Btrfs: use rcu to protect device->name
[deliverable/linux.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56
57 /* Mask out flags that are inappropriate for the given type of inode. */
58 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
59 {
60 if (S_ISDIR(mode))
61 return flags;
62 else if (S_ISREG(mode))
63 return flags & ~FS_DIRSYNC_FL;
64 else
65 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
66 }
67
68 /*
69 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
70 */
71 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
72 {
73 unsigned int iflags = 0;
74
75 if (flags & BTRFS_INODE_SYNC)
76 iflags |= FS_SYNC_FL;
77 if (flags & BTRFS_INODE_IMMUTABLE)
78 iflags |= FS_IMMUTABLE_FL;
79 if (flags & BTRFS_INODE_APPEND)
80 iflags |= FS_APPEND_FL;
81 if (flags & BTRFS_INODE_NODUMP)
82 iflags |= FS_NODUMP_FL;
83 if (flags & BTRFS_INODE_NOATIME)
84 iflags |= FS_NOATIME_FL;
85 if (flags & BTRFS_INODE_DIRSYNC)
86 iflags |= FS_DIRSYNC_FL;
87 if (flags & BTRFS_INODE_NODATACOW)
88 iflags |= FS_NOCOW_FL;
89
90 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
91 iflags |= FS_COMPR_FL;
92 else if (flags & BTRFS_INODE_NOCOMPRESS)
93 iflags |= FS_NOCOMP_FL;
94
95 return iflags;
96 }
97
98 /*
99 * Update inode->i_flags based on the btrfs internal flags.
100 */
101 void btrfs_update_iflags(struct inode *inode)
102 {
103 struct btrfs_inode *ip = BTRFS_I(inode);
104
105 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
106
107 if (ip->flags & BTRFS_INODE_SYNC)
108 inode->i_flags |= S_SYNC;
109 if (ip->flags & BTRFS_INODE_IMMUTABLE)
110 inode->i_flags |= S_IMMUTABLE;
111 if (ip->flags & BTRFS_INODE_APPEND)
112 inode->i_flags |= S_APPEND;
113 if (ip->flags & BTRFS_INODE_NOATIME)
114 inode->i_flags |= S_NOATIME;
115 if (ip->flags & BTRFS_INODE_DIRSYNC)
116 inode->i_flags |= S_DIRSYNC;
117 }
118
119 /*
120 * Inherit flags from the parent inode.
121 *
122 * Currently only the compression flags and the cow flags are inherited.
123 */
124 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
125 {
126 unsigned int flags;
127
128 if (!dir)
129 return;
130
131 flags = BTRFS_I(dir)->flags;
132
133 if (flags & BTRFS_INODE_NOCOMPRESS) {
134 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
135 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
136 } else if (flags & BTRFS_INODE_COMPRESS) {
137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
138 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
139 }
140
141 if (flags & BTRFS_INODE_NODATACOW)
142 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
143
144 btrfs_update_iflags(inode);
145 }
146
147 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
148 {
149 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
150 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
151
152 if (copy_to_user(arg, &flags, sizeof(flags)))
153 return -EFAULT;
154 return 0;
155 }
156
157 static int check_flags(unsigned int flags)
158 {
159 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
160 FS_NOATIME_FL | FS_NODUMP_FL | \
161 FS_SYNC_FL | FS_DIRSYNC_FL | \
162 FS_NOCOMP_FL | FS_COMPR_FL |
163 FS_NOCOW_FL))
164 return -EOPNOTSUPP;
165
166 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
167 return -EINVAL;
168
169 return 0;
170 }
171
172 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
173 {
174 struct inode *inode = file->f_path.dentry->d_inode;
175 struct btrfs_inode *ip = BTRFS_I(inode);
176 struct btrfs_root *root = ip->root;
177 struct btrfs_trans_handle *trans;
178 unsigned int flags, oldflags;
179 int ret;
180 u64 ip_oldflags;
181 unsigned int i_oldflags;
182
183 if (btrfs_root_readonly(root))
184 return -EROFS;
185
186 if (copy_from_user(&flags, arg, sizeof(flags)))
187 return -EFAULT;
188
189 ret = check_flags(flags);
190 if (ret)
191 return ret;
192
193 if (!inode_owner_or_capable(inode))
194 return -EACCES;
195
196 mutex_lock(&inode->i_mutex);
197
198 ip_oldflags = ip->flags;
199 i_oldflags = inode->i_flags;
200
201 flags = btrfs_mask_flags(inode->i_mode, flags);
202 oldflags = btrfs_flags_to_ioctl(ip->flags);
203 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
204 if (!capable(CAP_LINUX_IMMUTABLE)) {
205 ret = -EPERM;
206 goto out_unlock;
207 }
208 }
209
210 ret = mnt_want_write_file(file);
211 if (ret)
212 goto out_unlock;
213
214 if (flags & FS_SYNC_FL)
215 ip->flags |= BTRFS_INODE_SYNC;
216 else
217 ip->flags &= ~BTRFS_INODE_SYNC;
218 if (flags & FS_IMMUTABLE_FL)
219 ip->flags |= BTRFS_INODE_IMMUTABLE;
220 else
221 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
222 if (flags & FS_APPEND_FL)
223 ip->flags |= BTRFS_INODE_APPEND;
224 else
225 ip->flags &= ~BTRFS_INODE_APPEND;
226 if (flags & FS_NODUMP_FL)
227 ip->flags |= BTRFS_INODE_NODUMP;
228 else
229 ip->flags &= ~BTRFS_INODE_NODUMP;
230 if (flags & FS_NOATIME_FL)
231 ip->flags |= BTRFS_INODE_NOATIME;
232 else
233 ip->flags &= ~BTRFS_INODE_NOATIME;
234 if (flags & FS_DIRSYNC_FL)
235 ip->flags |= BTRFS_INODE_DIRSYNC;
236 else
237 ip->flags &= ~BTRFS_INODE_DIRSYNC;
238 if (flags & FS_NOCOW_FL)
239 ip->flags |= BTRFS_INODE_NODATACOW;
240 else
241 ip->flags &= ~BTRFS_INODE_NODATACOW;
242
243 /*
244 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
245 * flag may be changed automatically if compression code won't make
246 * things smaller.
247 */
248 if (flags & FS_NOCOMP_FL) {
249 ip->flags &= ~BTRFS_INODE_COMPRESS;
250 ip->flags |= BTRFS_INODE_NOCOMPRESS;
251 } else if (flags & FS_COMPR_FL) {
252 ip->flags |= BTRFS_INODE_COMPRESS;
253 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
254 } else {
255 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
256 }
257
258 trans = btrfs_start_transaction(root, 1);
259 if (IS_ERR(trans)) {
260 ret = PTR_ERR(trans);
261 goto out_drop;
262 }
263
264 btrfs_update_iflags(inode);
265 inode_inc_iversion(inode);
266 inode->i_ctime = CURRENT_TIME;
267 ret = btrfs_update_inode(trans, root, inode);
268
269 btrfs_end_transaction(trans, root);
270 out_drop:
271 if (ret) {
272 ip->flags = ip_oldflags;
273 inode->i_flags = i_oldflags;
274 }
275
276 mnt_drop_write_file(file);
277 out_unlock:
278 mutex_unlock(&inode->i_mutex);
279 return ret;
280 }
281
282 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
283 {
284 struct inode *inode = file->f_path.dentry->d_inode;
285
286 return put_user(inode->i_generation, arg);
287 }
288
289 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
290 {
291 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
292 struct btrfs_device *device;
293 struct request_queue *q;
294 struct fstrim_range range;
295 u64 minlen = ULLONG_MAX;
296 u64 num_devices = 0;
297 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
298 int ret;
299
300 if (!capable(CAP_SYS_ADMIN))
301 return -EPERM;
302
303 rcu_read_lock();
304 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
305 dev_list) {
306 if (!device->bdev)
307 continue;
308 q = bdev_get_queue(device->bdev);
309 if (blk_queue_discard(q)) {
310 num_devices++;
311 minlen = min((u64)q->limits.discard_granularity,
312 minlen);
313 }
314 }
315 rcu_read_unlock();
316
317 if (!num_devices)
318 return -EOPNOTSUPP;
319 if (copy_from_user(&range, arg, sizeof(range)))
320 return -EFAULT;
321 if (range.start > total_bytes)
322 return -EINVAL;
323
324 range.len = min(range.len, total_bytes - range.start);
325 range.minlen = max(range.minlen, minlen);
326 ret = btrfs_trim_fs(fs_info->tree_root, &range);
327 if (ret < 0)
328 return ret;
329
330 if (copy_to_user(arg, &range, sizeof(range)))
331 return -EFAULT;
332
333 return 0;
334 }
335
336 static noinline int create_subvol(struct btrfs_root *root,
337 struct dentry *dentry,
338 char *name, int namelen,
339 u64 *async_transid)
340 {
341 struct btrfs_trans_handle *trans;
342 struct btrfs_key key;
343 struct btrfs_root_item root_item;
344 struct btrfs_inode_item *inode_item;
345 struct extent_buffer *leaf;
346 struct btrfs_root *new_root;
347 struct dentry *parent = dentry->d_parent;
348 struct inode *dir;
349 int ret;
350 int err;
351 u64 objectid;
352 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
353 u64 index = 0;
354
355 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
356 if (ret)
357 return ret;
358
359 dir = parent->d_inode;
360
361 /*
362 * 1 - inode item
363 * 2 - refs
364 * 1 - root item
365 * 2 - dir items
366 */
367 trans = btrfs_start_transaction(root, 6);
368 if (IS_ERR(trans))
369 return PTR_ERR(trans);
370
371 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
372 0, objectid, NULL, 0, 0, 0);
373 if (IS_ERR(leaf)) {
374 ret = PTR_ERR(leaf);
375 goto fail;
376 }
377
378 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
379 btrfs_set_header_bytenr(leaf, leaf->start);
380 btrfs_set_header_generation(leaf, trans->transid);
381 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
382 btrfs_set_header_owner(leaf, objectid);
383
384 write_extent_buffer(leaf, root->fs_info->fsid,
385 (unsigned long)btrfs_header_fsid(leaf),
386 BTRFS_FSID_SIZE);
387 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
388 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
389 BTRFS_UUID_SIZE);
390 btrfs_mark_buffer_dirty(leaf);
391
392 inode_item = &root_item.inode;
393 memset(inode_item, 0, sizeof(*inode_item));
394 inode_item->generation = cpu_to_le64(1);
395 inode_item->size = cpu_to_le64(3);
396 inode_item->nlink = cpu_to_le32(1);
397 inode_item->nbytes = cpu_to_le64(root->leafsize);
398 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
399
400 root_item.flags = 0;
401 root_item.byte_limit = 0;
402 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
403
404 btrfs_set_root_bytenr(&root_item, leaf->start);
405 btrfs_set_root_generation(&root_item, trans->transid);
406 btrfs_set_root_level(&root_item, 0);
407 btrfs_set_root_refs(&root_item, 1);
408 btrfs_set_root_used(&root_item, leaf->len);
409 btrfs_set_root_last_snapshot(&root_item, 0);
410
411 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
412 root_item.drop_level = 0;
413
414 btrfs_tree_unlock(leaf);
415 free_extent_buffer(leaf);
416 leaf = NULL;
417
418 btrfs_set_root_dirid(&root_item, new_dirid);
419
420 key.objectid = objectid;
421 key.offset = 0;
422 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
423 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
424 &root_item);
425 if (ret)
426 goto fail;
427
428 key.offset = (u64)-1;
429 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
430 if (IS_ERR(new_root)) {
431 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
432 ret = PTR_ERR(new_root);
433 goto fail;
434 }
435
436 btrfs_record_root_in_trans(trans, new_root);
437
438 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
439 if (ret) {
440 /* We potentially lose an unused inode item here */
441 btrfs_abort_transaction(trans, root, ret);
442 goto fail;
443 }
444
445 /*
446 * insert the directory item
447 */
448 ret = btrfs_set_inode_index(dir, &index);
449 if (ret) {
450 btrfs_abort_transaction(trans, root, ret);
451 goto fail;
452 }
453
454 ret = btrfs_insert_dir_item(trans, root,
455 name, namelen, dir, &key,
456 BTRFS_FT_DIR, index);
457 if (ret) {
458 btrfs_abort_transaction(trans, root, ret);
459 goto fail;
460 }
461
462 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
463 ret = btrfs_update_inode(trans, root, dir);
464 BUG_ON(ret);
465
466 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
467 objectid, root->root_key.objectid,
468 btrfs_ino(dir), index, name, namelen);
469
470 BUG_ON(ret);
471
472 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
473 fail:
474 if (async_transid) {
475 *async_transid = trans->transid;
476 err = btrfs_commit_transaction_async(trans, root, 1);
477 } else {
478 err = btrfs_commit_transaction(trans, root);
479 }
480 if (err && !ret)
481 ret = err;
482 return ret;
483 }
484
485 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
486 char *name, int namelen, u64 *async_transid,
487 bool readonly)
488 {
489 struct inode *inode;
490 struct btrfs_pending_snapshot *pending_snapshot;
491 struct btrfs_trans_handle *trans;
492 int ret;
493
494 if (!root->ref_cows)
495 return -EINVAL;
496
497 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
498 if (!pending_snapshot)
499 return -ENOMEM;
500
501 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
502 pending_snapshot->dentry = dentry;
503 pending_snapshot->root = root;
504 pending_snapshot->readonly = readonly;
505
506 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
507 if (IS_ERR(trans)) {
508 ret = PTR_ERR(trans);
509 goto fail;
510 }
511
512 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
513 BUG_ON(ret);
514
515 spin_lock(&root->fs_info->trans_lock);
516 list_add(&pending_snapshot->list,
517 &trans->transaction->pending_snapshots);
518 spin_unlock(&root->fs_info->trans_lock);
519 if (async_transid) {
520 *async_transid = trans->transid;
521 ret = btrfs_commit_transaction_async(trans,
522 root->fs_info->extent_root, 1);
523 } else {
524 ret = btrfs_commit_transaction(trans,
525 root->fs_info->extent_root);
526 }
527 BUG_ON(ret);
528
529 ret = pending_snapshot->error;
530 if (ret)
531 goto fail;
532
533 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
534 if (ret)
535 goto fail;
536
537 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
538 if (IS_ERR(inode)) {
539 ret = PTR_ERR(inode);
540 goto fail;
541 }
542 BUG_ON(!inode);
543 d_instantiate(dentry, inode);
544 ret = 0;
545 fail:
546 kfree(pending_snapshot);
547 return ret;
548 }
549
550 /* copy of check_sticky in fs/namei.c()
551 * It's inline, so penalty for filesystems that don't use sticky bit is
552 * minimal.
553 */
554 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
555 {
556 uid_t fsuid = current_fsuid();
557
558 if (!(dir->i_mode & S_ISVTX))
559 return 0;
560 if (inode->i_uid == fsuid)
561 return 0;
562 if (dir->i_uid == fsuid)
563 return 0;
564 return !capable(CAP_FOWNER);
565 }
566
567 /* copy of may_delete in fs/namei.c()
568 * Check whether we can remove a link victim from directory dir, check
569 * whether the type of victim is right.
570 * 1. We can't do it if dir is read-only (done in permission())
571 * 2. We should have write and exec permissions on dir
572 * 3. We can't remove anything from append-only dir
573 * 4. We can't do anything with immutable dir (done in permission())
574 * 5. If the sticky bit on dir is set we should either
575 * a. be owner of dir, or
576 * b. be owner of victim, or
577 * c. have CAP_FOWNER capability
578 * 6. If the victim is append-only or immutable we can't do antyhing with
579 * links pointing to it.
580 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
581 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
582 * 9. We can't remove a root or mountpoint.
583 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
584 * nfs_async_unlink().
585 */
586
587 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
588 {
589 int error;
590
591 if (!victim->d_inode)
592 return -ENOENT;
593
594 BUG_ON(victim->d_parent->d_inode != dir);
595 audit_inode_child(victim, dir);
596
597 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
598 if (error)
599 return error;
600 if (IS_APPEND(dir))
601 return -EPERM;
602 if (btrfs_check_sticky(dir, victim->d_inode)||
603 IS_APPEND(victim->d_inode)||
604 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
605 return -EPERM;
606 if (isdir) {
607 if (!S_ISDIR(victim->d_inode->i_mode))
608 return -ENOTDIR;
609 if (IS_ROOT(victim))
610 return -EBUSY;
611 } else if (S_ISDIR(victim->d_inode->i_mode))
612 return -EISDIR;
613 if (IS_DEADDIR(dir))
614 return -ENOENT;
615 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
616 return -EBUSY;
617 return 0;
618 }
619
620 /* copy of may_create in fs/namei.c() */
621 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
622 {
623 if (child->d_inode)
624 return -EEXIST;
625 if (IS_DEADDIR(dir))
626 return -ENOENT;
627 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
628 }
629
630 /*
631 * Create a new subvolume below @parent. This is largely modeled after
632 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
633 * inside this filesystem so it's quite a bit simpler.
634 */
635 static noinline int btrfs_mksubvol(struct path *parent,
636 char *name, int namelen,
637 struct btrfs_root *snap_src,
638 u64 *async_transid, bool readonly)
639 {
640 struct inode *dir = parent->dentry->d_inode;
641 struct dentry *dentry;
642 int error;
643
644 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
645
646 dentry = lookup_one_len(name, parent->dentry, namelen);
647 error = PTR_ERR(dentry);
648 if (IS_ERR(dentry))
649 goto out_unlock;
650
651 error = -EEXIST;
652 if (dentry->d_inode)
653 goto out_dput;
654
655 error = mnt_want_write(parent->mnt);
656 if (error)
657 goto out_dput;
658
659 error = btrfs_may_create(dir, dentry);
660 if (error)
661 goto out_drop_write;
662
663 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
664
665 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
666 goto out_up_read;
667
668 if (snap_src) {
669 error = create_snapshot(snap_src, dentry,
670 name, namelen, async_transid, readonly);
671 } else {
672 error = create_subvol(BTRFS_I(dir)->root, dentry,
673 name, namelen, async_transid);
674 }
675 if (!error)
676 fsnotify_mkdir(dir, dentry);
677 out_up_read:
678 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
679 out_drop_write:
680 mnt_drop_write(parent->mnt);
681 out_dput:
682 dput(dentry);
683 out_unlock:
684 mutex_unlock(&dir->i_mutex);
685 return error;
686 }
687
688 /*
689 * When we're defragging a range, we don't want to kick it off again
690 * if it is really just waiting for delalloc to send it down.
691 * If we find a nice big extent or delalloc range for the bytes in the
692 * file you want to defrag, we return 0 to let you know to skip this
693 * part of the file
694 */
695 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
696 {
697 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
698 struct extent_map *em = NULL;
699 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
700 u64 end;
701
702 read_lock(&em_tree->lock);
703 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
704 read_unlock(&em_tree->lock);
705
706 if (em) {
707 end = extent_map_end(em);
708 free_extent_map(em);
709 if (end - offset > thresh)
710 return 0;
711 }
712 /* if we already have a nice delalloc here, just stop */
713 thresh /= 2;
714 end = count_range_bits(io_tree, &offset, offset + thresh,
715 thresh, EXTENT_DELALLOC, 1);
716 if (end >= thresh)
717 return 0;
718 return 1;
719 }
720
721 /*
722 * helper function to walk through a file and find extents
723 * newer than a specific transid, and smaller than thresh.
724 *
725 * This is used by the defragging code to find new and small
726 * extents
727 */
728 static int find_new_extents(struct btrfs_root *root,
729 struct inode *inode, u64 newer_than,
730 u64 *off, int thresh)
731 {
732 struct btrfs_path *path;
733 struct btrfs_key min_key;
734 struct btrfs_key max_key;
735 struct extent_buffer *leaf;
736 struct btrfs_file_extent_item *extent;
737 int type;
738 int ret;
739 u64 ino = btrfs_ino(inode);
740
741 path = btrfs_alloc_path();
742 if (!path)
743 return -ENOMEM;
744
745 min_key.objectid = ino;
746 min_key.type = BTRFS_EXTENT_DATA_KEY;
747 min_key.offset = *off;
748
749 max_key.objectid = ino;
750 max_key.type = (u8)-1;
751 max_key.offset = (u64)-1;
752
753 path->keep_locks = 1;
754
755 while(1) {
756 ret = btrfs_search_forward(root, &min_key, &max_key,
757 path, 0, newer_than);
758 if (ret != 0)
759 goto none;
760 if (min_key.objectid != ino)
761 goto none;
762 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
763 goto none;
764
765 leaf = path->nodes[0];
766 extent = btrfs_item_ptr(leaf, path->slots[0],
767 struct btrfs_file_extent_item);
768
769 type = btrfs_file_extent_type(leaf, extent);
770 if (type == BTRFS_FILE_EXTENT_REG &&
771 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
772 check_defrag_in_cache(inode, min_key.offset, thresh)) {
773 *off = min_key.offset;
774 btrfs_free_path(path);
775 return 0;
776 }
777
778 if (min_key.offset == (u64)-1)
779 goto none;
780
781 min_key.offset++;
782 btrfs_release_path(path);
783 }
784 none:
785 btrfs_free_path(path);
786 return -ENOENT;
787 }
788
789 /*
790 * Validaty check of prev em and next em:
791 * 1) no prev/next em
792 * 2) prev/next em is an hole/inline extent
793 */
794 static int check_adjacent_extents(struct inode *inode, struct extent_map *em)
795 {
796 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
797 struct extent_map *prev = NULL, *next = NULL;
798 int ret = 0;
799
800 read_lock(&em_tree->lock);
801 prev = lookup_extent_mapping(em_tree, em->start - 1, (u64)-1);
802 next = lookup_extent_mapping(em_tree, em->start + em->len, (u64)-1);
803 read_unlock(&em_tree->lock);
804
805 if ((!prev || prev->block_start >= EXTENT_MAP_LAST_BYTE) &&
806 (!next || next->block_start >= EXTENT_MAP_LAST_BYTE))
807 ret = 1;
808 free_extent_map(prev);
809 free_extent_map(next);
810
811 return ret;
812 }
813
814 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
815 int thresh, u64 *last_len, u64 *skip,
816 u64 *defrag_end)
817 {
818 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
819 struct extent_map *em = NULL;
820 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
821 int ret = 1;
822
823 /*
824 * make sure that once we start defragging an extent, we keep on
825 * defragging it
826 */
827 if (start < *defrag_end)
828 return 1;
829
830 *skip = 0;
831
832 /*
833 * hopefully we have this extent in the tree already, try without
834 * the full extent lock
835 */
836 read_lock(&em_tree->lock);
837 em = lookup_extent_mapping(em_tree, start, len);
838 read_unlock(&em_tree->lock);
839
840 if (!em) {
841 /* get the big lock and read metadata off disk */
842 lock_extent(io_tree, start, start + len - 1);
843 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
844 unlock_extent(io_tree, start, start + len - 1);
845
846 if (IS_ERR(em))
847 return 0;
848 }
849
850 /* this will cover holes, and inline extents */
851 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
852 ret = 0;
853 goto out;
854 }
855
856 /* If we have nothing to merge with us, just skip. */
857 if (check_adjacent_extents(inode, em)) {
858 ret = 0;
859 goto out;
860 }
861
862 /*
863 * we hit a real extent, if it is big don't bother defragging it again
864 */
865 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
866 ret = 0;
867
868 out:
869 /*
870 * last_len ends up being a counter of how many bytes we've defragged.
871 * every time we choose not to defrag an extent, we reset *last_len
872 * so that the next tiny extent will force a defrag.
873 *
874 * The end result of this is that tiny extents before a single big
875 * extent will force at least part of that big extent to be defragged.
876 */
877 if (ret) {
878 *defrag_end = extent_map_end(em);
879 } else {
880 *last_len = 0;
881 *skip = extent_map_end(em);
882 *defrag_end = 0;
883 }
884
885 free_extent_map(em);
886 return ret;
887 }
888
889 /*
890 * it doesn't do much good to defrag one or two pages
891 * at a time. This pulls in a nice chunk of pages
892 * to COW and defrag.
893 *
894 * It also makes sure the delalloc code has enough
895 * dirty data to avoid making new small extents as part
896 * of the defrag
897 *
898 * It's a good idea to start RA on this range
899 * before calling this.
900 */
901 static int cluster_pages_for_defrag(struct inode *inode,
902 struct page **pages,
903 unsigned long start_index,
904 int num_pages)
905 {
906 unsigned long file_end;
907 u64 isize = i_size_read(inode);
908 u64 page_start;
909 u64 page_end;
910 u64 page_cnt;
911 int ret;
912 int i;
913 int i_done;
914 struct btrfs_ordered_extent *ordered;
915 struct extent_state *cached_state = NULL;
916 struct extent_io_tree *tree;
917 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
918
919 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
920 if (!isize || start_index > file_end)
921 return 0;
922
923 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
924
925 ret = btrfs_delalloc_reserve_space(inode,
926 page_cnt << PAGE_CACHE_SHIFT);
927 if (ret)
928 return ret;
929 i_done = 0;
930 tree = &BTRFS_I(inode)->io_tree;
931
932 /* step one, lock all the pages */
933 for (i = 0; i < page_cnt; i++) {
934 struct page *page;
935 again:
936 page = find_or_create_page(inode->i_mapping,
937 start_index + i, mask);
938 if (!page)
939 break;
940
941 page_start = page_offset(page);
942 page_end = page_start + PAGE_CACHE_SIZE - 1;
943 while (1) {
944 lock_extent(tree, page_start, page_end);
945 ordered = btrfs_lookup_ordered_extent(inode,
946 page_start);
947 unlock_extent(tree, page_start, page_end);
948 if (!ordered)
949 break;
950
951 unlock_page(page);
952 btrfs_start_ordered_extent(inode, ordered, 1);
953 btrfs_put_ordered_extent(ordered);
954 lock_page(page);
955 /*
956 * we unlocked the page above, so we need check if
957 * it was released or not.
958 */
959 if (page->mapping != inode->i_mapping) {
960 unlock_page(page);
961 page_cache_release(page);
962 goto again;
963 }
964 }
965
966 if (!PageUptodate(page)) {
967 btrfs_readpage(NULL, page);
968 lock_page(page);
969 if (!PageUptodate(page)) {
970 unlock_page(page);
971 page_cache_release(page);
972 ret = -EIO;
973 break;
974 }
975 }
976
977 if (page->mapping != inode->i_mapping) {
978 unlock_page(page);
979 page_cache_release(page);
980 goto again;
981 }
982
983 pages[i] = page;
984 i_done++;
985 }
986 if (!i_done || ret)
987 goto out;
988
989 if (!(inode->i_sb->s_flags & MS_ACTIVE))
990 goto out;
991
992 /*
993 * so now we have a nice long stream of locked
994 * and up to date pages, lets wait on them
995 */
996 for (i = 0; i < i_done; i++)
997 wait_on_page_writeback(pages[i]);
998
999 page_start = page_offset(pages[0]);
1000 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1001
1002 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1003 page_start, page_end - 1, 0, &cached_state);
1004 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1005 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1006 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1007 GFP_NOFS);
1008
1009 if (i_done != page_cnt) {
1010 spin_lock(&BTRFS_I(inode)->lock);
1011 BTRFS_I(inode)->outstanding_extents++;
1012 spin_unlock(&BTRFS_I(inode)->lock);
1013 btrfs_delalloc_release_space(inode,
1014 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1015 }
1016
1017
1018 btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
1019 &cached_state);
1020
1021 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1022 page_start, page_end - 1, &cached_state,
1023 GFP_NOFS);
1024
1025 for (i = 0; i < i_done; i++) {
1026 clear_page_dirty_for_io(pages[i]);
1027 ClearPageChecked(pages[i]);
1028 set_page_extent_mapped(pages[i]);
1029 set_page_dirty(pages[i]);
1030 unlock_page(pages[i]);
1031 page_cache_release(pages[i]);
1032 }
1033 return i_done;
1034 out:
1035 for (i = 0; i < i_done; i++) {
1036 unlock_page(pages[i]);
1037 page_cache_release(pages[i]);
1038 }
1039 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1040 return ret;
1041
1042 }
1043
1044 int btrfs_defrag_file(struct inode *inode, struct file *file,
1045 struct btrfs_ioctl_defrag_range_args *range,
1046 u64 newer_than, unsigned long max_to_defrag)
1047 {
1048 struct btrfs_root *root = BTRFS_I(inode)->root;
1049 struct btrfs_super_block *disk_super;
1050 struct file_ra_state *ra = NULL;
1051 unsigned long last_index;
1052 u64 isize = i_size_read(inode);
1053 u64 features;
1054 u64 last_len = 0;
1055 u64 skip = 0;
1056 u64 defrag_end = 0;
1057 u64 newer_off = range->start;
1058 unsigned long i;
1059 unsigned long ra_index = 0;
1060 int ret;
1061 int defrag_count = 0;
1062 int compress_type = BTRFS_COMPRESS_ZLIB;
1063 int extent_thresh = range->extent_thresh;
1064 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1065 int cluster = max_cluster;
1066 u64 new_align = ~((u64)128 * 1024 - 1);
1067 struct page **pages = NULL;
1068
1069 if (extent_thresh == 0)
1070 extent_thresh = 256 * 1024;
1071
1072 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1073 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1074 return -EINVAL;
1075 if (range->compress_type)
1076 compress_type = range->compress_type;
1077 }
1078
1079 if (isize == 0)
1080 return 0;
1081
1082 /*
1083 * if we were not given a file, allocate a readahead
1084 * context
1085 */
1086 if (!file) {
1087 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1088 if (!ra)
1089 return -ENOMEM;
1090 file_ra_state_init(ra, inode->i_mapping);
1091 } else {
1092 ra = &file->f_ra;
1093 }
1094
1095 pages = kmalloc(sizeof(struct page *) * max_cluster,
1096 GFP_NOFS);
1097 if (!pages) {
1098 ret = -ENOMEM;
1099 goto out_ra;
1100 }
1101
1102 /* find the last page to defrag */
1103 if (range->start + range->len > range->start) {
1104 last_index = min_t(u64, isize - 1,
1105 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1106 } else {
1107 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1108 }
1109
1110 if (newer_than) {
1111 ret = find_new_extents(root, inode, newer_than,
1112 &newer_off, 64 * 1024);
1113 if (!ret) {
1114 range->start = newer_off;
1115 /*
1116 * we always align our defrag to help keep
1117 * the extents in the file evenly spaced
1118 */
1119 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1120 } else
1121 goto out_ra;
1122 } else {
1123 i = range->start >> PAGE_CACHE_SHIFT;
1124 }
1125 if (!max_to_defrag)
1126 max_to_defrag = last_index + 1;
1127
1128 /*
1129 * make writeback starts from i, so the defrag range can be
1130 * written sequentially.
1131 */
1132 if (i < inode->i_mapping->writeback_index)
1133 inode->i_mapping->writeback_index = i;
1134
1135 while (i <= last_index && defrag_count < max_to_defrag &&
1136 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1137 PAGE_CACHE_SHIFT)) {
1138 /*
1139 * make sure we stop running if someone unmounts
1140 * the FS
1141 */
1142 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1143 break;
1144
1145 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1146 PAGE_CACHE_SIZE, extent_thresh,
1147 &last_len, &skip, &defrag_end)) {
1148 unsigned long next;
1149 /*
1150 * the should_defrag function tells us how much to skip
1151 * bump our counter by the suggested amount
1152 */
1153 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1154 i = max(i + 1, next);
1155 continue;
1156 }
1157
1158 if (!newer_than) {
1159 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1160 PAGE_CACHE_SHIFT) - i;
1161 cluster = min(cluster, max_cluster);
1162 } else {
1163 cluster = max_cluster;
1164 }
1165
1166 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1167 BTRFS_I(inode)->force_compress = compress_type;
1168
1169 if (i + cluster > ra_index) {
1170 ra_index = max(i, ra_index);
1171 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1172 cluster);
1173 ra_index += max_cluster;
1174 }
1175
1176 mutex_lock(&inode->i_mutex);
1177 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1178 if (ret < 0) {
1179 mutex_unlock(&inode->i_mutex);
1180 goto out_ra;
1181 }
1182
1183 defrag_count += ret;
1184 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1185 mutex_unlock(&inode->i_mutex);
1186
1187 if (newer_than) {
1188 if (newer_off == (u64)-1)
1189 break;
1190
1191 if (ret > 0)
1192 i += ret;
1193
1194 newer_off = max(newer_off + 1,
1195 (u64)i << PAGE_CACHE_SHIFT);
1196
1197 ret = find_new_extents(root, inode,
1198 newer_than, &newer_off,
1199 64 * 1024);
1200 if (!ret) {
1201 range->start = newer_off;
1202 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1203 } else {
1204 break;
1205 }
1206 } else {
1207 if (ret > 0) {
1208 i += ret;
1209 last_len += ret << PAGE_CACHE_SHIFT;
1210 } else {
1211 i++;
1212 last_len = 0;
1213 }
1214 }
1215 }
1216
1217 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1218 filemap_flush(inode->i_mapping);
1219
1220 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1221 /* the filemap_flush will queue IO into the worker threads, but
1222 * we have to make sure the IO is actually started and that
1223 * ordered extents get created before we return
1224 */
1225 atomic_inc(&root->fs_info->async_submit_draining);
1226 while (atomic_read(&root->fs_info->nr_async_submits) ||
1227 atomic_read(&root->fs_info->async_delalloc_pages)) {
1228 wait_event(root->fs_info->async_submit_wait,
1229 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1230 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1231 }
1232 atomic_dec(&root->fs_info->async_submit_draining);
1233
1234 mutex_lock(&inode->i_mutex);
1235 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1236 mutex_unlock(&inode->i_mutex);
1237 }
1238
1239 disk_super = root->fs_info->super_copy;
1240 features = btrfs_super_incompat_flags(disk_super);
1241 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1242 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1243 btrfs_set_super_incompat_flags(disk_super, features);
1244 }
1245
1246 ret = defrag_count;
1247
1248 out_ra:
1249 if (!file)
1250 kfree(ra);
1251 kfree(pages);
1252 return ret;
1253 }
1254
1255 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1256 void __user *arg)
1257 {
1258 u64 new_size;
1259 u64 old_size;
1260 u64 devid = 1;
1261 struct btrfs_ioctl_vol_args *vol_args;
1262 struct btrfs_trans_handle *trans;
1263 struct btrfs_device *device = NULL;
1264 char *sizestr;
1265 char *devstr = NULL;
1266 int ret = 0;
1267 int mod = 0;
1268
1269 if (root->fs_info->sb->s_flags & MS_RDONLY)
1270 return -EROFS;
1271
1272 if (!capable(CAP_SYS_ADMIN))
1273 return -EPERM;
1274
1275 mutex_lock(&root->fs_info->volume_mutex);
1276 if (root->fs_info->balance_ctl) {
1277 printk(KERN_INFO "btrfs: balance in progress\n");
1278 ret = -EINVAL;
1279 goto out;
1280 }
1281
1282 vol_args = memdup_user(arg, sizeof(*vol_args));
1283 if (IS_ERR(vol_args)) {
1284 ret = PTR_ERR(vol_args);
1285 goto out;
1286 }
1287
1288 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1289
1290 sizestr = vol_args->name;
1291 devstr = strchr(sizestr, ':');
1292 if (devstr) {
1293 char *end;
1294 sizestr = devstr + 1;
1295 *devstr = '\0';
1296 devstr = vol_args->name;
1297 devid = simple_strtoull(devstr, &end, 10);
1298 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1299 (unsigned long long)devid);
1300 }
1301 device = btrfs_find_device(root, devid, NULL, NULL);
1302 if (!device) {
1303 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1304 (unsigned long long)devid);
1305 ret = -EINVAL;
1306 goto out_free;
1307 }
1308 if (!strcmp(sizestr, "max"))
1309 new_size = device->bdev->bd_inode->i_size;
1310 else {
1311 if (sizestr[0] == '-') {
1312 mod = -1;
1313 sizestr++;
1314 } else if (sizestr[0] == '+') {
1315 mod = 1;
1316 sizestr++;
1317 }
1318 new_size = memparse(sizestr, NULL);
1319 if (new_size == 0) {
1320 ret = -EINVAL;
1321 goto out_free;
1322 }
1323 }
1324
1325 old_size = device->total_bytes;
1326
1327 if (mod < 0) {
1328 if (new_size > old_size) {
1329 ret = -EINVAL;
1330 goto out_free;
1331 }
1332 new_size = old_size - new_size;
1333 } else if (mod > 0) {
1334 new_size = old_size + new_size;
1335 }
1336
1337 if (new_size < 256 * 1024 * 1024) {
1338 ret = -EINVAL;
1339 goto out_free;
1340 }
1341 if (new_size > device->bdev->bd_inode->i_size) {
1342 ret = -EFBIG;
1343 goto out_free;
1344 }
1345
1346 do_div(new_size, root->sectorsize);
1347 new_size *= root->sectorsize;
1348
1349 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1350 rcu_str_deref(device->name),
1351 (unsigned long long)new_size);
1352
1353 if (new_size > old_size) {
1354 trans = btrfs_start_transaction(root, 0);
1355 if (IS_ERR(trans)) {
1356 ret = PTR_ERR(trans);
1357 goto out_free;
1358 }
1359 ret = btrfs_grow_device(trans, device, new_size);
1360 btrfs_commit_transaction(trans, root);
1361 } else if (new_size < old_size) {
1362 ret = btrfs_shrink_device(device, new_size);
1363 }
1364
1365 out_free:
1366 kfree(vol_args);
1367 out:
1368 mutex_unlock(&root->fs_info->volume_mutex);
1369 return ret;
1370 }
1371
1372 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1373 char *name,
1374 unsigned long fd,
1375 int subvol,
1376 u64 *transid,
1377 bool readonly)
1378 {
1379 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1380 struct file *src_file;
1381 int namelen;
1382 int ret = 0;
1383
1384 if (root->fs_info->sb->s_flags & MS_RDONLY)
1385 return -EROFS;
1386
1387 namelen = strlen(name);
1388 if (strchr(name, '/')) {
1389 ret = -EINVAL;
1390 goto out;
1391 }
1392
1393 if (name[0] == '.' &&
1394 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1395 ret = -EEXIST;
1396 goto out;
1397 }
1398
1399 if (subvol) {
1400 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1401 NULL, transid, readonly);
1402 } else {
1403 struct inode *src_inode;
1404 src_file = fget(fd);
1405 if (!src_file) {
1406 ret = -EINVAL;
1407 goto out;
1408 }
1409
1410 src_inode = src_file->f_path.dentry->d_inode;
1411 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1412 printk(KERN_INFO "btrfs: Snapshot src from "
1413 "another FS\n");
1414 ret = -EINVAL;
1415 fput(src_file);
1416 goto out;
1417 }
1418 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1419 BTRFS_I(src_inode)->root,
1420 transid, readonly);
1421 fput(src_file);
1422 }
1423 out:
1424 return ret;
1425 }
1426
1427 static noinline int btrfs_ioctl_snap_create(struct file *file,
1428 void __user *arg, int subvol)
1429 {
1430 struct btrfs_ioctl_vol_args *vol_args;
1431 int ret;
1432
1433 vol_args = memdup_user(arg, sizeof(*vol_args));
1434 if (IS_ERR(vol_args))
1435 return PTR_ERR(vol_args);
1436 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1437
1438 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1439 vol_args->fd, subvol,
1440 NULL, false);
1441
1442 kfree(vol_args);
1443 return ret;
1444 }
1445
1446 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1447 void __user *arg, int subvol)
1448 {
1449 struct btrfs_ioctl_vol_args_v2 *vol_args;
1450 int ret;
1451 u64 transid = 0;
1452 u64 *ptr = NULL;
1453 bool readonly = false;
1454
1455 vol_args = memdup_user(arg, sizeof(*vol_args));
1456 if (IS_ERR(vol_args))
1457 return PTR_ERR(vol_args);
1458 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1459
1460 if (vol_args->flags &
1461 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1462 ret = -EOPNOTSUPP;
1463 goto out;
1464 }
1465
1466 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1467 ptr = &transid;
1468 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1469 readonly = true;
1470
1471 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1472 vol_args->fd, subvol,
1473 ptr, readonly);
1474
1475 if (ret == 0 && ptr &&
1476 copy_to_user(arg +
1477 offsetof(struct btrfs_ioctl_vol_args_v2,
1478 transid), ptr, sizeof(*ptr)))
1479 ret = -EFAULT;
1480 out:
1481 kfree(vol_args);
1482 return ret;
1483 }
1484
1485 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1486 void __user *arg)
1487 {
1488 struct inode *inode = fdentry(file)->d_inode;
1489 struct btrfs_root *root = BTRFS_I(inode)->root;
1490 int ret = 0;
1491 u64 flags = 0;
1492
1493 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1494 return -EINVAL;
1495
1496 down_read(&root->fs_info->subvol_sem);
1497 if (btrfs_root_readonly(root))
1498 flags |= BTRFS_SUBVOL_RDONLY;
1499 up_read(&root->fs_info->subvol_sem);
1500
1501 if (copy_to_user(arg, &flags, sizeof(flags)))
1502 ret = -EFAULT;
1503
1504 return ret;
1505 }
1506
1507 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1508 void __user *arg)
1509 {
1510 struct inode *inode = fdentry(file)->d_inode;
1511 struct btrfs_root *root = BTRFS_I(inode)->root;
1512 struct btrfs_trans_handle *trans;
1513 u64 root_flags;
1514 u64 flags;
1515 int ret = 0;
1516
1517 if (root->fs_info->sb->s_flags & MS_RDONLY)
1518 return -EROFS;
1519
1520 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1521 return -EINVAL;
1522
1523 if (copy_from_user(&flags, arg, sizeof(flags)))
1524 return -EFAULT;
1525
1526 if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1527 return -EINVAL;
1528
1529 if (flags & ~BTRFS_SUBVOL_RDONLY)
1530 return -EOPNOTSUPP;
1531
1532 if (!inode_owner_or_capable(inode))
1533 return -EACCES;
1534
1535 down_write(&root->fs_info->subvol_sem);
1536
1537 /* nothing to do */
1538 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1539 goto out;
1540
1541 root_flags = btrfs_root_flags(&root->root_item);
1542 if (flags & BTRFS_SUBVOL_RDONLY)
1543 btrfs_set_root_flags(&root->root_item,
1544 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1545 else
1546 btrfs_set_root_flags(&root->root_item,
1547 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1548
1549 trans = btrfs_start_transaction(root, 1);
1550 if (IS_ERR(trans)) {
1551 ret = PTR_ERR(trans);
1552 goto out_reset;
1553 }
1554
1555 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1556 &root->root_key, &root->root_item);
1557
1558 btrfs_commit_transaction(trans, root);
1559 out_reset:
1560 if (ret)
1561 btrfs_set_root_flags(&root->root_item, root_flags);
1562 out:
1563 up_write(&root->fs_info->subvol_sem);
1564 return ret;
1565 }
1566
1567 /*
1568 * helper to check if the subvolume references other subvolumes
1569 */
1570 static noinline int may_destroy_subvol(struct btrfs_root *root)
1571 {
1572 struct btrfs_path *path;
1573 struct btrfs_key key;
1574 int ret;
1575
1576 path = btrfs_alloc_path();
1577 if (!path)
1578 return -ENOMEM;
1579
1580 key.objectid = root->root_key.objectid;
1581 key.type = BTRFS_ROOT_REF_KEY;
1582 key.offset = (u64)-1;
1583
1584 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1585 &key, path, 0, 0);
1586 if (ret < 0)
1587 goto out;
1588 BUG_ON(ret == 0);
1589
1590 ret = 0;
1591 if (path->slots[0] > 0) {
1592 path->slots[0]--;
1593 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1594 if (key.objectid == root->root_key.objectid &&
1595 key.type == BTRFS_ROOT_REF_KEY)
1596 ret = -ENOTEMPTY;
1597 }
1598 out:
1599 btrfs_free_path(path);
1600 return ret;
1601 }
1602
1603 static noinline int key_in_sk(struct btrfs_key *key,
1604 struct btrfs_ioctl_search_key *sk)
1605 {
1606 struct btrfs_key test;
1607 int ret;
1608
1609 test.objectid = sk->min_objectid;
1610 test.type = sk->min_type;
1611 test.offset = sk->min_offset;
1612
1613 ret = btrfs_comp_cpu_keys(key, &test);
1614 if (ret < 0)
1615 return 0;
1616
1617 test.objectid = sk->max_objectid;
1618 test.type = sk->max_type;
1619 test.offset = sk->max_offset;
1620
1621 ret = btrfs_comp_cpu_keys(key, &test);
1622 if (ret > 0)
1623 return 0;
1624 return 1;
1625 }
1626
1627 static noinline int copy_to_sk(struct btrfs_root *root,
1628 struct btrfs_path *path,
1629 struct btrfs_key *key,
1630 struct btrfs_ioctl_search_key *sk,
1631 char *buf,
1632 unsigned long *sk_offset,
1633 int *num_found)
1634 {
1635 u64 found_transid;
1636 struct extent_buffer *leaf;
1637 struct btrfs_ioctl_search_header sh;
1638 unsigned long item_off;
1639 unsigned long item_len;
1640 int nritems;
1641 int i;
1642 int slot;
1643 int ret = 0;
1644
1645 leaf = path->nodes[0];
1646 slot = path->slots[0];
1647 nritems = btrfs_header_nritems(leaf);
1648
1649 if (btrfs_header_generation(leaf) > sk->max_transid) {
1650 i = nritems;
1651 goto advance_key;
1652 }
1653 found_transid = btrfs_header_generation(leaf);
1654
1655 for (i = slot; i < nritems; i++) {
1656 item_off = btrfs_item_ptr_offset(leaf, i);
1657 item_len = btrfs_item_size_nr(leaf, i);
1658
1659 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1660 item_len = 0;
1661
1662 if (sizeof(sh) + item_len + *sk_offset >
1663 BTRFS_SEARCH_ARGS_BUFSIZE) {
1664 ret = 1;
1665 goto overflow;
1666 }
1667
1668 btrfs_item_key_to_cpu(leaf, key, i);
1669 if (!key_in_sk(key, sk))
1670 continue;
1671
1672 sh.objectid = key->objectid;
1673 sh.offset = key->offset;
1674 sh.type = key->type;
1675 sh.len = item_len;
1676 sh.transid = found_transid;
1677
1678 /* copy search result header */
1679 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1680 *sk_offset += sizeof(sh);
1681
1682 if (item_len) {
1683 char *p = buf + *sk_offset;
1684 /* copy the item */
1685 read_extent_buffer(leaf, p,
1686 item_off, item_len);
1687 *sk_offset += item_len;
1688 }
1689 (*num_found)++;
1690
1691 if (*num_found >= sk->nr_items)
1692 break;
1693 }
1694 advance_key:
1695 ret = 0;
1696 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1697 key->offset++;
1698 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1699 key->offset = 0;
1700 key->type++;
1701 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1702 key->offset = 0;
1703 key->type = 0;
1704 key->objectid++;
1705 } else
1706 ret = 1;
1707 overflow:
1708 return ret;
1709 }
1710
1711 static noinline int search_ioctl(struct inode *inode,
1712 struct btrfs_ioctl_search_args *args)
1713 {
1714 struct btrfs_root *root;
1715 struct btrfs_key key;
1716 struct btrfs_key max_key;
1717 struct btrfs_path *path;
1718 struct btrfs_ioctl_search_key *sk = &args->key;
1719 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1720 int ret;
1721 int num_found = 0;
1722 unsigned long sk_offset = 0;
1723
1724 path = btrfs_alloc_path();
1725 if (!path)
1726 return -ENOMEM;
1727
1728 if (sk->tree_id == 0) {
1729 /* search the root of the inode that was passed */
1730 root = BTRFS_I(inode)->root;
1731 } else {
1732 key.objectid = sk->tree_id;
1733 key.type = BTRFS_ROOT_ITEM_KEY;
1734 key.offset = (u64)-1;
1735 root = btrfs_read_fs_root_no_name(info, &key);
1736 if (IS_ERR(root)) {
1737 printk(KERN_ERR "could not find root %llu\n",
1738 sk->tree_id);
1739 btrfs_free_path(path);
1740 return -ENOENT;
1741 }
1742 }
1743
1744 key.objectid = sk->min_objectid;
1745 key.type = sk->min_type;
1746 key.offset = sk->min_offset;
1747
1748 max_key.objectid = sk->max_objectid;
1749 max_key.type = sk->max_type;
1750 max_key.offset = sk->max_offset;
1751
1752 path->keep_locks = 1;
1753
1754 while(1) {
1755 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1756 sk->min_transid);
1757 if (ret != 0) {
1758 if (ret > 0)
1759 ret = 0;
1760 goto err;
1761 }
1762 ret = copy_to_sk(root, path, &key, sk, args->buf,
1763 &sk_offset, &num_found);
1764 btrfs_release_path(path);
1765 if (ret || num_found >= sk->nr_items)
1766 break;
1767
1768 }
1769 ret = 0;
1770 err:
1771 sk->nr_items = num_found;
1772 btrfs_free_path(path);
1773 return ret;
1774 }
1775
1776 static noinline int btrfs_ioctl_tree_search(struct file *file,
1777 void __user *argp)
1778 {
1779 struct btrfs_ioctl_search_args *args;
1780 struct inode *inode;
1781 int ret;
1782
1783 if (!capable(CAP_SYS_ADMIN))
1784 return -EPERM;
1785
1786 args = memdup_user(argp, sizeof(*args));
1787 if (IS_ERR(args))
1788 return PTR_ERR(args);
1789
1790 inode = fdentry(file)->d_inode;
1791 ret = search_ioctl(inode, args);
1792 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1793 ret = -EFAULT;
1794 kfree(args);
1795 return ret;
1796 }
1797
1798 /*
1799 * Search INODE_REFs to identify path name of 'dirid' directory
1800 * in a 'tree_id' tree. and sets path name to 'name'.
1801 */
1802 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1803 u64 tree_id, u64 dirid, char *name)
1804 {
1805 struct btrfs_root *root;
1806 struct btrfs_key key;
1807 char *ptr;
1808 int ret = -1;
1809 int slot;
1810 int len;
1811 int total_len = 0;
1812 struct btrfs_inode_ref *iref;
1813 struct extent_buffer *l;
1814 struct btrfs_path *path;
1815
1816 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1817 name[0]='\0';
1818 return 0;
1819 }
1820
1821 path = btrfs_alloc_path();
1822 if (!path)
1823 return -ENOMEM;
1824
1825 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1826
1827 key.objectid = tree_id;
1828 key.type = BTRFS_ROOT_ITEM_KEY;
1829 key.offset = (u64)-1;
1830 root = btrfs_read_fs_root_no_name(info, &key);
1831 if (IS_ERR(root)) {
1832 printk(KERN_ERR "could not find root %llu\n", tree_id);
1833 ret = -ENOENT;
1834 goto out;
1835 }
1836
1837 key.objectid = dirid;
1838 key.type = BTRFS_INODE_REF_KEY;
1839 key.offset = (u64)-1;
1840
1841 while(1) {
1842 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1843 if (ret < 0)
1844 goto out;
1845
1846 l = path->nodes[0];
1847 slot = path->slots[0];
1848 if (ret > 0 && slot > 0)
1849 slot--;
1850 btrfs_item_key_to_cpu(l, &key, slot);
1851
1852 if (ret > 0 && (key.objectid != dirid ||
1853 key.type != BTRFS_INODE_REF_KEY)) {
1854 ret = -ENOENT;
1855 goto out;
1856 }
1857
1858 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1859 len = btrfs_inode_ref_name_len(l, iref);
1860 ptr -= len + 1;
1861 total_len += len + 1;
1862 if (ptr < name)
1863 goto out;
1864
1865 *(ptr + len) = '/';
1866 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1867
1868 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1869 break;
1870
1871 btrfs_release_path(path);
1872 key.objectid = key.offset;
1873 key.offset = (u64)-1;
1874 dirid = key.objectid;
1875 }
1876 if (ptr < name)
1877 goto out;
1878 memmove(name, ptr, total_len);
1879 name[total_len]='\0';
1880 ret = 0;
1881 out:
1882 btrfs_free_path(path);
1883 return ret;
1884 }
1885
1886 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1887 void __user *argp)
1888 {
1889 struct btrfs_ioctl_ino_lookup_args *args;
1890 struct inode *inode;
1891 int ret;
1892
1893 if (!capable(CAP_SYS_ADMIN))
1894 return -EPERM;
1895
1896 args = memdup_user(argp, sizeof(*args));
1897 if (IS_ERR(args))
1898 return PTR_ERR(args);
1899
1900 inode = fdentry(file)->d_inode;
1901
1902 if (args->treeid == 0)
1903 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1904
1905 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1906 args->treeid, args->objectid,
1907 args->name);
1908
1909 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1910 ret = -EFAULT;
1911
1912 kfree(args);
1913 return ret;
1914 }
1915
1916 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1917 void __user *arg)
1918 {
1919 struct dentry *parent = fdentry(file);
1920 struct dentry *dentry;
1921 struct inode *dir = parent->d_inode;
1922 struct inode *inode;
1923 struct btrfs_root *root = BTRFS_I(dir)->root;
1924 struct btrfs_root *dest = NULL;
1925 struct btrfs_ioctl_vol_args *vol_args;
1926 struct btrfs_trans_handle *trans;
1927 int namelen;
1928 int ret;
1929 int err = 0;
1930
1931 vol_args = memdup_user(arg, sizeof(*vol_args));
1932 if (IS_ERR(vol_args))
1933 return PTR_ERR(vol_args);
1934
1935 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1936 namelen = strlen(vol_args->name);
1937 if (strchr(vol_args->name, '/') ||
1938 strncmp(vol_args->name, "..", namelen) == 0) {
1939 err = -EINVAL;
1940 goto out;
1941 }
1942
1943 err = mnt_want_write_file(file);
1944 if (err)
1945 goto out;
1946
1947 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1948 dentry = lookup_one_len(vol_args->name, parent, namelen);
1949 if (IS_ERR(dentry)) {
1950 err = PTR_ERR(dentry);
1951 goto out_unlock_dir;
1952 }
1953
1954 if (!dentry->d_inode) {
1955 err = -ENOENT;
1956 goto out_dput;
1957 }
1958
1959 inode = dentry->d_inode;
1960 dest = BTRFS_I(inode)->root;
1961 if (!capable(CAP_SYS_ADMIN)){
1962 /*
1963 * Regular user. Only allow this with a special mount
1964 * option, when the user has write+exec access to the
1965 * subvol root, and when rmdir(2) would have been
1966 * allowed.
1967 *
1968 * Note that this is _not_ check that the subvol is
1969 * empty or doesn't contain data that we wouldn't
1970 * otherwise be able to delete.
1971 *
1972 * Users who want to delete empty subvols should try
1973 * rmdir(2).
1974 */
1975 err = -EPERM;
1976 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1977 goto out_dput;
1978
1979 /*
1980 * Do not allow deletion if the parent dir is the same
1981 * as the dir to be deleted. That means the ioctl
1982 * must be called on the dentry referencing the root
1983 * of the subvol, not a random directory contained
1984 * within it.
1985 */
1986 err = -EINVAL;
1987 if (root == dest)
1988 goto out_dput;
1989
1990 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1991 if (err)
1992 goto out_dput;
1993
1994 /* check if subvolume may be deleted by a non-root user */
1995 err = btrfs_may_delete(dir, dentry, 1);
1996 if (err)
1997 goto out_dput;
1998 }
1999
2000 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2001 err = -EINVAL;
2002 goto out_dput;
2003 }
2004
2005 mutex_lock(&inode->i_mutex);
2006 err = d_invalidate(dentry);
2007 if (err)
2008 goto out_unlock;
2009
2010 down_write(&root->fs_info->subvol_sem);
2011
2012 err = may_destroy_subvol(dest);
2013 if (err)
2014 goto out_up_write;
2015
2016 trans = btrfs_start_transaction(root, 0);
2017 if (IS_ERR(trans)) {
2018 err = PTR_ERR(trans);
2019 goto out_up_write;
2020 }
2021 trans->block_rsv = &root->fs_info->global_block_rsv;
2022
2023 ret = btrfs_unlink_subvol(trans, root, dir,
2024 dest->root_key.objectid,
2025 dentry->d_name.name,
2026 dentry->d_name.len);
2027 if (ret) {
2028 err = ret;
2029 btrfs_abort_transaction(trans, root, ret);
2030 goto out_end_trans;
2031 }
2032
2033 btrfs_record_root_in_trans(trans, dest);
2034
2035 memset(&dest->root_item.drop_progress, 0,
2036 sizeof(dest->root_item.drop_progress));
2037 dest->root_item.drop_level = 0;
2038 btrfs_set_root_refs(&dest->root_item, 0);
2039
2040 if (!xchg(&dest->orphan_item_inserted, 1)) {
2041 ret = btrfs_insert_orphan_item(trans,
2042 root->fs_info->tree_root,
2043 dest->root_key.objectid);
2044 if (ret) {
2045 btrfs_abort_transaction(trans, root, ret);
2046 err = ret;
2047 goto out_end_trans;
2048 }
2049 }
2050 out_end_trans:
2051 ret = btrfs_end_transaction(trans, root);
2052 if (ret && !err)
2053 err = ret;
2054 inode->i_flags |= S_DEAD;
2055 out_up_write:
2056 up_write(&root->fs_info->subvol_sem);
2057 out_unlock:
2058 mutex_unlock(&inode->i_mutex);
2059 if (!err) {
2060 shrink_dcache_sb(root->fs_info->sb);
2061 btrfs_invalidate_inodes(dest);
2062 d_delete(dentry);
2063 }
2064 out_dput:
2065 dput(dentry);
2066 out_unlock_dir:
2067 mutex_unlock(&dir->i_mutex);
2068 mnt_drop_write_file(file);
2069 out:
2070 kfree(vol_args);
2071 return err;
2072 }
2073
2074 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2075 {
2076 struct inode *inode = fdentry(file)->d_inode;
2077 struct btrfs_root *root = BTRFS_I(inode)->root;
2078 struct btrfs_ioctl_defrag_range_args *range;
2079 int ret;
2080
2081 if (btrfs_root_readonly(root))
2082 return -EROFS;
2083
2084 ret = mnt_want_write_file(file);
2085 if (ret)
2086 return ret;
2087
2088 switch (inode->i_mode & S_IFMT) {
2089 case S_IFDIR:
2090 if (!capable(CAP_SYS_ADMIN)) {
2091 ret = -EPERM;
2092 goto out;
2093 }
2094 ret = btrfs_defrag_root(root, 0);
2095 if (ret)
2096 goto out;
2097 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2098 break;
2099 case S_IFREG:
2100 if (!(file->f_mode & FMODE_WRITE)) {
2101 ret = -EINVAL;
2102 goto out;
2103 }
2104
2105 range = kzalloc(sizeof(*range), GFP_KERNEL);
2106 if (!range) {
2107 ret = -ENOMEM;
2108 goto out;
2109 }
2110
2111 if (argp) {
2112 if (copy_from_user(range, argp,
2113 sizeof(*range))) {
2114 ret = -EFAULT;
2115 kfree(range);
2116 goto out;
2117 }
2118 /* compression requires us to start the IO */
2119 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2120 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2121 range->extent_thresh = (u32)-1;
2122 }
2123 } else {
2124 /* the rest are all set to zero by kzalloc */
2125 range->len = (u64)-1;
2126 }
2127 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2128 range, 0, 0);
2129 if (ret > 0)
2130 ret = 0;
2131 kfree(range);
2132 break;
2133 default:
2134 ret = -EINVAL;
2135 }
2136 out:
2137 mnt_drop_write_file(file);
2138 return ret;
2139 }
2140
2141 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2142 {
2143 struct btrfs_ioctl_vol_args *vol_args;
2144 int ret;
2145
2146 if (!capable(CAP_SYS_ADMIN))
2147 return -EPERM;
2148
2149 mutex_lock(&root->fs_info->volume_mutex);
2150 if (root->fs_info->balance_ctl) {
2151 printk(KERN_INFO "btrfs: balance in progress\n");
2152 ret = -EINVAL;
2153 goto out;
2154 }
2155
2156 vol_args = memdup_user(arg, sizeof(*vol_args));
2157 if (IS_ERR(vol_args)) {
2158 ret = PTR_ERR(vol_args);
2159 goto out;
2160 }
2161
2162 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2163 ret = btrfs_init_new_device(root, vol_args->name);
2164
2165 kfree(vol_args);
2166 out:
2167 mutex_unlock(&root->fs_info->volume_mutex);
2168 return ret;
2169 }
2170
2171 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2172 {
2173 struct btrfs_ioctl_vol_args *vol_args;
2174 int ret;
2175
2176 if (!capable(CAP_SYS_ADMIN))
2177 return -EPERM;
2178
2179 if (root->fs_info->sb->s_flags & MS_RDONLY)
2180 return -EROFS;
2181
2182 mutex_lock(&root->fs_info->volume_mutex);
2183 if (root->fs_info->balance_ctl) {
2184 printk(KERN_INFO "btrfs: balance in progress\n");
2185 ret = -EINVAL;
2186 goto out;
2187 }
2188
2189 vol_args = memdup_user(arg, sizeof(*vol_args));
2190 if (IS_ERR(vol_args)) {
2191 ret = PTR_ERR(vol_args);
2192 goto out;
2193 }
2194
2195 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2196 ret = btrfs_rm_device(root, vol_args->name);
2197
2198 kfree(vol_args);
2199 out:
2200 mutex_unlock(&root->fs_info->volume_mutex);
2201 return ret;
2202 }
2203
2204 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2205 {
2206 struct btrfs_ioctl_fs_info_args *fi_args;
2207 struct btrfs_device *device;
2208 struct btrfs_device *next;
2209 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2210 int ret = 0;
2211
2212 if (!capable(CAP_SYS_ADMIN))
2213 return -EPERM;
2214
2215 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2216 if (!fi_args)
2217 return -ENOMEM;
2218
2219 fi_args->num_devices = fs_devices->num_devices;
2220 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2221
2222 mutex_lock(&fs_devices->device_list_mutex);
2223 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2224 if (device->devid > fi_args->max_id)
2225 fi_args->max_id = device->devid;
2226 }
2227 mutex_unlock(&fs_devices->device_list_mutex);
2228
2229 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2230 ret = -EFAULT;
2231
2232 kfree(fi_args);
2233 return ret;
2234 }
2235
2236 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2237 {
2238 struct btrfs_ioctl_dev_info_args *di_args;
2239 struct btrfs_device *dev;
2240 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2241 int ret = 0;
2242 char *s_uuid = NULL;
2243 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2244
2245 if (!capable(CAP_SYS_ADMIN))
2246 return -EPERM;
2247
2248 di_args = memdup_user(arg, sizeof(*di_args));
2249 if (IS_ERR(di_args))
2250 return PTR_ERR(di_args);
2251
2252 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2253 s_uuid = di_args->uuid;
2254
2255 mutex_lock(&fs_devices->device_list_mutex);
2256 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2257 mutex_unlock(&fs_devices->device_list_mutex);
2258
2259 if (!dev) {
2260 ret = -ENODEV;
2261 goto out;
2262 }
2263
2264 di_args->devid = dev->devid;
2265 di_args->bytes_used = dev->bytes_used;
2266 di_args->total_bytes = dev->total_bytes;
2267 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2268 if (dev->name) {
2269 struct rcu_string *name;
2270
2271 rcu_read_lock();
2272 name = rcu_dereference(dev->name);
2273 strncpy(di_args->path, name->str, sizeof(di_args->path));
2274 rcu_read_unlock();
2275 di_args->path[sizeof(di_args->path) - 1] = 0;
2276 } else {
2277 di_args->path[0] = '\0';
2278 }
2279
2280 out:
2281 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2282 ret = -EFAULT;
2283
2284 kfree(di_args);
2285 return ret;
2286 }
2287
2288 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2289 u64 off, u64 olen, u64 destoff)
2290 {
2291 struct inode *inode = fdentry(file)->d_inode;
2292 struct btrfs_root *root = BTRFS_I(inode)->root;
2293 struct file *src_file;
2294 struct inode *src;
2295 struct btrfs_trans_handle *trans;
2296 struct btrfs_path *path;
2297 struct extent_buffer *leaf;
2298 char *buf;
2299 struct btrfs_key key;
2300 u32 nritems;
2301 int slot;
2302 int ret;
2303 u64 len = olen;
2304 u64 bs = root->fs_info->sb->s_blocksize;
2305 u64 hint_byte;
2306
2307 /*
2308 * TODO:
2309 * - split compressed inline extents. annoying: we need to
2310 * decompress into destination's address_space (the file offset
2311 * may change, so source mapping won't do), then recompress (or
2312 * otherwise reinsert) a subrange.
2313 * - allow ranges within the same file to be cloned (provided
2314 * they don't overlap)?
2315 */
2316
2317 /* the destination must be opened for writing */
2318 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2319 return -EINVAL;
2320
2321 if (btrfs_root_readonly(root))
2322 return -EROFS;
2323
2324 ret = mnt_want_write_file(file);
2325 if (ret)
2326 return ret;
2327
2328 src_file = fget(srcfd);
2329 if (!src_file) {
2330 ret = -EBADF;
2331 goto out_drop_write;
2332 }
2333
2334 src = src_file->f_dentry->d_inode;
2335
2336 ret = -EINVAL;
2337 if (src == inode)
2338 goto out_fput;
2339
2340 /* the src must be open for reading */
2341 if (!(src_file->f_mode & FMODE_READ))
2342 goto out_fput;
2343
2344 /* don't make the dst file partly checksummed */
2345 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2346 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2347 goto out_fput;
2348
2349 ret = -EISDIR;
2350 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2351 goto out_fput;
2352
2353 ret = -EXDEV;
2354 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2355 goto out_fput;
2356
2357 ret = -ENOMEM;
2358 buf = vmalloc(btrfs_level_size(root, 0));
2359 if (!buf)
2360 goto out_fput;
2361
2362 path = btrfs_alloc_path();
2363 if (!path) {
2364 vfree(buf);
2365 goto out_fput;
2366 }
2367 path->reada = 2;
2368
2369 if (inode < src) {
2370 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2371 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2372 } else {
2373 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2374 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2375 }
2376
2377 /* determine range to clone */
2378 ret = -EINVAL;
2379 if (off + len > src->i_size || off + len < off)
2380 goto out_unlock;
2381 if (len == 0)
2382 olen = len = src->i_size - off;
2383 /* if we extend to eof, continue to block boundary */
2384 if (off + len == src->i_size)
2385 len = ALIGN(src->i_size, bs) - off;
2386
2387 /* verify the end result is block aligned */
2388 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2389 !IS_ALIGNED(destoff, bs))
2390 goto out_unlock;
2391
2392 if (destoff > inode->i_size) {
2393 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2394 if (ret)
2395 goto out_unlock;
2396 }
2397
2398 /* truncate page cache pages from target inode range */
2399 truncate_inode_pages_range(&inode->i_data, destoff,
2400 PAGE_CACHE_ALIGN(destoff + len) - 1);
2401
2402 /* do any pending delalloc/csum calc on src, one way or
2403 another, and lock file content */
2404 while (1) {
2405 struct btrfs_ordered_extent *ordered;
2406 lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2407 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2408 if (!ordered &&
2409 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2410 EXTENT_DELALLOC, 0, NULL))
2411 break;
2412 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2413 if (ordered)
2414 btrfs_put_ordered_extent(ordered);
2415 btrfs_wait_ordered_range(src, off, len);
2416 }
2417
2418 /* clone data */
2419 key.objectid = btrfs_ino(src);
2420 key.type = BTRFS_EXTENT_DATA_KEY;
2421 key.offset = 0;
2422
2423 while (1) {
2424 /*
2425 * note the key will change type as we walk through the
2426 * tree.
2427 */
2428 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2429 if (ret < 0)
2430 goto out;
2431
2432 nritems = btrfs_header_nritems(path->nodes[0]);
2433 if (path->slots[0] >= nritems) {
2434 ret = btrfs_next_leaf(root, path);
2435 if (ret < 0)
2436 goto out;
2437 if (ret > 0)
2438 break;
2439 nritems = btrfs_header_nritems(path->nodes[0]);
2440 }
2441 leaf = path->nodes[0];
2442 slot = path->slots[0];
2443
2444 btrfs_item_key_to_cpu(leaf, &key, slot);
2445 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2446 key.objectid != btrfs_ino(src))
2447 break;
2448
2449 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2450 struct btrfs_file_extent_item *extent;
2451 int type;
2452 u32 size;
2453 struct btrfs_key new_key;
2454 u64 disko = 0, diskl = 0;
2455 u64 datao = 0, datal = 0;
2456 u8 comp;
2457 u64 endoff;
2458
2459 size = btrfs_item_size_nr(leaf, slot);
2460 read_extent_buffer(leaf, buf,
2461 btrfs_item_ptr_offset(leaf, slot),
2462 size);
2463
2464 extent = btrfs_item_ptr(leaf, slot,
2465 struct btrfs_file_extent_item);
2466 comp = btrfs_file_extent_compression(leaf, extent);
2467 type = btrfs_file_extent_type(leaf, extent);
2468 if (type == BTRFS_FILE_EXTENT_REG ||
2469 type == BTRFS_FILE_EXTENT_PREALLOC) {
2470 disko = btrfs_file_extent_disk_bytenr(leaf,
2471 extent);
2472 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2473 extent);
2474 datao = btrfs_file_extent_offset(leaf, extent);
2475 datal = btrfs_file_extent_num_bytes(leaf,
2476 extent);
2477 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2478 /* take upper bound, may be compressed */
2479 datal = btrfs_file_extent_ram_bytes(leaf,
2480 extent);
2481 }
2482 btrfs_release_path(path);
2483
2484 if (key.offset + datal <= off ||
2485 key.offset >= off+len)
2486 goto next;
2487
2488 memcpy(&new_key, &key, sizeof(new_key));
2489 new_key.objectid = btrfs_ino(inode);
2490 if (off <= key.offset)
2491 new_key.offset = key.offset + destoff - off;
2492 else
2493 new_key.offset = destoff;
2494
2495 /*
2496 * 1 - adjusting old extent (we may have to split it)
2497 * 1 - add new extent
2498 * 1 - inode update
2499 */
2500 trans = btrfs_start_transaction(root, 3);
2501 if (IS_ERR(trans)) {
2502 ret = PTR_ERR(trans);
2503 goto out;
2504 }
2505
2506 if (type == BTRFS_FILE_EXTENT_REG ||
2507 type == BTRFS_FILE_EXTENT_PREALLOC) {
2508 /*
2509 * a | --- range to clone ---| b
2510 * | ------------- extent ------------- |
2511 */
2512
2513 /* substract range b */
2514 if (key.offset + datal > off + len)
2515 datal = off + len - key.offset;
2516
2517 /* substract range a */
2518 if (off > key.offset) {
2519 datao += off - key.offset;
2520 datal -= off - key.offset;
2521 }
2522
2523 ret = btrfs_drop_extents(trans, inode,
2524 new_key.offset,
2525 new_key.offset + datal,
2526 &hint_byte, 1);
2527 if (ret) {
2528 btrfs_abort_transaction(trans, root,
2529 ret);
2530 btrfs_end_transaction(trans, root);
2531 goto out;
2532 }
2533
2534 ret = btrfs_insert_empty_item(trans, root, path,
2535 &new_key, size);
2536 if (ret) {
2537 btrfs_abort_transaction(trans, root,
2538 ret);
2539 btrfs_end_transaction(trans, root);
2540 goto out;
2541 }
2542
2543 leaf = path->nodes[0];
2544 slot = path->slots[0];
2545 write_extent_buffer(leaf, buf,
2546 btrfs_item_ptr_offset(leaf, slot),
2547 size);
2548
2549 extent = btrfs_item_ptr(leaf, slot,
2550 struct btrfs_file_extent_item);
2551
2552 /* disko == 0 means it's a hole */
2553 if (!disko)
2554 datao = 0;
2555
2556 btrfs_set_file_extent_offset(leaf, extent,
2557 datao);
2558 btrfs_set_file_extent_num_bytes(leaf, extent,
2559 datal);
2560 if (disko) {
2561 inode_add_bytes(inode, datal);
2562 ret = btrfs_inc_extent_ref(trans, root,
2563 disko, diskl, 0,
2564 root->root_key.objectid,
2565 btrfs_ino(inode),
2566 new_key.offset - datao,
2567 0);
2568 if (ret) {
2569 btrfs_abort_transaction(trans,
2570 root,
2571 ret);
2572 btrfs_end_transaction(trans,
2573 root);
2574 goto out;
2575
2576 }
2577 }
2578 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2579 u64 skip = 0;
2580 u64 trim = 0;
2581 if (off > key.offset) {
2582 skip = off - key.offset;
2583 new_key.offset += skip;
2584 }
2585
2586 if (key.offset + datal > off+len)
2587 trim = key.offset + datal - (off+len);
2588
2589 if (comp && (skip || trim)) {
2590 ret = -EINVAL;
2591 btrfs_end_transaction(trans, root);
2592 goto out;
2593 }
2594 size -= skip + trim;
2595 datal -= skip + trim;
2596
2597 ret = btrfs_drop_extents(trans, inode,
2598 new_key.offset,
2599 new_key.offset + datal,
2600 &hint_byte, 1);
2601 if (ret) {
2602 btrfs_abort_transaction(trans, root,
2603 ret);
2604 btrfs_end_transaction(trans, root);
2605 goto out;
2606 }
2607
2608 ret = btrfs_insert_empty_item(trans, root, path,
2609 &new_key, size);
2610 if (ret) {
2611 btrfs_abort_transaction(trans, root,
2612 ret);
2613 btrfs_end_transaction(trans, root);
2614 goto out;
2615 }
2616
2617 if (skip) {
2618 u32 start =
2619 btrfs_file_extent_calc_inline_size(0);
2620 memmove(buf+start, buf+start+skip,
2621 datal);
2622 }
2623
2624 leaf = path->nodes[0];
2625 slot = path->slots[0];
2626 write_extent_buffer(leaf, buf,
2627 btrfs_item_ptr_offset(leaf, slot),
2628 size);
2629 inode_add_bytes(inode, datal);
2630 }
2631
2632 btrfs_mark_buffer_dirty(leaf);
2633 btrfs_release_path(path);
2634
2635 inode_inc_iversion(inode);
2636 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2637
2638 /*
2639 * we round up to the block size at eof when
2640 * determining which extents to clone above,
2641 * but shouldn't round up the file size
2642 */
2643 endoff = new_key.offset + datal;
2644 if (endoff > destoff+olen)
2645 endoff = destoff+olen;
2646 if (endoff > inode->i_size)
2647 btrfs_i_size_write(inode, endoff);
2648
2649 ret = btrfs_update_inode(trans, root, inode);
2650 if (ret) {
2651 btrfs_abort_transaction(trans, root, ret);
2652 btrfs_end_transaction(trans, root);
2653 goto out;
2654 }
2655 ret = btrfs_end_transaction(trans, root);
2656 }
2657 next:
2658 btrfs_release_path(path);
2659 key.offset++;
2660 }
2661 ret = 0;
2662 out:
2663 btrfs_release_path(path);
2664 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2665 out_unlock:
2666 mutex_unlock(&src->i_mutex);
2667 mutex_unlock(&inode->i_mutex);
2668 vfree(buf);
2669 btrfs_free_path(path);
2670 out_fput:
2671 fput(src_file);
2672 out_drop_write:
2673 mnt_drop_write_file(file);
2674 return ret;
2675 }
2676
2677 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2678 {
2679 struct btrfs_ioctl_clone_range_args args;
2680
2681 if (copy_from_user(&args, argp, sizeof(args)))
2682 return -EFAULT;
2683 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2684 args.src_length, args.dest_offset);
2685 }
2686
2687 /*
2688 * there are many ways the trans_start and trans_end ioctls can lead
2689 * to deadlocks. They should only be used by applications that
2690 * basically own the machine, and have a very in depth understanding
2691 * of all the possible deadlocks and enospc problems.
2692 */
2693 static long btrfs_ioctl_trans_start(struct file *file)
2694 {
2695 struct inode *inode = fdentry(file)->d_inode;
2696 struct btrfs_root *root = BTRFS_I(inode)->root;
2697 struct btrfs_trans_handle *trans;
2698 int ret;
2699
2700 ret = -EPERM;
2701 if (!capable(CAP_SYS_ADMIN))
2702 goto out;
2703
2704 ret = -EINPROGRESS;
2705 if (file->private_data)
2706 goto out;
2707
2708 ret = -EROFS;
2709 if (btrfs_root_readonly(root))
2710 goto out;
2711
2712 ret = mnt_want_write_file(file);
2713 if (ret)
2714 goto out;
2715
2716 atomic_inc(&root->fs_info->open_ioctl_trans);
2717
2718 ret = -ENOMEM;
2719 trans = btrfs_start_ioctl_transaction(root);
2720 if (IS_ERR(trans))
2721 goto out_drop;
2722
2723 file->private_data = trans;
2724 return 0;
2725
2726 out_drop:
2727 atomic_dec(&root->fs_info->open_ioctl_trans);
2728 mnt_drop_write_file(file);
2729 out:
2730 return ret;
2731 }
2732
2733 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2734 {
2735 struct inode *inode = fdentry(file)->d_inode;
2736 struct btrfs_root *root = BTRFS_I(inode)->root;
2737 struct btrfs_root *new_root;
2738 struct btrfs_dir_item *di;
2739 struct btrfs_trans_handle *trans;
2740 struct btrfs_path *path;
2741 struct btrfs_key location;
2742 struct btrfs_disk_key disk_key;
2743 struct btrfs_super_block *disk_super;
2744 u64 features;
2745 u64 objectid = 0;
2746 u64 dir_id;
2747
2748 if (!capable(CAP_SYS_ADMIN))
2749 return -EPERM;
2750
2751 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2752 return -EFAULT;
2753
2754 if (!objectid)
2755 objectid = root->root_key.objectid;
2756
2757 location.objectid = objectid;
2758 location.type = BTRFS_ROOT_ITEM_KEY;
2759 location.offset = (u64)-1;
2760
2761 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2762 if (IS_ERR(new_root))
2763 return PTR_ERR(new_root);
2764
2765 if (btrfs_root_refs(&new_root->root_item) == 0)
2766 return -ENOENT;
2767
2768 path = btrfs_alloc_path();
2769 if (!path)
2770 return -ENOMEM;
2771 path->leave_spinning = 1;
2772
2773 trans = btrfs_start_transaction(root, 1);
2774 if (IS_ERR(trans)) {
2775 btrfs_free_path(path);
2776 return PTR_ERR(trans);
2777 }
2778
2779 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2780 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2781 dir_id, "default", 7, 1);
2782 if (IS_ERR_OR_NULL(di)) {
2783 btrfs_free_path(path);
2784 btrfs_end_transaction(trans, root);
2785 printk(KERN_ERR "Umm, you don't have the default dir item, "
2786 "this isn't going to work\n");
2787 return -ENOENT;
2788 }
2789
2790 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2791 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2792 btrfs_mark_buffer_dirty(path->nodes[0]);
2793 btrfs_free_path(path);
2794
2795 disk_super = root->fs_info->super_copy;
2796 features = btrfs_super_incompat_flags(disk_super);
2797 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2798 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2799 btrfs_set_super_incompat_flags(disk_super, features);
2800 }
2801 btrfs_end_transaction(trans, root);
2802
2803 return 0;
2804 }
2805
2806 static void get_block_group_info(struct list_head *groups_list,
2807 struct btrfs_ioctl_space_info *space)
2808 {
2809 struct btrfs_block_group_cache *block_group;
2810
2811 space->total_bytes = 0;
2812 space->used_bytes = 0;
2813 space->flags = 0;
2814 list_for_each_entry(block_group, groups_list, list) {
2815 space->flags = block_group->flags;
2816 space->total_bytes += block_group->key.offset;
2817 space->used_bytes +=
2818 btrfs_block_group_used(&block_group->item);
2819 }
2820 }
2821
2822 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2823 {
2824 struct btrfs_ioctl_space_args space_args;
2825 struct btrfs_ioctl_space_info space;
2826 struct btrfs_ioctl_space_info *dest;
2827 struct btrfs_ioctl_space_info *dest_orig;
2828 struct btrfs_ioctl_space_info __user *user_dest;
2829 struct btrfs_space_info *info;
2830 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2831 BTRFS_BLOCK_GROUP_SYSTEM,
2832 BTRFS_BLOCK_GROUP_METADATA,
2833 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2834 int num_types = 4;
2835 int alloc_size;
2836 int ret = 0;
2837 u64 slot_count = 0;
2838 int i, c;
2839
2840 if (copy_from_user(&space_args,
2841 (struct btrfs_ioctl_space_args __user *)arg,
2842 sizeof(space_args)))
2843 return -EFAULT;
2844
2845 for (i = 0; i < num_types; i++) {
2846 struct btrfs_space_info *tmp;
2847
2848 info = NULL;
2849 rcu_read_lock();
2850 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2851 list) {
2852 if (tmp->flags == types[i]) {
2853 info = tmp;
2854 break;
2855 }
2856 }
2857 rcu_read_unlock();
2858
2859 if (!info)
2860 continue;
2861
2862 down_read(&info->groups_sem);
2863 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2864 if (!list_empty(&info->block_groups[c]))
2865 slot_count++;
2866 }
2867 up_read(&info->groups_sem);
2868 }
2869
2870 /* space_slots == 0 means they are asking for a count */
2871 if (space_args.space_slots == 0) {
2872 space_args.total_spaces = slot_count;
2873 goto out;
2874 }
2875
2876 slot_count = min_t(u64, space_args.space_slots, slot_count);
2877
2878 alloc_size = sizeof(*dest) * slot_count;
2879
2880 /* we generally have at most 6 or so space infos, one for each raid
2881 * level. So, a whole page should be more than enough for everyone
2882 */
2883 if (alloc_size > PAGE_CACHE_SIZE)
2884 return -ENOMEM;
2885
2886 space_args.total_spaces = 0;
2887 dest = kmalloc(alloc_size, GFP_NOFS);
2888 if (!dest)
2889 return -ENOMEM;
2890 dest_orig = dest;
2891
2892 /* now we have a buffer to copy into */
2893 for (i = 0; i < num_types; i++) {
2894 struct btrfs_space_info *tmp;
2895
2896 if (!slot_count)
2897 break;
2898
2899 info = NULL;
2900 rcu_read_lock();
2901 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2902 list) {
2903 if (tmp->flags == types[i]) {
2904 info = tmp;
2905 break;
2906 }
2907 }
2908 rcu_read_unlock();
2909
2910 if (!info)
2911 continue;
2912 down_read(&info->groups_sem);
2913 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2914 if (!list_empty(&info->block_groups[c])) {
2915 get_block_group_info(&info->block_groups[c],
2916 &space);
2917 memcpy(dest, &space, sizeof(space));
2918 dest++;
2919 space_args.total_spaces++;
2920 slot_count--;
2921 }
2922 if (!slot_count)
2923 break;
2924 }
2925 up_read(&info->groups_sem);
2926 }
2927
2928 user_dest = (struct btrfs_ioctl_space_info __user *)
2929 (arg + sizeof(struct btrfs_ioctl_space_args));
2930
2931 if (copy_to_user(user_dest, dest_orig, alloc_size))
2932 ret = -EFAULT;
2933
2934 kfree(dest_orig);
2935 out:
2936 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2937 ret = -EFAULT;
2938
2939 return ret;
2940 }
2941
2942 /*
2943 * there are many ways the trans_start and trans_end ioctls can lead
2944 * to deadlocks. They should only be used by applications that
2945 * basically own the machine, and have a very in depth understanding
2946 * of all the possible deadlocks and enospc problems.
2947 */
2948 long btrfs_ioctl_trans_end(struct file *file)
2949 {
2950 struct inode *inode = fdentry(file)->d_inode;
2951 struct btrfs_root *root = BTRFS_I(inode)->root;
2952 struct btrfs_trans_handle *trans;
2953
2954 trans = file->private_data;
2955 if (!trans)
2956 return -EINVAL;
2957 file->private_data = NULL;
2958
2959 btrfs_end_transaction(trans, root);
2960
2961 atomic_dec(&root->fs_info->open_ioctl_trans);
2962
2963 mnt_drop_write_file(file);
2964 return 0;
2965 }
2966
2967 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2968 {
2969 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2970 struct btrfs_trans_handle *trans;
2971 u64 transid;
2972 int ret;
2973
2974 trans = btrfs_start_transaction(root, 0);
2975 if (IS_ERR(trans))
2976 return PTR_ERR(trans);
2977 transid = trans->transid;
2978 ret = btrfs_commit_transaction_async(trans, root, 0);
2979 if (ret) {
2980 btrfs_end_transaction(trans, root);
2981 return ret;
2982 }
2983
2984 if (argp)
2985 if (copy_to_user(argp, &transid, sizeof(transid)))
2986 return -EFAULT;
2987 return 0;
2988 }
2989
2990 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2991 {
2992 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2993 u64 transid;
2994
2995 if (argp) {
2996 if (copy_from_user(&transid, argp, sizeof(transid)))
2997 return -EFAULT;
2998 } else {
2999 transid = 0; /* current trans */
3000 }
3001 return btrfs_wait_for_commit(root, transid);
3002 }
3003
3004 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
3005 {
3006 int ret;
3007 struct btrfs_ioctl_scrub_args *sa;
3008
3009 if (!capable(CAP_SYS_ADMIN))
3010 return -EPERM;
3011
3012 sa = memdup_user(arg, sizeof(*sa));
3013 if (IS_ERR(sa))
3014 return PTR_ERR(sa);
3015
3016 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3017 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3018
3019 if (copy_to_user(arg, sa, sizeof(*sa)))
3020 ret = -EFAULT;
3021
3022 kfree(sa);
3023 return ret;
3024 }
3025
3026 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3027 {
3028 if (!capable(CAP_SYS_ADMIN))
3029 return -EPERM;
3030
3031 return btrfs_scrub_cancel(root);
3032 }
3033
3034 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3035 void __user *arg)
3036 {
3037 struct btrfs_ioctl_scrub_args *sa;
3038 int ret;
3039
3040 if (!capable(CAP_SYS_ADMIN))
3041 return -EPERM;
3042
3043 sa = memdup_user(arg, sizeof(*sa));
3044 if (IS_ERR(sa))
3045 return PTR_ERR(sa);
3046
3047 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3048
3049 if (copy_to_user(arg, sa, sizeof(*sa)))
3050 ret = -EFAULT;
3051
3052 kfree(sa);
3053 return ret;
3054 }
3055
3056 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3057 void __user *arg, int reset_after_read)
3058 {
3059 struct btrfs_ioctl_get_dev_stats *sa;
3060 int ret;
3061
3062 if (reset_after_read && !capable(CAP_SYS_ADMIN))
3063 return -EPERM;
3064
3065 sa = memdup_user(arg, sizeof(*sa));
3066 if (IS_ERR(sa))
3067 return PTR_ERR(sa);
3068
3069 ret = btrfs_get_dev_stats(root, sa, reset_after_read);
3070
3071 if (copy_to_user(arg, sa, sizeof(*sa)))
3072 ret = -EFAULT;
3073
3074 kfree(sa);
3075 return ret;
3076 }
3077
3078 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3079 {
3080 int ret = 0;
3081 int i;
3082 u64 rel_ptr;
3083 int size;
3084 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3085 struct inode_fs_paths *ipath = NULL;
3086 struct btrfs_path *path;
3087
3088 if (!capable(CAP_SYS_ADMIN))
3089 return -EPERM;
3090
3091 path = btrfs_alloc_path();
3092 if (!path) {
3093 ret = -ENOMEM;
3094 goto out;
3095 }
3096
3097 ipa = memdup_user(arg, sizeof(*ipa));
3098 if (IS_ERR(ipa)) {
3099 ret = PTR_ERR(ipa);
3100 ipa = NULL;
3101 goto out;
3102 }
3103
3104 size = min_t(u32, ipa->size, 4096);
3105 ipath = init_ipath(size, root, path);
3106 if (IS_ERR(ipath)) {
3107 ret = PTR_ERR(ipath);
3108 ipath = NULL;
3109 goto out;
3110 }
3111
3112 ret = paths_from_inode(ipa->inum, ipath);
3113 if (ret < 0)
3114 goto out;
3115
3116 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3117 rel_ptr = ipath->fspath->val[i] -
3118 (u64)(unsigned long)ipath->fspath->val;
3119 ipath->fspath->val[i] = rel_ptr;
3120 }
3121
3122 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3123 (void *)(unsigned long)ipath->fspath, size);
3124 if (ret) {
3125 ret = -EFAULT;
3126 goto out;
3127 }
3128
3129 out:
3130 btrfs_free_path(path);
3131 free_ipath(ipath);
3132 kfree(ipa);
3133
3134 return ret;
3135 }
3136
3137 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3138 {
3139 struct btrfs_data_container *inodes = ctx;
3140 const size_t c = 3 * sizeof(u64);
3141
3142 if (inodes->bytes_left >= c) {
3143 inodes->bytes_left -= c;
3144 inodes->val[inodes->elem_cnt] = inum;
3145 inodes->val[inodes->elem_cnt + 1] = offset;
3146 inodes->val[inodes->elem_cnt + 2] = root;
3147 inodes->elem_cnt += 3;
3148 } else {
3149 inodes->bytes_missing += c - inodes->bytes_left;
3150 inodes->bytes_left = 0;
3151 inodes->elem_missed += 3;
3152 }
3153
3154 return 0;
3155 }
3156
3157 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3158 void __user *arg)
3159 {
3160 int ret = 0;
3161 int size;
3162 u64 extent_item_pos;
3163 struct btrfs_ioctl_logical_ino_args *loi;
3164 struct btrfs_data_container *inodes = NULL;
3165 struct btrfs_path *path = NULL;
3166 struct btrfs_key key;
3167
3168 if (!capable(CAP_SYS_ADMIN))
3169 return -EPERM;
3170
3171 loi = memdup_user(arg, sizeof(*loi));
3172 if (IS_ERR(loi)) {
3173 ret = PTR_ERR(loi);
3174 loi = NULL;
3175 goto out;
3176 }
3177
3178 path = btrfs_alloc_path();
3179 if (!path) {
3180 ret = -ENOMEM;
3181 goto out;
3182 }
3183
3184 size = min_t(u32, loi->size, 4096);
3185 inodes = init_data_container(size);
3186 if (IS_ERR(inodes)) {
3187 ret = PTR_ERR(inodes);
3188 inodes = NULL;
3189 goto out;
3190 }
3191
3192 ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3193 btrfs_release_path(path);
3194
3195 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3196 ret = -ENOENT;
3197 if (ret < 0)
3198 goto out;
3199
3200 extent_item_pos = loi->logical - key.objectid;
3201 ret = iterate_extent_inodes(root->fs_info, key.objectid,
3202 extent_item_pos, 0, build_ino_list,
3203 inodes);
3204
3205 if (ret < 0)
3206 goto out;
3207
3208 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3209 (void *)(unsigned long)inodes, size);
3210 if (ret)
3211 ret = -EFAULT;
3212
3213 out:
3214 btrfs_free_path(path);
3215 kfree(inodes);
3216 kfree(loi);
3217
3218 return ret;
3219 }
3220
3221 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3222 struct btrfs_ioctl_balance_args *bargs)
3223 {
3224 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3225
3226 bargs->flags = bctl->flags;
3227
3228 if (atomic_read(&fs_info->balance_running))
3229 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3230 if (atomic_read(&fs_info->balance_pause_req))
3231 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3232 if (atomic_read(&fs_info->balance_cancel_req))
3233 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3234
3235 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3236 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3237 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3238
3239 if (lock) {
3240 spin_lock(&fs_info->balance_lock);
3241 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3242 spin_unlock(&fs_info->balance_lock);
3243 } else {
3244 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3245 }
3246 }
3247
3248 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3249 {
3250 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3251 struct btrfs_fs_info *fs_info = root->fs_info;
3252 struct btrfs_ioctl_balance_args *bargs;
3253 struct btrfs_balance_control *bctl;
3254 int ret;
3255
3256 if (!capable(CAP_SYS_ADMIN))
3257 return -EPERM;
3258
3259 if (fs_info->sb->s_flags & MS_RDONLY)
3260 return -EROFS;
3261
3262 ret = mnt_want_write(file->f_path.mnt);
3263 if (ret)
3264 return ret;
3265
3266 mutex_lock(&fs_info->volume_mutex);
3267 mutex_lock(&fs_info->balance_mutex);
3268
3269 if (arg) {
3270 bargs = memdup_user(arg, sizeof(*bargs));
3271 if (IS_ERR(bargs)) {
3272 ret = PTR_ERR(bargs);
3273 goto out;
3274 }
3275
3276 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3277 if (!fs_info->balance_ctl) {
3278 ret = -ENOTCONN;
3279 goto out_bargs;
3280 }
3281
3282 bctl = fs_info->balance_ctl;
3283 spin_lock(&fs_info->balance_lock);
3284 bctl->flags |= BTRFS_BALANCE_RESUME;
3285 spin_unlock(&fs_info->balance_lock);
3286
3287 goto do_balance;
3288 }
3289 } else {
3290 bargs = NULL;
3291 }
3292
3293 if (fs_info->balance_ctl) {
3294 ret = -EINPROGRESS;
3295 goto out_bargs;
3296 }
3297
3298 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3299 if (!bctl) {
3300 ret = -ENOMEM;
3301 goto out_bargs;
3302 }
3303
3304 bctl->fs_info = fs_info;
3305 if (arg) {
3306 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3307 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3308 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3309
3310 bctl->flags = bargs->flags;
3311 } else {
3312 /* balance everything - no filters */
3313 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3314 }
3315
3316 do_balance:
3317 ret = btrfs_balance(bctl, bargs);
3318 /*
3319 * bctl is freed in __cancel_balance or in free_fs_info if
3320 * restriper was paused all the way until unmount
3321 */
3322 if (arg) {
3323 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3324 ret = -EFAULT;
3325 }
3326
3327 out_bargs:
3328 kfree(bargs);
3329 out:
3330 mutex_unlock(&fs_info->balance_mutex);
3331 mutex_unlock(&fs_info->volume_mutex);
3332 mnt_drop_write(file->f_path.mnt);
3333 return ret;
3334 }
3335
3336 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3337 {
3338 if (!capable(CAP_SYS_ADMIN))
3339 return -EPERM;
3340
3341 switch (cmd) {
3342 case BTRFS_BALANCE_CTL_PAUSE:
3343 return btrfs_pause_balance(root->fs_info);
3344 case BTRFS_BALANCE_CTL_CANCEL:
3345 return btrfs_cancel_balance(root->fs_info);
3346 }
3347
3348 return -EINVAL;
3349 }
3350
3351 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3352 void __user *arg)
3353 {
3354 struct btrfs_fs_info *fs_info = root->fs_info;
3355 struct btrfs_ioctl_balance_args *bargs;
3356 int ret = 0;
3357
3358 if (!capable(CAP_SYS_ADMIN))
3359 return -EPERM;
3360
3361 mutex_lock(&fs_info->balance_mutex);
3362 if (!fs_info->balance_ctl) {
3363 ret = -ENOTCONN;
3364 goto out;
3365 }
3366
3367 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3368 if (!bargs) {
3369 ret = -ENOMEM;
3370 goto out;
3371 }
3372
3373 update_ioctl_balance_args(fs_info, 1, bargs);
3374
3375 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3376 ret = -EFAULT;
3377
3378 kfree(bargs);
3379 out:
3380 mutex_unlock(&fs_info->balance_mutex);
3381 return ret;
3382 }
3383
3384 long btrfs_ioctl(struct file *file, unsigned int
3385 cmd, unsigned long arg)
3386 {
3387 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3388 void __user *argp = (void __user *)arg;
3389
3390 switch (cmd) {
3391 case FS_IOC_GETFLAGS:
3392 return btrfs_ioctl_getflags(file, argp);
3393 case FS_IOC_SETFLAGS:
3394 return btrfs_ioctl_setflags(file, argp);
3395 case FS_IOC_GETVERSION:
3396 return btrfs_ioctl_getversion(file, argp);
3397 case FITRIM:
3398 return btrfs_ioctl_fitrim(file, argp);
3399 case BTRFS_IOC_SNAP_CREATE:
3400 return btrfs_ioctl_snap_create(file, argp, 0);
3401 case BTRFS_IOC_SNAP_CREATE_V2:
3402 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3403 case BTRFS_IOC_SUBVOL_CREATE:
3404 return btrfs_ioctl_snap_create(file, argp, 1);
3405 case BTRFS_IOC_SNAP_DESTROY:
3406 return btrfs_ioctl_snap_destroy(file, argp);
3407 case BTRFS_IOC_SUBVOL_GETFLAGS:
3408 return btrfs_ioctl_subvol_getflags(file, argp);
3409 case BTRFS_IOC_SUBVOL_SETFLAGS:
3410 return btrfs_ioctl_subvol_setflags(file, argp);
3411 case BTRFS_IOC_DEFAULT_SUBVOL:
3412 return btrfs_ioctl_default_subvol(file, argp);
3413 case BTRFS_IOC_DEFRAG:
3414 return btrfs_ioctl_defrag(file, NULL);
3415 case BTRFS_IOC_DEFRAG_RANGE:
3416 return btrfs_ioctl_defrag(file, argp);
3417 case BTRFS_IOC_RESIZE:
3418 return btrfs_ioctl_resize(root, argp);
3419 case BTRFS_IOC_ADD_DEV:
3420 return btrfs_ioctl_add_dev(root, argp);
3421 case BTRFS_IOC_RM_DEV:
3422 return btrfs_ioctl_rm_dev(root, argp);
3423 case BTRFS_IOC_FS_INFO:
3424 return btrfs_ioctl_fs_info(root, argp);
3425 case BTRFS_IOC_DEV_INFO:
3426 return btrfs_ioctl_dev_info(root, argp);
3427 case BTRFS_IOC_BALANCE:
3428 return btrfs_ioctl_balance(file, NULL);
3429 case BTRFS_IOC_CLONE:
3430 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3431 case BTRFS_IOC_CLONE_RANGE:
3432 return btrfs_ioctl_clone_range(file, argp);
3433 case BTRFS_IOC_TRANS_START:
3434 return btrfs_ioctl_trans_start(file);
3435 case BTRFS_IOC_TRANS_END:
3436 return btrfs_ioctl_trans_end(file);
3437 case BTRFS_IOC_TREE_SEARCH:
3438 return btrfs_ioctl_tree_search(file, argp);
3439 case BTRFS_IOC_INO_LOOKUP:
3440 return btrfs_ioctl_ino_lookup(file, argp);
3441 case BTRFS_IOC_INO_PATHS:
3442 return btrfs_ioctl_ino_to_path(root, argp);
3443 case BTRFS_IOC_LOGICAL_INO:
3444 return btrfs_ioctl_logical_to_ino(root, argp);
3445 case BTRFS_IOC_SPACE_INFO:
3446 return btrfs_ioctl_space_info(root, argp);
3447 case BTRFS_IOC_SYNC:
3448 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3449 return 0;
3450 case BTRFS_IOC_START_SYNC:
3451 return btrfs_ioctl_start_sync(file, argp);
3452 case BTRFS_IOC_WAIT_SYNC:
3453 return btrfs_ioctl_wait_sync(file, argp);
3454 case BTRFS_IOC_SCRUB:
3455 return btrfs_ioctl_scrub(root, argp);
3456 case BTRFS_IOC_SCRUB_CANCEL:
3457 return btrfs_ioctl_scrub_cancel(root, argp);
3458 case BTRFS_IOC_SCRUB_PROGRESS:
3459 return btrfs_ioctl_scrub_progress(root, argp);
3460 case BTRFS_IOC_BALANCE_V2:
3461 return btrfs_ioctl_balance(file, argp);
3462 case BTRFS_IOC_BALANCE_CTL:
3463 return btrfs_ioctl_balance_ctl(root, arg);
3464 case BTRFS_IOC_BALANCE_PROGRESS:
3465 return btrfs_ioctl_balance_progress(root, argp);
3466 case BTRFS_IOC_GET_DEV_STATS:
3467 return btrfs_ioctl_get_dev_stats(root, argp, 0);
3468 case BTRFS_IOC_GET_AND_RESET_DEV_STATS:
3469 return btrfs_ioctl_get_dev_stats(root, argp, 1);
3470 }
3471
3472 return -ENOTTY;
3473 }
This page took 0.300181 seconds and 5 git commands to generate.