_readpages(struct file *file, struct address_space *mapping,
4854 struct list_head *pages, unsigned nr_pages)
4855 {
4856 struct extent_io_tree *tree;
4857 tree = &BTRFS_I(mapping->host)->io_tree;
4858 return extent_readpages(tree, mapping, pages, nr_pages,
4859 btrfs_get_extent);
4860 }
4861 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4862 {
4863 struct extent_io_tree *tree;
4864 struct extent_map_tree *map;
4865 int ret;
4866
4867 tree = &BTRFS_I(page->mapping->host)->io_tree;
4868 map = &BTRFS_I(page->mapping->host)->extent_tree;
4869 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4870 if (ret == 1) {
4871 ClearPagePrivate(page);
4872 set_page_private(page, 0);
4873 page_cache_release(page);
4874 }
4875 return ret;
4876 }
4877
4878 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4879 {
4880 if (PageWriteback(page) || PageDirty(page))
4881 return 0;
4882 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4883 }
4884
4885 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4886 {
4887 struct extent_io_tree *tree;
4888 struct btrfs_ordered_extent *ordered;
4889 u64 page_start = page_offset(page);
4890 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4891
4892
4893 /*
4894 * we have the page locked, so new writeback can't start,
4895 * and the dirty bit won't be cleared while we are here.
4896 *
4897 * Wait for IO on this page so that we can safely clear
4898 * the PagePrivate2 bit and do ordered accounting
4899 */
4900 wait_on_page_writeback(page);
4901
4902 tree = &BTRFS_I(page->mapping->host)->io_tree;
4903 if (offset) {
4904 btrfs_releasepage(page, GFP_NOFS);
4905 return;
4906 }
4907 lock_extent(tree, page_start, page_end, GFP_NOFS);
4908 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4909 page_offset(page));
4910 if (ordered) {
4911 /*
4912 * IO on this page will never be started, so we need
4913 * to account for any ordered extents now
4914 */
4915 clear_extent_bit(tree, page_start, page_end,
4916 EXTENT_DIRTY | EXTENT_DELALLOC |
4917 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4918 NULL, GFP_NOFS);
4919 /*
4920 * whoever cleared the private bit is responsible
4921 * for the finish_ordered_io
4922 */
4923 if (TestClearPagePrivate2(page)) {
4924 btrfs_finish_ordered_io(page->mapping->host,
4925 page_start, page_end);
4926 }
4927 btrfs_put_ordered_extent(ordered);
4928 lock_extent(tree, page_start, page_end, GFP_NOFS);
4929 }
4930 clear_extent_bit(tree, page_start, page_end,
4931 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4932 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
4933 __btrfs_releasepage(page, GFP_NOFS);
4934
4935 ClearPageChecked(page);
4936 if (PagePrivate(page)) {
4937 ClearPagePrivate(page);
4938 set_page_private(page, 0);
4939 page_cache_release(page);
4940 }
4941 }
4942
4943 /*
4944 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4945 * called from a page fault handler when a page is first dirtied. Hence we must
4946 * be careful to check for EOF conditions here. We set the page up correctly
4947 * for a written page which means we get ENOSPC checking when writing into
4948 * holes and correct delalloc and unwritten extent mapping on filesystems that
4949 * support these features.
4950 *
4951 * We are not allowed to take the i_mutex here so we have to play games to
4952 * protect against truncate races as the page could now be beyond EOF. Because
4953 * vmtruncate() writes the inode size before removing pages, once we have the
4954 * page lock we can determine safely if the page is beyond EOF. If it is not
4955 * beyond EOF, then the page is guaranteed safe against truncation until we
4956 * unlock the page.
4957 */
4958 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4959 {
4960 struct page *page = vmf->page;
4961 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4962 struct btrfs_root *root = BTRFS_I(inode)->root;
4963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4964 struct btrfs_ordered_extent *ordered;
4965 char *kaddr;
4966 unsigned long zero_start;
4967 loff_t size;
4968 int ret;
4969 u64 page_start;
4970 u64 page_end;
4971
4972 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4973 if (ret) {
4974 if (ret == -ENOMEM)
4975 ret = VM_FAULT_OOM;
4976 else /* -ENOSPC, -EIO, etc */
4977 ret = VM_FAULT_SIGBUS;
4978 goto out;
4979 }
4980
4981 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4982 if (ret) {
4983 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4984 ret = VM_FAULT_SIGBUS;
4985 goto out;
4986 }
4987
4988 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4989 again:
4990 lock_page(page);
4991 size = i_size_read(inode);
4992 page_start = page_offset(page);
4993 page_end = page_start + PAGE_CACHE_SIZE - 1;
4994
4995 if ((page->mapping != inode->i_mapping) ||
4996 (page_start >= size)) {
4997 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4998 /* page got truncated out from underneath us */
4999 goto out_unlock;
5000 }
5001 wait_on_page_writeback(page);
5002
5003 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5004 set_page_extent_mapped(page);
5005
5006 /*
5007 * we can't set the delalloc bits if there are pending ordered
5008 * extents. Drop our locks and wait for them to finish
5009 */
5010 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5011 if (ordered) {
5012 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5013 unlock_page(page);
5014 btrfs_start_ordered_extent(inode, ordered, 1);
5015 btrfs_put_ordered_extent(ordered);
5016 goto again;
5017 }
5018
5019 /*
5020 * XXX - page_mkwrite gets called every time the page is dirtied, even
5021 * if it was already dirty, so for space accounting reasons we need to
5022 * clear any delalloc bits for the range we are fixing to save. There
5023 * is probably a better way to do this, but for now keep consistent with
5024 * prepare_pages in the normal write path.
5025 */
5026 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
5027 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5028 GFP_NOFS);
5029
5030 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5031 if (ret) {
5032 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5033 ret = VM_FAULT_SIGBUS;
5034 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5035 goto out_unlock;
5036 }
5037 ret = 0;
5038
5039 /* page is wholly or partially inside EOF */
5040 if (page_start + PAGE_CACHE_SIZE > size)
5041 zero_start = size & ~PAGE_CACHE_MASK;
5042 else
5043 zero_start = PAGE_CACHE_SIZE;
5044
5045 if (zero_start != PAGE_CACHE_SIZE) {
5046 kaddr = kmap(page);
5047 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5048 flush_dcache_page(page);
5049 kunmap(page);
5050 }
5051 ClearPageChecked(page);
5052 set_page_dirty(page);
5053 SetPageUptodate(page);
5054
5055 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5056 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5057
5058 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5059
5060 out_unlock:
5061 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5062 if (!ret)
5063 return VM_FAULT_LOCKED;
5064 unlock_page(page);
5065 out:
5066 return ret;
5067 }
5068
5069 static void btrfs_truncate(struct inode *inode)
5070 {
5071 struct btrfs_root *root = BTRFS_I(inode)->root;
5072 int ret;
5073 struct btrfs_trans_handle *trans;
5074 unsigned long nr;
5075 u64 mask = root->sectorsize - 1;
5076
5077 if (!S_ISREG(inode->i_mode))
5078 return;
5079 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5080 return;
5081
5082 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5083 if (ret)
5084 return;
5085 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5086
5087 trans = btrfs_start_transaction(root, 1);
5088
5089 /*
5090 * setattr is responsible for setting the ordered_data_close flag,
5091 * but that is only tested during the last file release. That
5092 * could happen well after the next commit, leaving a great big
5093 * window where new writes may get lost if someone chooses to write
5094 * to this file after truncating to zero
5095 *
5096 * The inode doesn't have any dirty data here, and so if we commit
5097 * this is a noop. If someone immediately starts writing to the inode
5098 * it is very likely we'll catch some of their writes in this
5099 * transaction, and the commit will find this file on the ordered
5100 * data list with good things to send down.
5101 *
5102 * This is a best effort solution, there is still a window where
5103 * using truncate to replace the contents of the file will
5104 * end up with a zero length file after a crash.
5105 */
5106 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5107 btrfs_add_ordered_operation(trans, root, inode);
5108
5109 btrfs_set_trans_block_group(trans, inode);
5110 btrfs_i_size_write(inode, inode->i_size);
5111
5112 ret = btrfs_orphan_add(trans, inode);
5113 if (ret)
5114 goto out;
5115 /* FIXME, add redo link to tree so we don't leak on crash */
5116 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
5117 BTRFS_EXTENT_DATA_KEY);
5118 btrfs_update_inode(trans, root, inode);
5119
5120 ret = btrfs_orphan_del(trans, inode);
5121 BUG_ON(ret);
5122
5123 out:
5124 nr = trans->blocks_used;
5125 ret = btrfs_end_transaction_throttle(trans, root);
5126 BUG_ON(ret);
5127 btrfs_btree_balance_dirty(root, nr);
5128 }
5129
5130 /*
5131 * create a new subvolume directory/inode (helper for the ioctl).
5132 */
5133 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5134 struct btrfs_root *new_root,
5135 u64 new_dirid, u64 alloc_hint)
5136 {
5137 struct inode *inode;
5138 int err;
5139 u64 index = 0;
5140
5141 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5142 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5143 if (IS_ERR(inode))
5144 return PTR_ERR(inode);
5145 inode->i_op = &btrfs_dir_inode_operations;
5146 inode->i_fop = &btrfs_dir_file_operations;
5147
5148 inode->i_nlink = 1;
5149 btrfs_i_size_write(inode, 0);
5150
5151 err = btrfs_update_inode(trans, new_root, inode);
5152 BUG_ON(err);
5153
5154 iput(inode);
5155 return 0;
5156 }
5157
5158 /* helper function for file defrag and space balancing. This
5159 * forces readahead on a given range of bytes in an inode
5160 */
5161 unsigned long btrfs_force_ra(struct address_space *mapping,
5162 struct file_ra_state *ra, struct file *file,
5163 pgoff_t offset, pgoff_t last_index)
5164 {
5165 pgoff_t req_size = last_index - offset + 1;
5166
5167 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5168 return offset + req_size;
5169 }
5170
5171 struct inode *btrfs_alloc_inode(struct super_block *sb)
5172 {
5173 struct btrfs_inode *ei;
5174
5175 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5176 if (!ei)
5177 return NULL;
5178 ei->last_trans = 0;
5179 ei->last_sub_trans = 0;
5180 ei->logged_trans = 0;
5181 ei->outstanding_extents = 0;
5182 ei->reserved_extents = 0;
5183 ei->root = NULL;
5184 spin_lock_init(&ei->accounting_lock);
5185 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5186 INIT_LIST_HEAD(&ei->i_orphan);
5187 INIT_LIST_HEAD(&ei->ordered_operations);
5188 return &ei->vfs_inode;
5189 }
5190
5191 void btrfs_destroy_inode(struct inode *inode)
5192 {
5193 struct btrfs_ordered_extent *ordered;
5194 struct btrfs_root *root = BTRFS_I(inode)->root;
5195
5196 WARN_ON(!list_empty(&inode->i_dentry));
5197 WARN_ON(inode->i_data.nrpages);
5198
5199 /*
5200 * This can happen where we create an inode, but somebody else also
5201 * created the same inode and we need to destroy the one we already
5202 * created.
5203 */
5204 if (!root)
5205 goto free;
5206
5207 /*
5208 * Make sure we're properly removed from the ordered operation
5209 * lists.
5210 */
5211 smp_mb();
5212 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5213 spin_lock(&root->fs_info->ordered_extent_lock);
5214 list_del_init(&BTRFS_I(inode)->ordered_operations);
5215 spin_unlock(&root->fs_info->ordered_extent_lock);
5216 }
5217
5218 spin_lock(&root->list_lock);
5219 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5220 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5221 " list\n", inode->i_ino);
5222 dump_stack();
5223 }
5224 spin_unlock(&root->list_lock);
5225
5226 while (1) {
5227 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5228 if (!ordered)
5229 break;
5230 else {
5231 printk(KERN_ERR "btrfs found ordered "
5232 "extent %llu %llu on inode cleanup\n",
5233 (unsigned long long)ordered->file_offset,
5234 (unsigned long long)ordered->len);
5235 btrfs_remove_ordered_extent(inode, ordered);
5236 btrfs_put_ordered_extent(ordered);
5237 btrfs_put_ordered_extent(ordered);
5238 }
5239 }
5240 inode_tree_del(inode);
5241 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5242 free:
5243 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5244 }
5245
5246 void btrfs_drop_inode(struct inode *inode)
5247 {
5248 struct btrfs_root *root = BTRFS_I(inode)->root;
5249
5250 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5251 generic_delete_inode(inode);
5252 else
5253 generic_drop_inode(inode);
5254 }
5255
5256 static void init_once(void *foo)
5257 {
5258 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5259
5260 inode_init_once(&ei->vfs_inode);
5261 }
5262
5263 void btrfs_destroy_cachep(void)
5264 {
5265 if (btrfs_inode_cachep)
5266 kmem_cache_destroy(btrfs_inode_cachep);
5267 if (btrfs_trans_handle_cachep)
5268 kmem_cache_destroy(btrfs_trans_handle_cachep);
5269 if (btrfs_transaction_cachep)
5270 kmem_cache_destroy(btrfs_transaction_cachep);
5271 if (btrfs_path_cachep)
5272 kmem_cache_destroy(btrfs_path_cachep);
5273 }
5274
5275 int btrfs_init_cachep(void)
5276 {
5277 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5278 sizeof(struct btrfs_inode), 0,
5279 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5280 if (!btrfs_inode_cachep)
5281 goto fail;
5282
5283 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5284 sizeof(struct btrfs_trans_handle), 0,
5285 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5286 if (!btrfs_trans_handle_cachep)
5287 goto fail;
5288
5289 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5290 sizeof(struct btrfs_transaction), 0,
5291 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5292 if (!btrfs_transaction_cachep)
5293 goto fail;
5294
5295 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5296 sizeof(struct btrfs_path), 0,
5297 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5298 if (!btrfs_path_cachep)
5299 goto fail;
5300
5301 return 0;
5302 fail:
5303 btrfs_destroy_cachep();
5304 return -ENOMEM;
5305 }
5306
5307 static int btrfs_getattr(struct vfsmount *mnt,
5308 struct dentry *dentry, struct kstat *stat)
5309 {
5310 struct inode *inode = dentry->d_inode;
5311 generic_fillattr(inode, stat);
5312 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5313 stat->blksize = PAGE_CACHE_SIZE;
5314 stat->blocks = (inode_get_bytes(inode) +
5315 BTRFS_I(inode)->delalloc_bytes) >> 9;
5316 return 0;
5317 }
5318
5319 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5320 struct inode *new_dir, struct dentry *new_dentry)
5321 {
5322 struct btrfs_trans_handle *trans;
5323 struct btrfs_root *root = BTRFS_I(old_dir)->root;
5324 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5325 struct inode *new_inode = new_dentry->d_inode;
5326 struct inode *old_inode = old_dentry->d_inode;
5327 struct timespec ctime = CURRENT_TIME;
5328 u64 index = 0;
5329 u64 root_objectid;
5330 int ret;
5331
5332 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5333 return -EPERM;
5334
5335 /* we only allow rename subvolume link between subvolumes */
5336 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5337 return -EXDEV;
5338
5339 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5340 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5341 return -ENOTEMPTY;
5342
5343 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5344 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5345 return -ENOTEMPTY;
5346
5347 /*
5348 * We want to reserve the absolute worst case amount of items. So if
5349 * both inodes are subvols and we need to unlink them then that would
5350 * require 4 item modifications, but if they are both normal inodes it
5351 * would require 5 item modifications, so we'll assume their normal
5352 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5353 * should cover the worst case number of items we'll modify.
5354 */
5355 ret = btrfs_reserve_metadata_space(root, 11);
5356 if (ret)
5357 return ret;
5358
5359 /*
5360 * we're using rename to replace one file with another.
5361 * and the replacement file is large. Start IO on it now so
5362 * we don't add too much work to the end of the transaction
5363 */
5364 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5365 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5366 filemap_flush(old_inode->i_mapping);
5367
5368 /* close the racy window with snapshot create/destroy ioctl */
5369 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5370 down_read(&root->fs_info->subvol_sem);
5371
5372 trans = btrfs_start_transaction(root, 1);
5373 btrfs_set_trans_block_group(trans, new_dir);
5374
5375 if (dest != root)
5376 btrfs_record_root_in_trans(trans, dest);
5377
5378 ret = btrfs_set_inode_index(new_dir, &index);
5379 if (ret)
5380 goto out_fail;
5381
5382 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5383 /* force full log commit if subvolume involved. */
5384 root->fs_info->last_trans_log_full_commit = trans->transid;
5385 } else {
5386 ret = btrfs_insert_inode_ref(trans, dest,
5387 new_dentry->d_name.name,
5388 new_dentry->d_name.len,
5389 old_inode->i_ino,
5390 new_dir->i_ino, index);
5391 if (ret)
5392 goto out_fail;
5393 /*
5394 * this is an ugly little race, but the rename is required
5395 * to make sure that if we crash, the inode is either at the
5396 * old name or the new one. pinning the log transaction lets
5397 * us make sure we don't allow a log commit to come in after
5398 * we unlink the name but before we add the new name back in.
5399 */
5400 btrfs_pin_log_trans(root);
5401 }
5402 /*
5403 * make sure the inode gets flushed if it is replacing
5404 * something.
5405 */
5406 if (new_inode && new_inode->i_size &&
5407 old_inode && S_ISREG(old_inode->i_mode)) {
5408 btrfs_add_ordered_operation(trans, root, old_inode);
5409 }
5410
5411 old_dir->i_ctime = old_dir->i_mtime = ctime;
5412 new_dir->i_ctime = new_dir->i_mtime = ctime;
5413 old_inode->i_ctime = ctime;
5414
5415 if (old_dentry->d_parent != new_dentry->d_parent)
5416 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5417
5418 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5419 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5420 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5421 old_dentry->d_name.name,
5422 old_dentry->d_name.len);
5423 } else {
5424 btrfs_inc_nlink(old_dentry->d_inode);
5425 ret = btrfs_unlink_inode(trans, root, old_dir,
5426 old_dentry->d_inode,
5427 old_dentry->d_name.name,
5428 old_dentry->d_name.len);
5429 }
5430 BUG_ON(ret);
5431
5432 if (new_inode) {
5433 new_inode->i_ctime = CURRENT_TIME;
5434 if (unlikely(new_inode->i_ino ==
5435 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5436 root_objectid = BTRFS_I(new_inode)->location.objectid;
5437 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5438 root_objectid,
5439 new_dentry->d_name.name,
5440 new_dentry->d_name.len);
5441 BUG_ON(new_inode->i_nlink == 0);
5442 } else {
5443 ret = btrfs_unlink_inode(trans, dest, new_dir,
5444 new_dentry->d_inode,
5445 new_dentry->d_name.name,
5446 new_dentry->d_name.len);
5447 }
5448 BUG_ON(ret);
5449 if (new_inode->i_nlink == 0) {
5450 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5451 BUG_ON(ret);
5452 }
5453 }
5454
5455 ret = btrfs_add_link(trans, new_dir, old_inode,
5456 new_dentry->d_name.name,
5457 new_dentry->d_name.len, 0, index);
5458 BUG_ON(ret);
5459
5460 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5461 btrfs_log_new_name(trans, old_inode, old_dir,
5462 new_dentry->d_parent);
5463 btrfs_end_log_trans(root);
5464 }
5465 out_fail:
5466 btrfs_end_transaction_throttle(trans, root);
5467
5468 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5469 up_read(&root->fs_info->subvol_sem);
5470
5471 btrfs_unreserve_metadata_space(root, 11);
5472 return ret;
5473 }
5474
5475 /*
5476 * some fairly slow code that needs optimization. This walks the list
5477 * of all the inodes with pending delalloc and forces them to disk.
5478 */
5479 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5480 {
5481 struct list_head *head = &root->fs_info->delalloc_inodes;
5482 struct btrfs_inode *binode;
5483 struct inode *inode;
5484
5485 if (root->fs_info->sb->s_flags & MS_RDONLY)
5486 return -EROFS;
5487
5488 spin_lock(&root->fs_info->delalloc_lock);
5489 while (!list_empty(head)) {
5490 binode = list_entry(head->next, struct btrfs_inode,
5491 delalloc_inodes);
5492 inode = igrab(&binode->vfs_inode);
5493 if (!inode)
5494 list_del_init(&binode->delalloc_inodes);
5495 spin_unlock(&root->fs_info->delalloc_lock);
5496 if (inode) {
5497 filemap_flush(inode->i_mapping);
5498 iput(inode);
5499 }
5500 cond_resched();
5501 spin_lock(&root->fs_info->delalloc_lock);
5502 }
5503 spin_unlock(&root->fs_info->delalloc_lock);
5504
5505 /* the filemap_flush will queue IO into the worker threads, but
5506 * we have to make sure the IO is actually started and that
5507 * ordered extents get created before we return
5508 */
5509 atomic_inc(&root->fs_info->async_submit_draining);
5510 while (atomic_read(&root->fs_info->nr_async_submits) ||
5511 atomic_read(&root->fs_info->async_delalloc_pages)) {
5512 wait_event(root->fs_info->async_submit_wait,
5513 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5514 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5515 }
5516 atomic_dec(&root->fs_info->async_submit_draining);
5517 return 0;
5518 }
5519
5520 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5521 const char *symname)
5522 {
5523 struct btrfs_trans_handle *trans;
5524 struct btrfs_root *root = BTRFS_I(dir)->root;
5525 struct btrfs_path *path;
5526 struct btrfs_key key;
5527 struct inode *inode = NULL;
5528 int err;
5529 int drop_inode = 0;
5530 u64 objectid;
5531 u64 index = 0 ;
5532 int name_len;
5533 int datasize;
5534 unsigned long ptr;
5535 struct btrfs_file_extent_item *ei;
5536 struct extent_buffer *leaf;
5537 unsigned long nr = 0;
5538
5539 name_len = strlen(symname) + 1;
5540 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5541 return -ENAMETOOLONG;
5542
5543 /*
5544 * 2 items for inode item and ref
5545 * 2 items for dir items
5546 * 1 item for xattr if selinux is on
5547 */
5548 err = btrfs_reserve_metadata_space(root, 5);
5549 if (err)
5550 return err;
5551
5552 trans = btrfs_start_transaction(root, 1);
5553 if (!trans)
5554 goto out_fail;
5555 btrfs_set_trans_block_group(trans, dir);
5556
5557 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5558 if (err) {
5559 err = -ENOSPC;
5560 goto out_unlock;
5561 }
5562
5563 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5564 dentry->d_name.len,
5565 dentry->d_parent->d_inode->i_ino, objectid,
5566 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5567 &index);
5568 err = PTR_ERR(inode);
5569 if (IS_ERR(inode))
5570 goto out_unlock;
5571
5572 err = btrfs_init_inode_security(inode, dir);
5573 if (err) {
5574 drop_inode = 1;
5575 goto out_unlock;
5576 }
5577
5578 btrfs_set_trans_block_group(trans, inode);
5579 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5580 if (err)
5581 drop_inode = 1;
5582 else {
5583 inode->i_mapping->a_ops = &btrfs_aops;
5584 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5585 inode->i_fop = &btrfs_file_operations;
5586 inode->i_op = &btrfs_file_inode_operations;
5587 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5588 }
5589 btrfs_update_inode_block_group(trans, inode);
5590 btrfs_update_inode_block_group(trans, dir);
5591 if (drop_inode)
5592 goto out_unlock;
5593
5594 path = btrfs_alloc_path();
5595 BUG_ON(!path);
5596 key.objectid = inode->i_ino;
5597 key.offset = 0;
5598 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5599 datasize = btrfs_file_extent_calc_inline_size(name_len);
5600 err = btrfs_insert_empty_item(trans, root, path, &key,
5601 datasize);
5602 if (err) {
5603 drop_inode = 1;
5604 goto out_unlock;
5605 }
5606 leaf = path->nodes[0];
5607 ei = btrfs_item_ptr(leaf, path->slots[0],
5608 struct btrfs_file_extent_item);
5609 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5610 btrfs_set_file_extent_type(leaf, ei,
5611 BTRFS_FILE_EXTENT_INLINE);
5612 btrfs_set_file_extent_encryption(leaf, ei, 0);
5613 btrfs_set_file_extent_compression(leaf, ei, 0);
5614 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5615 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5616
5617 ptr = btrfs_file_extent_inline_start(ei);
5618 write_extent_buffer(leaf, symname, ptr, name_len);
5619 btrfs_mark_buffer_dirty(leaf);
5620 btrfs_free_path(path);
5621
5622 inode->i_op = &btrfs_symlink_inode_operations;
5623 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5624 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5625 inode_set_bytes(inode, name_len);
5626 btrfs_i_size_write(inode, name_len - 1);
5627 err = btrfs_update_inode(trans, root, inode);
5628 if (err)
5629 drop_inode = 1;
5630
5631 out_unlock:
5632 nr = trans->blocks_used;
5633 btrfs_end_transaction_throttle(trans, root);
5634 out_fail:
5635 btrfs_unreserve_metadata_space(root, 5);
5636 if (drop_inode) {
5637 inode_dec_link_count(inode);
5638 iput(inode);
5639 }
5640 btrfs_btree_balance_dirty(root, nr);
5641 return err;
5642 }
5643
5644 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5645 struct inode *inode, u64 start, u64 end,
5646 u64 locked_end, u64 alloc_hint, int mode)
5647 {
5648 struct btrfs_root *root = BTRFS_I(inode)->root;
5649 struct btrfs_key ins;
5650 u64 alloc_size;
5651 u64 cur_offset = start;
5652 u64 num_bytes = end - start;
5653 int ret = 0;
5654
5655 while (num_bytes > 0) {
5656 alloc_size = min(num_bytes, root->fs_info->max_extent);
5657
5658 ret = btrfs_reserve_metadata_space(root, 1);
5659 if (ret)
5660 goto out;
5661
5662 ret = btrfs_reserve_extent(trans, root, alloc_size,
5663 root->sectorsize, 0, alloc_hint,
5664 (u64)-1, &ins, 1);
5665 if (ret) {
5666 WARN_ON(1);
5667 goto out;
5668 }
5669 ret = insert_reserved_file_extent(trans, inode,
5670 cur_offset, ins.objectid,
5671 ins.offset, ins.offset,
5672 ins.offset, locked_end,
5673 0, 0, 0,
5674 BTRFS_FILE_EXTENT_PREALLOC);
5675 BUG_ON(ret);
5676 btrfs_drop_extent_cache(inode, cur_offset,
5677 cur_offset + ins.offset -1, 0);
5678 num_bytes -= ins.offset;
5679 cur_offset += ins.offset;
5680 alloc_hint = ins.objectid + ins.offset;
5681 btrfs_unreserve_metadata_space(root, 1);
5682 }
5683 out:
5684 if (cur_offset > start) {
5685 inode->i_ctime = CURRENT_TIME;
5686 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5687 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5688 cur_offset > i_size_read(inode))
5689 btrfs_i_size_write(inode, cur_offset);
5690 ret = btrfs_update_inode(trans, root, inode);
5691 BUG_ON(ret);
5692 }
5693
5694 return ret;
5695 }
5696
5697 static long btrfs_fallocate(struct inode *inode, int mode,
5698 loff_t offset, loff_t len)
5699 {
5700 u64 cur_offset;
5701 u64 last_byte;
5702 u64 alloc_start;
5703 u64 alloc_end;
5704 u64 alloc_hint = 0;
5705 u64 locked_end;
5706 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5707 struct extent_map *em;
5708 struct btrfs_trans_handle *trans;
5709 struct btrfs_root *root;
5710 int ret;
5711
5712 alloc_start = offset & ~mask;
5713 alloc_end = (offset + len + mask) & ~mask;
5714
5715 /*
5716 * wait for ordered IO before we have any locks. We'll loop again
5717 * below with the locks held.
5718 */
5719 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5720
5721 mutex_lock(&inode->i_mutex);
5722 if (alloc_start > inode->i_size) {
5723 ret = btrfs_cont_expand(inode, alloc_start);
5724 if (ret)
5725 goto out;
5726 }
5727
5728 root = BTRFS_I(inode)->root;
5729
5730 ret = btrfs_check_data_free_space(root, inode,
5731 alloc_end - alloc_start);
5732 if (ret)
5733 goto out;
5734
5735 locked_end = alloc_end - 1;
5736 while (1) {
5737 struct btrfs_ordered_extent *ordered;
5738
5739 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5740 if (!trans) {
5741 ret = -EIO;
5742 goto out_free;
5743 }
5744
5745 /* the extent lock is ordered inside the running
5746 * transaction
5747 */
5748 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5749 GFP_NOFS);
5750 ordered = btrfs_lookup_first_ordered_extent(inode,
5751 alloc_end - 1);
5752 if (ordered &&
5753 ordered->file_offset + ordered->len > alloc_start &&
5754 ordered->file_offset < alloc_end) {
5755 btrfs_put_ordered_extent(ordered);
5756 unlock_extent(&BTRFS_I(inode)->io_tree,
5757 alloc_start, locked_end, GFP_NOFS);
5758 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5759
5760 /*
5761 * we can't wait on the range with the transaction
5762 * running or with the extent lock held
5763 */
5764 btrfs_wait_ordered_range(inode, alloc_start,
5765 alloc_end - alloc_start);
5766 } else {
5767 if (ordered)
5768 btrfs_put_ordered_extent(ordered);
5769 break;
5770 }
5771 }
5772
5773 cur_offset = alloc_start;
5774 while (1) {
5775 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5776 alloc_end - cur_offset, 0);
5777 BUG_ON(IS_ERR(em) || !em);
5778 last_byte = min(extent_map_end(em), alloc_end);
5779 last_byte = (last_byte + mask) & ~mask;
5780 if (em->block_start == EXTENT_MAP_HOLE) {
5781 ret = prealloc_file_range(trans, inode, cur_offset,
5782 last_byte, locked_end + 1,
5783 alloc_hint, mode);
5784 if (ret < 0) {
5785 free_extent_map(em);
5786 break;
5787 }
5788 }
5789 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5790 alloc_hint = em->block_start;
5791 free_extent_map(em);
5792
5793 cur_offset = last_byte;
5794 if (cur_offset >= alloc_end) {
5795 ret = 0;
5796 break;
5797 }
5798 }
5799 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5800 GFP_NOFS);
5801
5802 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5803 out_free:
5804 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5805 out:
5806 mutex_unlock(&inode->i_mutex);
5807 return ret;
5808 }
5809
5810 static int btrfs_set_page_dirty(struct page *page)
5811 {
5812 return __set_page_dirty_nobuffers(page);
5813 }
5814
5815 static int btrfs_permission(struct inode *inode, int mask)
5816 {
5817 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5818 return -EACCES;
5819 return generic_permission(inode, mask, btrfs_check_acl);
5820 }
5821
5822 static const struct inode_operations btrfs_dir_inode_operations = {
5823 .getattr = btrfs_getattr,
5824 .lookup = btrfs_lookup,
5825 .create = btrfs_create,
5826 .unlink = btrfs_unlink,
5827 .link = btrfs_link,
5828 .mkdir = btrfs_mkdir,
5829 .rmdir = btrfs_rmdir,
5830 .rename = btrfs_rename,
5831 .symlink = btrfs_symlink,
5832 .setattr = btrfs_setattr,
5833 .mknod = btrfs_mknod,
5834 .setxattr = btrfs_setxattr,
5835 .getxattr = btrfs_getxattr,
5836 .listxattr = btrfs_listxattr,
5837 .removexattr = btrfs_removexattr,
5838 .permission = btrfs_permission,
5839 };
5840 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5841 .lookup = btrfs_lookup,
5842 .permission = btrfs_permission,
5843 };
5844
5845 static const struct file_operations btrfs_dir_file_operations = {
5846 .llseek = generic_file_llseek,
5847 .read = generic_read_dir,
5848 .readdir = btrfs_real_readdir,
5849 .unlocked_ioctl = btrfs_ioctl,
5850 #ifdef CONFIG_COMPAT
5851 .compat_ioctl = btrfs_ioctl,
5852 #endif
5853 .release = btrfs_release_file,
5854 .fsync = btrfs_sync_file,
5855 };
5856
5857 static struct extent_io_ops btrfs_extent_io_ops = {
5858 .fill_delalloc = run_delalloc_range,
5859 .submit_bio_hook = btrfs_submit_bio_hook,
5860 .merge_bio_hook = btrfs_merge_bio_hook,
5861 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5862 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5863 .writepage_start_hook = btrfs_writepage_start_hook,
5864 .readpage_io_failed_hook = btrfs_io_failed_hook,
5865 .set_bit_hook = btrfs_set_bit_hook,
5866 .clear_bit_hook = btrfs_clear_bit_hook,
5867 .merge_extent_hook = btrfs_merge_extent_hook,
5868 .split_extent_hook = btrfs_split_extent_hook,
5869 };
5870
5871 /*
5872 * btrfs doesn't support the bmap operation because swapfiles
5873 * use bmap to make a mapping of extents in the file. They assume
5874 * these extents won't change over the life of the file and they
5875 * use the bmap result to do IO directly to the drive.
5876 *
5877 * the btrfs bmap call would return logical addresses that aren't
5878 * suitable for IO and they also will change frequently as COW
5879 * operations happen. So, swapfile + btrfs == corruption.
5880 *
5881 * For now we're avoiding this by dropping bmap.
5882 */
5883 static const struct address_space_operations btrfs_aops = {
5884 .readpage = btrfs_readpage,
5885 .writepage = btrfs_writepage,
5886 .writepages = btrfs_writepages,
5887 .readpages = btrfs_readpages,
5888 .sync_page = block_sync_page,
5889 .direct_IO = btrfs_direct_IO,
5890 .invalidatepage = btrfs_invalidatepage,
5891 .releasepage = btrfs_releasepage,
5892 .set_page_dirty = btrfs_set_page_dirty,
5893 .error_remove_page = generic_error_remove_page,
5894 };
5895
5896 static const struct address_space_operations btrfs_symlink_aops = {
5897 .readpage = btrfs_readpage,
5898 .writepage = btrfs_writepage,
5899 .invalidatepage = btrfs_invalidatepage,
5900 .releasepage = btrfs_releasepage,
5901 };
5902
5903 static const struct inode_operations btrfs_file_inode_operations = {
5904 .truncate = btrfs_truncate,
5905 .getattr = btrfs_getattr,
5906 .setattr = btrfs_setattr,
5907 .setxattr = btrfs_setxattr,
5908 .getxattr = btrfs_getxattr,
5909 .listxattr = btrfs_listxattr,
5910 .removexattr = btrfs_removexattr,
5911 .permission = btrfs_permission,
5912 .fallocate = btrfs_fallocate,
5913 .fiemap = btrfs_fiemap,
5914 };
5915 static const struct inode_operations btrfs_special_inode_operations = {
5916 .getattr = btrfs_getattr,
5917 .setattr = btrfs_setattr,
5918 .permission = btrfs_permission,
5919 .setxattr = btrfs_setxattr,
5920 .getxattr = btrfs_getxattr,
5921 .listxattr = btrfs_listxattr,
5922 .removexattr = btrfs_removexattr,
5923 };
5924 static const struct inode_operations btrfs_symlink_inode_operations = {
5925 .readlink = generic_readlink,
5926 .follow_link = page_follow_link_light,
5927 .put_link = page_put_link,
5928 .permission = btrfs_permission,
5929 .setxattr = btrfs_setxattr,
5930 .getxattr = btrfs_getxattr,
5931 .listxattr = btrfs_listxattr,
5932 .removexattr = btrfs_removexattr,
5933 };
5934
5935 const struct dentry_operations btrfs_dentry_operations = {
5936 .d_delete = btrfs_dentry_delete,
5937 };
This page took 0.14348 seconds and 6 git commands to generate.