Btrfs: use btrfs_read_lock_root_node in get_old_root
[deliverable/linux.git] / fs / btrfs / scrub.c
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29
30 /*
31 * This is only the first step towards a full-features scrub. It reads all
32 * extent and super block and verifies the checksums. In case a bad checksum
33 * is found or the extent cannot be read, good data will be written back if
34 * any can be found.
35 *
36 * Future enhancements:
37 * - In case an unrepairable extent is encountered, track which files are
38 * affected and report them
39 * - track and record media errors, throw out bad devices
40 * - add a mode to also read unallocated space
41 */
42
43 struct scrub_block;
44 struct scrub_dev;
45
46 #define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
47 #define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
48 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
49
50 struct scrub_page {
51 struct scrub_block *sblock;
52 struct page *page;
53 struct btrfs_device *dev;
54 u64 flags; /* extent flags */
55 u64 generation;
56 u64 logical;
57 u64 physical;
58 struct {
59 unsigned int mirror_num:8;
60 unsigned int have_csum:1;
61 unsigned int io_error:1;
62 };
63 u8 csum[BTRFS_CSUM_SIZE];
64 };
65
66 struct scrub_bio {
67 int index;
68 struct scrub_dev *sdev;
69 struct bio *bio;
70 int err;
71 u64 logical;
72 u64 physical;
73 struct scrub_page *pagev[SCRUB_PAGES_PER_BIO];
74 int page_count;
75 int next_free;
76 struct btrfs_work work;
77 };
78
79 struct scrub_block {
80 struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK];
81 int page_count;
82 atomic_t outstanding_pages;
83 atomic_t ref_count; /* free mem on transition to zero */
84 struct scrub_dev *sdev;
85 struct {
86 unsigned int header_error:1;
87 unsigned int checksum_error:1;
88 unsigned int no_io_error_seen:1;
89 unsigned int generation_error:1; /* also sets header_error */
90 };
91 };
92
93 struct scrub_dev {
94 struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
95 struct btrfs_device *dev;
96 int first_free;
97 int curr;
98 atomic_t in_flight;
99 atomic_t fixup_cnt;
100 spinlock_t list_lock;
101 wait_queue_head_t list_wait;
102 u16 csum_size;
103 struct list_head csum_list;
104 atomic_t cancel_req;
105 int readonly;
106 int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
107 u32 sectorsize;
108 u32 nodesize;
109 u32 leafsize;
110 /*
111 * statistics
112 */
113 struct btrfs_scrub_progress stat;
114 spinlock_t stat_lock;
115 };
116
117 struct scrub_fixup_nodatasum {
118 struct scrub_dev *sdev;
119 u64 logical;
120 struct btrfs_root *root;
121 struct btrfs_work work;
122 int mirror_num;
123 };
124
125 struct scrub_warning {
126 struct btrfs_path *path;
127 u64 extent_item_size;
128 char *scratch_buf;
129 char *msg_buf;
130 const char *errstr;
131 sector_t sector;
132 u64 logical;
133 struct btrfs_device *dev;
134 int msg_bufsize;
135 int scratch_bufsize;
136 };
137
138
139 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
140 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
141 struct btrfs_mapping_tree *map_tree,
142 u64 length, u64 logical,
143 struct scrub_block *sblock);
144 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
145 struct scrub_block *sblock, int is_metadata,
146 int have_csum, u8 *csum, u64 generation,
147 u16 csum_size);
148 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
149 struct scrub_block *sblock,
150 int is_metadata, int have_csum,
151 const u8 *csum, u64 generation,
152 u16 csum_size);
153 static void scrub_complete_bio_end_io(struct bio *bio, int err);
154 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
155 struct scrub_block *sblock_good,
156 int force_write);
157 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
158 struct scrub_block *sblock_good,
159 int page_num, int force_write);
160 static int scrub_checksum_data(struct scrub_block *sblock);
161 static int scrub_checksum_tree_block(struct scrub_block *sblock);
162 static int scrub_checksum_super(struct scrub_block *sblock);
163 static void scrub_block_get(struct scrub_block *sblock);
164 static void scrub_block_put(struct scrub_block *sblock);
165 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
166 struct scrub_page *spage);
167 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
168 u64 physical, u64 flags, u64 gen, int mirror_num,
169 u8 *csum, int force);
170 static void scrub_bio_end_io(struct bio *bio, int err);
171 static void scrub_bio_end_io_worker(struct btrfs_work *work);
172 static void scrub_block_complete(struct scrub_block *sblock);
173
174
175 static void scrub_free_csums(struct scrub_dev *sdev)
176 {
177 while (!list_empty(&sdev->csum_list)) {
178 struct btrfs_ordered_sum *sum;
179 sum = list_first_entry(&sdev->csum_list,
180 struct btrfs_ordered_sum, list);
181 list_del(&sum->list);
182 kfree(sum);
183 }
184 }
185
186 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
187 {
188 int i;
189
190 if (!sdev)
191 return;
192
193 /* this can happen when scrub is cancelled */
194 if (sdev->curr != -1) {
195 struct scrub_bio *sbio = sdev->bios[sdev->curr];
196
197 for (i = 0; i < sbio->page_count; i++) {
198 BUG_ON(!sbio->pagev[i]);
199 BUG_ON(!sbio->pagev[i]->page);
200 scrub_block_put(sbio->pagev[i]->sblock);
201 }
202 bio_put(sbio->bio);
203 }
204
205 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
206 struct scrub_bio *sbio = sdev->bios[i];
207
208 if (!sbio)
209 break;
210 kfree(sbio);
211 }
212
213 scrub_free_csums(sdev);
214 kfree(sdev);
215 }
216
217 static noinline_for_stack
218 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
219 {
220 struct scrub_dev *sdev;
221 int i;
222 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
223 int pages_per_bio;
224
225 pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
226 bio_get_nr_vecs(dev->bdev));
227 sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
228 if (!sdev)
229 goto nomem;
230 sdev->dev = dev;
231 sdev->pages_per_bio = pages_per_bio;
232 sdev->curr = -1;
233 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
234 struct scrub_bio *sbio;
235
236 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
237 if (!sbio)
238 goto nomem;
239 sdev->bios[i] = sbio;
240
241 sbio->index = i;
242 sbio->sdev = sdev;
243 sbio->page_count = 0;
244 sbio->work.func = scrub_bio_end_io_worker;
245
246 if (i != SCRUB_BIOS_PER_DEV-1)
247 sdev->bios[i]->next_free = i + 1;
248 else
249 sdev->bios[i]->next_free = -1;
250 }
251 sdev->first_free = 0;
252 sdev->nodesize = dev->dev_root->nodesize;
253 sdev->leafsize = dev->dev_root->leafsize;
254 sdev->sectorsize = dev->dev_root->sectorsize;
255 atomic_set(&sdev->in_flight, 0);
256 atomic_set(&sdev->fixup_cnt, 0);
257 atomic_set(&sdev->cancel_req, 0);
258 sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
259 INIT_LIST_HEAD(&sdev->csum_list);
260
261 spin_lock_init(&sdev->list_lock);
262 spin_lock_init(&sdev->stat_lock);
263 init_waitqueue_head(&sdev->list_wait);
264 return sdev;
265
266 nomem:
267 scrub_free_dev(sdev);
268 return ERR_PTR(-ENOMEM);
269 }
270
271 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
272 {
273 u64 isize;
274 u32 nlink;
275 int ret;
276 int i;
277 struct extent_buffer *eb;
278 struct btrfs_inode_item *inode_item;
279 struct scrub_warning *swarn = ctx;
280 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
281 struct inode_fs_paths *ipath = NULL;
282 struct btrfs_root *local_root;
283 struct btrfs_key root_key;
284
285 root_key.objectid = root;
286 root_key.type = BTRFS_ROOT_ITEM_KEY;
287 root_key.offset = (u64)-1;
288 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
289 if (IS_ERR(local_root)) {
290 ret = PTR_ERR(local_root);
291 goto err;
292 }
293
294 ret = inode_item_info(inum, 0, local_root, swarn->path);
295 if (ret) {
296 btrfs_release_path(swarn->path);
297 goto err;
298 }
299
300 eb = swarn->path->nodes[0];
301 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
302 struct btrfs_inode_item);
303 isize = btrfs_inode_size(eb, inode_item);
304 nlink = btrfs_inode_nlink(eb, inode_item);
305 btrfs_release_path(swarn->path);
306
307 ipath = init_ipath(4096, local_root, swarn->path);
308 if (IS_ERR(ipath)) {
309 ret = PTR_ERR(ipath);
310 ipath = NULL;
311 goto err;
312 }
313 ret = paths_from_inode(inum, ipath);
314
315 if (ret < 0)
316 goto err;
317
318 /*
319 * we deliberately ignore the bit ipath might have been too small to
320 * hold all of the paths here
321 */
322 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
323 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
324 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
325 "length %llu, links %u (path: %s)\n", swarn->errstr,
326 swarn->logical, swarn->dev->name,
327 (unsigned long long)swarn->sector, root, inum, offset,
328 min(isize - offset, (u64)PAGE_SIZE), nlink,
329 (char *)(unsigned long)ipath->fspath->val[i]);
330
331 free_ipath(ipath);
332 return 0;
333
334 err:
335 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
336 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
337 "resolving failed with ret=%d\n", swarn->errstr,
338 swarn->logical, swarn->dev->name,
339 (unsigned long long)swarn->sector, root, inum, offset, ret);
340
341 free_ipath(ipath);
342 return 0;
343 }
344
345 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
346 {
347 struct btrfs_device *dev = sblock->sdev->dev;
348 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
349 struct btrfs_path *path;
350 struct btrfs_key found_key;
351 struct extent_buffer *eb;
352 struct btrfs_extent_item *ei;
353 struct scrub_warning swarn;
354 u32 item_size;
355 int ret;
356 u64 ref_root;
357 u8 ref_level;
358 unsigned long ptr = 0;
359 const int bufsize = 4096;
360 u64 extent_item_pos;
361
362 path = btrfs_alloc_path();
363
364 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
365 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
366 BUG_ON(sblock->page_count < 1);
367 swarn.sector = (sblock->pagev[0].physical) >> 9;
368 swarn.logical = sblock->pagev[0].logical;
369 swarn.errstr = errstr;
370 swarn.dev = dev;
371 swarn.msg_bufsize = bufsize;
372 swarn.scratch_bufsize = bufsize;
373
374 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
375 goto out;
376
377 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
378 if (ret < 0)
379 goto out;
380
381 extent_item_pos = swarn.logical - found_key.objectid;
382 swarn.extent_item_size = found_key.offset;
383
384 eb = path->nodes[0];
385 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
386 item_size = btrfs_item_size_nr(eb, path->slots[0]);
387 btrfs_release_path(path);
388
389 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
390 do {
391 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
392 &ref_root, &ref_level);
393 printk(KERN_WARNING
394 "btrfs: %s at logical %llu on dev %s, "
395 "sector %llu: metadata %s (level %d) in tree "
396 "%llu\n", errstr, swarn.logical, dev->name,
397 (unsigned long long)swarn.sector,
398 ref_level ? "node" : "leaf",
399 ret < 0 ? -1 : ref_level,
400 ret < 0 ? -1 : ref_root);
401 } while (ret != 1);
402 } else {
403 swarn.path = path;
404 iterate_extent_inodes(fs_info, found_key.objectid,
405 extent_item_pos, 1,
406 scrub_print_warning_inode, &swarn);
407 }
408
409 out:
410 btrfs_free_path(path);
411 kfree(swarn.scratch_buf);
412 kfree(swarn.msg_buf);
413 }
414
415 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
416 {
417 struct page *page = NULL;
418 unsigned long index;
419 struct scrub_fixup_nodatasum *fixup = ctx;
420 int ret;
421 int corrected = 0;
422 struct btrfs_key key;
423 struct inode *inode = NULL;
424 u64 end = offset + PAGE_SIZE - 1;
425 struct btrfs_root *local_root;
426
427 key.objectid = root;
428 key.type = BTRFS_ROOT_ITEM_KEY;
429 key.offset = (u64)-1;
430 local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
431 if (IS_ERR(local_root))
432 return PTR_ERR(local_root);
433
434 key.type = BTRFS_INODE_ITEM_KEY;
435 key.objectid = inum;
436 key.offset = 0;
437 inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
438 if (IS_ERR(inode))
439 return PTR_ERR(inode);
440
441 index = offset >> PAGE_CACHE_SHIFT;
442
443 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
444 if (!page) {
445 ret = -ENOMEM;
446 goto out;
447 }
448
449 if (PageUptodate(page)) {
450 struct btrfs_mapping_tree *map_tree;
451 if (PageDirty(page)) {
452 /*
453 * we need to write the data to the defect sector. the
454 * data that was in that sector is not in memory,
455 * because the page was modified. we must not write the
456 * modified page to that sector.
457 *
458 * TODO: what could be done here: wait for the delalloc
459 * runner to write out that page (might involve
460 * COW) and see whether the sector is still
461 * referenced afterwards.
462 *
463 * For the meantime, we'll treat this error
464 * incorrectable, although there is a chance that a
465 * later scrub will find the bad sector again and that
466 * there's no dirty page in memory, then.
467 */
468 ret = -EIO;
469 goto out;
470 }
471 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
472 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
473 fixup->logical, page,
474 fixup->mirror_num);
475 unlock_page(page);
476 corrected = !ret;
477 } else {
478 /*
479 * we need to get good data first. the general readpage path
480 * will call repair_io_failure for us, we just have to make
481 * sure we read the bad mirror.
482 */
483 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
484 EXTENT_DAMAGED, GFP_NOFS);
485 if (ret) {
486 /* set_extent_bits should give proper error */
487 WARN_ON(ret > 0);
488 if (ret > 0)
489 ret = -EFAULT;
490 goto out;
491 }
492
493 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
494 btrfs_get_extent,
495 fixup->mirror_num);
496 wait_on_page_locked(page);
497
498 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
499 end, EXTENT_DAMAGED, 0, NULL);
500 if (!corrected)
501 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
502 EXTENT_DAMAGED, GFP_NOFS);
503 }
504
505 out:
506 if (page)
507 put_page(page);
508 if (inode)
509 iput(inode);
510
511 if (ret < 0)
512 return ret;
513
514 if (ret == 0 && corrected) {
515 /*
516 * we only need to call readpage for one of the inodes belonging
517 * to this extent. so make iterate_extent_inodes stop
518 */
519 return 1;
520 }
521
522 return -EIO;
523 }
524
525 static void scrub_fixup_nodatasum(struct btrfs_work *work)
526 {
527 int ret;
528 struct scrub_fixup_nodatasum *fixup;
529 struct scrub_dev *sdev;
530 struct btrfs_trans_handle *trans = NULL;
531 struct btrfs_fs_info *fs_info;
532 struct btrfs_path *path;
533 int uncorrectable = 0;
534
535 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
536 sdev = fixup->sdev;
537 fs_info = fixup->root->fs_info;
538
539 path = btrfs_alloc_path();
540 if (!path) {
541 spin_lock(&sdev->stat_lock);
542 ++sdev->stat.malloc_errors;
543 spin_unlock(&sdev->stat_lock);
544 uncorrectable = 1;
545 goto out;
546 }
547
548 trans = btrfs_join_transaction(fixup->root);
549 if (IS_ERR(trans)) {
550 uncorrectable = 1;
551 goto out;
552 }
553
554 /*
555 * the idea is to trigger a regular read through the standard path. we
556 * read a page from the (failed) logical address by specifying the
557 * corresponding copynum of the failed sector. thus, that readpage is
558 * expected to fail.
559 * that is the point where on-the-fly error correction will kick in
560 * (once it's finished) and rewrite the failed sector if a good copy
561 * can be found.
562 */
563 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
564 path, scrub_fixup_readpage,
565 fixup);
566 if (ret < 0) {
567 uncorrectable = 1;
568 goto out;
569 }
570 WARN_ON(ret != 1);
571
572 spin_lock(&sdev->stat_lock);
573 ++sdev->stat.corrected_errors;
574 spin_unlock(&sdev->stat_lock);
575
576 out:
577 if (trans && !IS_ERR(trans))
578 btrfs_end_transaction(trans, fixup->root);
579 if (uncorrectable) {
580 spin_lock(&sdev->stat_lock);
581 ++sdev->stat.uncorrectable_errors;
582 spin_unlock(&sdev->stat_lock);
583 printk_ratelimited(KERN_ERR
584 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
585 (unsigned long long)fixup->logical, sdev->dev->name);
586 }
587
588 btrfs_free_path(path);
589 kfree(fixup);
590
591 /* see caller why we're pretending to be paused in the scrub counters */
592 mutex_lock(&fs_info->scrub_lock);
593 atomic_dec(&fs_info->scrubs_running);
594 atomic_dec(&fs_info->scrubs_paused);
595 mutex_unlock(&fs_info->scrub_lock);
596 atomic_dec(&sdev->fixup_cnt);
597 wake_up(&fs_info->scrub_pause_wait);
598 wake_up(&sdev->list_wait);
599 }
600
601 /*
602 * scrub_handle_errored_block gets called when either verification of the
603 * pages failed or the bio failed to read, e.g. with EIO. In the latter
604 * case, this function handles all pages in the bio, even though only one
605 * may be bad.
606 * The goal of this function is to repair the errored block by using the
607 * contents of one of the mirrors.
608 */
609 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
610 {
611 struct scrub_dev *sdev = sblock_to_check->sdev;
612 struct btrfs_fs_info *fs_info;
613 u64 length;
614 u64 logical;
615 u64 generation;
616 unsigned int failed_mirror_index;
617 unsigned int is_metadata;
618 unsigned int have_csum;
619 u8 *csum;
620 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
621 struct scrub_block *sblock_bad;
622 int ret;
623 int mirror_index;
624 int page_num;
625 int success;
626 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
627 DEFAULT_RATELIMIT_BURST);
628
629 BUG_ON(sblock_to_check->page_count < 1);
630 fs_info = sdev->dev->dev_root->fs_info;
631 length = sblock_to_check->page_count * PAGE_SIZE;
632 logical = sblock_to_check->pagev[0].logical;
633 generation = sblock_to_check->pagev[0].generation;
634 BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
635 failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
636 is_metadata = !(sblock_to_check->pagev[0].flags &
637 BTRFS_EXTENT_FLAG_DATA);
638 have_csum = sblock_to_check->pagev[0].have_csum;
639 csum = sblock_to_check->pagev[0].csum;
640
641 /*
642 * read all mirrors one after the other. This includes to
643 * re-read the extent or metadata block that failed (that was
644 * the cause that this fixup code is called) another time,
645 * page by page this time in order to know which pages
646 * caused I/O errors and which ones are good (for all mirrors).
647 * It is the goal to handle the situation when more than one
648 * mirror contains I/O errors, but the errors do not
649 * overlap, i.e. the data can be repaired by selecting the
650 * pages from those mirrors without I/O error on the
651 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
652 * would be that mirror #1 has an I/O error on the first page,
653 * the second page is good, and mirror #2 has an I/O error on
654 * the second page, but the first page is good.
655 * Then the first page of the first mirror can be repaired by
656 * taking the first page of the second mirror, and the
657 * second page of the second mirror can be repaired by
658 * copying the contents of the 2nd page of the 1st mirror.
659 * One more note: if the pages of one mirror contain I/O
660 * errors, the checksum cannot be verified. In order to get
661 * the best data for repairing, the first attempt is to find
662 * a mirror without I/O errors and with a validated checksum.
663 * Only if this is not possible, the pages are picked from
664 * mirrors with I/O errors without considering the checksum.
665 * If the latter is the case, at the end, the checksum of the
666 * repaired area is verified in order to correctly maintain
667 * the statistics.
668 */
669
670 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
671 sizeof(*sblocks_for_recheck),
672 GFP_NOFS);
673 if (!sblocks_for_recheck) {
674 spin_lock(&sdev->stat_lock);
675 sdev->stat.malloc_errors++;
676 sdev->stat.read_errors++;
677 sdev->stat.uncorrectable_errors++;
678 spin_unlock(&sdev->stat_lock);
679 btrfs_dev_stat_inc_and_print(sdev->dev,
680 BTRFS_DEV_STAT_READ_ERRS);
681 goto out;
682 }
683
684 /* setup the context, map the logical blocks and alloc the pages */
685 ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
686 logical, sblocks_for_recheck);
687 if (ret) {
688 spin_lock(&sdev->stat_lock);
689 sdev->stat.read_errors++;
690 sdev->stat.uncorrectable_errors++;
691 spin_unlock(&sdev->stat_lock);
692 btrfs_dev_stat_inc_and_print(sdev->dev,
693 BTRFS_DEV_STAT_READ_ERRS);
694 goto out;
695 }
696 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
697 sblock_bad = sblocks_for_recheck + failed_mirror_index;
698
699 /* build and submit the bios for the failed mirror, check checksums */
700 ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
701 csum, generation, sdev->csum_size);
702 if (ret) {
703 spin_lock(&sdev->stat_lock);
704 sdev->stat.read_errors++;
705 sdev->stat.uncorrectable_errors++;
706 spin_unlock(&sdev->stat_lock);
707 btrfs_dev_stat_inc_and_print(sdev->dev,
708 BTRFS_DEV_STAT_READ_ERRS);
709 goto out;
710 }
711
712 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
713 sblock_bad->no_io_error_seen) {
714 /*
715 * the error disappeared after reading page by page, or
716 * the area was part of a huge bio and other parts of the
717 * bio caused I/O errors, or the block layer merged several
718 * read requests into one and the error is caused by a
719 * different bio (usually one of the two latter cases is
720 * the cause)
721 */
722 spin_lock(&sdev->stat_lock);
723 sdev->stat.unverified_errors++;
724 spin_unlock(&sdev->stat_lock);
725
726 goto out;
727 }
728
729 if (!sblock_bad->no_io_error_seen) {
730 spin_lock(&sdev->stat_lock);
731 sdev->stat.read_errors++;
732 spin_unlock(&sdev->stat_lock);
733 if (__ratelimit(&_rs))
734 scrub_print_warning("i/o error", sblock_to_check);
735 btrfs_dev_stat_inc_and_print(sdev->dev,
736 BTRFS_DEV_STAT_READ_ERRS);
737 } else if (sblock_bad->checksum_error) {
738 spin_lock(&sdev->stat_lock);
739 sdev->stat.csum_errors++;
740 spin_unlock(&sdev->stat_lock);
741 if (__ratelimit(&_rs))
742 scrub_print_warning("checksum error", sblock_to_check);
743 btrfs_dev_stat_inc_and_print(sdev->dev,
744 BTRFS_DEV_STAT_CORRUPTION_ERRS);
745 } else if (sblock_bad->header_error) {
746 spin_lock(&sdev->stat_lock);
747 sdev->stat.verify_errors++;
748 spin_unlock(&sdev->stat_lock);
749 if (__ratelimit(&_rs))
750 scrub_print_warning("checksum/header error",
751 sblock_to_check);
752 if (sblock_bad->generation_error)
753 btrfs_dev_stat_inc_and_print(sdev->dev,
754 BTRFS_DEV_STAT_GENERATION_ERRS);
755 else
756 btrfs_dev_stat_inc_and_print(sdev->dev,
757 BTRFS_DEV_STAT_CORRUPTION_ERRS);
758 }
759
760 if (sdev->readonly)
761 goto did_not_correct_error;
762
763 if (!is_metadata && !have_csum) {
764 struct scrub_fixup_nodatasum *fixup_nodatasum;
765
766 /*
767 * !is_metadata and !have_csum, this means that the data
768 * might not be COW'ed, that it might be modified
769 * concurrently. The general strategy to work on the
770 * commit root does not help in the case when COW is not
771 * used.
772 */
773 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
774 if (!fixup_nodatasum)
775 goto did_not_correct_error;
776 fixup_nodatasum->sdev = sdev;
777 fixup_nodatasum->logical = logical;
778 fixup_nodatasum->root = fs_info->extent_root;
779 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
780 /*
781 * increment scrubs_running to prevent cancel requests from
782 * completing as long as a fixup worker is running. we must also
783 * increment scrubs_paused to prevent deadlocking on pause
784 * requests used for transactions commits (as the worker uses a
785 * transaction context). it is safe to regard the fixup worker
786 * as paused for all matters practical. effectively, we only
787 * avoid cancellation requests from completing.
788 */
789 mutex_lock(&fs_info->scrub_lock);
790 atomic_inc(&fs_info->scrubs_running);
791 atomic_inc(&fs_info->scrubs_paused);
792 mutex_unlock(&fs_info->scrub_lock);
793 atomic_inc(&sdev->fixup_cnt);
794 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
795 btrfs_queue_worker(&fs_info->scrub_workers,
796 &fixup_nodatasum->work);
797 goto out;
798 }
799
800 /*
801 * now build and submit the bios for the other mirrors, check
802 * checksums
803 */
804 for (mirror_index = 0;
805 mirror_index < BTRFS_MAX_MIRRORS &&
806 sblocks_for_recheck[mirror_index].page_count > 0;
807 mirror_index++) {
808 if (mirror_index == failed_mirror_index)
809 continue;
810
811 /* build and submit the bios, check checksums */
812 ret = scrub_recheck_block(fs_info,
813 sblocks_for_recheck + mirror_index,
814 is_metadata, have_csum, csum,
815 generation, sdev->csum_size);
816 if (ret)
817 goto did_not_correct_error;
818 }
819
820 /*
821 * first try to pick the mirror which is completely without I/O
822 * errors and also does not have a checksum error.
823 * If one is found, and if a checksum is present, the full block
824 * that is known to contain an error is rewritten. Afterwards
825 * the block is known to be corrected.
826 * If a mirror is found which is completely correct, and no
827 * checksum is present, only those pages are rewritten that had
828 * an I/O error in the block to be repaired, since it cannot be
829 * determined, which copy of the other pages is better (and it
830 * could happen otherwise that a correct page would be
831 * overwritten by a bad one).
832 */
833 for (mirror_index = 0;
834 mirror_index < BTRFS_MAX_MIRRORS &&
835 sblocks_for_recheck[mirror_index].page_count > 0;
836 mirror_index++) {
837 struct scrub_block *sblock_other = sblocks_for_recheck +
838 mirror_index;
839
840 if (!sblock_other->header_error &&
841 !sblock_other->checksum_error &&
842 sblock_other->no_io_error_seen) {
843 int force_write = is_metadata || have_csum;
844
845 ret = scrub_repair_block_from_good_copy(sblock_bad,
846 sblock_other,
847 force_write);
848 if (0 == ret)
849 goto corrected_error;
850 }
851 }
852
853 /*
854 * in case of I/O errors in the area that is supposed to be
855 * repaired, continue by picking good copies of those pages.
856 * Select the good pages from mirrors to rewrite bad pages from
857 * the area to fix. Afterwards verify the checksum of the block
858 * that is supposed to be repaired. This verification step is
859 * only done for the purpose of statistic counting and for the
860 * final scrub report, whether errors remain.
861 * A perfect algorithm could make use of the checksum and try
862 * all possible combinations of pages from the different mirrors
863 * until the checksum verification succeeds. For example, when
864 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
865 * of mirror #2 is readable but the final checksum test fails,
866 * then the 2nd page of mirror #3 could be tried, whether now
867 * the final checksum succeedes. But this would be a rare
868 * exception and is therefore not implemented. At least it is
869 * avoided that the good copy is overwritten.
870 * A more useful improvement would be to pick the sectors
871 * without I/O error based on sector sizes (512 bytes on legacy
872 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
873 * mirror could be repaired by taking 512 byte of a different
874 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
875 * area are unreadable.
876 */
877
878 /* can only fix I/O errors from here on */
879 if (sblock_bad->no_io_error_seen)
880 goto did_not_correct_error;
881
882 success = 1;
883 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
884 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
885
886 if (!page_bad->io_error)
887 continue;
888
889 for (mirror_index = 0;
890 mirror_index < BTRFS_MAX_MIRRORS &&
891 sblocks_for_recheck[mirror_index].page_count > 0;
892 mirror_index++) {
893 struct scrub_block *sblock_other = sblocks_for_recheck +
894 mirror_index;
895 struct scrub_page *page_other = sblock_other->pagev +
896 page_num;
897
898 if (!page_other->io_error) {
899 ret = scrub_repair_page_from_good_copy(
900 sblock_bad, sblock_other, page_num, 0);
901 if (0 == ret) {
902 page_bad->io_error = 0;
903 break; /* succeeded for this page */
904 }
905 }
906 }
907
908 if (page_bad->io_error) {
909 /* did not find a mirror to copy the page from */
910 success = 0;
911 }
912 }
913
914 if (success) {
915 if (is_metadata || have_csum) {
916 /*
917 * need to verify the checksum now that all
918 * sectors on disk are repaired (the write
919 * request for data to be repaired is on its way).
920 * Just be lazy and use scrub_recheck_block()
921 * which re-reads the data before the checksum
922 * is verified, but most likely the data comes out
923 * of the page cache.
924 */
925 ret = scrub_recheck_block(fs_info, sblock_bad,
926 is_metadata, have_csum, csum,
927 generation, sdev->csum_size);
928 if (!ret && !sblock_bad->header_error &&
929 !sblock_bad->checksum_error &&
930 sblock_bad->no_io_error_seen)
931 goto corrected_error;
932 else
933 goto did_not_correct_error;
934 } else {
935 corrected_error:
936 spin_lock(&sdev->stat_lock);
937 sdev->stat.corrected_errors++;
938 spin_unlock(&sdev->stat_lock);
939 printk_ratelimited(KERN_ERR
940 "btrfs: fixed up error at logical %llu on dev %s\n",
941 (unsigned long long)logical, sdev->dev->name);
942 }
943 } else {
944 did_not_correct_error:
945 spin_lock(&sdev->stat_lock);
946 sdev->stat.uncorrectable_errors++;
947 spin_unlock(&sdev->stat_lock);
948 printk_ratelimited(KERN_ERR
949 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
950 (unsigned long long)logical, sdev->dev->name);
951 }
952
953 out:
954 if (sblocks_for_recheck) {
955 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
956 mirror_index++) {
957 struct scrub_block *sblock = sblocks_for_recheck +
958 mirror_index;
959 int page_index;
960
961 for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
962 page_index++)
963 if (sblock->pagev[page_index].page)
964 __free_page(
965 sblock->pagev[page_index].page);
966 }
967 kfree(sblocks_for_recheck);
968 }
969
970 return 0;
971 }
972
973 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
974 struct btrfs_mapping_tree *map_tree,
975 u64 length, u64 logical,
976 struct scrub_block *sblocks_for_recheck)
977 {
978 int page_index;
979 int mirror_index;
980 int ret;
981
982 /*
983 * note: the three members sdev, ref_count and outstanding_pages
984 * are not used (and not set) in the blocks that are used for
985 * the recheck procedure
986 */
987
988 page_index = 0;
989 while (length > 0) {
990 u64 sublen = min_t(u64, length, PAGE_SIZE);
991 u64 mapped_length = sublen;
992 struct btrfs_bio *bbio = NULL;
993
994 /*
995 * with a length of PAGE_SIZE, each returned stripe
996 * represents one mirror
997 */
998 ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
999 &bbio, 0);
1000 if (ret || !bbio || mapped_length < sublen) {
1001 kfree(bbio);
1002 return -EIO;
1003 }
1004
1005 BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1006 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1007 mirror_index++) {
1008 struct scrub_block *sblock;
1009 struct scrub_page *page;
1010
1011 if (mirror_index >= BTRFS_MAX_MIRRORS)
1012 continue;
1013
1014 sblock = sblocks_for_recheck + mirror_index;
1015 page = sblock->pagev + page_index;
1016 page->logical = logical;
1017 page->physical = bbio->stripes[mirror_index].physical;
1018 /* for missing devices, dev->bdev is NULL */
1019 page->dev = bbio->stripes[mirror_index].dev;
1020 page->mirror_num = mirror_index + 1;
1021 page->page = alloc_page(GFP_NOFS);
1022 if (!page->page) {
1023 spin_lock(&sdev->stat_lock);
1024 sdev->stat.malloc_errors++;
1025 spin_unlock(&sdev->stat_lock);
1026 return -ENOMEM;
1027 }
1028 sblock->page_count++;
1029 }
1030 kfree(bbio);
1031 length -= sublen;
1032 logical += sublen;
1033 page_index++;
1034 }
1035
1036 return 0;
1037 }
1038
1039 /*
1040 * this function will check the on disk data for checksum errors, header
1041 * errors and read I/O errors. If any I/O errors happen, the exact pages
1042 * which are errored are marked as being bad. The goal is to enable scrub
1043 * to take those pages that are not errored from all the mirrors so that
1044 * the pages that are errored in the just handled mirror can be repaired.
1045 */
1046 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1047 struct scrub_block *sblock, int is_metadata,
1048 int have_csum, u8 *csum, u64 generation,
1049 u16 csum_size)
1050 {
1051 int page_num;
1052
1053 sblock->no_io_error_seen = 1;
1054 sblock->header_error = 0;
1055 sblock->checksum_error = 0;
1056
1057 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1058 struct bio *bio;
1059 int ret;
1060 struct scrub_page *page = sblock->pagev + page_num;
1061 DECLARE_COMPLETION_ONSTACK(complete);
1062
1063 if (page->dev->bdev == NULL) {
1064 page->io_error = 1;
1065 sblock->no_io_error_seen = 0;
1066 continue;
1067 }
1068
1069 BUG_ON(!page->page);
1070 bio = bio_alloc(GFP_NOFS, 1);
1071 if (!bio)
1072 return -EIO;
1073 bio->bi_bdev = page->dev->bdev;
1074 bio->bi_sector = page->physical >> 9;
1075 bio->bi_end_io = scrub_complete_bio_end_io;
1076 bio->bi_private = &complete;
1077
1078 ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1079 if (PAGE_SIZE != ret) {
1080 bio_put(bio);
1081 return -EIO;
1082 }
1083 btrfsic_submit_bio(READ, bio);
1084
1085 /* this will also unplug the queue */
1086 wait_for_completion(&complete);
1087
1088 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1089 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1090 sblock->no_io_error_seen = 0;
1091 bio_put(bio);
1092 }
1093
1094 if (sblock->no_io_error_seen)
1095 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1096 have_csum, csum, generation,
1097 csum_size);
1098
1099 return 0;
1100 }
1101
1102 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1103 struct scrub_block *sblock,
1104 int is_metadata, int have_csum,
1105 const u8 *csum, u64 generation,
1106 u16 csum_size)
1107 {
1108 int page_num;
1109 u8 calculated_csum[BTRFS_CSUM_SIZE];
1110 u32 crc = ~(u32)0;
1111 struct btrfs_root *root = fs_info->extent_root;
1112 void *mapped_buffer;
1113
1114 BUG_ON(!sblock->pagev[0].page);
1115 if (is_metadata) {
1116 struct btrfs_header *h;
1117
1118 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1119 h = (struct btrfs_header *)mapped_buffer;
1120
1121 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1122 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1123 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1124 BTRFS_UUID_SIZE)) {
1125 sblock->header_error = 1;
1126 } else if (generation != le64_to_cpu(h->generation)) {
1127 sblock->header_error = 1;
1128 sblock->generation_error = 1;
1129 }
1130 csum = h->csum;
1131 } else {
1132 if (!have_csum)
1133 return;
1134
1135 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1136 }
1137
1138 for (page_num = 0;;) {
1139 if (page_num == 0 && is_metadata)
1140 crc = btrfs_csum_data(root,
1141 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1142 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1143 else
1144 crc = btrfs_csum_data(root, mapped_buffer, crc,
1145 PAGE_SIZE);
1146
1147 kunmap_atomic(mapped_buffer);
1148 page_num++;
1149 if (page_num >= sblock->page_count)
1150 break;
1151 BUG_ON(!sblock->pagev[page_num].page);
1152
1153 mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1154 }
1155
1156 btrfs_csum_final(crc, calculated_csum);
1157 if (memcmp(calculated_csum, csum, csum_size))
1158 sblock->checksum_error = 1;
1159 }
1160
1161 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1162 {
1163 complete((struct completion *)bio->bi_private);
1164 }
1165
1166 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1167 struct scrub_block *sblock_good,
1168 int force_write)
1169 {
1170 int page_num;
1171 int ret = 0;
1172
1173 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1174 int ret_sub;
1175
1176 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1177 sblock_good,
1178 page_num,
1179 force_write);
1180 if (ret_sub)
1181 ret = ret_sub;
1182 }
1183
1184 return ret;
1185 }
1186
1187 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1188 struct scrub_block *sblock_good,
1189 int page_num, int force_write)
1190 {
1191 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1192 struct scrub_page *page_good = sblock_good->pagev + page_num;
1193
1194 BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1195 BUG_ON(sblock_good->pagev[page_num].page == NULL);
1196 if (force_write || sblock_bad->header_error ||
1197 sblock_bad->checksum_error || page_bad->io_error) {
1198 struct bio *bio;
1199 int ret;
1200 DECLARE_COMPLETION_ONSTACK(complete);
1201
1202 bio = bio_alloc(GFP_NOFS, 1);
1203 if (!bio)
1204 return -EIO;
1205 bio->bi_bdev = page_bad->dev->bdev;
1206 bio->bi_sector = page_bad->physical >> 9;
1207 bio->bi_end_io = scrub_complete_bio_end_io;
1208 bio->bi_private = &complete;
1209
1210 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1211 if (PAGE_SIZE != ret) {
1212 bio_put(bio);
1213 return -EIO;
1214 }
1215 btrfsic_submit_bio(WRITE, bio);
1216
1217 /* this will also unplug the queue */
1218 wait_for_completion(&complete);
1219 if (!bio_flagged(bio, BIO_UPTODATE)) {
1220 btrfs_dev_stat_inc_and_print(page_bad->dev,
1221 BTRFS_DEV_STAT_WRITE_ERRS);
1222 bio_put(bio);
1223 return -EIO;
1224 }
1225 bio_put(bio);
1226 }
1227
1228 return 0;
1229 }
1230
1231 static void scrub_checksum(struct scrub_block *sblock)
1232 {
1233 u64 flags;
1234 int ret;
1235
1236 BUG_ON(sblock->page_count < 1);
1237 flags = sblock->pagev[0].flags;
1238 ret = 0;
1239 if (flags & BTRFS_EXTENT_FLAG_DATA)
1240 ret = scrub_checksum_data(sblock);
1241 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1242 ret = scrub_checksum_tree_block(sblock);
1243 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1244 (void)scrub_checksum_super(sblock);
1245 else
1246 WARN_ON(1);
1247 if (ret)
1248 scrub_handle_errored_block(sblock);
1249 }
1250
1251 static int scrub_checksum_data(struct scrub_block *sblock)
1252 {
1253 struct scrub_dev *sdev = sblock->sdev;
1254 u8 csum[BTRFS_CSUM_SIZE];
1255 u8 *on_disk_csum;
1256 struct page *page;
1257 void *buffer;
1258 u32 crc = ~(u32)0;
1259 int fail = 0;
1260 struct btrfs_root *root = sdev->dev->dev_root;
1261 u64 len;
1262 int index;
1263
1264 BUG_ON(sblock->page_count < 1);
1265 if (!sblock->pagev[0].have_csum)
1266 return 0;
1267
1268 on_disk_csum = sblock->pagev[0].csum;
1269 page = sblock->pagev[0].page;
1270 buffer = kmap_atomic(page);
1271
1272 len = sdev->sectorsize;
1273 index = 0;
1274 for (;;) {
1275 u64 l = min_t(u64, len, PAGE_SIZE);
1276
1277 crc = btrfs_csum_data(root, buffer, crc, l);
1278 kunmap_atomic(buffer);
1279 len -= l;
1280 if (len == 0)
1281 break;
1282 index++;
1283 BUG_ON(index >= sblock->page_count);
1284 BUG_ON(!sblock->pagev[index].page);
1285 page = sblock->pagev[index].page;
1286 buffer = kmap_atomic(page);
1287 }
1288
1289 btrfs_csum_final(crc, csum);
1290 if (memcmp(csum, on_disk_csum, sdev->csum_size))
1291 fail = 1;
1292
1293 return fail;
1294 }
1295
1296 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1297 {
1298 struct scrub_dev *sdev = sblock->sdev;
1299 struct btrfs_header *h;
1300 struct btrfs_root *root = sdev->dev->dev_root;
1301 struct btrfs_fs_info *fs_info = root->fs_info;
1302 u8 calculated_csum[BTRFS_CSUM_SIZE];
1303 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1304 struct page *page;
1305 void *mapped_buffer;
1306 u64 mapped_size;
1307 void *p;
1308 u32 crc = ~(u32)0;
1309 int fail = 0;
1310 int crc_fail = 0;
1311 u64 len;
1312 int index;
1313
1314 BUG_ON(sblock->page_count < 1);
1315 page = sblock->pagev[0].page;
1316 mapped_buffer = kmap_atomic(page);
1317 h = (struct btrfs_header *)mapped_buffer;
1318 memcpy(on_disk_csum, h->csum, sdev->csum_size);
1319
1320 /*
1321 * we don't use the getter functions here, as we
1322 * a) don't have an extent buffer and
1323 * b) the page is already kmapped
1324 */
1325
1326 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1327 ++fail;
1328
1329 if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1330 ++fail;
1331
1332 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1333 ++fail;
1334
1335 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1336 BTRFS_UUID_SIZE))
1337 ++fail;
1338
1339 BUG_ON(sdev->nodesize != sdev->leafsize);
1340 len = sdev->nodesize - BTRFS_CSUM_SIZE;
1341 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1342 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1343 index = 0;
1344 for (;;) {
1345 u64 l = min_t(u64, len, mapped_size);
1346
1347 crc = btrfs_csum_data(root, p, crc, l);
1348 kunmap_atomic(mapped_buffer);
1349 len -= l;
1350 if (len == 0)
1351 break;
1352 index++;
1353 BUG_ON(index >= sblock->page_count);
1354 BUG_ON(!sblock->pagev[index].page);
1355 page = sblock->pagev[index].page;
1356 mapped_buffer = kmap_atomic(page);
1357 mapped_size = PAGE_SIZE;
1358 p = mapped_buffer;
1359 }
1360
1361 btrfs_csum_final(crc, calculated_csum);
1362 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1363 ++crc_fail;
1364
1365 return fail || crc_fail;
1366 }
1367
1368 static int scrub_checksum_super(struct scrub_block *sblock)
1369 {
1370 struct btrfs_super_block *s;
1371 struct scrub_dev *sdev = sblock->sdev;
1372 struct btrfs_root *root = sdev->dev->dev_root;
1373 struct btrfs_fs_info *fs_info = root->fs_info;
1374 u8 calculated_csum[BTRFS_CSUM_SIZE];
1375 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1376 struct page *page;
1377 void *mapped_buffer;
1378 u64 mapped_size;
1379 void *p;
1380 u32 crc = ~(u32)0;
1381 int fail_gen = 0;
1382 int fail_cor = 0;
1383 u64 len;
1384 int index;
1385
1386 BUG_ON(sblock->page_count < 1);
1387 page = sblock->pagev[0].page;
1388 mapped_buffer = kmap_atomic(page);
1389 s = (struct btrfs_super_block *)mapped_buffer;
1390 memcpy(on_disk_csum, s->csum, sdev->csum_size);
1391
1392 if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1393 ++fail_cor;
1394
1395 if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1396 ++fail_gen;
1397
1398 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1399 ++fail_cor;
1400
1401 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1402 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1403 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1404 index = 0;
1405 for (;;) {
1406 u64 l = min_t(u64, len, mapped_size);
1407
1408 crc = btrfs_csum_data(root, p, crc, l);
1409 kunmap_atomic(mapped_buffer);
1410 len -= l;
1411 if (len == 0)
1412 break;
1413 index++;
1414 BUG_ON(index >= sblock->page_count);
1415 BUG_ON(!sblock->pagev[index].page);
1416 page = sblock->pagev[index].page;
1417 mapped_buffer = kmap_atomic(page);
1418 mapped_size = PAGE_SIZE;
1419 p = mapped_buffer;
1420 }
1421
1422 btrfs_csum_final(crc, calculated_csum);
1423 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1424 ++fail_cor;
1425
1426 if (fail_cor + fail_gen) {
1427 /*
1428 * if we find an error in a super block, we just report it.
1429 * They will get written with the next transaction commit
1430 * anyway
1431 */
1432 spin_lock(&sdev->stat_lock);
1433 ++sdev->stat.super_errors;
1434 spin_unlock(&sdev->stat_lock);
1435 if (fail_cor)
1436 btrfs_dev_stat_inc_and_print(sdev->dev,
1437 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1438 else
1439 btrfs_dev_stat_inc_and_print(sdev->dev,
1440 BTRFS_DEV_STAT_GENERATION_ERRS);
1441 }
1442
1443 return fail_cor + fail_gen;
1444 }
1445
1446 static void scrub_block_get(struct scrub_block *sblock)
1447 {
1448 atomic_inc(&sblock->ref_count);
1449 }
1450
1451 static void scrub_block_put(struct scrub_block *sblock)
1452 {
1453 if (atomic_dec_and_test(&sblock->ref_count)) {
1454 int i;
1455
1456 for (i = 0; i < sblock->page_count; i++)
1457 if (sblock->pagev[i].page)
1458 __free_page(sblock->pagev[i].page);
1459 kfree(sblock);
1460 }
1461 }
1462
1463 static void scrub_submit(struct scrub_dev *sdev)
1464 {
1465 struct scrub_bio *sbio;
1466
1467 if (sdev->curr == -1)
1468 return;
1469
1470 sbio = sdev->bios[sdev->curr];
1471 sdev->curr = -1;
1472 atomic_inc(&sdev->in_flight);
1473
1474 btrfsic_submit_bio(READ, sbio->bio);
1475 }
1476
1477 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1478 struct scrub_page *spage)
1479 {
1480 struct scrub_block *sblock = spage->sblock;
1481 struct scrub_bio *sbio;
1482 int ret;
1483
1484 again:
1485 /*
1486 * grab a fresh bio or wait for one to become available
1487 */
1488 while (sdev->curr == -1) {
1489 spin_lock(&sdev->list_lock);
1490 sdev->curr = sdev->first_free;
1491 if (sdev->curr != -1) {
1492 sdev->first_free = sdev->bios[sdev->curr]->next_free;
1493 sdev->bios[sdev->curr]->next_free = -1;
1494 sdev->bios[sdev->curr]->page_count = 0;
1495 spin_unlock(&sdev->list_lock);
1496 } else {
1497 spin_unlock(&sdev->list_lock);
1498 wait_event(sdev->list_wait, sdev->first_free != -1);
1499 }
1500 }
1501 sbio = sdev->bios[sdev->curr];
1502 if (sbio->page_count == 0) {
1503 struct bio *bio;
1504
1505 sbio->physical = spage->physical;
1506 sbio->logical = spage->logical;
1507 bio = sbio->bio;
1508 if (!bio) {
1509 bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1510 if (!bio)
1511 return -ENOMEM;
1512 sbio->bio = bio;
1513 }
1514
1515 bio->bi_private = sbio;
1516 bio->bi_end_io = scrub_bio_end_io;
1517 bio->bi_bdev = sdev->dev->bdev;
1518 bio->bi_sector = spage->physical >> 9;
1519 sbio->err = 0;
1520 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1521 spage->physical ||
1522 sbio->logical + sbio->page_count * PAGE_SIZE !=
1523 spage->logical) {
1524 scrub_submit(sdev);
1525 goto again;
1526 }
1527
1528 sbio->pagev[sbio->page_count] = spage;
1529 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1530 if (ret != PAGE_SIZE) {
1531 if (sbio->page_count < 1) {
1532 bio_put(sbio->bio);
1533 sbio->bio = NULL;
1534 return -EIO;
1535 }
1536 scrub_submit(sdev);
1537 goto again;
1538 }
1539
1540 scrub_block_get(sblock); /* one for the added page */
1541 atomic_inc(&sblock->outstanding_pages);
1542 sbio->page_count++;
1543 if (sbio->page_count == sdev->pages_per_bio)
1544 scrub_submit(sdev);
1545
1546 return 0;
1547 }
1548
1549 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1550 u64 physical, u64 flags, u64 gen, int mirror_num,
1551 u8 *csum, int force)
1552 {
1553 struct scrub_block *sblock;
1554 int index;
1555
1556 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1557 if (!sblock) {
1558 spin_lock(&sdev->stat_lock);
1559 sdev->stat.malloc_errors++;
1560 spin_unlock(&sdev->stat_lock);
1561 return -ENOMEM;
1562 }
1563
1564 /* one ref inside this function, plus one for each page later on */
1565 atomic_set(&sblock->ref_count, 1);
1566 sblock->sdev = sdev;
1567 sblock->no_io_error_seen = 1;
1568
1569 for (index = 0; len > 0; index++) {
1570 struct scrub_page *spage = sblock->pagev + index;
1571 u64 l = min_t(u64, len, PAGE_SIZE);
1572
1573 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1574 spage->page = alloc_page(GFP_NOFS);
1575 if (!spage->page) {
1576 spin_lock(&sdev->stat_lock);
1577 sdev->stat.malloc_errors++;
1578 spin_unlock(&sdev->stat_lock);
1579 while (index > 0) {
1580 index--;
1581 __free_page(sblock->pagev[index].page);
1582 }
1583 kfree(sblock);
1584 return -ENOMEM;
1585 }
1586 spage->sblock = sblock;
1587 spage->dev = sdev->dev;
1588 spage->flags = flags;
1589 spage->generation = gen;
1590 spage->logical = logical;
1591 spage->physical = physical;
1592 spage->mirror_num = mirror_num;
1593 if (csum) {
1594 spage->have_csum = 1;
1595 memcpy(spage->csum, csum, sdev->csum_size);
1596 } else {
1597 spage->have_csum = 0;
1598 }
1599 sblock->page_count++;
1600 len -= l;
1601 logical += l;
1602 physical += l;
1603 }
1604
1605 BUG_ON(sblock->page_count == 0);
1606 for (index = 0; index < sblock->page_count; index++) {
1607 struct scrub_page *spage = sblock->pagev + index;
1608 int ret;
1609
1610 ret = scrub_add_page_to_bio(sdev, spage);
1611 if (ret) {
1612 scrub_block_put(sblock);
1613 return ret;
1614 }
1615 }
1616
1617 if (force)
1618 scrub_submit(sdev);
1619
1620 /* last one frees, either here or in bio completion for last page */
1621 scrub_block_put(sblock);
1622 return 0;
1623 }
1624
1625 static void scrub_bio_end_io(struct bio *bio, int err)
1626 {
1627 struct scrub_bio *sbio = bio->bi_private;
1628 struct scrub_dev *sdev = sbio->sdev;
1629 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1630
1631 sbio->err = err;
1632 sbio->bio = bio;
1633
1634 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1635 }
1636
1637 static void scrub_bio_end_io_worker(struct btrfs_work *work)
1638 {
1639 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1640 struct scrub_dev *sdev = sbio->sdev;
1641 int i;
1642
1643 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1644 if (sbio->err) {
1645 for (i = 0; i < sbio->page_count; i++) {
1646 struct scrub_page *spage = sbio->pagev[i];
1647
1648 spage->io_error = 1;
1649 spage->sblock->no_io_error_seen = 0;
1650 }
1651 }
1652
1653 /* now complete the scrub_block items that have all pages completed */
1654 for (i = 0; i < sbio->page_count; i++) {
1655 struct scrub_page *spage = sbio->pagev[i];
1656 struct scrub_block *sblock = spage->sblock;
1657
1658 if (atomic_dec_and_test(&sblock->outstanding_pages))
1659 scrub_block_complete(sblock);
1660 scrub_block_put(sblock);
1661 }
1662
1663 if (sbio->err) {
1664 /* what is this good for??? */
1665 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1666 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1667 sbio->bio->bi_phys_segments = 0;
1668 sbio->bio->bi_idx = 0;
1669
1670 for (i = 0; i < sbio->page_count; i++) {
1671 struct bio_vec *bi;
1672 bi = &sbio->bio->bi_io_vec[i];
1673 bi->bv_offset = 0;
1674 bi->bv_len = PAGE_SIZE;
1675 }
1676 }
1677
1678 bio_put(sbio->bio);
1679 sbio->bio = NULL;
1680 spin_lock(&sdev->list_lock);
1681 sbio->next_free = sdev->first_free;
1682 sdev->first_free = sbio->index;
1683 spin_unlock(&sdev->list_lock);
1684 atomic_dec(&sdev->in_flight);
1685 wake_up(&sdev->list_wait);
1686 }
1687
1688 static void scrub_block_complete(struct scrub_block *sblock)
1689 {
1690 if (!sblock->no_io_error_seen)
1691 scrub_handle_errored_block(sblock);
1692 else
1693 scrub_checksum(sblock);
1694 }
1695
1696 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1697 u8 *csum)
1698 {
1699 struct btrfs_ordered_sum *sum = NULL;
1700 int ret = 0;
1701 unsigned long i;
1702 unsigned long num_sectors;
1703
1704 while (!list_empty(&sdev->csum_list)) {
1705 sum = list_first_entry(&sdev->csum_list,
1706 struct btrfs_ordered_sum, list);
1707 if (sum->bytenr > logical)
1708 return 0;
1709 if (sum->bytenr + sum->len > logical)
1710 break;
1711
1712 ++sdev->stat.csum_discards;
1713 list_del(&sum->list);
1714 kfree(sum);
1715 sum = NULL;
1716 }
1717 if (!sum)
1718 return 0;
1719
1720 num_sectors = sum->len / sdev->sectorsize;
1721 for (i = 0; i < num_sectors; ++i) {
1722 if (sum->sums[i].bytenr == logical) {
1723 memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1724 ret = 1;
1725 break;
1726 }
1727 }
1728 if (ret && i == num_sectors - 1) {
1729 list_del(&sum->list);
1730 kfree(sum);
1731 }
1732 return ret;
1733 }
1734
1735 /* scrub extent tries to collect up to 64 kB for each bio */
1736 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1737 u64 physical, u64 flags, u64 gen, int mirror_num)
1738 {
1739 int ret;
1740 u8 csum[BTRFS_CSUM_SIZE];
1741 u32 blocksize;
1742
1743 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1744 blocksize = sdev->sectorsize;
1745 spin_lock(&sdev->stat_lock);
1746 sdev->stat.data_extents_scrubbed++;
1747 sdev->stat.data_bytes_scrubbed += len;
1748 spin_unlock(&sdev->stat_lock);
1749 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1750 BUG_ON(sdev->nodesize != sdev->leafsize);
1751 blocksize = sdev->nodesize;
1752 spin_lock(&sdev->stat_lock);
1753 sdev->stat.tree_extents_scrubbed++;
1754 sdev->stat.tree_bytes_scrubbed += len;
1755 spin_unlock(&sdev->stat_lock);
1756 } else {
1757 blocksize = sdev->sectorsize;
1758 BUG_ON(1);
1759 }
1760
1761 while (len) {
1762 u64 l = min_t(u64, len, blocksize);
1763 int have_csum = 0;
1764
1765 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1766 /* push csums to sbio */
1767 have_csum = scrub_find_csum(sdev, logical, l, csum);
1768 if (have_csum == 0)
1769 ++sdev->stat.no_csum;
1770 }
1771 ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1772 mirror_num, have_csum ? csum : NULL, 0);
1773 if (ret)
1774 return ret;
1775 len -= l;
1776 logical += l;
1777 physical += l;
1778 }
1779 return 0;
1780 }
1781
1782 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1783 struct map_lookup *map, int num, u64 base, u64 length)
1784 {
1785 struct btrfs_path *path;
1786 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1787 struct btrfs_root *root = fs_info->extent_root;
1788 struct btrfs_root *csum_root = fs_info->csum_root;
1789 struct btrfs_extent_item *extent;
1790 struct blk_plug plug;
1791 u64 flags;
1792 int ret;
1793 int slot;
1794 int i;
1795 u64 nstripes;
1796 struct extent_buffer *l;
1797 struct btrfs_key key;
1798 u64 physical;
1799 u64 logical;
1800 u64 generation;
1801 int mirror_num;
1802 struct reada_control *reada1;
1803 struct reada_control *reada2;
1804 struct btrfs_key key_start;
1805 struct btrfs_key key_end;
1806
1807 u64 increment = map->stripe_len;
1808 u64 offset;
1809
1810 nstripes = length;
1811 offset = 0;
1812 do_div(nstripes, map->stripe_len);
1813 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1814 offset = map->stripe_len * num;
1815 increment = map->stripe_len * map->num_stripes;
1816 mirror_num = 1;
1817 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1818 int factor = map->num_stripes / map->sub_stripes;
1819 offset = map->stripe_len * (num / map->sub_stripes);
1820 increment = map->stripe_len * factor;
1821 mirror_num = num % map->sub_stripes + 1;
1822 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1823 increment = map->stripe_len;
1824 mirror_num = num % map->num_stripes + 1;
1825 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1826 increment = map->stripe_len;
1827 mirror_num = num % map->num_stripes + 1;
1828 } else {
1829 increment = map->stripe_len;
1830 mirror_num = 1;
1831 }
1832
1833 path = btrfs_alloc_path();
1834 if (!path)
1835 return -ENOMEM;
1836
1837 /*
1838 * work on commit root. The related disk blocks are static as
1839 * long as COW is applied. This means, it is save to rewrite
1840 * them to repair disk errors without any race conditions
1841 */
1842 path->search_commit_root = 1;
1843 path->skip_locking = 1;
1844
1845 /*
1846 * trigger the readahead for extent tree csum tree and wait for
1847 * completion. During readahead, the scrub is officially paused
1848 * to not hold off transaction commits
1849 */
1850 logical = base + offset;
1851
1852 wait_event(sdev->list_wait,
1853 atomic_read(&sdev->in_flight) == 0);
1854 atomic_inc(&fs_info->scrubs_paused);
1855 wake_up(&fs_info->scrub_pause_wait);
1856
1857 /* FIXME it might be better to start readahead at commit root */
1858 key_start.objectid = logical;
1859 key_start.type = BTRFS_EXTENT_ITEM_KEY;
1860 key_start.offset = (u64)0;
1861 key_end.objectid = base + offset + nstripes * increment;
1862 key_end.type = BTRFS_EXTENT_ITEM_KEY;
1863 key_end.offset = (u64)0;
1864 reada1 = btrfs_reada_add(root, &key_start, &key_end);
1865
1866 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1867 key_start.type = BTRFS_EXTENT_CSUM_KEY;
1868 key_start.offset = logical;
1869 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1870 key_end.type = BTRFS_EXTENT_CSUM_KEY;
1871 key_end.offset = base + offset + nstripes * increment;
1872 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1873
1874 if (!IS_ERR(reada1))
1875 btrfs_reada_wait(reada1);
1876 if (!IS_ERR(reada2))
1877 btrfs_reada_wait(reada2);
1878
1879 mutex_lock(&fs_info->scrub_lock);
1880 while (atomic_read(&fs_info->scrub_pause_req)) {
1881 mutex_unlock(&fs_info->scrub_lock);
1882 wait_event(fs_info->scrub_pause_wait,
1883 atomic_read(&fs_info->scrub_pause_req) == 0);
1884 mutex_lock(&fs_info->scrub_lock);
1885 }
1886 atomic_dec(&fs_info->scrubs_paused);
1887 mutex_unlock(&fs_info->scrub_lock);
1888 wake_up(&fs_info->scrub_pause_wait);
1889
1890 /*
1891 * collect all data csums for the stripe to avoid seeking during
1892 * the scrub. This might currently (crc32) end up to be about 1MB
1893 */
1894 blk_start_plug(&plug);
1895
1896 /*
1897 * now find all extents for each stripe and scrub them
1898 */
1899 logical = base + offset;
1900 physical = map->stripes[num].physical;
1901 ret = 0;
1902 for (i = 0; i < nstripes; ++i) {
1903 /*
1904 * canceled?
1905 */
1906 if (atomic_read(&fs_info->scrub_cancel_req) ||
1907 atomic_read(&sdev->cancel_req)) {
1908 ret = -ECANCELED;
1909 goto out;
1910 }
1911 /*
1912 * check to see if we have to pause
1913 */
1914 if (atomic_read(&fs_info->scrub_pause_req)) {
1915 /* push queued extents */
1916 scrub_submit(sdev);
1917 wait_event(sdev->list_wait,
1918 atomic_read(&sdev->in_flight) == 0);
1919 atomic_inc(&fs_info->scrubs_paused);
1920 wake_up(&fs_info->scrub_pause_wait);
1921 mutex_lock(&fs_info->scrub_lock);
1922 while (atomic_read(&fs_info->scrub_pause_req)) {
1923 mutex_unlock(&fs_info->scrub_lock);
1924 wait_event(fs_info->scrub_pause_wait,
1925 atomic_read(&fs_info->scrub_pause_req) == 0);
1926 mutex_lock(&fs_info->scrub_lock);
1927 }
1928 atomic_dec(&fs_info->scrubs_paused);
1929 mutex_unlock(&fs_info->scrub_lock);
1930 wake_up(&fs_info->scrub_pause_wait);
1931 }
1932
1933 ret = btrfs_lookup_csums_range(csum_root, logical,
1934 logical + map->stripe_len - 1,
1935 &sdev->csum_list, 1);
1936 if (ret)
1937 goto out;
1938
1939 key.objectid = logical;
1940 key.type = BTRFS_EXTENT_ITEM_KEY;
1941 key.offset = (u64)0;
1942
1943 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1944 if (ret < 0)
1945 goto out;
1946 if (ret > 0) {
1947 ret = btrfs_previous_item(root, path, 0,
1948 BTRFS_EXTENT_ITEM_KEY);
1949 if (ret < 0)
1950 goto out;
1951 if (ret > 0) {
1952 /* there's no smaller item, so stick with the
1953 * larger one */
1954 btrfs_release_path(path);
1955 ret = btrfs_search_slot(NULL, root, &key,
1956 path, 0, 0);
1957 if (ret < 0)
1958 goto out;
1959 }
1960 }
1961
1962 while (1) {
1963 l = path->nodes[0];
1964 slot = path->slots[0];
1965 if (slot >= btrfs_header_nritems(l)) {
1966 ret = btrfs_next_leaf(root, path);
1967 if (ret == 0)
1968 continue;
1969 if (ret < 0)
1970 goto out;
1971
1972 break;
1973 }
1974 btrfs_item_key_to_cpu(l, &key, slot);
1975
1976 if (key.objectid + key.offset <= logical)
1977 goto next;
1978
1979 if (key.objectid >= logical + map->stripe_len)
1980 break;
1981
1982 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1983 goto next;
1984
1985 extent = btrfs_item_ptr(l, slot,
1986 struct btrfs_extent_item);
1987 flags = btrfs_extent_flags(l, extent);
1988 generation = btrfs_extent_generation(l, extent);
1989
1990 if (key.objectid < logical &&
1991 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1992 printk(KERN_ERR
1993 "btrfs scrub: tree block %llu spanning "
1994 "stripes, ignored. logical=%llu\n",
1995 (unsigned long long)key.objectid,
1996 (unsigned long long)logical);
1997 goto next;
1998 }
1999
2000 /*
2001 * trim extent to this stripe
2002 */
2003 if (key.objectid < logical) {
2004 key.offset -= logical - key.objectid;
2005 key.objectid = logical;
2006 }
2007 if (key.objectid + key.offset >
2008 logical + map->stripe_len) {
2009 key.offset = logical + map->stripe_len -
2010 key.objectid;
2011 }
2012
2013 ret = scrub_extent(sdev, key.objectid, key.offset,
2014 key.objectid - logical + physical,
2015 flags, generation, mirror_num);
2016 if (ret)
2017 goto out;
2018
2019 next:
2020 path->slots[0]++;
2021 }
2022 btrfs_release_path(path);
2023 logical += increment;
2024 physical += map->stripe_len;
2025 spin_lock(&sdev->stat_lock);
2026 sdev->stat.last_physical = physical;
2027 spin_unlock(&sdev->stat_lock);
2028 }
2029 /* push queued extents */
2030 scrub_submit(sdev);
2031
2032 out:
2033 blk_finish_plug(&plug);
2034 btrfs_free_path(path);
2035 return ret < 0 ? ret : 0;
2036 }
2037
2038 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2039 u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2040 u64 dev_offset)
2041 {
2042 struct btrfs_mapping_tree *map_tree =
2043 &sdev->dev->dev_root->fs_info->mapping_tree;
2044 struct map_lookup *map;
2045 struct extent_map *em;
2046 int i;
2047 int ret = -EINVAL;
2048
2049 read_lock(&map_tree->map_tree.lock);
2050 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2051 read_unlock(&map_tree->map_tree.lock);
2052
2053 if (!em)
2054 return -EINVAL;
2055
2056 map = (struct map_lookup *)em->bdev;
2057 if (em->start != chunk_offset)
2058 goto out;
2059
2060 if (em->len < length)
2061 goto out;
2062
2063 for (i = 0; i < map->num_stripes; ++i) {
2064 if (map->stripes[i].dev == sdev->dev &&
2065 map->stripes[i].physical == dev_offset) {
2066 ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2067 if (ret)
2068 goto out;
2069 }
2070 }
2071 out:
2072 free_extent_map(em);
2073
2074 return ret;
2075 }
2076
2077 static noinline_for_stack
2078 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2079 {
2080 struct btrfs_dev_extent *dev_extent = NULL;
2081 struct btrfs_path *path;
2082 struct btrfs_root *root = sdev->dev->dev_root;
2083 struct btrfs_fs_info *fs_info = root->fs_info;
2084 u64 length;
2085 u64 chunk_tree;
2086 u64 chunk_objectid;
2087 u64 chunk_offset;
2088 int ret;
2089 int slot;
2090 struct extent_buffer *l;
2091 struct btrfs_key key;
2092 struct btrfs_key found_key;
2093 struct btrfs_block_group_cache *cache;
2094
2095 path = btrfs_alloc_path();
2096 if (!path)
2097 return -ENOMEM;
2098
2099 path->reada = 2;
2100 path->search_commit_root = 1;
2101 path->skip_locking = 1;
2102
2103 key.objectid = sdev->dev->devid;
2104 key.offset = 0ull;
2105 key.type = BTRFS_DEV_EXTENT_KEY;
2106
2107
2108 while (1) {
2109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2110 if (ret < 0)
2111 break;
2112 if (ret > 0) {
2113 if (path->slots[0] >=
2114 btrfs_header_nritems(path->nodes[0])) {
2115 ret = btrfs_next_leaf(root, path);
2116 if (ret)
2117 break;
2118 }
2119 }
2120
2121 l = path->nodes[0];
2122 slot = path->slots[0];
2123
2124 btrfs_item_key_to_cpu(l, &found_key, slot);
2125
2126 if (found_key.objectid != sdev->dev->devid)
2127 break;
2128
2129 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2130 break;
2131
2132 if (found_key.offset >= end)
2133 break;
2134
2135 if (found_key.offset < key.offset)
2136 break;
2137
2138 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2139 length = btrfs_dev_extent_length(l, dev_extent);
2140
2141 if (found_key.offset + length <= start) {
2142 key.offset = found_key.offset + length;
2143 btrfs_release_path(path);
2144 continue;
2145 }
2146
2147 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2148 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2149 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2150
2151 /*
2152 * get a reference on the corresponding block group to prevent
2153 * the chunk from going away while we scrub it
2154 */
2155 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2156 if (!cache) {
2157 ret = -ENOENT;
2158 break;
2159 }
2160 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2161 chunk_offset, length, found_key.offset);
2162 btrfs_put_block_group(cache);
2163 if (ret)
2164 break;
2165
2166 key.offset = found_key.offset + length;
2167 btrfs_release_path(path);
2168 }
2169
2170 btrfs_free_path(path);
2171
2172 /*
2173 * ret can still be 1 from search_slot or next_leaf,
2174 * that's not an error
2175 */
2176 return ret < 0 ? ret : 0;
2177 }
2178
2179 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2180 {
2181 int i;
2182 u64 bytenr;
2183 u64 gen;
2184 int ret;
2185 struct btrfs_device *device = sdev->dev;
2186 struct btrfs_root *root = device->dev_root;
2187
2188 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2189 return -EIO;
2190
2191 gen = root->fs_info->last_trans_committed;
2192
2193 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2194 bytenr = btrfs_sb_offset(i);
2195 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2196 break;
2197
2198 ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2199 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2200 if (ret)
2201 return ret;
2202 }
2203 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2204
2205 return 0;
2206 }
2207
2208 /*
2209 * get a reference count on fs_info->scrub_workers. start worker if necessary
2210 */
2211 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2212 {
2213 struct btrfs_fs_info *fs_info = root->fs_info;
2214 int ret = 0;
2215
2216 mutex_lock(&fs_info->scrub_lock);
2217 if (fs_info->scrub_workers_refcnt == 0) {
2218 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2219 fs_info->thread_pool_size, &fs_info->generic_worker);
2220 fs_info->scrub_workers.idle_thresh = 4;
2221 ret = btrfs_start_workers(&fs_info->scrub_workers);
2222 if (ret)
2223 goto out;
2224 }
2225 ++fs_info->scrub_workers_refcnt;
2226 out:
2227 mutex_unlock(&fs_info->scrub_lock);
2228
2229 return ret;
2230 }
2231
2232 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2233 {
2234 struct btrfs_fs_info *fs_info = root->fs_info;
2235
2236 mutex_lock(&fs_info->scrub_lock);
2237 if (--fs_info->scrub_workers_refcnt == 0)
2238 btrfs_stop_workers(&fs_info->scrub_workers);
2239 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2240 mutex_unlock(&fs_info->scrub_lock);
2241 }
2242
2243
2244 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2245 struct btrfs_scrub_progress *progress, int readonly)
2246 {
2247 struct scrub_dev *sdev;
2248 struct btrfs_fs_info *fs_info = root->fs_info;
2249 int ret;
2250 struct btrfs_device *dev;
2251
2252 if (btrfs_fs_closing(root->fs_info))
2253 return -EINVAL;
2254
2255 /*
2256 * check some assumptions
2257 */
2258 if (root->nodesize != root->leafsize) {
2259 printk(KERN_ERR
2260 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2261 root->nodesize, root->leafsize);
2262 return -EINVAL;
2263 }
2264
2265 if (root->nodesize > BTRFS_STRIPE_LEN) {
2266 /*
2267 * in this case scrub is unable to calculate the checksum
2268 * the way scrub is implemented. Do not handle this
2269 * situation at all because it won't ever happen.
2270 */
2271 printk(KERN_ERR
2272 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2273 root->nodesize, BTRFS_STRIPE_LEN);
2274 return -EINVAL;
2275 }
2276
2277 if (root->sectorsize != PAGE_SIZE) {
2278 /* not supported for data w/o checksums */
2279 printk(KERN_ERR
2280 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2281 root->sectorsize, (unsigned long long)PAGE_SIZE);
2282 return -EINVAL;
2283 }
2284
2285 ret = scrub_workers_get(root);
2286 if (ret)
2287 return ret;
2288
2289 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2290 dev = btrfs_find_device(root, devid, NULL, NULL);
2291 if (!dev || dev->missing) {
2292 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2293 scrub_workers_put(root);
2294 return -ENODEV;
2295 }
2296 mutex_lock(&fs_info->scrub_lock);
2297
2298 if (!dev->in_fs_metadata) {
2299 mutex_unlock(&fs_info->scrub_lock);
2300 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2301 scrub_workers_put(root);
2302 return -ENODEV;
2303 }
2304
2305 if (dev->scrub_device) {
2306 mutex_unlock(&fs_info->scrub_lock);
2307 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2308 scrub_workers_put(root);
2309 return -EINPROGRESS;
2310 }
2311 sdev = scrub_setup_dev(dev);
2312 if (IS_ERR(sdev)) {
2313 mutex_unlock(&fs_info->scrub_lock);
2314 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2315 scrub_workers_put(root);
2316 return PTR_ERR(sdev);
2317 }
2318 sdev->readonly = readonly;
2319 dev->scrub_device = sdev;
2320
2321 atomic_inc(&fs_info->scrubs_running);
2322 mutex_unlock(&fs_info->scrub_lock);
2323 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2324
2325 down_read(&fs_info->scrub_super_lock);
2326 ret = scrub_supers(sdev);
2327 up_read(&fs_info->scrub_super_lock);
2328
2329 if (!ret)
2330 ret = scrub_enumerate_chunks(sdev, start, end);
2331
2332 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2333 atomic_dec(&fs_info->scrubs_running);
2334 wake_up(&fs_info->scrub_pause_wait);
2335
2336 wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2337
2338 if (progress)
2339 memcpy(progress, &sdev->stat, sizeof(*progress));
2340
2341 mutex_lock(&fs_info->scrub_lock);
2342 dev->scrub_device = NULL;
2343 mutex_unlock(&fs_info->scrub_lock);
2344
2345 scrub_free_dev(sdev);
2346 scrub_workers_put(root);
2347
2348 return ret;
2349 }
2350
2351 void btrfs_scrub_pause(struct btrfs_root *root)
2352 {
2353 struct btrfs_fs_info *fs_info = root->fs_info;
2354
2355 mutex_lock(&fs_info->scrub_lock);
2356 atomic_inc(&fs_info->scrub_pause_req);
2357 while (atomic_read(&fs_info->scrubs_paused) !=
2358 atomic_read(&fs_info->scrubs_running)) {
2359 mutex_unlock(&fs_info->scrub_lock);
2360 wait_event(fs_info->scrub_pause_wait,
2361 atomic_read(&fs_info->scrubs_paused) ==
2362 atomic_read(&fs_info->scrubs_running));
2363 mutex_lock(&fs_info->scrub_lock);
2364 }
2365 mutex_unlock(&fs_info->scrub_lock);
2366 }
2367
2368 void btrfs_scrub_continue(struct btrfs_root *root)
2369 {
2370 struct btrfs_fs_info *fs_info = root->fs_info;
2371
2372 atomic_dec(&fs_info->scrub_pause_req);
2373 wake_up(&fs_info->scrub_pause_wait);
2374 }
2375
2376 void btrfs_scrub_pause_super(struct btrfs_root *root)
2377 {
2378 down_write(&root->fs_info->scrub_super_lock);
2379 }
2380
2381 void btrfs_scrub_continue_super(struct btrfs_root *root)
2382 {
2383 up_write(&root->fs_info->scrub_super_lock);
2384 }
2385
2386 int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2387 {
2388
2389 mutex_lock(&fs_info->scrub_lock);
2390 if (!atomic_read(&fs_info->scrubs_running)) {
2391 mutex_unlock(&fs_info->scrub_lock);
2392 return -ENOTCONN;
2393 }
2394
2395 atomic_inc(&fs_info->scrub_cancel_req);
2396 while (atomic_read(&fs_info->scrubs_running)) {
2397 mutex_unlock(&fs_info->scrub_lock);
2398 wait_event(fs_info->scrub_pause_wait,
2399 atomic_read(&fs_info->scrubs_running) == 0);
2400 mutex_lock(&fs_info->scrub_lock);
2401 }
2402 atomic_dec(&fs_info->scrub_cancel_req);
2403 mutex_unlock(&fs_info->scrub_lock);
2404
2405 return 0;
2406 }
2407
2408 int btrfs_scrub_cancel(struct btrfs_root *root)
2409 {
2410 return __btrfs_scrub_cancel(root->fs_info);
2411 }
2412
2413 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2414 {
2415 struct btrfs_fs_info *fs_info = root->fs_info;
2416 struct scrub_dev *sdev;
2417
2418 mutex_lock(&fs_info->scrub_lock);
2419 sdev = dev->scrub_device;
2420 if (!sdev) {
2421 mutex_unlock(&fs_info->scrub_lock);
2422 return -ENOTCONN;
2423 }
2424 atomic_inc(&sdev->cancel_req);
2425 while (dev->scrub_device) {
2426 mutex_unlock(&fs_info->scrub_lock);
2427 wait_event(fs_info->scrub_pause_wait,
2428 dev->scrub_device == NULL);
2429 mutex_lock(&fs_info->scrub_lock);
2430 }
2431 mutex_unlock(&fs_info->scrub_lock);
2432
2433 return 0;
2434 }
2435
2436 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2437 {
2438 struct btrfs_fs_info *fs_info = root->fs_info;
2439 struct btrfs_device *dev;
2440 int ret;
2441
2442 /*
2443 * we have to hold the device_list_mutex here so the device
2444 * does not go away in cancel_dev. FIXME: find a better solution
2445 */
2446 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2447 dev = btrfs_find_device(root, devid, NULL, NULL);
2448 if (!dev) {
2449 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2450 return -ENODEV;
2451 }
2452 ret = btrfs_scrub_cancel_dev(root, dev);
2453 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2454
2455 return ret;
2456 }
2457
2458 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2459 struct btrfs_scrub_progress *progress)
2460 {
2461 struct btrfs_device *dev;
2462 struct scrub_dev *sdev = NULL;
2463
2464 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2465 dev = btrfs_find_device(root, devid, NULL, NULL);
2466 if (dev)
2467 sdev = dev->scrub_device;
2468 if (sdev)
2469 memcpy(progress, &sdev->stat, sizeof(*progress));
2470 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2471
2472 return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2473 }
This page took 0.080606 seconds and 5 git commands to generate.