Merge tag 'media/v3.19-4' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / fs / btrfs / raid56.c
1 /*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT 1
49
50 /*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54 #define RBIO_CACHE_BIT 2
55
56 /*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59 #define RBIO_CACHE_READY_BIT 3
60
61 /*
62 * bbio and raid_map is managed by the caller, so we shouldn't free
63 * them here. And besides that, all rbios with this flag should not
64 * be cached, because we need raid_map to check the rbios' stripe
65 * is the same or not, but it is very likely that the caller has
66 * free raid_map, so don't cache those rbios.
67 */
68 #define RBIO_HOLD_BBIO_MAP_BIT 4
69
70 #define RBIO_CACHE_SIZE 1024
71
72 enum btrfs_rbio_ops {
73 BTRFS_RBIO_WRITE = 0,
74 BTRFS_RBIO_READ_REBUILD = 1,
75 BTRFS_RBIO_PARITY_SCRUB = 2,
76 };
77
78 struct btrfs_raid_bio {
79 struct btrfs_fs_info *fs_info;
80 struct btrfs_bio *bbio;
81
82 /*
83 * logical block numbers for the start of each stripe
84 * The last one or two are p/q. These are sorted,
85 * so raid_map[0] is the start of our full stripe
86 */
87 u64 *raid_map;
88
89 /* while we're doing rmw on a stripe
90 * we put it into a hash table so we can
91 * lock the stripe and merge more rbios
92 * into it.
93 */
94 struct list_head hash_list;
95
96 /*
97 * LRU list for the stripe cache
98 */
99 struct list_head stripe_cache;
100
101 /*
102 * for scheduling work in the helper threads
103 */
104 struct btrfs_work work;
105
106 /*
107 * bio list and bio_list_lock are used
108 * to add more bios into the stripe
109 * in hopes of avoiding the full rmw
110 */
111 struct bio_list bio_list;
112 spinlock_t bio_list_lock;
113
114 /* also protected by the bio_list_lock, the
115 * plug list is used by the plugging code
116 * to collect partial bios while plugged. The
117 * stripe locking code also uses it to hand off
118 * the stripe lock to the next pending IO
119 */
120 struct list_head plug_list;
121
122 /*
123 * flags that tell us if it is safe to
124 * merge with this bio
125 */
126 unsigned long flags;
127
128 /* size of each individual stripe on disk */
129 int stripe_len;
130
131 /* number of data stripes (no p/q) */
132 int nr_data;
133
134 int real_stripes;
135
136 int stripe_npages;
137 /*
138 * set if we're doing a parity rebuild
139 * for a read from higher up, which is handled
140 * differently from a parity rebuild as part of
141 * rmw
142 */
143 enum btrfs_rbio_ops operation;
144
145 /* first bad stripe */
146 int faila;
147
148 /* second bad stripe (for raid6 use) */
149 int failb;
150
151 int scrubp;
152 /*
153 * number of pages needed to represent the full
154 * stripe
155 */
156 int nr_pages;
157
158 /*
159 * size of all the bios in the bio_list. This
160 * helps us decide if the rbio maps to a full
161 * stripe or not
162 */
163 int bio_list_bytes;
164
165 int generic_bio_cnt;
166
167 atomic_t refs;
168
169 atomic_t stripes_pending;
170
171 atomic_t error;
172 /*
173 * these are two arrays of pointers. We allocate the
174 * rbio big enough to hold them both and setup their
175 * locations when the rbio is allocated
176 */
177
178 /* pointers to pages that we allocated for
179 * reading/writing stripes directly from the disk (including P/Q)
180 */
181 struct page **stripe_pages;
182
183 /*
184 * pointers to the pages in the bio_list. Stored
185 * here for faster lookup
186 */
187 struct page **bio_pages;
188
189 /*
190 * bitmap to record which horizontal stripe has data
191 */
192 unsigned long *dbitmap;
193 };
194
195 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
196 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
197 static void rmw_work(struct btrfs_work *work);
198 static void read_rebuild_work(struct btrfs_work *work);
199 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
200 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
201 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
202 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
203 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
204 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
205 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
206
207 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
208 int need_check);
209 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
210
211 /*
212 * the stripe hash table is used for locking, and to collect
213 * bios in hopes of making a full stripe
214 */
215 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
216 {
217 struct btrfs_stripe_hash_table *table;
218 struct btrfs_stripe_hash_table *x;
219 struct btrfs_stripe_hash *cur;
220 struct btrfs_stripe_hash *h;
221 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
222 int i;
223 int table_size;
224
225 if (info->stripe_hash_table)
226 return 0;
227
228 /*
229 * The table is large, starting with order 4 and can go as high as
230 * order 7 in case lock debugging is turned on.
231 *
232 * Try harder to allocate and fallback to vmalloc to lower the chance
233 * of a failing mount.
234 */
235 table_size = sizeof(*table) + sizeof(*h) * num_entries;
236 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
237 if (!table) {
238 table = vzalloc(table_size);
239 if (!table)
240 return -ENOMEM;
241 }
242
243 spin_lock_init(&table->cache_lock);
244 INIT_LIST_HEAD(&table->stripe_cache);
245
246 h = table->table;
247
248 for (i = 0; i < num_entries; i++) {
249 cur = h + i;
250 INIT_LIST_HEAD(&cur->hash_list);
251 spin_lock_init(&cur->lock);
252 init_waitqueue_head(&cur->wait);
253 }
254
255 x = cmpxchg(&info->stripe_hash_table, NULL, table);
256 if (x) {
257 if (is_vmalloc_addr(x))
258 vfree(x);
259 else
260 kfree(x);
261 }
262 return 0;
263 }
264
265 /*
266 * caching an rbio means to copy anything from the
267 * bio_pages array into the stripe_pages array. We
268 * use the page uptodate bit in the stripe cache array
269 * to indicate if it has valid data
270 *
271 * once the caching is done, we set the cache ready
272 * bit.
273 */
274 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
275 {
276 int i;
277 char *s;
278 char *d;
279 int ret;
280
281 ret = alloc_rbio_pages(rbio);
282 if (ret)
283 return;
284
285 for (i = 0; i < rbio->nr_pages; i++) {
286 if (!rbio->bio_pages[i])
287 continue;
288
289 s = kmap(rbio->bio_pages[i]);
290 d = kmap(rbio->stripe_pages[i]);
291
292 memcpy(d, s, PAGE_CACHE_SIZE);
293
294 kunmap(rbio->bio_pages[i]);
295 kunmap(rbio->stripe_pages[i]);
296 SetPageUptodate(rbio->stripe_pages[i]);
297 }
298 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
299 }
300
301 /*
302 * we hash on the first logical address of the stripe
303 */
304 static int rbio_bucket(struct btrfs_raid_bio *rbio)
305 {
306 u64 num = rbio->raid_map[0];
307
308 /*
309 * we shift down quite a bit. We're using byte
310 * addressing, and most of the lower bits are zeros.
311 * This tends to upset hash_64, and it consistently
312 * returns just one or two different values.
313 *
314 * shifting off the lower bits fixes things.
315 */
316 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
317 }
318
319 /*
320 * stealing an rbio means taking all the uptodate pages from the stripe
321 * array in the source rbio and putting them into the destination rbio
322 */
323 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
324 {
325 int i;
326 struct page *s;
327 struct page *d;
328
329 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
330 return;
331
332 for (i = 0; i < dest->nr_pages; i++) {
333 s = src->stripe_pages[i];
334 if (!s || !PageUptodate(s)) {
335 continue;
336 }
337
338 d = dest->stripe_pages[i];
339 if (d)
340 __free_page(d);
341
342 dest->stripe_pages[i] = s;
343 src->stripe_pages[i] = NULL;
344 }
345 }
346
347 /*
348 * merging means we take the bio_list from the victim and
349 * splice it into the destination. The victim should
350 * be discarded afterwards.
351 *
352 * must be called with dest->rbio_list_lock held
353 */
354 static void merge_rbio(struct btrfs_raid_bio *dest,
355 struct btrfs_raid_bio *victim)
356 {
357 bio_list_merge(&dest->bio_list, &victim->bio_list);
358 dest->bio_list_bytes += victim->bio_list_bytes;
359 dest->generic_bio_cnt += victim->generic_bio_cnt;
360 bio_list_init(&victim->bio_list);
361 }
362
363 /*
364 * used to prune items that are in the cache. The caller
365 * must hold the hash table lock.
366 */
367 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
368 {
369 int bucket = rbio_bucket(rbio);
370 struct btrfs_stripe_hash_table *table;
371 struct btrfs_stripe_hash *h;
372 int freeit = 0;
373
374 /*
375 * check the bit again under the hash table lock.
376 */
377 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
378 return;
379
380 table = rbio->fs_info->stripe_hash_table;
381 h = table->table + bucket;
382
383 /* hold the lock for the bucket because we may be
384 * removing it from the hash table
385 */
386 spin_lock(&h->lock);
387
388 /*
389 * hold the lock for the bio list because we need
390 * to make sure the bio list is empty
391 */
392 spin_lock(&rbio->bio_list_lock);
393
394 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
395 list_del_init(&rbio->stripe_cache);
396 table->cache_size -= 1;
397 freeit = 1;
398
399 /* if the bio list isn't empty, this rbio is
400 * still involved in an IO. We take it out
401 * of the cache list, and drop the ref that
402 * was held for the list.
403 *
404 * If the bio_list was empty, we also remove
405 * the rbio from the hash_table, and drop
406 * the corresponding ref
407 */
408 if (bio_list_empty(&rbio->bio_list)) {
409 if (!list_empty(&rbio->hash_list)) {
410 list_del_init(&rbio->hash_list);
411 atomic_dec(&rbio->refs);
412 BUG_ON(!list_empty(&rbio->plug_list));
413 }
414 }
415 }
416
417 spin_unlock(&rbio->bio_list_lock);
418 spin_unlock(&h->lock);
419
420 if (freeit)
421 __free_raid_bio(rbio);
422 }
423
424 /*
425 * prune a given rbio from the cache
426 */
427 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
428 {
429 struct btrfs_stripe_hash_table *table;
430 unsigned long flags;
431
432 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
433 return;
434
435 table = rbio->fs_info->stripe_hash_table;
436
437 spin_lock_irqsave(&table->cache_lock, flags);
438 __remove_rbio_from_cache(rbio);
439 spin_unlock_irqrestore(&table->cache_lock, flags);
440 }
441
442 /*
443 * remove everything in the cache
444 */
445 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
446 {
447 struct btrfs_stripe_hash_table *table;
448 unsigned long flags;
449 struct btrfs_raid_bio *rbio;
450
451 table = info->stripe_hash_table;
452
453 spin_lock_irqsave(&table->cache_lock, flags);
454 while (!list_empty(&table->stripe_cache)) {
455 rbio = list_entry(table->stripe_cache.next,
456 struct btrfs_raid_bio,
457 stripe_cache);
458 __remove_rbio_from_cache(rbio);
459 }
460 spin_unlock_irqrestore(&table->cache_lock, flags);
461 }
462
463 /*
464 * remove all cached entries and free the hash table
465 * used by unmount
466 */
467 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
468 {
469 if (!info->stripe_hash_table)
470 return;
471 btrfs_clear_rbio_cache(info);
472 if (is_vmalloc_addr(info->stripe_hash_table))
473 vfree(info->stripe_hash_table);
474 else
475 kfree(info->stripe_hash_table);
476 info->stripe_hash_table = NULL;
477 }
478
479 /*
480 * insert an rbio into the stripe cache. It
481 * must have already been prepared by calling
482 * cache_rbio_pages
483 *
484 * If this rbio was already cached, it gets
485 * moved to the front of the lru.
486 *
487 * If the size of the rbio cache is too big, we
488 * prune an item.
489 */
490 static void cache_rbio(struct btrfs_raid_bio *rbio)
491 {
492 struct btrfs_stripe_hash_table *table;
493 unsigned long flags;
494
495 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
496 return;
497
498 table = rbio->fs_info->stripe_hash_table;
499
500 spin_lock_irqsave(&table->cache_lock, flags);
501 spin_lock(&rbio->bio_list_lock);
502
503 /* bump our ref if we were not in the list before */
504 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
505 atomic_inc(&rbio->refs);
506
507 if (!list_empty(&rbio->stripe_cache)){
508 list_move(&rbio->stripe_cache, &table->stripe_cache);
509 } else {
510 list_add(&rbio->stripe_cache, &table->stripe_cache);
511 table->cache_size += 1;
512 }
513
514 spin_unlock(&rbio->bio_list_lock);
515
516 if (table->cache_size > RBIO_CACHE_SIZE) {
517 struct btrfs_raid_bio *found;
518
519 found = list_entry(table->stripe_cache.prev,
520 struct btrfs_raid_bio,
521 stripe_cache);
522
523 if (found != rbio)
524 __remove_rbio_from_cache(found);
525 }
526
527 spin_unlock_irqrestore(&table->cache_lock, flags);
528 return;
529 }
530
531 /*
532 * helper function to run the xor_blocks api. It is only
533 * able to do MAX_XOR_BLOCKS at a time, so we need to
534 * loop through.
535 */
536 static void run_xor(void **pages, int src_cnt, ssize_t len)
537 {
538 int src_off = 0;
539 int xor_src_cnt = 0;
540 void *dest = pages[src_cnt];
541
542 while(src_cnt > 0) {
543 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
544 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
545
546 src_cnt -= xor_src_cnt;
547 src_off += xor_src_cnt;
548 }
549 }
550
551 /*
552 * returns true if the bio list inside this rbio
553 * covers an entire stripe (no rmw required).
554 * Must be called with the bio list lock held, or
555 * at a time when you know it is impossible to add
556 * new bios into the list
557 */
558 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
559 {
560 unsigned long size = rbio->bio_list_bytes;
561 int ret = 1;
562
563 if (size != rbio->nr_data * rbio->stripe_len)
564 ret = 0;
565
566 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
567 return ret;
568 }
569
570 static int rbio_is_full(struct btrfs_raid_bio *rbio)
571 {
572 unsigned long flags;
573 int ret;
574
575 spin_lock_irqsave(&rbio->bio_list_lock, flags);
576 ret = __rbio_is_full(rbio);
577 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
578 return ret;
579 }
580
581 /*
582 * returns 1 if it is safe to merge two rbios together.
583 * The merging is safe if the two rbios correspond to
584 * the same stripe and if they are both going in the same
585 * direction (read vs write), and if neither one is
586 * locked for final IO
587 *
588 * The caller is responsible for locking such that
589 * rmw_locked is safe to test
590 */
591 static int rbio_can_merge(struct btrfs_raid_bio *last,
592 struct btrfs_raid_bio *cur)
593 {
594 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
595 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
596 return 0;
597
598 /*
599 * we can't merge with cached rbios, since the
600 * idea is that when we merge the destination
601 * rbio is going to run our IO for us. We can
602 * steal from cached rbio's though, other functions
603 * handle that.
604 */
605 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
606 test_bit(RBIO_CACHE_BIT, &cur->flags))
607 return 0;
608
609 if (last->raid_map[0] !=
610 cur->raid_map[0])
611 return 0;
612
613 /* we can't merge with different operations */
614 if (last->operation != cur->operation)
615 return 0;
616 /*
617 * We've need read the full stripe from the drive.
618 * check and repair the parity and write the new results.
619 *
620 * We're not allowed to add any new bios to the
621 * bio list here, anyone else that wants to
622 * change this stripe needs to do their own rmw.
623 */
624 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
625 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
626 return 0;
627
628 return 1;
629 }
630
631 /*
632 * helper to index into the pstripe
633 */
634 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
635 {
636 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
637 return rbio->stripe_pages[index];
638 }
639
640 /*
641 * helper to index into the qstripe, returns null
642 * if there is no qstripe
643 */
644 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
645 {
646 if (rbio->nr_data + 1 == rbio->real_stripes)
647 return NULL;
648
649 index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
650 PAGE_CACHE_SHIFT;
651 return rbio->stripe_pages[index];
652 }
653
654 /*
655 * The first stripe in the table for a logical address
656 * has the lock. rbios are added in one of three ways:
657 *
658 * 1) Nobody has the stripe locked yet. The rbio is given
659 * the lock and 0 is returned. The caller must start the IO
660 * themselves.
661 *
662 * 2) Someone has the stripe locked, but we're able to merge
663 * with the lock owner. The rbio is freed and the IO will
664 * start automatically along with the existing rbio. 1 is returned.
665 *
666 * 3) Someone has the stripe locked, but we're not able to merge.
667 * The rbio is added to the lock owner's plug list, or merged into
668 * an rbio already on the plug list. When the lock owner unlocks,
669 * the next rbio on the list is run and the IO is started automatically.
670 * 1 is returned
671 *
672 * If we return 0, the caller still owns the rbio and must continue with
673 * IO submission. If we return 1, the caller must assume the rbio has
674 * already been freed.
675 */
676 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
677 {
678 int bucket = rbio_bucket(rbio);
679 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
680 struct btrfs_raid_bio *cur;
681 struct btrfs_raid_bio *pending;
682 unsigned long flags;
683 DEFINE_WAIT(wait);
684 struct btrfs_raid_bio *freeit = NULL;
685 struct btrfs_raid_bio *cache_drop = NULL;
686 int ret = 0;
687 int walk = 0;
688
689 spin_lock_irqsave(&h->lock, flags);
690 list_for_each_entry(cur, &h->hash_list, hash_list) {
691 walk++;
692 if (cur->raid_map[0] == rbio->raid_map[0]) {
693 spin_lock(&cur->bio_list_lock);
694
695 /* can we steal this cached rbio's pages? */
696 if (bio_list_empty(&cur->bio_list) &&
697 list_empty(&cur->plug_list) &&
698 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
699 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
700 list_del_init(&cur->hash_list);
701 atomic_dec(&cur->refs);
702
703 steal_rbio(cur, rbio);
704 cache_drop = cur;
705 spin_unlock(&cur->bio_list_lock);
706
707 goto lockit;
708 }
709
710 /* can we merge into the lock owner? */
711 if (rbio_can_merge(cur, rbio)) {
712 merge_rbio(cur, rbio);
713 spin_unlock(&cur->bio_list_lock);
714 freeit = rbio;
715 ret = 1;
716 goto out;
717 }
718
719
720 /*
721 * we couldn't merge with the running
722 * rbio, see if we can merge with the
723 * pending ones. We don't have to
724 * check for rmw_locked because there
725 * is no way they are inside finish_rmw
726 * right now
727 */
728 list_for_each_entry(pending, &cur->plug_list,
729 plug_list) {
730 if (rbio_can_merge(pending, rbio)) {
731 merge_rbio(pending, rbio);
732 spin_unlock(&cur->bio_list_lock);
733 freeit = rbio;
734 ret = 1;
735 goto out;
736 }
737 }
738
739 /* no merging, put us on the tail of the plug list,
740 * our rbio will be started with the currently
741 * running rbio unlocks
742 */
743 list_add_tail(&rbio->plug_list, &cur->plug_list);
744 spin_unlock(&cur->bio_list_lock);
745 ret = 1;
746 goto out;
747 }
748 }
749 lockit:
750 atomic_inc(&rbio->refs);
751 list_add(&rbio->hash_list, &h->hash_list);
752 out:
753 spin_unlock_irqrestore(&h->lock, flags);
754 if (cache_drop)
755 remove_rbio_from_cache(cache_drop);
756 if (freeit)
757 __free_raid_bio(freeit);
758 return ret;
759 }
760
761 /*
762 * called as rmw or parity rebuild is completed. If the plug list has more
763 * rbios waiting for this stripe, the next one on the list will be started
764 */
765 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
766 {
767 int bucket;
768 struct btrfs_stripe_hash *h;
769 unsigned long flags;
770 int keep_cache = 0;
771
772 bucket = rbio_bucket(rbio);
773 h = rbio->fs_info->stripe_hash_table->table + bucket;
774
775 if (list_empty(&rbio->plug_list))
776 cache_rbio(rbio);
777
778 spin_lock_irqsave(&h->lock, flags);
779 spin_lock(&rbio->bio_list_lock);
780
781 if (!list_empty(&rbio->hash_list)) {
782 /*
783 * if we're still cached and there is no other IO
784 * to perform, just leave this rbio here for others
785 * to steal from later
786 */
787 if (list_empty(&rbio->plug_list) &&
788 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
789 keep_cache = 1;
790 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
791 BUG_ON(!bio_list_empty(&rbio->bio_list));
792 goto done;
793 }
794
795 list_del_init(&rbio->hash_list);
796 atomic_dec(&rbio->refs);
797
798 /*
799 * we use the plug list to hold all the rbios
800 * waiting for the chance to lock this stripe.
801 * hand the lock over to one of them.
802 */
803 if (!list_empty(&rbio->plug_list)) {
804 struct btrfs_raid_bio *next;
805 struct list_head *head = rbio->plug_list.next;
806
807 next = list_entry(head, struct btrfs_raid_bio,
808 plug_list);
809
810 list_del_init(&rbio->plug_list);
811
812 list_add(&next->hash_list, &h->hash_list);
813 atomic_inc(&next->refs);
814 spin_unlock(&rbio->bio_list_lock);
815 spin_unlock_irqrestore(&h->lock, flags);
816
817 if (next->operation == BTRFS_RBIO_READ_REBUILD)
818 async_read_rebuild(next);
819 else if (next->operation == BTRFS_RBIO_WRITE) {
820 steal_rbio(rbio, next);
821 async_rmw_stripe(next);
822 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
823 steal_rbio(rbio, next);
824 async_scrub_parity(next);
825 }
826
827 goto done_nolock;
828 } else if (waitqueue_active(&h->wait)) {
829 spin_unlock(&rbio->bio_list_lock);
830 spin_unlock_irqrestore(&h->lock, flags);
831 wake_up(&h->wait);
832 goto done_nolock;
833 }
834 }
835 done:
836 spin_unlock(&rbio->bio_list_lock);
837 spin_unlock_irqrestore(&h->lock, flags);
838
839 done_nolock:
840 if (!keep_cache)
841 remove_rbio_from_cache(rbio);
842 }
843
844 static inline void
845 __free_bbio_and_raid_map(struct btrfs_bio *bbio, u64 *raid_map, int need)
846 {
847 if (need) {
848 kfree(raid_map);
849 kfree(bbio);
850 }
851 }
852
853 static inline void free_bbio_and_raid_map(struct btrfs_raid_bio *rbio)
854 {
855 __free_bbio_and_raid_map(rbio->bbio, rbio->raid_map,
856 !test_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags));
857 }
858
859 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
860 {
861 int i;
862
863 WARN_ON(atomic_read(&rbio->refs) < 0);
864 if (!atomic_dec_and_test(&rbio->refs))
865 return;
866
867 WARN_ON(!list_empty(&rbio->stripe_cache));
868 WARN_ON(!list_empty(&rbio->hash_list));
869 WARN_ON(!bio_list_empty(&rbio->bio_list));
870
871 for (i = 0; i < rbio->nr_pages; i++) {
872 if (rbio->stripe_pages[i]) {
873 __free_page(rbio->stripe_pages[i]);
874 rbio->stripe_pages[i] = NULL;
875 }
876 }
877
878 free_bbio_and_raid_map(rbio);
879
880 kfree(rbio);
881 }
882
883 static void free_raid_bio(struct btrfs_raid_bio *rbio)
884 {
885 unlock_stripe(rbio);
886 __free_raid_bio(rbio);
887 }
888
889 /*
890 * this frees the rbio and runs through all the bios in the
891 * bio_list and calls end_io on them
892 */
893 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
894 {
895 struct bio *cur = bio_list_get(&rbio->bio_list);
896 struct bio *next;
897
898 if (rbio->generic_bio_cnt)
899 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
900
901 free_raid_bio(rbio);
902
903 while (cur) {
904 next = cur->bi_next;
905 cur->bi_next = NULL;
906 if (uptodate)
907 set_bit(BIO_UPTODATE, &cur->bi_flags);
908 bio_endio(cur, err);
909 cur = next;
910 }
911 }
912
913 /*
914 * end io function used by finish_rmw. When we finally
915 * get here, we've written a full stripe
916 */
917 static void raid_write_end_io(struct bio *bio, int err)
918 {
919 struct btrfs_raid_bio *rbio = bio->bi_private;
920
921 if (err)
922 fail_bio_stripe(rbio, bio);
923
924 bio_put(bio);
925
926 if (!atomic_dec_and_test(&rbio->stripes_pending))
927 return;
928
929 err = 0;
930
931 /* OK, we have read all the stripes we need to. */
932 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
933 err = -EIO;
934
935 rbio_orig_end_io(rbio, err, 0);
936 return;
937 }
938
939 /*
940 * the read/modify/write code wants to use the original bio for
941 * any pages it included, and then use the rbio for everything
942 * else. This function decides if a given index (stripe number)
943 * and page number in that stripe fall inside the original bio
944 * or the rbio.
945 *
946 * if you set bio_list_only, you'll get a NULL back for any ranges
947 * that are outside the bio_list
948 *
949 * This doesn't take any refs on anything, you get a bare page pointer
950 * and the caller must bump refs as required.
951 *
952 * You must call index_rbio_pages once before you can trust
953 * the answers from this function.
954 */
955 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
956 int index, int pagenr, int bio_list_only)
957 {
958 int chunk_page;
959 struct page *p = NULL;
960
961 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
962
963 spin_lock_irq(&rbio->bio_list_lock);
964 p = rbio->bio_pages[chunk_page];
965 spin_unlock_irq(&rbio->bio_list_lock);
966
967 if (p || bio_list_only)
968 return p;
969
970 return rbio->stripe_pages[chunk_page];
971 }
972
973 /*
974 * number of pages we need for the entire stripe across all the
975 * drives
976 */
977 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
978 {
979 unsigned long nr = stripe_len * nr_stripes;
980 return DIV_ROUND_UP(nr, PAGE_CACHE_SIZE);
981 }
982
983 /*
984 * allocation and initial setup for the btrfs_raid_bio. Not
985 * this does not allocate any pages for rbio->pages.
986 */
987 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
988 struct btrfs_bio *bbio, u64 *raid_map,
989 u64 stripe_len)
990 {
991 struct btrfs_raid_bio *rbio;
992 int nr_data = 0;
993 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
994 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
995 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
996 void *p;
997
998 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
999 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG / 8),
1000 GFP_NOFS);
1001 if (!rbio)
1002 return ERR_PTR(-ENOMEM);
1003
1004 bio_list_init(&rbio->bio_list);
1005 INIT_LIST_HEAD(&rbio->plug_list);
1006 spin_lock_init(&rbio->bio_list_lock);
1007 INIT_LIST_HEAD(&rbio->stripe_cache);
1008 INIT_LIST_HEAD(&rbio->hash_list);
1009 rbio->bbio = bbio;
1010 rbio->raid_map = raid_map;
1011 rbio->fs_info = root->fs_info;
1012 rbio->stripe_len = stripe_len;
1013 rbio->nr_pages = num_pages;
1014 rbio->real_stripes = real_stripes;
1015 rbio->stripe_npages = stripe_npages;
1016 rbio->faila = -1;
1017 rbio->failb = -1;
1018 atomic_set(&rbio->refs, 1);
1019 atomic_set(&rbio->error, 0);
1020 atomic_set(&rbio->stripes_pending, 0);
1021
1022 /*
1023 * the stripe_pages and bio_pages array point to the extra
1024 * memory we allocated past the end of the rbio
1025 */
1026 p = rbio + 1;
1027 rbio->stripe_pages = p;
1028 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1029 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1030
1031 if (raid_map[real_stripes - 1] == RAID6_Q_STRIPE)
1032 nr_data = real_stripes - 2;
1033 else
1034 nr_data = real_stripes - 1;
1035
1036 rbio->nr_data = nr_data;
1037 return rbio;
1038 }
1039
1040 /* allocate pages for all the stripes in the bio, including parity */
1041 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1042 {
1043 int i;
1044 struct page *page;
1045
1046 for (i = 0; i < rbio->nr_pages; i++) {
1047 if (rbio->stripe_pages[i])
1048 continue;
1049 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1050 if (!page)
1051 return -ENOMEM;
1052 rbio->stripe_pages[i] = page;
1053 ClearPageUptodate(page);
1054 }
1055 return 0;
1056 }
1057
1058 /* allocate pages for just the p/q stripes */
1059 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1060 {
1061 int i;
1062 struct page *page;
1063
1064 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
1065
1066 for (; i < rbio->nr_pages; i++) {
1067 if (rbio->stripe_pages[i])
1068 continue;
1069 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1070 if (!page)
1071 return -ENOMEM;
1072 rbio->stripe_pages[i] = page;
1073 }
1074 return 0;
1075 }
1076
1077 /*
1078 * add a single page from a specific stripe into our list of bios for IO
1079 * this will try to merge into existing bios if possible, and returns
1080 * zero if all went well.
1081 */
1082 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1083 struct bio_list *bio_list,
1084 struct page *page,
1085 int stripe_nr,
1086 unsigned long page_index,
1087 unsigned long bio_max_len)
1088 {
1089 struct bio *last = bio_list->tail;
1090 u64 last_end = 0;
1091 int ret;
1092 struct bio *bio;
1093 struct btrfs_bio_stripe *stripe;
1094 u64 disk_start;
1095
1096 stripe = &rbio->bbio->stripes[stripe_nr];
1097 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1098
1099 /* if the device is missing, just fail this stripe */
1100 if (!stripe->dev->bdev)
1101 return fail_rbio_index(rbio, stripe_nr);
1102
1103 /* see if we can add this page onto our existing bio */
1104 if (last) {
1105 last_end = (u64)last->bi_iter.bi_sector << 9;
1106 last_end += last->bi_iter.bi_size;
1107
1108 /*
1109 * we can't merge these if they are from different
1110 * devices or if they are not contiguous
1111 */
1112 if (last_end == disk_start && stripe->dev->bdev &&
1113 test_bit(BIO_UPTODATE, &last->bi_flags) &&
1114 last->bi_bdev == stripe->dev->bdev) {
1115 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1116 if (ret == PAGE_CACHE_SIZE)
1117 return 0;
1118 }
1119 }
1120
1121 /* put a new bio on the list */
1122 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1123 if (!bio)
1124 return -ENOMEM;
1125
1126 bio->bi_iter.bi_size = 0;
1127 bio->bi_bdev = stripe->dev->bdev;
1128 bio->bi_iter.bi_sector = disk_start >> 9;
1129 set_bit(BIO_UPTODATE, &bio->bi_flags);
1130
1131 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1132 bio_list_add(bio_list, bio);
1133 return 0;
1134 }
1135
1136 /*
1137 * while we're doing the read/modify/write cycle, we could
1138 * have errors in reading pages off the disk. This checks
1139 * for errors and if we're not able to read the page it'll
1140 * trigger parity reconstruction. The rmw will be finished
1141 * after we've reconstructed the failed stripes
1142 */
1143 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1144 {
1145 if (rbio->faila >= 0 || rbio->failb >= 0) {
1146 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1147 __raid56_parity_recover(rbio);
1148 } else {
1149 finish_rmw(rbio);
1150 }
1151 }
1152
1153 /*
1154 * these are just the pages from the rbio array, not from anything
1155 * the FS sent down to us
1156 */
1157 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1158 {
1159 int index;
1160 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1161 index += page;
1162 return rbio->stripe_pages[index];
1163 }
1164
1165 /*
1166 * helper function to walk our bio list and populate the bio_pages array with
1167 * the result. This seems expensive, but it is faster than constantly
1168 * searching through the bio list as we setup the IO in finish_rmw or stripe
1169 * reconstruction.
1170 *
1171 * This must be called before you trust the answers from page_in_rbio
1172 */
1173 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1174 {
1175 struct bio *bio;
1176 u64 start;
1177 unsigned long stripe_offset;
1178 unsigned long page_index;
1179 struct page *p;
1180 int i;
1181
1182 spin_lock_irq(&rbio->bio_list_lock);
1183 bio_list_for_each(bio, &rbio->bio_list) {
1184 start = (u64)bio->bi_iter.bi_sector << 9;
1185 stripe_offset = start - rbio->raid_map[0];
1186 page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1187
1188 for (i = 0; i < bio->bi_vcnt; i++) {
1189 p = bio->bi_io_vec[i].bv_page;
1190 rbio->bio_pages[page_index + i] = p;
1191 }
1192 }
1193 spin_unlock_irq(&rbio->bio_list_lock);
1194 }
1195
1196 /*
1197 * this is called from one of two situations. We either
1198 * have a full stripe from the higher layers, or we've read all
1199 * the missing bits off disk.
1200 *
1201 * This will calculate the parity and then send down any
1202 * changed blocks.
1203 */
1204 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1205 {
1206 struct btrfs_bio *bbio = rbio->bbio;
1207 void *pointers[rbio->real_stripes];
1208 int stripe_len = rbio->stripe_len;
1209 int nr_data = rbio->nr_data;
1210 int stripe;
1211 int pagenr;
1212 int p_stripe = -1;
1213 int q_stripe = -1;
1214 struct bio_list bio_list;
1215 struct bio *bio;
1216 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1217 int ret;
1218
1219 bio_list_init(&bio_list);
1220
1221 if (rbio->real_stripes - rbio->nr_data == 1) {
1222 p_stripe = rbio->real_stripes - 1;
1223 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1224 p_stripe = rbio->real_stripes - 2;
1225 q_stripe = rbio->real_stripes - 1;
1226 } else {
1227 BUG();
1228 }
1229
1230 /* at this point we either have a full stripe,
1231 * or we've read the full stripe from the drive.
1232 * recalculate the parity and write the new results.
1233 *
1234 * We're not allowed to add any new bios to the
1235 * bio list here, anyone else that wants to
1236 * change this stripe needs to do their own rmw.
1237 */
1238 spin_lock_irq(&rbio->bio_list_lock);
1239 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1240 spin_unlock_irq(&rbio->bio_list_lock);
1241
1242 atomic_set(&rbio->error, 0);
1243
1244 /*
1245 * now that we've set rmw_locked, run through the
1246 * bio list one last time and map the page pointers
1247 *
1248 * We don't cache full rbios because we're assuming
1249 * the higher layers are unlikely to use this area of
1250 * the disk again soon. If they do use it again,
1251 * hopefully they will send another full bio.
1252 */
1253 index_rbio_pages(rbio);
1254 if (!rbio_is_full(rbio))
1255 cache_rbio_pages(rbio);
1256 else
1257 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1258
1259 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1260 struct page *p;
1261 /* first collect one page from each data stripe */
1262 for (stripe = 0; stripe < nr_data; stripe++) {
1263 p = page_in_rbio(rbio, stripe, pagenr, 0);
1264 pointers[stripe] = kmap(p);
1265 }
1266
1267 /* then add the parity stripe */
1268 p = rbio_pstripe_page(rbio, pagenr);
1269 SetPageUptodate(p);
1270 pointers[stripe++] = kmap(p);
1271
1272 if (q_stripe != -1) {
1273
1274 /*
1275 * raid6, add the qstripe and call the
1276 * library function to fill in our p/q
1277 */
1278 p = rbio_qstripe_page(rbio, pagenr);
1279 SetPageUptodate(p);
1280 pointers[stripe++] = kmap(p);
1281
1282 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1283 pointers);
1284 } else {
1285 /* raid5 */
1286 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1287 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1288 }
1289
1290
1291 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1292 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1293 }
1294
1295 /*
1296 * time to start writing. Make bios for everything from the
1297 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1298 * everything else.
1299 */
1300 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1301 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1302 struct page *page;
1303 if (stripe < rbio->nr_data) {
1304 page = page_in_rbio(rbio, stripe, pagenr, 1);
1305 if (!page)
1306 continue;
1307 } else {
1308 page = rbio_stripe_page(rbio, stripe, pagenr);
1309 }
1310
1311 ret = rbio_add_io_page(rbio, &bio_list,
1312 page, stripe, pagenr, rbio->stripe_len);
1313 if (ret)
1314 goto cleanup;
1315 }
1316 }
1317
1318 if (likely(!bbio->num_tgtdevs))
1319 goto write_data;
1320
1321 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1322 if (!bbio->tgtdev_map[stripe])
1323 continue;
1324
1325 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1326 struct page *page;
1327 if (stripe < rbio->nr_data) {
1328 page = page_in_rbio(rbio, stripe, pagenr, 1);
1329 if (!page)
1330 continue;
1331 } else {
1332 page = rbio_stripe_page(rbio, stripe, pagenr);
1333 }
1334
1335 ret = rbio_add_io_page(rbio, &bio_list, page,
1336 rbio->bbio->tgtdev_map[stripe],
1337 pagenr, rbio->stripe_len);
1338 if (ret)
1339 goto cleanup;
1340 }
1341 }
1342
1343 write_data:
1344 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1345 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1346
1347 while (1) {
1348 bio = bio_list_pop(&bio_list);
1349 if (!bio)
1350 break;
1351
1352 bio->bi_private = rbio;
1353 bio->bi_end_io = raid_write_end_io;
1354 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1355 submit_bio(WRITE, bio);
1356 }
1357 return;
1358
1359 cleanup:
1360 rbio_orig_end_io(rbio, -EIO, 0);
1361 }
1362
1363 /*
1364 * helper to find the stripe number for a given bio. Used to figure out which
1365 * stripe has failed. This expects the bio to correspond to a physical disk,
1366 * so it looks up based on physical sector numbers.
1367 */
1368 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1369 struct bio *bio)
1370 {
1371 u64 physical = bio->bi_iter.bi_sector;
1372 u64 stripe_start;
1373 int i;
1374 struct btrfs_bio_stripe *stripe;
1375
1376 physical <<= 9;
1377
1378 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1379 stripe = &rbio->bbio->stripes[i];
1380 stripe_start = stripe->physical;
1381 if (physical >= stripe_start &&
1382 physical < stripe_start + rbio->stripe_len &&
1383 bio->bi_bdev == stripe->dev->bdev) {
1384 return i;
1385 }
1386 }
1387 return -1;
1388 }
1389
1390 /*
1391 * helper to find the stripe number for a given
1392 * bio (before mapping). Used to figure out which stripe has
1393 * failed. This looks up based on logical block numbers.
1394 */
1395 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1396 struct bio *bio)
1397 {
1398 u64 logical = bio->bi_iter.bi_sector;
1399 u64 stripe_start;
1400 int i;
1401
1402 logical <<= 9;
1403
1404 for (i = 0; i < rbio->nr_data; i++) {
1405 stripe_start = rbio->raid_map[i];
1406 if (logical >= stripe_start &&
1407 logical < stripe_start + rbio->stripe_len) {
1408 return i;
1409 }
1410 }
1411 return -1;
1412 }
1413
1414 /*
1415 * returns -EIO if we had too many failures
1416 */
1417 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1418 {
1419 unsigned long flags;
1420 int ret = 0;
1421
1422 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1423
1424 /* we already know this stripe is bad, move on */
1425 if (rbio->faila == failed || rbio->failb == failed)
1426 goto out;
1427
1428 if (rbio->faila == -1) {
1429 /* first failure on this rbio */
1430 rbio->faila = failed;
1431 atomic_inc(&rbio->error);
1432 } else if (rbio->failb == -1) {
1433 /* second failure on this rbio */
1434 rbio->failb = failed;
1435 atomic_inc(&rbio->error);
1436 } else {
1437 ret = -EIO;
1438 }
1439 out:
1440 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1441
1442 return ret;
1443 }
1444
1445 /*
1446 * helper to fail a stripe based on a physical disk
1447 * bio.
1448 */
1449 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1450 struct bio *bio)
1451 {
1452 int failed = find_bio_stripe(rbio, bio);
1453
1454 if (failed < 0)
1455 return -EIO;
1456
1457 return fail_rbio_index(rbio, failed);
1458 }
1459
1460 /*
1461 * this sets each page in the bio uptodate. It should only be used on private
1462 * rbio pages, nothing that comes in from the higher layers
1463 */
1464 static void set_bio_pages_uptodate(struct bio *bio)
1465 {
1466 int i;
1467 struct page *p;
1468
1469 for (i = 0; i < bio->bi_vcnt; i++) {
1470 p = bio->bi_io_vec[i].bv_page;
1471 SetPageUptodate(p);
1472 }
1473 }
1474
1475 /*
1476 * end io for the read phase of the rmw cycle. All the bios here are physical
1477 * stripe bios we've read from the disk so we can recalculate the parity of the
1478 * stripe.
1479 *
1480 * This will usually kick off finish_rmw once all the bios are read in, but it
1481 * may trigger parity reconstruction if we had any errors along the way
1482 */
1483 static void raid_rmw_end_io(struct bio *bio, int err)
1484 {
1485 struct btrfs_raid_bio *rbio = bio->bi_private;
1486
1487 if (err)
1488 fail_bio_stripe(rbio, bio);
1489 else
1490 set_bio_pages_uptodate(bio);
1491
1492 bio_put(bio);
1493
1494 if (!atomic_dec_and_test(&rbio->stripes_pending))
1495 return;
1496
1497 err = 0;
1498 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1499 goto cleanup;
1500
1501 /*
1502 * this will normally call finish_rmw to start our write
1503 * but if there are any failed stripes we'll reconstruct
1504 * from parity first
1505 */
1506 validate_rbio_for_rmw(rbio);
1507 return;
1508
1509 cleanup:
1510
1511 rbio_orig_end_io(rbio, -EIO, 0);
1512 }
1513
1514 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1515 {
1516 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1517 rmw_work, NULL, NULL);
1518
1519 btrfs_queue_work(rbio->fs_info->rmw_workers,
1520 &rbio->work);
1521 }
1522
1523 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1524 {
1525 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1526 read_rebuild_work, NULL, NULL);
1527
1528 btrfs_queue_work(rbio->fs_info->rmw_workers,
1529 &rbio->work);
1530 }
1531
1532 /*
1533 * the stripe must be locked by the caller. It will
1534 * unlock after all the writes are done
1535 */
1536 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1537 {
1538 int bios_to_read = 0;
1539 struct bio_list bio_list;
1540 int ret;
1541 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1542 int pagenr;
1543 int stripe;
1544 struct bio *bio;
1545
1546 bio_list_init(&bio_list);
1547
1548 ret = alloc_rbio_pages(rbio);
1549 if (ret)
1550 goto cleanup;
1551
1552 index_rbio_pages(rbio);
1553
1554 atomic_set(&rbio->error, 0);
1555 /*
1556 * build a list of bios to read all the missing parts of this
1557 * stripe
1558 */
1559 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1560 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1561 struct page *page;
1562 /*
1563 * we want to find all the pages missing from
1564 * the rbio and read them from the disk. If
1565 * page_in_rbio finds a page in the bio list
1566 * we don't need to read it off the stripe.
1567 */
1568 page = page_in_rbio(rbio, stripe, pagenr, 1);
1569 if (page)
1570 continue;
1571
1572 page = rbio_stripe_page(rbio, stripe, pagenr);
1573 /*
1574 * the bio cache may have handed us an uptodate
1575 * page. If so, be happy and use it
1576 */
1577 if (PageUptodate(page))
1578 continue;
1579
1580 ret = rbio_add_io_page(rbio, &bio_list, page,
1581 stripe, pagenr, rbio->stripe_len);
1582 if (ret)
1583 goto cleanup;
1584 }
1585 }
1586
1587 bios_to_read = bio_list_size(&bio_list);
1588 if (!bios_to_read) {
1589 /*
1590 * this can happen if others have merged with
1591 * us, it means there is nothing left to read.
1592 * But if there are missing devices it may not be
1593 * safe to do the full stripe write yet.
1594 */
1595 goto finish;
1596 }
1597
1598 /*
1599 * the bbio may be freed once we submit the last bio. Make sure
1600 * not to touch it after that
1601 */
1602 atomic_set(&rbio->stripes_pending, bios_to_read);
1603 while (1) {
1604 bio = bio_list_pop(&bio_list);
1605 if (!bio)
1606 break;
1607
1608 bio->bi_private = rbio;
1609 bio->bi_end_io = raid_rmw_end_io;
1610
1611 btrfs_bio_wq_end_io(rbio->fs_info, bio,
1612 BTRFS_WQ_ENDIO_RAID56);
1613
1614 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1615 submit_bio(READ, bio);
1616 }
1617 /* the actual write will happen once the reads are done */
1618 return 0;
1619
1620 cleanup:
1621 rbio_orig_end_io(rbio, -EIO, 0);
1622 return -EIO;
1623
1624 finish:
1625 validate_rbio_for_rmw(rbio);
1626 return 0;
1627 }
1628
1629 /*
1630 * if the upper layers pass in a full stripe, we thank them by only allocating
1631 * enough pages to hold the parity, and sending it all down quickly.
1632 */
1633 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1634 {
1635 int ret;
1636
1637 ret = alloc_rbio_parity_pages(rbio);
1638 if (ret) {
1639 __free_raid_bio(rbio);
1640 return ret;
1641 }
1642
1643 ret = lock_stripe_add(rbio);
1644 if (ret == 0)
1645 finish_rmw(rbio);
1646 return 0;
1647 }
1648
1649 /*
1650 * partial stripe writes get handed over to async helpers.
1651 * We're really hoping to merge a few more writes into this
1652 * rbio before calculating new parity
1653 */
1654 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1655 {
1656 int ret;
1657
1658 ret = lock_stripe_add(rbio);
1659 if (ret == 0)
1660 async_rmw_stripe(rbio);
1661 return 0;
1662 }
1663
1664 /*
1665 * sometimes while we were reading from the drive to
1666 * recalculate parity, enough new bios come into create
1667 * a full stripe. So we do a check here to see if we can
1668 * go directly to finish_rmw
1669 */
1670 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1671 {
1672 /* head off into rmw land if we don't have a full stripe */
1673 if (!rbio_is_full(rbio))
1674 return partial_stripe_write(rbio);
1675 return full_stripe_write(rbio);
1676 }
1677
1678 /*
1679 * We use plugging call backs to collect full stripes.
1680 * Any time we get a partial stripe write while plugged
1681 * we collect it into a list. When the unplug comes down,
1682 * we sort the list by logical block number and merge
1683 * everything we can into the same rbios
1684 */
1685 struct btrfs_plug_cb {
1686 struct blk_plug_cb cb;
1687 struct btrfs_fs_info *info;
1688 struct list_head rbio_list;
1689 struct btrfs_work work;
1690 };
1691
1692 /*
1693 * rbios on the plug list are sorted for easier merging.
1694 */
1695 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1696 {
1697 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1698 plug_list);
1699 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1700 plug_list);
1701 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1702 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1703
1704 if (a_sector < b_sector)
1705 return -1;
1706 if (a_sector > b_sector)
1707 return 1;
1708 return 0;
1709 }
1710
1711 static void run_plug(struct btrfs_plug_cb *plug)
1712 {
1713 struct btrfs_raid_bio *cur;
1714 struct btrfs_raid_bio *last = NULL;
1715
1716 /*
1717 * sort our plug list then try to merge
1718 * everything we can in hopes of creating full
1719 * stripes.
1720 */
1721 list_sort(NULL, &plug->rbio_list, plug_cmp);
1722 while (!list_empty(&plug->rbio_list)) {
1723 cur = list_entry(plug->rbio_list.next,
1724 struct btrfs_raid_bio, plug_list);
1725 list_del_init(&cur->plug_list);
1726
1727 if (rbio_is_full(cur)) {
1728 /* we have a full stripe, send it down */
1729 full_stripe_write(cur);
1730 continue;
1731 }
1732 if (last) {
1733 if (rbio_can_merge(last, cur)) {
1734 merge_rbio(last, cur);
1735 __free_raid_bio(cur);
1736 continue;
1737
1738 }
1739 __raid56_parity_write(last);
1740 }
1741 last = cur;
1742 }
1743 if (last) {
1744 __raid56_parity_write(last);
1745 }
1746 kfree(plug);
1747 }
1748
1749 /*
1750 * if the unplug comes from schedule, we have to push the
1751 * work off to a helper thread
1752 */
1753 static void unplug_work(struct btrfs_work *work)
1754 {
1755 struct btrfs_plug_cb *plug;
1756 plug = container_of(work, struct btrfs_plug_cb, work);
1757 run_plug(plug);
1758 }
1759
1760 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1761 {
1762 struct btrfs_plug_cb *plug;
1763 plug = container_of(cb, struct btrfs_plug_cb, cb);
1764
1765 if (from_schedule) {
1766 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1767 unplug_work, NULL, NULL);
1768 btrfs_queue_work(plug->info->rmw_workers,
1769 &plug->work);
1770 return;
1771 }
1772 run_plug(plug);
1773 }
1774
1775 /*
1776 * our main entry point for writes from the rest of the FS.
1777 */
1778 int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1779 struct btrfs_bio *bbio, u64 *raid_map,
1780 u64 stripe_len)
1781 {
1782 struct btrfs_raid_bio *rbio;
1783 struct btrfs_plug_cb *plug = NULL;
1784 struct blk_plug_cb *cb;
1785 int ret;
1786
1787 rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
1788 if (IS_ERR(rbio)) {
1789 __free_bbio_and_raid_map(bbio, raid_map, 1);
1790 return PTR_ERR(rbio);
1791 }
1792 bio_list_add(&rbio->bio_list, bio);
1793 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1794 rbio->operation = BTRFS_RBIO_WRITE;
1795
1796 btrfs_bio_counter_inc_noblocked(root->fs_info);
1797 rbio->generic_bio_cnt = 1;
1798
1799 /*
1800 * don't plug on full rbios, just get them out the door
1801 * as quickly as we can
1802 */
1803 if (rbio_is_full(rbio)) {
1804 ret = full_stripe_write(rbio);
1805 if (ret)
1806 btrfs_bio_counter_dec(root->fs_info);
1807 return ret;
1808 }
1809
1810 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1811 sizeof(*plug));
1812 if (cb) {
1813 plug = container_of(cb, struct btrfs_plug_cb, cb);
1814 if (!plug->info) {
1815 plug->info = root->fs_info;
1816 INIT_LIST_HEAD(&plug->rbio_list);
1817 }
1818 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1819 ret = 0;
1820 } else {
1821 ret = __raid56_parity_write(rbio);
1822 if (ret)
1823 btrfs_bio_counter_dec(root->fs_info);
1824 }
1825 return ret;
1826 }
1827
1828 /*
1829 * all parity reconstruction happens here. We've read in everything
1830 * we can find from the drives and this does the heavy lifting of
1831 * sorting the good from the bad.
1832 */
1833 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1834 {
1835 int pagenr, stripe;
1836 void **pointers;
1837 int faila = -1, failb = -1;
1838 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
1839 struct page *page;
1840 int err;
1841 int i;
1842
1843 pointers = kzalloc(rbio->real_stripes * sizeof(void *),
1844 GFP_NOFS);
1845 if (!pointers) {
1846 err = -ENOMEM;
1847 goto cleanup_io;
1848 }
1849
1850 faila = rbio->faila;
1851 failb = rbio->failb;
1852
1853 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1854 spin_lock_irq(&rbio->bio_list_lock);
1855 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1856 spin_unlock_irq(&rbio->bio_list_lock);
1857 }
1858
1859 index_rbio_pages(rbio);
1860
1861 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1862 /*
1863 * Now we just use bitmap to mark the horizontal stripes in
1864 * which we have data when doing parity scrub.
1865 */
1866 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1867 !test_bit(pagenr, rbio->dbitmap))
1868 continue;
1869
1870 /* setup our array of pointers with pages
1871 * from each stripe
1872 */
1873 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1874 /*
1875 * if we're rebuilding a read, we have to use
1876 * pages from the bio list
1877 */
1878 if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
1879 (stripe == faila || stripe == failb)) {
1880 page = page_in_rbio(rbio, stripe, pagenr, 0);
1881 } else {
1882 page = rbio_stripe_page(rbio, stripe, pagenr);
1883 }
1884 pointers[stripe] = kmap(page);
1885 }
1886
1887 /* all raid6 handling here */
1888 if (rbio->raid_map[rbio->real_stripes - 1] ==
1889 RAID6_Q_STRIPE) {
1890
1891 /*
1892 * single failure, rebuild from parity raid5
1893 * style
1894 */
1895 if (failb < 0) {
1896 if (faila == rbio->nr_data) {
1897 /*
1898 * Just the P stripe has failed, without
1899 * a bad data or Q stripe.
1900 * TODO, we should redo the xor here.
1901 */
1902 err = -EIO;
1903 goto cleanup;
1904 }
1905 /*
1906 * a single failure in raid6 is rebuilt
1907 * in the pstripe code below
1908 */
1909 goto pstripe;
1910 }
1911
1912 /* make sure our ps and qs are in order */
1913 if (faila > failb) {
1914 int tmp = failb;
1915 failb = faila;
1916 faila = tmp;
1917 }
1918
1919 /* if the q stripe is failed, do a pstripe reconstruction
1920 * from the xors.
1921 * If both the q stripe and the P stripe are failed, we're
1922 * here due to a crc mismatch and we can't give them the
1923 * data they want
1924 */
1925 if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
1926 if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
1927 err = -EIO;
1928 goto cleanup;
1929 }
1930 /*
1931 * otherwise we have one bad data stripe and
1932 * a good P stripe. raid5!
1933 */
1934 goto pstripe;
1935 }
1936
1937 if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
1938 raid6_datap_recov(rbio->real_stripes,
1939 PAGE_SIZE, faila, pointers);
1940 } else {
1941 raid6_2data_recov(rbio->real_stripes,
1942 PAGE_SIZE, faila, failb,
1943 pointers);
1944 }
1945 } else {
1946 void *p;
1947
1948 /* rebuild from P stripe here (raid5 or raid6) */
1949 BUG_ON(failb != -1);
1950 pstripe:
1951 /* Copy parity block into failed block to start with */
1952 memcpy(pointers[faila],
1953 pointers[rbio->nr_data],
1954 PAGE_CACHE_SIZE);
1955
1956 /* rearrange the pointer array */
1957 p = pointers[faila];
1958 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1959 pointers[stripe] = pointers[stripe + 1];
1960 pointers[rbio->nr_data - 1] = p;
1961
1962 /* xor in the rest */
1963 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1964 }
1965 /* if we're doing this rebuild as part of an rmw, go through
1966 * and set all of our private rbio pages in the
1967 * failed stripes as uptodate. This way finish_rmw will
1968 * know they can be trusted. If this was a read reconstruction,
1969 * other endio functions will fiddle the uptodate bits
1970 */
1971 if (rbio->operation == BTRFS_RBIO_WRITE) {
1972 for (i = 0; i < nr_pages; i++) {
1973 if (faila != -1) {
1974 page = rbio_stripe_page(rbio, faila, i);
1975 SetPageUptodate(page);
1976 }
1977 if (failb != -1) {
1978 page = rbio_stripe_page(rbio, failb, i);
1979 SetPageUptodate(page);
1980 }
1981 }
1982 }
1983 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1984 /*
1985 * if we're rebuilding a read, we have to use
1986 * pages from the bio list
1987 */
1988 if (rbio->operation == BTRFS_RBIO_READ_REBUILD &&
1989 (stripe == faila || stripe == failb)) {
1990 page = page_in_rbio(rbio, stripe, pagenr, 0);
1991 } else {
1992 page = rbio_stripe_page(rbio, stripe, pagenr);
1993 }
1994 kunmap(page);
1995 }
1996 }
1997
1998 err = 0;
1999 cleanup:
2000 kfree(pointers);
2001
2002 cleanup_io:
2003 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
2004 if (err == 0 &&
2005 !test_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags))
2006 cache_rbio_pages(rbio);
2007 else
2008 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2009
2010 rbio_orig_end_io(rbio, err, err == 0);
2011 } else if (err == 0) {
2012 rbio->faila = -1;
2013 rbio->failb = -1;
2014
2015 if (rbio->operation == BTRFS_RBIO_WRITE)
2016 finish_rmw(rbio);
2017 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2018 finish_parity_scrub(rbio, 0);
2019 else
2020 BUG();
2021 } else {
2022 rbio_orig_end_io(rbio, err, 0);
2023 }
2024 }
2025
2026 /*
2027 * This is called only for stripes we've read from disk to
2028 * reconstruct the parity.
2029 */
2030 static void raid_recover_end_io(struct bio *bio, int err)
2031 {
2032 struct btrfs_raid_bio *rbio = bio->bi_private;
2033
2034 /*
2035 * we only read stripe pages off the disk, set them
2036 * up to date if there were no errors
2037 */
2038 if (err)
2039 fail_bio_stripe(rbio, bio);
2040 else
2041 set_bio_pages_uptodate(bio);
2042 bio_put(bio);
2043
2044 if (!atomic_dec_and_test(&rbio->stripes_pending))
2045 return;
2046
2047 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2048 rbio_orig_end_io(rbio, -EIO, 0);
2049 else
2050 __raid_recover_end_io(rbio);
2051 }
2052
2053 /*
2054 * reads everything we need off the disk to reconstruct
2055 * the parity. endio handlers trigger final reconstruction
2056 * when the IO is done.
2057 *
2058 * This is used both for reads from the higher layers and for
2059 * parity construction required to finish a rmw cycle.
2060 */
2061 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2062 {
2063 int bios_to_read = 0;
2064 struct bio_list bio_list;
2065 int ret;
2066 int nr_pages = DIV_ROUND_UP(rbio->stripe_len, PAGE_CACHE_SIZE);
2067 int pagenr;
2068 int stripe;
2069 struct bio *bio;
2070
2071 bio_list_init(&bio_list);
2072
2073 ret = alloc_rbio_pages(rbio);
2074 if (ret)
2075 goto cleanup;
2076
2077 atomic_set(&rbio->error, 0);
2078
2079 /*
2080 * read everything that hasn't failed. Thanks to the
2081 * stripe cache, it is possible that some or all of these
2082 * pages are going to be uptodate.
2083 */
2084 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2085 if (rbio->faila == stripe || rbio->failb == stripe) {
2086 atomic_inc(&rbio->error);
2087 continue;
2088 }
2089
2090 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
2091 struct page *p;
2092
2093 /*
2094 * the rmw code may have already read this
2095 * page in
2096 */
2097 p = rbio_stripe_page(rbio, stripe, pagenr);
2098 if (PageUptodate(p))
2099 continue;
2100
2101 ret = rbio_add_io_page(rbio, &bio_list,
2102 rbio_stripe_page(rbio, stripe, pagenr),
2103 stripe, pagenr, rbio->stripe_len);
2104 if (ret < 0)
2105 goto cleanup;
2106 }
2107 }
2108
2109 bios_to_read = bio_list_size(&bio_list);
2110 if (!bios_to_read) {
2111 /*
2112 * we might have no bios to read just because the pages
2113 * were up to date, or we might have no bios to read because
2114 * the devices were gone.
2115 */
2116 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2117 __raid_recover_end_io(rbio);
2118 goto out;
2119 } else {
2120 goto cleanup;
2121 }
2122 }
2123
2124 /*
2125 * the bbio may be freed once we submit the last bio. Make sure
2126 * not to touch it after that
2127 */
2128 atomic_set(&rbio->stripes_pending, bios_to_read);
2129 while (1) {
2130 bio = bio_list_pop(&bio_list);
2131 if (!bio)
2132 break;
2133
2134 bio->bi_private = rbio;
2135 bio->bi_end_io = raid_recover_end_io;
2136
2137 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2138 BTRFS_WQ_ENDIO_RAID56);
2139
2140 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2141 submit_bio(READ, bio);
2142 }
2143 out:
2144 return 0;
2145
2146 cleanup:
2147 if (rbio->operation == BTRFS_RBIO_READ_REBUILD)
2148 rbio_orig_end_io(rbio, -EIO, 0);
2149 return -EIO;
2150 }
2151
2152 /*
2153 * the main entry point for reads from the higher layers. This
2154 * is really only called when the normal read path had a failure,
2155 * so we assume the bio they send down corresponds to a failed part
2156 * of the drive.
2157 */
2158 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2159 struct btrfs_bio *bbio, u64 *raid_map,
2160 u64 stripe_len, int mirror_num, int generic_io)
2161 {
2162 struct btrfs_raid_bio *rbio;
2163 int ret;
2164
2165 rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
2166 if (IS_ERR(rbio)) {
2167 __free_bbio_and_raid_map(bbio, raid_map, generic_io);
2168 return PTR_ERR(rbio);
2169 }
2170
2171 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2172 bio_list_add(&rbio->bio_list, bio);
2173 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2174
2175 rbio->faila = find_logical_bio_stripe(rbio, bio);
2176 if (rbio->faila == -1) {
2177 BUG();
2178 __free_bbio_and_raid_map(bbio, raid_map, generic_io);
2179 kfree(rbio);
2180 return -EIO;
2181 }
2182
2183 if (generic_io) {
2184 btrfs_bio_counter_inc_noblocked(root->fs_info);
2185 rbio->generic_bio_cnt = 1;
2186 } else {
2187 set_bit(RBIO_HOLD_BBIO_MAP_BIT, &rbio->flags);
2188 }
2189
2190 /*
2191 * reconstruct from the q stripe if they are
2192 * asking for mirror 3
2193 */
2194 if (mirror_num == 3)
2195 rbio->failb = rbio->real_stripes - 2;
2196
2197 ret = lock_stripe_add(rbio);
2198
2199 /*
2200 * __raid56_parity_recover will end the bio with
2201 * any errors it hits. We don't want to return
2202 * its error value up the stack because our caller
2203 * will end up calling bio_endio with any nonzero
2204 * return
2205 */
2206 if (ret == 0)
2207 __raid56_parity_recover(rbio);
2208 /*
2209 * our rbio has been added to the list of
2210 * rbios that will be handled after the
2211 * currently lock owner is done
2212 */
2213 return 0;
2214
2215 }
2216
2217 static void rmw_work(struct btrfs_work *work)
2218 {
2219 struct btrfs_raid_bio *rbio;
2220
2221 rbio = container_of(work, struct btrfs_raid_bio, work);
2222 raid56_rmw_stripe(rbio);
2223 }
2224
2225 static void read_rebuild_work(struct btrfs_work *work)
2226 {
2227 struct btrfs_raid_bio *rbio;
2228
2229 rbio = container_of(work, struct btrfs_raid_bio, work);
2230 __raid56_parity_recover(rbio);
2231 }
2232
2233 /*
2234 * The following code is used to scrub/replace the parity stripe
2235 *
2236 * Note: We need make sure all the pages that add into the scrub/replace
2237 * raid bio are correct and not be changed during the scrub/replace. That
2238 * is those pages just hold metadata or file data with checksum.
2239 */
2240
2241 struct btrfs_raid_bio *
2242 raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2243 struct btrfs_bio *bbio, u64 *raid_map,
2244 u64 stripe_len, struct btrfs_device *scrub_dev,
2245 unsigned long *dbitmap, int stripe_nsectors)
2246 {
2247 struct btrfs_raid_bio *rbio;
2248 int i;
2249
2250 rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
2251 if (IS_ERR(rbio))
2252 return NULL;
2253 bio_list_add(&rbio->bio_list, bio);
2254 /*
2255 * This is a special bio which is used to hold the completion handler
2256 * and make the scrub rbio is similar to the other types
2257 */
2258 ASSERT(!bio->bi_iter.bi_size);
2259 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2260
2261 for (i = 0; i < rbio->real_stripes; i++) {
2262 if (bbio->stripes[i].dev == scrub_dev) {
2263 rbio->scrubp = i;
2264 break;
2265 }
2266 }
2267
2268 /* Now we just support the sectorsize equals to page size */
2269 ASSERT(root->sectorsize == PAGE_SIZE);
2270 ASSERT(rbio->stripe_npages == stripe_nsectors);
2271 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2272
2273 return rbio;
2274 }
2275
2276 void raid56_parity_add_scrub_pages(struct btrfs_raid_bio *rbio,
2277 struct page *page, u64 logical)
2278 {
2279 int stripe_offset;
2280 int index;
2281
2282 ASSERT(logical >= rbio->raid_map[0]);
2283 ASSERT(logical + PAGE_SIZE <= rbio->raid_map[0] +
2284 rbio->stripe_len * rbio->nr_data);
2285 stripe_offset = (int)(logical - rbio->raid_map[0]);
2286 index = stripe_offset >> PAGE_CACHE_SHIFT;
2287 rbio->bio_pages[index] = page;
2288 }
2289
2290 /*
2291 * We just scrub the parity that we have correct data on the same horizontal,
2292 * so we needn't allocate all pages for all the stripes.
2293 */
2294 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2295 {
2296 int i;
2297 int bit;
2298 int index;
2299 struct page *page;
2300
2301 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2302 for (i = 0; i < rbio->real_stripes; i++) {
2303 index = i * rbio->stripe_npages + bit;
2304 if (rbio->stripe_pages[index])
2305 continue;
2306
2307 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2308 if (!page)
2309 return -ENOMEM;
2310 rbio->stripe_pages[index] = page;
2311 ClearPageUptodate(page);
2312 }
2313 }
2314 return 0;
2315 }
2316
2317 /*
2318 * end io function used by finish_rmw. When we finally
2319 * get here, we've written a full stripe
2320 */
2321 static void raid_write_parity_end_io(struct bio *bio, int err)
2322 {
2323 struct btrfs_raid_bio *rbio = bio->bi_private;
2324
2325 if (err)
2326 fail_bio_stripe(rbio, bio);
2327
2328 bio_put(bio);
2329
2330 if (!atomic_dec_and_test(&rbio->stripes_pending))
2331 return;
2332
2333 err = 0;
2334
2335 if (atomic_read(&rbio->error))
2336 err = -EIO;
2337
2338 rbio_orig_end_io(rbio, err, 0);
2339 }
2340
2341 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2342 int need_check)
2343 {
2344 struct btrfs_bio *bbio = rbio->bbio;
2345 void *pointers[rbio->real_stripes];
2346 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2347 int nr_data = rbio->nr_data;
2348 int stripe;
2349 int pagenr;
2350 int p_stripe = -1;
2351 int q_stripe = -1;
2352 struct page *p_page = NULL;
2353 struct page *q_page = NULL;
2354 struct bio_list bio_list;
2355 struct bio *bio;
2356 int is_replace = 0;
2357 int ret;
2358
2359 bio_list_init(&bio_list);
2360
2361 if (rbio->real_stripes - rbio->nr_data == 1) {
2362 p_stripe = rbio->real_stripes - 1;
2363 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2364 p_stripe = rbio->real_stripes - 2;
2365 q_stripe = rbio->real_stripes - 1;
2366 } else {
2367 BUG();
2368 }
2369
2370 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2371 is_replace = 1;
2372 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2373 }
2374
2375 /*
2376 * Because the higher layers(scrubber) are unlikely to
2377 * use this area of the disk again soon, so don't cache
2378 * it.
2379 */
2380 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2381
2382 if (!need_check)
2383 goto writeback;
2384
2385 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2386 if (!p_page)
2387 goto cleanup;
2388 SetPageUptodate(p_page);
2389
2390 if (q_stripe != -1) {
2391 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2392 if (!q_page) {
2393 __free_page(p_page);
2394 goto cleanup;
2395 }
2396 SetPageUptodate(q_page);
2397 }
2398
2399 atomic_set(&rbio->error, 0);
2400
2401 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2402 struct page *p;
2403 void *parity;
2404 /* first collect one page from each data stripe */
2405 for (stripe = 0; stripe < nr_data; stripe++) {
2406 p = page_in_rbio(rbio, stripe, pagenr, 0);
2407 pointers[stripe] = kmap(p);
2408 }
2409
2410 /* then add the parity stripe */
2411 pointers[stripe++] = kmap(p_page);
2412
2413 if (q_stripe != -1) {
2414
2415 /*
2416 * raid6, add the qstripe and call the
2417 * library function to fill in our p/q
2418 */
2419 pointers[stripe++] = kmap(q_page);
2420
2421 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2422 pointers);
2423 } else {
2424 /* raid5 */
2425 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2426 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
2427 }
2428
2429 /* Check scrubbing pairty and repair it */
2430 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2431 parity = kmap(p);
2432 if (memcmp(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE))
2433 memcpy(parity, pointers[rbio->scrubp], PAGE_CACHE_SIZE);
2434 else
2435 /* Parity is right, needn't writeback */
2436 bitmap_clear(rbio->dbitmap, pagenr, 1);
2437 kunmap(p);
2438
2439 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2440 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2441 }
2442
2443 __free_page(p_page);
2444 if (q_page)
2445 __free_page(q_page);
2446
2447 writeback:
2448 /*
2449 * time to start writing. Make bios for everything from the
2450 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2451 * everything else.
2452 */
2453 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2454 struct page *page;
2455
2456 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2457 ret = rbio_add_io_page(rbio, &bio_list,
2458 page, rbio->scrubp, pagenr, rbio->stripe_len);
2459 if (ret)
2460 goto cleanup;
2461 }
2462
2463 if (!is_replace)
2464 goto submit_write;
2465
2466 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2467 struct page *page;
2468
2469 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2470 ret = rbio_add_io_page(rbio, &bio_list, page,
2471 bbio->tgtdev_map[rbio->scrubp],
2472 pagenr, rbio->stripe_len);
2473 if (ret)
2474 goto cleanup;
2475 }
2476
2477 submit_write:
2478 nr_data = bio_list_size(&bio_list);
2479 if (!nr_data) {
2480 /* Every parity is right */
2481 rbio_orig_end_io(rbio, 0, 0);
2482 return;
2483 }
2484
2485 atomic_set(&rbio->stripes_pending, nr_data);
2486
2487 while (1) {
2488 bio = bio_list_pop(&bio_list);
2489 if (!bio)
2490 break;
2491
2492 bio->bi_private = rbio;
2493 bio->bi_end_io = raid_write_parity_end_io;
2494 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2495 submit_bio(WRITE, bio);
2496 }
2497 return;
2498
2499 cleanup:
2500 rbio_orig_end_io(rbio, -EIO, 0);
2501 }
2502
2503 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2504 {
2505 if (stripe >= 0 && stripe < rbio->nr_data)
2506 return 1;
2507 return 0;
2508 }
2509
2510 /*
2511 * While we're doing the parity check and repair, we could have errors
2512 * in reading pages off the disk. This checks for errors and if we're
2513 * not able to read the page it'll trigger parity reconstruction. The
2514 * parity scrub will be finished after we've reconstructed the failed
2515 * stripes
2516 */
2517 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2518 {
2519 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2520 goto cleanup;
2521
2522 if (rbio->faila >= 0 || rbio->failb >= 0) {
2523 int dfail = 0, failp = -1;
2524
2525 if (is_data_stripe(rbio, rbio->faila))
2526 dfail++;
2527 else if (is_parity_stripe(rbio->faila))
2528 failp = rbio->faila;
2529
2530 if (is_data_stripe(rbio, rbio->failb))
2531 dfail++;
2532 else if (is_parity_stripe(rbio->failb))
2533 failp = rbio->failb;
2534
2535 /*
2536 * Because we can not use a scrubbing parity to repair
2537 * the data, so the capability of the repair is declined.
2538 * (In the case of RAID5, we can not repair anything)
2539 */
2540 if (dfail > rbio->bbio->max_errors - 1)
2541 goto cleanup;
2542
2543 /*
2544 * If all data is good, only parity is correctly, just
2545 * repair the parity.
2546 */
2547 if (dfail == 0) {
2548 finish_parity_scrub(rbio, 0);
2549 return;
2550 }
2551
2552 /*
2553 * Here means we got one corrupted data stripe and one
2554 * corrupted parity on RAID6, if the corrupted parity
2555 * is scrubbing parity, luckly, use the other one to repair
2556 * the data, or we can not repair the data stripe.
2557 */
2558 if (failp != rbio->scrubp)
2559 goto cleanup;
2560
2561 __raid_recover_end_io(rbio);
2562 } else {
2563 finish_parity_scrub(rbio, 1);
2564 }
2565 return;
2566
2567 cleanup:
2568 rbio_orig_end_io(rbio, -EIO, 0);
2569 }
2570
2571 /*
2572 * end io for the read phase of the rmw cycle. All the bios here are physical
2573 * stripe bios we've read from the disk so we can recalculate the parity of the
2574 * stripe.
2575 *
2576 * This will usually kick off finish_rmw once all the bios are read in, but it
2577 * may trigger parity reconstruction if we had any errors along the way
2578 */
2579 static void raid56_parity_scrub_end_io(struct bio *bio, int err)
2580 {
2581 struct btrfs_raid_bio *rbio = bio->bi_private;
2582
2583 if (err)
2584 fail_bio_stripe(rbio, bio);
2585 else
2586 set_bio_pages_uptodate(bio);
2587
2588 bio_put(bio);
2589
2590 if (!atomic_dec_and_test(&rbio->stripes_pending))
2591 return;
2592
2593 /*
2594 * this will normally call finish_rmw to start our write
2595 * but if there are any failed stripes we'll reconstruct
2596 * from parity first
2597 */
2598 validate_rbio_for_parity_scrub(rbio);
2599 }
2600
2601 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2602 {
2603 int bios_to_read = 0;
2604 struct bio_list bio_list;
2605 int ret;
2606 int pagenr;
2607 int stripe;
2608 struct bio *bio;
2609
2610 ret = alloc_rbio_essential_pages(rbio);
2611 if (ret)
2612 goto cleanup;
2613
2614 bio_list_init(&bio_list);
2615
2616 atomic_set(&rbio->error, 0);
2617 /*
2618 * build a list of bios to read all the missing parts of this
2619 * stripe
2620 */
2621 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2622 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2623 struct page *page;
2624 /*
2625 * we want to find all the pages missing from
2626 * the rbio and read them from the disk. If
2627 * page_in_rbio finds a page in the bio list
2628 * we don't need to read it off the stripe.
2629 */
2630 page = page_in_rbio(rbio, stripe, pagenr, 1);
2631 if (page)
2632 continue;
2633
2634 page = rbio_stripe_page(rbio, stripe, pagenr);
2635 /*
2636 * the bio cache may have handed us an uptodate
2637 * page. If so, be happy and use it
2638 */
2639 if (PageUptodate(page))
2640 continue;
2641
2642 ret = rbio_add_io_page(rbio, &bio_list, page,
2643 stripe, pagenr, rbio->stripe_len);
2644 if (ret)
2645 goto cleanup;
2646 }
2647 }
2648
2649 bios_to_read = bio_list_size(&bio_list);
2650 if (!bios_to_read) {
2651 /*
2652 * this can happen if others have merged with
2653 * us, it means there is nothing left to read.
2654 * But if there are missing devices it may not be
2655 * safe to do the full stripe write yet.
2656 */
2657 goto finish;
2658 }
2659
2660 /*
2661 * the bbio may be freed once we submit the last bio. Make sure
2662 * not to touch it after that
2663 */
2664 atomic_set(&rbio->stripes_pending, bios_to_read);
2665 while (1) {
2666 bio = bio_list_pop(&bio_list);
2667 if (!bio)
2668 break;
2669
2670 bio->bi_private = rbio;
2671 bio->bi_end_io = raid56_parity_scrub_end_io;
2672
2673 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2674 BTRFS_WQ_ENDIO_RAID56);
2675
2676 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2677 submit_bio(READ, bio);
2678 }
2679 /* the actual write will happen once the reads are done */
2680 return;
2681
2682 cleanup:
2683 rbio_orig_end_io(rbio, -EIO, 0);
2684 return;
2685
2686 finish:
2687 validate_rbio_for_parity_scrub(rbio);
2688 }
2689
2690 static void scrub_parity_work(struct btrfs_work *work)
2691 {
2692 struct btrfs_raid_bio *rbio;
2693
2694 rbio = container_of(work, struct btrfs_raid_bio, work);
2695 raid56_parity_scrub_stripe(rbio);
2696 }
2697
2698 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2699 {
2700 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2701 scrub_parity_work, NULL, NULL);
2702
2703 btrfs_queue_work(rbio->fs_info->rmw_workers,
2704 &rbio->work);
2705 }
2706
2707 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2708 {
2709 if (!lock_stripe_add(rbio))
2710 async_scrub_parity(rbio);
2711 }
This page took 0.081647 seconds and 6 git commands to generate.