Merge tag 'trace-fixes-v3.15-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64 * structures are incorrect, as the timespec structure from userspace
65 * is 4 bytes too small. We define these alternatives here to teach
66 * the kernel about the 32-bit struct packing.
67 */
68 struct btrfs_ioctl_timespec_32 {
69 __u64 sec;
70 __u32 nsec;
71 } __attribute__ ((__packed__));
72
73 struct btrfs_ioctl_received_subvol_args_32 {
74 char uuid[BTRFS_UUID_SIZE]; /* in */
75 __u64 stransid; /* in */
76 __u64 rtransid; /* out */
77 struct btrfs_ioctl_timespec_32 stime; /* in */
78 struct btrfs_ioctl_timespec_32 rtime; /* out */
79 __u64 flags; /* in */
80 __u64 reserved[16]; /* in */
81 } __attribute__ ((__packed__));
82
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86
87
88 static int btrfs_clone(struct inode *src, struct inode *inode,
89 u64 off, u64 olen, u64 olen_aligned, u64 destoff);
90
91 /* Mask out flags that are inappropriate for the given type of inode. */
92 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
93 {
94 if (S_ISDIR(mode))
95 return flags;
96 else if (S_ISREG(mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101
102 /*
103 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
104 */
105 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
106 {
107 unsigned int iflags = 0;
108
109 if (flags & BTRFS_INODE_SYNC)
110 iflags |= FS_SYNC_FL;
111 if (flags & BTRFS_INODE_IMMUTABLE)
112 iflags |= FS_IMMUTABLE_FL;
113 if (flags & BTRFS_INODE_APPEND)
114 iflags |= FS_APPEND_FL;
115 if (flags & BTRFS_INODE_NODUMP)
116 iflags |= FS_NODUMP_FL;
117 if (flags & BTRFS_INODE_NOATIME)
118 iflags |= FS_NOATIME_FL;
119 if (flags & BTRFS_INODE_DIRSYNC)
120 iflags |= FS_DIRSYNC_FL;
121 if (flags & BTRFS_INODE_NODATACOW)
122 iflags |= FS_NOCOW_FL;
123
124 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
125 iflags |= FS_COMPR_FL;
126 else if (flags & BTRFS_INODE_NOCOMPRESS)
127 iflags |= FS_NOCOMP_FL;
128
129 return iflags;
130 }
131
132 /*
133 * Update inode->i_flags based on the btrfs internal flags.
134 */
135 void btrfs_update_iflags(struct inode *inode)
136 {
137 struct btrfs_inode *ip = BTRFS_I(inode);
138
139 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
140
141 if (ip->flags & BTRFS_INODE_SYNC)
142 inode->i_flags |= S_SYNC;
143 if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 inode->i_flags |= S_IMMUTABLE;
145 if (ip->flags & BTRFS_INODE_APPEND)
146 inode->i_flags |= S_APPEND;
147 if (ip->flags & BTRFS_INODE_NOATIME)
148 inode->i_flags |= S_NOATIME;
149 if (ip->flags & BTRFS_INODE_DIRSYNC)
150 inode->i_flags |= S_DIRSYNC;
151 }
152
153 /*
154 * Inherit flags from the parent inode.
155 *
156 * Currently only the compression flags and the cow flags are inherited.
157 */
158 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
159 {
160 unsigned int flags;
161
162 if (!dir)
163 return;
164
165 flags = BTRFS_I(dir)->flags;
166
167 if (flags & BTRFS_INODE_NOCOMPRESS) {
168 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
169 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
170 } else if (flags & BTRFS_INODE_COMPRESS) {
171 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
172 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
173 }
174
175 if (flags & BTRFS_INODE_NODATACOW) {
176 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
177 if (S_ISREG(inode->i_mode))
178 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
179 }
180
181 btrfs_update_iflags(inode);
182 }
183
184 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
185 {
186 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
187 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
188
189 if (copy_to_user(arg, &flags, sizeof(flags)))
190 return -EFAULT;
191 return 0;
192 }
193
194 static int check_flags(unsigned int flags)
195 {
196 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
197 FS_NOATIME_FL | FS_NODUMP_FL | \
198 FS_SYNC_FL | FS_DIRSYNC_FL | \
199 FS_NOCOMP_FL | FS_COMPR_FL |
200 FS_NOCOW_FL))
201 return -EOPNOTSUPP;
202
203 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
204 return -EINVAL;
205
206 return 0;
207 }
208
209 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
210 {
211 struct inode *inode = file_inode(file);
212 struct btrfs_inode *ip = BTRFS_I(inode);
213 struct btrfs_root *root = ip->root;
214 struct btrfs_trans_handle *trans;
215 unsigned int flags, oldflags;
216 int ret;
217 u64 ip_oldflags;
218 unsigned int i_oldflags;
219 umode_t mode;
220
221 if (!inode_owner_or_capable(inode))
222 return -EPERM;
223
224 if (btrfs_root_readonly(root))
225 return -EROFS;
226
227 if (copy_from_user(&flags, arg, sizeof(flags)))
228 return -EFAULT;
229
230 ret = check_flags(flags);
231 if (ret)
232 return ret;
233
234 ret = mnt_want_write_file(file);
235 if (ret)
236 return ret;
237
238 mutex_lock(&inode->i_mutex);
239
240 ip_oldflags = ip->flags;
241 i_oldflags = inode->i_flags;
242 mode = inode->i_mode;
243
244 flags = btrfs_mask_flags(inode->i_mode, flags);
245 oldflags = btrfs_flags_to_ioctl(ip->flags);
246 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
247 if (!capable(CAP_LINUX_IMMUTABLE)) {
248 ret = -EPERM;
249 goto out_unlock;
250 }
251 }
252
253 if (flags & FS_SYNC_FL)
254 ip->flags |= BTRFS_INODE_SYNC;
255 else
256 ip->flags &= ~BTRFS_INODE_SYNC;
257 if (flags & FS_IMMUTABLE_FL)
258 ip->flags |= BTRFS_INODE_IMMUTABLE;
259 else
260 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
261 if (flags & FS_APPEND_FL)
262 ip->flags |= BTRFS_INODE_APPEND;
263 else
264 ip->flags &= ~BTRFS_INODE_APPEND;
265 if (flags & FS_NODUMP_FL)
266 ip->flags |= BTRFS_INODE_NODUMP;
267 else
268 ip->flags &= ~BTRFS_INODE_NODUMP;
269 if (flags & FS_NOATIME_FL)
270 ip->flags |= BTRFS_INODE_NOATIME;
271 else
272 ip->flags &= ~BTRFS_INODE_NOATIME;
273 if (flags & FS_DIRSYNC_FL)
274 ip->flags |= BTRFS_INODE_DIRSYNC;
275 else
276 ip->flags &= ~BTRFS_INODE_DIRSYNC;
277 if (flags & FS_NOCOW_FL) {
278 if (S_ISREG(mode)) {
279 /*
280 * It's safe to turn csums off here, no extents exist.
281 * Otherwise we want the flag to reflect the real COW
282 * status of the file and will not set it.
283 */
284 if (inode->i_size == 0)
285 ip->flags |= BTRFS_INODE_NODATACOW
286 | BTRFS_INODE_NODATASUM;
287 } else {
288 ip->flags |= BTRFS_INODE_NODATACOW;
289 }
290 } else {
291 /*
292 * Revert back under same assuptions as above
293 */
294 if (S_ISREG(mode)) {
295 if (inode->i_size == 0)
296 ip->flags &= ~(BTRFS_INODE_NODATACOW
297 | BTRFS_INODE_NODATASUM);
298 } else {
299 ip->flags &= ~BTRFS_INODE_NODATACOW;
300 }
301 }
302
303 /*
304 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
305 * flag may be changed automatically if compression code won't make
306 * things smaller.
307 */
308 if (flags & FS_NOCOMP_FL) {
309 ip->flags &= ~BTRFS_INODE_COMPRESS;
310 ip->flags |= BTRFS_INODE_NOCOMPRESS;
311
312 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
313 if (ret && ret != -ENODATA)
314 goto out_drop;
315 } else if (flags & FS_COMPR_FL) {
316 const char *comp;
317
318 ip->flags |= BTRFS_INODE_COMPRESS;
319 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
320
321 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
322 comp = "lzo";
323 else
324 comp = "zlib";
325 ret = btrfs_set_prop(inode, "btrfs.compression",
326 comp, strlen(comp), 0);
327 if (ret)
328 goto out_drop;
329
330 } else {
331 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
332 }
333
334 trans = btrfs_start_transaction(root, 1);
335 if (IS_ERR(trans)) {
336 ret = PTR_ERR(trans);
337 goto out_drop;
338 }
339
340 btrfs_update_iflags(inode);
341 inode_inc_iversion(inode);
342 inode->i_ctime = CURRENT_TIME;
343 ret = btrfs_update_inode(trans, root, inode);
344
345 btrfs_end_transaction(trans, root);
346 out_drop:
347 if (ret) {
348 ip->flags = ip_oldflags;
349 inode->i_flags = i_oldflags;
350 }
351
352 out_unlock:
353 mutex_unlock(&inode->i_mutex);
354 mnt_drop_write_file(file);
355 return ret;
356 }
357
358 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
359 {
360 struct inode *inode = file_inode(file);
361
362 return put_user(inode->i_generation, arg);
363 }
364
365 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
366 {
367 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
368 struct btrfs_device *device;
369 struct request_queue *q;
370 struct fstrim_range range;
371 u64 minlen = ULLONG_MAX;
372 u64 num_devices = 0;
373 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
374 int ret;
375
376 if (!capable(CAP_SYS_ADMIN))
377 return -EPERM;
378
379 rcu_read_lock();
380 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
381 dev_list) {
382 if (!device->bdev)
383 continue;
384 q = bdev_get_queue(device->bdev);
385 if (blk_queue_discard(q)) {
386 num_devices++;
387 minlen = min((u64)q->limits.discard_granularity,
388 minlen);
389 }
390 }
391 rcu_read_unlock();
392
393 if (!num_devices)
394 return -EOPNOTSUPP;
395 if (copy_from_user(&range, arg, sizeof(range)))
396 return -EFAULT;
397 if (range.start > total_bytes ||
398 range.len < fs_info->sb->s_blocksize)
399 return -EINVAL;
400
401 range.len = min(range.len, total_bytes - range.start);
402 range.minlen = max(range.minlen, minlen);
403 ret = btrfs_trim_fs(fs_info->tree_root, &range);
404 if (ret < 0)
405 return ret;
406
407 if (copy_to_user(arg, &range, sizeof(range)))
408 return -EFAULT;
409
410 return 0;
411 }
412
413 int btrfs_is_empty_uuid(u8 *uuid)
414 {
415 int i;
416
417 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
418 if (uuid[i])
419 return 0;
420 }
421 return 1;
422 }
423
424 static noinline int create_subvol(struct inode *dir,
425 struct dentry *dentry,
426 char *name, int namelen,
427 u64 *async_transid,
428 struct btrfs_qgroup_inherit *inherit)
429 {
430 struct btrfs_trans_handle *trans;
431 struct btrfs_key key;
432 struct btrfs_root_item root_item;
433 struct btrfs_inode_item *inode_item;
434 struct extent_buffer *leaf;
435 struct btrfs_root *root = BTRFS_I(dir)->root;
436 struct btrfs_root *new_root;
437 struct btrfs_block_rsv block_rsv;
438 struct timespec cur_time = CURRENT_TIME;
439 struct inode *inode;
440 int ret;
441 int err;
442 u64 objectid;
443 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
444 u64 index = 0;
445 u64 qgroup_reserved;
446 uuid_le new_uuid;
447
448 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
449 if (ret)
450 return ret;
451
452 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
453 /*
454 * The same as the snapshot creation, please see the comment
455 * of create_snapshot().
456 */
457 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
458 8, &qgroup_reserved, false);
459 if (ret)
460 return ret;
461
462 trans = btrfs_start_transaction(root, 0);
463 if (IS_ERR(trans)) {
464 ret = PTR_ERR(trans);
465 btrfs_subvolume_release_metadata(root, &block_rsv,
466 qgroup_reserved);
467 return ret;
468 }
469 trans->block_rsv = &block_rsv;
470 trans->bytes_reserved = block_rsv.size;
471
472 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
473 if (ret)
474 goto fail;
475
476 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
477 0, objectid, NULL, 0, 0, 0);
478 if (IS_ERR(leaf)) {
479 ret = PTR_ERR(leaf);
480 goto fail;
481 }
482
483 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
484 btrfs_set_header_bytenr(leaf, leaf->start);
485 btrfs_set_header_generation(leaf, trans->transid);
486 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
487 btrfs_set_header_owner(leaf, objectid);
488
489 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
490 BTRFS_FSID_SIZE);
491 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
492 btrfs_header_chunk_tree_uuid(leaf),
493 BTRFS_UUID_SIZE);
494 btrfs_mark_buffer_dirty(leaf);
495
496 memset(&root_item, 0, sizeof(root_item));
497
498 inode_item = &root_item.inode;
499 btrfs_set_stack_inode_generation(inode_item, 1);
500 btrfs_set_stack_inode_size(inode_item, 3);
501 btrfs_set_stack_inode_nlink(inode_item, 1);
502 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
503 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
504
505 btrfs_set_root_flags(&root_item, 0);
506 btrfs_set_root_limit(&root_item, 0);
507 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
508
509 btrfs_set_root_bytenr(&root_item, leaf->start);
510 btrfs_set_root_generation(&root_item, trans->transid);
511 btrfs_set_root_level(&root_item, 0);
512 btrfs_set_root_refs(&root_item, 1);
513 btrfs_set_root_used(&root_item, leaf->len);
514 btrfs_set_root_last_snapshot(&root_item, 0);
515
516 btrfs_set_root_generation_v2(&root_item,
517 btrfs_root_generation(&root_item));
518 uuid_le_gen(&new_uuid);
519 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
520 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
521 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
522 root_item.ctime = root_item.otime;
523 btrfs_set_root_ctransid(&root_item, trans->transid);
524 btrfs_set_root_otransid(&root_item, trans->transid);
525
526 btrfs_tree_unlock(leaf);
527 free_extent_buffer(leaf);
528 leaf = NULL;
529
530 btrfs_set_root_dirid(&root_item, new_dirid);
531
532 key.objectid = objectid;
533 key.offset = 0;
534 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
535 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
536 &root_item);
537 if (ret)
538 goto fail;
539
540 key.offset = (u64)-1;
541 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
542 if (IS_ERR(new_root)) {
543 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
544 ret = PTR_ERR(new_root);
545 goto fail;
546 }
547
548 btrfs_record_root_in_trans(trans, new_root);
549
550 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
551 if (ret) {
552 /* We potentially lose an unused inode item here */
553 btrfs_abort_transaction(trans, root, ret);
554 goto fail;
555 }
556
557 /*
558 * insert the directory item
559 */
560 ret = btrfs_set_inode_index(dir, &index);
561 if (ret) {
562 btrfs_abort_transaction(trans, root, ret);
563 goto fail;
564 }
565
566 ret = btrfs_insert_dir_item(trans, root,
567 name, namelen, dir, &key,
568 BTRFS_FT_DIR, index);
569 if (ret) {
570 btrfs_abort_transaction(trans, root, ret);
571 goto fail;
572 }
573
574 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
575 ret = btrfs_update_inode(trans, root, dir);
576 BUG_ON(ret);
577
578 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
579 objectid, root->root_key.objectid,
580 btrfs_ino(dir), index, name, namelen);
581 BUG_ON(ret);
582
583 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
584 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
585 objectid);
586 if (ret)
587 btrfs_abort_transaction(trans, root, ret);
588
589 fail:
590 trans->block_rsv = NULL;
591 trans->bytes_reserved = 0;
592 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
593
594 if (async_transid) {
595 *async_transid = trans->transid;
596 err = btrfs_commit_transaction_async(trans, root, 1);
597 if (err)
598 err = btrfs_commit_transaction(trans, root);
599 } else {
600 err = btrfs_commit_transaction(trans, root);
601 }
602 if (err && !ret)
603 ret = err;
604
605 if (!ret) {
606 inode = btrfs_lookup_dentry(dir, dentry);
607 if (IS_ERR(inode))
608 return PTR_ERR(inode);
609 d_instantiate(dentry, inode);
610 }
611 return ret;
612 }
613
614 static void btrfs_wait_nocow_write(struct btrfs_root *root)
615 {
616 s64 writers;
617 DEFINE_WAIT(wait);
618
619 do {
620 prepare_to_wait(&root->subv_writers->wait, &wait,
621 TASK_UNINTERRUPTIBLE);
622
623 writers = percpu_counter_sum(&root->subv_writers->counter);
624 if (writers)
625 schedule();
626
627 finish_wait(&root->subv_writers->wait, &wait);
628 } while (writers);
629 }
630
631 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
632 struct dentry *dentry, char *name, int namelen,
633 u64 *async_transid, bool readonly,
634 struct btrfs_qgroup_inherit *inherit)
635 {
636 struct inode *inode;
637 struct btrfs_pending_snapshot *pending_snapshot;
638 struct btrfs_trans_handle *trans;
639 int ret;
640
641 if (!root->ref_cows)
642 return -EINVAL;
643
644 atomic_inc(&root->will_be_snapshoted);
645 smp_mb__after_atomic_inc();
646 btrfs_wait_nocow_write(root);
647
648 ret = btrfs_start_delalloc_inodes(root, 0);
649 if (ret)
650 goto out;
651
652 btrfs_wait_ordered_extents(root, -1);
653
654 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
655 if (!pending_snapshot) {
656 ret = -ENOMEM;
657 goto out;
658 }
659
660 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
661 BTRFS_BLOCK_RSV_TEMP);
662 /*
663 * 1 - parent dir inode
664 * 2 - dir entries
665 * 1 - root item
666 * 2 - root ref/backref
667 * 1 - root of snapshot
668 * 1 - UUID item
669 */
670 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
671 &pending_snapshot->block_rsv, 8,
672 &pending_snapshot->qgroup_reserved,
673 false);
674 if (ret)
675 goto free;
676
677 pending_snapshot->dentry = dentry;
678 pending_snapshot->root = root;
679 pending_snapshot->readonly = readonly;
680 pending_snapshot->dir = dir;
681 pending_snapshot->inherit = inherit;
682
683 trans = btrfs_start_transaction(root, 0);
684 if (IS_ERR(trans)) {
685 ret = PTR_ERR(trans);
686 goto fail;
687 }
688
689 spin_lock(&root->fs_info->trans_lock);
690 list_add(&pending_snapshot->list,
691 &trans->transaction->pending_snapshots);
692 spin_unlock(&root->fs_info->trans_lock);
693 if (async_transid) {
694 *async_transid = trans->transid;
695 ret = btrfs_commit_transaction_async(trans,
696 root->fs_info->extent_root, 1);
697 if (ret)
698 ret = btrfs_commit_transaction(trans, root);
699 } else {
700 ret = btrfs_commit_transaction(trans,
701 root->fs_info->extent_root);
702 }
703 if (ret)
704 goto fail;
705
706 ret = pending_snapshot->error;
707 if (ret)
708 goto fail;
709
710 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
711 if (ret)
712 goto fail;
713
714 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
715 if (IS_ERR(inode)) {
716 ret = PTR_ERR(inode);
717 goto fail;
718 }
719
720 d_instantiate(dentry, inode);
721 ret = 0;
722 fail:
723 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
724 &pending_snapshot->block_rsv,
725 pending_snapshot->qgroup_reserved);
726 free:
727 kfree(pending_snapshot);
728 out:
729 atomic_dec(&root->will_be_snapshoted);
730 return ret;
731 }
732
733 /* copy of check_sticky in fs/namei.c()
734 * It's inline, so penalty for filesystems that don't use sticky bit is
735 * minimal.
736 */
737 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
738 {
739 kuid_t fsuid = current_fsuid();
740
741 if (!(dir->i_mode & S_ISVTX))
742 return 0;
743 if (uid_eq(inode->i_uid, fsuid))
744 return 0;
745 if (uid_eq(dir->i_uid, fsuid))
746 return 0;
747 return !capable(CAP_FOWNER);
748 }
749
750 /* copy of may_delete in fs/namei.c()
751 * Check whether we can remove a link victim from directory dir, check
752 * whether the type of victim is right.
753 * 1. We can't do it if dir is read-only (done in permission())
754 * 2. We should have write and exec permissions on dir
755 * 3. We can't remove anything from append-only dir
756 * 4. We can't do anything with immutable dir (done in permission())
757 * 5. If the sticky bit on dir is set we should either
758 * a. be owner of dir, or
759 * b. be owner of victim, or
760 * c. have CAP_FOWNER capability
761 * 6. If the victim is append-only or immutable we can't do antyhing with
762 * links pointing to it.
763 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
764 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
765 * 9. We can't remove a root or mountpoint.
766 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
767 * nfs_async_unlink().
768 */
769
770 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
771 {
772 int error;
773
774 if (!victim->d_inode)
775 return -ENOENT;
776
777 BUG_ON(victim->d_parent->d_inode != dir);
778 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
779
780 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
781 if (error)
782 return error;
783 if (IS_APPEND(dir))
784 return -EPERM;
785 if (btrfs_check_sticky(dir, victim->d_inode)||
786 IS_APPEND(victim->d_inode)||
787 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
788 return -EPERM;
789 if (isdir) {
790 if (!S_ISDIR(victim->d_inode->i_mode))
791 return -ENOTDIR;
792 if (IS_ROOT(victim))
793 return -EBUSY;
794 } else if (S_ISDIR(victim->d_inode->i_mode))
795 return -EISDIR;
796 if (IS_DEADDIR(dir))
797 return -ENOENT;
798 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
799 return -EBUSY;
800 return 0;
801 }
802
803 /* copy of may_create in fs/namei.c() */
804 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
805 {
806 if (child->d_inode)
807 return -EEXIST;
808 if (IS_DEADDIR(dir))
809 return -ENOENT;
810 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
811 }
812
813 /*
814 * Create a new subvolume below @parent. This is largely modeled after
815 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
816 * inside this filesystem so it's quite a bit simpler.
817 */
818 static noinline int btrfs_mksubvol(struct path *parent,
819 char *name, int namelen,
820 struct btrfs_root *snap_src,
821 u64 *async_transid, bool readonly,
822 struct btrfs_qgroup_inherit *inherit)
823 {
824 struct inode *dir = parent->dentry->d_inode;
825 struct dentry *dentry;
826 int error;
827
828 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
829 if (error == -EINTR)
830 return error;
831
832 dentry = lookup_one_len(name, parent->dentry, namelen);
833 error = PTR_ERR(dentry);
834 if (IS_ERR(dentry))
835 goto out_unlock;
836
837 error = -EEXIST;
838 if (dentry->d_inode)
839 goto out_dput;
840
841 error = btrfs_may_create(dir, dentry);
842 if (error)
843 goto out_dput;
844
845 /*
846 * even if this name doesn't exist, we may get hash collisions.
847 * check for them now when we can safely fail
848 */
849 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
850 dir->i_ino, name,
851 namelen);
852 if (error)
853 goto out_dput;
854
855 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
856
857 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
858 goto out_up_read;
859
860 if (snap_src) {
861 error = create_snapshot(snap_src, dir, dentry, name, namelen,
862 async_transid, readonly, inherit);
863 } else {
864 error = create_subvol(dir, dentry, name, namelen,
865 async_transid, inherit);
866 }
867 if (!error)
868 fsnotify_mkdir(dir, dentry);
869 out_up_read:
870 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
871 out_dput:
872 dput(dentry);
873 out_unlock:
874 mutex_unlock(&dir->i_mutex);
875 return error;
876 }
877
878 /*
879 * When we're defragging a range, we don't want to kick it off again
880 * if it is really just waiting for delalloc to send it down.
881 * If we find a nice big extent or delalloc range for the bytes in the
882 * file you want to defrag, we return 0 to let you know to skip this
883 * part of the file
884 */
885 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
886 {
887 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
888 struct extent_map *em = NULL;
889 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 u64 end;
891
892 read_lock(&em_tree->lock);
893 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
894 read_unlock(&em_tree->lock);
895
896 if (em) {
897 end = extent_map_end(em);
898 free_extent_map(em);
899 if (end - offset > thresh)
900 return 0;
901 }
902 /* if we already have a nice delalloc here, just stop */
903 thresh /= 2;
904 end = count_range_bits(io_tree, &offset, offset + thresh,
905 thresh, EXTENT_DELALLOC, 1);
906 if (end >= thresh)
907 return 0;
908 return 1;
909 }
910
911 /*
912 * helper function to walk through a file and find extents
913 * newer than a specific transid, and smaller than thresh.
914 *
915 * This is used by the defragging code to find new and small
916 * extents
917 */
918 static int find_new_extents(struct btrfs_root *root,
919 struct inode *inode, u64 newer_than,
920 u64 *off, int thresh)
921 {
922 struct btrfs_path *path;
923 struct btrfs_key min_key;
924 struct extent_buffer *leaf;
925 struct btrfs_file_extent_item *extent;
926 int type;
927 int ret;
928 u64 ino = btrfs_ino(inode);
929
930 path = btrfs_alloc_path();
931 if (!path)
932 return -ENOMEM;
933
934 min_key.objectid = ino;
935 min_key.type = BTRFS_EXTENT_DATA_KEY;
936 min_key.offset = *off;
937
938 while (1) {
939 path->keep_locks = 1;
940 ret = btrfs_search_forward(root, &min_key, path, newer_than);
941 if (ret != 0)
942 goto none;
943 path->keep_locks = 0;
944 btrfs_unlock_up_safe(path, 1);
945 process_slot:
946 if (min_key.objectid != ino)
947 goto none;
948 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
949 goto none;
950
951 leaf = path->nodes[0];
952 extent = btrfs_item_ptr(leaf, path->slots[0],
953 struct btrfs_file_extent_item);
954
955 type = btrfs_file_extent_type(leaf, extent);
956 if (type == BTRFS_FILE_EXTENT_REG &&
957 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
958 check_defrag_in_cache(inode, min_key.offset, thresh)) {
959 *off = min_key.offset;
960 btrfs_free_path(path);
961 return 0;
962 }
963
964 path->slots[0]++;
965 if (path->slots[0] < btrfs_header_nritems(leaf)) {
966 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
967 goto process_slot;
968 }
969
970 if (min_key.offset == (u64)-1)
971 goto none;
972
973 min_key.offset++;
974 btrfs_release_path(path);
975 }
976 none:
977 btrfs_free_path(path);
978 return -ENOENT;
979 }
980
981 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
982 {
983 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
984 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
985 struct extent_map *em;
986 u64 len = PAGE_CACHE_SIZE;
987
988 /*
989 * hopefully we have this extent in the tree already, try without
990 * the full extent lock
991 */
992 read_lock(&em_tree->lock);
993 em = lookup_extent_mapping(em_tree, start, len);
994 read_unlock(&em_tree->lock);
995
996 if (!em) {
997 struct extent_state *cached = NULL;
998 u64 end = start + len - 1;
999
1000 /* get the big lock and read metadata off disk */
1001 lock_extent_bits(io_tree, start, end, 0, &cached);
1002 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1003 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1004
1005 if (IS_ERR(em))
1006 return NULL;
1007 }
1008
1009 return em;
1010 }
1011
1012 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1013 {
1014 struct extent_map *next;
1015 bool ret = true;
1016
1017 /* this is the last extent */
1018 if (em->start + em->len >= i_size_read(inode))
1019 return false;
1020
1021 next = defrag_lookup_extent(inode, em->start + em->len);
1022 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE ||
1023 (em->block_start + em->block_len == next->block_start))
1024 ret = false;
1025
1026 free_extent_map(next);
1027 return ret;
1028 }
1029
1030 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
1031 u64 *last_len, u64 *skip, u64 *defrag_end,
1032 int compress)
1033 {
1034 struct extent_map *em;
1035 int ret = 1;
1036 bool next_mergeable = true;
1037
1038 /*
1039 * make sure that once we start defragging an extent, we keep on
1040 * defragging it
1041 */
1042 if (start < *defrag_end)
1043 return 1;
1044
1045 *skip = 0;
1046
1047 em = defrag_lookup_extent(inode, start);
1048 if (!em)
1049 return 0;
1050
1051 /* this will cover holes, and inline extents */
1052 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1053 ret = 0;
1054 goto out;
1055 }
1056
1057 next_mergeable = defrag_check_next_extent(inode, em);
1058
1059 /*
1060 * we hit a real extent, if it is big or the next extent is not a
1061 * real extent, don't bother defragging it
1062 */
1063 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1064 (em->len >= thresh || !next_mergeable))
1065 ret = 0;
1066 out:
1067 /*
1068 * last_len ends up being a counter of how many bytes we've defragged.
1069 * every time we choose not to defrag an extent, we reset *last_len
1070 * so that the next tiny extent will force a defrag.
1071 *
1072 * The end result of this is that tiny extents before a single big
1073 * extent will force at least part of that big extent to be defragged.
1074 */
1075 if (ret) {
1076 *defrag_end = extent_map_end(em);
1077 } else {
1078 *last_len = 0;
1079 *skip = extent_map_end(em);
1080 *defrag_end = 0;
1081 }
1082
1083 free_extent_map(em);
1084 return ret;
1085 }
1086
1087 /*
1088 * it doesn't do much good to defrag one or two pages
1089 * at a time. This pulls in a nice chunk of pages
1090 * to COW and defrag.
1091 *
1092 * It also makes sure the delalloc code has enough
1093 * dirty data to avoid making new small extents as part
1094 * of the defrag
1095 *
1096 * It's a good idea to start RA on this range
1097 * before calling this.
1098 */
1099 static int cluster_pages_for_defrag(struct inode *inode,
1100 struct page **pages,
1101 unsigned long start_index,
1102 unsigned long num_pages)
1103 {
1104 unsigned long file_end;
1105 u64 isize = i_size_read(inode);
1106 u64 page_start;
1107 u64 page_end;
1108 u64 page_cnt;
1109 int ret;
1110 int i;
1111 int i_done;
1112 struct btrfs_ordered_extent *ordered;
1113 struct extent_state *cached_state = NULL;
1114 struct extent_io_tree *tree;
1115 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1116
1117 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1118 if (!isize || start_index > file_end)
1119 return 0;
1120
1121 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1122
1123 ret = btrfs_delalloc_reserve_space(inode,
1124 page_cnt << PAGE_CACHE_SHIFT);
1125 if (ret)
1126 return ret;
1127 i_done = 0;
1128 tree = &BTRFS_I(inode)->io_tree;
1129
1130 /* step one, lock all the pages */
1131 for (i = 0; i < page_cnt; i++) {
1132 struct page *page;
1133 again:
1134 page = find_or_create_page(inode->i_mapping,
1135 start_index + i, mask);
1136 if (!page)
1137 break;
1138
1139 page_start = page_offset(page);
1140 page_end = page_start + PAGE_CACHE_SIZE - 1;
1141 while (1) {
1142 lock_extent_bits(tree, page_start, page_end,
1143 0, &cached_state);
1144 ordered = btrfs_lookup_ordered_extent(inode,
1145 page_start);
1146 unlock_extent_cached(tree, page_start, page_end,
1147 &cached_state, GFP_NOFS);
1148 if (!ordered)
1149 break;
1150
1151 unlock_page(page);
1152 btrfs_start_ordered_extent(inode, ordered, 1);
1153 btrfs_put_ordered_extent(ordered);
1154 lock_page(page);
1155 /*
1156 * we unlocked the page above, so we need check if
1157 * it was released or not.
1158 */
1159 if (page->mapping != inode->i_mapping) {
1160 unlock_page(page);
1161 page_cache_release(page);
1162 goto again;
1163 }
1164 }
1165
1166 if (!PageUptodate(page)) {
1167 btrfs_readpage(NULL, page);
1168 lock_page(page);
1169 if (!PageUptodate(page)) {
1170 unlock_page(page);
1171 page_cache_release(page);
1172 ret = -EIO;
1173 break;
1174 }
1175 }
1176
1177 if (page->mapping != inode->i_mapping) {
1178 unlock_page(page);
1179 page_cache_release(page);
1180 goto again;
1181 }
1182
1183 pages[i] = page;
1184 i_done++;
1185 }
1186 if (!i_done || ret)
1187 goto out;
1188
1189 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1190 goto out;
1191
1192 /*
1193 * so now we have a nice long stream of locked
1194 * and up to date pages, lets wait on them
1195 */
1196 for (i = 0; i < i_done; i++)
1197 wait_on_page_writeback(pages[i]);
1198
1199 page_start = page_offset(pages[0]);
1200 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1201
1202 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1203 page_start, page_end - 1, 0, &cached_state);
1204 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1205 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1206 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1207 &cached_state, GFP_NOFS);
1208
1209 if (i_done != page_cnt) {
1210 spin_lock(&BTRFS_I(inode)->lock);
1211 BTRFS_I(inode)->outstanding_extents++;
1212 spin_unlock(&BTRFS_I(inode)->lock);
1213 btrfs_delalloc_release_space(inode,
1214 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1215 }
1216
1217
1218 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1219 &cached_state, GFP_NOFS);
1220
1221 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1222 page_start, page_end - 1, &cached_state,
1223 GFP_NOFS);
1224
1225 for (i = 0; i < i_done; i++) {
1226 clear_page_dirty_for_io(pages[i]);
1227 ClearPageChecked(pages[i]);
1228 set_page_extent_mapped(pages[i]);
1229 set_page_dirty(pages[i]);
1230 unlock_page(pages[i]);
1231 page_cache_release(pages[i]);
1232 }
1233 return i_done;
1234 out:
1235 for (i = 0; i < i_done; i++) {
1236 unlock_page(pages[i]);
1237 page_cache_release(pages[i]);
1238 }
1239 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1240 return ret;
1241
1242 }
1243
1244 int btrfs_defrag_file(struct inode *inode, struct file *file,
1245 struct btrfs_ioctl_defrag_range_args *range,
1246 u64 newer_than, unsigned long max_to_defrag)
1247 {
1248 struct btrfs_root *root = BTRFS_I(inode)->root;
1249 struct file_ra_state *ra = NULL;
1250 unsigned long last_index;
1251 u64 isize = i_size_read(inode);
1252 u64 last_len = 0;
1253 u64 skip = 0;
1254 u64 defrag_end = 0;
1255 u64 newer_off = range->start;
1256 unsigned long i;
1257 unsigned long ra_index = 0;
1258 int ret;
1259 int defrag_count = 0;
1260 int compress_type = BTRFS_COMPRESS_ZLIB;
1261 int extent_thresh = range->extent_thresh;
1262 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1263 unsigned long cluster = max_cluster;
1264 u64 new_align = ~((u64)128 * 1024 - 1);
1265 struct page **pages = NULL;
1266
1267 if (isize == 0)
1268 return 0;
1269
1270 if (range->start >= isize)
1271 return -EINVAL;
1272
1273 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1274 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1275 return -EINVAL;
1276 if (range->compress_type)
1277 compress_type = range->compress_type;
1278 }
1279
1280 if (extent_thresh == 0)
1281 extent_thresh = 256 * 1024;
1282
1283 /*
1284 * if we were not given a file, allocate a readahead
1285 * context
1286 */
1287 if (!file) {
1288 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1289 if (!ra)
1290 return -ENOMEM;
1291 file_ra_state_init(ra, inode->i_mapping);
1292 } else {
1293 ra = &file->f_ra;
1294 }
1295
1296 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1297 GFP_NOFS);
1298 if (!pages) {
1299 ret = -ENOMEM;
1300 goto out_ra;
1301 }
1302
1303 /* find the last page to defrag */
1304 if (range->start + range->len > range->start) {
1305 last_index = min_t(u64, isize - 1,
1306 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1307 } else {
1308 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1309 }
1310
1311 if (newer_than) {
1312 ret = find_new_extents(root, inode, newer_than,
1313 &newer_off, 64 * 1024);
1314 if (!ret) {
1315 range->start = newer_off;
1316 /*
1317 * we always align our defrag to help keep
1318 * the extents in the file evenly spaced
1319 */
1320 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1321 } else
1322 goto out_ra;
1323 } else {
1324 i = range->start >> PAGE_CACHE_SHIFT;
1325 }
1326 if (!max_to_defrag)
1327 max_to_defrag = last_index + 1;
1328
1329 /*
1330 * make writeback starts from i, so the defrag range can be
1331 * written sequentially.
1332 */
1333 if (i < inode->i_mapping->writeback_index)
1334 inode->i_mapping->writeback_index = i;
1335
1336 while (i <= last_index && defrag_count < max_to_defrag &&
1337 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1338 PAGE_CACHE_SHIFT)) {
1339 /*
1340 * make sure we stop running if someone unmounts
1341 * the FS
1342 */
1343 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1344 break;
1345
1346 if (btrfs_defrag_cancelled(root->fs_info)) {
1347 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1348 ret = -EAGAIN;
1349 break;
1350 }
1351
1352 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1353 extent_thresh, &last_len, &skip,
1354 &defrag_end, range->flags &
1355 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1356 unsigned long next;
1357 /*
1358 * the should_defrag function tells us how much to skip
1359 * bump our counter by the suggested amount
1360 */
1361 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1362 i = max(i + 1, next);
1363 continue;
1364 }
1365
1366 if (!newer_than) {
1367 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1368 PAGE_CACHE_SHIFT) - i;
1369 cluster = min(cluster, max_cluster);
1370 } else {
1371 cluster = max_cluster;
1372 }
1373
1374 if (i + cluster > ra_index) {
1375 ra_index = max(i, ra_index);
1376 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1377 cluster);
1378 ra_index += max_cluster;
1379 }
1380
1381 mutex_lock(&inode->i_mutex);
1382 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1383 BTRFS_I(inode)->force_compress = compress_type;
1384 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1385 if (ret < 0) {
1386 mutex_unlock(&inode->i_mutex);
1387 goto out_ra;
1388 }
1389
1390 defrag_count += ret;
1391 balance_dirty_pages_ratelimited(inode->i_mapping);
1392 mutex_unlock(&inode->i_mutex);
1393
1394 if (newer_than) {
1395 if (newer_off == (u64)-1)
1396 break;
1397
1398 if (ret > 0)
1399 i += ret;
1400
1401 newer_off = max(newer_off + 1,
1402 (u64)i << PAGE_CACHE_SHIFT);
1403
1404 ret = find_new_extents(root, inode,
1405 newer_than, &newer_off,
1406 64 * 1024);
1407 if (!ret) {
1408 range->start = newer_off;
1409 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1410 } else {
1411 break;
1412 }
1413 } else {
1414 if (ret > 0) {
1415 i += ret;
1416 last_len += ret << PAGE_CACHE_SHIFT;
1417 } else {
1418 i++;
1419 last_len = 0;
1420 }
1421 }
1422 }
1423
1424 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1425 filemap_flush(inode->i_mapping);
1426 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1427 &BTRFS_I(inode)->runtime_flags))
1428 filemap_flush(inode->i_mapping);
1429 }
1430
1431 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1432 /* the filemap_flush will queue IO into the worker threads, but
1433 * we have to make sure the IO is actually started and that
1434 * ordered extents get created before we return
1435 */
1436 atomic_inc(&root->fs_info->async_submit_draining);
1437 while (atomic_read(&root->fs_info->nr_async_submits) ||
1438 atomic_read(&root->fs_info->async_delalloc_pages)) {
1439 wait_event(root->fs_info->async_submit_wait,
1440 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1441 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1442 }
1443 atomic_dec(&root->fs_info->async_submit_draining);
1444 }
1445
1446 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1447 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1448 }
1449
1450 ret = defrag_count;
1451
1452 out_ra:
1453 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1454 mutex_lock(&inode->i_mutex);
1455 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1456 mutex_unlock(&inode->i_mutex);
1457 }
1458 if (!file)
1459 kfree(ra);
1460 kfree(pages);
1461 return ret;
1462 }
1463
1464 static noinline int btrfs_ioctl_resize(struct file *file,
1465 void __user *arg)
1466 {
1467 u64 new_size;
1468 u64 old_size;
1469 u64 devid = 1;
1470 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1471 struct btrfs_ioctl_vol_args *vol_args;
1472 struct btrfs_trans_handle *trans;
1473 struct btrfs_device *device = NULL;
1474 char *sizestr;
1475 char *retptr;
1476 char *devstr = NULL;
1477 int ret = 0;
1478 int mod = 0;
1479
1480 if (!capable(CAP_SYS_ADMIN))
1481 return -EPERM;
1482
1483 ret = mnt_want_write_file(file);
1484 if (ret)
1485 return ret;
1486
1487 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1488 1)) {
1489 mnt_drop_write_file(file);
1490 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1491 }
1492
1493 mutex_lock(&root->fs_info->volume_mutex);
1494 vol_args = memdup_user(arg, sizeof(*vol_args));
1495 if (IS_ERR(vol_args)) {
1496 ret = PTR_ERR(vol_args);
1497 goto out;
1498 }
1499
1500 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1501
1502 sizestr = vol_args->name;
1503 devstr = strchr(sizestr, ':');
1504 if (devstr) {
1505 char *end;
1506 sizestr = devstr + 1;
1507 *devstr = '\0';
1508 devstr = vol_args->name;
1509 devid = simple_strtoull(devstr, &end, 10);
1510 if (!devid) {
1511 ret = -EINVAL;
1512 goto out_free;
1513 }
1514 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1515 }
1516
1517 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1518 if (!device) {
1519 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1520 devid);
1521 ret = -ENODEV;
1522 goto out_free;
1523 }
1524
1525 if (!device->writeable) {
1526 btrfs_info(root->fs_info,
1527 "resizer unable to apply on readonly device %llu",
1528 devid);
1529 ret = -EPERM;
1530 goto out_free;
1531 }
1532
1533 if (!strcmp(sizestr, "max"))
1534 new_size = device->bdev->bd_inode->i_size;
1535 else {
1536 if (sizestr[0] == '-') {
1537 mod = -1;
1538 sizestr++;
1539 } else if (sizestr[0] == '+') {
1540 mod = 1;
1541 sizestr++;
1542 }
1543 new_size = memparse(sizestr, &retptr);
1544 if (*retptr != '\0' || new_size == 0) {
1545 ret = -EINVAL;
1546 goto out_free;
1547 }
1548 }
1549
1550 if (device->is_tgtdev_for_dev_replace) {
1551 ret = -EPERM;
1552 goto out_free;
1553 }
1554
1555 old_size = device->total_bytes;
1556
1557 if (mod < 0) {
1558 if (new_size > old_size) {
1559 ret = -EINVAL;
1560 goto out_free;
1561 }
1562 new_size = old_size - new_size;
1563 } else if (mod > 0) {
1564 if (new_size > ULLONG_MAX - old_size) {
1565 ret = -EINVAL;
1566 goto out_free;
1567 }
1568 new_size = old_size + new_size;
1569 }
1570
1571 if (new_size < 256 * 1024 * 1024) {
1572 ret = -EINVAL;
1573 goto out_free;
1574 }
1575 if (new_size > device->bdev->bd_inode->i_size) {
1576 ret = -EFBIG;
1577 goto out_free;
1578 }
1579
1580 do_div(new_size, root->sectorsize);
1581 new_size *= root->sectorsize;
1582
1583 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1584 rcu_str_deref(device->name), new_size);
1585
1586 if (new_size > old_size) {
1587 trans = btrfs_start_transaction(root, 0);
1588 if (IS_ERR(trans)) {
1589 ret = PTR_ERR(trans);
1590 goto out_free;
1591 }
1592 ret = btrfs_grow_device(trans, device, new_size);
1593 btrfs_commit_transaction(trans, root);
1594 } else if (new_size < old_size) {
1595 ret = btrfs_shrink_device(device, new_size);
1596 } /* equal, nothing need to do */
1597
1598 out_free:
1599 kfree(vol_args);
1600 out:
1601 mutex_unlock(&root->fs_info->volume_mutex);
1602 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1603 mnt_drop_write_file(file);
1604 return ret;
1605 }
1606
1607 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1608 char *name, unsigned long fd, int subvol,
1609 u64 *transid, bool readonly,
1610 struct btrfs_qgroup_inherit *inherit)
1611 {
1612 int namelen;
1613 int ret = 0;
1614
1615 ret = mnt_want_write_file(file);
1616 if (ret)
1617 goto out;
1618
1619 namelen = strlen(name);
1620 if (strchr(name, '/')) {
1621 ret = -EINVAL;
1622 goto out_drop_write;
1623 }
1624
1625 if (name[0] == '.' &&
1626 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1627 ret = -EEXIST;
1628 goto out_drop_write;
1629 }
1630
1631 if (subvol) {
1632 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1633 NULL, transid, readonly, inherit);
1634 } else {
1635 struct fd src = fdget(fd);
1636 struct inode *src_inode;
1637 if (!src.file) {
1638 ret = -EINVAL;
1639 goto out_drop_write;
1640 }
1641
1642 src_inode = file_inode(src.file);
1643 if (src_inode->i_sb != file_inode(file)->i_sb) {
1644 btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1645 "Snapshot src from another FS");
1646 ret = -EXDEV;
1647 } else if (!inode_owner_or_capable(src_inode)) {
1648 /*
1649 * Subvolume creation is not restricted, but snapshots
1650 * are limited to own subvolumes only
1651 */
1652 ret = -EPERM;
1653 } else {
1654 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1655 BTRFS_I(src_inode)->root,
1656 transid, readonly, inherit);
1657 }
1658 fdput(src);
1659 }
1660 out_drop_write:
1661 mnt_drop_write_file(file);
1662 out:
1663 return ret;
1664 }
1665
1666 static noinline int btrfs_ioctl_snap_create(struct file *file,
1667 void __user *arg, int subvol)
1668 {
1669 struct btrfs_ioctl_vol_args *vol_args;
1670 int ret;
1671
1672 vol_args = memdup_user(arg, sizeof(*vol_args));
1673 if (IS_ERR(vol_args))
1674 return PTR_ERR(vol_args);
1675 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1676
1677 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1678 vol_args->fd, subvol,
1679 NULL, false, NULL);
1680
1681 kfree(vol_args);
1682 return ret;
1683 }
1684
1685 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1686 void __user *arg, int subvol)
1687 {
1688 struct btrfs_ioctl_vol_args_v2 *vol_args;
1689 int ret;
1690 u64 transid = 0;
1691 u64 *ptr = NULL;
1692 bool readonly = false;
1693 struct btrfs_qgroup_inherit *inherit = NULL;
1694
1695 vol_args = memdup_user(arg, sizeof(*vol_args));
1696 if (IS_ERR(vol_args))
1697 return PTR_ERR(vol_args);
1698 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1699
1700 if (vol_args->flags &
1701 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1702 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1703 ret = -EOPNOTSUPP;
1704 goto out;
1705 }
1706
1707 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1708 ptr = &transid;
1709 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1710 readonly = true;
1711 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1712 if (vol_args->size > PAGE_CACHE_SIZE) {
1713 ret = -EINVAL;
1714 goto out;
1715 }
1716 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1717 if (IS_ERR(inherit)) {
1718 ret = PTR_ERR(inherit);
1719 goto out;
1720 }
1721 }
1722
1723 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1724 vol_args->fd, subvol, ptr,
1725 readonly, inherit);
1726
1727 if (ret == 0 && ptr &&
1728 copy_to_user(arg +
1729 offsetof(struct btrfs_ioctl_vol_args_v2,
1730 transid), ptr, sizeof(*ptr)))
1731 ret = -EFAULT;
1732 out:
1733 kfree(vol_args);
1734 kfree(inherit);
1735 return ret;
1736 }
1737
1738 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1739 void __user *arg)
1740 {
1741 struct inode *inode = file_inode(file);
1742 struct btrfs_root *root = BTRFS_I(inode)->root;
1743 int ret = 0;
1744 u64 flags = 0;
1745
1746 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1747 return -EINVAL;
1748
1749 down_read(&root->fs_info->subvol_sem);
1750 if (btrfs_root_readonly(root))
1751 flags |= BTRFS_SUBVOL_RDONLY;
1752 up_read(&root->fs_info->subvol_sem);
1753
1754 if (copy_to_user(arg, &flags, sizeof(flags)))
1755 ret = -EFAULT;
1756
1757 return ret;
1758 }
1759
1760 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1761 void __user *arg)
1762 {
1763 struct inode *inode = file_inode(file);
1764 struct btrfs_root *root = BTRFS_I(inode)->root;
1765 struct btrfs_trans_handle *trans;
1766 u64 root_flags;
1767 u64 flags;
1768 int ret = 0;
1769
1770 if (!inode_owner_or_capable(inode))
1771 return -EPERM;
1772
1773 ret = mnt_want_write_file(file);
1774 if (ret)
1775 goto out;
1776
1777 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1778 ret = -EINVAL;
1779 goto out_drop_write;
1780 }
1781
1782 if (copy_from_user(&flags, arg, sizeof(flags))) {
1783 ret = -EFAULT;
1784 goto out_drop_write;
1785 }
1786
1787 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1788 ret = -EINVAL;
1789 goto out_drop_write;
1790 }
1791
1792 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1793 ret = -EOPNOTSUPP;
1794 goto out_drop_write;
1795 }
1796
1797 down_write(&root->fs_info->subvol_sem);
1798
1799 /* nothing to do */
1800 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1801 goto out_drop_sem;
1802
1803 root_flags = btrfs_root_flags(&root->root_item);
1804 if (flags & BTRFS_SUBVOL_RDONLY) {
1805 btrfs_set_root_flags(&root->root_item,
1806 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1807 } else {
1808 /*
1809 * Block RO -> RW transition if this subvolume is involved in
1810 * send
1811 */
1812 spin_lock(&root->root_item_lock);
1813 if (root->send_in_progress == 0) {
1814 btrfs_set_root_flags(&root->root_item,
1815 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1816 spin_unlock(&root->root_item_lock);
1817 } else {
1818 spin_unlock(&root->root_item_lock);
1819 btrfs_warn(root->fs_info,
1820 "Attempt to set subvolume %llu read-write during send",
1821 root->root_key.objectid);
1822 ret = -EPERM;
1823 goto out_drop_sem;
1824 }
1825 }
1826
1827 trans = btrfs_start_transaction(root, 1);
1828 if (IS_ERR(trans)) {
1829 ret = PTR_ERR(trans);
1830 goto out_reset;
1831 }
1832
1833 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1834 &root->root_key, &root->root_item);
1835
1836 btrfs_commit_transaction(trans, root);
1837 out_reset:
1838 if (ret)
1839 btrfs_set_root_flags(&root->root_item, root_flags);
1840 out_drop_sem:
1841 up_write(&root->fs_info->subvol_sem);
1842 out_drop_write:
1843 mnt_drop_write_file(file);
1844 out:
1845 return ret;
1846 }
1847
1848 /*
1849 * helper to check if the subvolume references other subvolumes
1850 */
1851 static noinline int may_destroy_subvol(struct btrfs_root *root)
1852 {
1853 struct btrfs_path *path;
1854 struct btrfs_dir_item *di;
1855 struct btrfs_key key;
1856 u64 dir_id;
1857 int ret;
1858
1859 path = btrfs_alloc_path();
1860 if (!path)
1861 return -ENOMEM;
1862
1863 /* Make sure this root isn't set as the default subvol */
1864 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1865 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1866 dir_id, "default", 7, 0);
1867 if (di && !IS_ERR(di)) {
1868 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1869 if (key.objectid == root->root_key.objectid) {
1870 ret = -EPERM;
1871 btrfs_err(root->fs_info, "deleting default subvolume "
1872 "%llu is not allowed", key.objectid);
1873 goto out;
1874 }
1875 btrfs_release_path(path);
1876 }
1877
1878 key.objectid = root->root_key.objectid;
1879 key.type = BTRFS_ROOT_REF_KEY;
1880 key.offset = (u64)-1;
1881
1882 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1883 &key, path, 0, 0);
1884 if (ret < 0)
1885 goto out;
1886 BUG_ON(ret == 0);
1887
1888 ret = 0;
1889 if (path->slots[0] > 0) {
1890 path->slots[0]--;
1891 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1892 if (key.objectid == root->root_key.objectid &&
1893 key.type == BTRFS_ROOT_REF_KEY)
1894 ret = -ENOTEMPTY;
1895 }
1896 out:
1897 btrfs_free_path(path);
1898 return ret;
1899 }
1900
1901 static noinline int key_in_sk(struct btrfs_key *key,
1902 struct btrfs_ioctl_search_key *sk)
1903 {
1904 struct btrfs_key test;
1905 int ret;
1906
1907 test.objectid = sk->min_objectid;
1908 test.type = sk->min_type;
1909 test.offset = sk->min_offset;
1910
1911 ret = btrfs_comp_cpu_keys(key, &test);
1912 if (ret < 0)
1913 return 0;
1914
1915 test.objectid = sk->max_objectid;
1916 test.type = sk->max_type;
1917 test.offset = sk->max_offset;
1918
1919 ret = btrfs_comp_cpu_keys(key, &test);
1920 if (ret > 0)
1921 return 0;
1922 return 1;
1923 }
1924
1925 static noinline int copy_to_sk(struct btrfs_root *root,
1926 struct btrfs_path *path,
1927 struct btrfs_key *key,
1928 struct btrfs_ioctl_search_key *sk,
1929 char *buf,
1930 unsigned long *sk_offset,
1931 int *num_found)
1932 {
1933 u64 found_transid;
1934 struct extent_buffer *leaf;
1935 struct btrfs_ioctl_search_header sh;
1936 unsigned long item_off;
1937 unsigned long item_len;
1938 int nritems;
1939 int i;
1940 int slot;
1941 int ret = 0;
1942
1943 leaf = path->nodes[0];
1944 slot = path->slots[0];
1945 nritems = btrfs_header_nritems(leaf);
1946
1947 if (btrfs_header_generation(leaf) > sk->max_transid) {
1948 i = nritems;
1949 goto advance_key;
1950 }
1951 found_transid = btrfs_header_generation(leaf);
1952
1953 for (i = slot; i < nritems; i++) {
1954 item_off = btrfs_item_ptr_offset(leaf, i);
1955 item_len = btrfs_item_size_nr(leaf, i);
1956
1957 btrfs_item_key_to_cpu(leaf, key, i);
1958 if (!key_in_sk(key, sk))
1959 continue;
1960
1961 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1962 item_len = 0;
1963
1964 if (sizeof(sh) + item_len + *sk_offset >
1965 BTRFS_SEARCH_ARGS_BUFSIZE) {
1966 ret = 1;
1967 goto overflow;
1968 }
1969
1970 sh.objectid = key->objectid;
1971 sh.offset = key->offset;
1972 sh.type = key->type;
1973 sh.len = item_len;
1974 sh.transid = found_transid;
1975
1976 /* copy search result header */
1977 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1978 *sk_offset += sizeof(sh);
1979
1980 if (item_len) {
1981 char *p = buf + *sk_offset;
1982 /* copy the item */
1983 read_extent_buffer(leaf, p,
1984 item_off, item_len);
1985 *sk_offset += item_len;
1986 }
1987 (*num_found)++;
1988
1989 if (*num_found >= sk->nr_items)
1990 break;
1991 }
1992 advance_key:
1993 ret = 0;
1994 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1995 key->offset++;
1996 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1997 key->offset = 0;
1998 key->type++;
1999 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2000 key->offset = 0;
2001 key->type = 0;
2002 key->objectid++;
2003 } else
2004 ret = 1;
2005 overflow:
2006 return ret;
2007 }
2008
2009 static noinline int search_ioctl(struct inode *inode,
2010 struct btrfs_ioctl_search_args *args)
2011 {
2012 struct btrfs_root *root;
2013 struct btrfs_key key;
2014 struct btrfs_path *path;
2015 struct btrfs_ioctl_search_key *sk = &args->key;
2016 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2017 int ret;
2018 int num_found = 0;
2019 unsigned long sk_offset = 0;
2020
2021 path = btrfs_alloc_path();
2022 if (!path)
2023 return -ENOMEM;
2024
2025 if (sk->tree_id == 0) {
2026 /* search the root of the inode that was passed */
2027 root = BTRFS_I(inode)->root;
2028 } else {
2029 key.objectid = sk->tree_id;
2030 key.type = BTRFS_ROOT_ITEM_KEY;
2031 key.offset = (u64)-1;
2032 root = btrfs_read_fs_root_no_name(info, &key);
2033 if (IS_ERR(root)) {
2034 printk(KERN_ERR "BTRFS: could not find root %llu\n",
2035 sk->tree_id);
2036 btrfs_free_path(path);
2037 return -ENOENT;
2038 }
2039 }
2040
2041 key.objectid = sk->min_objectid;
2042 key.type = sk->min_type;
2043 key.offset = sk->min_offset;
2044
2045 path->keep_locks = 1;
2046
2047 while (1) {
2048 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2049 if (ret != 0) {
2050 if (ret > 0)
2051 ret = 0;
2052 goto err;
2053 }
2054 ret = copy_to_sk(root, path, &key, sk, args->buf,
2055 &sk_offset, &num_found);
2056 btrfs_release_path(path);
2057 if (ret || num_found >= sk->nr_items)
2058 break;
2059
2060 }
2061 ret = 0;
2062 err:
2063 sk->nr_items = num_found;
2064 btrfs_free_path(path);
2065 return ret;
2066 }
2067
2068 static noinline int btrfs_ioctl_tree_search(struct file *file,
2069 void __user *argp)
2070 {
2071 struct btrfs_ioctl_search_args *args;
2072 struct inode *inode;
2073 int ret;
2074
2075 if (!capable(CAP_SYS_ADMIN))
2076 return -EPERM;
2077
2078 args = memdup_user(argp, sizeof(*args));
2079 if (IS_ERR(args))
2080 return PTR_ERR(args);
2081
2082 inode = file_inode(file);
2083 ret = search_ioctl(inode, args);
2084 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2085 ret = -EFAULT;
2086 kfree(args);
2087 return ret;
2088 }
2089
2090 /*
2091 * Search INODE_REFs to identify path name of 'dirid' directory
2092 * in a 'tree_id' tree. and sets path name to 'name'.
2093 */
2094 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2095 u64 tree_id, u64 dirid, char *name)
2096 {
2097 struct btrfs_root *root;
2098 struct btrfs_key key;
2099 char *ptr;
2100 int ret = -1;
2101 int slot;
2102 int len;
2103 int total_len = 0;
2104 struct btrfs_inode_ref *iref;
2105 struct extent_buffer *l;
2106 struct btrfs_path *path;
2107
2108 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2109 name[0]='\0';
2110 return 0;
2111 }
2112
2113 path = btrfs_alloc_path();
2114 if (!path)
2115 return -ENOMEM;
2116
2117 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2118
2119 key.objectid = tree_id;
2120 key.type = BTRFS_ROOT_ITEM_KEY;
2121 key.offset = (u64)-1;
2122 root = btrfs_read_fs_root_no_name(info, &key);
2123 if (IS_ERR(root)) {
2124 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2125 ret = -ENOENT;
2126 goto out;
2127 }
2128
2129 key.objectid = dirid;
2130 key.type = BTRFS_INODE_REF_KEY;
2131 key.offset = (u64)-1;
2132
2133 while (1) {
2134 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2135 if (ret < 0)
2136 goto out;
2137 else if (ret > 0) {
2138 ret = btrfs_previous_item(root, path, dirid,
2139 BTRFS_INODE_REF_KEY);
2140 if (ret < 0)
2141 goto out;
2142 else if (ret > 0) {
2143 ret = -ENOENT;
2144 goto out;
2145 }
2146 }
2147
2148 l = path->nodes[0];
2149 slot = path->slots[0];
2150 btrfs_item_key_to_cpu(l, &key, slot);
2151
2152 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2153 len = btrfs_inode_ref_name_len(l, iref);
2154 ptr -= len + 1;
2155 total_len += len + 1;
2156 if (ptr < name) {
2157 ret = -ENAMETOOLONG;
2158 goto out;
2159 }
2160
2161 *(ptr + len) = '/';
2162 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2163
2164 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2165 break;
2166
2167 btrfs_release_path(path);
2168 key.objectid = key.offset;
2169 key.offset = (u64)-1;
2170 dirid = key.objectid;
2171 }
2172 memmove(name, ptr, total_len);
2173 name[total_len] = '\0';
2174 ret = 0;
2175 out:
2176 btrfs_free_path(path);
2177 return ret;
2178 }
2179
2180 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2181 void __user *argp)
2182 {
2183 struct btrfs_ioctl_ino_lookup_args *args;
2184 struct inode *inode;
2185 int ret;
2186
2187 if (!capable(CAP_SYS_ADMIN))
2188 return -EPERM;
2189
2190 args = memdup_user(argp, sizeof(*args));
2191 if (IS_ERR(args))
2192 return PTR_ERR(args);
2193
2194 inode = file_inode(file);
2195
2196 if (args->treeid == 0)
2197 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2198
2199 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2200 args->treeid, args->objectid,
2201 args->name);
2202
2203 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2204 ret = -EFAULT;
2205
2206 kfree(args);
2207 return ret;
2208 }
2209
2210 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2211 void __user *arg)
2212 {
2213 struct dentry *parent = file->f_path.dentry;
2214 struct dentry *dentry;
2215 struct inode *dir = parent->d_inode;
2216 struct inode *inode;
2217 struct btrfs_root *root = BTRFS_I(dir)->root;
2218 struct btrfs_root *dest = NULL;
2219 struct btrfs_ioctl_vol_args *vol_args;
2220 struct btrfs_trans_handle *trans;
2221 struct btrfs_block_rsv block_rsv;
2222 u64 qgroup_reserved;
2223 int namelen;
2224 int ret;
2225 int err = 0;
2226
2227 vol_args = memdup_user(arg, sizeof(*vol_args));
2228 if (IS_ERR(vol_args))
2229 return PTR_ERR(vol_args);
2230
2231 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2232 namelen = strlen(vol_args->name);
2233 if (strchr(vol_args->name, '/') ||
2234 strncmp(vol_args->name, "..", namelen) == 0) {
2235 err = -EINVAL;
2236 goto out;
2237 }
2238
2239 err = mnt_want_write_file(file);
2240 if (err)
2241 goto out;
2242
2243 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2244 if (err == -EINTR)
2245 goto out_drop_write;
2246 dentry = lookup_one_len(vol_args->name, parent, namelen);
2247 if (IS_ERR(dentry)) {
2248 err = PTR_ERR(dentry);
2249 goto out_unlock_dir;
2250 }
2251
2252 if (!dentry->d_inode) {
2253 err = -ENOENT;
2254 goto out_dput;
2255 }
2256
2257 inode = dentry->d_inode;
2258 dest = BTRFS_I(inode)->root;
2259 if (!capable(CAP_SYS_ADMIN)) {
2260 /*
2261 * Regular user. Only allow this with a special mount
2262 * option, when the user has write+exec access to the
2263 * subvol root, and when rmdir(2) would have been
2264 * allowed.
2265 *
2266 * Note that this is _not_ check that the subvol is
2267 * empty or doesn't contain data that we wouldn't
2268 * otherwise be able to delete.
2269 *
2270 * Users who want to delete empty subvols should try
2271 * rmdir(2).
2272 */
2273 err = -EPERM;
2274 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2275 goto out_dput;
2276
2277 /*
2278 * Do not allow deletion if the parent dir is the same
2279 * as the dir to be deleted. That means the ioctl
2280 * must be called on the dentry referencing the root
2281 * of the subvol, not a random directory contained
2282 * within it.
2283 */
2284 err = -EINVAL;
2285 if (root == dest)
2286 goto out_dput;
2287
2288 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2289 if (err)
2290 goto out_dput;
2291 }
2292
2293 /* check if subvolume may be deleted by a user */
2294 err = btrfs_may_delete(dir, dentry, 1);
2295 if (err)
2296 goto out_dput;
2297
2298 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2299 err = -EINVAL;
2300 goto out_dput;
2301 }
2302
2303 mutex_lock(&inode->i_mutex);
2304 err = d_invalidate(dentry);
2305 if (err)
2306 goto out_unlock;
2307
2308 down_write(&root->fs_info->subvol_sem);
2309
2310 err = may_destroy_subvol(dest);
2311 if (err)
2312 goto out_up_write;
2313
2314 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2315 /*
2316 * One for dir inode, two for dir entries, two for root
2317 * ref/backref.
2318 */
2319 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2320 5, &qgroup_reserved, true);
2321 if (err)
2322 goto out_up_write;
2323
2324 trans = btrfs_start_transaction(root, 0);
2325 if (IS_ERR(trans)) {
2326 err = PTR_ERR(trans);
2327 goto out_release;
2328 }
2329 trans->block_rsv = &block_rsv;
2330 trans->bytes_reserved = block_rsv.size;
2331
2332 ret = btrfs_unlink_subvol(trans, root, dir,
2333 dest->root_key.objectid,
2334 dentry->d_name.name,
2335 dentry->d_name.len);
2336 if (ret) {
2337 err = ret;
2338 btrfs_abort_transaction(trans, root, ret);
2339 goto out_end_trans;
2340 }
2341
2342 btrfs_record_root_in_trans(trans, dest);
2343
2344 memset(&dest->root_item.drop_progress, 0,
2345 sizeof(dest->root_item.drop_progress));
2346 dest->root_item.drop_level = 0;
2347 btrfs_set_root_refs(&dest->root_item, 0);
2348
2349 if (!xchg(&dest->orphan_item_inserted, 1)) {
2350 ret = btrfs_insert_orphan_item(trans,
2351 root->fs_info->tree_root,
2352 dest->root_key.objectid);
2353 if (ret) {
2354 btrfs_abort_transaction(trans, root, ret);
2355 err = ret;
2356 goto out_end_trans;
2357 }
2358 }
2359
2360 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2361 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2362 dest->root_key.objectid);
2363 if (ret && ret != -ENOENT) {
2364 btrfs_abort_transaction(trans, root, ret);
2365 err = ret;
2366 goto out_end_trans;
2367 }
2368 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2369 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2370 dest->root_item.received_uuid,
2371 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2372 dest->root_key.objectid);
2373 if (ret && ret != -ENOENT) {
2374 btrfs_abort_transaction(trans, root, ret);
2375 err = ret;
2376 goto out_end_trans;
2377 }
2378 }
2379
2380 out_end_trans:
2381 trans->block_rsv = NULL;
2382 trans->bytes_reserved = 0;
2383 ret = btrfs_end_transaction(trans, root);
2384 if (ret && !err)
2385 err = ret;
2386 inode->i_flags |= S_DEAD;
2387 out_release:
2388 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2389 out_up_write:
2390 up_write(&root->fs_info->subvol_sem);
2391 out_unlock:
2392 mutex_unlock(&inode->i_mutex);
2393 if (!err) {
2394 shrink_dcache_sb(root->fs_info->sb);
2395 btrfs_invalidate_inodes(dest);
2396 d_delete(dentry);
2397
2398 /* the last ref */
2399 if (dest->cache_inode) {
2400 iput(dest->cache_inode);
2401 dest->cache_inode = NULL;
2402 }
2403 }
2404 out_dput:
2405 dput(dentry);
2406 out_unlock_dir:
2407 mutex_unlock(&dir->i_mutex);
2408 out_drop_write:
2409 mnt_drop_write_file(file);
2410 out:
2411 kfree(vol_args);
2412 return err;
2413 }
2414
2415 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2416 {
2417 struct inode *inode = file_inode(file);
2418 struct btrfs_root *root = BTRFS_I(inode)->root;
2419 struct btrfs_ioctl_defrag_range_args *range;
2420 int ret;
2421
2422 ret = mnt_want_write_file(file);
2423 if (ret)
2424 return ret;
2425
2426 if (btrfs_root_readonly(root)) {
2427 ret = -EROFS;
2428 goto out;
2429 }
2430
2431 switch (inode->i_mode & S_IFMT) {
2432 case S_IFDIR:
2433 if (!capable(CAP_SYS_ADMIN)) {
2434 ret = -EPERM;
2435 goto out;
2436 }
2437 ret = btrfs_defrag_root(root);
2438 if (ret)
2439 goto out;
2440 ret = btrfs_defrag_root(root->fs_info->extent_root);
2441 break;
2442 case S_IFREG:
2443 if (!(file->f_mode & FMODE_WRITE)) {
2444 ret = -EINVAL;
2445 goto out;
2446 }
2447
2448 range = kzalloc(sizeof(*range), GFP_KERNEL);
2449 if (!range) {
2450 ret = -ENOMEM;
2451 goto out;
2452 }
2453
2454 if (argp) {
2455 if (copy_from_user(range, argp,
2456 sizeof(*range))) {
2457 ret = -EFAULT;
2458 kfree(range);
2459 goto out;
2460 }
2461 /* compression requires us to start the IO */
2462 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2463 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2464 range->extent_thresh = (u32)-1;
2465 }
2466 } else {
2467 /* the rest are all set to zero by kzalloc */
2468 range->len = (u64)-1;
2469 }
2470 ret = btrfs_defrag_file(file_inode(file), file,
2471 range, 0, 0);
2472 if (ret > 0)
2473 ret = 0;
2474 kfree(range);
2475 break;
2476 default:
2477 ret = -EINVAL;
2478 }
2479 out:
2480 mnt_drop_write_file(file);
2481 return ret;
2482 }
2483
2484 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2485 {
2486 struct btrfs_ioctl_vol_args *vol_args;
2487 int ret;
2488
2489 if (!capable(CAP_SYS_ADMIN))
2490 return -EPERM;
2491
2492 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2493 1)) {
2494 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2495 }
2496
2497 mutex_lock(&root->fs_info->volume_mutex);
2498 vol_args = memdup_user(arg, sizeof(*vol_args));
2499 if (IS_ERR(vol_args)) {
2500 ret = PTR_ERR(vol_args);
2501 goto out;
2502 }
2503
2504 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2505 ret = btrfs_init_new_device(root, vol_args->name);
2506
2507 kfree(vol_args);
2508 out:
2509 mutex_unlock(&root->fs_info->volume_mutex);
2510 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2511 return ret;
2512 }
2513
2514 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2515 {
2516 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2517 struct btrfs_ioctl_vol_args *vol_args;
2518 int ret;
2519
2520 if (!capable(CAP_SYS_ADMIN))
2521 return -EPERM;
2522
2523 ret = mnt_want_write_file(file);
2524 if (ret)
2525 return ret;
2526
2527 vol_args = memdup_user(arg, sizeof(*vol_args));
2528 if (IS_ERR(vol_args)) {
2529 ret = PTR_ERR(vol_args);
2530 goto out;
2531 }
2532
2533 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2534
2535 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2536 1)) {
2537 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2538 goto out;
2539 }
2540
2541 mutex_lock(&root->fs_info->volume_mutex);
2542 ret = btrfs_rm_device(root, vol_args->name);
2543 mutex_unlock(&root->fs_info->volume_mutex);
2544 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2545
2546 out:
2547 kfree(vol_args);
2548 mnt_drop_write_file(file);
2549 return ret;
2550 }
2551
2552 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2553 {
2554 struct btrfs_ioctl_fs_info_args *fi_args;
2555 struct btrfs_device *device;
2556 struct btrfs_device *next;
2557 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2558 int ret = 0;
2559
2560 if (!capable(CAP_SYS_ADMIN))
2561 return -EPERM;
2562
2563 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2564 if (!fi_args)
2565 return -ENOMEM;
2566
2567 mutex_lock(&fs_devices->device_list_mutex);
2568 fi_args->num_devices = fs_devices->num_devices;
2569 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2570
2571 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2572 if (device->devid > fi_args->max_id)
2573 fi_args->max_id = device->devid;
2574 }
2575 mutex_unlock(&fs_devices->device_list_mutex);
2576
2577 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2578 ret = -EFAULT;
2579
2580 kfree(fi_args);
2581 return ret;
2582 }
2583
2584 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2585 {
2586 struct btrfs_ioctl_dev_info_args *di_args;
2587 struct btrfs_device *dev;
2588 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2589 int ret = 0;
2590 char *s_uuid = NULL;
2591
2592 if (!capable(CAP_SYS_ADMIN))
2593 return -EPERM;
2594
2595 di_args = memdup_user(arg, sizeof(*di_args));
2596 if (IS_ERR(di_args))
2597 return PTR_ERR(di_args);
2598
2599 if (!btrfs_is_empty_uuid(di_args->uuid))
2600 s_uuid = di_args->uuid;
2601
2602 mutex_lock(&fs_devices->device_list_mutex);
2603 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2604
2605 if (!dev) {
2606 ret = -ENODEV;
2607 goto out;
2608 }
2609
2610 di_args->devid = dev->devid;
2611 di_args->bytes_used = dev->bytes_used;
2612 di_args->total_bytes = dev->total_bytes;
2613 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2614 if (dev->name) {
2615 struct rcu_string *name;
2616
2617 rcu_read_lock();
2618 name = rcu_dereference(dev->name);
2619 strncpy(di_args->path, name->str, sizeof(di_args->path));
2620 rcu_read_unlock();
2621 di_args->path[sizeof(di_args->path) - 1] = 0;
2622 } else {
2623 di_args->path[0] = '\0';
2624 }
2625
2626 out:
2627 mutex_unlock(&fs_devices->device_list_mutex);
2628 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2629 ret = -EFAULT;
2630
2631 kfree(di_args);
2632 return ret;
2633 }
2634
2635 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2636 {
2637 struct page *page;
2638 pgoff_t index;
2639 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2640
2641 index = off >> PAGE_CACHE_SHIFT;
2642
2643 page = grab_cache_page(inode->i_mapping, index);
2644 if (!page)
2645 return NULL;
2646
2647 if (!PageUptodate(page)) {
2648 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2649 0))
2650 return NULL;
2651 lock_page(page);
2652 if (!PageUptodate(page)) {
2653 unlock_page(page);
2654 page_cache_release(page);
2655 return NULL;
2656 }
2657 }
2658 unlock_page(page);
2659
2660 return page;
2661 }
2662
2663 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2664 {
2665 /* do any pending delalloc/csum calc on src, one way or
2666 another, and lock file content */
2667 while (1) {
2668 struct btrfs_ordered_extent *ordered;
2669 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2670 ordered = btrfs_lookup_first_ordered_extent(inode,
2671 off + len - 1);
2672 if (!ordered &&
2673 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2674 off + len - 1, EXTENT_DELALLOC, 0, NULL))
2675 break;
2676 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2677 if (ordered)
2678 btrfs_put_ordered_extent(ordered);
2679 btrfs_wait_ordered_range(inode, off, len);
2680 }
2681 }
2682
2683 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2684 struct inode *inode2, u64 loff2, u64 len)
2685 {
2686 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2687 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2688
2689 mutex_unlock(&inode1->i_mutex);
2690 mutex_unlock(&inode2->i_mutex);
2691 }
2692
2693 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2694 struct inode *inode2, u64 loff2, u64 len)
2695 {
2696 if (inode1 < inode2) {
2697 swap(inode1, inode2);
2698 swap(loff1, loff2);
2699 }
2700
2701 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2702 lock_extent_range(inode1, loff1, len);
2703 if (inode1 != inode2) {
2704 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2705 lock_extent_range(inode2, loff2, len);
2706 }
2707 }
2708
2709 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2710 u64 dst_loff, u64 len)
2711 {
2712 int ret = 0;
2713 struct page *src_page, *dst_page;
2714 unsigned int cmp_len = PAGE_CACHE_SIZE;
2715 void *addr, *dst_addr;
2716
2717 while (len) {
2718 if (len < PAGE_CACHE_SIZE)
2719 cmp_len = len;
2720
2721 src_page = extent_same_get_page(src, loff);
2722 if (!src_page)
2723 return -EINVAL;
2724 dst_page = extent_same_get_page(dst, dst_loff);
2725 if (!dst_page) {
2726 page_cache_release(src_page);
2727 return -EINVAL;
2728 }
2729 addr = kmap_atomic(src_page);
2730 dst_addr = kmap_atomic(dst_page);
2731
2732 flush_dcache_page(src_page);
2733 flush_dcache_page(dst_page);
2734
2735 if (memcmp(addr, dst_addr, cmp_len))
2736 ret = BTRFS_SAME_DATA_DIFFERS;
2737
2738 kunmap_atomic(addr);
2739 kunmap_atomic(dst_addr);
2740 page_cache_release(src_page);
2741 page_cache_release(dst_page);
2742
2743 if (ret)
2744 break;
2745
2746 loff += cmp_len;
2747 dst_loff += cmp_len;
2748 len -= cmp_len;
2749 }
2750
2751 return ret;
2752 }
2753
2754 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2755 {
2756 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2757
2758 if (off + len > inode->i_size || off + len < off)
2759 return -EINVAL;
2760 /* Check that we are block aligned - btrfs_clone() requires this */
2761 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2762 return -EINVAL;
2763
2764 return 0;
2765 }
2766
2767 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2768 struct inode *dst, u64 dst_loff)
2769 {
2770 int ret;
2771
2772 /*
2773 * btrfs_clone() can't handle extents in the same file
2774 * yet. Once that works, we can drop this check and replace it
2775 * with a check for the same inode, but overlapping extents.
2776 */
2777 if (src == dst)
2778 return -EINVAL;
2779
2780 btrfs_double_lock(src, loff, dst, dst_loff, len);
2781
2782 ret = extent_same_check_offsets(src, loff, len);
2783 if (ret)
2784 goto out_unlock;
2785
2786 ret = extent_same_check_offsets(dst, dst_loff, len);
2787 if (ret)
2788 goto out_unlock;
2789
2790 /* don't make the dst file partly checksummed */
2791 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2792 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2793 ret = -EINVAL;
2794 goto out_unlock;
2795 }
2796
2797 ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2798 if (ret == 0)
2799 ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2800
2801 out_unlock:
2802 btrfs_double_unlock(src, loff, dst, dst_loff, len);
2803
2804 return ret;
2805 }
2806
2807 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
2808
2809 static long btrfs_ioctl_file_extent_same(struct file *file,
2810 struct btrfs_ioctl_same_args __user *argp)
2811 {
2812 struct btrfs_ioctl_same_args *same;
2813 struct btrfs_ioctl_same_extent_info *info;
2814 struct inode *src = file_inode(file);
2815 u64 off;
2816 u64 len;
2817 int i;
2818 int ret;
2819 unsigned long size;
2820 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2821 bool is_admin = capable(CAP_SYS_ADMIN);
2822 u16 count;
2823
2824 if (!(file->f_mode & FMODE_READ))
2825 return -EINVAL;
2826
2827 ret = mnt_want_write_file(file);
2828 if (ret)
2829 return ret;
2830
2831 if (get_user(count, &argp->dest_count)) {
2832 ret = -EFAULT;
2833 goto out;
2834 }
2835
2836 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2837
2838 same = memdup_user(argp, size);
2839
2840 if (IS_ERR(same)) {
2841 ret = PTR_ERR(same);
2842 goto out;
2843 }
2844
2845 off = same->logical_offset;
2846 len = same->length;
2847
2848 /*
2849 * Limit the total length we will dedupe for each operation.
2850 * This is intended to bound the total time spent in this
2851 * ioctl to something sane.
2852 */
2853 if (len > BTRFS_MAX_DEDUPE_LEN)
2854 len = BTRFS_MAX_DEDUPE_LEN;
2855
2856 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2857 /*
2858 * Btrfs does not support blocksize < page_size. As a
2859 * result, btrfs_cmp_data() won't correctly handle
2860 * this situation without an update.
2861 */
2862 ret = -EINVAL;
2863 goto out;
2864 }
2865
2866 ret = -EISDIR;
2867 if (S_ISDIR(src->i_mode))
2868 goto out;
2869
2870 ret = -EACCES;
2871 if (!S_ISREG(src->i_mode))
2872 goto out;
2873
2874 /* pre-format output fields to sane values */
2875 for (i = 0; i < count; i++) {
2876 same->info[i].bytes_deduped = 0ULL;
2877 same->info[i].status = 0;
2878 }
2879
2880 for (i = 0, info = same->info; i < count; i++, info++) {
2881 struct inode *dst;
2882 struct fd dst_file = fdget(info->fd);
2883 if (!dst_file.file) {
2884 info->status = -EBADF;
2885 continue;
2886 }
2887 dst = file_inode(dst_file.file);
2888
2889 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
2890 info->status = -EINVAL;
2891 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
2892 info->status = -EXDEV;
2893 } else if (S_ISDIR(dst->i_mode)) {
2894 info->status = -EISDIR;
2895 } else if (!S_ISREG(dst->i_mode)) {
2896 info->status = -EACCES;
2897 } else {
2898 info->status = btrfs_extent_same(src, off, len, dst,
2899 info->logical_offset);
2900 if (info->status == 0)
2901 info->bytes_deduped += len;
2902 }
2903 fdput(dst_file);
2904 }
2905
2906 ret = copy_to_user(argp, same, size);
2907 if (ret)
2908 ret = -EFAULT;
2909
2910 out:
2911 mnt_drop_write_file(file);
2912 return ret;
2913 }
2914
2915 /**
2916 * btrfs_clone() - clone a range from inode file to another
2917 *
2918 * @src: Inode to clone from
2919 * @inode: Inode to clone to
2920 * @off: Offset within source to start clone from
2921 * @olen: Original length, passed by user, of range to clone
2922 * @olen_aligned: Block-aligned value of olen, extent_same uses
2923 * identical values here
2924 * @destoff: Offset within @inode to start clone
2925 */
2926 static int btrfs_clone(struct inode *src, struct inode *inode,
2927 u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2928 {
2929 struct btrfs_root *root = BTRFS_I(inode)->root;
2930 struct btrfs_path *path = NULL;
2931 struct extent_buffer *leaf;
2932 struct btrfs_trans_handle *trans;
2933 char *buf = NULL;
2934 struct btrfs_key key;
2935 u32 nritems;
2936 int slot;
2937 int ret;
2938 u64 len = olen_aligned;
2939
2940 ret = -ENOMEM;
2941 buf = vmalloc(btrfs_level_size(root, 0));
2942 if (!buf)
2943 return ret;
2944
2945 path = btrfs_alloc_path();
2946 if (!path) {
2947 vfree(buf);
2948 return ret;
2949 }
2950
2951 path->reada = 2;
2952 /* clone data */
2953 key.objectid = btrfs_ino(src);
2954 key.type = BTRFS_EXTENT_DATA_KEY;
2955 key.offset = 0;
2956
2957 while (1) {
2958 /*
2959 * note the key will change type as we walk through the
2960 * tree.
2961 */
2962 path->leave_spinning = 1;
2963 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2964 0, 0);
2965 if (ret < 0)
2966 goto out;
2967
2968 nritems = btrfs_header_nritems(path->nodes[0]);
2969 process_slot:
2970 if (path->slots[0] >= nritems) {
2971 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2972 if (ret < 0)
2973 goto out;
2974 if (ret > 0)
2975 break;
2976 nritems = btrfs_header_nritems(path->nodes[0]);
2977 }
2978 leaf = path->nodes[0];
2979 slot = path->slots[0];
2980
2981 btrfs_item_key_to_cpu(leaf, &key, slot);
2982 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2983 key.objectid != btrfs_ino(src))
2984 break;
2985
2986 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2987 struct btrfs_file_extent_item *extent;
2988 int type;
2989 u32 size;
2990 struct btrfs_key new_key;
2991 u64 disko = 0, diskl = 0;
2992 u64 datao = 0, datal = 0;
2993 u8 comp;
2994 u64 endoff;
2995
2996 extent = btrfs_item_ptr(leaf, slot,
2997 struct btrfs_file_extent_item);
2998 comp = btrfs_file_extent_compression(leaf, extent);
2999 type = btrfs_file_extent_type(leaf, extent);
3000 if (type == BTRFS_FILE_EXTENT_REG ||
3001 type == BTRFS_FILE_EXTENT_PREALLOC) {
3002 disko = btrfs_file_extent_disk_bytenr(leaf,
3003 extent);
3004 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3005 extent);
3006 datao = btrfs_file_extent_offset(leaf, extent);
3007 datal = btrfs_file_extent_num_bytes(leaf,
3008 extent);
3009 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3010 /* take upper bound, may be compressed */
3011 datal = btrfs_file_extent_ram_bytes(leaf,
3012 extent);
3013 }
3014
3015 if (key.offset + datal <= off ||
3016 key.offset >= off + len - 1) {
3017 path->slots[0]++;
3018 goto process_slot;
3019 }
3020
3021 size = btrfs_item_size_nr(leaf, slot);
3022 read_extent_buffer(leaf, buf,
3023 btrfs_item_ptr_offset(leaf, slot),
3024 size);
3025
3026 btrfs_release_path(path);
3027 path->leave_spinning = 0;
3028
3029 memcpy(&new_key, &key, sizeof(new_key));
3030 new_key.objectid = btrfs_ino(inode);
3031 if (off <= key.offset)
3032 new_key.offset = key.offset + destoff - off;
3033 else
3034 new_key.offset = destoff;
3035
3036 /*
3037 * 1 - adjusting old extent (we may have to split it)
3038 * 1 - add new extent
3039 * 1 - inode update
3040 */
3041 trans = btrfs_start_transaction(root, 3);
3042 if (IS_ERR(trans)) {
3043 ret = PTR_ERR(trans);
3044 goto out;
3045 }
3046
3047 if (type == BTRFS_FILE_EXTENT_REG ||
3048 type == BTRFS_FILE_EXTENT_PREALLOC) {
3049 /*
3050 * a | --- range to clone ---| b
3051 * | ------------- extent ------------- |
3052 */
3053
3054 /* substract range b */
3055 if (key.offset + datal > off + len)
3056 datal = off + len - key.offset;
3057
3058 /* substract range a */
3059 if (off > key.offset) {
3060 datao += off - key.offset;
3061 datal -= off - key.offset;
3062 }
3063
3064 ret = btrfs_drop_extents(trans, root, inode,
3065 new_key.offset,
3066 new_key.offset + datal,
3067 1);
3068 if (ret) {
3069 if (ret != -EOPNOTSUPP)
3070 btrfs_abort_transaction(trans,
3071 root, ret);
3072 btrfs_end_transaction(trans, root);
3073 goto out;
3074 }
3075
3076 ret = btrfs_insert_empty_item(trans, root, path,
3077 &new_key, size);
3078 if (ret) {
3079 btrfs_abort_transaction(trans, root,
3080 ret);
3081 btrfs_end_transaction(trans, root);
3082 goto out;
3083 }
3084
3085 leaf = path->nodes[0];
3086 slot = path->slots[0];
3087 write_extent_buffer(leaf, buf,
3088 btrfs_item_ptr_offset(leaf, slot),
3089 size);
3090
3091 extent = btrfs_item_ptr(leaf, slot,
3092 struct btrfs_file_extent_item);
3093
3094 /* disko == 0 means it's a hole */
3095 if (!disko)
3096 datao = 0;
3097
3098 btrfs_set_file_extent_offset(leaf, extent,
3099 datao);
3100 btrfs_set_file_extent_num_bytes(leaf, extent,
3101 datal);
3102 if (disko) {
3103 inode_add_bytes(inode, datal);
3104 ret = btrfs_inc_extent_ref(trans, root,
3105 disko, diskl, 0,
3106 root->root_key.objectid,
3107 btrfs_ino(inode),
3108 new_key.offset - datao,
3109 0);
3110 if (ret) {
3111 btrfs_abort_transaction(trans,
3112 root,
3113 ret);
3114 btrfs_end_transaction(trans,
3115 root);
3116 goto out;
3117
3118 }
3119 }
3120 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3121 u64 skip = 0;
3122 u64 trim = 0;
3123 if (off > key.offset) {
3124 skip = off - key.offset;
3125 new_key.offset += skip;
3126 }
3127
3128 if (key.offset + datal > off + len)
3129 trim = key.offset + datal - (off + len);
3130
3131 if (comp && (skip || trim)) {
3132 ret = -EINVAL;
3133 btrfs_end_transaction(trans, root);
3134 goto out;
3135 }
3136 size -= skip + trim;
3137 datal -= skip + trim;
3138
3139 ret = btrfs_drop_extents(trans, root, inode,
3140 new_key.offset,
3141 new_key.offset + datal,
3142 1);
3143 if (ret) {
3144 if (ret != -EOPNOTSUPP)
3145 btrfs_abort_transaction(trans,
3146 root, ret);
3147 btrfs_end_transaction(trans, root);
3148 goto out;
3149 }
3150
3151 ret = btrfs_insert_empty_item(trans, root, path,
3152 &new_key, size);
3153 if (ret) {
3154 btrfs_abort_transaction(trans, root,
3155 ret);
3156 btrfs_end_transaction(trans, root);
3157 goto out;
3158 }
3159
3160 if (skip) {
3161 u32 start =
3162 btrfs_file_extent_calc_inline_size(0);
3163 memmove(buf+start, buf+start+skip,
3164 datal);
3165 }
3166
3167 leaf = path->nodes[0];
3168 slot = path->slots[0];
3169 write_extent_buffer(leaf, buf,
3170 btrfs_item_ptr_offset(leaf, slot),
3171 size);
3172 inode_add_bytes(inode, datal);
3173 }
3174
3175 btrfs_mark_buffer_dirty(leaf);
3176 btrfs_release_path(path);
3177
3178 inode_inc_iversion(inode);
3179 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3180
3181 /*
3182 * we round up to the block size at eof when
3183 * determining which extents to clone above,
3184 * but shouldn't round up the file size
3185 */
3186 endoff = new_key.offset + datal;
3187 if (endoff > destoff+olen)
3188 endoff = destoff+olen;
3189 if (endoff > inode->i_size)
3190 btrfs_i_size_write(inode, endoff);
3191
3192 ret = btrfs_update_inode(trans, root, inode);
3193 if (ret) {
3194 btrfs_abort_transaction(trans, root, ret);
3195 btrfs_end_transaction(trans, root);
3196 goto out;
3197 }
3198 ret = btrfs_end_transaction(trans, root);
3199 }
3200 btrfs_release_path(path);
3201 key.offset++;
3202 }
3203 ret = 0;
3204
3205 out:
3206 btrfs_release_path(path);
3207 btrfs_free_path(path);
3208 vfree(buf);
3209 return ret;
3210 }
3211
3212 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3213 u64 off, u64 olen, u64 destoff)
3214 {
3215 struct inode *inode = file_inode(file);
3216 struct btrfs_root *root = BTRFS_I(inode)->root;
3217 struct fd src_file;
3218 struct inode *src;
3219 int ret;
3220 u64 len = olen;
3221 u64 bs = root->fs_info->sb->s_blocksize;
3222 int same_inode = 0;
3223
3224 /*
3225 * TODO:
3226 * - split compressed inline extents. annoying: we need to
3227 * decompress into destination's address_space (the file offset
3228 * may change, so source mapping won't do), then recompress (or
3229 * otherwise reinsert) a subrange.
3230 *
3231 * - split destination inode's inline extents. The inline extents can
3232 * be either compressed or non-compressed.
3233 */
3234
3235 /* the destination must be opened for writing */
3236 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3237 return -EINVAL;
3238
3239 if (btrfs_root_readonly(root))
3240 return -EROFS;
3241
3242 ret = mnt_want_write_file(file);
3243 if (ret)
3244 return ret;
3245
3246 src_file = fdget(srcfd);
3247 if (!src_file.file) {
3248 ret = -EBADF;
3249 goto out_drop_write;
3250 }
3251
3252 ret = -EXDEV;
3253 if (src_file.file->f_path.mnt != file->f_path.mnt)
3254 goto out_fput;
3255
3256 src = file_inode(src_file.file);
3257
3258 ret = -EINVAL;
3259 if (src == inode)
3260 same_inode = 1;
3261
3262 /* the src must be open for reading */
3263 if (!(src_file.file->f_mode & FMODE_READ))
3264 goto out_fput;
3265
3266 /* don't make the dst file partly checksummed */
3267 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3268 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3269 goto out_fput;
3270
3271 ret = -EISDIR;
3272 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3273 goto out_fput;
3274
3275 ret = -EXDEV;
3276 if (src->i_sb != inode->i_sb)
3277 goto out_fput;
3278
3279 if (!same_inode) {
3280 if (inode < src) {
3281 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3282 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3283 } else {
3284 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3285 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3286 }
3287 } else {
3288 mutex_lock(&src->i_mutex);
3289 }
3290
3291 /* determine range to clone */
3292 ret = -EINVAL;
3293 if (off + len > src->i_size || off + len < off)
3294 goto out_unlock;
3295 if (len == 0)
3296 olen = len = src->i_size - off;
3297 /* if we extend to eof, continue to block boundary */
3298 if (off + len == src->i_size)
3299 len = ALIGN(src->i_size, bs) - off;
3300
3301 /* verify the end result is block aligned */
3302 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3303 !IS_ALIGNED(destoff, bs))
3304 goto out_unlock;
3305
3306 /* verify if ranges are overlapped within the same file */
3307 if (same_inode) {
3308 if (destoff + len > off && destoff < off + len)
3309 goto out_unlock;
3310 }
3311
3312 if (destoff > inode->i_size) {
3313 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3314 if (ret)
3315 goto out_unlock;
3316 }
3317
3318 /* truncate page cache pages from target inode range */
3319 truncate_inode_pages_range(&inode->i_data, destoff,
3320 PAGE_CACHE_ALIGN(destoff + len) - 1);
3321
3322 lock_extent_range(src, off, len);
3323
3324 ret = btrfs_clone(src, inode, off, olen, len, destoff);
3325
3326 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3327 out_unlock:
3328 if (!same_inode) {
3329 if (inode < src) {
3330 mutex_unlock(&src->i_mutex);
3331 mutex_unlock(&inode->i_mutex);
3332 } else {
3333 mutex_unlock(&inode->i_mutex);
3334 mutex_unlock(&src->i_mutex);
3335 }
3336 } else {
3337 mutex_unlock(&src->i_mutex);
3338 }
3339 out_fput:
3340 fdput(src_file);
3341 out_drop_write:
3342 mnt_drop_write_file(file);
3343 return ret;
3344 }
3345
3346 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3347 {
3348 struct btrfs_ioctl_clone_range_args args;
3349
3350 if (copy_from_user(&args, argp, sizeof(args)))
3351 return -EFAULT;
3352 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3353 args.src_length, args.dest_offset);
3354 }
3355
3356 /*
3357 * there are many ways the trans_start and trans_end ioctls can lead
3358 * to deadlocks. They should only be used by applications that
3359 * basically own the machine, and have a very in depth understanding
3360 * of all the possible deadlocks and enospc problems.
3361 */
3362 static long btrfs_ioctl_trans_start(struct file *file)
3363 {
3364 struct inode *inode = file_inode(file);
3365 struct btrfs_root *root = BTRFS_I(inode)->root;
3366 struct btrfs_trans_handle *trans;
3367 int ret;
3368
3369 ret = -EPERM;
3370 if (!capable(CAP_SYS_ADMIN))
3371 goto out;
3372
3373 ret = -EINPROGRESS;
3374 if (file->private_data)
3375 goto out;
3376
3377 ret = -EROFS;
3378 if (btrfs_root_readonly(root))
3379 goto out;
3380
3381 ret = mnt_want_write_file(file);
3382 if (ret)
3383 goto out;
3384
3385 atomic_inc(&root->fs_info->open_ioctl_trans);
3386
3387 ret = -ENOMEM;
3388 trans = btrfs_start_ioctl_transaction(root);
3389 if (IS_ERR(trans))
3390 goto out_drop;
3391
3392 file->private_data = trans;
3393 return 0;
3394
3395 out_drop:
3396 atomic_dec(&root->fs_info->open_ioctl_trans);
3397 mnt_drop_write_file(file);
3398 out:
3399 return ret;
3400 }
3401
3402 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3403 {
3404 struct inode *inode = file_inode(file);
3405 struct btrfs_root *root = BTRFS_I(inode)->root;
3406 struct btrfs_root *new_root;
3407 struct btrfs_dir_item *di;
3408 struct btrfs_trans_handle *trans;
3409 struct btrfs_path *path;
3410 struct btrfs_key location;
3411 struct btrfs_disk_key disk_key;
3412 u64 objectid = 0;
3413 u64 dir_id;
3414 int ret;
3415
3416 if (!capable(CAP_SYS_ADMIN))
3417 return -EPERM;
3418
3419 ret = mnt_want_write_file(file);
3420 if (ret)
3421 return ret;
3422
3423 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3424 ret = -EFAULT;
3425 goto out;
3426 }
3427
3428 if (!objectid)
3429 objectid = BTRFS_FS_TREE_OBJECTID;
3430
3431 location.objectid = objectid;
3432 location.type = BTRFS_ROOT_ITEM_KEY;
3433 location.offset = (u64)-1;
3434
3435 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3436 if (IS_ERR(new_root)) {
3437 ret = PTR_ERR(new_root);
3438 goto out;
3439 }
3440
3441 path = btrfs_alloc_path();
3442 if (!path) {
3443 ret = -ENOMEM;
3444 goto out;
3445 }
3446 path->leave_spinning = 1;
3447
3448 trans = btrfs_start_transaction(root, 1);
3449 if (IS_ERR(trans)) {
3450 btrfs_free_path(path);
3451 ret = PTR_ERR(trans);
3452 goto out;
3453 }
3454
3455 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3456 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3457 dir_id, "default", 7, 1);
3458 if (IS_ERR_OR_NULL(di)) {
3459 btrfs_free_path(path);
3460 btrfs_end_transaction(trans, root);
3461 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3462 "item, this isn't going to work");
3463 ret = -ENOENT;
3464 goto out;
3465 }
3466
3467 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3468 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3469 btrfs_mark_buffer_dirty(path->nodes[0]);
3470 btrfs_free_path(path);
3471
3472 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3473 btrfs_end_transaction(trans, root);
3474 out:
3475 mnt_drop_write_file(file);
3476 return ret;
3477 }
3478
3479 void btrfs_get_block_group_info(struct list_head *groups_list,
3480 struct btrfs_ioctl_space_info *space)
3481 {
3482 struct btrfs_block_group_cache *block_group;
3483
3484 space->total_bytes = 0;
3485 space->used_bytes = 0;
3486 space->flags = 0;
3487 list_for_each_entry(block_group, groups_list, list) {
3488 space->flags = block_group->flags;
3489 space->total_bytes += block_group->key.offset;
3490 space->used_bytes +=
3491 btrfs_block_group_used(&block_group->item);
3492 }
3493 }
3494
3495 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3496 {
3497 struct btrfs_ioctl_space_args space_args;
3498 struct btrfs_ioctl_space_info space;
3499 struct btrfs_ioctl_space_info *dest;
3500 struct btrfs_ioctl_space_info *dest_orig;
3501 struct btrfs_ioctl_space_info __user *user_dest;
3502 struct btrfs_space_info *info;
3503 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3504 BTRFS_BLOCK_GROUP_SYSTEM,
3505 BTRFS_BLOCK_GROUP_METADATA,
3506 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3507 int num_types = 4;
3508 int alloc_size;
3509 int ret = 0;
3510 u64 slot_count = 0;
3511 int i, c;
3512
3513 if (copy_from_user(&space_args,
3514 (struct btrfs_ioctl_space_args __user *)arg,
3515 sizeof(space_args)))
3516 return -EFAULT;
3517
3518 for (i = 0; i < num_types; i++) {
3519 struct btrfs_space_info *tmp;
3520
3521 info = NULL;
3522 rcu_read_lock();
3523 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3524 list) {
3525 if (tmp->flags == types[i]) {
3526 info = tmp;
3527 break;
3528 }
3529 }
3530 rcu_read_unlock();
3531
3532 if (!info)
3533 continue;
3534
3535 down_read(&info->groups_sem);
3536 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3537 if (!list_empty(&info->block_groups[c]))
3538 slot_count++;
3539 }
3540 up_read(&info->groups_sem);
3541 }
3542
3543 /*
3544 * Global block reserve, exported as a space_info
3545 */
3546 slot_count++;
3547
3548 /* space_slots == 0 means they are asking for a count */
3549 if (space_args.space_slots == 0) {
3550 space_args.total_spaces = slot_count;
3551 goto out;
3552 }
3553
3554 slot_count = min_t(u64, space_args.space_slots, slot_count);
3555
3556 alloc_size = sizeof(*dest) * slot_count;
3557
3558 /* we generally have at most 6 or so space infos, one for each raid
3559 * level. So, a whole page should be more than enough for everyone
3560 */
3561 if (alloc_size > PAGE_CACHE_SIZE)
3562 return -ENOMEM;
3563
3564 space_args.total_spaces = 0;
3565 dest = kmalloc(alloc_size, GFP_NOFS);
3566 if (!dest)
3567 return -ENOMEM;
3568 dest_orig = dest;
3569
3570 /* now we have a buffer to copy into */
3571 for (i = 0; i < num_types; i++) {
3572 struct btrfs_space_info *tmp;
3573
3574 if (!slot_count)
3575 break;
3576
3577 info = NULL;
3578 rcu_read_lock();
3579 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3580 list) {
3581 if (tmp->flags == types[i]) {
3582 info = tmp;
3583 break;
3584 }
3585 }
3586 rcu_read_unlock();
3587
3588 if (!info)
3589 continue;
3590 down_read(&info->groups_sem);
3591 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3592 if (!list_empty(&info->block_groups[c])) {
3593 btrfs_get_block_group_info(
3594 &info->block_groups[c], &space);
3595 memcpy(dest, &space, sizeof(space));
3596 dest++;
3597 space_args.total_spaces++;
3598 slot_count--;
3599 }
3600 if (!slot_count)
3601 break;
3602 }
3603 up_read(&info->groups_sem);
3604 }
3605
3606 /*
3607 * Add global block reserve
3608 */
3609 if (slot_count) {
3610 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
3611
3612 spin_lock(&block_rsv->lock);
3613 space.total_bytes = block_rsv->size;
3614 space.used_bytes = block_rsv->size - block_rsv->reserved;
3615 spin_unlock(&block_rsv->lock);
3616 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3617 memcpy(dest, &space, sizeof(space));
3618 space_args.total_spaces++;
3619 }
3620
3621 user_dest = (struct btrfs_ioctl_space_info __user *)
3622 (arg + sizeof(struct btrfs_ioctl_space_args));
3623
3624 if (copy_to_user(user_dest, dest_orig, alloc_size))
3625 ret = -EFAULT;
3626
3627 kfree(dest_orig);
3628 out:
3629 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3630 ret = -EFAULT;
3631
3632 return ret;
3633 }
3634
3635 /*
3636 * there are many ways the trans_start and trans_end ioctls can lead
3637 * to deadlocks. They should only be used by applications that
3638 * basically own the machine, and have a very in depth understanding
3639 * of all the possible deadlocks and enospc problems.
3640 */
3641 long btrfs_ioctl_trans_end(struct file *file)
3642 {
3643 struct inode *inode = file_inode(file);
3644 struct btrfs_root *root = BTRFS_I(inode)->root;
3645 struct btrfs_trans_handle *trans;
3646
3647 trans = file->private_data;
3648 if (!trans)
3649 return -EINVAL;
3650 file->private_data = NULL;
3651
3652 btrfs_end_transaction(trans, root);
3653
3654 atomic_dec(&root->fs_info->open_ioctl_trans);
3655
3656 mnt_drop_write_file(file);
3657 return 0;
3658 }
3659
3660 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3661 void __user *argp)
3662 {
3663 struct btrfs_trans_handle *trans;
3664 u64 transid;
3665 int ret;
3666
3667 trans = btrfs_attach_transaction_barrier(root);
3668 if (IS_ERR(trans)) {
3669 if (PTR_ERR(trans) != -ENOENT)
3670 return PTR_ERR(trans);
3671
3672 /* No running transaction, don't bother */
3673 transid = root->fs_info->last_trans_committed;
3674 goto out;
3675 }
3676 transid = trans->transid;
3677 ret = btrfs_commit_transaction_async(trans, root, 0);
3678 if (ret) {
3679 btrfs_end_transaction(trans, root);
3680 return ret;
3681 }
3682 out:
3683 if (argp)
3684 if (copy_to_user(argp, &transid, sizeof(transid)))
3685 return -EFAULT;
3686 return 0;
3687 }
3688
3689 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3690 void __user *argp)
3691 {
3692 u64 transid;
3693
3694 if (argp) {
3695 if (copy_from_user(&transid, argp, sizeof(transid)))
3696 return -EFAULT;
3697 } else {
3698 transid = 0; /* current trans */
3699 }
3700 return btrfs_wait_for_commit(root, transid);
3701 }
3702
3703 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3704 {
3705 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3706 struct btrfs_ioctl_scrub_args *sa;
3707 int ret;
3708
3709 if (!capable(CAP_SYS_ADMIN))
3710 return -EPERM;
3711
3712 sa = memdup_user(arg, sizeof(*sa));
3713 if (IS_ERR(sa))
3714 return PTR_ERR(sa);
3715
3716 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3717 ret = mnt_want_write_file(file);
3718 if (ret)
3719 goto out;
3720 }
3721
3722 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3723 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3724 0);
3725
3726 if (copy_to_user(arg, sa, sizeof(*sa)))
3727 ret = -EFAULT;
3728
3729 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3730 mnt_drop_write_file(file);
3731 out:
3732 kfree(sa);
3733 return ret;
3734 }
3735
3736 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3737 {
3738 if (!capable(CAP_SYS_ADMIN))
3739 return -EPERM;
3740
3741 return btrfs_scrub_cancel(root->fs_info);
3742 }
3743
3744 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3745 void __user *arg)
3746 {
3747 struct btrfs_ioctl_scrub_args *sa;
3748 int ret;
3749
3750 if (!capable(CAP_SYS_ADMIN))
3751 return -EPERM;
3752
3753 sa = memdup_user(arg, sizeof(*sa));
3754 if (IS_ERR(sa))
3755 return PTR_ERR(sa);
3756
3757 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3758
3759 if (copy_to_user(arg, sa, sizeof(*sa)))
3760 ret = -EFAULT;
3761
3762 kfree(sa);
3763 return ret;
3764 }
3765
3766 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3767 void __user *arg)
3768 {
3769 struct btrfs_ioctl_get_dev_stats *sa;
3770 int ret;
3771
3772 sa = memdup_user(arg, sizeof(*sa));
3773 if (IS_ERR(sa))
3774 return PTR_ERR(sa);
3775
3776 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3777 kfree(sa);
3778 return -EPERM;
3779 }
3780
3781 ret = btrfs_get_dev_stats(root, sa);
3782
3783 if (copy_to_user(arg, sa, sizeof(*sa)))
3784 ret = -EFAULT;
3785
3786 kfree(sa);
3787 return ret;
3788 }
3789
3790 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3791 {
3792 struct btrfs_ioctl_dev_replace_args *p;
3793 int ret;
3794
3795 if (!capable(CAP_SYS_ADMIN))
3796 return -EPERM;
3797
3798 p = memdup_user(arg, sizeof(*p));
3799 if (IS_ERR(p))
3800 return PTR_ERR(p);
3801
3802 switch (p->cmd) {
3803 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3804 if (root->fs_info->sb->s_flags & MS_RDONLY) {
3805 ret = -EROFS;
3806 goto out;
3807 }
3808 if (atomic_xchg(
3809 &root->fs_info->mutually_exclusive_operation_running,
3810 1)) {
3811 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3812 } else {
3813 ret = btrfs_dev_replace_start(root, p);
3814 atomic_set(
3815 &root->fs_info->mutually_exclusive_operation_running,
3816 0);
3817 }
3818 break;
3819 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3820 btrfs_dev_replace_status(root->fs_info, p);
3821 ret = 0;
3822 break;
3823 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3824 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3825 break;
3826 default:
3827 ret = -EINVAL;
3828 break;
3829 }
3830
3831 if (copy_to_user(arg, p, sizeof(*p)))
3832 ret = -EFAULT;
3833 out:
3834 kfree(p);
3835 return ret;
3836 }
3837
3838 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3839 {
3840 int ret = 0;
3841 int i;
3842 u64 rel_ptr;
3843 int size;
3844 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3845 struct inode_fs_paths *ipath = NULL;
3846 struct btrfs_path *path;
3847
3848 if (!capable(CAP_DAC_READ_SEARCH))
3849 return -EPERM;
3850
3851 path = btrfs_alloc_path();
3852 if (!path) {
3853 ret = -ENOMEM;
3854 goto out;
3855 }
3856
3857 ipa = memdup_user(arg, sizeof(*ipa));
3858 if (IS_ERR(ipa)) {
3859 ret = PTR_ERR(ipa);
3860 ipa = NULL;
3861 goto out;
3862 }
3863
3864 size = min_t(u32, ipa->size, 4096);
3865 ipath = init_ipath(size, root, path);
3866 if (IS_ERR(ipath)) {
3867 ret = PTR_ERR(ipath);
3868 ipath = NULL;
3869 goto out;
3870 }
3871
3872 ret = paths_from_inode(ipa->inum, ipath);
3873 if (ret < 0)
3874 goto out;
3875
3876 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3877 rel_ptr = ipath->fspath->val[i] -
3878 (u64)(unsigned long)ipath->fspath->val;
3879 ipath->fspath->val[i] = rel_ptr;
3880 }
3881
3882 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3883 (void *)(unsigned long)ipath->fspath, size);
3884 if (ret) {
3885 ret = -EFAULT;
3886 goto out;
3887 }
3888
3889 out:
3890 btrfs_free_path(path);
3891 free_ipath(ipath);
3892 kfree(ipa);
3893
3894 return ret;
3895 }
3896
3897 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3898 {
3899 struct btrfs_data_container *inodes = ctx;
3900 const size_t c = 3 * sizeof(u64);
3901
3902 if (inodes->bytes_left >= c) {
3903 inodes->bytes_left -= c;
3904 inodes->val[inodes->elem_cnt] = inum;
3905 inodes->val[inodes->elem_cnt + 1] = offset;
3906 inodes->val[inodes->elem_cnt + 2] = root;
3907 inodes->elem_cnt += 3;
3908 } else {
3909 inodes->bytes_missing += c - inodes->bytes_left;
3910 inodes->bytes_left = 0;
3911 inodes->elem_missed += 3;
3912 }
3913
3914 return 0;
3915 }
3916
3917 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3918 void __user *arg)
3919 {
3920 int ret = 0;
3921 int size;
3922 struct btrfs_ioctl_logical_ino_args *loi;
3923 struct btrfs_data_container *inodes = NULL;
3924 struct btrfs_path *path = NULL;
3925
3926 if (!capable(CAP_SYS_ADMIN))
3927 return -EPERM;
3928
3929 loi = memdup_user(arg, sizeof(*loi));
3930 if (IS_ERR(loi)) {
3931 ret = PTR_ERR(loi);
3932 loi = NULL;
3933 goto out;
3934 }
3935
3936 path = btrfs_alloc_path();
3937 if (!path) {
3938 ret = -ENOMEM;
3939 goto out;
3940 }
3941
3942 size = min_t(u32, loi->size, 64 * 1024);
3943 inodes = init_data_container(size);
3944 if (IS_ERR(inodes)) {
3945 ret = PTR_ERR(inodes);
3946 inodes = NULL;
3947 goto out;
3948 }
3949
3950 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3951 build_ino_list, inodes);
3952 if (ret == -EINVAL)
3953 ret = -ENOENT;
3954 if (ret < 0)
3955 goto out;
3956
3957 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3958 (void *)(unsigned long)inodes, size);
3959 if (ret)
3960 ret = -EFAULT;
3961
3962 out:
3963 btrfs_free_path(path);
3964 vfree(inodes);
3965 kfree(loi);
3966
3967 return ret;
3968 }
3969
3970 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3971 struct btrfs_ioctl_balance_args *bargs)
3972 {
3973 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3974
3975 bargs->flags = bctl->flags;
3976
3977 if (atomic_read(&fs_info->balance_running))
3978 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3979 if (atomic_read(&fs_info->balance_pause_req))
3980 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3981 if (atomic_read(&fs_info->balance_cancel_req))
3982 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3983
3984 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3985 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3986 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3987
3988 if (lock) {
3989 spin_lock(&fs_info->balance_lock);
3990 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3991 spin_unlock(&fs_info->balance_lock);
3992 } else {
3993 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3994 }
3995 }
3996
3997 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3998 {
3999 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4000 struct btrfs_fs_info *fs_info = root->fs_info;
4001 struct btrfs_ioctl_balance_args *bargs;
4002 struct btrfs_balance_control *bctl;
4003 bool need_unlock; /* for mut. excl. ops lock */
4004 int ret;
4005
4006 if (!capable(CAP_SYS_ADMIN))
4007 return -EPERM;
4008
4009 ret = mnt_want_write_file(file);
4010 if (ret)
4011 return ret;
4012
4013 again:
4014 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4015 mutex_lock(&fs_info->volume_mutex);
4016 mutex_lock(&fs_info->balance_mutex);
4017 need_unlock = true;
4018 goto locked;
4019 }
4020
4021 /*
4022 * mut. excl. ops lock is locked. Three possibilites:
4023 * (1) some other op is running
4024 * (2) balance is running
4025 * (3) balance is paused -- special case (think resume)
4026 */
4027 mutex_lock(&fs_info->balance_mutex);
4028 if (fs_info->balance_ctl) {
4029 /* this is either (2) or (3) */
4030 if (!atomic_read(&fs_info->balance_running)) {
4031 mutex_unlock(&fs_info->balance_mutex);
4032 if (!mutex_trylock(&fs_info->volume_mutex))
4033 goto again;
4034 mutex_lock(&fs_info->balance_mutex);
4035
4036 if (fs_info->balance_ctl &&
4037 !atomic_read(&fs_info->balance_running)) {
4038 /* this is (3) */
4039 need_unlock = false;
4040 goto locked;
4041 }
4042
4043 mutex_unlock(&fs_info->balance_mutex);
4044 mutex_unlock(&fs_info->volume_mutex);
4045 goto again;
4046 } else {
4047 /* this is (2) */
4048 mutex_unlock(&fs_info->balance_mutex);
4049 ret = -EINPROGRESS;
4050 goto out;
4051 }
4052 } else {
4053 /* this is (1) */
4054 mutex_unlock(&fs_info->balance_mutex);
4055 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4056 goto out;
4057 }
4058
4059 locked:
4060 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4061
4062 if (arg) {
4063 bargs = memdup_user(arg, sizeof(*bargs));
4064 if (IS_ERR(bargs)) {
4065 ret = PTR_ERR(bargs);
4066 goto out_unlock;
4067 }
4068
4069 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4070 if (!fs_info->balance_ctl) {
4071 ret = -ENOTCONN;
4072 goto out_bargs;
4073 }
4074
4075 bctl = fs_info->balance_ctl;
4076 spin_lock(&fs_info->balance_lock);
4077 bctl->flags |= BTRFS_BALANCE_RESUME;
4078 spin_unlock(&fs_info->balance_lock);
4079
4080 goto do_balance;
4081 }
4082 } else {
4083 bargs = NULL;
4084 }
4085
4086 if (fs_info->balance_ctl) {
4087 ret = -EINPROGRESS;
4088 goto out_bargs;
4089 }
4090
4091 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4092 if (!bctl) {
4093 ret = -ENOMEM;
4094 goto out_bargs;
4095 }
4096
4097 bctl->fs_info = fs_info;
4098 if (arg) {
4099 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4100 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4101 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4102
4103 bctl->flags = bargs->flags;
4104 } else {
4105 /* balance everything - no filters */
4106 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4107 }
4108
4109 do_balance:
4110 /*
4111 * Ownership of bctl and mutually_exclusive_operation_running
4112 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4113 * or, if restriper was paused all the way until unmount, in
4114 * free_fs_info. mutually_exclusive_operation_running is
4115 * cleared in __cancel_balance.
4116 */
4117 need_unlock = false;
4118
4119 ret = btrfs_balance(bctl, bargs);
4120
4121 if (arg) {
4122 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4123 ret = -EFAULT;
4124 }
4125
4126 out_bargs:
4127 kfree(bargs);
4128 out_unlock:
4129 mutex_unlock(&fs_info->balance_mutex);
4130 mutex_unlock(&fs_info->volume_mutex);
4131 if (need_unlock)
4132 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4133 out:
4134 mnt_drop_write_file(file);
4135 return ret;
4136 }
4137
4138 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4139 {
4140 if (!capable(CAP_SYS_ADMIN))
4141 return -EPERM;
4142
4143 switch (cmd) {
4144 case BTRFS_BALANCE_CTL_PAUSE:
4145 return btrfs_pause_balance(root->fs_info);
4146 case BTRFS_BALANCE_CTL_CANCEL:
4147 return btrfs_cancel_balance(root->fs_info);
4148 }
4149
4150 return -EINVAL;
4151 }
4152
4153 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4154 void __user *arg)
4155 {
4156 struct btrfs_fs_info *fs_info = root->fs_info;
4157 struct btrfs_ioctl_balance_args *bargs;
4158 int ret = 0;
4159
4160 if (!capable(CAP_SYS_ADMIN))
4161 return -EPERM;
4162
4163 mutex_lock(&fs_info->balance_mutex);
4164 if (!fs_info->balance_ctl) {
4165 ret = -ENOTCONN;
4166 goto out;
4167 }
4168
4169 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4170 if (!bargs) {
4171 ret = -ENOMEM;
4172 goto out;
4173 }
4174
4175 update_ioctl_balance_args(fs_info, 1, bargs);
4176
4177 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4178 ret = -EFAULT;
4179
4180 kfree(bargs);
4181 out:
4182 mutex_unlock(&fs_info->balance_mutex);
4183 return ret;
4184 }
4185
4186 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4187 {
4188 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4189 struct btrfs_ioctl_quota_ctl_args *sa;
4190 struct btrfs_trans_handle *trans = NULL;
4191 int ret;
4192 int err;
4193
4194 if (!capable(CAP_SYS_ADMIN))
4195 return -EPERM;
4196
4197 ret = mnt_want_write_file(file);
4198 if (ret)
4199 return ret;
4200
4201 sa = memdup_user(arg, sizeof(*sa));
4202 if (IS_ERR(sa)) {
4203 ret = PTR_ERR(sa);
4204 goto drop_write;
4205 }
4206
4207 down_write(&root->fs_info->subvol_sem);
4208 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4209 if (IS_ERR(trans)) {
4210 ret = PTR_ERR(trans);
4211 goto out;
4212 }
4213
4214 switch (sa->cmd) {
4215 case BTRFS_QUOTA_CTL_ENABLE:
4216 ret = btrfs_quota_enable(trans, root->fs_info);
4217 break;
4218 case BTRFS_QUOTA_CTL_DISABLE:
4219 ret = btrfs_quota_disable(trans, root->fs_info);
4220 break;
4221 default:
4222 ret = -EINVAL;
4223 break;
4224 }
4225
4226 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4227 if (err && !ret)
4228 ret = err;
4229 out:
4230 kfree(sa);
4231 up_write(&root->fs_info->subvol_sem);
4232 drop_write:
4233 mnt_drop_write_file(file);
4234 return ret;
4235 }
4236
4237 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4238 {
4239 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4240 struct btrfs_ioctl_qgroup_assign_args *sa;
4241 struct btrfs_trans_handle *trans;
4242 int ret;
4243 int err;
4244
4245 if (!capable(CAP_SYS_ADMIN))
4246 return -EPERM;
4247
4248 ret = mnt_want_write_file(file);
4249 if (ret)
4250 return ret;
4251
4252 sa = memdup_user(arg, sizeof(*sa));
4253 if (IS_ERR(sa)) {
4254 ret = PTR_ERR(sa);
4255 goto drop_write;
4256 }
4257
4258 trans = btrfs_join_transaction(root);
4259 if (IS_ERR(trans)) {
4260 ret = PTR_ERR(trans);
4261 goto out;
4262 }
4263
4264 /* FIXME: check if the IDs really exist */
4265 if (sa->assign) {
4266 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4267 sa->src, sa->dst);
4268 } else {
4269 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4270 sa->src, sa->dst);
4271 }
4272
4273 err = btrfs_end_transaction(trans, root);
4274 if (err && !ret)
4275 ret = err;
4276
4277 out:
4278 kfree(sa);
4279 drop_write:
4280 mnt_drop_write_file(file);
4281 return ret;
4282 }
4283
4284 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4285 {
4286 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4287 struct btrfs_ioctl_qgroup_create_args *sa;
4288 struct btrfs_trans_handle *trans;
4289 int ret;
4290 int err;
4291
4292 if (!capable(CAP_SYS_ADMIN))
4293 return -EPERM;
4294
4295 ret = mnt_want_write_file(file);
4296 if (ret)
4297 return ret;
4298
4299 sa = memdup_user(arg, sizeof(*sa));
4300 if (IS_ERR(sa)) {
4301 ret = PTR_ERR(sa);
4302 goto drop_write;
4303 }
4304
4305 if (!sa->qgroupid) {
4306 ret = -EINVAL;
4307 goto out;
4308 }
4309
4310 trans = btrfs_join_transaction(root);
4311 if (IS_ERR(trans)) {
4312 ret = PTR_ERR(trans);
4313 goto out;
4314 }
4315
4316 /* FIXME: check if the IDs really exist */
4317 if (sa->create) {
4318 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4319 NULL);
4320 } else {
4321 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4322 }
4323
4324 err = btrfs_end_transaction(trans, root);
4325 if (err && !ret)
4326 ret = err;
4327
4328 out:
4329 kfree(sa);
4330 drop_write:
4331 mnt_drop_write_file(file);
4332 return ret;
4333 }
4334
4335 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4336 {
4337 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4338 struct btrfs_ioctl_qgroup_limit_args *sa;
4339 struct btrfs_trans_handle *trans;
4340 int ret;
4341 int err;
4342 u64 qgroupid;
4343
4344 if (!capable(CAP_SYS_ADMIN))
4345 return -EPERM;
4346
4347 ret = mnt_want_write_file(file);
4348 if (ret)
4349 return ret;
4350
4351 sa = memdup_user(arg, sizeof(*sa));
4352 if (IS_ERR(sa)) {
4353 ret = PTR_ERR(sa);
4354 goto drop_write;
4355 }
4356
4357 trans = btrfs_join_transaction(root);
4358 if (IS_ERR(trans)) {
4359 ret = PTR_ERR(trans);
4360 goto out;
4361 }
4362
4363 qgroupid = sa->qgroupid;
4364 if (!qgroupid) {
4365 /* take the current subvol as qgroup */
4366 qgroupid = root->root_key.objectid;
4367 }
4368
4369 /* FIXME: check if the IDs really exist */
4370 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4371
4372 err = btrfs_end_transaction(trans, root);
4373 if (err && !ret)
4374 ret = err;
4375
4376 out:
4377 kfree(sa);
4378 drop_write:
4379 mnt_drop_write_file(file);
4380 return ret;
4381 }
4382
4383 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4384 {
4385 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4386 struct btrfs_ioctl_quota_rescan_args *qsa;
4387 int ret;
4388
4389 if (!capable(CAP_SYS_ADMIN))
4390 return -EPERM;
4391
4392 ret = mnt_want_write_file(file);
4393 if (ret)
4394 return ret;
4395
4396 qsa = memdup_user(arg, sizeof(*qsa));
4397 if (IS_ERR(qsa)) {
4398 ret = PTR_ERR(qsa);
4399 goto drop_write;
4400 }
4401
4402 if (qsa->flags) {
4403 ret = -EINVAL;
4404 goto out;
4405 }
4406
4407 ret = btrfs_qgroup_rescan(root->fs_info);
4408
4409 out:
4410 kfree(qsa);
4411 drop_write:
4412 mnt_drop_write_file(file);
4413 return ret;
4414 }
4415
4416 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4417 {
4418 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4419 struct btrfs_ioctl_quota_rescan_args *qsa;
4420 int ret = 0;
4421
4422 if (!capable(CAP_SYS_ADMIN))
4423 return -EPERM;
4424
4425 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4426 if (!qsa)
4427 return -ENOMEM;
4428
4429 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4430 qsa->flags = 1;
4431 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4432 }
4433
4434 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4435 ret = -EFAULT;
4436
4437 kfree(qsa);
4438 return ret;
4439 }
4440
4441 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4442 {
4443 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4444
4445 if (!capable(CAP_SYS_ADMIN))
4446 return -EPERM;
4447
4448 return btrfs_qgroup_wait_for_completion(root->fs_info);
4449 }
4450
4451 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4452 struct btrfs_ioctl_received_subvol_args *sa)
4453 {
4454 struct inode *inode = file_inode(file);
4455 struct btrfs_root *root = BTRFS_I(inode)->root;
4456 struct btrfs_root_item *root_item = &root->root_item;
4457 struct btrfs_trans_handle *trans;
4458 struct timespec ct = CURRENT_TIME;
4459 int ret = 0;
4460 int received_uuid_changed;
4461
4462 if (!inode_owner_or_capable(inode))
4463 return -EPERM;
4464
4465 ret = mnt_want_write_file(file);
4466 if (ret < 0)
4467 return ret;
4468
4469 down_write(&root->fs_info->subvol_sem);
4470
4471 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4472 ret = -EINVAL;
4473 goto out;
4474 }
4475
4476 if (btrfs_root_readonly(root)) {
4477 ret = -EROFS;
4478 goto out;
4479 }
4480
4481 /*
4482 * 1 - root item
4483 * 2 - uuid items (received uuid + subvol uuid)
4484 */
4485 trans = btrfs_start_transaction(root, 3);
4486 if (IS_ERR(trans)) {
4487 ret = PTR_ERR(trans);
4488 trans = NULL;
4489 goto out;
4490 }
4491
4492 sa->rtransid = trans->transid;
4493 sa->rtime.sec = ct.tv_sec;
4494 sa->rtime.nsec = ct.tv_nsec;
4495
4496 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4497 BTRFS_UUID_SIZE);
4498 if (received_uuid_changed &&
4499 !btrfs_is_empty_uuid(root_item->received_uuid))
4500 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4501 root_item->received_uuid,
4502 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4503 root->root_key.objectid);
4504 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4505 btrfs_set_root_stransid(root_item, sa->stransid);
4506 btrfs_set_root_rtransid(root_item, sa->rtransid);
4507 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4508 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4509 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4510 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4511
4512 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4513 &root->root_key, &root->root_item);
4514 if (ret < 0) {
4515 btrfs_end_transaction(trans, root);
4516 goto out;
4517 }
4518 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4519 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4520 sa->uuid,
4521 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4522 root->root_key.objectid);
4523 if (ret < 0 && ret != -EEXIST) {
4524 btrfs_abort_transaction(trans, root, ret);
4525 goto out;
4526 }
4527 }
4528 ret = btrfs_commit_transaction(trans, root);
4529 if (ret < 0) {
4530 btrfs_abort_transaction(trans, root, ret);
4531 goto out;
4532 }
4533
4534 out:
4535 up_write(&root->fs_info->subvol_sem);
4536 mnt_drop_write_file(file);
4537 return ret;
4538 }
4539
4540 #ifdef CONFIG_64BIT
4541 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4542 void __user *arg)
4543 {
4544 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4545 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4546 int ret = 0;
4547
4548 args32 = memdup_user(arg, sizeof(*args32));
4549 if (IS_ERR(args32)) {
4550 ret = PTR_ERR(args32);
4551 args32 = NULL;
4552 goto out;
4553 }
4554
4555 args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4556 if (!args64) {
4557 ret = -ENOMEM;
4558 goto out;
4559 }
4560
4561 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4562 args64->stransid = args32->stransid;
4563 args64->rtransid = args32->rtransid;
4564 args64->stime.sec = args32->stime.sec;
4565 args64->stime.nsec = args32->stime.nsec;
4566 args64->rtime.sec = args32->rtime.sec;
4567 args64->rtime.nsec = args32->rtime.nsec;
4568 args64->flags = args32->flags;
4569
4570 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4571 if (ret)
4572 goto out;
4573
4574 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4575 args32->stransid = args64->stransid;
4576 args32->rtransid = args64->rtransid;
4577 args32->stime.sec = args64->stime.sec;
4578 args32->stime.nsec = args64->stime.nsec;
4579 args32->rtime.sec = args64->rtime.sec;
4580 args32->rtime.nsec = args64->rtime.nsec;
4581 args32->flags = args64->flags;
4582
4583 ret = copy_to_user(arg, args32, sizeof(*args32));
4584 if (ret)
4585 ret = -EFAULT;
4586
4587 out:
4588 kfree(args32);
4589 kfree(args64);
4590 return ret;
4591 }
4592 #endif
4593
4594 static long btrfs_ioctl_set_received_subvol(struct file *file,
4595 void __user *arg)
4596 {
4597 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4598 int ret = 0;
4599
4600 sa = memdup_user(arg, sizeof(*sa));
4601 if (IS_ERR(sa)) {
4602 ret = PTR_ERR(sa);
4603 sa = NULL;
4604 goto out;
4605 }
4606
4607 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4608
4609 if (ret)
4610 goto out;
4611
4612 ret = copy_to_user(arg, sa, sizeof(*sa));
4613 if (ret)
4614 ret = -EFAULT;
4615
4616 out:
4617 kfree(sa);
4618 return ret;
4619 }
4620
4621 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4622 {
4623 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4624 size_t len;
4625 int ret;
4626 char label[BTRFS_LABEL_SIZE];
4627
4628 spin_lock(&root->fs_info->super_lock);
4629 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4630 spin_unlock(&root->fs_info->super_lock);
4631
4632 len = strnlen(label, BTRFS_LABEL_SIZE);
4633
4634 if (len == BTRFS_LABEL_SIZE) {
4635 btrfs_warn(root->fs_info,
4636 "label is too long, return the first %zu bytes", --len);
4637 }
4638
4639 ret = copy_to_user(arg, label, len);
4640
4641 return ret ? -EFAULT : 0;
4642 }
4643
4644 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4645 {
4646 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4647 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4648 struct btrfs_trans_handle *trans;
4649 char label[BTRFS_LABEL_SIZE];
4650 int ret;
4651
4652 if (!capable(CAP_SYS_ADMIN))
4653 return -EPERM;
4654
4655 if (copy_from_user(label, arg, sizeof(label)))
4656 return -EFAULT;
4657
4658 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4659 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
4660 BTRFS_LABEL_SIZE - 1);
4661 return -EINVAL;
4662 }
4663
4664 ret = mnt_want_write_file(file);
4665 if (ret)
4666 return ret;
4667
4668 trans = btrfs_start_transaction(root, 0);
4669 if (IS_ERR(trans)) {
4670 ret = PTR_ERR(trans);
4671 goto out_unlock;
4672 }
4673
4674 spin_lock(&root->fs_info->super_lock);
4675 strcpy(super_block->label, label);
4676 spin_unlock(&root->fs_info->super_lock);
4677 ret = btrfs_commit_transaction(trans, root);
4678
4679 out_unlock:
4680 mnt_drop_write_file(file);
4681 return ret;
4682 }
4683
4684 #define INIT_FEATURE_FLAGS(suffix) \
4685 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4686 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4687 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4688
4689 static int btrfs_ioctl_get_supported_features(struct file *file,
4690 void __user *arg)
4691 {
4692 static struct btrfs_ioctl_feature_flags features[3] = {
4693 INIT_FEATURE_FLAGS(SUPP),
4694 INIT_FEATURE_FLAGS(SAFE_SET),
4695 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4696 };
4697
4698 if (copy_to_user(arg, &features, sizeof(features)))
4699 return -EFAULT;
4700
4701 return 0;
4702 }
4703
4704 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
4705 {
4706 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4707 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4708 struct btrfs_ioctl_feature_flags features;
4709
4710 features.compat_flags = btrfs_super_compat_flags(super_block);
4711 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4712 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4713
4714 if (copy_to_user(arg, &features, sizeof(features)))
4715 return -EFAULT;
4716
4717 return 0;
4718 }
4719
4720 static int check_feature_bits(struct btrfs_root *root,
4721 enum btrfs_feature_set set,
4722 u64 change_mask, u64 flags, u64 supported_flags,
4723 u64 safe_set, u64 safe_clear)
4724 {
4725 const char *type = btrfs_feature_set_names[set];
4726 char *names;
4727 u64 disallowed, unsupported;
4728 u64 set_mask = flags & change_mask;
4729 u64 clear_mask = ~flags & change_mask;
4730
4731 unsupported = set_mask & ~supported_flags;
4732 if (unsupported) {
4733 names = btrfs_printable_features(set, unsupported);
4734 if (names) {
4735 btrfs_warn(root->fs_info,
4736 "this kernel does not support the %s feature bit%s",
4737 names, strchr(names, ',') ? "s" : "");
4738 kfree(names);
4739 } else
4740 btrfs_warn(root->fs_info,
4741 "this kernel does not support %s bits 0x%llx",
4742 type, unsupported);
4743 return -EOPNOTSUPP;
4744 }
4745
4746 disallowed = set_mask & ~safe_set;
4747 if (disallowed) {
4748 names = btrfs_printable_features(set, disallowed);
4749 if (names) {
4750 btrfs_warn(root->fs_info,
4751 "can't set the %s feature bit%s while mounted",
4752 names, strchr(names, ',') ? "s" : "");
4753 kfree(names);
4754 } else
4755 btrfs_warn(root->fs_info,
4756 "can't set %s bits 0x%llx while mounted",
4757 type, disallowed);
4758 return -EPERM;
4759 }
4760
4761 disallowed = clear_mask & ~safe_clear;
4762 if (disallowed) {
4763 names = btrfs_printable_features(set, disallowed);
4764 if (names) {
4765 btrfs_warn(root->fs_info,
4766 "can't clear the %s feature bit%s while mounted",
4767 names, strchr(names, ',') ? "s" : "");
4768 kfree(names);
4769 } else
4770 btrfs_warn(root->fs_info,
4771 "can't clear %s bits 0x%llx while mounted",
4772 type, disallowed);
4773 return -EPERM;
4774 }
4775
4776 return 0;
4777 }
4778
4779 #define check_feature(root, change_mask, flags, mask_base) \
4780 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
4781 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4782 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4783 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4784
4785 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4786 {
4787 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4788 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4789 struct btrfs_ioctl_feature_flags flags[2];
4790 struct btrfs_trans_handle *trans;
4791 u64 newflags;
4792 int ret;
4793
4794 if (!capable(CAP_SYS_ADMIN))
4795 return -EPERM;
4796
4797 if (copy_from_user(flags, arg, sizeof(flags)))
4798 return -EFAULT;
4799
4800 /* Nothing to do */
4801 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4802 !flags[0].incompat_flags)
4803 return 0;
4804
4805 ret = check_feature(root, flags[0].compat_flags,
4806 flags[1].compat_flags, COMPAT);
4807 if (ret)
4808 return ret;
4809
4810 ret = check_feature(root, flags[0].compat_ro_flags,
4811 flags[1].compat_ro_flags, COMPAT_RO);
4812 if (ret)
4813 return ret;
4814
4815 ret = check_feature(root, flags[0].incompat_flags,
4816 flags[1].incompat_flags, INCOMPAT);
4817 if (ret)
4818 return ret;
4819
4820 trans = btrfs_start_transaction(root, 0);
4821 if (IS_ERR(trans))
4822 return PTR_ERR(trans);
4823
4824 spin_lock(&root->fs_info->super_lock);
4825 newflags = btrfs_super_compat_flags(super_block);
4826 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4827 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4828 btrfs_set_super_compat_flags(super_block, newflags);
4829
4830 newflags = btrfs_super_compat_ro_flags(super_block);
4831 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4832 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4833 btrfs_set_super_compat_ro_flags(super_block, newflags);
4834
4835 newflags = btrfs_super_incompat_flags(super_block);
4836 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4837 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4838 btrfs_set_super_incompat_flags(super_block, newflags);
4839 spin_unlock(&root->fs_info->super_lock);
4840
4841 return btrfs_commit_transaction(trans, root);
4842 }
4843
4844 long btrfs_ioctl(struct file *file, unsigned int
4845 cmd, unsigned long arg)
4846 {
4847 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4848 void __user *argp = (void __user *)arg;
4849
4850 switch (cmd) {
4851 case FS_IOC_GETFLAGS:
4852 return btrfs_ioctl_getflags(file, argp);
4853 case FS_IOC_SETFLAGS:
4854 return btrfs_ioctl_setflags(file, argp);
4855 case FS_IOC_GETVERSION:
4856 return btrfs_ioctl_getversion(file, argp);
4857 case FITRIM:
4858 return btrfs_ioctl_fitrim(file, argp);
4859 case BTRFS_IOC_SNAP_CREATE:
4860 return btrfs_ioctl_snap_create(file, argp, 0);
4861 case BTRFS_IOC_SNAP_CREATE_V2:
4862 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4863 case BTRFS_IOC_SUBVOL_CREATE:
4864 return btrfs_ioctl_snap_create(file, argp, 1);
4865 case BTRFS_IOC_SUBVOL_CREATE_V2:
4866 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4867 case BTRFS_IOC_SNAP_DESTROY:
4868 return btrfs_ioctl_snap_destroy(file, argp);
4869 case BTRFS_IOC_SUBVOL_GETFLAGS:
4870 return btrfs_ioctl_subvol_getflags(file, argp);
4871 case BTRFS_IOC_SUBVOL_SETFLAGS:
4872 return btrfs_ioctl_subvol_setflags(file, argp);
4873 case BTRFS_IOC_DEFAULT_SUBVOL:
4874 return btrfs_ioctl_default_subvol(file, argp);
4875 case BTRFS_IOC_DEFRAG:
4876 return btrfs_ioctl_defrag(file, NULL);
4877 case BTRFS_IOC_DEFRAG_RANGE:
4878 return btrfs_ioctl_defrag(file, argp);
4879 case BTRFS_IOC_RESIZE:
4880 return btrfs_ioctl_resize(file, argp);
4881 case BTRFS_IOC_ADD_DEV:
4882 return btrfs_ioctl_add_dev(root, argp);
4883 case BTRFS_IOC_RM_DEV:
4884 return btrfs_ioctl_rm_dev(file, argp);
4885 case BTRFS_IOC_FS_INFO:
4886 return btrfs_ioctl_fs_info(root, argp);
4887 case BTRFS_IOC_DEV_INFO:
4888 return btrfs_ioctl_dev_info(root, argp);
4889 case BTRFS_IOC_BALANCE:
4890 return btrfs_ioctl_balance(file, NULL);
4891 case BTRFS_IOC_CLONE:
4892 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4893 case BTRFS_IOC_CLONE_RANGE:
4894 return btrfs_ioctl_clone_range(file, argp);
4895 case BTRFS_IOC_TRANS_START:
4896 return btrfs_ioctl_trans_start(file);
4897 case BTRFS_IOC_TRANS_END:
4898 return btrfs_ioctl_trans_end(file);
4899 case BTRFS_IOC_TREE_SEARCH:
4900 return btrfs_ioctl_tree_search(file, argp);
4901 case BTRFS_IOC_INO_LOOKUP:
4902 return btrfs_ioctl_ino_lookup(file, argp);
4903 case BTRFS_IOC_INO_PATHS:
4904 return btrfs_ioctl_ino_to_path(root, argp);
4905 case BTRFS_IOC_LOGICAL_INO:
4906 return btrfs_ioctl_logical_to_ino(root, argp);
4907 case BTRFS_IOC_SPACE_INFO:
4908 return btrfs_ioctl_space_info(root, argp);
4909 case BTRFS_IOC_SYNC: {
4910 int ret;
4911
4912 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
4913 if (ret)
4914 return ret;
4915 ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
4916 return ret;
4917 }
4918 case BTRFS_IOC_START_SYNC:
4919 return btrfs_ioctl_start_sync(root, argp);
4920 case BTRFS_IOC_WAIT_SYNC:
4921 return btrfs_ioctl_wait_sync(root, argp);
4922 case BTRFS_IOC_SCRUB:
4923 return btrfs_ioctl_scrub(file, argp);
4924 case BTRFS_IOC_SCRUB_CANCEL:
4925 return btrfs_ioctl_scrub_cancel(root, argp);
4926 case BTRFS_IOC_SCRUB_PROGRESS:
4927 return btrfs_ioctl_scrub_progress(root, argp);
4928 case BTRFS_IOC_BALANCE_V2:
4929 return btrfs_ioctl_balance(file, argp);
4930 case BTRFS_IOC_BALANCE_CTL:
4931 return btrfs_ioctl_balance_ctl(root, arg);
4932 case BTRFS_IOC_BALANCE_PROGRESS:
4933 return btrfs_ioctl_balance_progress(root, argp);
4934 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4935 return btrfs_ioctl_set_received_subvol(file, argp);
4936 #ifdef CONFIG_64BIT
4937 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4938 return btrfs_ioctl_set_received_subvol_32(file, argp);
4939 #endif
4940 case BTRFS_IOC_SEND:
4941 return btrfs_ioctl_send(file, argp);
4942 case BTRFS_IOC_GET_DEV_STATS:
4943 return btrfs_ioctl_get_dev_stats(root, argp);
4944 case BTRFS_IOC_QUOTA_CTL:
4945 return btrfs_ioctl_quota_ctl(file, argp);
4946 case BTRFS_IOC_QGROUP_ASSIGN:
4947 return btrfs_ioctl_qgroup_assign(file, argp);
4948 case BTRFS_IOC_QGROUP_CREATE:
4949 return btrfs_ioctl_qgroup_create(file, argp);
4950 case BTRFS_IOC_QGROUP_LIMIT:
4951 return btrfs_ioctl_qgroup_limit(file, argp);
4952 case BTRFS_IOC_QUOTA_RESCAN:
4953 return btrfs_ioctl_quota_rescan(file, argp);
4954 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4955 return btrfs_ioctl_quota_rescan_status(file, argp);
4956 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4957 return btrfs_ioctl_quota_rescan_wait(file, argp);
4958 case BTRFS_IOC_DEV_REPLACE:
4959 return btrfs_ioctl_dev_replace(root, argp);
4960 case BTRFS_IOC_GET_FSLABEL:
4961 return btrfs_ioctl_get_fslabel(file, argp);
4962 case BTRFS_IOC_SET_FSLABEL:
4963 return btrfs_ioctl_set_fslabel(file, argp);
4964 case BTRFS_IOC_FILE_EXTENT_SAME:
4965 return btrfs_ioctl_file_extent_same(file, argp);
4966 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4967 return btrfs_ioctl_get_supported_features(file, argp);
4968 case BTRFS_IOC_GET_FEATURES:
4969 return btrfs_ioctl_get_features(file, argp);
4970 case BTRFS_IOC_SET_FEATURES:
4971 return btrfs_ioctl_set_features(file, argp);
4972 }
4973
4974 return -ENOTTY;
4975 }
This page took 0.158485 seconds and 6 git commands to generate.