Btrfs: Throttle operations if the reference cache gets too large
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48
49 struct btrfs_iget_args {
50 u64 ino;
51 struct btrfs_root *root;
52 };
53
54 static struct inode_operations btrfs_dir_inode_operations;
55 static struct inode_operations btrfs_symlink_inode_operations;
56 static struct inode_operations btrfs_dir_ro_inode_operations;
57 static struct inode_operations btrfs_special_inode_operations;
58 static struct inode_operations btrfs_file_inode_operations;
59 static struct address_space_operations btrfs_aops;
60 static struct address_space_operations btrfs_symlink_aops;
61 static struct file_operations btrfs_dir_file_operations;
62 static struct extent_io_ops btrfs_extent_io_ops;
63
64 static struct kmem_cache *btrfs_inode_cachep;
65 struct kmem_cache *btrfs_trans_handle_cachep;
66 struct kmem_cache *btrfs_transaction_cachep;
67 struct kmem_cache *btrfs_bit_radix_cachep;
68 struct kmem_cache *btrfs_path_cachep;
69
70 #define S_SHIFT 12
71 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
72 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
73 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
74 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
75 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
76 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
77 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
78 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
79 };
80
81 static void btrfs_truncate(struct inode *inode);
82
83 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
84 int for_del)
85 {
86 u64 total;
87 u64 used;
88 u64 thresh;
89 unsigned long flags;
90 int ret = 0;
91
92 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
93 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
94 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
95 if (for_del)
96 thresh = total * 90;
97 else
98 thresh = total * 85;
99
100 do_div(thresh, 100);
101
102 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
103 ret = -ENOSPC;
104 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
105 return ret;
106 }
107
108 static int cow_file_range(struct inode *inode, u64 start, u64 end)
109 {
110 struct btrfs_root *root = BTRFS_I(inode)->root;
111 struct btrfs_trans_handle *trans;
112 u64 alloc_hint = 0;
113 u64 num_bytes;
114 u64 cur_alloc_size;
115 u64 blocksize = root->sectorsize;
116 u64 orig_num_bytes;
117 struct btrfs_key ins;
118 struct extent_map *em;
119 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
120 int ret = 0;
121
122 trans = btrfs_join_transaction(root, 1);
123 BUG_ON(!trans);
124 btrfs_set_trans_block_group(trans, inode);
125
126 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
127 num_bytes = max(blocksize, num_bytes);
128 orig_num_bytes = num_bytes;
129
130 if (alloc_hint == EXTENT_MAP_INLINE)
131 goto out;
132
133 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
134 mutex_lock(&BTRFS_I(inode)->extent_mutex);
135 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
136 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
137
138 while(num_bytes > 0) {
139 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
140 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
141 root->sectorsize, 0, 0,
142 (u64)-1, &ins, 1);
143 if (ret) {
144 WARN_ON(1);
145 goto out;
146 }
147 em = alloc_extent_map(GFP_NOFS);
148 em->start = start;
149 em->len = ins.offset;
150 em->block_start = ins.objectid;
151 em->bdev = root->fs_info->fs_devices->latest_bdev;
152 mutex_lock(&BTRFS_I(inode)->extent_mutex);
153 set_bit(EXTENT_FLAG_PINNED, &em->flags);
154 while(1) {
155 spin_lock(&em_tree->lock);
156 ret = add_extent_mapping(em_tree, em);
157 spin_unlock(&em_tree->lock);
158 if (ret != -EEXIST) {
159 free_extent_map(em);
160 break;
161 }
162 btrfs_drop_extent_cache(inode, start,
163 start + ins.offset - 1);
164 }
165 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
166
167 cur_alloc_size = ins.offset;
168 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
169 ins.offset);
170 BUG_ON(ret);
171 if (num_bytes < cur_alloc_size) {
172 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
173 cur_alloc_size);
174 break;
175 }
176 num_bytes -= cur_alloc_size;
177 alloc_hint = ins.objectid + ins.offset;
178 start += cur_alloc_size;
179 }
180 out:
181 btrfs_end_transaction(trans, root);
182 return ret;
183 }
184
185 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
186 {
187 u64 extent_start;
188 u64 extent_end;
189 u64 bytenr;
190 u64 cow_end;
191 u64 loops = 0;
192 u64 total_fs_bytes;
193 struct btrfs_root *root = BTRFS_I(inode)->root;
194 struct btrfs_block_group_cache *block_group;
195 struct extent_buffer *leaf;
196 int found_type;
197 struct btrfs_path *path;
198 struct btrfs_file_extent_item *item;
199 int ret;
200 int err;
201 struct btrfs_key found_key;
202
203 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
204 path = btrfs_alloc_path();
205 BUG_ON(!path);
206 again:
207 ret = btrfs_lookup_file_extent(NULL, root, path,
208 inode->i_ino, start, 0);
209 if (ret < 0) {
210 btrfs_free_path(path);
211 return ret;
212 }
213
214 cow_end = end;
215 if (ret != 0) {
216 if (path->slots[0] == 0)
217 goto not_found;
218 path->slots[0]--;
219 }
220
221 leaf = path->nodes[0];
222 item = btrfs_item_ptr(leaf, path->slots[0],
223 struct btrfs_file_extent_item);
224
225 /* are we inside the extent that was found? */
226 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
227 found_type = btrfs_key_type(&found_key);
228 if (found_key.objectid != inode->i_ino ||
229 found_type != BTRFS_EXTENT_DATA_KEY)
230 goto not_found;
231
232 found_type = btrfs_file_extent_type(leaf, item);
233 extent_start = found_key.offset;
234 if (found_type == BTRFS_FILE_EXTENT_REG) {
235 u64 extent_num_bytes;
236
237 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
238 extent_end = extent_start + extent_num_bytes;
239 err = 0;
240
241 if (loops && start != extent_start)
242 goto not_found;
243
244 if (start < extent_start || start >= extent_end)
245 goto not_found;
246
247 cow_end = min(end, extent_end - 1);
248 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
249 if (bytenr == 0)
250 goto not_found;
251
252 if (btrfs_count_snapshots_in_path(root, path, inode->i_ino,
253 bytenr) != 1) {
254 goto not_found;
255 }
256
257 /*
258 * we may be called by the resizer, make sure we're inside
259 * the limits of the FS
260 */
261 block_group = btrfs_lookup_block_group(root->fs_info,
262 bytenr);
263 if (!block_group || block_group->ro)
264 goto not_found;
265
266 start = extent_end;
267 } else {
268 goto not_found;
269 }
270 loop:
271 if (start > end) {
272 btrfs_free_path(path);
273 return 0;
274 }
275 btrfs_release_path(root, path);
276 loops++;
277 goto again;
278
279 not_found:
280 cow_file_range(inode, start, end);
281 start = end + 1;
282 goto loop;
283 }
284
285 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
286 {
287 struct btrfs_root *root = BTRFS_I(inode)->root;
288 int ret;
289
290 if (btrfs_test_opt(root, NODATACOW) ||
291 btrfs_test_flag(inode, NODATACOW))
292 ret = run_delalloc_nocow(inode, start, end);
293 else
294 ret = cow_file_range(inode, start, end);
295
296 return ret;
297 }
298
299 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
300 unsigned long old, unsigned long bits)
301 {
302 unsigned long flags;
303 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
304 struct btrfs_root *root = BTRFS_I(inode)->root;
305 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
306 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
307 root->fs_info->delalloc_bytes += end - start + 1;
308 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
309 }
310 return 0;
311 }
312
313 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
314 unsigned long old, unsigned long bits)
315 {
316 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
317 struct btrfs_root *root = BTRFS_I(inode)->root;
318 unsigned long flags;
319
320 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
321 if (end - start + 1 > root->fs_info->delalloc_bytes) {
322 printk("warning: delalloc account %Lu %Lu\n",
323 end - start + 1, root->fs_info->delalloc_bytes);
324 root->fs_info->delalloc_bytes = 0;
325 BTRFS_I(inode)->delalloc_bytes = 0;
326 } else {
327 root->fs_info->delalloc_bytes -= end - start + 1;
328 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
329 }
330 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
331 }
332 return 0;
333 }
334
335 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
336 size_t size, struct bio *bio)
337 {
338 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
339 struct btrfs_mapping_tree *map_tree;
340 u64 logical = bio->bi_sector << 9;
341 u64 length = 0;
342 u64 map_length;
343 int ret;
344
345 length = bio->bi_size;
346 map_tree = &root->fs_info->mapping_tree;
347 map_length = length;
348 ret = btrfs_map_block(map_tree, READ, logical,
349 &map_length, NULL, 0);
350
351 if (map_length < length + size) {
352 return 1;
353 }
354 return 0;
355 }
356
357 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
358 int mirror_num)
359 {
360 struct btrfs_root *root = BTRFS_I(inode)->root;
361 int ret = 0;
362
363 ret = btrfs_csum_one_bio(root, inode, bio);
364 BUG_ON(ret);
365
366 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
367 }
368
369 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
370 int mirror_num)
371 {
372 struct btrfs_root *root = BTRFS_I(inode)->root;
373 int ret = 0;
374
375 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
376 BUG_ON(ret);
377
378 if (!(rw & (1 << BIO_RW))) {
379 goto mapit;
380 }
381
382 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
383 inode, rw, bio, mirror_num,
384 __btrfs_submit_bio_hook);
385 mapit:
386 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
387 }
388
389 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
390 struct inode *inode, u64 file_offset,
391 struct list_head *list)
392 {
393 struct list_head *cur;
394 struct btrfs_ordered_sum *sum;
395
396 btrfs_set_trans_block_group(trans, inode);
397 list_for_each(cur, list) {
398 sum = list_entry(cur, struct btrfs_ordered_sum, list);
399 mutex_lock(&BTRFS_I(inode)->csum_mutex);
400 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
401 inode, sum);
402 mutex_unlock(&BTRFS_I(inode)->csum_mutex);
403 }
404 return 0;
405 }
406
407 struct btrfs_writepage_fixup {
408 struct page *page;
409 struct btrfs_work work;
410 };
411
412 /* see btrfs_writepage_start_hook for details on why this is required */
413 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
414 {
415 struct btrfs_writepage_fixup *fixup;
416 struct btrfs_ordered_extent *ordered;
417 struct page *page;
418 struct inode *inode;
419 u64 page_start;
420 u64 page_end;
421
422 fixup = container_of(work, struct btrfs_writepage_fixup, work);
423 page = fixup->page;
424 again:
425 lock_page(page);
426 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
427 ClearPageChecked(page);
428 goto out_page;
429 }
430
431 inode = page->mapping->host;
432 page_start = page_offset(page);
433 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
434
435 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
436
437 /* already ordered? We're done */
438 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
439 EXTENT_ORDERED, 0)) {
440 goto out;
441 }
442
443 ordered = btrfs_lookup_ordered_extent(inode, page_start);
444 if (ordered) {
445 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
446 page_end, GFP_NOFS);
447 unlock_page(page);
448 btrfs_start_ordered_extent(inode, ordered, 1);
449 goto again;
450 }
451
452 set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start, page_end,
453 GFP_NOFS);
454 ClearPageChecked(page);
455 out:
456 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
457 out_page:
458 unlock_page(page);
459 page_cache_release(page);
460 }
461
462 /*
463 * There are a few paths in the higher layers of the kernel that directly
464 * set the page dirty bit without asking the filesystem if it is a
465 * good idea. This causes problems because we want to make sure COW
466 * properly happens and the data=ordered rules are followed.
467 *
468 * In our case any range that doesn't have the EXTENT_ORDERED bit set
469 * hasn't been properly setup for IO. We kick off an async process
470 * to fix it up. The async helper will wait for ordered extents, set
471 * the delalloc bit and make it safe to write the page.
472 */
473 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
474 {
475 struct inode *inode = page->mapping->host;
476 struct btrfs_writepage_fixup *fixup;
477 struct btrfs_root *root = BTRFS_I(inode)->root;
478 int ret;
479
480 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
481 EXTENT_ORDERED, 0);
482 if (ret)
483 return 0;
484
485 if (PageChecked(page))
486 return -EAGAIN;
487
488 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
489 if (!fixup)
490 return -EAGAIN;
491
492 SetPageChecked(page);
493 page_cache_get(page);
494 fixup->work.func = btrfs_writepage_fixup_worker;
495 fixup->page = page;
496 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
497 return -EAGAIN;
498 }
499
500 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
501 {
502 struct btrfs_root *root = BTRFS_I(inode)->root;
503 struct btrfs_trans_handle *trans;
504 struct btrfs_ordered_extent *ordered_extent;
505 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
506 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
507 struct extent_map *em;
508 struct extent_map *em_orig;
509 u64 alloc_hint = 0;
510 u64 clear_start;
511 u64 clear_end;
512 struct list_head list;
513 struct btrfs_key ins;
514 struct rb_node *rb;
515 int ret;
516
517 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
518 if (!ret)
519 return 0;
520
521 trans = btrfs_join_transaction(root, 1);
522
523 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
524 BUG_ON(!ordered_extent);
525
526 lock_extent(io_tree, ordered_extent->file_offset,
527 ordered_extent->file_offset + ordered_extent->len - 1,
528 GFP_NOFS);
529
530 INIT_LIST_HEAD(&list);
531
532 ins.objectid = ordered_extent->start;
533 ins.offset = ordered_extent->len;
534 ins.type = BTRFS_EXTENT_ITEM_KEY;
535
536 ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
537 trans->transid, inode->i_ino,
538 ordered_extent->file_offset, &ins);
539 BUG_ON(ret);
540
541 mutex_lock(&BTRFS_I(inode)->extent_mutex);
542
543 spin_lock(&em_tree->lock);
544 clear_start = ordered_extent->file_offset;
545 clear_end = ordered_extent->file_offset + ordered_extent->len;
546 em = lookup_extent_mapping(em_tree, clear_start,
547 ordered_extent->len);
548 em_orig = em;
549 while(em && clear_start < extent_map_end(em) && clear_end > em->start) {
550 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
551 rb = rb_next(&em->rb_node);
552 if (!rb)
553 break;
554 em = rb_entry(rb, struct extent_map, rb_node);
555 }
556 free_extent_map(em_orig);
557 spin_unlock(&em_tree->lock);
558
559 ret = btrfs_drop_extents(trans, root, inode,
560 ordered_extent->file_offset,
561 ordered_extent->file_offset +
562 ordered_extent->len,
563 ordered_extent->file_offset, &alloc_hint);
564 BUG_ON(ret);
565 ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
566 ordered_extent->file_offset,
567 ordered_extent->start,
568 ordered_extent->len,
569 ordered_extent->len, 0);
570 BUG_ON(ret);
571
572 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
573 ordered_extent->file_offset +
574 ordered_extent->len - 1);
575 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
576
577 inode->i_blocks += ordered_extent->len >> 9;
578 unlock_extent(io_tree, ordered_extent->file_offset,
579 ordered_extent->file_offset + ordered_extent->len - 1,
580 GFP_NOFS);
581 add_pending_csums(trans, inode, ordered_extent->file_offset,
582 &ordered_extent->list);
583
584 btrfs_ordered_update_i_size(inode, ordered_extent);
585 btrfs_remove_ordered_extent(inode, ordered_extent);
586
587 /* once for us */
588 btrfs_put_ordered_extent(ordered_extent);
589 /* once for the tree */
590 btrfs_put_ordered_extent(ordered_extent);
591
592 btrfs_update_inode(trans, root, inode);
593 btrfs_end_transaction(trans, root);
594 return 0;
595 }
596
597 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
598 struct extent_state *state, int uptodate)
599 {
600 return btrfs_finish_ordered_io(page->mapping->host, start, end);
601 }
602
603 int btrfs_readpage_io_hook(struct page *page, u64 start, u64 end)
604 {
605 int ret = 0;
606 struct inode *inode = page->mapping->host;
607 struct btrfs_root *root = BTRFS_I(inode)->root;
608 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
609 struct btrfs_csum_item *item;
610 struct btrfs_path *path = NULL;
611 u32 csum;
612
613 if (btrfs_test_opt(root, NODATASUM) ||
614 btrfs_test_flag(inode, NODATASUM))
615 return 0;
616
617 /*
618 * It is possible there is an ordered extent that has
619 * not yet finished for this range in the file. If so,
620 * that extent will have a csum cached, and it will insert
621 * the sum after all the blocks in the extent are fully
622 * on disk. So, look for an ordered extent and use the
623 * sum if found. We have to do this before looking in the
624 * btree because csum items are pre-inserted based on
625 * the file size. btrfs_lookup_csum might find an item
626 * that still hasn't been fully filled.
627 */
628 ret = btrfs_find_ordered_sum(inode, start, &csum);
629 if (ret == 0)
630 goto found;
631
632 ret = 0;
633 path = btrfs_alloc_path();
634 item = btrfs_lookup_csum(NULL, root, path, inode->i_ino, start, 0);
635 if (IS_ERR(item)) {
636 ret = PTR_ERR(item);
637 /* a csum that isn't present is a preallocated region. */
638 if (ret == -ENOENT || ret == -EFBIG)
639 ret = 0;
640 csum = 0;
641 printk("no csum found for inode %lu start %Lu\n", inode->i_ino,
642 start);
643 goto out;
644 }
645 read_extent_buffer(path->nodes[0], &csum, (unsigned long)item,
646 BTRFS_CRC32_SIZE);
647 found:
648 set_state_private(io_tree, start, csum);
649 out:
650 if (path)
651 btrfs_free_path(path);
652 return ret;
653 }
654
655 struct io_failure_record {
656 struct page *page;
657 u64 start;
658 u64 len;
659 u64 logical;
660 int last_mirror;
661 };
662
663 int btrfs_io_failed_hook(struct bio *failed_bio,
664 struct page *page, u64 start, u64 end,
665 struct extent_state *state)
666 {
667 struct io_failure_record *failrec = NULL;
668 u64 private;
669 struct extent_map *em;
670 struct inode *inode = page->mapping->host;
671 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
672 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
673 struct bio *bio;
674 int num_copies;
675 int ret;
676 int rw;
677 u64 logical;
678
679 ret = get_state_private(failure_tree, start, &private);
680 if (ret) {
681 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
682 if (!failrec)
683 return -ENOMEM;
684 failrec->start = start;
685 failrec->len = end - start + 1;
686 failrec->last_mirror = 0;
687
688 spin_lock(&em_tree->lock);
689 em = lookup_extent_mapping(em_tree, start, failrec->len);
690 if (em->start > start || em->start + em->len < start) {
691 free_extent_map(em);
692 em = NULL;
693 }
694 spin_unlock(&em_tree->lock);
695
696 if (!em || IS_ERR(em)) {
697 kfree(failrec);
698 return -EIO;
699 }
700 logical = start - em->start;
701 logical = em->block_start + logical;
702 failrec->logical = logical;
703 free_extent_map(em);
704 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
705 EXTENT_DIRTY, GFP_NOFS);
706 set_state_private(failure_tree, start,
707 (u64)(unsigned long)failrec);
708 } else {
709 failrec = (struct io_failure_record *)(unsigned long)private;
710 }
711 num_copies = btrfs_num_copies(
712 &BTRFS_I(inode)->root->fs_info->mapping_tree,
713 failrec->logical, failrec->len);
714 failrec->last_mirror++;
715 if (!state) {
716 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
717 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
718 failrec->start,
719 EXTENT_LOCKED);
720 if (state && state->start != failrec->start)
721 state = NULL;
722 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
723 }
724 if (!state || failrec->last_mirror > num_copies) {
725 set_state_private(failure_tree, failrec->start, 0);
726 clear_extent_bits(failure_tree, failrec->start,
727 failrec->start + failrec->len - 1,
728 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
729 kfree(failrec);
730 return -EIO;
731 }
732 bio = bio_alloc(GFP_NOFS, 1);
733 bio->bi_private = state;
734 bio->bi_end_io = failed_bio->bi_end_io;
735 bio->bi_sector = failrec->logical >> 9;
736 bio->bi_bdev = failed_bio->bi_bdev;
737 bio->bi_size = 0;
738 bio_add_page(bio, page, failrec->len, start - page_offset(page));
739 if (failed_bio->bi_rw & (1 << BIO_RW))
740 rw = WRITE;
741 else
742 rw = READ;
743
744 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
745 failrec->last_mirror);
746 return 0;
747 }
748
749 int btrfs_clean_io_failures(struct inode *inode, u64 start)
750 {
751 u64 private;
752 u64 private_failure;
753 struct io_failure_record *failure;
754 int ret;
755
756 private = 0;
757 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
758 (u64)-1, 1, EXTENT_DIRTY)) {
759 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
760 start, &private_failure);
761 if (ret == 0) {
762 failure = (struct io_failure_record *)(unsigned long)
763 private_failure;
764 set_state_private(&BTRFS_I(inode)->io_failure_tree,
765 failure->start, 0);
766 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
767 failure->start,
768 failure->start + failure->len - 1,
769 EXTENT_DIRTY | EXTENT_LOCKED,
770 GFP_NOFS);
771 kfree(failure);
772 }
773 }
774 return 0;
775 }
776
777 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
778 struct extent_state *state)
779 {
780 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
781 struct inode *inode = page->mapping->host;
782 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
783 char *kaddr;
784 u64 private = ~(u32)0;
785 int ret;
786 struct btrfs_root *root = BTRFS_I(inode)->root;
787 u32 csum = ~(u32)0;
788 unsigned long flags;
789
790 if (btrfs_test_opt(root, NODATASUM) ||
791 btrfs_test_flag(inode, NODATASUM))
792 return 0;
793 if (state && state->start == start) {
794 private = state->private;
795 ret = 0;
796 } else {
797 ret = get_state_private(io_tree, start, &private);
798 }
799 local_irq_save(flags);
800 kaddr = kmap_atomic(page, KM_IRQ0);
801 if (ret) {
802 goto zeroit;
803 }
804 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
805 btrfs_csum_final(csum, (char *)&csum);
806 if (csum != private) {
807 goto zeroit;
808 }
809 kunmap_atomic(kaddr, KM_IRQ0);
810 local_irq_restore(flags);
811
812 /* if the io failure tree for this inode is non-empty,
813 * check to see if we've recovered from a failed IO
814 */
815 btrfs_clean_io_failures(inode, start);
816 return 0;
817
818 zeroit:
819 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
820 page->mapping->host->i_ino, (unsigned long long)start, csum,
821 private);
822 memset(kaddr + offset, 1, end - start + 1);
823 flush_dcache_page(page);
824 kunmap_atomic(kaddr, KM_IRQ0);
825 local_irq_restore(flags);
826 if (private == 0)
827 return 0;
828 return -EIO;
829 }
830
831 /*
832 * This creates an orphan entry for the given inode in case something goes
833 * wrong in the middle of an unlink/truncate.
834 */
835 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
836 {
837 struct btrfs_root *root = BTRFS_I(inode)->root;
838 int ret = 0;
839
840 spin_lock(&root->orphan_lock);
841
842 /* already on the orphan list, we're good */
843 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
844 spin_unlock(&root->orphan_lock);
845 return 0;
846 }
847
848 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
849
850 spin_unlock(&root->orphan_lock);
851
852 /*
853 * insert an orphan item to track this unlinked/truncated file
854 */
855 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
856
857 return ret;
858 }
859
860 /*
861 * We have done the truncate/delete so we can go ahead and remove the orphan
862 * item for this particular inode.
863 */
864 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
865 {
866 struct btrfs_root *root = BTRFS_I(inode)->root;
867 int ret = 0;
868
869 spin_lock(&root->orphan_lock);
870
871 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
872 spin_unlock(&root->orphan_lock);
873 return 0;
874 }
875
876 list_del_init(&BTRFS_I(inode)->i_orphan);
877 if (!trans) {
878 spin_unlock(&root->orphan_lock);
879 return 0;
880 }
881
882 spin_unlock(&root->orphan_lock);
883
884 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
885
886 return ret;
887 }
888
889 /*
890 * this cleans up any orphans that may be left on the list from the last use
891 * of this root.
892 */
893 void btrfs_orphan_cleanup(struct btrfs_root *root)
894 {
895 struct btrfs_path *path;
896 struct extent_buffer *leaf;
897 struct btrfs_item *item;
898 struct btrfs_key key, found_key;
899 struct btrfs_trans_handle *trans;
900 struct inode *inode;
901 int ret = 0, nr_unlink = 0, nr_truncate = 0;
902
903 /* don't do orphan cleanup if the fs is readonly. */
904 if (root->inode->i_sb->s_flags & MS_RDONLY)
905 return;
906
907 path = btrfs_alloc_path();
908 if (!path)
909 return;
910 path->reada = -1;
911
912 key.objectid = BTRFS_ORPHAN_OBJECTID;
913 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
914 key.offset = (u64)-1;
915
916 trans = btrfs_start_transaction(root, 1);
917 btrfs_set_trans_block_group(trans, root->inode);
918
919 while (1) {
920 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
921 if (ret < 0) {
922 printk(KERN_ERR "Error searching slot for orphan: %d"
923 "\n", ret);
924 break;
925 }
926
927 /*
928 * if ret == 0 means we found what we were searching for, which
929 * is weird, but possible, so only screw with path if we didnt
930 * find the key and see if we have stuff that matches
931 */
932 if (ret > 0) {
933 if (path->slots[0] == 0)
934 break;
935 path->slots[0]--;
936 }
937
938 /* pull out the item */
939 leaf = path->nodes[0];
940 item = btrfs_item_nr(leaf, path->slots[0]);
941 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
942
943 /* make sure the item matches what we want */
944 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
945 break;
946 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
947 break;
948
949 /* release the path since we're done with it */
950 btrfs_release_path(root, path);
951
952 /*
953 * this is where we are basically btrfs_lookup, without the
954 * crossing root thing. we store the inode number in the
955 * offset of the orphan item.
956 */
957 inode = btrfs_iget_locked(root->inode->i_sb,
958 found_key.offset, root);
959 if (!inode)
960 break;
961
962 if (inode->i_state & I_NEW) {
963 BTRFS_I(inode)->root = root;
964
965 /* have to set the location manually */
966 BTRFS_I(inode)->location.objectid = inode->i_ino;
967 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
968 BTRFS_I(inode)->location.offset = 0;
969
970 btrfs_read_locked_inode(inode);
971 unlock_new_inode(inode);
972 }
973
974 /*
975 * add this inode to the orphan list so btrfs_orphan_del does
976 * the proper thing when we hit it
977 */
978 spin_lock(&root->orphan_lock);
979 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
980 spin_unlock(&root->orphan_lock);
981
982 /*
983 * if this is a bad inode, means we actually succeeded in
984 * removing the inode, but not the orphan record, which means
985 * we need to manually delete the orphan since iput will just
986 * do a destroy_inode
987 */
988 if (is_bad_inode(inode)) {
989 btrfs_orphan_del(trans, inode);
990 iput(inode);
991 continue;
992 }
993
994 /* if we have links, this was a truncate, lets do that */
995 if (inode->i_nlink) {
996 nr_truncate++;
997 btrfs_truncate(inode);
998 } else {
999 nr_unlink++;
1000 }
1001
1002 /* this will do delete_inode and everything for us */
1003 iput(inode);
1004 }
1005
1006 if (nr_unlink)
1007 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1008 if (nr_truncate)
1009 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1010
1011 btrfs_free_path(path);
1012 btrfs_end_transaction(trans, root);
1013 }
1014
1015 void btrfs_read_locked_inode(struct inode *inode)
1016 {
1017 struct btrfs_path *path;
1018 struct extent_buffer *leaf;
1019 struct btrfs_inode_item *inode_item;
1020 struct btrfs_timespec *tspec;
1021 struct btrfs_root *root = BTRFS_I(inode)->root;
1022 struct btrfs_key location;
1023 u64 alloc_group_block;
1024 u32 rdev;
1025 int ret;
1026
1027 path = btrfs_alloc_path();
1028 BUG_ON(!path);
1029 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1030
1031 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1032 if (ret)
1033 goto make_bad;
1034
1035 leaf = path->nodes[0];
1036 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1037 struct btrfs_inode_item);
1038
1039 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1040 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1041 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1042 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1043 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1044
1045 tspec = btrfs_inode_atime(inode_item);
1046 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1047 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1048
1049 tspec = btrfs_inode_mtime(inode_item);
1050 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1051 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1052
1053 tspec = btrfs_inode_ctime(inode_item);
1054 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1055 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1056
1057 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1058 inode->i_generation = btrfs_inode_generation(leaf, inode_item);
1059 inode->i_rdev = 0;
1060 rdev = btrfs_inode_rdev(leaf, inode_item);
1061
1062 BTRFS_I(inode)->index_cnt = (u64)-1;
1063
1064 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1065 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1066 alloc_group_block);
1067 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1068 if (!BTRFS_I(inode)->block_group) {
1069 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1070 NULL, 0,
1071 BTRFS_BLOCK_GROUP_METADATA, 0);
1072 }
1073 btrfs_free_path(path);
1074 inode_item = NULL;
1075
1076 switch (inode->i_mode & S_IFMT) {
1077 case S_IFREG:
1078 inode->i_mapping->a_ops = &btrfs_aops;
1079 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1080 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1081 inode->i_fop = &btrfs_file_operations;
1082 inode->i_op = &btrfs_file_inode_operations;
1083 break;
1084 case S_IFDIR:
1085 inode->i_fop = &btrfs_dir_file_operations;
1086 if (root == root->fs_info->tree_root)
1087 inode->i_op = &btrfs_dir_ro_inode_operations;
1088 else
1089 inode->i_op = &btrfs_dir_inode_operations;
1090 break;
1091 case S_IFLNK:
1092 inode->i_op = &btrfs_symlink_inode_operations;
1093 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1094 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1095 break;
1096 default:
1097 init_special_inode(inode, inode->i_mode, rdev);
1098 break;
1099 }
1100 return;
1101
1102 make_bad:
1103 btrfs_free_path(path);
1104 make_bad_inode(inode);
1105 }
1106
1107 static void fill_inode_item(struct extent_buffer *leaf,
1108 struct btrfs_inode_item *item,
1109 struct inode *inode)
1110 {
1111 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1112 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1113 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1114 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1115 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1116
1117 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1118 inode->i_atime.tv_sec);
1119 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1120 inode->i_atime.tv_nsec);
1121
1122 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1123 inode->i_mtime.tv_sec);
1124 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1125 inode->i_mtime.tv_nsec);
1126
1127 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1128 inode->i_ctime.tv_sec);
1129 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1130 inode->i_ctime.tv_nsec);
1131
1132 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1133 btrfs_set_inode_generation(leaf, item, inode->i_generation);
1134 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1135 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1136 btrfs_set_inode_block_group(leaf, item,
1137 BTRFS_I(inode)->block_group->key.objectid);
1138 }
1139
1140 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1141 struct btrfs_root *root,
1142 struct inode *inode)
1143 {
1144 struct btrfs_inode_item *inode_item;
1145 struct btrfs_path *path;
1146 struct extent_buffer *leaf;
1147 int ret;
1148
1149 path = btrfs_alloc_path();
1150 BUG_ON(!path);
1151 ret = btrfs_lookup_inode(trans, root, path,
1152 &BTRFS_I(inode)->location, 1);
1153 if (ret) {
1154 if (ret > 0)
1155 ret = -ENOENT;
1156 goto failed;
1157 }
1158
1159 leaf = path->nodes[0];
1160 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1161 struct btrfs_inode_item);
1162
1163 fill_inode_item(leaf, inode_item, inode);
1164 btrfs_mark_buffer_dirty(leaf);
1165 btrfs_set_inode_last_trans(trans, inode);
1166 ret = 0;
1167 failed:
1168 btrfs_free_path(path);
1169 return ret;
1170 }
1171
1172
1173 static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
1174 struct btrfs_root *root,
1175 struct inode *dir,
1176 struct dentry *dentry)
1177 {
1178 struct btrfs_path *path;
1179 const char *name = dentry->d_name.name;
1180 int name_len = dentry->d_name.len;
1181 int ret = 0;
1182 struct extent_buffer *leaf;
1183 struct btrfs_dir_item *di;
1184 struct btrfs_key key;
1185 u64 index;
1186
1187 path = btrfs_alloc_path();
1188 if (!path) {
1189 ret = -ENOMEM;
1190 goto err;
1191 }
1192
1193 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1194 name, name_len, -1);
1195 if (IS_ERR(di)) {
1196 ret = PTR_ERR(di);
1197 goto err;
1198 }
1199 if (!di) {
1200 ret = -ENOENT;
1201 goto err;
1202 }
1203 leaf = path->nodes[0];
1204 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1205 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1206 if (ret)
1207 goto err;
1208 btrfs_release_path(root, path);
1209
1210 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1211 dentry->d_inode->i_ino,
1212 dentry->d_parent->d_inode->i_ino, &index);
1213 if (ret) {
1214 printk("failed to delete reference to %.*s, "
1215 "inode %lu parent %lu\n", name_len, name,
1216 dentry->d_inode->i_ino,
1217 dentry->d_parent->d_inode->i_ino);
1218 goto err;
1219 }
1220
1221 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1222 index, name, name_len, -1);
1223 if (IS_ERR(di)) {
1224 ret = PTR_ERR(di);
1225 goto err;
1226 }
1227 if (!di) {
1228 ret = -ENOENT;
1229 goto err;
1230 }
1231 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1232 btrfs_release_path(root, path);
1233
1234 dentry->d_inode->i_ctime = dir->i_ctime;
1235 err:
1236 btrfs_free_path(path);
1237 if (!ret) {
1238 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1239 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1240 btrfs_update_inode(trans, root, dir);
1241 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1242 dentry->d_inode->i_nlink--;
1243 #else
1244 drop_nlink(dentry->d_inode);
1245 #endif
1246 ret = btrfs_update_inode(trans, root, dentry->d_inode);
1247 dir->i_sb->s_dirt = 1;
1248 }
1249 return ret;
1250 }
1251
1252 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1253 {
1254 struct btrfs_root *root;
1255 struct btrfs_trans_handle *trans;
1256 struct inode *inode = dentry->d_inode;
1257 int ret;
1258 unsigned long nr = 0;
1259
1260 root = BTRFS_I(dir)->root;
1261
1262 ret = btrfs_check_free_space(root, 1, 1);
1263 if (ret)
1264 goto fail;
1265
1266 trans = btrfs_start_transaction(root, 1);
1267
1268 btrfs_set_trans_block_group(trans, dir);
1269 ret = btrfs_unlink_trans(trans, root, dir, dentry);
1270
1271 if (inode->i_nlink == 0)
1272 ret = btrfs_orphan_add(trans, inode);
1273
1274 nr = trans->blocks_used;
1275
1276 btrfs_end_transaction_throttle(trans, root);
1277 fail:
1278 btrfs_btree_balance_dirty(root, nr);
1279 return ret;
1280 }
1281
1282 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1283 {
1284 struct inode *inode = dentry->d_inode;
1285 int err = 0;
1286 int ret;
1287 struct btrfs_root *root = BTRFS_I(dir)->root;
1288 struct btrfs_trans_handle *trans;
1289 unsigned long nr = 0;
1290
1291 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1292 return -ENOTEMPTY;
1293 }
1294
1295 ret = btrfs_check_free_space(root, 1, 1);
1296 if (ret)
1297 goto fail;
1298
1299 trans = btrfs_start_transaction(root, 1);
1300 btrfs_set_trans_block_group(trans, dir);
1301
1302 err = btrfs_orphan_add(trans, inode);
1303 if (err)
1304 goto fail_trans;
1305
1306 /* now the directory is empty */
1307 err = btrfs_unlink_trans(trans, root, dir, dentry);
1308 if (!err) {
1309 btrfs_i_size_write(inode, 0);
1310 }
1311
1312 fail_trans:
1313 nr = trans->blocks_used;
1314 ret = btrfs_end_transaction_throttle(trans, root);
1315 fail:
1316 btrfs_btree_balance_dirty(root, nr);
1317
1318 if (ret && !err)
1319 err = ret;
1320 return err;
1321 }
1322
1323 /*
1324 * this can truncate away extent items, csum items and directory items.
1325 * It starts at a high offset and removes keys until it can't find
1326 * any higher than i_size.
1327 *
1328 * csum items that cross the new i_size are truncated to the new size
1329 * as well.
1330 *
1331 * min_type is the minimum key type to truncate down to. If set to 0, this
1332 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1333 */
1334 static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
1335 struct btrfs_root *root,
1336 struct inode *inode,
1337 u32 min_type)
1338 {
1339 int ret;
1340 struct btrfs_path *path;
1341 struct btrfs_key key;
1342 struct btrfs_key found_key;
1343 u32 found_type;
1344 struct extent_buffer *leaf;
1345 struct btrfs_file_extent_item *fi;
1346 u64 extent_start = 0;
1347 u64 extent_num_bytes = 0;
1348 u64 item_end = 0;
1349 u64 root_gen = 0;
1350 u64 root_owner = 0;
1351 int found_extent;
1352 int del_item;
1353 int pending_del_nr = 0;
1354 int pending_del_slot = 0;
1355 int extent_type = -1;
1356 u64 mask = root->sectorsize - 1;
1357
1358 btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1);
1359 path = btrfs_alloc_path();
1360 path->reada = -1;
1361 BUG_ON(!path);
1362
1363 /* FIXME, add redo link to tree so we don't leak on crash */
1364 key.objectid = inode->i_ino;
1365 key.offset = (u64)-1;
1366 key.type = (u8)-1;
1367
1368 btrfs_init_path(path);
1369 search_again:
1370 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1371 if (ret < 0) {
1372 goto error;
1373 }
1374 if (ret > 0) {
1375 BUG_ON(path->slots[0] == 0);
1376 path->slots[0]--;
1377 }
1378
1379 while(1) {
1380 fi = NULL;
1381 leaf = path->nodes[0];
1382 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1383 found_type = btrfs_key_type(&found_key);
1384
1385 if (found_key.objectid != inode->i_ino)
1386 break;
1387
1388 if (found_type < min_type)
1389 break;
1390
1391 item_end = found_key.offset;
1392 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1393 fi = btrfs_item_ptr(leaf, path->slots[0],
1394 struct btrfs_file_extent_item);
1395 extent_type = btrfs_file_extent_type(leaf, fi);
1396 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1397 item_end +=
1398 btrfs_file_extent_num_bytes(leaf, fi);
1399 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1400 struct btrfs_item *item = btrfs_item_nr(leaf,
1401 path->slots[0]);
1402 item_end += btrfs_file_extent_inline_len(leaf,
1403 item);
1404 }
1405 item_end--;
1406 }
1407 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1408 ret = btrfs_csum_truncate(trans, root, path,
1409 inode->i_size);
1410 BUG_ON(ret);
1411 }
1412 if (item_end < inode->i_size) {
1413 if (found_type == BTRFS_DIR_ITEM_KEY) {
1414 found_type = BTRFS_INODE_ITEM_KEY;
1415 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1416 found_type = BTRFS_CSUM_ITEM_KEY;
1417 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1418 found_type = BTRFS_XATTR_ITEM_KEY;
1419 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1420 found_type = BTRFS_INODE_REF_KEY;
1421 } else if (found_type) {
1422 found_type--;
1423 } else {
1424 break;
1425 }
1426 btrfs_set_key_type(&key, found_type);
1427 goto next;
1428 }
1429 if (found_key.offset >= inode->i_size)
1430 del_item = 1;
1431 else
1432 del_item = 0;
1433 found_extent = 0;
1434
1435 /* FIXME, shrink the extent if the ref count is only 1 */
1436 if (found_type != BTRFS_EXTENT_DATA_KEY)
1437 goto delete;
1438
1439 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1440 u64 num_dec;
1441 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1442 if (!del_item) {
1443 u64 orig_num_bytes =
1444 btrfs_file_extent_num_bytes(leaf, fi);
1445 extent_num_bytes = inode->i_size -
1446 found_key.offset + root->sectorsize - 1;
1447 extent_num_bytes = extent_num_bytes &
1448 ~((u64)root->sectorsize - 1);
1449 btrfs_set_file_extent_num_bytes(leaf, fi,
1450 extent_num_bytes);
1451 num_dec = (orig_num_bytes -
1452 extent_num_bytes);
1453 if (extent_start != 0)
1454 dec_i_blocks(inode, num_dec);
1455 btrfs_mark_buffer_dirty(leaf);
1456 } else {
1457 extent_num_bytes =
1458 btrfs_file_extent_disk_num_bytes(leaf,
1459 fi);
1460 /* FIXME blocksize != 4096 */
1461 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1462 if (extent_start != 0) {
1463 found_extent = 1;
1464 dec_i_blocks(inode, num_dec);
1465 }
1466 root_gen = btrfs_header_generation(leaf);
1467 root_owner = btrfs_header_owner(leaf);
1468 }
1469 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1470 if (!del_item) {
1471 u32 newsize = inode->i_size - found_key.offset;
1472 dec_i_blocks(inode, item_end + 1 -
1473 found_key.offset - newsize);
1474 newsize =
1475 btrfs_file_extent_calc_inline_size(newsize);
1476 ret = btrfs_truncate_item(trans, root, path,
1477 newsize, 1);
1478 BUG_ON(ret);
1479 } else {
1480 dec_i_blocks(inode, item_end + 1 -
1481 found_key.offset);
1482 }
1483 }
1484 delete:
1485 if (del_item) {
1486 if (!pending_del_nr) {
1487 /* no pending yet, add ourselves */
1488 pending_del_slot = path->slots[0];
1489 pending_del_nr = 1;
1490 } else if (pending_del_nr &&
1491 path->slots[0] + 1 == pending_del_slot) {
1492 /* hop on the pending chunk */
1493 pending_del_nr++;
1494 pending_del_slot = path->slots[0];
1495 } else {
1496 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1497 }
1498 } else {
1499 break;
1500 }
1501 if (found_extent) {
1502 ret = btrfs_free_extent(trans, root, extent_start,
1503 extent_num_bytes,
1504 root_owner,
1505 root_gen, inode->i_ino,
1506 found_key.offset, 0);
1507 BUG_ON(ret);
1508 }
1509 next:
1510 if (path->slots[0] == 0) {
1511 if (pending_del_nr)
1512 goto del_pending;
1513 btrfs_release_path(root, path);
1514 goto search_again;
1515 }
1516
1517 path->slots[0]--;
1518 if (pending_del_nr &&
1519 path->slots[0] + 1 != pending_del_slot) {
1520 struct btrfs_key debug;
1521 del_pending:
1522 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1523 pending_del_slot);
1524 ret = btrfs_del_items(trans, root, path,
1525 pending_del_slot,
1526 pending_del_nr);
1527 BUG_ON(ret);
1528 pending_del_nr = 0;
1529 btrfs_release_path(root, path);
1530 goto search_again;
1531 }
1532 }
1533 ret = 0;
1534 error:
1535 if (pending_del_nr) {
1536 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1537 pending_del_nr);
1538 }
1539 btrfs_free_path(path);
1540 inode->i_sb->s_dirt = 1;
1541 return ret;
1542 }
1543
1544 /*
1545 * taken from block_truncate_page, but does cow as it zeros out
1546 * any bytes left in the last page in the file.
1547 */
1548 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1549 {
1550 struct inode *inode = mapping->host;
1551 struct btrfs_root *root = BTRFS_I(inode)->root;
1552 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1553 struct btrfs_ordered_extent *ordered;
1554 char *kaddr;
1555 u32 blocksize = root->sectorsize;
1556 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1557 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1558 struct page *page;
1559 int ret = 0;
1560 u64 page_start;
1561 u64 page_end;
1562
1563 if ((offset & (blocksize - 1)) == 0)
1564 goto out;
1565
1566 ret = -ENOMEM;
1567 again:
1568 page = grab_cache_page(mapping, index);
1569 if (!page)
1570 goto out;
1571
1572 page_start = page_offset(page);
1573 page_end = page_start + PAGE_CACHE_SIZE - 1;
1574
1575 if (!PageUptodate(page)) {
1576 ret = btrfs_readpage(NULL, page);
1577 lock_page(page);
1578 if (page->mapping != mapping) {
1579 unlock_page(page);
1580 page_cache_release(page);
1581 goto again;
1582 }
1583 if (!PageUptodate(page)) {
1584 ret = -EIO;
1585 goto out_unlock;
1586 }
1587 }
1588 wait_on_page_writeback(page);
1589
1590 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1591 set_page_extent_mapped(page);
1592
1593 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1594 if (ordered) {
1595 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1596 unlock_page(page);
1597 page_cache_release(page);
1598 btrfs_start_ordered_extent(inode, ordered, 1);
1599 btrfs_put_ordered_extent(ordered);
1600 goto again;
1601 }
1602
1603 set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start,
1604 page_end, GFP_NOFS);
1605 ret = 0;
1606 if (offset != PAGE_CACHE_SIZE) {
1607 kaddr = kmap(page);
1608 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1609 flush_dcache_page(page);
1610 kunmap(page);
1611 }
1612 ClearPageChecked(page);
1613 set_page_dirty(page);
1614 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1615
1616 out_unlock:
1617 unlock_page(page);
1618 page_cache_release(page);
1619 out:
1620 return ret;
1621 }
1622
1623 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1624 {
1625 struct inode *inode = dentry->d_inode;
1626 int err;
1627
1628 err = inode_change_ok(inode, attr);
1629 if (err)
1630 return err;
1631
1632 if (S_ISREG(inode->i_mode) &&
1633 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1634 struct btrfs_trans_handle *trans;
1635 struct btrfs_root *root = BTRFS_I(inode)->root;
1636 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1637
1638 u64 mask = root->sectorsize - 1;
1639 u64 hole_start = (inode->i_size + mask) & ~mask;
1640 u64 block_end = (attr->ia_size + mask) & ~mask;
1641 u64 hole_size;
1642 u64 alloc_hint = 0;
1643
1644 if (attr->ia_size <= hole_start)
1645 goto out;
1646
1647 err = btrfs_check_free_space(root, 1, 0);
1648 if (err)
1649 goto fail;
1650
1651 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1652
1653 hole_size = block_end - hole_start;
1654 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1655 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1656
1657 trans = btrfs_start_transaction(root, 1);
1658 btrfs_set_trans_block_group(trans, inode);
1659 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1660 err = btrfs_drop_extents(trans, root, inode,
1661 hole_start, block_end, hole_start,
1662 &alloc_hint);
1663
1664 if (alloc_hint != EXTENT_MAP_INLINE) {
1665 err = btrfs_insert_file_extent(trans, root,
1666 inode->i_ino,
1667 hole_start, 0, 0,
1668 hole_size, 0);
1669 btrfs_drop_extent_cache(inode, hole_start,
1670 (u64)-1);
1671 btrfs_check_file(root, inode);
1672 }
1673 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1674 btrfs_end_transaction(trans, root);
1675 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1676 if (err)
1677 return err;
1678 }
1679 out:
1680 err = inode_setattr(inode, attr);
1681
1682 if (!err && ((attr->ia_valid & ATTR_MODE)))
1683 err = btrfs_acl_chmod(inode);
1684 fail:
1685 return err;
1686 }
1687
1688 void btrfs_delete_inode(struct inode *inode)
1689 {
1690 struct btrfs_trans_handle *trans;
1691 struct btrfs_root *root = BTRFS_I(inode)->root;
1692 unsigned long nr;
1693 int ret;
1694
1695 truncate_inode_pages(&inode->i_data, 0);
1696 if (is_bad_inode(inode)) {
1697 btrfs_orphan_del(NULL, inode);
1698 goto no_delete;
1699 }
1700 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1701
1702 btrfs_i_size_write(inode, 0);
1703 trans = btrfs_start_transaction(root, 1);
1704
1705 btrfs_set_trans_block_group(trans, inode);
1706 ret = btrfs_truncate_in_trans(trans, root, inode, 0);
1707 if (ret) {
1708 btrfs_orphan_del(NULL, inode);
1709 goto no_delete_lock;
1710 }
1711
1712 btrfs_orphan_del(trans, inode);
1713
1714 nr = trans->blocks_used;
1715 clear_inode(inode);
1716
1717 btrfs_end_transaction(trans, root);
1718 btrfs_btree_balance_dirty(root, nr);
1719 return;
1720
1721 no_delete_lock:
1722 nr = trans->blocks_used;
1723 btrfs_end_transaction(trans, root);
1724 btrfs_btree_balance_dirty(root, nr);
1725 no_delete:
1726 clear_inode(inode);
1727 }
1728
1729 /*
1730 * this returns the key found in the dir entry in the location pointer.
1731 * If no dir entries were found, location->objectid is 0.
1732 */
1733 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1734 struct btrfs_key *location)
1735 {
1736 const char *name = dentry->d_name.name;
1737 int namelen = dentry->d_name.len;
1738 struct btrfs_dir_item *di;
1739 struct btrfs_path *path;
1740 struct btrfs_root *root = BTRFS_I(dir)->root;
1741 int ret = 0;
1742
1743 if (namelen == 1 && strcmp(name, ".") == 0) {
1744 location->objectid = dir->i_ino;
1745 location->type = BTRFS_INODE_ITEM_KEY;
1746 location->offset = 0;
1747 return 0;
1748 }
1749 path = btrfs_alloc_path();
1750 BUG_ON(!path);
1751
1752 if (namelen == 2 && strcmp(name, "..") == 0) {
1753 struct btrfs_key key;
1754 struct extent_buffer *leaf;
1755 int slot;
1756
1757 key.objectid = dir->i_ino;
1758 key.offset = (u64)-1;
1759 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1760 if (ret < 0 || path->slots[0] == 0)
1761 goto out_err;
1762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1763 BUG_ON(ret == 0);
1764 ret = 0;
1765 leaf = path->nodes[0];
1766 slot = path->slots[0] - 1;
1767
1768 btrfs_item_key_to_cpu(leaf, &key, slot);
1769 if (key.objectid != dir->i_ino ||
1770 key.type != BTRFS_INODE_REF_KEY) {
1771 goto out_err;
1772 }
1773 location->objectid = key.offset;
1774 location->type = BTRFS_INODE_ITEM_KEY;
1775 location->offset = 0;
1776 goto out;
1777 }
1778
1779 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1780 namelen, 0);
1781 if (IS_ERR(di))
1782 ret = PTR_ERR(di);
1783 if (!di || IS_ERR(di)) {
1784 goto out_err;
1785 }
1786 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1787 out:
1788 btrfs_free_path(path);
1789 return ret;
1790 out_err:
1791 location->objectid = 0;
1792 goto out;
1793 }
1794
1795 /*
1796 * when we hit a tree root in a directory, the btrfs part of the inode
1797 * needs to be changed to reflect the root directory of the tree root. This
1798 * is kind of like crossing a mount point.
1799 */
1800 static int fixup_tree_root_location(struct btrfs_root *root,
1801 struct btrfs_key *location,
1802 struct btrfs_root **sub_root,
1803 struct dentry *dentry)
1804 {
1805 struct btrfs_root_item *ri;
1806
1807 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1808 return 0;
1809 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1810 return 0;
1811
1812 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1813 dentry->d_name.name,
1814 dentry->d_name.len);
1815 if (IS_ERR(*sub_root))
1816 return PTR_ERR(*sub_root);
1817
1818 ri = &(*sub_root)->root_item;
1819 location->objectid = btrfs_root_dirid(ri);
1820 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1821 location->offset = 0;
1822
1823 return 0;
1824 }
1825
1826 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1827 {
1828 struct btrfs_iget_args *args = p;
1829 inode->i_ino = args->ino;
1830 BTRFS_I(inode)->root = args->root;
1831 BTRFS_I(inode)->delalloc_bytes = 0;
1832 BTRFS_I(inode)->disk_i_size = 0;
1833 BTRFS_I(inode)->index_cnt = (u64)-1;
1834 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1835 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1836 inode->i_mapping, GFP_NOFS);
1837 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1838 inode->i_mapping, GFP_NOFS);
1839 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1840 mutex_init(&BTRFS_I(inode)->csum_mutex);
1841 mutex_init(&BTRFS_I(inode)->extent_mutex);
1842 return 0;
1843 }
1844
1845 static int btrfs_find_actor(struct inode *inode, void *opaque)
1846 {
1847 struct btrfs_iget_args *args = opaque;
1848 return (args->ino == inode->i_ino &&
1849 args->root == BTRFS_I(inode)->root);
1850 }
1851
1852 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1853 u64 root_objectid)
1854 {
1855 struct btrfs_iget_args args;
1856 args.ino = objectid;
1857 args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1858
1859 if (!args.root)
1860 return NULL;
1861
1862 return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1863 }
1864
1865 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1866 struct btrfs_root *root)
1867 {
1868 struct inode *inode;
1869 struct btrfs_iget_args args;
1870 args.ino = objectid;
1871 args.root = root;
1872
1873 inode = iget5_locked(s, objectid, btrfs_find_actor,
1874 btrfs_init_locked_inode,
1875 (void *)&args);
1876 return inode;
1877 }
1878
1879 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1880 struct nameidata *nd)
1881 {
1882 struct inode * inode;
1883 struct btrfs_inode *bi = BTRFS_I(dir);
1884 struct btrfs_root *root = bi->root;
1885 struct btrfs_root *sub_root = root;
1886 struct btrfs_key location;
1887 int ret, do_orphan = 0;
1888
1889 if (dentry->d_name.len > BTRFS_NAME_LEN)
1890 return ERR_PTR(-ENAMETOOLONG);
1891
1892 ret = btrfs_inode_by_name(dir, dentry, &location);
1893
1894 if (ret < 0)
1895 return ERR_PTR(ret);
1896
1897 inode = NULL;
1898 if (location.objectid) {
1899 ret = fixup_tree_root_location(root, &location, &sub_root,
1900 dentry);
1901 if (ret < 0)
1902 return ERR_PTR(ret);
1903 if (ret > 0)
1904 return ERR_PTR(-ENOENT);
1905
1906 inode = btrfs_iget_locked(dir->i_sb, location.objectid,
1907 sub_root);
1908 if (!inode)
1909 return ERR_PTR(-EACCES);
1910 if (inode->i_state & I_NEW) {
1911 /* the inode and parent dir are two different roots */
1912 if (sub_root != root) {
1913 igrab(inode);
1914 sub_root->inode = inode;
1915 do_orphan = 1;
1916 }
1917 BTRFS_I(inode)->root = sub_root;
1918 memcpy(&BTRFS_I(inode)->location, &location,
1919 sizeof(location));
1920 btrfs_read_locked_inode(inode);
1921 unlock_new_inode(inode);
1922 }
1923 }
1924
1925 if (unlikely(do_orphan))
1926 btrfs_orphan_cleanup(sub_root);
1927
1928 return d_splice_alias(inode, dentry);
1929 }
1930
1931 static unsigned char btrfs_filetype_table[] = {
1932 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1933 };
1934
1935 static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
1936 {
1937 struct inode *inode = filp->f_dentry->d_inode;
1938 struct btrfs_root *root = BTRFS_I(inode)->root;
1939 struct btrfs_item *item;
1940 struct btrfs_dir_item *di;
1941 struct btrfs_key key;
1942 struct btrfs_key found_key;
1943 struct btrfs_path *path;
1944 int ret;
1945 u32 nritems;
1946 struct extent_buffer *leaf;
1947 int slot;
1948 int advance;
1949 unsigned char d_type;
1950 int over = 0;
1951 u32 di_cur;
1952 u32 di_total;
1953 u32 di_len;
1954 int key_type = BTRFS_DIR_INDEX_KEY;
1955 char tmp_name[32];
1956 char *name_ptr;
1957 int name_len;
1958
1959 /* FIXME, use a real flag for deciding about the key type */
1960 if (root->fs_info->tree_root == root)
1961 key_type = BTRFS_DIR_ITEM_KEY;
1962
1963 /* special case for "." */
1964 if (filp->f_pos == 0) {
1965 over = filldir(dirent, ".", 1,
1966 1, inode->i_ino,
1967 DT_DIR);
1968 if (over)
1969 return 0;
1970 filp->f_pos = 1;
1971 }
1972
1973 key.objectid = inode->i_ino;
1974 path = btrfs_alloc_path();
1975 path->reada = 2;
1976
1977 /* special case for .., just use the back ref */
1978 if (filp->f_pos == 1) {
1979 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1980 key.offset = (u64)-1;
1981 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1982 if (ret < 0 || path->slots[0] == 0) {
1983 btrfs_release_path(root, path);
1984 goto read_dir_items;
1985 }
1986 BUG_ON(ret == 0);
1987 leaf = path->nodes[0];
1988 slot = path->slots[0] - 1;
1989 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1990 btrfs_release_path(root, path);
1991 if (found_key.objectid != key.objectid ||
1992 found_key.type != BTRFS_INODE_REF_KEY)
1993 goto read_dir_items;
1994 over = filldir(dirent, "..", 2,
1995 2, found_key.offset, DT_DIR);
1996 if (over)
1997 goto nopos;
1998 filp->f_pos = 2;
1999 }
2000
2001 read_dir_items:
2002 btrfs_set_key_type(&key, key_type);
2003 key.offset = filp->f_pos;
2004
2005 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2006 if (ret < 0)
2007 goto err;
2008 advance = 0;
2009 while(1) {
2010 leaf = path->nodes[0];
2011 nritems = btrfs_header_nritems(leaf);
2012 slot = path->slots[0];
2013 if (advance || slot >= nritems) {
2014 if (slot >= nritems -1) {
2015 ret = btrfs_next_leaf(root, path);
2016 if (ret)
2017 break;
2018 leaf = path->nodes[0];
2019 nritems = btrfs_header_nritems(leaf);
2020 slot = path->slots[0];
2021 } else {
2022 slot++;
2023 path->slots[0]++;
2024 }
2025 }
2026 advance = 1;
2027 item = btrfs_item_nr(leaf, slot);
2028 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2029
2030 if (found_key.objectid != key.objectid)
2031 break;
2032 if (btrfs_key_type(&found_key) != key_type)
2033 break;
2034 if (found_key.offset < filp->f_pos)
2035 continue;
2036
2037 filp->f_pos = found_key.offset;
2038 advance = 1;
2039 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2040 di_cur = 0;
2041 di_total = btrfs_item_size(leaf, item);
2042 while(di_cur < di_total) {
2043 struct btrfs_key location;
2044
2045 name_len = btrfs_dir_name_len(leaf, di);
2046 if (name_len < 32) {
2047 name_ptr = tmp_name;
2048 } else {
2049 name_ptr = kmalloc(name_len, GFP_NOFS);
2050 BUG_ON(!name_ptr);
2051 }
2052 read_extent_buffer(leaf, name_ptr,
2053 (unsigned long)(di + 1), name_len);
2054
2055 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2056 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2057 over = filldir(dirent, name_ptr, name_len,
2058 found_key.offset,
2059 location.objectid,
2060 d_type);
2061
2062 if (name_ptr != tmp_name)
2063 kfree(name_ptr);
2064
2065 if (over)
2066 goto nopos;
2067 di_len = btrfs_dir_name_len(leaf, di) +
2068 btrfs_dir_data_len(leaf, di) +sizeof(*di);
2069 di_cur += di_len;
2070 di = (struct btrfs_dir_item *)((char *)di + di_len);
2071 }
2072 }
2073 if (key_type == BTRFS_DIR_INDEX_KEY)
2074 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2075 else
2076 filp->f_pos++;
2077 nopos:
2078 ret = 0;
2079 err:
2080 btrfs_free_path(path);
2081 return ret;
2082 }
2083
2084 int btrfs_write_inode(struct inode *inode, int wait)
2085 {
2086 struct btrfs_root *root = BTRFS_I(inode)->root;
2087 struct btrfs_trans_handle *trans;
2088 int ret = 0;
2089
2090 if (wait) {
2091 trans = btrfs_join_transaction(root, 1);
2092 btrfs_set_trans_block_group(trans, inode);
2093 ret = btrfs_commit_transaction(trans, root);
2094 }
2095 return ret;
2096 }
2097
2098 /*
2099 * This is somewhat expensive, updating the tree every time the
2100 * inode changes. But, it is most likely to find the inode in cache.
2101 * FIXME, needs more benchmarking...there are no reasons other than performance
2102 * to keep or drop this code.
2103 */
2104 void btrfs_dirty_inode(struct inode *inode)
2105 {
2106 struct btrfs_root *root = BTRFS_I(inode)->root;
2107 struct btrfs_trans_handle *trans;
2108
2109 trans = btrfs_join_transaction(root, 1);
2110 btrfs_set_trans_block_group(trans, inode);
2111 btrfs_update_inode(trans, root, inode);
2112 btrfs_end_transaction(trans, root);
2113 }
2114
2115 static int btrfs_set_inode_index_count(struct inode *inode)
2116 {
2117 struct btrfs_root *root = BTRFS_I(inode)->root;
2118 struct btrfs_key key, found_key;
2119 struct btrfs_path *path;
2120 struct extent_buffer *leaf;
2121 int ret;
2122
2123 key.objectid = inode->i_ino;
2124 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2125 key.offset = (u64)-1;
2126
2127 path = btrfs_alloc_path();
2128 if (!path)
2129 return -ENOMEM;
2130
2131 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2132 if (ret < 0)
2133 goto out;
2134 /* FIXME: we should be able to handle this */
2135 if (ret == 0)
2136 goto out;
2137 ret = 0;
2138
2139 /*
2140 * MAGIC NUMBER EXPLANATION:
2141 * since we search a directory based on f_pos we have to start at 2
2142 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2143 * else has to start at 2
2144 */
2145 if (path->slots[0] == 0) {
2146 BTRFS_I(inode)->index_cnt = 2;
2147 goto out;
2148 }
2149
2150 path->slots[0]--;
2151
2152 leaf = path->nodes[0];
2153 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2154
2155 if (found_key.objectid != inode->i_ino ||
2156 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2157 BTRFS_I(inode)->index_cnt = 2;
2158 goto out;
2159 }
2160
2161 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2162 out:
2163 btrfs_free_path(path);
2164 return ret;
2165 }
2166
2167 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode)
2168 {
2169 int ret = 0;
2170
2171 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2172 ret = btrfs_set_inode_index_count(dir);
2173 if (ret)
2174 return ret;
2175 }
2176
2177 BTRFS_I(inode)->index = BTRFS_I(dir)->index_cnt;
2178 BTRFS_I(dir)->index_cnt++;
2179
2180 return ret;
2181 }
2182
2183 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2184 struct btrfs_root *root,
2185 struct inode *dir,
2186 const char *name, int name_len,
2187 u64 ref_objectid,
2188 u64 objectid,
2189 struct btrfs_block_group_cache *group,
2190 int mode)
2191 {
2192 struct inode *inode;
2193 struct btrfs_inode_item *inode_item;
2194 struct btrfs_block_group_cache *new_inode_group;
2195 struct btrfs_key *location;
2196 struct btrfs_path *path;
2197 struct btrfs_inode_ref *ref;
2198 struct btrfs_key key[2];
2199 u32 sizes[2];
2200 unsigned long ptr;
2201 int ret;
2202 int owner;
2203
2204 path = btrfs_alloc_path();
2205 BUG_ON(!path);
2206
2207 inode = new_inode(root->fs_info->sb);
2208 if (!inode)
2209 return ERR_PTR(-ENOMEM);
2210
2211 if (dir) {
2212 ret = btrfs_set_inode_index(dir, inode);
2213 if (ret)
2214 return ERR_PTR(ret);
2215 } else {
2216 BTRFS_I(inode)->index = 0;
2217 }
2218 /*
2219 * index_cnt is ignored for everything but a dir,
2220 * btrfs_get_inode_index_count has an explanation for the magic
2221 * number
2222 */
2223 BTRFS_I(inode)->index_cnt = 2;
2224
2225 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2226 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2227 inode->i_mapping, GFP_NOFS);
2228 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2229 inode->i_mapping, GFP_NOFS);
2230 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2231 mutex_init(&BTRFS_I(inode)->csum_mutex);
2232 mutex_init(&BTRFS_I(inode)->extent_mutex);
2233 BTRFS_I(inode)->delalloc_bytes = 0;
2234 BTRFS_I(inode)->disk_i_size = 0;
2235 BTRFS_I(inode)->root = root;
2236
2237 if (mode & S_IFDIR)
2238 owner = 0;
2239 else
2240 owner = 1;
2241 new_inode_group = btrfs_find_block_group(root, group, 0,
2242 BTRFS_BLOCK_GROUP_METADATA, owner);
2243 if (!new_inode_group) {
2244 printk("find_block group failed\n");
2245 new_inode_group = group;
2246 }
2247 BTRFS_I(inode)->block_group = new_inode_group;
2248 BTRFS_I(inode)->flags = 0;
2249
2250 key[0].objectid = objectid;
2251 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2252 key[0].offset = 0;
2253
2254 key[1].objectid = objectid;
2255 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2256 key[1].offset = ref_objectid;
2257
2258 sizes[0] = sizeof(struct btrfs_inode_item);
2259 sizes[1] = name_len + sizeof(*ref);
2260
2261 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2262 if (ret != 0)
2263 goto fail;
2264
2265 if (objectid > root->highest_inode)
2266 root->highest_inode = objectid;
2267
2268 inode->i_uid = current->fsuid;
2269 inode->i_gid = current->fsgid;
2270 inode->i_mode = mode;
2271 inode->i_ino = objectid;
2272 inode->i_blocks = 0;
2273 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2274 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2275 struct btrfs_inode_item);
2276 fill_inode_item(path->nodes[0], inode_item, inode);
2277
2278 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2279 struct btrfs_inode_ref);
2280 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2281 btrfs_set_inode_ref_index(path->nodes[0], ref, BTRFS_I(inode)->index);
2282 ptr = (unsigned long)(ref + 1);
2283 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2284
2285 btrfs_mark_buffer_dirty(path->nodes[0]);
2286 btrfs_free_path(path);
2287
2288 location = &BTRFS_I(inode)->location;
2289 location->objectid = objectid;
2290 location->offset = 0;
2291 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2292
2293 insert_inode_hash(inode);
2294 return inode;
2295 fail:
2296 if (dir)
2297 BTRFS_I(dir)->index_cnt--;
2298 btrfs_free_path(path);
2299 return ERR_PTR(ret);
2300 }
2301
2302 static inline u8 btrfs_inode_type(struct inode *inode)
2303 {
2304 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2305 }
2306
2307 static int btrfs_add_link(struct btrfs_trans_handle *trans,
2308 struct dentry *dentry, struct inode *inode,
2309 int add_backref)
2310 {
2311 int ret;
2312 struct btrfs_key key;
2313 struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
2314 struct inode *parent_inode = dentry->d_parent->d_inode;
2315
2316 key.objectid = inode->i_ino;
2317 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2318 key.offset = 0;
2319
2320 ret = btrfs_insert_dir_item(trans, root,
2321 dentry->d_name.name, dentry->d_name.len,
2322 dentry->d_parent->d_inode->i_ino,
2323 &key, btrfs_inode_type(inode),
2324 BTRFS_I(inode)->index);
2325 if (ret == 0) {
2326 if (add_backref) {
2327 ret = btrfs_insert_inode_ref(trans, root,
2328 dentry->d_name.name,
2329 dentry->d_name.len,
2330 inode->i_ino,
2331 parent_inode->i_ino,
2332 BTRFS_I(inode)->index);
2333 }
2334 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2335 dentry->d_name.len * 2);
2336 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2337 ret = btrfs_update_inode(trans, root,
2338 dentry->d_parent->d_inode);
2339 }
2340 return ret;
2341 }
2342
2343 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2344 struct dentry *dentry, struct inode *inode,
2345 int backref)
2346 {
2347 int err = btrfs_add_link(trans, dentry, inode, backref);
2348 if (!err) {
2349 d_instantiate(dentry, inode);
2350 return 0;
2351 }
2352 if (err > 0)
2353 err = -EEXIST;
2354 return err;
2355 }
2356
2357 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2358 int mode, dev_t rdev)
2359 {
2360 struct btrfs_trans_handle *trans;
2361 struct btrfs_root *root = BTRFS_I(dir)->root;
2362 struct inode *inode = NULL;
2363 int err;
2364 int drop_inode = 0;
2365 u64 objectid;
2366 unsigned long nr = 0;
2367
2368 if (!new_valid_dev(rdev))
2369 return -EINVAL;
2370
2371 err = btrfs_check_free_space(root, 1, 0);
2372 if (err)
2373 goto fail;
2374
2375 trans = btrfs_start_transaction(root, 1);
2376 btrfs_set_trans_block_group(trans, dir);
2377
2378 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2379 if (err) {
2380 err = -ENOSPC;
2381 goto out_unlock;
2382 }
2383
2384 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2385 dentry->d_name.len,
2386 dentry->d_parent->d_inode->i_ino, objectid,
2387 BTRFS_I(dir)->block_group, mode);
2388 err = PTR_ERR(inode);
2389 if (IS_ERR(inode))
2390 goto out_unlock;
2391
2392 err = btrfs_init_acl(inode, dir);
2393 if (err) {
2394 drop_inode = 1;
2395 goto out_unlock;
2396 }
2397
2398 btrfs_set_trans_block_group(trans, inode);
2399 err = btrfs_add_nondir(trans, dentry, inode, 0);
2400 if (err)
2401 drop_inode = 1;
2402 else {
2403 inode->i_op = &btrfs_special_inode_operations;
2404 init_special_inode(inode, inode->i_mode, rdev);
2405 btrfs_update_inode(trans, root, inode);
2406 }
2407 dir->i_sb->s_dirt = 1;
2408 btrfs_update_inode_block_group(trans, inode);
2409 btrfs_update_inode_block_group(trans, dir);
2410 out_unlock:
2411 nr = trans->blocks_used;
2412 btrfs_end_transaction_throttle(trans, root);
2413 fail:
2414 if (drop_inode) {
2415 inode_dec_link_count(inode);
2416 iput(inode);
2417 }
2418 btrfs_btree_balance_dirty(root, nr);
2419 return err;
2420 }
2421
2422 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2423 int mode, struct nameidata *nd)
2424 {
2425 struct btrfs_trans_handle *trans;
2426 struct btrfs_root *root = BTRFS_I(dir)->root;
2427 struct inode *inode = NULL;
2428 int err;
2429 int drop_inode = 0;
2430 unsigned long nr = 0;
2431 u64 objectid;
2432
2433 err = btrfs_check_free_space(root, 1, 0);
2434 if (err)
2435 goto fail;
2436 trans = btrfs_start_transaction(root, 1);
2437 btrfs_set_trans_block_group(trans, dir);
2438
2439 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2440 if (err) {
2441 err = -ENOSPC;
2442 goto out_unlock;
2443 }
2444
2445 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2446 dentry->d_name.len,
2447 dentry->d_parent->d_inode->i_ino,
2448 objectid, BTRFS_I(dir)->block_group, mode);
2449 err = PTR_ERR(inode);
2450 if (IS_ERR(inode))
2451 goto out_unlock;
2452
2453 err = btrfs_init_acl(inode, dir);
2454 if (err) {
2455 drop_inode = 1;
2456 goto out_unlock;
2457 }
2458
2459 btrfs_set_trans_block_group(trans, inode);
2460 err = btrfs_add_nondir(trans, dentry, inode, 0);
2461 if (err)
2462 drop_inode = 1;
2463 else {
2464 inode->i_mapping->a_ops = &btrfs_aops;
2465 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2466 inode->i_fop = &btrfs_file_operations;
2467 inode->i_op = &btrfs_file_inode_operations;
2468 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2469 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2470 inode->i_mapping, GFP_NOFS);
2471 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2472 inode->i_mapping, GFP_NOFS);
2473 mutex_init(&BTRFS_I(inode)->csum_mutex);
2474 mutex_init(&BTRFS_I(inode)->extent_mutex);
2475 BTRFS_I(inode)->delalloc_bytes = 0;
2476 BTRFS_I(inode)->disk_i_size = 0;
2477 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2478 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2479 }
2480 dir->i_sb->s_dirt = 1;
2481 btrfs_update_inode_block_group(trans, inode);
2482 btrfs_update_inode_block_group(trans, dir);
2483 out_unlock:
2484 nr = trans->blocks_used;
2485 btrfs_end_transaction_throttle(trans, root);
2486 fail:
2487 if (drop_inode) {
2488 inode_dec_link_count(inode);
2489 iput(inode);
2490 }
2491 btrfs_btree_balance_dirty(root, nr);
2492 return err;
2493 }
2494
2495 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2496 struct dentry *dentry)
2497 {
2498 struct btrfs_trans_handle *trans;
2499 struct btrfs_root *root = BTRFS_I(dir)->root;
2500 struct inode *inode = old_dentry->d_inode;
2501 unsigned long nr = 0;
2502 int err;
2503 int drop_inode = 0;
2504
2505 if (inode->i_nlink == 0)
2506 return -ENOENT;
2507
2508 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2509 inode->i_nlink++;
2510 #else
2511 inc_nlink(inode);
2512 #endif
2513 err = btrfs_check_free_space(root, 1, 0);
2514 if (err)
2515 goto fail;
2516 err = btrfs_set_inode_index(dir, inode);
2517 if (err)
2518 goto fail;
2519
2520 trans = btrfs_start_transaction(root, 1);
2521
2522 btrfs_set_trans_block_group(trans, dir);
2523 atomic_inc(&inode->i_count);
2524
2525 err = btrfs_add_nondir(trans, dentry, inode, 1);
2526
2527 if (err)
2528 drop_inode = 1;
2529
2530 dir->i_sb->s_dirt = 1;
2531 btrfs_update_inode_block_group(trans, dir);
2532 err = btrfs_update_inode(trans, root, inode);
2533
2534 if (err)
2535 drop_inode = 1;
2536
2537 nr = trans->blocks_used;
2538 btrfs_end_transaction_throttle(trans, root);
2539 fail:
2540 if (drop_inode) {
2541 inode_dec_link_count(inode);
2542 iput(inode);
2543 }
2544 btrfs_btree_balance_dirty(root, nr);
2545 return err;
2546 }
2547
2548 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2549 {
2550 struct inode *inode = NULL;
2551 struct btrfs_trans_handle *trans;
2552 struct btrfs_root *root = BTRFS_I(dir)->root;
2553 int err = 0;
2554 int drop_on_err = 0;
2555 u64 objectid = 0;
2556 unsigned long nr = 1;
2557
2558 err = btrfs_check_free_space(root, 1, 0);
2559 if (err)
2560 goto out_unlock;
2561
2562 trans = btrfs_start_transaction(root, 1);
2563 btrfs_set_trans_block_group(trans, dir);
2564
2565 if (IS_ERR(trans)) {
2566 err = PTR_ERR(trans);
2567 goto out_unlock;
2568 }
2569
2570 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2571 if (err) {
2572 err = -ENOSPC;
2573 goto out_unlock;
2574 }
2575
2576 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2577 dentry->d_name.len,
2578 dentry->d_parent->d_inode->i_ino, objectid,
2579 BTRFS_I(dir)->block_group, S_IFDIR | mode);
2580 if (IS_ERR(inode)) {
2581 err = PTR_ERR(inode);
2582 goto out_fail;
2583 }
2584
2585 drop_on_err = 1;
2586
2587 err = btrfs_init_acl(inode, dir);
2588 if (err)
2589 goto out_fail;
2590
2591 inode->i_op = &btrfs_dir_inode_operations;
2592 inode->i_fop = &btrfs_dir_file_operations;
2593 btrfs_set_trans_block_group(trans, inode);
2594
2595 btrfs_i_size_write(inode, 0);
2596 err = btrfs_update_inode(trans, root, inode);
2597 if (err)
2598 goto out_fail;
2599
2600 err = btrfs_add_link(trans, dentry, inode, 0);
2601 if (err)
2602 goto out_fail;
2603
2604 d_instantiate(dentry, inode);
2605 drop_on_err = 0;
2606 dir->i_sb->s_dirt = 1;
2607 btrfs_update_inode_block_group(trans, inode);
2608 btrfs_update_inode_block_group(trans, dir);
2609
2610 out_fail:
2611 nr = trans->blocks_used;
2612 btrfs_end_transaction_throttle(trans, root);
2613
2614 out_unlock:
2615 if (drop_on_err)
2616 iput(inode);
2617 btrfs_btree_balance_dirty(root, nr);
2618 return err;
2619 }
2620
2621 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2622 struct extent_map *existing,
2623 struct extent_map *em,
2624 u64 map_start, u64 map_len)
2625 {
2626 u64 start_diff;
2627
2628 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2629 start_diff = map_start - em->start;
2630 em->start = map_start;
2631 em->len = map_len;
2632 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2633 em->block_start += start_diff;
2634 return add_extent_mapping(em_tree, em);
2635 }
2636
2637 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2638 size_t pg_offset, u64 start, u64 len,
2639 int create)
2640 {
2641 int ret;
2642 int err = 0;
2643 u64 bytenr;
2644 u64 extent_start = 0;
2645 u64 extent_end = 0;
2646 u64 objectid = inode->i_ino;
2647 u32 found_type;
2648 struct btrfs_path *path = NULL;
2649 struct btrfs_root *root = BTRFS_I(inode)->root;
2650 struct btrfs_file_extent_item *item;
2651 struct extent_buffer *leaf;
2652 struct btrfs_key found_key;
2653 struct extent_map *em = NULL;
2654 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2655 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2656 struct btrfs_trans_handle *trans = NULL;
2657
2658 again:
2659 spin_lock(&em_tree->lock);
2660 em = lookup_extent_mapping(em_tree, start, len);
2661 if (em)
2662 em->bdev = root->fs_info->fs_devices->latest_bdev;
2663 spin_unlock(&em_tree->lock);
2664
2665 if (em) {
2666 if (em->start > start || em->start + em->len <= start)
2667 free_extent_map(em);
2668 else if (em->block_start == EXTENT_MAP_INLINE && page)
2669 free_extent_map(em);
2670 else
2671 goto out;
2672 }
2673 em = alloc_extent_map(GFP_NOFS);
2674 if (!em) {
2675 err = -ENOMEM;
2676 goto out;
2677 }
2678 em->bdev = root->fs_info->fs_devices->latest_bdev;
2679 em->start = EXTENT_MAP_HOLE;
2680 em->len = (u64)-1;
2681
2682 if (!path) {
2683 path = btrfs_alloc_path();
2684 BUG_ON(!path);
2685 }
2686
2687 ret = btrfs_lookup_file_extent(trans, root, path,
2688 objectid, start, trans != NULL);
2689 if (ret < 0) {
2690 err = ret;
2691 goto out;
2692 }
2693
2694 if (ret != 0) {
2695 if (path->slots[0] == 0)
2696 goto not_found;
2697 path->slots[0]--;
2698 }
2699
2700 leaf = path->nodes[0];
2701 item = btrfs_item_ptr(leaf, path->slots[0],
2702 struct btrfs_file_extent_item);
2703 /* are we inside the extent that was found? */
2704 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2705 found_type = btrfs_key_type(&found_key);
2706 if (found_key.objectid != objectid ||
2707 found_type != BTRFS_EXTENT_DATA_KEY) {
2708 goto not_found;
2709 }
2710
2711 found_type = btrfs_file_extent_type(leaf, item);
2712 extent_start = found_key.offset;
2713 if (found_type == BTRFS_FILE_EXTENT_REG) {
2714 extent_end = extent_start +
2715 btrfs_file_extent_num_bytes(leaf, item);
2716 err = 0;
2717 if (start < extent_start || start >= extent_end) {
2718 em->start = start;
2719 if (start < extent_start) {
2720 if (start + len <= extent_start)
2721 goto not_found;
2722 em->len = extent_end - extent_start;
2723 } else {
2724 em->len = len;
2725 }
2726 goto not_found_em;
2727 }
2728 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2729 if (bytenr == 0) {
2730 em->start = extent_start;
2731 em->len = extent_end - extent_start;
2732 em->block_start = EXTENT_MAP_HOLE;
2733 goto insert;
2734 }
2735 bytenr += btrfs_file_extent_offset(leaf, item);
2736 em->block_start = bytenr;
2737 em->start = extent_start;
2738 em->len = extent_end - extent_start;
2739 goto insert;
2740 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2741 u64 page_start;
2742 unsigned long ptr;
2743 char *map;
2744 size_t size;
2745 size_t extent_offset;
2746 size_t copy_size;
2747
2748 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2749 path->slots[0]));
2750 extent_end = (extent_start + size + root->sectorsize - 1) &
2751 ~((u64)root->sectorsize - 1);
2752 if (start < extent_start || start >= extent_end) {
2753 em->start = start;
2754 if (start < extent_start) {
2755 if (start + len <= extent_start)
2756 goto not_found;
2757 em->len = extent_end - extent_start;
2758 } else {
2759 em->len = len;
2760 }
2761 goto not_found_em;
2762 }
2763 em->block_start = EXTENT_MAP_INLINE;
2764
2765 if (!page) {
2766 em->start = extent_start;
2767 em->len = size;
2768 goto out;
2769 }
2770
2771 page_start = page_offset(page) + pg_offset;
2772 extent_offset = page_start - extent_start;
2773 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2774 size - extent_offset);
2775 em->start = extent_start + extent_offset;
2776 em->len = (copy_size + root->sectorsize - 1) &
2777 ~((u64)root->sectorsize - 1);
2778 map = kmap(page);
2779 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2780 if (create == 0 && !PageUptodate(page)) {
2781 read_extent_buffer(leaf, map + pg_offset, ptr,
2782 copy_size);
2783 flush_dcache_page(page);
2784 } else if (create && PageUptodate(page)) {
2785 if (!trans) {
2786 kunmap(page);
2787 free_extent_map(em);
2788 em = NULL;
2789 btrfs_release_path(root, path);
2790 trans = btrfs_join_transaction(root, 1);
2791 goto again;
2792 }
2793 write_extent_buffer(leaf, map + pg_offset, ptr,
2794 copy_size);
2795 btrfs_mark_buffer_dirty(leaf);
2796 }
2797 kunmap(page);
2798 set_extent_uptodate(io_tree, em->start,
2799 extent_map_end(em) - 1, GFP_NOFS);
2800 goto insert;
2801 } else {
2802 printk("unkknown found_type %d\n", found_type);
2803 WARN_ON(1);
2804 }
2805 not_found:
2806 em->start = start;
2807 em->len = len;
2808 not_found_em:
2809 em->block_start = EXTENT_MAP_HOLE;
2810 insert:
2811 btrfs_release_path(root, path);
2812 if (em->start > start || extent_map_end(em) <= start) {
2813 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2814 err = -EIO;
2815 goto out;
2816 }
2817
2818 err = 0;
2819 spin_lock(&em_tree->lock);
2820 ret = add_extent_mapping(em_tree, em);
2821 /* it is possible that someone inserted the extent into the tree
2822 * while we had the lock dropped. It is also possible that
2823 * an overlapping map exists in the tree
2824 */
2825 if (ret == -EEXIST) {
2826 struct extent_map *existing;
2827
2828 ret = 0;
2829
2830 existing = lookup_extent_mapping(em_tree, start, len);
2831 if (existing && (existing->start > start ||
2832 existing->start + existing->len <= start)) {
2833 free_extent_map(existing);
2834 existing = NULL;
2835 }
2836 if (!existing) {
2837 existing = lookup_extent_mapping(em_tree, em->start,
2838 em->len);
2839 if (existing) {
2840 err = merge_extent_mapping(em_tree, existing,
2841 em, start,
2842 root->sectorsize);
2843 free_extent_map(existing);
2844 if (err) {
2845 free_extent_map(em);
2846 em = NULL;
2847 }
2848 } else {
2849 err = -EIO;
2850 printk("failing to insert %Lu %Lu\n",
2851 start, len);
2852 free_extent_map(em);
2853 em = NULL;
2854 }
2855 } else {
2856 free_extent_map(em);
2857 em = existing;
2858 err = 0;
2859 }
2860 }
2861 spin_unlock(&em_tree->lock);
2862 out:
2863 if (path)
2864 btrfs_free_path(path);
2865 if (trans) {
2866 ret = btrfs_end_transaction(trans, root);
2867 if (!err) {
2868 err = ret;
2869 }
2870 }
2871 if (err) {
2872 free_extent_map(em);
2873 WARN_ON(1);
2874 return ERR_PTR(err);
2875 }
2876 return em;
2877 }
2878
2879 #if 0 /* waiting for O_DIRECT reads */
2880 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2881 struct buffer_head *bh_result, int create)
2882 {
2883 struct extent_map *em;
2884 u64 start = (u64)iblock << inode->i_blkbits;
2885 struct btrfs_multi_bio *multi = NULL;
2886 struct btrfs_root *root = BTRFS_I(inode)->root;
2887 u64 len;
2888 u64 logical;
2889 u64 map_length;
2890 int ret = 0;
2891
2892 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2893
2894 if (!em || IS_ERR(em))
2895 goto out;
2896
2897 if (em->start > start || em->start + em->len <= start) {
2898 goto out;
2899 }
2900
2901 if (em->block_start == EXTENT_MAP_INLINE) {
2902 ret = -EINVAL;
2903 goto out;
2904 }
2905
2906 len = em->start + em->len - start;
2907 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2908
2909 if (em->block_start == EXTENT_MAP_HOLE ||
2910 em->block_start == EXTENT_MAP_DELALLOC) {
2911 bh_result->b_size = len;
2912 goto out;
2913 }
2914
2915 logical = start - em->start;
2916 logical = em->block_start + logical;
2917
2918 map_length = len;
2919 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2920 logical, &map_length, &multi, 0);
2921 BUG_ON(ret);
2922 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2923 bh_result->b_size = min(map_length, len);
2924
2925 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2926 set_buffer_mapped(bh_result);
2927 kfree(multi);
2928 out:
2929 free_extent_map(em);
2930 return ret;
2931 }
2932 #endif
2933
2934 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2935 const struct iovec *iov, loff_t offset,
2936 unsigned long nr_segs)
2937 {
2938 return -EINVAL;
2939 #if 0
2940 struct file *file = iocb->ki_filp;
2941 struct inode *inode = file->f_mapping->host;
2942
2943 if (rw == WRITE)
2944 return -EINVAL;
2945
2946 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2947 offset, nr_segs, btrfs_get_block, NULL);
2948 #endif
2949 }
2950
2951 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2952 {
2953 return extent_bmap(mapping, iblock, btrfs_get_extent);
2954 }
2955
2956 int btrfs_readpage(struct file *file, struct page *page)
2957 {
2958 struct extent_io_tree *tree;
2959 tree = &BTRFS_I(page->mapping->host)->io_tree;
2960 return extent_read_full_page(tree, page, btrfs_get_extent);
2961 }
2962
2963 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2964 {
2965 struct extent_io_tree *tree;
2966
2967
2968 if (current->flags & PF_MEMALLOC) {
2969 redirty_page_for_writepage(wbc, page);
2970 unlock_page(page);
2971 return 0;
2972 }
2973 tree = &BTRFS_I(page->mapping->host)->io_tree;
2974 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2975 }
2976
2977 int btrfs_writepages(struct address_space *mapping,
2978 struct writeback_control *wbc)
2979 {
2980 struct extent_io_tree *tree;
2981 tree = &BTRFS_I(mapping->host)->io_tree;
2982 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2983 }
2984
2985 static int
2986 btrfs_readpages(struct file *file, struct address_space *mapping,
2987 struct list_head *pages, unsigned nr_pages)
2988 {
2989 struct extent_io_tree *tree;
2990 tree = &BTRFS_I(mapping->host)->io_tree;
2991 return extent_readpages(tree, mapping, pages, nr_pages,
2992 btrfs_get_extent);
2993 }
2994 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2995 {
2996 struct extent_io_tree *tree;
2997 struct extent_map_tree *map;
2998 int ret;
2999
3000 tree = &BTRFS_I(page->mapping->host)->io_tree;
3001 map = &BTRFS_I(page->mapping->host)->extent_tree;
3002 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3003 if (ret == 1) {
3004 ClearPagePrivate(page);
3005 set_page_private(page, 0);
3006 page_cache_release(page);
3007 }
3008 return ret;
3009 }
3010
3011 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3012 {
3013 return __btrfs_releasepage(page, gfp_flags);
3014 }
3015
3016 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3017 {
3018 struct extent_io_tree *tree;
3019 struct btrfs_ordered_extent *ordered;
3020 u64 page_start = page_offset(page);
3021 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3022
3023 wait_on_page_writeback(page);
3024 tree = &BTRFS_I(page->mapping->host)->io_tree;
3025 if (offset) {
3026 btrfs_releasepage(page, GFP_NOFS);
3027 return;
3028 }
3029
3030 lock_extent(tree, page_start, page_end, GFP_NOFS);
3031 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3032 page_offset(page));
3033 if (ordered) {
3034 /*
3035 * IO on this page will never be started, so we need
3036 * to account for any ordered extents now
3037 */
3038 clear_extent_bit(tree, page_start, page_end,
3039 EXTENT_DIRTY | EXTENT_DELALLOC |
3040 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3041 btrfs_finish_ordered_io(page->mapping->host,
3042 page_start, page_end);
3043 btrfs_put_ordered_extent(ordered);
3044 lock_extent(tree, page_start, page_end, GFP_NOFS);
3045 }
3046 clear_extent_bit(tree, page_start, page_end,
3047 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3048 EXTENT_ORDERED,
3049 1, 1, GFP_NOFS);
3050 __btrfs_releasepage(page, GFP_NOFS);
3051
3052 ClearPageChecked(page);
3053 if (PagePrivate(page)) {
3054 ClearPagePrivate(page);
3055 set_page_private(page, 0);
3056 page_cache_release(page);
3057 }
3058 }
3059
3060 /*
3061 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3062 * called from a page fault handler when a page is first dirtied. Hence we must
3063 * be careful to check for EOF conditions here. We set the page up correctly
3064 * for a written page which means we get ENOSPC checking when writing into
3065 * holes and correct delalloc and unwritten extent mapping on filesystems that
3066 * support these features.
3067 *
3068 * We are not allowed to take the i_mutex here so we have to play games to
3069 * protect against truncate races as the page could now be beyond EOF. Because
3070 * vmtruncate() writes the inode size before removing pages, once we have the
3071 * page lock we can determine safely if the page is beyond EOF. If it is not
3072 * beyond EOF, then the page is guaranteed safe against truncation until we
3073 * unlock the page.
3074 */
3075 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3076 {
3077 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3078 struct btrfs_root *root = BTRFS_I(inode)->root;
3079 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3080 struct btrfs_ordered_extent *ordered;
3081 char *kaddr;
3082 unsigned long zero_start;
3083 loff_t size;
3084 int ret;
3085 u64 page_start;
3086 u64 page_end;
3087
3088 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3089 if (ret)
3090 goto out;
3091
3092 ret = -EINVAL;
3093 again:
3094 lock_page(page);
3095 size = i_size_read(inode);
3096 page_start = page_offset(page);
3097 page_end = page_start + PAGE_CACHE_SIZE - 1;
3098
3099 if ((page->mapping != inode->i_mapping) ||
3100 (page_start >= size)) {
3101 /* page got truncated out from underneath us */
3102 goto out_unlock;
3103 }
3104 wait_on_page_writeback(page);
3105
3106 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3107 set_page_extent_mapped(page);
3108
3109 /*
3110 * we can't set the delalloc bits if there are pending ordered
3111 * extents. Drop our locks and wait for them to finish
3112 */
3113 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3114 if (ordered) {
3115 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3116 unlock_page(page);
3117 btrfs_start_ordered_extent(inode, ordered, 1);
3118 btrfs_put_ordered_extent(ordered);
3119 goto again;
3120 }
3121
3122 set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start,
3123 page_end, GFP_NOFS);
3124 ret = 0;
3125
3126 /* page is wholly or partially inside EOF */
3127 if (page_start + PAGE_CACHE_SIZE > size)
3128 zero_start = size & ~PAGE_CACHE_MASK;
3129 else
3130 zero_start = PAGE_CACHE_SIZE;
3131
3132 if (zero_start != PAGE_CACHE_SIZE) {
3133 kaddr = kmap(page);
3134 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3135 flush_dcache_page(page);
3136 kunmap(page);
3137 }
3138 ClearPageChecked(page);
3139 set_page_dirty(page);
3140 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3141
3142 out_unlock:
3143 unlock_page(page);
3144 out:
3145 return ret;
3146 }
3147
3148 static void btrfs_truncate(struct inode *inode)
3149 {
3150 struct btrfs_root *root = BTRFS_I(inode)->root;
3151 int ret;
3152 struct btrfs_trans_handle *trans;
3153 unsigned long nr;
3154 u64 mask = root->sectorsize - 1;
3155
3156 if (!S_ISREG(inode->i_mode))
3157 return;
3158 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3159 return;
3160
3161 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3162 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3163
3164 trans = btrfs_start_transaction(root, 1);
3165 btrfs_set_trans_block_group(trans, inode);
3166 btrfs_i_size_write(inode, inode->i_size);
3167
3168 ret = btrfs_orphan_add(trans, inode);
3169 if (ret)
3170 goto out;
3171 /* FIXME, add redo link to tree so we don't leak on crash */
3172 ret = btrfs_truncate_in_trans(trans, root, inode,
3173 BTRFS_EXTENT_DATA_KEY);
3174 btrfs_update_inode(trans, root, inode);
3175
3176 ret = btrfs_orphan_del(trans, inode);
3177 BUG_ON(ret);
3178
3179 out:
3180 nr = trans->blocks_used;
3181 ret = btrfs_end_transaction_throttle(trans, root);
3182 BUG_ON(ret);
3183 btrfs_btree_balance_dirty(root, nr);
3184 }
3185
3186 /*
3187 * Invalidate a single dcache entry at the root of the filesystem.
3188 * Needed after creation of snapshot or subvolume.
3189 */
3190 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3191 int namelen)
3192 {
3193 struct dentry *alias, *entry;
3194 struct qstr qstr;
3195
3196 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3197 if (alias) {
3198 qstr.name = name;
3199 qstr.len = namelen;
3200 /* change me if btrfs ever gets a d_hash operation */
3201 qstr.hash = full_name_hash(qstr.name, qstr.len);
3202 entry = d_lookup(alias, &qstr);
3203 dput(alias);
3204 if (entry) {
3205 d_invalidate(entry);
3206 dput(entry);
3207 }
3208 }
3209 }
3210
3211 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3212 struct btrfs_trans_handle *trans, u64 new_dirid,
3213 struct btrfs_block_group_cache *block_group)
3214 {
3215 struct inode *inode;
3216
3217 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3218 new_dirid, block_group, S_IFDIR | 0700);
3219 if (IS_ERR(inode))
3220 return PTR_ERR(inode);
3221 inode->i_op = &btrfs_dir_inode_operations;
3222 inode->i_fop = &btrfs_dir_file_operations;
3223 new_root->inode = inode;
3224
3225 inode->i_nlink = 1;
3226 btrfs_i_size_write(inode, 0);
3227
3228 return btrfs_update_inode(trans, new_root, inode);
3229 }
3230
3231 unsigned long btrfs_force_ra(struct address_space *mapping,
3232 struct file_ra_state *ra, struct file *file,
3233 pgoff_t offset, pgoff_t last_index)
3234 {
3235 pgoff_t req_size = last_index - offset + 1;
3236
3237 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3238 offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3239 return offset;
3240 #else
3241 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3242 return offset + req_size;
3243 #endif
3244 }
3245
3246 struct inode *btrfs_alloc_inode(struct super_block *sb)
3247 {
3248 struct btrfs_inode *ei;
3249
3250 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3251 if (!ei)
3252 return NULL;
3253 ei->last_trans = 0;
3254 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3255 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3256 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3257 INIT_LIST_HEAD(&ei->i_orphan);
3258 return &ei->vfs_inode;
3259 }
3260
3261 void btrfs_destroy_inode(struct inode *inode)
3262 {
3263 struct btrfs_ordered_extent *ordered;
3264 WARN_ON(!list_empty(&inode->i_dentry));
3265 WARN_ON(inode->i_data.nrpages);
3266
3267 if (BTRFS_I(inode)->i_acl &&
3268 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3269 posix_acl_release(BTRFS_I(inode)->i_acl);
3270 if (BTRFS_I(inode)->i_default_acl &&
3271 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3272 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3273
3274 spin_lock(&BTRFS_I(inode)->root->orphan_lock);
3275 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3276 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3277 " list\n", inode->i_ino);
3278 dump_stack();
3279 }
3280 spin_unlock(&BTRFS_I(inode)->root->orphan_lock);
3281
3282 while(1) {
3283 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3284 if (!ordered)
3285 break;
3286 else {
3287 printk("found ordered extent %Lu %Lu\n",
3288 ordered->file_offset, ordered->len);
3289 btrfs_remove_ordered_extent(inode, ordered);
3290 btrfs_put_ordered_extent(ordered);
3291 btrfs_put_ordered_extent(ordered);
3292 }
3293 }
3294 btrfs_drop_extent_cache(inode, 0, (u64)-1);
3295 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3296 }
3297
3298 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3299 static void init_once(struct kmem_cache * cachep, void *foo)
3300 #else
3301 static void init_once(void * foo, struct kmem_cache * cachep,
3302 unsigned long flags)
3303 #endif
3304 {
3305 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3306
3307 inode_init_once(&ei->vfs_inode);
3308 }
3309
3310 void btrfs_destroy_cachep(void)
3311 {
3312 if (btrfs_inode_cachep)
3313 kmem_cache_destroy(btrfs_inode_cachep);
3314 if (btrfs_trans_handle_cachep)
3315 kmem_cache_destroy(btrfs_trans_handle_cachep);
3316 if (btrfs_transaction_cachep)
3317 kmem_cache_destroy(btrfs_transaction_cachep);
3318 if (btrfs_bit_radix_cachep)
3319 kmem_cache_destroy(btrfs_bit_radix_cachep);
3320 if (btrfs_path_cachep)
3321 kmem_cache_destroy(btrfs_path_cachep);
3322 }
3323
3324 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3325 unsigned long extra_flags,
3326 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3327 void (*ctor)(struct kmem_cache *, void *)
3328 #else
3329 void (*ctor)(void *, struct kmem_cache *,
3330 unsigned long)
3331 #endif
3332 )
3333 {
3334 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3335 SLAB_MEM_SPREAD | extra_flags), ctor
3336 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3337 ,NULL
3338 #endif
3339 );
3340 }
3341
3342 int btrfs_init_cachep(void)
3343 {
3344 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3345 sizeof(struct btrfs_inode),
3346 0, init_once);
3347 if (!btrfs_inode_cachep)
3348 goto fail;
3349 btrfs_trans_handle_cachep =
3350 btrfs_cache_create("btrfs_trans_handle_cache",
3351 sizeof(struct btrfs_trans_handle),
3352 0, NULL);
3353 if (!btrfs_trans_handle_cachep)
3354 goto fail;
3355 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3356 sizeof(struct btrfs_transaction),
3357 0, NULL);
3358 if (!btrfs_transaction_cachep)
3359 goto fail;
3360 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3361 sizeof(struct btrfs_path),
3362 0, NULL);
3363 if (!btrfs_path_cachep)
3364 goto fail;
3365 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3366 SLAB_DESTROY_BY_RCU, NULL);
3367 if (!btrfs_bit_radix_cachep)
3368 goto fail;
3369 return 0;
3370 fail:
3371 btrfs_destroy_cachep();
3372 return -ENOMEM;
3373 }
3374
3375 static int btrfs_getattr(struct vfsmount *mnt,
3376 struct dentry *dentry, struct kstat *stat)
3377 {
3378 struct inode *inode = dentry->d_inode;
3379 generic_fillattr(inode, stat);
3380 stat->blksize = PAGE_CACHE_SIZE;
3381 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3382 return 0;
3383 }
3384
3385 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3386 struct inode * new_dir,struct dentry *new_dentry)
3387 {
3388 struct btrfs_trans_handle *trans;
3389 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3390 struct inode *new_inode = new_dentry->d_inode;
3391 struct inode *old_inode = old_dentry->d_inode;
3392 struct timespec ctime = CURRENT_TIME;
3393 int ret;
3394
3395 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3396 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3397 return -ENOTEMPTY;
3398 }
3399
3400 ret = btrfs_check_free_space(root, 1, 0);
3401 if (ret)
3402 goto out_unlock;
3403
3404 trans = btrfs_start_transaction(root, 1);
3405
3406 btrfs_set_trans_block_group(trans, new_dir);
3407
3408 old_dentry->d_inode->i_nlink++;
3409 old_dir->i_ctime = old_dir->i_mtime = ctime;
3410 new_dir->i_ctime = new_dir->i_mtime = ctime;
3411 old_inode->i_ctime = ctime;
3412
3413 ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
3414 if (ret)
3415 goto out_fail;
3416
3417 if (new_inode) {
3418 new_inode->i_ctime = CURRENT_TIME;
3419 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
3420 if (ret)
3421 goto out_fail;
3422 if (new_inode->i_nlink == 0) {
3423 ret = btrfs_orphan_add(trans, new_inode);
3424 if (ret)
3425 goto out_fail;
3426 }
3427 }
3428 ret = btrfs_set_inode_index(new_dir, old_inode);
3429 if (ret)
3430 goto out_fail;
3431
3432 ret = btrfs_add_link(trans, new_dentry, old_inode, 1);
3433 if (ret)
3434 goto out_fail;
3435
3436 out_fail:
3437 btrfs_end_transaction_throttle(trans, root);
3438 out_unlock:
3439 return ret;
3440 }
3441
3442 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3443 const char *symname)
3444 {
3445 struct btrfs_trans_handle *trans;
3446 struct btrfs_root *root = BTRFS_I(dir)->root;
3447 struct btrfs_path *path;
3448 struct btrfs_key key;
3449 struct inode *inode = NULL;
3450 int err;
3451 int drop_inode = 0;
3452 u64 objectid;
3453 int name_len;
3454 int datasize;
3455 unsigned long ptr;
3456 struct btrfs_file_extent_item *ei;
3457 struct extent_buffer *leaf;
3458 unsigned long nr = 0;
3459
3460 name_len = strlen(symname) + 1;
3461 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3462 return -ENAMETOOLONG;
3463
3464 err = btrfs_check_free_space(root, 1, 0);
3465 if (err)
3466 goto out_fail;
3467
3468 trans = btrfs_start_transaction(root, 1);
3469 btrfs_set_trans_block_group(trans, dir);
3470
3471 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3472 if (err) {
3473 err = -ENOSPC;
3474 goto out_unlock;
3475 }
3476
3477 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3478 dentry->d_name.len,
3479 dentry->d_parent->d_inode->i_ino, objectid,
3480 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO);
3481 err = PTR_ERR(inode);
3482 if (IS_ERR(inode))
3483 goto out_unlock;
3484
3485 err = btrfs_init_acl(inode, dir);
3486 if (err) {
3487 drop_inode = 1;
3488 goto out_unlock;
3489 }
3490
3491 btrfs_set_trans_block_group(trans, inode);
3492 err = btrfs_add_nondir(trans, dentry, inode, 0);
3493 if (err)
3494 drop_inode = 1;
3495 else {
3496 inode->i_mapping->a_ops = &btrfs_aops;
3497 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3498 inode->i_fop = &btrfs_file_operations;
3499 inode->i_op = &btrfs_file_inode_operations;
3500 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3501 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3502 inode->i_mapping, GFP_NOFS);
3503 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3504 inode->i_mapping, GFP_NOFS);
3505 mutex_init(&BTRFS_I(inode)->csum_mutex);
3506 mutex_init(&BTRFS_I(inode)->extent_mutex);
3507 BTRFS_I(inode)->delalloc_bytes = 0;
3508 BTRFS_I(inode)->disk_i_size = 0;
3509 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3510 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3511 }
3512 dir->i_sb->s_dirt = 1;
3513 btrfs_update_inode_block_group(trans, inode);
3514 btrfs_update_inode_block_group(trans, dir);
3515 if (drop_inode)
3516 goto out_unlock;
3517
3518 path = btrfs_alloc_path();
3519 BUG_ON(!path);
3520 key.objectid = inode->i_ino;
3521 key.offset = 0;
3522 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3523 datasize = btrfs_file_extent_calc_inline_size(name_len);
3524 err = btrfs_insert_empty_item(trans, root, path, &key,
3525 datasize);
3526 if (err) {
3527 drop_inode = 1;
3528 goto out_unlock;
3529 }
3530 leaf = path->nodes[0];
3531 ei = btrfs_item_ptr(leaf, path->slots[0],
3532 struct btrfs_file_extent_item);
3533 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3534 btrfs_set_file_extent_type(leaf, ei,
3535 BTRFS_FILE_EXTENT_INLINE);
3536 ptr = btrfs_file_extent_inline_start(ei);
3537 write_extent_buffer(leaf, symname, ptr, name_len);
3538 btrfs_mark_buffer_dirty(leaf);
3539 btrfs_free_path(path);
3540
3541 inode->i_op = &btrfs_symlink_inode_operations;
3542 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3543 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3544 btrfs_i_size_write(inode, name_len - 1);
3545 err = btrfs_update_inode(trans, root, inode);
3546 if (err)
3547 drop_inode = 1;
3548
3549 out_unlock:
3550 nr = trans->blocks_used;
3551 btrfs_end_transaction_throttle(trans, root);
3552 out_fail:
3553 if (drop_inode) {
3554 inode_dec_link_count(inode);
3555 iput(inode);
3556 }
3557 btrfs_btree_balance_dirty(root, nr);
3558 return err;
3559 }
3560
3561 static int btrfs_set_page_dirty(struct page *page)
3562 {
3563 return __set_page_dirty_nobuffers(page);
3564 }
3565
3566 static int btrfs_permission(struct inode *inode, int mask,
3567 struct nameidata *nd)
3568 {
3569 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3570 return -EACCES;
3571 return generic_permission(inode, mask, btrfs_check_acl);
3572 }
3573
3574 static struct inode_operations btrfs_dir_inode_operations = {
3575 .lookup = btrfs_lookup,
3576 .create = btrfs_create,
3577 .unlink = btrfs_unlink,
3578 .link = btrfs_link,
3579 .mkdir = btrfs_mkdir,
3580 .rmdir = btrfs_rmdir,
3581 .rename = btrfs_rename,
3582 .symlink = btrfs_symlink,
3583 .setattr = btrfs_setattr,
3584 .mknod = btrfs_mknod,
3585 .setxattr = generic_setxattr,
3586 .getxattr = generic_getxattr,
3587 .listxattr = btrfs_listxattr,
3588 .removexattr = generic_removexattr,
3589 .permission = btrfs_permission,
3590 };
3591 static struct inode_operations btrfs_dir_ro_inode_operations = {
3592 .lookup = btrfs_lookup,
3593 .permission = btrfs_permission,
3594 };
3595 static struct file_operations btrfs_dir_file_operations = {
3596 .llseek = generic_file_llseek,
3597 .read = generic_read_dir,
3598 .readdir = btrfs_readdir,
3599 .unlocked_ioctl = btrfs_ioctl,
3600 #ifdef CONFIG_COMPAT
3601 .compat_ioctl = btrfs_ioctl,
3602 #endif
3603 .release = btrfs_release_file,
3604 };
3605
3606 static struct extent_io_ops btrfs_extent_io_ops = {
3607 .fill_delalloc = run_delalloc_range,
3608 .submit_bio_hook = btrfs_submit_bio_hook,
3609 .merge_bio_hook = btrfs_merge_bio_hook,
3610 .readpage_io_hook = btrfs_readpage_io_hook,
3611 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3612 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3613 .writepage_start_hook = btrfs_writepage_start_hook,
3614 .readpage_io_failed_hook = btrfs_io_failed_hook,
3615 .set_bit_hook = btrfs_set_bit_hook,
3616 .clear_bit_hook = btrfs_clear_bit_hook,
3617 };
3618
3619 static struct address_space_operations btrfs_aops = {
3620 .readpage = btrfs_readpage,
3621 .writepage = btrfs_writepage,
3622 .writepages = btrfs_writepages,
3623 .readpages = btrfs_readpages,
3624 .sync_page = block_sync_page,
3625 .bmap = btrfs_bmap,
3626 .direct_IO = btrfs_direct_IO,
3627 .invalidatepage = btrfs_invalidatepage,
3628 .releasepage = btrfs_releasepage,
3629 .set_page_dirty = btrfs_set_page_dirty,
3630 };
3631
3632 static struct address_space_operations btrfs_symlink_aops = {
3633 .readpage = btrfs_readpage,
3634 .writepage = btrfs_writepage,
3635 .invalidatepage = btrfs_invalidatepage,
3636 .releasepage = btrfs_releasepage,
3637 };
3638
3639 static struct inode_operations btrfs_file_inode_operations = {
3640 .truncate = btrfs_truncate,
3641 .getattr = btrfs_getattr,
3642 .setattr = btrfs_setattr,
3643 .setxattr = generic_setxattr,
3644 .getxattr = generic_getxattr,
3645 .listxattr = btrfs_listxattr,
3646 .removexattr = generic_removexattr,
3647 .permission = btrfs_permission,
3648 };
3649 static struct inode_operations btrfs_special_inode_operations = {
3650 .getattr = btrfs_getattr,
3651 .setattr = btrfs_setattr,
3652 .permission = btrfs_permission,
3653 .setxattr = generic_setxattr,
3654 .getxattr = generic_getxattr,
3655 .listxattr = btrfs_listxattr,
3656 .removexattr = generic_removexattr,
3657 };
3658 static struct inode_operations btrfs_symlink_inode_operations = {
3659 .readlink = generic_readlink,
3660 .follow_link = page_follow_link_light,
3661 .put_link = page_put_link,
3662 .permission = btrfs_permission,
3663 };
This page took 0.170153 seconds and 6 git commands to generate.