Merge branch 'i2c/for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[deliverable/linux.git] / fs / btrfs / scrub.c
1 /*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
44 */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
58
59 /*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
65
66 struct scrub_page {
67 struct scrub_block *sblock;
68 struct page *page;
69 struct btrfs_device *dev;
70 u64 flags; /* extent flags */
71 u64 generation;
72 u64 logical;
73 u64 physical;
74 u64 physical_for_dev_replace;
75 atomic_t ref_count;
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
80 };
81 u8 csum[BTRFS_CSUM_SIZE];
82 };
83
84 struct scrub_bio {
85 int index;
86 struct scrub_ctx *sctx;
87 struct btrfs_device *dev;
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 int page_count;
98 int next_free;
99 struct btrfs_work work;
100 };
101
102 struct scrub_block {
103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
107 struct scrub_ctx *sctx;
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
113 };
114 };
115
116 struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
122 };
123
124 struct scrub_ctx {
125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
126 struct btrfs_root *dev_root;
127 int first_free;
128 int curr;
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
136 int readonly;
137 int pages_per_rd_bio;
138 u32 sectorsize;
139 u32 nodesize;
140 u32 leafsize;
141
142 int is_dev_replace;
143 struct scrub_wr_ctx wr_ctx;
144
145 /*
146 * statistics
147 */
148 struct btrfs_scrub_progress stat;
149 spinlock_t stat_lock;
150 };
151
152 struct scrub_fixup_nodatasum {
153 struct scrub_ctx *sctx;
154 struct btrfs_device *dev;
155 u64 logical;
156 struct btrfs_root *root;
157 struct btrfs_work work;
158 int mirror_num;
159 };
160
161 struct scrub_nocow_inode {
162 u64 inum;
163 u64 offset;
164 u64 root;
165 struct list_head list;
166 };
167
168 struct scrub_copy_nocow_ctx {
169 struct scrub_ctx *sctx;
170 u64 logical;
171 u64 len;
172 int mirror_num;
173 u64 physical_for_dev_replace;
174 struct list_head inodes;
175 struct btrfs_work work;
176 };
177
178 struct scrub_warning {
179 struct btrfs_path *path;
180 u64 extent_item_size;
181 char *scratch_buf;
182 char *msg_buf;
183 const char *errstr;
184 sector_t sector;
185 u64 logical;
186 struct btrfs_device *dev;
187 int msg_bufsize;
188 int scratch_bufsize;
189 };
190
191
192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198 struct btrfs_fs_info *fs_info,
199 struct scrub_block *original_sblock,
200 u64 length, u64 logical,
201 struct scrub_block *sblocks_for_recheck);
202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203 struct scrub_block *sblock, int is_metadata,
204 int have_csum, u8 *csum, u64 generation,
205 u16 csum_size);
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207 struct scrub_block *sblock,
208 int is_metadata, int have_csum,
209 const u8 *csum, u64 generation,
210 u16 csum_size);
211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212 struct scrub_block *sblock_good,
213 int force_write);
214 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215 struct scrub_block *sblock_good,
216 int page_num, int force_write);
217 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219 int page_num);
220 static int scrub_checksum_data(struct scrub_block *sblock);
221 static int scrub_checksum_tree_block(struct scrub_block *sblock);
222 static int scrub_checksum_super(struct scrub_block *sblock);
223 static void scrub_block_get(struct scrub_block *sblock);
224 static void scrub_block_put(struct scrub_block *sblock);
225 static void scrub_page_get(struct scrub_page *spage);
226 static void scrub_page_put(struct scrub_page *spage);
227 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228 struct scrub_page *spage);
229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230 u64 physical, struct btrfs_device *dev, u64 flags,
231 u64 gen, int mirror_num, u8 *csum, int force,
232 u64 physical_for_dev_replace);
233 static void scrub_bio_end_io(struct bio *bio, int err);
234 static void scrub_bio_end_io_worker(struct btrfs_work *work);
235 static void scrub_block_complete(struct scrub_block *sblock);
236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237 u64 extent_logical, u64 extent_len,
238 u64 *extent_physical,
239 struct btrfs_device **extent_dev,
240 int *extent_mirror_num);
241 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242 struct scrub_wr_ctx *wr_ctx,
243 struct btrfs_fs_info *fs_info,
244 struct btrfs_device *dev,
245 int is_dev_replace);
246 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio, int err);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static int write_page_nocow(struct scrub_ctx *sctx,
253 u64 physical_for_dev_replace, struct page *page);
254 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255 struct scrub_copy_nocow_ctx *ctx);
256 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257 int mirror_num, u64 physical_for_dev_replace);
258 static void copy_nocow_pages_worker(struct btrfs_work *work);
259 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
260 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
261
262
263 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264 {
265 atomic_inc(&sctx->bios_in_flight);
266 }
267
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 {
270 atomic_dec(&sctx->bios_in_flight);
271 wake_up(&sctx->list_wait);
272 }
273
274 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
275 {
276 while (atomic_read(&fs_info->scrub_pause_req)) {
277 mutex_unlock(&fs_info->scrub_lock);
278 wait_event(fs_info->scrub_pause_wait,
279 atomic_read(&fs_info->scrub_pause_req) == 0);
280 mutex_lock(&fs_info->scrub_lock);
281 }
282 }
283
284 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
285 {
286 atomic_inc(&fs_info->scrubs_paused);
287 wake_up(&fs_info->scrub_pause_wait);
288
289 mutex_lock(&fs_info->scrub_lock);
290 __scrub_blocked_if_needed(fs_info);
291 atomic_dec(&fs_info->scrubs_paused);
292 mutex_unlock(&fs_info->scrub_lock);
293
294 wake_up(&fs_info->scrub_pause_wait);
295 }
296
297 /*
298 * used for workers that require transaction commits (i.e., for the
299 * NOCOW case)
300 */
301 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
302 {
303 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
304
305 /*
306 * increment scrubs_running to prevent cancel requests from
307 * completing as long as a worker is running. we must also
308 * increment scrubs_paused to prevent deadlocking on pause
309 * requests used for transactions commits (as the worker uses a
310 * transaction context). it is safe to regard the worker
311 * as paused for all matters practical. effectively, we only
312 * avoid cancellation requests from completing.
313 */
314 mutex_lock(&fs_info->scrub_lock);
315 atomic_inc(&fs_info->scrubs_running);
316 atomic_inc(&fs_info->scrubs_paused);
317 mutex_unlock(&fs_info->scrub_lock);
318
319 /*
320 * check if @scrubs_running=@scrubs_paused condition
321 * inside wait_event() is not an atomic operation.
322 * which means we may inc/dec @scrub_running/paused
323 * at any time. Let's wake up @scrub_pause_wait as
324 * much as we can to let commit transaction blocked less.
325 */
326 wake_up(&fs_info->scrub_pause_wait);
327
328 atomic_inc(&sctx->workers_pending);
329 }
330
331 /* used for workers that require transaction commits */
332 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
333 {
334 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
335
336 /*
337 * see scrub_pending_trans_workers_inc() why we're pretending
338 * to be paused in the scrub counters
339 */
340 mutex_lock(&fs_info->scrub_lock);
341 atomic_dec(&fs_info->scrubs_running);
342 atomic_dec(&fs_info->scrubs_paused);
343 mutex_unlock(&fs_info->scrub_lock);
344 atomic_dec(&sctx->workers_pending);
345 wake_up(&fs_info->scrub_pause_wait);
346 wake_up(&sctx->list_wait);
347 }
348
349 static void scrub_free_csums(struct scrub_ctx *sctx)
350 {
351 while (!list_empty(&sctx->csum_list)) {
352 struct btrfs_ordered_sum *sum;
353 sum = list_first_entry(&sctx->csum_list,
354 struct btrfs_ordered_sum, list);
355 list_del(&sum->list);
356 kfree(sum);
357 }
358 }
359
360 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
361 {
362 int i;
363
364 if (!sctx)
365 return;
366
367 scrub_free_wr_ctx(&sctx->wr_ctx);
368
369 /* this can happen when scrub is cancelled */
370 if (sctx->curr != -1) {
371 struct scrub_bio *sbio = sctx->bios[sctx->curr];
372
373 for (i = 0; i < sbio->page_count; i++) {
374 WARN_ON(!sbio->pagev[i]->page);
375 scrub_block_put(sbio->pagev[i]->sblock);
376 }
377 bio_put(sbio->bio);
378 }
379
380 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
381 struct scrub_bio *sbio = sctx->bios[i];
382
383 if (!sbio)
384 break;
385 kfree(sbio);
386 }
387
388 scrub_free_csums(sctx);
389 kfree(sctx);
390 }
391
392 static noinline_for_stack
393 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
394 {
395 struct scrub_ctx *sctx;
396 int i;
397 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
398 int pages_per_rd_bio;
399 int ret;
400
401 /*
402 * the setting of pages_per_rd_bio is correct for scrub but might
403 * be wrong for the dev_replace code where we might read from
404 * different devices in the initial huge bios. However, that
405 * code is able to correctly handle the case when adding a page
406 * to a bio fails.
407 */
408 if (dev->bdev)
409 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
410 bio_get_nr_vecs(dev->bdev));
411 else
412 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
413 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
414 if (!sctx)
415 goto nomem;
416 sctx->is_dev_replace = is_dev_replace;
417 sctx->pages_per_rd_bio = pages_per_rd_bio;
418 sctx->curr = -1;
419 sctx->dev_root = dev->dev_root;
420 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
421 struct scrub_bio *sbio;
422
423 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
424 if (!sbio)
425 goto nomem;
426 sctx->bios[i] = sbio;
427
428 sbio->index = i;
429 sbio->sctx = sctx;
430 sbio->page_count = 0;
431 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
432 NULL, NULL);
433
434 if (i != SCRUB_BIOS_PER_SCTX - 1)
435 sctx->bios[i]->next_free = i + 1;
436 else
437 sctx->bios[i]->next_free = -1;
438 }
439 sctx->first_free = 0;
440 sctx->nodesize = dev->dev_root->nodesize;
441 sctx->leafsize = dev->dev_root->leafsize;
442 sctx->sectorsize = dev->dev_root->sectorsize;
443 atomic_set(&sctx->bios_in_flight, 0);
444 atomic_set(&sctx->workers_pending, 0);
445 atomic_set(&sctx->cancel_req, 0);
446 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
447 INIT_LIST_HEAD(&sctx->csum_list);
448
449 spin_lock_init(&sctx->list_lock);
450 spin_lock_init(&sctx->stat_lock);
451 init_waitqueue_head(&sctx->list_wait);
452
453 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
454 fs_info->dev_replace.tgtdev, is_dev_replace);
455 if (ret) {
456 scrub_free_ctx(sctx);
457 return ERR_PTR(ret);
458 }
459 return sctx;
460
461 nomem:
462 scrub_free_ctx(sctx);
463 return ERR_PTR(-ENOMEM);
464 }
465
466 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
467 void *warn_ctx)
468 {
469 u64 isize;
470 u32 nlink;
471 int ret;
472 int i;
473 struct extent_buffer *eb;
474 struct btrfs_inode_item *inode_item;
475 struct scrub_warning *swarn = warn_ctx;
476 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
477 struct inode_fs_paths *ipath = NULL;
478 struct btrfs_root *local_root;
479 struct btrfs_key root_key;
480
481 root_key.objectid = root;
482 root_key.type = BTRFS_ROOT_ITEM_KEY;
483 root_key.offset = (u64)-1;
484 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
485 if (IS_ERR(local_root)) {
486 ret = PTR_ERR(local_root);
487 goto err;
488 }
489
490 ret = inode_item_info(inum, 0, local_root, swarn->path);
491 if (ret) {
492 btrfs_release_path(swarn->path);
493 goto err;
494 }
495
496 eb = swarn->path->nodes[0];
497 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
498 struct btrfs_inode_item);
499 isize = btrfs_inode_size(eb, inode_item);
500 nlink = btrfs_inode_nlink(eb, inode_item);
501 btrfs_release_path(swarn->path);
502
503 ipath = init_ipath(4096, local_root, swarn->path);
504 if (IS_ERR(ipath)) {
505 ret = PTR_ERR(ipath);
506 ipath = NULL;
507 goto err;
508 }
509 ret = paths_from_inode(inum, ipath);
510
511 if (ret < 0)
512 goto err;
513
514 /*
515 * we deliberately ignore the bit ipath might have been too small to
516 * hold all of the paths here
517 */
518 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
519 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
520 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
521 "length %llu, links %u (path: %s)\n", swarn->errstr,
522 swarn->logical, rcu_str_deref(swarn->dev->name),
523 (unsigned long long)swarn->sector, root, inum, offset,
524 min(isize - offset, (u64)PAGE_SIZE), nlink,
525 (char *)(unsigned long)ipath->fspath->val[i]);
526
527 free_ipath(ipath);
528 return 0;
529
530 err:
531 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
532 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
533 "resolving failed with ret=%d\n", swarn->errstr,
534 swarn->logical, rcu_str_deref(swarn->dev->name),
535 (unsigned long long)swarn->sector, root, inum, offset, ret);
536
537 free_ipath(ipath);
538 return 0;
539 }
540
541 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
542 {
543 struct btrfs_device *dev;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_path *path;
546 struct btrfs_key found_key;
547 struct extent_buffer *eb;
548 struct btrfs_extent_item *ei;
549 struct scrub_warning swarn;
550 unsigned long ptr = 0;
551 u64 extent_item_pos;
552 u64 flags = 0;
553 u64 ref_root;
554 u32 item_size;
555 u8 ref_level;
556 const int bufsize = 4096;
557 int ret;
558
559 WARN_ON(sblock->page_count < 1);
560 dev = sblock->pagev[0]->dev;
561 fs_info = sblock->sctx->dev_root->fs_info;
562
563 path = btrfs_alloc_path();
564
565 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
566 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
567 swarn.sector = (sblock->pagev[0]->physical) >> 9;
568 swarn.logical = sblock->pagev[0]->logical;
569 swarn.errstr = errstr;
570 swarn.dev = NULL;
571 swarn.msg_bufsize = bufsize;
572 swarn.scratch_bufsize = bufsize;
573
574 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
575 goto out;
576
577 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
578 &flags);
579 if (ret < 0)
580 goto out;
581
582 extent_item_pos = swarn.logical - found_key.objectid;
583 swarn.extent_item_size = found_key.offset;
584
585 eb = path->nodes[0];
586 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
587 item_size = btrfs_item_size_nr(eb, path->slots[0]);
588
589 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
590 do {
591 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
592 &ref_root, &ref_level);
593 printk_in_rcu(KERN_WARNING
594 "BTRFS: %s at logical %llu on dev %s, "
595 "sector %llu: metadata %s (level %d) in tree "
596 "%llu\n", errstr, swarn.logical,
597 rcu_str_deref(dev->name),
598 (unsigned long long)swarn.sector,
599 ref_level ? "node" : "leaf",
600 ret < 0 ? -1 : ref_level,
601 ret < 0 ? -1 : ref_root);
602 } while (ret != 1);
603 btrfs_release_path(path);
604 } else {
605 btrfs_release_path(path);
606 swarn.path = path;
607 swarn.dev = dev;
608 iterate_extent_inodes(fs_info, found_key.objectid,
609 extent_item_pos, 1,
610 scrub_print_warning_inode, &swarn);
611 }
612
613 out:
614 btrfs_free_path(path);
615 kfree(swarn.scratch_buf);
616 kfree(swarn.msg_buf);
617 }
618
619 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
620 {
621 struct page *page = NULL;
622 unsigned long index;
623 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
624 int ret;
625 int corrected = 0;
626 struct btrfs_key key;
627 struct inode *inode = NULL;
628 struct btrfs_fs_info *fs_info;
629 u64 end = offset + PAGE_SIZE - 1;
630 struct btrfs_root *local_root;
631 int srcu_index;
632
633 key.objectid = root;
634 key.type = BTRFS_ROOT_ITEM_KEY;
635 key.offset = (u64)-1;
636
637 fs_info = fixup->root->fs_info;
638 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
639
640 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
641 if (IS_ERR(local_root)) {
642 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
643 return PTR_ERR(local_root);
644 }
645
646 key.type = BTRFS_INODE_ITEM_KEY;
647 key.objectid = inum;
648 key.offset = 0;
649 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
650 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
651 if (IS_ERR(inode))
652 return PTR_ERR(inode);
653
654 index = offset >> PAGE_CACHE_SHIFT;
655
656 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
657 if (!page) {
658 ret = -ENOMEM;
659 goto out;
660 }
661
662 if (PageUptodate(page)) {
663 if (PageDirty(page)) {
664 /*
665 * we need to write the data to the defect sector. the
666 * data that was in that sector is not in memory,
667 * because the page was modified. we must not write the
668 * modified page to that sector.
669 *
670 * TODO: what could be done here: wait for the delalloc
671 * runner to write out that page (might involve
672 * COW) and see whether the sector is still
673 * referenced afterwards.
674 *
675 * For the meantime, we'll treat this error
676 * incorrectable, although there is a chance that a
677 * later scrub will find the bad sector again and that
678 * there's no dirty page in memory, then.
679 */
680 ret = -EIO;
681 goto out;
682 }
683 fs_info = BTRFS_I(inode)->root->fs_info;
684 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
685 fixup->logical, page,
686 fixup->mirror_num);
687 unlock_page(page);
688 corrected = !ret;
689 } else {
690 /*
691 * we need to get good data first. the general readpage path
692 * will call repair_io_failure for us, we just have to make
693 * sure we read the bad mirror.
694 */
695 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
696 EXTENT_DAMAGED, GFP_NOFS);
697 if (ret) {
698 /* set_extent_bits should give proper error */
699 WARN_ON(ret > 0);
700 if (ret > 0)
701 ret = -EFAULT;
702 goto out;
703 }
704
705 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
706 btrfs_get_extent,
707 fixup->mirror_num);
708 wait_on_page_locked(page);
709
710 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
711 end, EXTENT_DAMAGED, 0, NULL);
712 if (!corrected)
713 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
714 EXTENT_DAMAGED, GFP_NOFS);
715 }
716
717 out:
718 if (page)
719 put_page(page);
720 if (inode)
721 iput(inode);
722
723 if (ret < 0)
724 return ret;
725
726 if (ret == 0 && corrected) {
727 /*
728 * we only need to call readpage for one of the inodes belonging
729 * to this extent. so make iterate_extent_inodes stop
730 */
731 return 1;
732 }
733
734 return -EIO;
735 }
736
737 static void scrub_fixup_nodatasum(struct btrfs_work *work)
738 {
739 int ret;
740 struct scrub_fixup_nodatasum *fixup;
741 struct scrub_ctx *sctx;
742 struct btrfs_trans_handle *trans = NULL;
743 struct btrfs_path *path;
744 int uncorrectable = 0;
745
746 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
747 sctx = fixup->sctx;
748
749 path = btrfs_alloc_path();
750 if (!path) {
751 spin_lock(&sctx->stat_lock);
752 ++sctx->stat.malloc_errors;
753 spin_unlock(&sctx->stat_lock);
754 uncorrectable = 1;
755 goto out;
756 }
757
758 trans = btrfs_join_transaction(fixup->root);
759 if (IS_ERR(trans)) {
760 uncorrectable = 1;
761 goto out;
762 }
763
764 /*
765 * the idea is to trigger a regular read through the standard path. we
766 * read a page from the (failed) logical address by specifying the
767 * corresponding copynum of the failed sector. thus, that readpage is
768 * expected to fail.
769 * that is the point where on-the-fly error correction will kick in
770 * (once it's finished) and rewrite the failed sector if a good copy
771 * can be found.
772 */
773 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
774 path, scrub_fixup_readpage,
775 fixup);
776 if (ret < 0) {
777 uncorrectable = 1;
778 goto out;
779 }
780 WARN_ON(ret != 1);
781
782 spin_lock(&sctx->stat_lock);
783 ++sctx->stat.corrected_errors;
784 spin_unlock(&sctx->stat_lock);
785
786 out:
787 if (trans && !IS_ERR(trans))
788 btrfs_end_transaction(trans, fixup->root);
789 if (uncorrectable) {
790 spin_lock(&sctx->stat_lock);
791 ++sctx->stat.uncorrectable_errors;
792 spin_unlock(&sctx->stat_lock);
793 btrfs_dev_replace_stats_inc(
794 &sctx->dev_root->fs_info->dev_replace.
795 num_uncorrectable_read_errors);
796 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
797 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
798 fixup->logical, rcu_str_deref(fixup->dev->name));
799 }
800
801 btrfs_free_path(path);
802 kfree(fixup);
803
804 scrub_pending_trans_workers_dec(sctx);
805 }
806
807 /*
808 * scrub_handle_errored_block gets called when either verification of the
809 * pages failed or the bio failed to read, e.g. with EIO. In the latter
810 * case, this function handles all pages in the bio, even though only one
811 * may be bad.
812 * The goal of this function is to repair the errored block by using the
813 * contents of one of the mirrors.
814 */
815 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
816 {
817 struct scrub_ctx *sctx = sblock_to_check->sctx;
818 struct btrfs_device *dev;
819 struct btrfs_fs_info *fs_info;
820 u64 length;
821 u64 logical;
822 u64 generation;
823 unsigned int failed_mirror_index;
824 unsigned int is_metadata;
825 unsigned int have_csum;
826 u8 *csum;
827 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
828 struct scrub_block *sblock_bad;
829 int ret;
830 int mirror_index;
831 int page_num;
832 int success;
833 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
834 DEFAULT_RATELIMIT_BURST);
835
836 BUG_ON(sblock_to_check->page_count < 1);
837 fs_info = sctx->dev_root->fs_info;
838 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
839 /*
840 * if we find an error in a super block, we just report it.
841 * They will get written with the next transaction commit
842 * anyway
843 */
844 spin_lock(&sctx->stat_lock);
845 ++sctx->stat.super_errors;
846 spin_unlock(&sctx->stat_lock);
847 return 0;
848 }
849 length = sblock_to_check->page_count * PAGE_SIZE;
850 logical = sblock_to_check->pagev[0]->logical;
851 generation = sblock_to_check->pagev[0]->generation;
852 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
853 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
854 is_metadata = !(sblock_to_check->pagev[0]->flags &
855 BTRFS_EXTENT_FLAG_DATA);
856 have_csum = sblock_to_check->pagev[0]->have_csum;
857 csum = sblock_to_check->pagev[0]->csum;
858 dev = sblock_to_check->pagev[0]->dev;
859
860 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
861 sblocks_for_recheck = NULL;
862 goto nodatasum_case;
863 }
864
865 /*
866 * read all mirrors one after the other. This includes to
867 * re-read the extent or metadata block that failed (that was
868 * the cause that this fixup code is called) another time,
869 * page by page this time in order to know which pages
870 * caused I/O errors and which ones are good (for all mirrors).
871 * It is the goal to handle the situation when more than one
872 * mirror contains I/O errors, but the errors do not
873 * overlap, i.e. the data can be repaired by selecting the
874 * pages from those mirrors without I/O error on the
875 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
876 * would be that mirror #1 has an I/O error on the first page,
877 * the second page is good, and mirror #2 has an I/O error on
878 * the second page, but the first page is good.
879 * Then the first page of the first mirror can be repaired by
880 * taking the first page of the second mirror, and the
881 * second page of the second mirror can be repaired by
882 * copying the contents of the 2nd page of the 1st mirror.
883 * One more note: if the pages of one mirror contain I/O
884 * errors, the checksum cannot be verified. In order to get
885 * the best data for repairing, the first attempt is to find
886 * a mirror without I/O errors and with a validated checksum.
887 * Only if this is not possible, the pages are picked from
888 * mirrors with I/O errors without considering the checksum.
889 * If the latter is the case, at the end, the checksum of the
890 * repaired area is verified in order to correctly maintain
891 * the statistics.
892 */
893
894 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
895 sizeof(*sblocks_for_recheck),
896 GFP_NOFS);
897 if (!sblocks_for_recheck) {
898 spin_lock(&sctx->stat_lock);
899 sctx->stat.malloc_errors++;
900 sctx->stat.read_errors++;
901 sctx->stat.uncorrectable_errors++;
902 spin_unlock(&sctx->stat_lock);
903 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
904 goto out;
905 }
906
907 /* setup the context, map the logical blocks and alloc the pages */
908 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
909 logical, sblocks_for_recheck);
910 if (ret) {
911 spin_lock(&sctx->stat_lock);
912 sctx->stat.read_errors++;
913 sctx->stat.uncorrectable_errors++;
914 spin_unlock(&sctx->stat_lock);
915 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
916 goto out;
917 }
918 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
919 sblock_bad = sblocks_for_recheck + failed_mirror_index;
920
921 /* build and submit the bios for the failed mirror, check checksums */
922 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
923 csum, generation, sctx->csum_size);
924
925 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
926 sblock_bad->no_io_error_seen) {
927 /*
928 * the error disappeared after reading page by page, or
929 * the area was part of a huge bio and other parts of the
930 * bio caused I/O errors, or the block layer merged several
931 * read requests into one and the error is caused by a
932 * different bio (usually one of the two latter cases is
933 * the cause)
934 */
935 spin_lock(&sctx->stat_lock);
936 sctx->stat.unverified_errors++;
937 spin_unlock(&sctx->stat_lock);
938
939 if (sctx->is_dev_replace)
940 scrub_write_block_to_dev_replace(sblock_bad);
941 goto out;
942 }
943
944 if (!sblock_bad->no_io_error_seen) {
945 spin_lock(&sctx->stat_lock);
946 sctx->stat.read_errors++;
947 spin_unlock(&sctx->stat_lock);
948 if (__ratelimit(&_rs))
949 scrub_print_warning("i/o error", sblock_to_check);
950 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
951 } else if (sblock_bad->checksum_error) {
952 spin_lock(&sctx->stat_lock);
953 sctx->stat.csum_errors++;
954 spin_unlock(&sctx->stat_lock);
955 if (__ratelimit(&_rs))
956 scrub_print_warning("checksum error", sblock_to_check);
957 btrfs_dev_stat_inc_and_print(dev,
958 BTRFS_DEV_STAT_CORRUPTION_ERRS);
959 } else if (sblock_bad->header_error) {
960 spin_lock(&sctx->stat_lock);
961 sctx->stat.verify_errors++;
962 spin_unlock(&sctx->stat_lock);
963 if (__ratelimit(&_rs))
964 scrub_print_warning("checksum/header error",
965 sblock_to_check);
966 if (sblock_bad->generation_error)
967 btrfs_dev_stat_inc_and_print(dev,
968 BTRFS_DEV_STAT_GENERATION_ERRS);
969 else
970 btrfs_dev_stat_inc_and_print(dev,
971 BTRFS_DEV_STAT_CORRUPTION_ERRS);
972 }
973
974 if (sctx->readonly) {
975 ASSERT(!sctx->is_dev_replace);
976 goto out;
977 }
978
979 if (!is_metadata && !have_csum) {
980 struct scrub_fixup_nodatasum *fixup_nodatasum;
981
982 nodatasum_case:
983 WARN_ON(sctx->is_dev_replace);
984
985 /*
986 * !is_metadata and !have_csum, this means that the data
987 * might not be COW'ed, that it might be modified
988 * concurrently. The general strategy to work on the
989 * commit root does not help in the case when COW is not
990 * used.
991 */
992 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
993 if (!fixup_nodatasum)
994 goto did_not_correct_error;
995 fixup_nodatasum->sctx = sctx;
996 fixup_nodatasum->dev = dev;
997 fixup_nodatasum->logical = logical;
998 fixup_nodatasum->root = fs_info->extent_root;
999 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000 scrub_pending_trans_workers_inc(sctx);
1001 btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1002 NULL, NULL);
1003 btrfs_queue_work(fs_info->scrub_workers,
1004 &fixup_nodatasum->work);
1005 goto out;
1006 }
1007
1008 /*
1009 * now build and submit the bios for the other mirrors, check
1010 * checksums.
1011 * First try to pick the mirror which is completely without I/O
1012 * errors and also does not have a checksum error.
1013 * If one is found, and if a checksum is present, the full block
1014 * that is known to contain an error is rewritten. Afterwards
1015 * the block is known to be corrected.
1016 * If a mirror is found which is completely correct, and no
1017 * checksum is present, only those pages are rewritten that had
1018 * an I/O error in the block to be repaired, since it cannot be
1019 * determined, which copy of the other pages is better (and it
1020 * could happen otherwise that a correct page would be
1021 * overwritten by a bad one).
1022 */
1023 for (mirror_index = 0;
1024 mirror_index < BTRFS_MAX_MIRRORS &&
1025 sblocks_for_recheck[mirror_index].page_count > 0;
1026 mirror_index++) {
1027 struct scrub_block *sblock_other;
1028
1029 if (mirror_index == failed_mirror_index)
1030 continue;
1031 sblock_other = sblocks_for_recheck + mirror_index;
1032
1033 /* build and submit the bios, check checksums */
1034 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035 have_csum, csum, generation,
1036 sctx->csum_size);
1037
1038 if (!sblock_other->header_error &&
1039 !sblock_other->checksum_error &&
1040 sblock_other->no_io_error_seen) {
1041 if (sctx->is_dev_replace) {
1042 scrub_write_block_to_dev_replace(sblock_other);
1043 } else {
1044 int force_write = is_metadata || have_csum;
1045
1046 ret = scrub_repair_block_from_good_copy(
1047 sblock_bad, sblock_other,
1048 force_write);
1049 }
1050 if (0 == ret)
1051 goto corrected_error;
1052 }
1053 }
1054
1055 /*
1056 * for dev_replace, pick good pages and write to the target device.
1057 */
1058 if (sctx->is_dev_replace) {
1059 success = 1;
1060 for (page_num = 0; page_num < sblock_bad->page_count;
1061 page_num++) {
1062 int sub_success;
1063
1064 sub_success = 0;
1065 for (mirror_index = 0;
1066 mirror_index < BTRFS_MAX_MIRRORS &&
1067 sblocks_for_recheck[mirror_index].page_count > 0;
1068 mirror_index++) {
1069 struct scrub_block *sblock_other =
1070 sblocks_for_recheck + mirror_index;
1071 struct scrub_page *page_other =
1072 sblock_other->pagev[page_num];
1073
1074 if (!page_other->io_error) {
1075 ret = scrub_write_page_to_dev_replace(
1076 sblock_other, page_num);
1077 if (ret == 0) {
1078 /* succeeded for this page */
1079 sub_success = 1;
1080 break;
1081 } else {
1082 btrfs_dev_replace_stats_inc(
1083 &sctx->dev_root->
1084 fs_info->dev_replace.
1085 num_write_errors);
1086 }
1087 }
1088 }
1089
1090 if (!sub_success) {
1091 /*
1092 * did not find a mirror to fetch the page
1093 * from. scrub_write_page_to_dev_replace()
1094 * handles this case (page->io_error), by
1095 * filling the block with zeros before
1096 * submitting the write request
1097 */
1098 success = 0;
1099 ret = scrub_write_page_to_dev_replace(
1100 sblock_bad, page_num);
1101 if (ret)
1102 btrfs_dev_replace_stats_inc(
1103 &sctx->dev_root->fs_info->
1104 dev_replace.num_write_errors);
1105 }
1106 }
1107
1108 goto out;
1109 }
1110
1111 /*
1112 * for regular scrub, repair those pages that are errored.
1113 * In case of I/O errors in the area that is supposed to be
1114 * repaired, continue by picking good copies of those pages.
1115 * Select the good pages from mirrors to rewrite bad pages from
1116 * the area to fix. Afterwards verify the checksum of the block
1117 * that is supposed to be repaired. This verification step is
1118 * only done for the purpose of statistic counting and for the
1119 * final scrub report, whether errors remain.
1120 * A perfect algorithm could make use of the checksum and try
1121 * all possible combinations of pages from the different mirrors
1122 * until the checksum verification succeeds. For example, when
1123 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124 * of mirror #2 is readable but the final checksum test fails,
1125 * then the 2nd page of mirror #3 could be tried, whether now
1126 * the final checksum succeedes. But this would be a rare
1127 * exception and is therefore not implemented. At least it is
1128 * avoided that the good copy is overwritten.
1129 * A more useful improvement would be to pick the sectors
1130 * without I/O error based on sector sizes (512 bytes on legacy
1131 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132 * mirror could be repaired by taking 512 byte of a different
1133 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134 * area are unreadable.
1135 */
1136
1137 /* can only fix I/O errors from here on */
1138 if (sblock_bad->no_io_error_seen)
1139 goto did_not_correct_error;
1140
1141 success = 1;
1142 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1143 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1144
1145 if (!page_bad->io_error)
1146 continue;
1147
1148 for (mirror_index = 0;
1149 mirror_index < BTRFS_MAX_MIRRORS &&
1150 sblocks_for_recheck[mirror_index].page_count > 0;
1151 mirror_index++) {
1152 struct scrub_block *sblock_other = sblocks_for_recheck +
1153 mirror_index;
1154 struct scrub_page *page_other = sblock_other->pagev[
1155 page_num];
1156
1157 if (!page_other->io_error) {
1158 ret = scrub_repair_page_from_good_copy(
1159 sblock_bad, sblock_other, page_num, 0);
1160 if (0 == ret) {
1161 page_bad->io_error = 0;
1162 break; /* succeeded for this page */
1163 }
1164 }
1165 }
1166
1167 if (page_bad->io_error) {
1168 /* did not find a mirror to copy the page from */
1169 success = 0;
1170 }
1171 }
1172
1173 if (success) {
1174 if (is_metadata || have_csum) {
1175 /*
1176 * need to verify the checksum now that all
1177 * sectors on disk are repaired (the write
1178 * request for data to be repaired is on its way).
1179 * Just be lazy and use scrub_recheck_block()
1180 * which re-reads the data before the checksum
1181 * is verified, but most likely the data comes out
1182 * of the page cache.
1183 */
1184 scrub_recheck_block(fs_info, sblock_bad,
1185 is_metadata, have_csum, csum,
1186 generation, sctx->csum_size);
1187 if (!sblock_bad->header_error &&
1188 !sblock_bad->checksum_error &&
1189 sblock_bad->no_io_error_seen)
1190 goto corrected_error;
1191 else
1192 goto did_not_correct_error;
1193 } else {
1194 corrected_error:
1195 spin_lock(&sctx->stat_lock);
1196 sctx->stat.corrected_errors++;
1197 spin_unlock(&sctx->stat_lock);
1198 printk_ratelimited_in_rcu(KERN_ERR
1199 "BTRFS: fixed up error at logical %llu on dev %s\n",
1200 logical, rcu_str_deref(dev->name));
1201 }
1202 } else {
1203 did_not_correct_error:
1204 spin_lock(&sctx->stat_lock);
1205 sctx->stat.uncorrectable_errors++;
1206 spin_unlock(&sctx->stat_lock);
1207 printk_ratelimited_in_rcu(KERN_ERR
1208 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209 logical, rcu_str_deref(dev->name));
1210 }
1211
1212 out:
1213 if (sblocks_for_recheck) {
1214 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215 mirror_index++) {
1216 struct scrub_block *sblock = sblocks_for_recheck +
1217 mirror_index;
1218 int page_index;
1219
1220 for (page_index = 0; page_index < sblock->page_count;
1221 page_index++) {
1222 sblock->pagev[page_index]->sblock = NULL;
1223 scrub_page_put(sblock->pagev[page_index]);
1224 }
1225 }
1226 kfree(sblocks_for_recheck);
1227 }
1228
1229 return 0;
1230 }
1231
1232 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233 struct btrfs_fs_info *fs_info,
1234 struct scrub_block *original_sblock,
1235 u64 length, u64 logical,
1236 struct scrub_block *sblocks_for_recheck)
1237 {
1238 int page_index;
1239 int mirror_index;
1240 int ret;
1241
1242 /*
1243 * note: the two members ref_count and outstanding_pages
1244 * are not used (and not set) in the blocks that are used for
1245 * the recheck procedure
1246 */
1247
1248 page_index = 0;
1249 while (length > 0) {
1250 u64 sublen = min_t(u64, length, PAGE_SIZE);
1251 u64 mapped_length = sublen;
1252 struct btrfs_bio *bbio = NULL;
1253
1254 /*
1255 * with a length of PAGE_SIZE, each returned stripe
1256 * represents one mirror
1257 */
1258 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259 &mapped_length, &bbio, 0);
1260 if (ret || !bbio || mapped_length < sublen) {
1261 kfree(bbio);
1262 return -EIO;
1263 }
1264
1265 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1267 mirror_index++) {
1268 struct scrub_block *sblock;
1269 struct scrub_page *page;
1270
1271 if (mirror_index >= BTRFS_MAX_MIRRORS)
1272 continue;
1273
1274 sblock = sblocks_for_recheck + mirror_index;
1275 sblock->sctx = sctx;
1276 page = kzalloc(sizeof(*page), GFP_NOFS);
1277 if (!page) {
1278 leave_nomem:
1279 spin_lock(&sctx->stat_lock);
1280 sctx->stat.malloc_errors++;
1281 spin_unlock(&sctx->stat_lock);
1282 kfree(bbio);
1283 return -ENOMEM;
1284 }
1285 scrub_page_get(page);
1286 sblock->pagev[page_index] = page;
1287 page->logical = logical;
1288 page->physical = bbio->stripes[mirror_index].physical;
1289 BUG_ON(page_index >= original_sblock->page_count);
1290 page->physical_for_dev_replace =
1291 original_sblock->pagev[page_index]->
1292 physical_for_dev_replace;
1293 /* for missing devices, dev->bdev is NULL */
1294 page->dev = bbio->stripes[mirror_index].dev;
1295 page->mirror_num = mirror_index + 1;
1296 sblock->page_count++;
1297 page->page = alloc_page(GFP_NOFS);
1298 if (!page->page)
1299 goto leave_nomem;
1300 }
1301 kfree(bbio);
1302 length -= sublen;
1303 logical += sublen;
1304 page_index++;
1305 }
1306
1307 return 0;
1308 }
1309
1310 /*
1311 * this function will check the on disk data for checksum errors, header
1312 * errors and read I/O errors. If any I/O errors happen, the exact pages
1313 * which are errored are marked as being bad. The goal is to enable scrub
1314 * to take those pages that are not errored from all the mirrors so that
1315 * the pages that are errored in the just handled mirror can be repaired.
1316 */
1317 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318 struct scrub_block *sblock, int is_metadata,
1319 int have_csum, u8 *csum, u64 generation,
1320 u16 csum_size)
1321 {
1322 int page_num;
1323
1324 sblock->no_io_error_seen = 1;
1325 sblock->header_error = 0;
1326 sblock->checksum_error = 0;
1327
1328 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329 struct bio *bio;
1330 struct scrub_page *page = sblock->pagev[page_num];
1331
1332 if (page->dev->bdev == NULL) {
1333 page->io_error = 1;
1334 sblock->no_io_error_seen = 0;
1335 continue;
1336 }
1337
1338 WARN_ON(!page->page);
1339 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340 if (!bio) {
1341 page->io_error = 1;
1342 sblock->no_io_error_seen = 0;
1343 continue;
1344 }
1345 bio->bi_bdev = page->dev->bdev;
1346 bio->bi_iter.bi_sector = page->physical >> 9;
1347
1348 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349 if (btrfsic_submit_bio_wait(READ, bio))
1350 sblock->no_io_error_seen = 0;
1351
1352 bio_put(bio);
1353 }
1354
1355 if (sblock->no_io_error_seen)
1356 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357 have_csum, csum, generation,
1358 csum_size);
1359
1360 return;
1361 }
1362
1363 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364 struct scrub_block *sblock,
1365 int is_metadata, int have_csum,
1366 const u8 *csum, u64 generation,
1367 u16 csum_size)
1368 {
1369 int page_num;
1370 u8 calculated_csum[BTRFS_CSUM_SIZE];
1371 u32 crc = ~(u32)0;
1372 void *mapped_buffer;
1373
1374 WARN_ON(!sblock->pagev[0]->page);
1375 if (is_metadata) {
1376 struct btrfs_header *h;
1377
1378 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379 h = (struct btrfs_header *)mapped_buffer;
1380
1381 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384 BTRFS_UUID_SIZE)) {
1385 sblock->header_error = 1;
1386 } else if (generation != btrfs_stack_header_generation(h)) {
1387 sblock->header_error = 1;
1388 sblock->generation_error = 1;
1389 }
1390 csum = h->csum;
1391 } else {
1392 if (!have_csum)
1393 return;
1394
1395 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1396 }
1397
1398 for (page_num = 0;;) {
1399 if (page_num == 0 && is_metadata)
1400 crc = btrfs_csum_data(
1401 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403 else
1404 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405
1406 kunmap_atomic(mapped_buffer);
1407 page_num++;
1408 if (page_num >= sblock->page_count)
1409 break;
1410 WARN_ON(!sblock->pagev[page_num]->page);
1411
1412 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1413 }
1414
1415 btrfs_csum_final(crc, calculated_csum);
1416 if (memcmp(calculated_csum, csum, csum_size))
1417 sblock->checksum_error = 1;
1418 }
1419
1420 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421 struct scrub_block *sblock_good,
1422 int force_write)
1423 {
1424 int page_num;
1425 int ret = 0;
1426
1427 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1428 int ret_sub;
1429
1430 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1431 sblock_good,
1432 page_num,
1433 force_write);
1434 if (ret_sub)
1435 ret = ret_sub;
1436 }
1437
1438 return ret;
1439 }
1440
1441 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442 struct scrub_block *sblock_good,
1443 int page_num, int force_write)
1444 {
1445 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446 struct scrub_page *page_good = sblock_good->pagev[page_num];
1447
1448 BUG_ON(page_bad->page == NULL);
1449 BUG_ON(page_good->page == NULL);
1450 if (force_write || sblock_bad->header_error ||
1451 sblock_bad->checksum_error || page_bad->io_error) {
1452 struct bio *bio;
1453 int ret;
1454
1455 if (!page_bad->dev->bdev) {
1456 printk_ratelimited(KERN_WARNING "BTRFS: "
1457 "scrub_repair_page_from_good_copy(bdev == NULL) "
1458 "is unexpected!\n");
1459 return -EIO;
1460 }
1461
1462 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1463 if (!bio)
1464 return -EIO;
1465 bio->bi_bdev = page_bad->dev->bdev;
1466 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1467
1468 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469 if (PAGE_SIZE != ret) {
1470 bio_put(bio);
1471 return -EIO;
1472 }
1473
1474 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475 btrfs_dev_stat_inc_and_print(page_bad->dev,
1476 BTRFS_DEV_STAT_WRITE_ERRS);
1477 btrfs_dev_replace_stats_inc(
1478 &sblock_bad->sctx->dev_root->fs_info->
1479 dev_replace.num_write_errors);
1480 bio_put(bio);
1481 return -EIO;
1482 }
1483 bio_put(bio);
1484 }
1485
1486 return 0;
1487 }
1488
1489 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1490 {
1491 int page_num;
1492
1493 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1494 int ret;
1495
1496 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1497 if (ret)
1498 btrfs_dev_replace_stats_inc(
1499 &sblock->sctx->dev_root->fs_info->dev_replace.
1500 num_write_errors);
1501 }
1502 }
1503
1504 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1505 int page_num)
1506 {
1507 struct scrub_page *spage = sblock->pagev[page_num];
1508
1509 BUG_ON(spage->page == NULL);
1510 if (spage->io_error) {
1511 void *mapped_buffer = kmap_atomic(spage->page);
1512
1513 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514 flush_dcache_page(spage->page);
1515 kunmap_atomic(mapped_buffer);
1516 }
1517 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1518 }
1519
1520 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521 struct scrub_page *spage)
1522 {
1523 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524 struct scrub_bio *sbio;
1525 int ret;
1526
1527 mutex_lock(&wr_ctx->wr_lock);
1528 again:
1529 if (!wr_ctx->wr_curr_bio) {
1530 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531 GFP_NOFS);
1532 if (!wr_ctx->wr_curr_bio) {
1533 mutex_unlock(&wr_ctx->wr_lock);
1534 return -ENOMEM;
1535 }
1536 wr_ctx->wr_curr_bio->sctx = sctx;
1537 wr_ctx->wr_curr_bio->page_count = 0;
1538 }
1539 sbio = wr_ctx->wr_curr_bio;
1540 if (sbio->page_count == 0) {
1541 struct bio *bio;
1542
1543 sbio->physical = spage->physical_for_dev_replace;
1544 sbio->logical = spage->logical;
1545 sbio->dev = wr_ctx->tgtdev;
1546 bio = sbio->bio;
1547 if (!bio) {
1548 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1549 if (!bio) {
1550 mutex_unlock(&wr_ctx->wr_lock);
1551 return -ENOMEM;
1552 }
1553 sbio->bio = bio;
1554 }
1555
1556 bio->bi_private = sbio;
1557 bio->bi_end_io = scrub_wr_bio_end_io;
1558 bio->bi_bdev = sbio->dev->bdev;
1559 bio->bi_iter.bi_sector = sbio->physical >> 9;
1560 sbio->err = 0;
1561 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562 spage->physical_for_dev_replace ||
1563 sbio->logical + sbio->page_count * PAGE_SIZE !=
1564 spage->logical) {
1565 scrub_wr_submit(sctx);
1566 goto again;
1567 }
1568
1569 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570 if (ret != PAGE_SIZE) {
1571 if (sbio->page_count < 1) {
1572 bio_put(sbio->bio);
1573 sbio->bio = NULL;
1574 mutex_unlock(&wr_ctx->wr_lock);
1575 return -EIO;
1576 }
1577 scrub_wr_submit(sctx);
1578 goto again;
1579 }
1580
1581 sbio->pagev[sbio->page_count] = spage;
1582 scrub_page_get(spage);
1583 sbio->page_count++;
1584 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1585 scrub_wr_submit(sctx);
1586 mutex_unlock(&wr_ctx->wr_lock);
1587
1588 return 0;
1589 }
1590
1591 static void scrub_wr_submit(struct scrub_ctx *sctx)
1592 {
1593 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594 struct scrub_bio *sbio;
1595
1596 if (!wr_ctx->wr_curr_bio)
1597 return;
1598
1599 sbio = wr_ctx->wr_curr_bio;
1600 wr_ctx->wr_curr_bio = NULL;
1601 WARN_ON(!sbio->bio->bi_bdev);
1602 scrub_pending_bio_inc(sctx);
1603 /* process all writes in a single worker thread. Then the block layer
1604 * orders the requests before sending them to the driver which
1605 * doubled the write performance on spinning disks when measured
1606 * with Linux 3.5 */
1607 btrfsic_submit_bio(WRITE, sbio->bio);
1608 }
1609
1610 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611 {
1612 struct scrub_bio *sbio = bio->bi_private;
1613 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1614
1615 sbio->err = err;
1616 sbio->bio = bio;
1617
1618 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1619 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1620 }
1621
1622 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1623 {
1624 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625 struct scrub_ctx *sctx = sbio->sctx;
1626 int i;
1627
1628 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629 if (sbio->err) {
1630 struct btrfs_dev_replace *dev_replace =
1631 &sbio->sctx->dev_root->fs_info->dev_replace;
1632
1633 for (i = 0; i < sbio->page_count; i++) {
1634 struct scrub_page *spage = sbio->pagev[i];
1635
1636 spage->io_error = 1;
1637 btrfs_dev_replace_stats_inc(&dev_replace->
1638 num_write_errors);
1639 }
1640 }
1641
1642 for (i = 0; i < sbio->page_count; i++)
1643 scrub_page_put(sbio->pagev[i]);
1644
1645 bio_put(sbio->bio);
1646 kfree(sbio);
1647 scrub_pending_bio_dec(sctx);
1648 }
1649
1650 static int scrub_checksum(struct scrub_block *sblock)
1651 {
1652 u64 flags;
1653 int ret;
1654
1655 WARN_ON(sblock->page_count < 1);
1656 flags = sblock->pagev[0]->flags;
1657 ret = 0;
1658 if (flags & BTRFS_EXTENT_FLAG_DATA)
1659 ret = scrub_checksum_data(sblock);
1660 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661 ret = scrub_checksum_tree_block(sblock);
1662 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663 (void)scrub_checksum_super(sblock);
1664 else
1665 WARN_ON(1);
1666 if (ret)
1667 scrub_handle_errored_block(sblock);
1668
1669 return ret;
1670 }
1671
1672 static int scrub_checksum_data(struct scrub_block *sblock)
1673 {
1674 struct scrub_ctx *sctx = sblock->sctx;
1675 u8 csum[BTRFS_CSUM_SIZE];
1676 u8 *on_disk_csum;
1677 struct page *page;
1678 void *buffer;
1679 u32 crc = ~(u32)0;
1680 int fail = 0;
1681 u64 len;
1682 int index;
1683
1684 BUG_ON(sblock->page_count < 1);
1685 if (!sblock->pagev[0]->have_csum)
1686 return 0;
1687
1688 on_disk_csum = sblock->pagev[0]->csum;
1689 page = sblock->pagev[0]->page;
1690 buffer = kmap_atomic(page);
1691
1692 len = sctx->sectorsize;
1693 index = 0;
1694 for (;;) {
1695 u64 l = min_t(u64, len, PAGE_SIZE);
1696
1697 crc = btrfs_csum_data(buffer, crc, l);
1698 kunmap_atomic(buffer);
1699 len -= l;
1700 if (len == 0)
1701 break;
1702 index++;
1703 BUG_ON(index >= sblock->page_count);
1704 BUG_ON(!sblock->pagev[index]->page);
1705 page = sblock->pagev[index]->page;
1706 buffer = kmap_atomic(page);
1707 }
1708
1709 btrfs_csum_final(crc, csum);
1710 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1711 fail = 1;
1712
1713 return fail;
1714 }
1715
1716 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1717 {
1718 struct scrub_ctx *sctx = sblock->sctx;
1719 struct btrfs_header *h;
1720 struct btrfs_root *root = sctx->dev_root;
1721 struct btrfs_fs_info *fs_info = root->fs_info;
1722 u8 calculated_csum[BTRFS_CSUM_SIZE];
1723 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724 struct page *page;
1725 void *mapped_buffer;
1726 u64 mapped_size;
1727 void *p;
1728 u32 crc = ~(u32)0;
1729 int fail = 0;
1730 int crc_fail = 0;
1731 u64 len;
1732 int index;
1733
1734 BUG_ON(sblock->page_count < 1);
1735 page = sblock->pagev[0]->page;
1736 mapped_buffer = kmap_atomic(page);
1737 h = (struct btrfs_header *)mapped_buffer;
1738 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1739
1740 /*
1741 * we don't use the getter functions here, as we
1742 * a) don't have an extent buffer and
1743 * b) the page is already kmapped
1744 */
1745
1746 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1747 ++fail;
1748
1749 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1750 ++fail;
1751
1752 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753 ++fail;
1754
1755 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756 BTRFS_UUID_SIZE))
1757 ++fail;
1758
1759 WARN_ON(sctx->nodesize != sctx->leafsize);
1760 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1763 index = 0;
1764 for (;;) {
1765 u64 l = min_t(u64, len, mapped_size);
1766
1767 crc = btrfs_csum_data(p, crc, l);
1768 kunmap_atomic(mapped_buffer);
1769 len -= l;
1770 if (len == 0)
1771 break;
1772 index++;
1773 BUG_ON(index >= sblock->page_count);
1774 BUG_ON(!sblock->pagev[index]->page);
1775 page = sblock->pagev[index]->page;
1776 mapped_buffer = kmap_atomic(page);
1777 mapped_size = PAGE_SIZE;
1778 p = mapped_buffer;
1779 }
1780
1781 btrfs_csum_final(crc, calculated_csum);
1782 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1783 ++crc_fail;
1784
1785 return fail || crc_fail;
1786 }
1787
1788 static int scrub_checksum_super(struct scrub_block *sblock)
1789 {
1790 struct btrfs_super_block *s;
1791 struct scrub_ctx *sctx = sblock->sctx;
1792 struct btrfs_root *root = sctx->dev_root;
1793 struct btrfs_fs_info *fs_info = root->fs_info;
1794 u8 calculated_csum[BTRFS_CSUM_SIZE];
1795 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796 struct page *page;
1797 void *mapped_buffer;
1798 u64 mapped_size;
1799 void *p;
1800 u32 crc = ~(u32)0;
1801 int fail_gen = 0;
1802 int fail_cor = 0;
1803 u64 len;
1804 int index;
1805
1806 BUG_ON(sblock->page_count < 1);
1807 page = sblock->pagev[0]->page;
1808 mapped_buffer = kmap_atomic(page);
1809 s = (struct btrfs_super_block *)mapped_buffer;
1810 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811
1812 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1813 ++fail_cor;
1814
1815 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1816 ++fail_gen;
1817
1818 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1819 ++fail_cor;
1820
1821 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1824 index = 0;
1825 for (;;) {
1826 u64 l = min_t(u64, len, mapped_size);
1827
1828 crc = btrfs_csum_data(p, crc, l);
1829 kunmap_atomic(mapped_buffer);
1830 len -= l;
1831 if (len == 0)
1832 break;
1833 index++;
1834 BUG_ON(index >= sblock->page_count);
1835 BUG_ON(!sblock->pagev[index]->page);
1836 page = sblock->pagev[index]->page;
1837 mapped_buffer = kmap_atomic(page);
1838 mapped_size = PAGE_SIZE;
1839 p = mapped_buffer;
1840 }
1841
1842 btrfs_csum_final(crc, calculated_csum);
1843 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1844 ++fail_cor;
1845
1846 if (fail_cor + fail_gen) {
1847 /*
1848 * if we find an error in a super block, we just report it.
1849 * They will get written with the next transaction commit
1850 * anyway
1851 */
1852 spin_lock(&sctx->stat_lock);
1853 ++sctx->stat.super_errors;
1854 spin_unlock(&sctx->stat_lock);
1855 if (fail_cor)
1856 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858 else
1859 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860 BTRFS_DEV_STAT_GENERATION_ERRS);
1861 }
1862
1863 return fail_cor + fail_gen;
1864 }
1865
1866 static void scrub_block_get(struct scrub_block *sblock)
1867 {
1868 atomic_inc(&sblock->ref_count);
1869 }
1870
1871 static void scrub_block_put(struct scrub_block *sblock)
1872 {
1873 if (atomic_dec_and_test(&sblock->ref_count)) {
1874 int i;
1875
1876 for (i = 0; i < sblock->page_count; i++)
1877 scrub_page_put(sblock->pagev[i]);
1878 kfree(sblock);
1879 }
1880 }
1881
1882 static void scrub_page_get(struct scrub_page *spage)
1883 {
1884 atomic_inc(&spage->ref_count);
1885 }
1886
1887 static void scrub_page_put(struct scrub_page *spage)
1888 {
1889 if (atomic_dec_and_test(&spage->ref_count)) {
1890 if (spage->page)
1891 __free_page(spage->page);
1892 kfree(spage);
1893 }
1894 }
1895
1896 static void scrub_submit(struct scrub_ctx *sctx)
1897 {
1898 struct scrub_bio *sbio;
1899
1900 if (sctx->curr == -1)
1901 return;
1902
1903 sbio = sctx->bios[sctx->curr];
1904 sctx->curr = -1;
1905 scrub_pending_bio_inc(sctx);
1906
1907 if (!sbio->bio->bi_bdev) {
1908 /*
1909 * this case should not happen. If btrfs_map_block() is
1910 * wrong, it could happen for dev-replace operations on
1911 * missing devices when no mirrors are available, but in
1912 * this case it should already fail the mount.
1913 * This case is handled correctly (but _very_ slowly).
1914 */
1915 printk_ratelimited(KERN_WARNING
1916 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917 bio_endio(sbio->bio, -EIO);
1918 } else {
1919 btrfsic_submit_bio(READ, sbio->bio);
1920 }
1921 }
1922
1923 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924 struct scrub_page *spage)
1925 {
1926 struct scrub_block *sblock = spage->sblock;
1927 struct scrub_bio *sbio;
1928 int ret;
1929
1930 again:
1931 /*
1932 * grab a fresh bio or wait for one to become available
1933 */
1934 while (sctx->curr == -1) {
1935 spin_lock(&sctx->list_lock);
1936 sctx->curr = sctx->first_free;
1937 if (sctx->curr != -1) {
1938 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939 sctx->bios[sctx->curr]->next_free = -1;
1940 sctx->bios[sctx->curr]->page_count = 0;
1941 spin_unlock(&sctx->list_lock);
1942 } else {
1943 spin_unlock(&sctx->list_lock);
1944 wait_event(sctx->list_wait, sctx->first_free != -1);
1945 }
1946 }
1947 sbio = sctx->bios[sctx->curr];
1948 if (sbio->page_count == 0) {
1949 struct bio *bio;
1950
1951 sbio->physical = spage->physical;
1952 sbio->logical = spage->logical;
1953 sbio->dev = spage->dev;
1954 bio = sbio->bio;
1955 if (!bio) {
1956 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1957 if (!bio)
1958 return -ENOMEM;
1959 sbio->bio = bio;
1960 }
1961
1962 bio->bi_private = sbio;
1963 bio->bi_end_io = scrub_bio_end_io;
1964 bio->bi_bdev = sbio->dev->bdev;
1965 bio->bi_iter.bi_sector = sbio->physical >> 9;
1966 sbio->err = 0;
1967 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968 spage->physical ||
1969 sbio->logical + sbio->page_count * PAGE_SIZE !=
1970 spage->logical ||
1971 sbio->dev != spage->dev) {
1972 scrub_submit(sctx);
1973 goto again;
1974 }
1975
1976 sbio->pagev[sbio->page_count] = spage;
1977 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978 if (ret != PAGE_SIZE) {
1979 if (sbio->page_count < 1) {
1980 bio_put(sbio->bio);
1981 sbio->bio = NULL;
1982 return -EIO;
1983 }
1984 scrub_submit(sctx);
1985 goto again;
1986 }
1987
1988 scrub_block_get(sblock); /* one for the page added to the bio */
1989 atomic_inc(&sblock->outstanding_pages);
1990 sbio->page_count++;
1991 if (sbio->page_count == sctx->pages_per_rd_bio)
1992 scrub_submit(sctx);
1993
1994 return 0;
1995 }
1996
1997 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1998 u64 physical, struct btrfs_device *dev, u64 flags,
1999 u64 gen, int mirror_num, u8 *csum, int force,
2000 u64 physical_for_dev_replace)
2001 {
2002 struct scrub_block *sblock;
2003 int index;
2004
2005 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2006 if (!sblock) {
2007 spin_lock(&sctx->stat_lock);
2008 sctx->stat.malloc_errors++;
2009 spin_unlock(&sctx->stat_lock);
2010 return -ENOMEM;
2011 }
2012
2013 /* one ref inside this function, plus one for each page added to
2014 * a bio later on */
2015 atomic_set(&sblock->ref_count, 1);
2016 sblock->sctx = sctx;
2017 sblock->no_io_error_seen = 1;
2018
2019 for (index = 0; len > 0; index++) {
2020 struct scrub_page *spage;
2021 u64 l = min_t(u64, len, PAGE_SIZE);
2022
2023 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2024 if (!spage) {
2025 leave_nomem:
2026 spin_lock(&sctx->stat_lock);
2027 sctx->stat.malloc_errors++;
2028 spin_unlock(&sctx->stat_lock);
2029 scrub_block_put(sblock);
2030 return -ENOMEM;
2031 }
2032 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033 scrub_page_get(spage);
2034 sblock->pagev[index] = spage;
2035 spage->sblock = sblock;
2036 spage->dev = dev;
2037 spage->flags = flags;
2038 spage->generation = gen;
2039 spage->logical = logical;
2040 spage->physical = physical;
2041 spage->physical_for_dev_replace = physical_for_dev_replace;
2042 spage->mirror_num = mirror_num;
2043 if (csum) {
2044 spage->have_csum = 1;
2045 memcpy(spage->csum, csum, sctx->csum_size);
2046 } else {
2047 spage->have_csum = 0;
2048 }
2049 sblock->page_count++;
2050 spage->page = alloc_page(GFP_NOFS);
2051 if (!spage->page)
2052 goto leave_nomem;
2053 len -= l;
2054 logical += l;
2055 physical += l;
2056 physical_for_dev_replace += l;
2057 }
2058
2059 WARN_ON(sblock->page_count == 0);
2060 for (index = 0; index < sblock->page_count; index++) {
2061 struct scrub_page *spage = sblock->pagev[index];
2062 int ret;
2063
2064 ret = scrub_add_page_to_rd_bio(sctx, spage);
2065 if (ret) {
2066 scrub_block_put(sblock);
2067 return ret;
2068 }
2069 }
2070
2071 if (force)
2072 scrub_submit(sctx);
2073
2074 /* last one frees, either here or in bio completion for last page */
2075 scrub_block_put(sblock);
2076 return 0;
2077 }
2078
2079 static void scrub_bio_end_io(struct bio *bio, int err)
2080 {
2081 struct scrub_bio *sbio = bio->bi_private;
2082 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2083
2084 sbio->err = err;
2085 sbio->bio = bio;
2086
2087 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2088 }
2089
2090 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091 {
2092 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093 struct scrub_ctx *sctx = sbio->sctx;
2094 int i;
2095
2096 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097 if (sbio->err) {
2098 for (i = 0; i < sbio->page_count; i++) {
2099 struct scrub_page *spage = sbio->pagev[i];
2100
2101 spage->io_error = 1;
2102 spage->sblock->no_io_error_seen = 0;
2103 }
2104 }
2105
2106 /* now complete the scrub_block items that have all pages completed */
2107 for (i = 0; i < sbio->page_count; i++) {
2108 struct scrub_page *spage = sbio->pagev[i];
2109 struct scrub_block *sblock = spage->sblock;
2110
2111 if (atomic_dec_and_test(&sblock->outstanding_pages))
2112 scrub_block_complete(sblock);
2113 scrub_block_put(sblock);
2114 }
2115
2116 bio_put(sbio->bio);
2117 sbio->bio = NULL;
2118 spin_lock(&sctx->list_lock);
2119 sbio->next_free = sctx->first_free;
2120 sctx->first_free = sbio->index;
2121 spin_unlock(&sctx->list_lock);
2122
2123 if (sctx->is_dev_replace &&
2124 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125 mutex_lock(&sctx->wr_ctx.wr_lock);
2126 scrub_wr_submit(sctx);
2127 mutex_unlock(&sctx->wr_ctx.wr_lock);
2128 }
2129
2130 scrub_pending_bio_dec(sctx);
2131 }
2132
2133 static void scrub_block_complete(struct scrub_block *sblock)
2134 {
2135 if (!sblock->no_io_error_seen) {
2136 scrub_handle_errored_block(sblock);
2137 } else {
2138 /*
2139 * if has checksum error, write via repair mechanism in
2140 * dev replace case, otherwise write here in dev replace
2141 * case.
2142 */
2143 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2144 scrub_write_block_to_dev_replace(sblock);
2145 }
2146 }
2147
2148 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2149 u8 *csum)
2150 {
2151 struct btrfs_ordered_sum *sum = NULL;
2152 unsigned long index;
2153 unsigned long num_sectors;
2154
2155 while (!list_empty(&sctx->csum_list)) {
2156 sum = list_first_entry(&sctx->csum_list,
2157 struct btrfs_ordered_sum, list);
2158 if (sum->bytenr > logical)
2159 return 0;
2160 if (sum->bytenr + sum->len > logical)
2161 break;
2162
2163 ++sctx->stat.csum_discards;
2164 list_del(&sum->list);
2165 kfree(sum);
2166 sum = NULL;
2167 }
2168 if (!sum)
2169 return 0;
2170
2171 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172 num_sectors = sum->len / sctx->sectorsize;
2173 memcpy(csum, sum->sums + index, sctx->csum_size);
2174 if (index == num_sectors - 1) {
2175 list_del(&sum->list);
2176 kfree(sum);
2177 }
2178 return 1;
2179 }
2180
2181 /* scrub extent tries to collect up to 64 kB for each bio */
2182 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2183 u64 physical, struct btrfs_device *dev, u64 flags,
2184 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2185 {
2186 int ret;
2187 u8 csum[BTRFS_CSUM_SIZE];
2188 u32 blocksize;
2189
2190 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191 blocksize = sctx->sectorsize;
2192 spin_lock(&sctx->stat_lock);
2193 sctx->stat.data_extents_scrubbed++;
2194 sctx->stat.data_bytes_scrubbed += len;
2195 spin_unlock(&sctx->stat_lock);
2196 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197 WARN_ON(sctx->nodesize != sctx->leafsize);
2198 blocksize = sctx->nodesize;
2199 spin_lock(&sctx->stat_lock);
2200 sctx->stat.tree_extents_scrubbed++;
2201 sctx->stat.tree_bytes_scrubbed += len;
2202 spin_unlock(&sctx->stat_lock);
2203 } else {
2204 blocksize = sctx->sectorsize;
2205 WARN_ON(1);
2206 }
2207
2208 while (len) {
2209 u64 l = min_t(u64, len, blocksize);
2210 int have_csum = 0;
2211
2212 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213 /* push csums to sbio */
2214 have_csum = scrub_find_csum(sctx, logical, l, csum);
2215 if (have_csum == 0)
2216 ++sctx->stat.no_csum;
2217 if (sctx->is_dev_replace && !have_csum) {
2218 ret = copy_nocow_pages(sctx, logical, l,
2219 mirror_num,
2220 physical_for_dev_replace);
2221 goto behind_scrub_pages;
2222 }
2223 }
2224 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225 mirror_num, have_csum ? csum : NULL, 0,
2226 physical_for_dev_replace);
2227 behind_scrub_pages:
2228 if (ret)
2229 return ret;
2230 len -= l;
2231 logical += l;
2232 physical += l;
2233 physical_for_dev_replace += l;
2234 }
2235 return 0;
2236 }
2237
2238 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2239 struct map_lookup *map,
2240 struct btrfs_device *scrub_dev,
2241 int num, u64 base, u64 length,
2242 int is_dev_replace)
2243 {
2244 struct btrfs_path *path;
2245 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2246 struct btrfs_root *root = fs_info->extent_root;
2247 struct btrfs_root *csum_root = fs_info->csum_root;
2248 struct btrfs_extent_item *extent;
2249 struct blk_plug plug;
2250 u64 flags;
2251 int ret;
2252 int slot;
2253 u64 nstripes;
2254 struct extent_buffer *l;
2255 struct btrfs_key key;
2256 u64 physical;
2257 u64 logical;
2258 u64 logic_end;
2259 u64 generation;
2260 int mirror_num;
2261 struct reada_control *reada1;
2262 struct reada_control *reada2;
2263 struct btrfs_key key_start;
2264 struct btrfs_key key_end;
2265 u64 increment = map->stripe_len;
2266 u64 offset;
2267 u64 extent_logical;
2268 u64 extent_physical;
2269 u64 extent_len;
2270 struct btrfs_device *extent_dev;
2271 int extent_mirror_num;
2272 int stop_loop;
2273
2274 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2275 BTRFS_BLOCK_GROUP_RAID6)) {
2276 if (num >= nr_data_stripes(map)) {
2277 return 0;
2278 }
2279 }
2280
2281 nstripes = length;
2282 offset = 0;
2283 do_div(nstripes, map->stripe_len);
2284 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2285 offset = map->stripe_len * num;
2286 increment = map->stripe_len * map->num_stripes;
2287 mirror_num = 1;
2288 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2289 int factor = map->num_stripes / map->sub_stripes;
2290 offset = map->stripe_len * (num / map->sub_stripes);
2291 increment = map->stripe_len * factor;
2292 mirror_num = num % map->sub_stripes + 1;
2293 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2294 increment = map->stripe_len;
2295 mirror_num = num % map->num_stripes + 1;
2296 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2297 increment = map->stripe_len;
2298 mirror_num = num % map->num_stripes + 1;
2299 } else {
2300 increment = map->stripe_len;
2301 mirror_num = 1;
2302 }
2303
2304 path = btrfs_alloc_path();
2305 if (!path)
2306 return -ENOMEM;
2307
2308 /*
2309 * work on commit root. The related disk blocks are static as
2310 * long as COW is applied. This means, it is save to rewrite
2311 * them to repair disk errors without any race conditions
2312 */
2313 path->search_commit_root = 1;
2314 path->skip_locking = 1;
2315
2316 /*
2317 * trigger the readahead for extent tree csum tree and wait for
2318 * completion. During readahead, the scrub is officially paused
2319 * to not hold off transaction commits
2320 */
2321 logical = base + offset;
2322
2323 wait_event(sctx->list_wait,
2324 atomic_read(&sctx->bios_in_flight) == 0);
2325 scrub_blocked_if_needed(fs_info);
2326
2327 /* FIXME it might be better to start readahead at commit root */
2328 key_start.objectid = logical;
2329 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2330 key_start.offset = (u64)0;
2331 key_end.objectid = base + offset + nstripes * increment;
2332 key_end.type = BTRFS_METADATA_ITEM_KEY;
2333 key_end.offset = (u64)-1;
2334 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2335
2336 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2337 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2338 key_start.offset = logical;
2339 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2340 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2341 key_end.offset = base + offset + nstripes * increment;
2342 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2343
2344 if (!IS_ERR(reada1))
2345 btrfs_reada_wait(reada1);
2346 if (!IS_ERR(reada2))
2347 btrfs_reada_wait(reada2);
2348
2349
2350 /*
2351 * collect all data csums for the stripe to avoid seeking during
2352 * the scrub. This might currently (crc32) end up to be about 1MB
2353 */
2354 blk_start_plug(&plug);
2355
2356 /*
2357 * now find all extents for each stripe and scrub them
2358 */
2359 logical = base + offset;
2360 physical = map->stripes[num].physical;
2361 logic_end = logical + increment * nstripes;
2362 ret = 0;
2363 while (logical < logic_end) {
2364 /*
2365 * canceled?
2366 */
2367 if (atomic_read(&fs_info->scrub_cancel_req) ||
2368 atomic_read(&sctx->cancel_req)) {
2369 ret = -ECANCELED;
2370 goto out;
2371 }
2372 /*
2373 * check to see if we have to pause
2374 */
2375 if (atomic_read(&fs_info->scrub_pause_req)) {
2376 /* push queued extents */
2377 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2378 scrub_submit(sctx);
2379 mutex_lock(&sctx->wr_ctx.wr_lock);
2380 scrub_wr_submit(sctx);
2381 mutex_unlock(&sctx->wr_ctx.wr_lock);
2382 wait_event(sctx->list_wait,
2383 atomic_read(&sctx->bios_in_flight) == 0);
2384 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2385 scrub_blocked_if_needed(fs_info);
2386 }
2387
2388 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2389 key.type = BTRFS_METADATA_ITEM_KEY;
2390 else
2391 key.type = BTRFS_EXTENT_ITEM_KEY;
2392 key.objectid = logical;
2393 key.offset = (u64)-1;
2394
2395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2396 if (ret < 0)
2397 goto out;
2398
2399 if (ret > 0) {
2400 ret = btrfs_previous_extent_item(root, path, 0);
2401 if (ret < 0)
2402 goto out;
2403 if (ret > 0) {
2404 /* there's no smaller item, so stick with the
2405 * larger one */
2406 btrfs_release_path(path);
2407 ret = btrfs_search_slot(NULL, root, &key,
2408 path, 0, 0);
2409 if (ret < 0)
2410 goto out;
2411 }
2412 }
2413
2414 stop_loop = 0;
2415 while (1) {
2416 u64 bytes;
2417
2418 l = path->nodes[0];
2419 slot = path->slots[0];
2420 if (slot >= btrfs_header_nritems(l)) {
2421 ret = btrfs_next_leaf(root, path);
2422 if (ret == 0)
2423 continue;
2424 if (ret < 0)
2425 goto out;
2426
2427 stop_loop = 1;
2428 break;
2429 }
2430 btrfs_item_key_to_cpu(l, &key, slot);
2431
2432 if (key.type == BTRFS_METADATA_ITEM_KEY)
2433 bytes = root->leafsize;
2434 else
2435 bytes = key.offset;
2436
2437 if (key.objectid + bytes <= logical)
2438 goto next;
2439
2440 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2441 key.type != BTRFS_METADATA_ITEM_KEY)
2442 goto next;
2443
2444 if (key.objectid >= logical + map->stripe_len) {
2445 /* out of this device extent */
2446 if (key.objectid >= logic_end)
2447 stop_loop = 1;
2448 break;
2449 }
2450
2451 extent = btrfs_item_ptr(l, slot,
2452 struct btrfs_extent_item);
2453 flags = btrfs_extent_flags(l, extent);
2454 generation = btrfs_extent_generation(l, extent);
2455
2456 if (key.objectid < logical &&
2457 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2458 btrfs_err(fs_info,
2459 "scrub: tree block %llu spanning "
2460 "stripes, ignored. logical=%llu",
2461 key.objectid, logical);
2462 goto next;
2463 }
2464
2465 again:
2466 extent_logical = key.objectid;
2467 extent_len = bytes;
2468
2469 /*
2470 * trim extent to this stripe
2471 */
2472 if (extent_logical < logical) {
2473 extent_len -= logical - extent_logical;
2474 extent_logical = logical;
2475 }
2476 if (extent_logical + extent_len >
2477 logical + map->stripe_len) {
2478 extent_len = logical + map->stripe_len -
2479 extent_logical;
2480 }
2481
2482 extent_physical = extent_logical - logical + physical;
2483 extent_dev = scrub_dev;
2484 extent_mirror_num = mirror_num;
2485 if (is_dev_replace)
2486 scrub_remap_extent(fs_info, extent_logical,
2487 extent_len, &extent_physical,
2488 &extent_dev,
2489 &extent_mirror_num);
2490
2491 ret = btrfs_lookup_csums_range(csum_root, logical,
2492 logical + map->stripe_len - 1,
2493 &sctx->csum_list, 1);
2494 if (ret)
2495 goto out;
2496
2497 ret = scrub_extent(sctx, extent_logical, extent_len,
2498 extent_physical, extent_dev, flags,
2499 generation, extent_mirror_num,
2500 extent_logical - logical + physical);
2501 if (ret)
2502 goto out;
2503
2504 scrub_free_csums(sctx);
2505 if (extent_logical + extent_len <
2506 key.objectid + bytes) {
2507 logical += increment;
2508 physical += map->stripe_len;
2509
2510 if (logical < key.objectid + bytes) {
2511 cond_resched();
2512 goto again;
2513 }
2514
2515 if (logical >= logic_end) {
2516 stop_loop = 1;
2517 break;
2518 }
2519 }
2520 next:
2521 path->slots[0]++;
2522 }
2523 btrfs_release_path(path);
2524 logical += increment;
2525 physical += map->stripe_len;
2526 spin_lock(&sctx->stat_lock);
2527 if (stop_loop)
2528 sctx->stat.last_physical = map->stripes[num].physical +
2529 length;
2530 else
2531 sctx->stat.last_physical = physical;
2532 spin_unlock(&sctx->stat_lock);
2533 if (stop_loop)
2534 break;
2535 }
2536 out:
2537 /* push queued extents */
2538 scrub_submit(sctx);
2539 mutex_lock(&sctx->wr_ctx.wr_lock);
2540 scrub_wr_submit(sctx);
2541 mutex_unlock(&sctx->wr_ctx.wr_lock);
2542
2543 blk_finish_plug(&plug);
2544 btrfs_free_path(path);
2545 return ret < 0 ? ret : 0;
2546 }
2547
2548 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2549 struct btrfs_device *scrub_dev,
2550 u64 chunk_tree, u64 chunk_objectid,
2551 u64 chunk_offset, u64 length,
2552 u64 dev_offset, int is_dev_replace)
2553 {
2554 struct btrfs_mapping_tree *map_tree =
2555 &sctx->dev_root->fs_info->mapping_tree;
2556 struct map_lookup *map;
2557 struct extent_map *em;
2558 int i;
2559 int ret = 0;
2560
2561 read_lock(&map_tree->map_tree.lock);
2562 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2563 read_unlock(&map_tree->map_tree.lock);
2564
2565 if (!em)
2566 return -EINVAL;
2567
2568 map = (struct map_lookup *)em->bdev;
2569 if (em->start != chunk_offset)
2570 goto out;
2571
2572 if (em->len < length)
2573 goto out;
2574
2575 for (i = 0; i < map->num_stripes; ++i) {
2576 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2577 map->stripes[i].physical == dev_offset) {
2578 ret = scrub_stripe(sctx, map, scrub_dev, i,
2579 chunk_offset, length,
2580 is_dev_replace);
2581 if (ret)
2582 goto out;
2583 }
2584 }
2585 out:
2586 free_extent_map(em);
2587
2588 return ret;
2589 }
2590
2591 static noinline_for_stack
2592 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2593 struct btrfs_device *scrub_dev, u64 start, u64 end,
2594 int is_dev_replace)
2595 {
2596 struct btrfs_dev_extent *dev_extent = NULL;
2597 struct btrfs_path *path;
2598 struct btrfs_root *root = sctx->dev_root;
2599 struct btrfs_fs_info *fs_info = root->fs_info;
2600 u64 length;
2601 u64 chunk_tree;
2602 u64 chunk_objectid;
2603 u64 chunk_offset;
2604 int ret;
2605 int slot;
2606 struct extent_buffer *l;
2607 struct btrfs_key key;
2608 struct btrfs_key found_key;
2609 struct btrfs_block_group_cache *cache;
2610 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2611
2612 path = btrfs_alloc_path();
2613 if (!path)
2614 return -ENOMEM;
2615
2616 path->reada = 2;
2617 path->search_commit_root = 1;
2618 path->skip_locking = 1;
2619
2620 key.objectid = scrub_dev->devid;
2621 key.offset = 0ull;
2622 key.type = BTRFS_DEV_EXTENT_KEY;
2623
2624 while (1) {
2625 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2626 if (ret < 0)
2627 break;
2628 if (ret > 0) {
2629 if (path->slots[0] >=
2630 btrfs_header_nritems(path->nodes[0])) {
2631 ret = btrfs_next_leaf(root, path);
2632 if (ret)
2633 break;
2634 }
2635 }
2636
2637 l = path->nodes[0];
2638 slot = path->slots[0];
2639
2640 btrfs_item_key_to_cpu(l, &found_key, slot);
2641
2642 if (found_key.objectid != scrub_dev->devid)
2643 break;
2644
2645 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2646 break;
2647
2648 if (found_key.offset >= end)
2649 break;
2650
2651 if (found_key.offset < key.offset)
2652 break;
2653
2654 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2655 length = btrfs_dev_extent_length(l, dev_extent);
2656
2657 if (found_key.offset + length <= start) {
2658 key.offset = found_key.offset + length;
2659 btrfs_release_path(path);
2660 continue;
2661 }
2662
2663 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2664 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2665 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2666
2667 /*
2668 * get a reference on the corresponding block group to prevent
2669 * the chunk from going away while we scrub it
2670 */
2671 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2672 if (!cache) {
2673 ret = -ENOENT;
2674 break;
2675 }
2676 dev_replace->cursor_right = found_key.offset + length;
2677 dev_replace->cursor_left = found_key.offset;
2678 dev_replace->item_needs_writeback = 1;
2679 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2680 chunk_offset, length, found_key.offset,
2681 is_dev_replace);
2682
2683 /*
2684 * flush, submit all pending read and write bios, afterwards
2685 * wait for them.
2686 * Note that in the dev replace case, a read request causes
2687 * write requests that are submitted in the read completion
2688 * worker. Therefore in the current situation, it is required
2689 * that all write requests are flushed, so that all read and
2690 * write requests are really completed when bios_in_flight
2691 * changes to 0.
2692 */
2693 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2694 scrub_submit(sctx);
2695 mutex_lock(&sctx->wr_ctx.wr_lock);
2696 scrub_wr_submit(sctx);
2697 mutex_unlock(&sctx->wr_ctx.wr_lock);
2698
2699 wait_event(sctx->list_wait,
2700 atomic_read(&sctx->bios_in_flight) == 0);
2701 atomic_inc(&fs_info->scrubs_paused);
2702 wake_up(&fs_info->scrub_pause_wait);
2703
2704 /*
2705 * must be called before we decrease @scrub_paused.
2706 * make sure we don't block transaction commit while
2707 * we are waiting pending workers finished.
2708 */
2709 wait_event(sctx->list_wait,
2710 atomic_read(&sctx->workers_pending) == 0);
2711 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2712
2713 mutex_lock(&fs_info->scrub_lock);
2714 __scrub_blocked_if_needed(fs_info);
2715 atomic_dec(&fs_info->scrubs_paused);
2716 mutex_unlock(&fs_info->scrub_lock);
2717 wake_up(&fs_info->scrub_pause_wait);
2718
2719 btrfs_put_block_group(cache);
2720 if (ret)
2721 break;
2722 if (is_dev_replace &&
2723 atomic64_read(&dev_replace->num_write_errors) > 0) {
2724 ret = -EIO;
2725 break;
2726 }
2727 if (sctx->stat.malloc_errors > 0) {
2728 ret = -ENOMEM;
2729 break;
2730 }
2731
2732 dev_replace->cursor_left = dev_replace->cursor_right;
2733 dev_replace->item_needs_writeback = 1;
2734
2735 key.offset = found_key.offset + length;
2736 btrfs_release_path(path);
2737 }
2738
2739 btrfs_free_path(path);
2740
2741 /*
2742 * ret can still be 1 from search_slot or next_leaf,
2743 * that's not an error
2744 */
2745 return ret < 0 ? ret : 0;
2746 }
2747
2748 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2749 struct btrfs_device *scrub_dev)
2750 {
2751 int i;
2752 u64 bytenr;
2753 u64 gen;
2754 int ret;
2755 struct btrfs_root *root = sctx->dev_root;
2756
2757 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2758 return -EIO;
2759
2760 gen = root->fs_info->last_trans_committed;
2761
2762 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2763 bytenr = btrfs_sb_offset(i);
2764 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2765 break;
2766
2767 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2768 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2769 NULL, 1, bytenr);
2770 if (ret)
2771 return ret;
2772 }
2773 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2774
2775 return 0;
2776 }
2777
2778 /*
2779 * get a reference count on fs_info->scrub_workers. start worker if necessary
2780 */
2781 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2782 int is_dev_replace)
2783 {
2784 int ret = 0;
2785 int flags = WQ_FREEZABLE | WQ_UNBOUND;
2786 int max_active = fs_info->thread_pool_size;
2787
2788 if (fs_info->scrub_workers_refcnt == 0) {
2789 if (is_dev_replace)
2790 fs_info->scrub_workers =
2791 btrfs_alloc_workqueue("btrfs-scrub", flags,
2792 1, 4);
2793 else
2794 fs_info->scrub_workers =
2795 btrfs_alloc_workqueue("btrfs-scrub", flags,
2796 max_active, 4);
2797 if (!fs_info->scrub_workers) {
2798 ret = -ENOMEM;
2799 goto out;
2800 }
2801 fs_info->scrub_wr_completion_workers =
2802 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2803 max_active, 2);
2804 if (!fs_info->scrub_wr_completion_workers) {
2805 ret = -ENOMEM;
2806 goto out;
2807 }
2808 fs_info->scrub_nocow_workers =
2809 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2810 if (!fs_info->scrub_nocow_workers) {
2811 ret = -ENOMEM;
2812 goto out;
2813 }
2814 }
2815 ++fs_info->scrub_workers_refcnt;
2816 out:
2817 return ret;
2818 }
2819
2820 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2821 {
2822 if (--fs_info->scrub_workers_refcnt == 0) {
2823 btrfs_destroy_workqueue(fs_info->scrub_workers);
2824 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2825 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2826 }
2827 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2828 }
2829
2830 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2831 u64 end, struct btrfs_scrub_progress *progress,
2832 int readonly, int is_dev_replace)
2833 {
2834 struct scrub_ctx *sctx;
2835 int ret;
2836 struct btrfs_device *dev;
2837
2838 if (btrfs_fs_closing(fs_info))
2839 return -EINVAL;
2840
2841 /*
2842 * check some assumptions
2843 */
2844 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2845 btrfs_err(fs_info,
2846 "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2847 fs_info->chunk_root->nodesize,
2848 fs_info->chunk_root->leafsize);
2849 return -EINVAL;
2850 }
2851
2852 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2853 /*
2854 * in this case scrub is unable to calculate the checksum
2855 * the way scrub is implemented. Do not handle this
2856 * situation at all because it won't ever happen.
2857 */
2858 btrfs_err(fs_info,
2859 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2860 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2861 return -EINVAL;
2862 }
2863
2864 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2865 /* not supported for data w/o checksums */
2866 btrfs_err(fs_info,
2867 "scrub: size assumption sectorsize != PAGE_SIZE "
2868 "(%d != %lu) fails",
2869 fs_info->chunk_root->sectorsize, PAGE_SIZE);
2870 return -EINVAL;
2871 }
2872
2873 if (fs_info->chunk_root->nodesize >
2874 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2875 fs_info->chunk_root->sectorsize >
2876 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2877 /*
2878 * would exhaust the array bounds of pagev member in
2879 * struct scrub_block
2880 */
2881 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2882 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2883 fs_info->chunk_root->nodesize,
2884 SCRUB_MAX_PAGES_PER_BLOCK,
2885 fs_info->chunk_root->sectorsize,
2886 SCRUB_MAX_PAGES_PER_BLOCK);
2887 return -EINVAL;
2888 }
2889
2890
2891 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2892 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2893 if (!dev || (dev->missing && !is_dev_replace)) {
2894 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2895 return -ENODEV;
2896 }
2897
2898 mutex_lock(&fs_info->scrub_lock);
2899 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2900 mutex_unlock(&fs_info->scrub_lock);
2901 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2902 return -EIO;
2903 }
2904
2905 btrfs_dev_replace_lock(&fs_info->dev_replace);
2906 if (dev->scrub_device ||
2907 (!is_dev_replace &&
2908 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2909 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2910 mutex_unlock(&fs_info->scrub_lock);
2911 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2912 return -EINPROGRESS;
2913 }
2914 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2915
2916 ret = scrub_workers_get(fs_info, is_dev_replace);
2917 if (ret) {
2918 mutex_unlock(&fs_info->scrub_lock);
2919 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2920 return ret;
2921 }
2922
2923 sctx = scrub_setup_ctx(dev, is_dev_replace);
2924 if (IS_ERR(sctx)) {
2925 mutex_unlock(&fs_info->scrub_lock);
2926 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2927 scrub_workers_put(fs_info);
2928 return PTR_ERR(sctx);
2929 }
2930 sctx->readonly = readonly;
2931 dev->scrub_device = sctx;
2932 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2933
2934 /*
2935 * checking @scrub_pause_req here, we can avoid
2936 * race between committing transaction and scrubbing.
2937 */
2938 __scrub_blocked_if_needed(fs_info);
2939 atomic_inc(&fs_info->scrubs_running);
2940 mutex_unlock(&fs_info->scrub_lock);
2941
2942 if (!is_dev_replace) {
2943 /*
2944 * by holding device list mutex, we can
2945 * kick off writing super in log tree sync.
2946 */
2947 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2948 ret = scrub_supers(sctx, dev);
2949 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2950 }
2951
2952 if (!ret)
2953 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2954 is_dev_replace);
2955
2956 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2957 atomic_dec(&fs_info->scrubs_running);
2958 wake_up(&fs_info->scrub_pause_wait);
2959
2960 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2961
2962 if (progress)
2963 memcpy(progress, &sctx->stat, sizeof(*progress));
2964
2965 mutex_lock(&fs_info->scrub_lock);
2966 dev->scrub_device = NULL;
2967 scrub_workers_put(fs_info);
2968 mutex_unlock(&fs_info->scrub_lock);
2969
2970 scrub_free_ctx(sctx);
2971
2972 return ret;
2973 }
2974
2975 void btrfs_scrub_pause(struct btrfs_root *root)
2976 {
2977 struct btrfs_fs_info *fs_info = root->fs_info;
2978
2979 mutex_lock(&fs_info->scrub_lock);
2980 atomic_inc(&fs_info->scrub_pause_req);
2981 while (atomic_read(&fs_info->scrubs_paused) !=
2982 atomic_read(&fs_info->scrubs_running)) {
2983 mutex_unlock(&fs_info->scrub_lock);
2984 wait_event(fs_info->scrub_pause_wait,
2985 atomic_read(&fs_info->scrubs_paused) ==
2986 atomic_read(&fs_info->scrubs_running));
2987 mutex_lock(&fs_info->scrub_lock);
2988 }
2989 mutex_unlock(&fs_info->scrub_lock);
2990 }
2991
2992 void btrfs_scrub_continue(struct btrfs_root *root)
2993 {
2994 struct btrfs_fs_info *fs_info = root->fs_info;
2995
2996 atomic_dec(&fs_info->scrub_pause_req);
2997 wake_up(&fs_info->scrub_pause_wait);
2998 }
2999
3000 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3001 {
3002 mutex_lock(&fs_info->scrub_lock);
3003 if (!atomic_read(&fs_info->scrubs_running)) {
3004 mutex_unlock(&fs_info->scrub_lock);
3005 return -ENOTCONN;
3006 }
3007
3008 atomic_inc(&fs_info->scrub_cancel_req);
3009 while (atomic_read(&fs_info->scrubs_running)) {
3010 mutex_unlock(&fs_info->scrub_lock);
3011 wait_event(fs_info->scrub_pause_wait,
3012 atomic_read(&fs_info->scrubs_running) == 0);
3013 mutex_lock(&fs_info->scrub_lock);
3014 }
3015 atomic_dec(&fs_info->scrub_cancel_req);
3016 mutex_unlock(&fs_info->scrub_lock);
3017
3018 return 0;
3019 }
3020
3021 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3022 struct btrfs_device *dev)
3023 {
3024 struct scrub_ctx *sctx;
3025
3026 mutex_lock(&fs_info->scrub_lock);
3027 sctx = dev->scrub_device;
3028 if (!sctx) {
3029 mutex_unlock(&fs_info->scrub_lock);
3030 return -ENOTCONN;
3031 }
3032 atomic_inc(&sctx->cancel_req);
3033 while (dev->scrub_device) {
3034 mutex_unlock(&fs_info->scrub_lock);
3035 wait_event(fs_info->scrub_pause_wait,
3036 dev->scrub_device == NULL);
3037 mutex_lock(&fs_info->scrub_lock);
3038 }
3039 mutex_unlock(&fs_info->scrub_lock);
3040
3041 return 0;
3042 }
3043
3044 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3045 struct btrfs_scrub_progress *progress)
3046 {
3047 struct btrfs_device *dev;
3048 struct scrub_ctx *sctx = NULL;
3049
3050 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3051 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3052 if (dev)
3053 sctx = dev->scrub_device;
3054 if (sctx)
3055 memcpy(progress, &sctx->stat, sizeof(*progress));
3056 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3057
3058 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3059 }
3060
3061 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3062 u64 extent_logical, u64 extent_len,
3063 u64 *extent_physical,
3064 struct btrfs_device **extent_dev,
3065 int *extent_mirror_num)
3066 {
3067 u64 mapped_length;
3068 struct btrfs_bio *bbio = NULL;
3069 int ret;
3070
3071 mapped_length = extent_len;
3072 ret = btrfs_map_block(fs_info, READ, extent_logical,
3073 &mapped_length, &bbio, 0);
3074 if (ret || !bbio || mapped_length < extent_len ||
3075 !bbio->stripes[0].dev->bdev) {
3076 kfree(bbio);
3077 return;
3078 }
3079
3080 *extent_physical = bbio->stripes[0].physical;
3081 *extent_mirror_num = bbio->mirror_num;
3082 *extent_dev = bbio->stripes[0].dev;
3083 kfree(bbio);
3084 }
3085
3086 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3087 struct scrub_wr_ctx *wr_ctx,
3088 struct btrfs_fs_info *fs_info,
3089 struct btrfs_device *dev,
3090 int is_dev_replace)
3091 {
3092 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3093
3094 mutex_init(&wr_ctx->wr_lock);
3095 wr_ctx->wr_curr_bio = NULL;
3096 if (!is_dev_replace)
3097 return 0;
3098
3099 WARN_ON(!dev->bdev);
3100 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3101 bio_get_nr_vecs(dev->bdev));
3102 wr_ctx->tgtdev = dev;
3103 atomic_set(&wr_ctx->flush_all_writes, 0);
3104 return 0;
3105 }
3106
3107 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3108 {
3109 mutex_lock(&wr_ctx->wr_lock);
3110 kfree(wr_ctx->wr_curr_bio);
3111 wr_ctx->wr_curr_bio = NULL;
3112 mutex_unlock(&wr_ctx->wr_lock);
3113 }
3114
3115 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3116 int mirror_num, u64 physical_for_dev_replace)
3117 {
3118 struct scrub_copy_nocow_ctx *nocow_ctx;
3119 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3120
3121 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3122 if (!nocow_ctx) {
3123 spin_lock(&sctx->stat_lock);
3124 sctx->stat.malloc_errors++;
3125 spin_unlock(&sctx->stat_lock);
3126 return -ENOMEM;
3127 }
3128
3129 scrub_pending_trans_workers_inc(sctx);
3130
3131 nocow_ctx->sctx = sctx;
3132 nocow_ctx->logical = logical;
3133 nocow_ctx->len = len;
3134 nocow_ctx->mirror_num = mirror_num;
3135 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3136 btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
3137 INIT_LIST_HEAD(&nocow_ctx->inodes);
3138 btrfs_queue_work(fs_info->scrub_nocow_workers,
3139 &nocow_ctx->work);
3140
3141 return 0;
3142 }
3143
3144 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3145 {
3146 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3147 struct scrub_nocow_inode *nocow_inode;
3148
3149 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3150 if (!nocow_inode)
3151 return -ENOMEM;
3152 nocow_inode->inum = inum;
3153 nocow_inode->offset = offset;
3154 nocow_inode->root = root;
3155 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3156 return 0;
3157 }
3158
3159 #define COPY_COMPLETE 1
3160
3161 static void copy_nocow_pages_worker(struct btrfs_work *work)
3162 {
3163 struct scrub_copy_nocow_ctx *nocow_ctx =
3164 container_of(work, struct scrub_copy_nocow_ctx, work);
3165 struct scrub_ctx *sctx = nocow_ctx->sctx;
3166 u64 logical = nocow_ctx->logical;
3167 u64 len = nocow_ctx->len;
3168 int mirror_num = nocow_ctx->mirror_num;
3169 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3170 int ret;
3171 struct btrfs_trans_handle *trans = NULL;
3172 struct btrfs_fs_info *fs_info;
3173 struct btrfs_path *path;
3174 struct btrfs_root *root;
3175 int not_written = 0;
3176
3177 fs_info = sctx->dev_root->fs_info;
3178 root = fs_info->extent_root;
3179
3180 path = btrfs_alloc_path();
3181 if (!path) {
3182 spin_lock(&sctx->stat_lock);
3183 sctx->stat.malloc_errors++;
3184 spin_unlock(&sctx->stat_lock);
3185 not_written = 1;
3186 goto out;
3187 }
3188
3189 trans = btrfs_join_transaction(root);
3190 if (IS_ERR(trans)) {
3191 not_written = 1;
3192 goto out;
3193 }
3194
3195 ret = iterate_inodes_from_logical(logical, fs_info, path,
3196 record_inode_for_nocow, nocow_ctx);
3197 if (ret != 0 && ret != -ENOENT) {
3198 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3199 "phys %llu, len %llu, mir %u, ret %d",
3200 logical, physical_for_dev_replace, len, mirror_num,
3201 ret);
3202 not_written = 1;
3203 goto out;
3204 }
3205
3206 btrfs_end_transaction(trans, root);
3207 trans = NULL;
3208 while (!list_empty(&nocow_ctx->inodes)) {
3209 struct scrub_nocow_inode *entry;
3210 entry = list_first_entry(&nocow_ctx->inodes,
3211 struct scrub_nocow_inode,
3212 list);
3213 list_del_init(&entry->list);
3214 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3215 entry->root, nocow_ctx);
3216 kfree(entry);
3217 if (ret == COPY_COMPLETE) {
3218 ret = 0;
3219 break;
3220 } else if (ret) {
3221 break;
3222 }
3223 }
3224 out:
3225 while (!list_empty(&nocow_ctx->inodes)) {
3226 struct scrub_nocow_inode *entry;
3227 entry = list_first_entry(&nocow_ctx->inodes,
3228 struct scrub_nocow_inode,
3229 list);
3230 list_del_init(&entry->list);
3231 kfree(entry);
3232 }
3233 if (trans && !IS_ERR(trans))
3234 btrfs_end_transaction(trans, root);
3235 if (not_written)
3236 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3237 num_uncorrectable_read_errors);
3238
3239 btrfs_free_path(path);
3240 kfree(nocow_ctx);
3241
3242 scrub_pending_trans_workers_dec(sctx);
3243 }
3244
3245 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3246 struct scrub_copy_nocow_ctx *nocow_ctx)
3247 {
3248 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3249 struct btrfs_key key;
3250 struct inode *inode;
3251 struct page *page;
3252 struct btrfs_root *local_root;
3253 struct btrfs_ordered_extent *ordered;
3254 struct extent_map *em;
3255 struct extent_state *cached_state = NULL;
3256 struct extent_io_tree *io_tree;
3257 u64 physical_for_dev_replace;
3258 u64 len = nocow_ctx->len;
3259 u64 lockstart = offset, lockend = offset + len - 1;
3260 unsigned long index;
3261 int srcu_index;
3262 int ret = 0;
3263 int err = 0;
3264
3265 key.objectid = root;
3266 key.type = BTRFS_ROOT_ITEM_KEY;
3267 key.offset = (u64)-1;
3268
3269 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3270
3271 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3272 if (IS_ERR(local_root)) {
3273 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3274 return PTR_ERR(local_root);
3275 }
3276
3277 key.type = BTRFS_INODE_ITEM_KEY;
3278 key.objectid = inum;
3279 key.offset = 0;
3280 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3281 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3282 if (IS_ERR(inode))
3283 return PTR_ERR(inode);
3284
3285 /* Avoid truncate/dio/punch hole.. */
3286 mutex_lock(&inode->i_mutex);
3287 inode_dio_wait(inode);
3288
3289 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3290 io_tree = &BTRFS_I(inode)->io_tree;
3291
3292 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3293 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3294 if (ordered) {
3295 btrfs_put_ordered_extent(ordered);
3296 goto out_unlock;
3297 }
3298
3299 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3300 if (IS_ERR(em)) {
3301 ret = PTR_ERR(em);
3302 goto out_unlock;
3303 }
3304
3305 /*
3306 * This extent does not actually cover the logical extent anymore,
3307 * move on to the next inode.
3308 */
3309 if (em->block_start > nocow_ctx->logical ||
3310 em->block_start + em->block_len < nocow_ctx->logical + len) {
3311 free_extent_map(em);
3312 goto out_unlock;
3313 }
3314 free_extent_map(em);
3315
3316 while (len >= PAGE_CACHE_SIZE) {
3317 index = offset >> PAGE_CACHE_SHIFT;
3318 again:
3319 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3320 if (!page) {
3321 btrfs_err(fs_info, "find_or_create_page() failed");
3322 ret = -ENOMEM;
3323 goto out;
3324 }
3325
3326 if (PageUptodate(page)) {
3327 if (PageDirty(page))
3328 goto next_page;
3329 } else {
3330 ClearPageError(page);
3331 err = extent_read_full_page_nolock(io_tree, page,
3332 btrfs_get_extent,
3333 nocow_ctx->mirror_num);
3334 if (err) {
3335 ret = err;
3336 goto next_page;
3337 }
3338
3339 lock_page(page);
3340 /*
3341 * If the page has been remove from the page cache,
3342 * the data on it is meaningless, because it may be
3343 * old one, the new data may be written into the new
3344 * page in the page cache.
3345 */
3346 if (page->mapping != inode->i_mapping) {
3347 unlock_page(page);
3348 page_cache_release(page);
3349 goto again;
3350 }
3351 if (!PageUptodate(page)) {
3352 ret = -EIO;
3353 goto next_page;
3354 }
3355 }
3356 err = write_page_nocow(nocow_ctx->sctx,
3357 physical_for_dev_replace, page);
3358 if (err)
3359 ret = err;
3360 next_page:
3361 unlock_page(page);
3362 page_cache_release(page);
3363
3364 if (ret)
3365 break;
3366
3367 offset += PAGE_CACHE_SIZE;
3368 physical_for_dev_replace += PAGE_CACHE_SIZE;
3369 len -= PAGE_CACHE_SIZE;
3370 }
3371 ret = COPY_COMPLETE;
3372 out_unlock:
3373 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3374 GFP_NOFS);
3375 out:
3376 mutex_unlock(&inode->i_mutex);
3377 iput(inode);
3378 return ret;
3379 }
3380
3381 static int write_page_nocow(struct scrub_ctx *sctx,
3382 u64 physical_for_dev_replace, struct page *page)
3383 {
3384 struct bio *bio;
3385 struct btrfs_device *dev;
3386 int ret;
3387
3388 dev = sctx->wr_ctx.tgtdev;
3389 if (!dev)
3390 return -EIO;
3391 if (!dev->bdev) {
3392 printk_ratelimited(KERN_WARNING
3393 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3394 return -EIO;
3395 }
3396 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3397 if (!bio) {
3398 spin_lock(&sctx->stat_lock);
3399 sctx->stat.malloc_errors++;
3400 spin_unlock(&sctx->stat_lock);
3401 return -ENOMEM;
3402 }
3403 bio->bi_iter.bi_size = 0;
3404 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3405 bio->bi_bdev = dev->bdev;
3406 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3407 if (ret != PAGE_CACHE_SIZE) {
3408 leave_with_eio:
3409 bio_put(bio);
3410 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3411 return -EIO;
3412 }
3413
3414 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3415 goto leave_with_eio;
3416
3417 bio_put(bio);
3418 return 0;
3419 }
This page took 0.276242 seconds and 6 git commands to generate.