Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[deliverable/linux.git] / fs / btrfs / scrub.c
1 /*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
44 */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
58
59 /*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
65
66 struct scrub_recover {
67 atomic_t refs;
68 struct btrfs_bio *bbio;
69 u64 map_length;
70 };
71
72 struct scrub_page {
73 struct scrub_block *sblock;
74 struct page *page;
75 struct btrfs_device *dev;
76 struct list_head list;
77 u64 flags; /* extent flags */
78 u64 generation;
79 u64 logical;
80 u64 physical;
81 u64 physical_for_dev_replace;
82 atomic_t refs;
83 struct {
84 unsigned int mirror_num:8;
85 unsigned int have_csum:1;
86 unsigned int io_error:1;
87 };
88 u8 csum[BTRFS_CSUM_SIZE];
89
90 struct scrub_recover *recover;
91 };
92
93 struct scrub_bio {
94 int index;
95 struct scrub_ctx *sctx;
96 struct btrfs_device *dev;
97 struct bio *bio;
98 int err;
99 u64 logical;
100 u64 physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 int page_count;
107 int next_free;
108 struct btrfs_work work;
109 };
110
111 struct scrub_block {
112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 int page_count;
114 atomic_t outstanding_pages;
115 atomic_t refs; /* free mem on transition to zero */
116 struct scrub_ctx *sctx;
117 struct scrub_parity *sparity;
118 struct {
119 unsigned int header_error:1;
120 unsigned int checksum_error:1;
121 unsigned int no_io_error_seen:1;
122 unsigned int generation_error:1; /* also sets header_error */
123
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected:1;
127 };
128 };
129
130 /* Used for the chunks with parity stripe such RAID5/6 */
131 struct scrub_parity {
132 struct scrub_ctx *sctx;
133
134 struct btrfs_device *scrub_dev;
135
136 u64 logic_start;
137
138 u64 logic_end;
139
140 int nsectors;
141
142 int stripe_len;
143
144 atomic_t refs;
145
146 struct list_head spages;
147
148 /* Work of parity check and repair */
149 struct btrfs_work work;
150
151 /* Mark the parity blocks which have data */
152 unsigned long *dbitmap;
153
154 /*
155 * Mark the parity blocks which have data, but errors happen when
156 * read data or check data
157 */
158 unsigned long *ebitmap;
159
160 unsigned long bitmap[0];
161 };
162
163 struct scrub_wr_ctx {
164 struct scrub_bio *wr_curr_bio;
165 struct btrfs_device *tgtdev;
166 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
167 atomic_t flush_all_writes;
168 struct mutex wr_lock;
169 };
170
171 struct scrub_ctx {
172 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
173 struct btrfs_root *dev_root;
174 int first_free;
175 int curr;
176 atomic_t bios_in_flight;
177 atomic_t workers_pending;
178 spinlock_t list_lock;
179 wait_queue_head_t list_wait;
180 u16 csum_size;
181 struct list_head csum_list;
182 atomic_t cancel_req;
183 int readonly;
184 int pages_per_rd_bio;
185 u32 sectorsize;
186 u32 nodesize;
187
188 int is_dev_replace;
189 struct scrub_wr_ctx wr_ctx;
190
191 /*
192 * statistics
193 */
194 struct btrfs_scrub_progress stat;
195 spinlock_t stat_lock;
196
197 /*
198 * Use a ref counter to avoid use-after-free issues. Scrub workers
199 * decrement bios_in_flight and workers_pending and then do a wakeup
200 * on the list_wait wait queue. We must ensure the main scrub task
201 * doesn't free the scrub context before or while the workers are
202 * doing the wakeup() call.
203 */
204 atomic_t refs;
205 };
206
207 struct scrub_fixup_nodatasum {
208 struct scrub_ctx *sctx;
209 struct btrfs_device *dev;
210 u64 logical;
211 struct btrfs_root *root;
212 struct btrfs_work work;
213 int mirror_num;
214 };
215
216 struct scrub_nocow_inode {
217 u64 inum;
218 u64 offset;
219 u64 root;
220 struct list_head list;
221 };
222
223 struct scrub_copy_nocow_ctx {
224 struct scrub_ctx *sctx;
225 u64 logical;
226 u64 len;
227 int mirror_num;
228 u64 physical_for_dev_replace;
229 struct list_head inodes;
230 struct btrfs_work work;
231 };
232
233 struct scrub_warning {
234 struct btrfs_path *path;
235 u64 extent_item_size;
236 const char *errstr;
237 sector_t sector;
238 u64 logical;
239 struct btrfs_device *dev;
240 };
241
242 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
243 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
244 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
246 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
247 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
248 struct scrub_block *sblocks_for_recheck);
249 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
250 struct scrub_block *sblock, int is_metadata,
251 int have_csum, u8 *csum, u64 generation,
252 u16 csum_size, int retry_failed_mirror);
253 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
254 struct scrub_block *sblock,
255 int is_metadata, int have_csum,
256 const u8 *csum, u64 generation,
257 u16 csum_size);
258 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
259 struct scrub_block *sblock_good);
260 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
261 struct scrub_block *sblock_good,
262 int page_num, int force_write);
263 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
264 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
265 int page_num);
266 static int scrub_checksum_data(struct scrub_block *sblock);
267 static int scrub_checksum_tree_block(struct scrub_block *sblock);
268 static int scrub_checksum_super(struct scrub_block *sblock);
269 static void scrub_block_get(struct scrub_block *sblock);
270 static void scrub_block_put(struct scrub_block *sblock);
271 static void scrub_page_get(struct scrub_page *spage);
272 static void scrub_page_put(struct scrub_page *spage);
273 static void scrub_parity_get(struct scrub_parity *sparity);
274 static void scrub_parity_put(struct scrub_parity *sparity);
275 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
276 struct scrub_page *spage);
277 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
278 u64 physical, struct btrfs_device *dev, u64 flags,
279 u64 gen, int mirror_num, u8 *csum, int force,
280 u64 physical_for_dev_replace);
281 static void scrub_bio_end_io(struct bio *bio, int err);
282 static void scrub_bio_end_io_worker(struct btrfs_work *work);
283 static void scrub_block_complete(struct scrub_block *sblock);
284 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
285 u64 extent_logical, u64 extent_len,
286 u64 *extent_physical,
287 struct btrfs_device **extent_dev,
288 int *extent_mirror_num);
289 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
290 struct scrub_wr_ctx *wr_ctx,
291 struct btrfs_fs_info *fs_info,
292 struct btrfs_device *dev,
293 int is_dev_replace);
294 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
295 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
296 struct scrub_page *spage);
297 static void scrub_wr_submit(struct scrub_ctx *sctx);
298 static void scrub_wr_bio_end_io(struct bio *bio, int err);
299 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
300 static int write_page_nocow(struct scrub_ctx *sctx,
301 u64 physical_for_dev_replace, struct page *page);
302 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
303 struct scrub_copy_nocow_ctx *ctx);
304 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
305 int mirror_num, u64 physical_for_dev_replace);
306 static void copy_nocow_pages_worker(struct btrfs_work *work);
307 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
308 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309 static void scrub_put_ctx(struct scrub_ctx *sctx);
310
311
312 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
313 {
314 atomic_inc(&sctx->refs);
315 atomic_inc(&sctx->bios_in_flight);
316 }
317
318 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
319 {
320 atomic_dec(&sctx->bios_in_flight);
321 wake_up(&sctx->list_wait);
322 scrub_put_ctx(sctx);
323 }
324
325 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
326 {
327 while (atomic_read(&fs_info->scrub_pause_req)) {
328 mutex_unlock(&fs_info->scrub_lock);
329 wait_event(fs_info->scrub_pause_wait,
330 atomic_read(&fs_info->scrub_pause_req) == 0);
331 mutex_lock(&fs_info->scrub_lock);
332 }
333 }
334
335 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
336 {
337 atomic_inc(&fs_info->scrubs_paused);
338 wake_up(&fs_info->scrub_pause_wait);
339
340 mutex_lock(&fs_info->scrub_lock);
341 __scrub_blocked_if_needed(fs_info);
342 atomic_dec(&fs_info->scrubs_paused);
343 mutex_unlock(&fs_info->scrub_lock);
344
345 wake_up(&fs_info->scrub_pause_wait);
346 }
347
348 /*
349 * used for workers that require transaction commits (i.e., for the
350 * NOCOW case)
351 */
352 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
353 {
354 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
355
356 atomic_inc(&sctx->refs);
357 /*
358 * increment scrubs_running to prevent cancel requests from
359 * completing as long as a worker is running. we must also
360 * increment scrubs_paused to prevent deadlocking on pause
361 * requests used for transactions commits (as the worker uses a
362 * transaction context). it is safe to regard the worker
363 * as paused for all matters practical. effectively, we only
364 * avoid cancellation requests from completing.
365 */
366 mutex_lock(&fs_info->scrub_lock);
367 atomic_inc(&fs_info->scrubs_running);
368 atomic_inc(&fs_info->scrubs_paused);
369 mutex_unlock(&fs_info->scrub_lock);
370
371 /*
372 * check if @scrubs_running=@scrubs_paused condition
373 * inside wait_event() is not an atomic operation.
374 * which means we may inc/dec @scrub_running/paused
375 * at any time. Let's wake up @scrub_pause_wait as
376 * much as we can to let commit transaction blocked less.
377 */
378 wake_up(&fs_info->scrub_pause_wait);
379
380 atomic_inc(&sctx->workers_pending);
381 }
382
383 /* used for workers that require transaction commits */
384 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
385 {
386 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
387
388 /*
389 * see scrub_pending_trans_workers_inc() why we're pretending
390 * to be paused in the scrub counters
391 */
392 mutex_lock(&fs_info->scrub_lock);
393 atomic_dec(&fs_info->scrubs_running);
394 atomic_dec(&fs_info->scrubs_paused);
395 mutex_unlock(&fs_info->scrub_lock);
396 atomic_dec(&sctx->workers_pending);
397 wake_up(&fs_info->scrub_pause_wait);
398 wake_up(&sctx->list_wait);
399 scrub_put_ctx(sctx);
400 }
401
402 static void scrub_free_csums(struct scrub_ctx *sctx)
403 {
404 while (!list_empty(&sctx->csum_list)) {
405 struct btrfs_ordered_sum *sum;
406 sum = list_first_entry(&sctx->csum_list,
407 struct btrfs_ordered_sum, list);
408 list_del(&sum->list);
409 kfree(sum);
410 }
411 }
412
413 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
414 {
415 int i;
416
417 if (!sctx)
418 return;
419
420 scrub_free_wr_ctx(&sctx->wr_ctx);
421
422 /* this can happen when scrub is cancelled */
423 if (sctx->curr != -1) {
424 struct scrub_bio *sbio = sctx->bios[sctx->curr];
425
426 for (i = 0; i < sbio->page_count; i++) {
427 WARN_ON(!sbio->pagev[i]->page);
428 scrub_block_put(sbio->pagev[i]->sblock);
429 }
430 bio_put(sbio->bio);
431 }
432
433 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
434 struct scrub_bio *sbio = sctx->bios[i];
435
436 if (!sbio)
437 break;
438 kfree(sbio);
439 }
440
441 scrub_free_csums(sctx);
442 kfree(sctx);
443 }
444
445 static void scrub_put_ctx(struct scrub_ctx *sctx)
446 {
447 if (atomic_dec_and_test(&sctx->refs))
448 scrub_free_ctx(sctx);
449 }
450
451 static noinline_for_stack
452 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
453 {
454 struct scrub_ctx *sctx;
455 int i;
456 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
457 int pages_per_rd_bio;
458 int ret;
459
460 /*
461 * the setting of pages_per_rd_bio is correct for scrub but might
462 * be wrong for the dev_replace code where we might read from
463 * different devices in the initial huge bios. However, that
464 * code is able to correctly handle the case when adding a page
465 * to a bio fails.
466 */
467 if (dev->bdev)
468 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
469 bio_get_nr_vecs(dev->bdev));
470 else
471 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
472 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
473 if (!sctx)
474 goto nomem;
475 atomic_set(&sctx->refs, 1);
476 sctx->is_dev_replace = is_dev_replace;
477 sctx->pages_per_rd_bio = pages_per_rd_bio;
478 sctx->curr = -1;
479 sctx->dev_root = dev->dev_root;
480 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
481 struct scrub_bio *sbio;
482
483 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
484 if (!sbio)
485 goto nomem;
486 sctx->bios[i] = sbio;
487
488 sbio->index = i;
489 sbio->sctx = sctx;
490 sbio->page_count = 0;
491 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
492 scrub_bio_end_io_worker, NULL, NULL);
493
494 if (i != SCRUB_BIOS_PER_SCTX - 1)
495 sctx->bios[i]->next_free = i + 1;
496 else
497 sctx->bios[i]->next_free = -1;
498 }
499 sctx->first_free = 0;
500 sctx->nodesize = dev->dev_root->nodesize;
501 sctx->sectorsize = dev->dev_root->sectorsize;
502 atomic_set(&sctx->bios_in_flight, 0);
503 atomic_set(&sctx->workers_pending, 0);
504 atomic_set(&sctx->cancel_req, 0);
505 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
506 INIT_LIST_HEAD(&sctx->csum_list);
507
508 spin_lock_init(&sctx->list_lock);
509 spin_lock_init(&sctx->stat_lock);
510 init_waitqueue_head(&sctx->list_wait);
511
512 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
513 fs_info->dev_replace.tgtdev, is_dev_replace);
514 if (ret) {
515 scrub_free_ctx(sctx);
516 return ERR_PTR(ret);
517 }
518 return sctx;
519
520 nomem:
521 scrub_free_ctx(sctx);
522 return ERR_PTR(-ENOMEM);
523 }
524
525 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
526 void *warn_ctx)
527 {
528 u64 isize;
529 u32 nlink;
530 int ret;
531 int i;
532 struct extent_buffer *eb;
533 struct btrfs_inode_item *inode_item;
534 struct scrub_warning *swarn = warn_ctx;
535 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
536 struct inode_fs_paths *ipath = NULL;
537 struct btrfs_root *local_root;
538 struct btrfs_key root_key;
539 struct btrfs_key key;
540
541 root_key.objectid = root;
542 root_key.type = BTRFS_ROOT_ITEM_KEY;
543 root_key.offset = (u64)-1;
544 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
545 if (IS_ERR(local_root)) {
546 ret = PTR_ERR(local_root);
547 goto err;
548 }
549
550 /*
551 * this makes the path point to (inum INODE_ITEM ioff)
552 */
553 key.objectid = inum;
554 key.type = BTRFS_INODE_ITEM_KEY;
555 key.offset = 0;
556
557 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558 if (ret) {
559 btrfs_release_path(swarn->path);
560 goto err;
561 }
562
563 eb = swarn->path->nodes[0];
564 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
565 struct btrfs_inode_item);
566 isize = btrfs_inode_size(eb, inode_item);
567 nlink = btrfs_inode_nlink(eb, inode_item);
568 btrfs_release_path(swarn->path);
569
570 ipath = init_ipath(4096, local_root, swarn->path);
571 if (IS_ERR(ipath)) {
572 ret = PTR_ERR(ipath);
573 ipath = NULL;
574 goto err;
575 }
576 ret = paths_from_inode(inum, ipath);
577
578 if (ret < 0)
579 goto err;
580
581 /*
582 * we deliberately ignore the bit ipath might have been too small to
583 * hold all of the paths here
584 */
585 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
586 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
587 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
588 "length %llu, links %u (path: %s)\n", swarn->errstr,
589 swarn->logical, rcu_str_deref(swarn->dev->name),
590 (unsigned long long)swarn->sector, root, inum, offset,
591 min(isize - offset, (u64)PAGE_SIZE), nlink,
592 (char *)(unsigned long)ipath->fspath->val[i]);
593
594 free_ipath(ipath);
595 return 0;
596
597 err:
598 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
599 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
600 "resolving failed with ret=%d\n", swarn->errstr,
601 swarn->logical, rcu_str_deref(swarn->dev->name),
602 (unsigned long long)swarn->sector, root, inum, offset, ret);
603
604 free_ipath(ipath);
605 return 0;
606 }
607
608 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
609 {
610 struct btrfs_device *dev;
611 struct btrfs_fs_info *fs_info;
612 struct btrfs_path *path;
613 struct btrfs_key found_key;
614 struct extent_buffer *eb;
615 struct btrfs_extent_item *ei;
616 struct scrub_warning swarn;
617 unsigned long ptr = 0;
618 u64 extent_item_pos;
619 u64 flags = 0;
620 u64 ref_root;
621 u32 item_size;
622 u8 ref_level;
623 int ret;
624
625 WARN_ON(sblock->page_count < 1);
626 dev = sblock->pagev[0]->dev;
627 fs_info = sblock->sctx->dev_root->fs_info;
628
629 path = btrfs_alloc_path();
630 if (!path)
631 return;
632
633 swarn.sector = (sblock->pagev[0]->physical) >> 9;
634 swarn.logical = sblock->pagev[0]->logical;
635 swarn.errstr = errstr;
636 swarn.dev = NULL;
637
638 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
639 &flags);
640 if (ret < 0)
641 goto out;
642
643 extent_item_pos = swarn.logical - found_key.objectid;
644 swarn.extent_item_size = found_key.offset;
645
646 eb = path->nodes[0];
647 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
648 item_size = btrfs_item_size_nr(eb, path->slots[0]);
649
650 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
651 do {
652 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
653 item_size, &ref_root,
654 &ref_level);
655 printk_in_rcu(KERN_WARNING
656 "BTRFS: %s at logical %llu on dev %s, "
657 "sector %llu: metadata %s (level %d) in tree "
658 "%llu\n", errstr, swarn.logical,
659 rcu_str_deref(dev->name),
660 (unsigned long long)swarn.sector,
661 ref_level ? "node" : "leaf",
662 ret < 0 ? -1 : ref_level,
663 ret < 0 ? -1 : ref_root);
664 } while (ret != 1);
665 btrfs_release_path(path);
666 } else {
667 btrfs_release_path(path);
668 swarn.path = path;
669 swarn.dev = dev;
670 iterate_extent_inodes(fs_info, found_key.objectid,
671 extent_item_pos, 1,
672 scrub_print_warning_inode, &swarn);
673 }
674
675 out:
676 btrfs_free_path(path);
677 }
678
679 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
680 {
681 struct page *page = NULL;
682 unsigned long index;
683 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
684 int ret;
685 int corrected = 0;
686 struct btrfs_key key;
687 struct inode *inode = NULL;
688 struct btrfs_fs_info *fs_info;
689 u64 end = offset + PAGE_SIZE - 1;
690 struct btrfs_root *local_root;
691 int srcu_index;
692
693 key.objectid = root;
694 key.type = BTRFS_ROOT_ITEM_KEY;
695 key.offset = (u64)-1;
696
697 fs_info = fixup->root->fs_info;
698 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
699
700 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
701 if (IS_ERR(local_root)) {
702 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703 return PTR_ERR(local_root);
704 }
705
706 key.type = BTRFS_INODE_ITEM_KEY;
707 key.objectid = inum;
708 key.offset = 0;
709 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
710 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
711 if (IS_ERR(inode))
712 return PTR_ERR(inode);
713
714 index = offset >> PAGE_CACHE_SHIFT;
715
716 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
717 if (!page) {
718 ret = -ENOMEM;
719 goto out;
720 }
721
722 if (PageUptodate(page)) {
723 if (PageDirty(page)) {
724 /*
725 * we need to write the data to the defect sector. the
726 * data that was in that sector is not in memory,
727 * because the page was modified. we must not write the
728 * modified page to that sector.
729 *
730 * TODO: what could be done here: wait for the delalloc
731 * runner to write out that page (might involve
732 * COW) and see whether the sector is still
733 * referenced afterwards.
734 *
735 * For the meantime, we'll treat this error
736 * incorrectable, although there is a chance that a
737 * later scrub will find the bad sector again and that
738 * there's no dirty page in memory, then.
739 */
740 ret = -EIO;
741 goto out;
742 }
743 ret = repair_io_failure(inode, offset, PAGE_SIZE,
744 fixup->logical, page,
745 offset - page_offset(page),
746 fixup->mirror_num);
747 unlock_page(page);
748 corrected = !ret;
749 } else {
750 /*
751 * we need to get good data first. the general readpage path
752 * will call repair_io_failure for us, we just have to make
753 * sure we read the bad mirror.
754 */
755 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
756 EXTENT_DAMAGED, GFP_NOFS);
757 if (ret) {
758 /* set_extent_bits should give proper error */
759 WARN_ON(ret > 0);
760 if (ret > 0)
761 ret = -EFAULT;
762 goto out;
763 }
764
765 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
766 btrfs_get_extent,
767 fixup->mirror_num);
768 wait_on_page_locked(page);
769
770 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
771 end, EXTENT_DAMAGED, 0, NULL);
772 if (!corrected)
773 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
774 EXTENT_DAMAGED, GFP_NOFS);
775 }
776
777 out:
778 if (page)
779 put_page(page);
780
781 iput(inode);
782
783 if (ret < 0)
784 return ret;
785
786 if (ret == 0 && corrected) {
787 /*
788 * we only need to call readpage for one of the inodes belonging
789 * to this extent. so make iterate_extent_inodes stop
790 */
791 return 1;
792 }
793
794 return -EIO;
795 }
796
797 static void scrub_fixup_nodatasum(struct btrfs_work *work)
798 {
799 int ret;
800 struct scrub_fixup_nodatasum *fixup;
801 struct scrub_ctx *sctx;
802 struct btrfs_trans_handle *trans = NULL;
803 struct btrfs_path *path;
804 int uncorrectable = 0;
805
806 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
807 sctx = fixup->sctx;
808
809 path = btrfs_alloc_path();
810 if (!path) {
811 spin_lock(&sctx->stat_lock);
812 ++sctx->stat.malloc_errors;
813 spin_unlock(&sctx->stat_lock);
814 uncorrectable = 1;
815 goto out;
816 }
817
818 trans = btrfs_join_transaction(fixup->root);
819 if (IS_ERR(trans)) {
820 uncorrectable = 1;
821 goto out;
822 }
823
824 /*
825 * the idea is to trigger a regular read through the standard path. we
826 * read a page from the (failed) logical address by specifying the
827 * corresponding copynum of the failed sector. thus, that readpage is
828 * expected to fail.
829 * that is the point where on-the-fly error correction will kick in
830 * (once it's finished) and rewrite the failed sector if a good copy
831 * can be found.
832 */
833 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
834 path, scrub_fixup_readpage,
835 fixup);
836 if (ret < 0) {
837 uncorrectable = 1;
838 goto out;
839 }
840 WARN_ON(ret != 1);
841
842 spin_lock(&sctx->stat_lock);
843 ++sctx->stat.corrected_errors;
844 spin_unlock(&sctx->stat_lock);
845
846 out:
847 if (trans && !IS_ERR(trans))
848 btrfs_end_transaction(trans, fixup->root);
849 if (uncorrectable) {
850 spin_lock(&sctx->stat_lock);
851 ++sctx->stat.uncorrectable_errors;
852 spin_unlock(&sctx->stat_lock);
853 btrfs_dev_replace_stats_inc(
854 &sctx->dev_root->fs_info->dev_replace.
855 num_uncorrectable_read_errors);
856 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
857 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
858 fixup->logical, rcu_str_deref(fixup->dev->name));
859 }
860
861 btrfs_free_path(path);
862 kfree(fixup);
863
864 scrub_pending_trans_workers_dec(sctx);
865 }
866
867 static inline void scrub_get_recover(struct scrub_recover *recover)
868 {
869 atomic_inc(&recover->refs);
870 }
871
872 static inline void scrub_put_recover(struct scrub_recover *recover)
873 {
874 if (atomic_dec_and_test(&recover->refs)) {
875 btrfs_put_bbio(recover->bbio);
876 kfree(recover);
877 }
878 }
879
880 /*
881 * scrub_handle_errored_block gets called when either verification of the
882 * pages failed or the bio failed to read, e.g. with EIO. In the latter
883 * case, this function handles all pages in the bio, even though only one
884 * may be bad.
885 * The goal of this function is to repair the errored block by using the
886 * contents of one of the mirrors.
887 */
888 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
889 {
890 struct scrub_ctx *sctx = sblock_to_check->sctx;
891 struct btrfs_device *dev;
892 struct btrfs_fs_info *fs_info;
893 u64 length;
894 u64 logical;
895 u64 generation;
896 unsigned int failed_mirror_index;
897 unsigned int is_metadata;
898 unsigned int have_csum;
899 u8 *csum;
900 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
901 struct scrub_block *sblock_bad;
902 int ret;
903 int mirror_index;
904 int page_num;
905 int success;
906 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
907 DEFAULT_RATELIMIT_BURST);
908
909 BUG_ON(sblock_to_check->page_count < 1);
910 fs_info = sctx->dev_root->fs_info;
911 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
912 /*
913 * if we find an error in a super block, we just report it.
914 * They will get written with the next transaction commit
915 * anyway
916 */
917 spin_lock(&sctx->stat_lock);
918 ++sctx->stat.super_errors;
919 spin_unlock(&sctx->stat_lock);
920 return 0;
921 }
922 length = sblock_to_check->page_count * PAGE_SIZE;
923 logical = sblock_to_check->pagev[0]->logical;
924 generation = sblock_to_check->pagev[0]->generation;
925 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
926 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
927 is_metadata = !(sblock_to_check->pagev[0]->flags &
928 BTRFS_EXTENT_FLAG_DATA);
929 have_csum = sblock_to_check->pagev[0]->have_csum;
930 csum = sblock_to_check->pagev[0]->csum;
931 dev = sblock_to_check->pagev[0]->dev;
932
933 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
934 sblocks_for_recheck = NULL;
935 goto nodatasum_case;
936 }
937
938 /*
939 * read all mirrors one after the other. This includes to
940 * re-read the extent or metadata block that failed (that was
941 * the cause that this fixup code is called) another time,
942 * page by page this time in order to know which pages
943 * caused I/O errors and which ones are good (for all mirrors).
944 * It is the goal to handle the situation when more than one
945 * mirror contains I/O errors, but the errors do not
946 * overlap, i.e. the data can be repaired by selecting the
947 * pages from those mirrors without I/O error on the
948 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
949 * would be that mirror #1 has an I/O error on the first page,
950 * the second page is good, and mirror #2 has an I/O error on
951 * the second page, but the first page is good.
952 * Then the first page of the first mirror can be repaired by
953 * taking the first page of the second mirror, and the
954 * second page of the second mirror can be repaired by
955 * copying the contents of the 2nd page of the 1st mirror.
956 * One more note: if the pages of one mirror contain I/O
957 * errors, the checksum cannot be verified. In order to get
958 * the best data for repairing, the first attempt is to find
959 * a mirror without I/O errors and with a validated checksum.
960 * Only if this is not possible, the pages are picked from
961 * mirrors with I/O errors without considering the checksum.
962 * If the latter is the case, at the end, the checksum of the
963 * repaired area is verified in order to correctly maintain
964 * the statistics.
965 */
966
967 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
968 sizeof(*sblocks_for_recheck),
969 GFP_NOFS);
970 if (!sblocks_for_recheck) {
971 spin_lock(&sctx->stat_lock);
972 sctx->stat.malloc_errors++;
973 sctx->stat.read_errors++;
974 sctx->stat.uncorrectable_errors++;
975 spin_unlock(&sctx->stat_lock);
976 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
977 goto out;
978 }
979
980 /* setup the context, map the logical blocks and alloc the pages */
981 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
982 if (ret) {
983 spin_lock(&sctx->stat_lock);
984 sctx->stat.read_errors++;
985 sctx->stat.uncorrectable_errors++;
986 spin_unlock(&sctx->stat_lock);
987 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
988 goto out;
989 }
990 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
991 sblock_bad = sblocks_for_recheck + failed_mirror_index;
992
993 /* build and submit the bios for the failed mirror, check checksums */
994 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
995 csum, generation, sctx->csum_size, 1);
996
997 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
998 sblock_bad->no_io_error_seen) {
999 /*
1000 * the error disappeared after reading page by page, or
1001 * the area was part of a huge bio and other parts of the
1002 * bio caused I/O errors, or the block layer merged several
1003 * read requests into one and the error is caused by a
1004 * different bio (usually one of the two latter cases is
1005 * the cause)
1006 */
1007 spin_lock(&sctx->stat_lock);
1008 sctx->stat.unverified_errors++;
1009 sblock_to_check->data_corrected = 1;
1010 spin_unlock(&sctx->stat_lock);
1011
1012 if (sctx->is_dev_replace)
1013 scrub_write_block_to_dev_replace(sblock_bad);
1014 goto out;
1015 }
1016
1017 if (!sblock_bad->no_io_error_seen) {
1018 spin_lock(&sctx->stat_lock);
1019 sctx->stat.read_errors++;
1020 spin_unlock(&sctx->stat_lock);
1021 if (__ratelimit(&_rs))
1022 scrub_print_warning("i/o error", sblock_to_check);
1023 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1024 } else if (sblock_bad->checksum_error) {
1025 spin_lock(&sctx->stat_lock);
1026 sctx->stat.csum_errors++;
1027 spin_unlock(&sctx->stat_lock);
1028 if (__ratelimit(&_rs))
1029 scrub_print_warning("checksum error", sblock_to_check);
1030 btrfs_dev_stat_inc_and_print(dev,
1031 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032 } else if (sblock_bad->header_error) {
1033 spin_lock(&sctx->stat_lock);
1034 sctx->stat.verify_errors++;
1035 spin_unlock(&sctx->stat_lock);
1036 if (__ratelimit(&_rs))
1037 scrub_print_warning("checksum/header error",
1038 sblock_to_check);
1039 if (sblock_bad->generation_error)
1040 btrfs_dev_stat_inc_and_print(dev,
1041 BTRFS_DEV_STAT_GENERATION_ERRS);
1042 else
1043 btrfs_dev_stat_inc_and_print(dev,
1044 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1045 }
1046
1047 if (sctx->readonly) {
1048 ASSERT(!sctx->is_dev_replace);
1049 goto out;
1050 }
1051
1052 if (!is_metadata && !have_csum) {
1053 struct scrub_fixup_nodatasum *fixup_nodatasum;
1054
1055 WARN_ON(sctx->is_dev_replace);
1056
1057 nodatasum_case:
1058
1059 /*
1060 * !is_metadata and !have_csum, this means that the data
1061 * might not be COW'ed, that it might be modified
1062 * concurrently. The general strategy to work on the
1063 * commit root does not help in the case when COW is not
1064 * used.
1065 */
1066 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1067 if (!fixup_nodatasum)
1068 goto did_not_correct_error;
1069 fixup_nodatasum->sctx = sctx;
1070 fixup_nodatasum->dev = dev;
1071 fixup_nodatasum->logical = logical;
1072 fixup_nodatasum->root = fs_info->extent_root;
1073 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1074 scrub_pending_trans_workers_inc(sctx);
1075 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1076 scrub_fixup_nodatasum, NULL, NULL);
1077 btrfs_queue_work(fs_info->scrub_workers,
1078 &fixup_nodatasum->work);
1079 goto out;
1080 }
1081
1082 /*
1083 * now build and submit the bios for the other mirrors, check
1084 * checksums.
1085 * First try to pick the mirror which is completely without I/O
1086 * errors and also does not have a checksum error.
1087 * If one is found, and if a checksum is present, the full block
1088 * that is known to contain an error is rewritten. Afterwards
1089 * the block is known to be corrected.
1090 * If a mirror is found which is completely correct, and no
1091 * checksum is present, only those pages are rewritten that had
1092 * an I/O error in the block to be repaired, since it cannot be
1093 * determined, which copy of the other pages is better (and it
1094 * could happen otherwise that a correct page would be
1095 * overwritten by a bad one).
1096 */
1097 for (mirror_index = 0;
1098 mirror_index < BTRFS_MAX_MIRRORS &&
1099 sblocks_for_recheck[mirror_index].page_count > 0;
1100 mirror_index++) {
1101 struct scrub_block *sblock_other;
1102
1103 if (mirror_index == failed_mirror_index)
1104 continue;
1105 sblock_other = sblocks_for_recheck + mirror_index;
1106
1107 /* build and submit the bios, check checksums */
1108 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1109 have_csum, csum, generation,
1110 sctx->csum_size, 0);
1111
1112 if (!sblock_other->header_error &&
1113 !sblock_other->checksum_error &&
1114 sblock_other->no_io_error_seen) {
1115 if (sctx->is_dev_replace) {
1116 scrub_write_block_to_dev_replace(sblock_other);
1117 goto corrected_error;
1118 } else {
1119 ret = scrub_repair_block_from_good_copy(
1120 sblock_bad, sblock_other);
1121 if (!ret)
1122 goto corrected_error;
1123 }
1124 }
1125 }
1126
1127 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1128 goto did_not_correct_error;
1129
1130 /*
1131 * In case of I/O errors in the area that is supposed to be
1132 * repaired, continue by picking good copies of those pages.
1133 * Select the good pages from mirrors to rewrite bad pages from
1134 * the area to fix. Afterwards verify the checksum of the block
1135 * that is supposed to be repaired. This verification step is
1136 * only done for the purpose of statistic counting and for the
1137 * final scrub report, whether errors remain.
1138 * A perfect algorithm could make use of the checksum and try
1139 * all possible combinations of pages from the different mirrors
1140 * until the checksum verification succeeds. For example, when
1141 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1142 * of mirror #2 is readable but the final checksum test fails,
1143 * then the 2nd page of mirror #3 could be tried, whether now
1144 * the final checksum succeedes. But this would be a rare
1145 * exception and is therefore not implemented. At least it is
1146 * avoided that the good copy is overwritten.
1147 * A more useful improvement would be to pick the sectors
1148 * without I/O error based on sector sizes (512 bytes on legacy
1149 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1150 * mirror could be repaired by taking 512 byte of a different
1151 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1152 * area are unreadable.
1153 */
1154 success = 1;
1155 for (page_num = 0; page_num < sblock_bad->page_count;
1156 page_num++) {
1157 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1158 struct scrub_block *sblock_other = NULL;
1159
1160 /* skip no-io-error page in scrub */
1161 if (!page_bad->io_error && !sctx->is_dev_replace)
1162 continue;
1163
1164 /* try to find no-io-error page in mirrors */
1165 if (page_bad->io_error) {
1166 for (mirror_index = 0;
1167 mirror_index < BTRFS_MAX_MIRRORS &&
1168 sblocks_for_recheck[mirror_index].page_count > 0;
1169 mirror_index++) {
1170 if (!sblocks_for_recheck[mirror_index].
1171 pagev[page_num]->io_error) {
1172 sblock_other = sblocks_for_recheck +
1173 mirror_index;
1174 break;
1175 }
1176 }
1177 if (!sblock_other)
1178 success = 0;
1179 }
1180
1181 if (sctx->is_dev_replace) {
1182 /*
1183 * did not find a mirror to fetch the page
1184 * from. scrub_write_page_to_dev_replace()
1185 * handles this case (page->io_error), by
1186 * filling the block with zeros before
1187 * submitting the write request
1188 */
1189 if (!sblock_other)
1190 sblock_other = sblock_bad;
1191
1192 if (scrub_write_page_to_dev_replace(sblock_other,
1193 page_num) != 0) {
1194 btrfs_dev_replace_stats_inc(
1195 &sctx->dev_root->
1196 fs_info->dev_replace.
1197 num_write_errors);
1198 success = 0;
1199 }
1200 } else if (sblock_other) {
1201 ret = scrub_repair_page_from_good_copy(sblock_bad,
1202 sblock_other,
1203 page_num, 0);
1204 if (0 == ret)
1205 page_bad->io_error = 0;
1206 else
1207 success = 0;
1208 }
1209 }
1210
1211 if (success && !sctx->is_dev_replace) {
1212 if (is_metadata || have_csum) {
1213 /*
1214 * need to verify the checksum now that all
1215 * sectors on disk are repaired (the write
1216 * request for data to be repaired is on its way).
1217 * Just be lazy and use scrub_recheck_block()
1218 * which re-reads the data before the checksum
1219 * is verified, but most likely the data comes out
1220 * of the page cache.
1221 */
1222 scrub_recheck_block(fs_info, sblock_bad,
1223 is_metadata, have_csum, csum,
1224 generation, sctx->csum_size, 1);
1225 if (!sblock_bad->header_error &&
1226 !sblock_bad->checksum_error &&
1227 sblock_bad->no_io_error_seen)
1228 goto corrected_error;
1229 else
1230 goto did_not_correct_error;
1231 } else {
1232 corrected_error:
1233 spin_lock(&sctx->stat_lock);
1234 sctx->stat.corrected_errors++;
1235 sblock_to_check->data_corrected = 1;
1236 spin_unlock(&sctx->stat_lock);
1237 printk_ratelimited_in_rcu(KERN_ERR
1238 "BTRFS: fixed up error at logical %llu on dev %s\n",
1239 logical, rcu_str_deref(dev->name));
1240 }
1241 } else {
1242 did_not_correct_error:
1243 spin_lock(&sctx->stat_lock);
1244 sctx->stat.uncorrectable_errors++;
1245 spin_unlock(&sctx->stat_lock);
1246 printk_ratelimited_in_rcu(KERN_ERR
1247 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1248 logical, rcu_str_deref(dev->name));
1249 }
1250
1251 out:
1252 if (sblocks_for_recheck) {
1253 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1254 mirror_index++) {
1255 struct scrub_block *sblock = sblocks_for_recheck +
1256 mirror_index;
1257 struct scrub_recover *recover;
1258 int page_index;
1259
1260 for (page_index = 0; page_index < sblock->page_count;
1261 page_index++) {
1262 sblock->pagev[page_index]->sblock = NULL;
1263 recover = sblock->pagev[page_index]->recover;
1264 if (recover) {
1265 scrub_put_recover(recover);
1266 sblock->pagev[page_index]->recover =
1267 NULL;
1268 }
1269 scrub_page_put(sblock->pagev[page_index]);
1270 }
1271 }
1272 kfree(sblocks_for_recheck);
1273 }
1274
1275 return 0;
1276 }
1277
1278 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1279 {
1280 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1281 return 2;
1282 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1283 return 3;
1284 else
1285 return (int)bbio->num_stripes;
1286 }
1287
1288 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1289 u64 *raid_map,
1290 u64 mapped_length,
1291 int nstripes, int mirror,
1292 int *stripe_index,
1293 u64 *stripe_offset)
1294 {
1295 int i;
1296
1297 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1298 /* RAID5/6 */
1299 for (i = 0; i < nstripes; i++) {
1300 if (raid_map[i] == RAID6_Q_STRIPE ||
1301 raid_map[i] == RAID5_P_STRIPE)
1302 continue;
1303
1304 if (logical >= raid_map[i] &&
1305 logical < raid_map[i] + mapped_length)
1306 break;
1307 }
1308
1309 *stripe_index = i;
1310 *stripe_offset = logical - raid_map[i];
1311 } else {
1312 /* The other RAID type */
1313 *stripe_index = mirror;
1314 *stripe_offset = 0;
1315 }
1316 }
1317
1318 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1319 struct scrub_block *sblocks_for_recheck)
1320 {
1321 struct scrub_ctx *sctx = original_sblock->sctx;
1322 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1323 u64 length = original_sblock->page_count * PAGE_SIZE;
1324 u64 logical = original_sblock->pagev[0]->logical;
1325 struct scrub_recover *recover;
1326 struct btrfs_bio *bbio;
1327 u64 sublen;
1328 u64 mapped_length;
1329 u64 stripe_offset;
1330 int stripe_index;
1331 int page_index = 0;
1332 int mirror_index;
1333 int nmirrors;
1334 int ret;
1335
1336 /*
1337 * note: the two members refs and outstanding_pages
1338 * are not used (and not set) in the blocks that are used for
1339 * the recheck procedure
1340 */
1341
1342 while (length > 0) {
1343 sublen = min_t(u64, length, PAGE_SIZE);
1344 mapped_length = sublen;
1345 bbio = NULL;
1346
1347 /*
1348 * with a length of PAGE_SIZE, each returned stripe
1349 * represents one mirror
1350 */
1351 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1352 &mapped_length, &bbio, 0, 1);
1353 if (ret || !bbio || mapped_length < sublen) {
1354 btrfs_put_bbio(bbio);
1355 return -EIO;
1356 }
1357
1358 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1359 if (!recover) {
1360 btrfs_put_bbio(bbio);
1361 return -ENOMEM;
1362 }
1363
1364 atomic_set(&recover->refs, 1);
1365 recover->bbio = bbio;
1366 recover->map_length = mapped_length;
1367
1368 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1369
1370 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1371
1372 for (mirror_index = 0; mirror_index < nmirrors;
1373 mirror_index++) {
1374 struct scrub_block *sblock;
1375 struct scrub_page *page;
1376
1377 sblock = sblocks_for_recheck + mirror_index;
1378 sblock->sctx = sctx;
1379 page = kzalloc(sizeof(*page), GFP_NOFS);
1380 if (!page) {
1381 leave_nomem:
1382 spin_lock(&sctx->stat_lock);
1383 sctx->stat.malloc_errors++;
1384 spin_unlock(&sctx->stat_lock);
1385 scrub_put_recover(recover);
1386 return -ENOMEM;
1387 }
1388 scrub_page_get(page);
1389 sblock->pagev[page_index] = page;
1390 page->logical = logical;
1391
1392 scrub_stripe_index_and_offset(logical,
1393 bbio->map_type,
1394 bbio->raid_map,
1395 mapped_length,
1396 bbio->num_stripes -
1397 bbio->num_tgtdevs,
1398 mirror_index,
1399 &stripe_index,
1400 &stripe_offset);
1401 page->physical = bbio->stripes[stripe_index].physical +
1402 stripe_offset;
1403 page->dev = bbio->stripes[stripe_index].dev;
1404
1405 BUG_ON(page_index >= original_sblock->page_count);
1406 page->physical_for_dev_replace =
1407 original_sblock->pagev[page_index]->
1408 physical_for_dev_replace;
1409 /* for missing devices, dev->bdev is NULL */
1410 page->mirror_num = mirror_index + 1;
1411 sblock->page_count++;
1412 page->page = alloc_page(GFP_NOFS);
1413 if (!page->page)
1414 goto leave_nomem;
1415
1416 scrub_get_recover(recover);
1417 page->recover = recover;
1418 }
1419 scrub_put_recover(recover);
1420 length -= sublen;
1421 logical += sublen;
1422 page_index++;
1423 }
1424
1425 return 0;
1426 }
1427
1428 struct scrub_bio_ret {
1429 struct completion event;
1430 int error;
1431 };
1432
1433 static void scrub_bio_wait_endio(struct bio *bio, int error)
1434 {
1435 struct scrub_bio_ret *ret = bio->bi_private;
1436
1437 ret->error = error;
1438 complete(&ret->event);
1439 }
1440
1441 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1442 {
1443 return page->recover &&
1444 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1445 }
1446
1447 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1448 struct bio *bio,
1449 struct scrub_page *page)
1450 {
1451 struct scrub_bio_ret done;
1452 int ret;
1453
1454 init_completion(&done.event);
1455 done.error = 0;
1456 bio->bi_iter.bi_sector = page->logical >> 9;
1457 bio->bi_private = &done;
1458 bio->bi_end_io = scrub_bio_wait_endio;
1459
1460 ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1461 page->recover->map_length,
1462 page->mirror_num, 0);
1463 if (ret)
1464 return ret;
1465
1466 wait_for_completion(&done.event);
1467 if (done.error)
1468 return -EIO;
1469
1470 return 0;
1471 }
1472
1473 /*
1474 * this function will check the on disk data for checksum errors, header
1475 * errors and read I/O errors. If any I/O errors happen, the exact pages
1476 * which are errored are marked as being bad. The goal is to enable scrub
1477 * to take those pages that are not errored from all the mirrors so that
1478 * the pages that are errored in the just handled mirror can be repaired.
1479 */
1480 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1481 struct scrub_block *sblock, int is_metadata,
1482 int have_csum, u8 *csum, u64 generation,
1483 u16 csum_size, int retry_failed_mirror)
1484 {
1485 int page_num;
1486
1487 sblock->no_io_error_seen = 1;
1488 sblock->header_error = 0;
1489 sblock->checksum_error = 0;
1490
1491 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1492 struct bio *bio;
1493 struct scrub_page *page = sblock->pagev[page_num];
1494
1495 if (page->dev->bdev == NULL) {
1496 page->io_error = 1;
1497 sblock->no_io_error_seen = 0;
1498 continue;
1499 }
1500
1501 WARN_ON(!page->page);
1502 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1503 if (!bio) {
1504 page->io_error = 1;
1505 sblock->no_io_error_seen = 0;
1506 continue;
1507 }
1508 bio->bi_bdev = page->dev->bdev;
1509
1510 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1511 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1512 if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1513 sblock->no_io_error_seen = 0;
1514 } else {
1515 bio->bi_iter.bi_sector = page->physical >> 9;
1516
1517 if (btrfsic_submit_bio_wait(READ, bio))
1518 sblock->no_io_error_seen = 0;
1519 }
1520
1521 bio_put(bio);
1522 }
1523
1524 if (sblock->no_io_error_seen)
1525 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1526 have_csum, csum, generation,
1527 csum_size);
1528
1529 return;
1530 }
1531
1532 static inline int scrub_check_fsid(u8 fsid[],
1533 struct scrub_page *spage)
1534 {
1535 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1536 int ret;
1537
1538 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1539 return !ret;
1540 }
1541
1542 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1543 struct scrub_block *sblock,
1544 int is_metadata, int have_csum,
1545 const u8 *csum, u64 generation,
1546 u16 csum_size)
1547 {
1548 int page_num;
1549 u8 calculated_csum[BTRFS_CSUM_SIZE];
1550 u32 crc = ~(u32)0;
1551 void *mapped_buffer;
1552
1553 WARN_ON(!sblock->pagev[0]->page);
1554 if (is_metadata) {
1555 struct btrfs_header *h;
1556
1557 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1558 h = (struct btrfs_header *)mapped_buffer;
1559
1560 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1561 !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1562 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1563 BTRFS_UUID_SIZE)) {
1564 sblock->header_error = 1;
1565 } else if (generation != btrfs_stack_header_generation(h)) {
1566 sblock->header_error = 1;
1567 sblock->generation_error = 1;
1568 }
1569 csum = h->csum;
1570 } else {
1571 if (!have_csum)
1572 return;
1573
1574 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1575 }
1576
1577 for (page_num = 0;;) {
1578 if (page_num == 0 && is_metadata)
1579 crc = btrfs_csum_data(
1580 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1581 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1582 else
1583 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1584
1585 kunmap_atomic(mapped_buffer);
1586 page_num++;
1587 if (page_num >= sblock->page_count)
1588 break;
1589 WARN_ON(!sblock->pagev[page_num]->page);
1590
1591 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1592 }
1593
1594 btrfs_csum_final(crc, calculated_csum);
1595 if (memcmp(calculated_csum, csum, csum_size))
1596 sblock->checksum_error = 1;
1597 }
1598
1599 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1600 struct scrub_block *sblock_good)
1601 {
1602 int page_num;
1603 int ret = 0;
1604
1605 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1606 int ret_sub;
1607
1608 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1609 sblock_good,
1610 page_num, 1);
1611 if (ret_sub)
1612 ret = ret_sub;
1613 }
1614
1615 return ret;
1616 }
1617
1618 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1619 struct scrub_block *sblock_good,
1620 int page_num, int force_write)
1621 {
1622 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1623 struct scrub_page *page_good = sblock_good->pagev[page_num];
1624
1625 BUG_ON(page_bad->page == NULL);
1626 BUG_ON(page_good->page == NULL);
1627 if (force_write || sblock_bad->header_error ||
1628 sblock_bad->checksum_error || page_bad->io_error) {
1629 struct bio *bio;
1630 int ret;
1631
1632 if (!page_bad->dev->bdev) {
1633 printk_ratelimited(KERN_WARNING "BTRFS: "
1634 "scrub_repair_page_from_good_copy(bdev == NULL) "
1635 "is unexpected!\n");
1636 return -EIO;
1637 }
1638
1639 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1640 if (!bio)
1641 return -EIO;
1642 bio->bi_bdev = page_bad->dev->bdev;
1643 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1644
1645 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1646 if (PAGE_SIZE != ret) {
1647 bio_put(bio);
1648 return -EIO;
1649 }
1650
1651 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1652 btrfs_dev_stat_inc_and_print(page_bad->dev,
1653 BTRFS_DEV_STAT_WRITE_ERRS);
1654 btrfs_dev_replace_stats_inc(
1655 &sblock_bad->sctx->dev_root->fs_info->
1656 dev_replace.num_write_errors);
1657 bio_put(bio);
1658 return -EIO;
1659 }
1660 bio_put(bio);
1661 }
1662
1663 return 0;
1664 }
1665
1666 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1667 {
1668 int page_num;
1669
1670 /*
1671 * This block is used for the check of the parity on the source device,
1672 * so the data needn't be written into the destination device.
1673 */
1674 if (sblock->sparity)
1675 return;
1676
1677 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1678 int ret;
1679
1680 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1681 if (ret)
1682 btrfs_dev_replace_stats_inc(
1683 &sblock->sctx->dev_root->fs_info->dev_replace.
1684 num_write_errors);
1685 }
1686 }
1687
1688 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1689 int page_num)
1690 {
1691 struct scrub_page *spage = sblock->pagev[page_num];
1692
1693 BUG_ON(spage->page == NULL);
1694 if (spage->io_error) {
1695 void *mapped_buffer = kmap_atomic(spage->page);
1696
1697 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1698 flush_dcache_page(spage->page);
1699 kunmap_atomic(mapped_buffer);
1700 }
1701 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1702 }
1703
1704 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1705 struct scrub_page *spage)
1706 {
1707 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1708 struct scrub_bio *sbio;
1709 int ret;
1710
1711 mutex_lock(&wr_ctx->wr_lock);
1712 again:
1713 if (!wr_ctx->wr_curr_bio) {
1714 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1715 GFP_NOFS);
1716 if (!wr_ctx->wr_curr_bio) {
1717 mutex_unlock(&wr_ctx->wr_lock);
1718 return -ENOMEM;
1719 }
1720 wr_ctx->wr_curr_bio->sctx = sctx;
1721 wr_ctx->wr_curr_bio->page_count = 0;
1722 }
1723 sbio = wr_ctx->wr_curr_bio;
1724 if (sbio->page_count == 0) {
1725 struct bio *bio;
1726
1727 sbio->physical = spage->physical_for_dev_replace;
1728 sbio->logical = spage->logical;
1729 sbio->dev = wr_ctx->tgtdev;
1730 bio = sbio->bio;
1731 if (!bio) {
1732 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1733 if (!bio) {
1734 mutex_unlock(&wr_ctx->wr_lock);
1735 return -ENOMEM;
1736 }
1737 sbio->bio = bio;
1738 }
1739
1740 bio->bi_private = sbio;
1741 bio->bi_end_io = scrub_wr_bio_end_io;
1742 bio->bi_bdev = sbio->dev->bdev;
1743 bio->bi_iter.bi_sector = sbio->physical >> 9;
1744 sbio->err = 0;
1745 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1746 spage->physical_for_dev_replace ||
1747 sbio->logical + sbio->page_count * PAGE_SIZE !=
1748 spage->logical) {
1749 scrub_wr_submit(sctx);
1750 goto again;
1751 }
1752
1753 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1754 if (ret != PAGE_SIZE) {
1755 if (sbio->page_count < 1) {
1756 bio_put(sbio->bio);
1757 sbio->bio = NULL;
1758 mutex_unlock(&wr_ctx->wr_lock);
1759 return -EIO;
1760 }
1761 scrub_wr_submit(sctx);
1762 goto again;
1763 }
1764
1765 sbio->pagev[sbio->page_count] = spage;
1766 scrub_page_get(spage);
1767 sbio->page_count++;
1768 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1769 scrub_wr_submit(sctx);
1770 mutex_unlock(&wr_ctx->wr_lock);
1771
1772 return 0;
1773 }
1774
1775 static void scrub_wr_submit(struct scrub_ctx *sctx)
1776 {
1777 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1778 struct scrub_bio *sbio;
1779
1780 if (!wr_ctx->wr_curr_bio)
1781 return;
1782
1783 sbio = wr_ctx->wr_curr_bio;
1784 wr_ctx->wr_curr_bio = NULL;
1785 WARN_ON(!sbio->bio->bi_bdev);
1786 scrub_pending_bio_inc(sctx);
1787 /* process all writes in a single worker thread. Then the block layer
1788 * orders the requests before sending them to the driver which
1789 * doubled the write performance on spinning disks when measured
1790 * with Linux 3.5 */
1791 btrfsic_submit_bio(WRITE, sbio->bio);
1792 }
1793
1794 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1795 {
1796 struct scrub_bio *sbio = bio->bi_private;
1797 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1798
1799 sbio->err = err;
1800 sbio->bio = bio;
1801
1802 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1803 scrub_wr_bio_end_io_worker, NULL, NULL);
1804 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1805 }
1806
1807 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1808 {
1809 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1810 struct scrub_ctx *sctx = sbio->sctx;
1811 int i;
1812
1813 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1814 if (sbio->err) {
1815 struct btrfs_dev_replace *dev_replace =
1816 &sbio->sctx->dev_root->fs_info->dev_replace;
1817
1818 for (i = 0; i < sbio->page_count; i++) {
1819 struct scrub_page *spage = sbio->pagev[i];
1820
1821 spage->io_error = 1;
1822 btrfs_dev_replace_stats_inc(&dev_replace->
1823 num_write_errors);
1824 }
1825 }
1826
1827 for (i = 0; i < sbio->page_count; i++)
1828 scrub_page_put(sbio->pagev[i]);
1829
1830 bio_put(sbio->bio);
1831 kfree(sbio);
1832 scrub_pending_bio_dec(sctx);
1833 }
1834
1835 static int scrub_checksum(struct scrub_block *sblock)
1836 {
1837 u64 flags;
1838 int ret;
1839
1840 WARN_ON(sblock->page_count < 1);
1841 flags = sblock->pagev[0]->flags;
1842 ret = 0;
1843 if (flags & BTRFS_EXTENT_FLAG_DATA)
1844 ret = scrub_checksum_data(sblock);
1845 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1846 ret = scrub_checksum_tree_block(sblock);
1847 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1848 (void)scrub_checksum_super(sblock);
1849 else
1850 WARN_ON(1);
1851 if (ret)
1852 scrub_handle_errored_block(sblock);
1853
1854 return ret;
1855 }
1856
1857 static int scrub_checksum_data(struct scrub_block *sblock)
1858 {
1859 struct scrub_ctx *sctx = sblock->sctx;
1860 u8 csum[BTRFS_CSUM_SIZE];
1861 u8 *on_disk_csum;
1862 struct page *page;
1863 void *buffer;
1864 u32 crc = ~(u32)0;
1865 int fail = 0;
1866 u64 len;
1867 int index;
1868
1869 BUG_ON(sblock->page_count < 1);
1870 if (!sblock->pagev[0]->have_csum)
1871 return 0;
1872
1873 on_disk_csum = sblock->pagev[0]->csum;
1874 page = sblock->pagev[0]->page;
1875 buffer = kmap_atomic(page);
1876
1877 len = sctx->sectorsize;
1878 index = 0;
1879 for (;;) {
1880 u64 l = min_t(u64, len, PAGE_SIZE);
1881
1882 crc = btrfs_csum_data(buffer, crc, l);
1883 kunmap_atomic(buffer);
1884 len -= l;
1885 if (len == 0)
1886 break;
1887 index++;
1888 BUG_ON(index >= sblock->page_count);
1889 BUG_ON(!sblock->pagev[index]->page);
1890 page = sblock->pagev[index]->page;
1891 buffer = kmap_atomic(page);
1892 }
1893
1894 btrfs_csum_final(crc, csum);
1895 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1896 fail = 1;
1897
1898 return fail;
1899 }
1900
1901 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1902 {
1903 struct scrub_ctx *sctx = sblock->sctx;
1904 struct btrfs_header *h;
1905 struct btrfs_root *root = sctx->dev_root;
1906 struct btrfs_fs_info *fs_info = root->fs_info;
1907 u8 calculated_csum[BTRFS_CSUM_SIZE];
1908 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1909 struct page *page;
1910 void *mapped_buffer;
1911 u64 mapped_size;
1912 void *p;
1913 u32 crc = ~(u32)0;
1914 int fail = 0;
1915 int crc_fail = 0;
1916 u64 len;
1917 int index;
1918
1919 BUG_ON(sblock->page_count < 1);
1920 page = sblock->pagev[0]->page;
1921 mapped_buffer = kmap_atomic(page);
1922 h = (struct btrfs_header *)mapped_buffer;
1923 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1924
1925 /*
1926 * we don't use the getter functions here, as we
1927 * a) don't have an extent buffer and
1928 * b) the page is already kmapped
1929 */
1930
1931 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1932 ++fail;
1933
1934 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1935 ++fail;
1936
1937 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1938 ++fail;
1939
1940 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1941 BTRFS_UUID_SIZE))
1942 ++fail;
1943
1944 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1945 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1946 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1947 index = 0;
1948 for (;;) {
1949 u64 l = min_t(u64, len, mapped_size);
1950
1951 crc = btrfs_csum_data(p, crc, l);
1952 kunmap_atomic(mapped_buffer);
1953 len -= l;
1954 if (len == 0)
1955 break;
1956 index++;
1957 BUG_ON(index >= sblock->page_count);
1958 BUG_ON(!sblock->pagev[index]->page);
1959 page = sblock->pagev[index]->page;
1960 mapped_buffer = kmap_atomic(page);
1961 mapped_size = PAGE_SIZE;
1962 p = mapped_buffer;
1963 }
1964
1965 btrfs_csum_final(crc, calculated_csum);
1966 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1967 ++crc_fail;
1968
1969 return fail || crc_fail;
1970 }
1971
1972 static int scrub_checksum_super(struct scrub_block *sblock)
1973 {
1974 struct btrfs_super_block *s;
1975 struct scrub_ctx *sctx = sblock->sctx;
1976 u8 calculated_csum[BTRFS_CSUM_SIZE];
1977 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1978 struct page *page;
1979 void *mapped_buffer;
1980 u64 mapped_size;
1981 void *p;
1982 u32 crc = ~(u32)0;
1983 int fail_gen = 0;
1984 int fail_cor = 0;
1985 u64 len;
1986 int index;
1987
1988 BUG_ON(sblock->page_count < 1);
1989 page = sblock->pagev[0]->page;
1990 mapped_buffer = kmap_atomic(page);
1991 s = (struct btrfs_super_block *)mapped_buffer;
1992 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1993
1994 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1995 ++fail_cor;
1996
1997 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1998 ++fail_gen;
1999
2000 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2001 ++fail_cor;
2002
2003 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2004 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2005 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2006 index = 0;
2007 for (;;) {
2008 u64 l = min_t(u64, len, mapped_size);
2009
2010 crc = btrfs_csum_data(p, crc, l);
2011 kunmap_atomic(mapped_buffer);
2012 len -= l;
2013 if (len == 0)
2014 break;
2015 index++;
2016 BUG_ON(index >= sblock->page_count);
2017 BUG_ON(!sblock->pagev[index]->page);
2018 page = sblock->pagev[index]->page;
2019 mapped_buffer = kmap_atomic(page);
2020 mapped_size = PAGE_SIZE;
2021 p = mapped_buffer;
2022 }
2023
2024 btrfs_csum_final(crc, calculated_csum);
2025 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2026 ++fail_cor;
2027
2028 if (fail_cor + fail_gen) {
2029 /*
2030 * if we find an error in a super block, we just report it.
2031 * They will get written with the next transaction commit
2032 * anyway
2033 */
2034 spin_lock(&sctx->stat_lock);
2035 ++sctx->stat.super_errors;
2036 spin_unlock(&sctx->stat_lock);
2037 if (fail_cor)
2038 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2039 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2040 else
2041 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2042 BTRFS_DEV_STAT_GENERATION_ERRS);
2043 }
2044
2045 return fail_cor + fail_gen;
2046 }
2047
2048 static void scrub_block_get(struct scrub_block *sblock)
2049 {
2050 atomic_inc(&sblock->refs);
2051 }
2052
2053 static void scrub_block_put(struct scrub_block *sblock)
2054 {
2055 if (atomic_dec_and_test(&sblock->refs)) {
2056 int i;
2057
2058 if (sblock->sparity)
2059 scrub_parity_put(sblock->sparity);
2060
2061 for (i = 0; i < sblock->page_count; i++)
2062 scrub_page_put(sblock->pagev[i]);
2063 kfree(sblock);
2064 }
2065 }
2066
2067 static void scrub_page_get(struct scrub_page *spage)
2068 {
2069 atomic_inc(&spage->refs);
2070 }
2071
2072 static void scrub_page_put(struct scrub_page *spage)
2073 {
2074 if (atomic_dec_and_test(&spage->refs)) {
2075 if (spage->page)
2076 __free_page(spage->page);
2077 kfree(spage);
2078 }
2079 }
2080
2081 static void scrub_submit(struct scrub_ctx *sctx)
2082 {
2083 struct scrub_bio *sbio;
2084
2085 if (sctx->curr == -1)
2086 return;
2087
2088 sbio = sctx->bios[sctx->curr];
2089 sctx->curr = -1;
2090 scrub_pending_bio_inc(sctx);
2091
2092 if (!sbio->bio->bi_bdev) {
2093 /*
2094 * this case should not happen. If btrfs_map_block() is
2095 * wrong, it could happen for dev-replace operations on
2096 * missing devices when no mirrors are available, but in
2097 * this case it should already fail the mount.
2098 * This case is handled correctly (but _very_ slowly).
2099 */
2100 printk_ratelimited(KERN_WARNING
2101 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2102 bio_endio(sbio->bio, -EIO);
2103 } else {
2104 btrfsic_submit_bio(READ, sbio->bio);
2105 }
2106 }
2107
2108 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2109 struct scrub_page *spage)
2110 {
2111 struct scrub_block *sblock = spage->sblock;
2112 struct scrub_bio *sbio;
2113 int ret;
2114
2115 again:
2116 /*
2117 * grab a fresh bio or wait for one to become available
2118 */
2119 while (sctx->curr == -1) {
2120 spin_lock(&sctx->list_lock);
2121 sctx->curr = sctx->first_free;
2122 if (sctx->curr != -1) {
2123 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2124 sctx->bios[sctx->curr]->next_free = -1;
2125 sctx->bios[sctx->curr]->page_count = 0;
2126 spin_unlock(&sctx->list_lock);
2127 } else {
2128 spin_unlock(&sctx->list_lock);
2129 wait_event(sctx->list_wait, sctx->first_free != -1);
2130 }
2131 }
2132 sbio = sctx->bios[sctx->curr];
2133 if (sbio->page_count == 0) {
2134 struct bio *bio;
2135
2136 sbio->physical = spage->physical;
2137 sbio->logical = spage->logical;
2138 sbio->dev = spage->dev;
2139 bio = sbio->bio;
2140 if (!bio) {
2141 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2142 if (!bio)
2143 return -ENOMEM;
2144 sbio->bio = bio;
2145 }
2146
2147 bio->bi_private = sbio;
2148 bio->bi_end_io = scrub_bio_end_io;
2149 bio->bi_bdev = sbio->dev->bdev;
2150 bio->bi_iter.bi_sector = sbio->physical >> 9;
2151 sbio->err = 0;
2152 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2153 spage->physical ||
2154 sbio->logical + sbio->page_count * PAGE_SIZE !=
2155 spage->logical ||
2156 sbio->dev != spage->dev) {
2157 scrub_submit(sctx);
2158 goto again;
2159 }
2160
2161 sbio->pagev[sbio->page_count] = spage;
2162 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2163 if (ret != PAGE_SIZE) {
2164 if (sbio->page_count < 1) {
2165 bio_put(sbio->bio);
2166 sbio->bio = NULL;
2167 return -EIO;
2168 }
2169 scrub_submit(sctx);
2170 goto again;
2171 }
2172
2173 scrub_block_get(sblock); /* one for the page added to the bio */
2174 atomic_inc(&sblock->outstanding_pages);
2175 sbio->page_count++;
2176 if (sbio->page_count == sctx->pages_per_rd_bio)
2177 scrub_submit(sctx);
2178
2179 return 0;
2180 }
2181
2182 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2183 u64 physical, struct btrfs_device *dev, u64 flags,
2184 u64 gen, int mirror_num, u8 *csum, int force,
2185 u64 physical_for_dev_replace)
2186 {
2187 struct scrub_block *sblock;
2188 int index;
2189
2190 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2191 if (!sblock) {
2192 spin_lock(&sctx->stat_lock);
2193 sctx->stat.malloc_errors++;
2194 spin_unlock(&sctx->stat_lock);
2195 return -ENOMEM;
2196 }
2197
2198 /* one ref inside this function, plus one for each page added to
2199 * a bio later on */
2200 atomic_set(&sblock->refs, 1);
2201 sblock->sctx = sctx;
2202 sblock->no_io_error_seen = 1;
2203
2204 for (index = 0; len > 0; index++) {
2205 struct scrub_page *spage;
2206 u64 l = min_t(u64, len, PAGE_SIZE);
2207
2208 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2209 if (!spage) {
2210 leave_nomem:
2211 spin_lock(&sctx->stat_lock);
2212 sctx->stat.malloc_errors++;
2213 spin_unlock(&sctx->stat_lock);
2214 scrub_block_put(sblock);
2215 return -ENOMEM;
2216 }
2217 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2218 scrub_page_get(spage);
2219 sblock->pagev[index] = spage;
2220 spage->sblock = sblock;
2221 spage->dev = dev;
2222 spage->flags = flags;
2223 spage->generation = gen;
2224 spage->logical = logical;
2225 spage->physical = physical;
2226 spage->physical_for_dev_replace = physical_for_dev_replace;
2227 spage->mirror_num = mirror_num;
2228 if (csum) {
2229 spage->have_csum = 1;
2230 memcpy(spage->csum, csum, sctx->csum_size);
2231 } else {
2232 spage->have_csum = 0;
2233 }
2234 sblock->page_count++;
2235 spage->page = alloc_page(GFP_NOFS);
2236 if (!spage->page)
2237 goto leave_nomem;
2238 len -= l;
2239 logical += l;
2240 physical += l;
2241 physical_for_dev_replace += l;
2242 }
2243
2244 WARN_ON(sblock->page_count == 0);
2245 for (index = 0; index < sblock->page_count; index++) {
2246 struct scrub_page *spage = sblock->pagev[index];
2247 int ret;
2248
2249 ret = scrub_add_page_to_rd_bio(sctx, spage);
2250 if (ret) {
2251 scrub_block_put(sblock);
2252 return ret;
2253 }
2254 }
2255
2256 if (force)
2257 scrub_submit(sctx);
2258
2259 /* last one frees, either here or in bio completion for last page */
2260 scrub_block_put(sblock);
2261 return 0;
2262 }
2263
2264 static void scrub_bio_end_io(struct bio *bio, int err)
2265 {
2266 struct scrub_bio *sbio = bio->bi_private;
2267 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2268
2269 sbio->err = err;
2270 sbio->bio = bio;
2271
2272 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2273 }
2274
2275 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2276 {
2277 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2278 struct scrub_ctx *sctx = sbio->sctx;
2279 int i;
2280
2281 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2282 if (sbio->err) {
2283 for (i = 0; i < sbio->page_count; i++) {
2284 struct scrub_page *spage = sbio->pagev[i];
2285
2286 spage->io_error = 1;
2287 spage->sblock->no_io_error_seen = 0;
2288 }
2289 }
2290
2291 /* now complete the scrub_block items that have all pages completed */
2292 for (i = 0; i < sbio->page_count; i++) {
2293 struct scrub_page *spage = sbio->pagev[i];
2294 struct scrub_block *sblock = spage->sblock;
2295
2296 if (atomic_dec_and_test(&sblock->outstanding_pages))
2297 scrub_block_complete(sblock);
2298 scrub_block_put(sblock);
2299 }
2300
2301 bio_put(sbio->bio);
2302 sbio->bio = NULL;
2303 spin_lock(&sctx->list_lock);
2304 sbio->next_free = sctx->first_free;
2305 sctx->first_free = sbio->index;
2306 spin_unlock(&sctx->list_lock);
2307
2308 if (sctx->is_dev_replace &&
2309 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2310 mutex_lock(&sctx->wr_ctx.wr_lock);
2311 scrub_wr_submit(sctx);
2312 mutex_unlock(&sctx->wr_ctx.wr_lock);
2313 }
2314
2315 scrub_pending_bio_dec(sctx);
2316 }
2317
2318 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2319 unsigned long *bitmap,
2320 u64 start, u64 len)
2321 {
2322 int offset;
2323 int nsectors;
2324 int sectorsize = sparity->sctx->dev_root->sectorsize;
2325
2326 if (len >= sparity->stripe_len) {
2327 bitmap_set(bitmap, 0, sparity->nsectors);
2328 return;
2329 }
2330
2331 start -= sparity->logic_start;
2332 offset = (int)do_div(start, sparity->stripe_len);
2333 offset /= sectorsize;
2334 nsectors = (int)len / sectorsize;
2335
2336 if (offset + nsectors <= sparity->nsectors) {
2337 bitmap_set(bitmap, offset, nsectors);
2338 return;
2339 }
2340
2341 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2342 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2343 }
2344
2345 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2346 u64 start, u64 len)
2347 {
2348 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2349 }
2350
2351 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2352 u64 start, u64 len)
2353 {
2354 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2355 }
2356
2357 static void scrub_block_complete(struct scrub_block *sblock)
2358 {
2359 int corrupted = 0;
2360
2361 if (!sblock->no_io_error_seen) {
2362 corrupted = 1;
2363 scrub_handle_errored_block(sblock);
2364 } else {
2365 /*
2366 * if has checksum error, write via repair mechanism in
2367 * dev replace case, otherwise write here in dev replace
2368 * case.
2369 */
2370 corrupted = scrub_checksum(sblock);
2371 if (!corrupted && sblock->sctx->is_dev_replace)
2372 scrub_write_block_to_dev_replace(sblock);
2373 }
2374
2375 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2376 u64 start = sblock->pagev[0]->logical;
2377 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2378 PAGE_SIZE;
2379
2380 scrub_parity_mark_sectors_error(sblock->sparity,
2381 start, end - start);
2382 }
2383 }
2384
2385 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2386 u8 *csum)
2387 {
2388 struct btrfs_ordered_sum *sum = NULL;
2389 unsigned long index;
2390 unsigned long num_sectors;
2391
2392 while (!list_empty(&sctx->csum_list)) {
2393 sum = list_first_entry(&sctx->csum_list,
2394 struct btrfs_ordered_sum, list);
2395 if (sum->bytenr > logical)
2396 return 0;
2397 if (sum->bytenr + sum->len > logical)
2398 break;
2399
2400 ++sctx->stat.csum_discards;
2401 list_del(&sum->list);
2402 kfree(sum);
2403 sum = NULL;
2404 }
2405 if (!sum)
2406 return 0;
2407
2408 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2409 num_sectors = sum->len / sctx->sectorsize;
2410 memcpy(csum, sum->sums + index, sctx->csum_size);
2411 if (index == num_sectors - 1) {
2412 list_del(&sum->list);
2413 kfree(sum);
2414 }
2415 return 1;
2416 }
2417
2418 /* scrub extent tries to collect up to 64 kB for each bio */
2419 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2420 u64 physical, struct btrfs_device *dev, u64 flags,
2421 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2422 {
2423 int ret;
2424 u8 csum[BTRFS_CSUM_SIZE];
2425 u32 blocksize;
2426
2427 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2428 blocksize = sctx->sectorsize;
2429 spin_lock(&sctx->stat_lock);
2430 sctx->stat.data_extents_scrubbed++;
2431 sctx->stat.data_bytes_scrubbed += len;
2432 spin_unlock(&sctx->stat_lock);
2433 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2434 blocksize = sctx->nodesize;
2435 spin_lock(&sctx->stat_lock);
2436 sctx->stat.tree_extents_scrubbed++;
2437 sctx->stat.tree_bytes_scrubbed += len;
2438 spin_unlock(&sctx->stat_lock);
2439 } else {
2440 blocksize = sctx->sectorsize;
2441 WARN_ON(1);
2442 }
2443
2444 while (len) {
2445 u64 l = min_t(u64, len, blocksize);
2446 int have_csum = 0;
2447
2448 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2449 /* push csums to sbio */
2450 have_csum = scrub_find_csum(sctx, logical, l, csum);
2451 if (have_csum == 0)
2452 ++sctx->stat.no_csum;
2453 if (sctx->is_dev_replace && !have_csum) {
2454 ret = copy_nocow_pages(sctx, logical, l,
2455 mirror_num,
2456 physical_for_dev_replace);
2457 goto behind_scrub_pages;
2458 }
2459 }
2460 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2461 mirror_num, have_csum ? csum : NULL, 0,
2462 physical_for_dev_replace);
2463 behind_scrub_pages:
2464 if (ret)
2465 return ret;
2466 len -= l;
2467 logical += l;
2468 physical += l;
2469 physical_for_dev_replace += l;
2470 }
2471 return 0;
2472 }
2473
2474 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2475 u64 logical, u64 len,
2476 u64 physical, struct btrfs_device *dev,
2477 u64 flags, u64 gen, int mirror_num, u8 *csum)
2478 {
2479 struct scrub_ctx *sctx = sparity->sctx;
2480 struct scrub_block *sblock;
2481 int index;
2482
2483 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2484 if (!sblock) {
2485 spin_lock(&sctx->stat_lock);
2486 sctx->stat.malloc_errors++;
2487 spin_unlock(&sctx->stat_lock);
2488 return -ENOMEM;
2489 }
2490
2491 /* one ref inside this function, plus one for each page added to
2492 * a bio later on */
2493 atomic_set(&sblock->refs, 1);
2494 sblock->sctx = sctx;
2495 sblock->no_io_error_seen = 1;
2496 sblock->sparity = sparity;
2497 scrub_parity_get(sparity);
2498
2499 for (index = 0; len > 0; index++) {
2500 struct scrub_page *spage;
2501 u64 l = min_t(u64, len, PAGE_SIZE);
2502
2503 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2504 if (!spage) {
2505 leave_nomem:
2506 spin_lock(&sctx->stat_lock);
2507 sctx->stat.malloc_errors++;
2508 spin_unlock(&sctx->stat_lock);
2509 scrub_block_put(sblock);
2510 return -ENOMEM;
2511 }
2512 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2513 /* For scrub block */
2514 scrub_page_get(spage);
2515 sblock->pagev[index] = spage;
2516 /* For scrub parity */
2517 scrub_page_get(spage);
2518 list_add_tail(&spage->list, &sparity->spages);
2519 spage->sblock = sblock;
2520 spage->dev = dev;
2521 spage->flags = flags;
2522 spage->generation = gen;
2523 spage->logical = logical;
2524 spage->physical = physical;
2525 spage->mirror_num = mirror_num;
2526 if (csum) {
2527 spage->have_csum = 1;
2528 memcpy(spage->csum, csum, sctx->csum_size);
2529 } else {
2530 spage->have_csum = 0;
2531 }
2532 sblock->page_count++;
2533 spage->page = alloc_page(GFP_NOFS);
2534 if (!spage->page)
2535 goto leave_nomem;
2536 len -= l;
2537 logical += l;
2538 physical += l;
2539 }
2540
2541 WARN_ON(sblock->page_count == 0);
2542 for (index = 0; index < sblock->page_count; index++) {
2543 struct scrub_page *spage = sblock->pagev[index];
2544 int ret;
2545
2546 ret = scrub_add_page_to_rd_bio(sctx, spage);
2547 if (ret) {
2548 scrub_block_put(sblock);
2549 return ret;
2550 }
2551 }
2552
2553 /* last one frees, either here or in bio completion for last page */
2554 scrub_block_put(sblock);
2555 return 0;
2556 }
2557
2558 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2559 u64 logical, u64 len,
2560 u64 physical, struct btrfs_device *dev,
2561 u64 flags, u64 gen, int mirror_num)
2562 {
2563 struct scrub_ctx *sctx = sparity->sctx;
2564 int ret;
2565 u8 csum[BTRFS_CSUM_SIZE];
2566 u32 blocksize;
2567
2568 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2569 blocksize = sctx->sectorsize;
2570 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2571 blocksize = sctx->nodesize;
2572 } else {
2573 blocksize = sctx->sectorsize;
2574 WARN_ON(1);
2575 }
2576
2577 while (len) {
2578 u64 l = min_t(u64, len, blocksize);
2579 int have_csum = 0;
2580
2581 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2582 /* push csums to sbio */
2583 have_csum = scrub_find_csum(sctx, logical, l, csum);
2584 if (have_csum == 0)
2585 goto skip;
2586 }
2587 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2588 flags, gen, mirror_num,
2589 have_csum ? csum : NULL);
2590 if (ret)
2591 return ret;
2592 skip:
2593 len -= l;
2594 logical += l;
2595 physical += l;
2596 }
2597 return 0;
2598 }
2599
2600 /*
2601 * Given a physical address, this will calculate it's
2602 * logical offset. if this is a parity stripe, it will return
2603 * the most left data stripe's logical offset.
2604 *
2605 * return 0 if it is a data stripe, 1 means parity stripe.
2606 */
2607 static int get_raid56_logic_offset(u64 physical, int num,
2608 struct map_lookup *map, u64 *offset,
2609 u64 *stripe_start)
2610 {
2611 int i;
2612 int j = 0;
2613 u64 stripe_nr;
2614 u64 last_offset;
2615 int stripe_index;
2616 int rot;
2617
2618 last_offset = (physical - map->stripes[num].physical) *
2619 nr_data_stripes(map);
2620 if (stripe_start)
2621 *stripe_start = last_offset;
2622
2623 *offset = last_offset;
2624 for (i = 0; i < nr_data_stripes(map); i++) {
2625 *offset = last_offset + i * map->stripe_len;
2626
2627 stripe_nr = *offset;
2628 do_div(stripe_nr, map->stripe_len);
2629 do_div(stripe_nr, nr_data_stripes(map));
2630
2631 /* Work out the disk rotation on this stripe-set */
2632 rot = do_div(stripe_nr, map->num_stripes);
2633 /* calculate which stripe this data locates */
2634 rot += i;
2635 stripe_index = rot % map->num_stripes;
2636 if (stripe_index == num)
2637 return 0;
2638 if (stripe_index < num)
2639 j++;
2640 }
2641 *offset = last_offset + j * map->stripe_len;
2642 return 1;
2643 }
2644
2645 static void scrub_free_parity(struct scrub_parity *sparity)
2646 {
2647 struct scrub_ctx *sctx = sparity->sctx;
2648 struct scrub_page *curr, *next;
2649 int nbits;
2650
2651 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2652 if (nbits) {
2653 spin_lock(&sctx->stat_lock);
2654 sctx->stat.read_errors += nbits;
2655 sctx->stat.uncorrectable_errors += nbits;
2656 spin_unlock(&sctx->stat_lock);
2657 }
2658
2659 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2660 list_del_init(&curr->list);
2661 scrub_page_put(curr);
2662 }
2663
2664 kfree(sparity);
2665 }
2666
2667 static void scrub_parity_bio_endio(struct bio *bio, int error)
2668 {
2669 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2670 struct scrub_ctx *sctx = sparity->sctx;
2671
2672 if (error)
2673 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2674 sparity->nsectors);
2675
2676 scrub_free_parity(sparity);
2677 scrub_pending_bio_dec(sctx);
2678 bio_put(bio);
2679 }
2680
2681 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2682 {
2683 struct scrub_ctx *sctx = sparity->sctx;
2684 struct bio *bio;
2685 struct btrfs_raid_bio *rbio;
2686 struct scrub_page *spage;
2687 struct btrfs_bio *bbio = NULL;
2688 u64 length;
2689 int ret;
2690
2691 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2692 sparity->nsectors))
2693 goto out;
2694
2695 length = sparity->logic_end - sparity->logic_start + 1;
2696 ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2697 sparity->logic_start,
2698 &length, &bbio, 0, 1);
2699 if (ret || !bbio || !bbio->raid_map)
2700 goto bbio_out;
2701
2702 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2703 if (!bio)
2704 goto bbio_out;
2705
2706 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2707 bio->bi_private = sparity;
2708 bio->bi_end_io = scrub_parity_bio_endio;
2709
2710 rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2711 length, sparity->scrub_dev,
2712 sparity->dbitmap,
2713 sparity->nsectors);
2714 if (!rbio)
2715 goto rbio_out;
2716
2717 list_for_each_entry(spage, &sparity->spages, list)
2718 raid56_parity_add_scrub_pages(rbio, spage->page,
2719 spage->logical);
2720
2721 scrub_pending_bio_inc(sctx);
2722 raid56_parity_submit_scrub_rbio(rbio);
2723 return;
2724
2725 rbio_out:
2726 bio_put(bio);
2727 bbio_out:
2728 btrfs_put_bbio(bbio);
2729 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2730 sparity->nsectors);
2731 spin_lock(&sctx->stat_lock);
2732 sctx->stat.malloc_errors++;
2733 spin_unlock(&sctx->stat_lock);
2734 out:
2735 scrub_free_parity(sparity);
2736 }
2737
2738 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2739 {
2740 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
2741 }
2742
2743 static void scrub_parity_get(struct scrub_parity *sparity)
2744 {
2745 atomic_inc(&sparity->refs);
2746 }
2747
2748 static void scrub_parity_put(struct scrub_parity *sparity)
2749 {
2750 if (!atomic_dec_and_test(&sparity->refs))
2751 return;
2752
2753 scrub_parity_check_and_repair(sparity);
2754 }
2755
2756 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2757 struct map_lookup *map,
2758 struct btrfs_device *sdev,
2759 struct btrfs_path *path,
2760 u64 logic_start,
2761 u64 logic_end)
2762 {
2763 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2764 struct btrfs_root *root = fs_info->extent_root;
2765 struct btrfs_root *csum_root = fs_info->csum_root;
2766 struct btrfs_extent_item *extent;
2767 u64 flags;
2768 int ret;
2769 int slot;
2770 struct extent_buffer *l;
2771 struct btrfs_key key;
2772 u64 generation;
2773 u64 extent_logical;
2774 u64 extent_physical;
2775 u64 extent_len;
2776 struct btrfs_device *extent_dev;
2777 struct scrub_parity *sparity;
2778 int nsectors;
2779 int bitmap_len;
2780 int extent_mirror_num;
2781 int stop_loop = 0;
2782
2783 nsectors = map->stripe_len / root->sectorsize;
2784 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2785 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2786 GFP_NOFS);
2787 if (!sparity) {
2788 spin_lock(&sctx->stat_lock);
2789 sctx->stat.malloc_errors++;
2790 spin_unlock(&sctx->stat_lock);
2791 return -ENOMEM;
2792 }
2793
2794 sparity->stripe_len = map->stripe_len;
2795 sparity->nsectors = nsectors;
2796 sparity->sctx = sctx;
2797 sparity->scrub_dev = sdev;
2798 sparity->logic_start = logic_start;
2799 sparity->logic_end = logic_end;
2800 atomic_set(&sparity->refs, 1);
2801 INIT_LIST_HEAD(&sparity->spages);
2802 sparity->dbitmap = sparity->bitmap;
2803 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2804
2805 ret = 0;
2806 while (logic_start < logic_end) {
2807 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2808 key.type = BTRFS_METADATA_ITEM_KEY;
2809 else
2810 key.type = BTRFS_EXTENT_ITEM_KEY;
2811 key.objectid = logic_start;
2812 key.offset = (u64)-1;
2813
2814 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2815 if (ret < 0)
2816 goto out;
2817
2818 if (ret > 0) {
2819 ret = btrfs_previous_extent_item(root, path, 0);
2820 if (ret < 0)
2821 goto out;
2822 if (ret > 0) {
2823 btrfs_release_path(path);
2824 ret = btrfs_search_slot(NULL, root, &key,
2825 path, 0, 0);
2826 if (ret < 0)
2827 goto out;
2828 }
2829 }
2830
2831 stop_loop = 0;
2832 while (1) {
2833 u64 bytes;
2834
2835 l = path->nodes[0];
2836 slot = path->slots[0];
2837 if (slot >= btrfs_header_nritems(l)) {
2838 ret = btrfs_next_leaf(root, path);
2839 if (ret == 0)
2840 continue;
2841 if (ret < 0)
2842 goto out;
2843
2844 stop_loop = 1;
2845 break;
2846 }
2847 btrfs_item_key_to_cpu(l, &key, slot);
2848
2849 if (key.type == BTRFS_METADATA_ITEM_KEY)
2850 bytes = root->nodesize;
2851 else
2852 bytes = key.offset;
2853
2854 if (key.objectid + bytes <= logic_start)
2855 goto next;
2856
2857 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2858 key.type != BTRFS_METADATA_ITEM_KEY)
2859 goto next;
2860
2861 if (key.objectid > logic_end) {
2862 stop_loop = 1;
2863 break;
2864 }
2865
2866 while (key.objectid >= logic_start + map->stripe_len)
2867 logic_start += map->stripe_len;
2868
2869 extent = btrfs_item_ptr(l, slot,
2870 struct btrfs_extent_item);
2871 flags = btrfs_extent_flags(l, extent);
2872 generation = btrfs_extent_generation(l, extent);
2873
2874 if (key.objectid < logic_start &&
2875 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2876 btrfs_err(fs_info,
2877 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2878 key.objectid, logic_start);
2879 goto next;
2880 }
2881 again:
2882 extent_logical = key.objectid;
2883 extent_len = bytes;
2884
2885 if (extent_logical < logic_start) {
2886 extent_len -= logic_start - extent_logical;
2887 extent_logical = logic_start;
2888 }
2889
2890 if (extent_logical + extent_len >
2891 logic_start + map->stripe_len)
2892 extent_len = logic_start + map->stripe_len -
2893 extent_logical;
2894
2895 scrub_parity_mark_sectors_data(sparity, extent_logical,
2896 extent_len);
2897
2898 scrub_remap_extent(fs_info, extent_logical,
2899 extent_len, &extent_physical,
2900 &extent_dev,
2901 &extent_mirror_num);
2902
2903 ret = btrfs_lookup_csums_range(csum_root,
2904 extent_logical,
2905 extent_logical + extent_len - 1,
2906 &sctx->csum_list, 1);
2907 if (ret)
2908 goto out;
2909
2910 ret = scrub_extent_for_parity(sparity, extent_logical,
2911 extent_len,
2912 extent_physical,
2913 extent_dev, flags,
2914 generation,
2915 extent_mirror_num);
2916 if (ret)
2917 goto out;
2918
2919 scrub_free_csums(sctx);
2920 if (extent_logical + extent_len <
2921 key.objectid + bytes) {
2922 logic_start += map->stripe_len;
2923
2924 if (logic_start >= logic_end) {
2925 stop_loop = 1;
2926 break;
2927 }
2928
2929 if (logic_start < key.objectid + bytes) {
2930 cond_resched();
2931 goto again;
2932 }
2933 }
2934 next:
2935 path->slots[0]++;
2936 }
2937
2938 btrfs_release_path(path);
2939
2940 if (stop_loop)
2941 break;
2942
2943 logic_start += map->stripe_len;
2944 }
2945 out:
2946 if (ret < 0)
2947 scrub_parity_mark_sectors_error(sparity, logic_start,
2948 logic_end - logic_start + 1);
2949 scrub_parity_put(sparity);
2950 scrub_submit(sctx);
2951 mutex_lock(&sctx->wr_ctx.wr_lock);
2952 scrub_wr_submit(sctx);
2953 mutex_unlock(&sctx->wr_ctx.wr_lock);
2954
2955 btrfs_release_path(path);
2956 return ret < 0 ? ret : 0;
2957 }
2958
2959 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2960 struct map_lookup *map,
2961 struct btrfs_device *scrub_dev,
2962 int num, u64 base, u64 length,
2963 int is_dev_replace)
2964 {
2965 struct btrfs_path *path, *ppath;
2966 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2967 struct btrfs_root *root = fs_info->extent_root;
2968 struct btrfs_root *csum_root = fs_info->csum_root;
2969 struct btrfs_extent_item *extent;
2970 struct blk_plug plug;
2971 u64 flags;
2972 int ret;
2973 int slot;
2974 u64 nstripes;
2975 struct extent_buffer *l;
2976 struct btrfs_key key;
2977 u64 physical;
2978 u64 logical;
2979 u64 logic_end;
2980 u64 physical_end;
2981 u64 generation;
2982 int mirror_num;
2983 struct reada_control *reada1;
2984 struct reada_control *reada2;
2985 struct btrfs_key key_start;
2986 struct btrfs_key key_end;
2987 u64 increment = map->stripe_len;
2988 u64 offset;
2989 u64 extent_logical;
2990 u64 extent_physical;
2991 u64 extent_len;
2992 u64 stripe_logical;
2993 u64 stripe_end;
2994 struct btrfs_device *extent_dev;
2995 int extent_mirror_num;
2996 int stop_loop = 0;
2997
2998 nstripes = length;
2999 physical = map->stripes[num].physical;
3000 offset = 0;
3001 do_div(nstripes, map->stripe_len);
3002 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3003 offset = map->stripe_len * num;
3004 increment = map->stripe_len * map->num_stripes;
3005 mirror_num = 1;
3006 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3007 int factor = map->num_stripes / map->sub_stripes;
3008 offset = map->stripe_len * (num / map->sub_stripes);
3009 increment = map->stripe_len * factor;
3010 mirror_num = num % map->sub_stripes + 1;
3011 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3012 increment = map->stripe_len;
3013 mirror_num = num % map->num_stripes + 1;
3014 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3015 increment = map->stripe_len;
3016 mirror_num = num % map->num_stripes + 1;
3017 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3018 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3019 increment = map->stripe_len * nr_data_stripes(map);
3020 mirror_num = 1;
3021 } else {
3022 increment = map->stripe_len;
3023 mirror_num = 1;
3024 }
3025
3026 path = btrfs_alloc_path();
3027 if (!path)
3028 return -ENOMEM;
3029
3030 ppath = btrfs_alloc_path();
3031 if (!ppath) {
3032 btrfs_free_path(path);
3033 return -ENOMEM;
3034 }
3035
3036 /*
3037 * work on commit root. The related disk blocks are static as
3038 * long as COW is applied. This means, it is save to rewrite
3039 * them to repair disk errors without any race conditions
3040 */
3041 path->search_commit_root = 1;
3042 path->skip_locking = 1;
3043
3044 ppath->search_commit_root = 1;
3045 ppath->skip_locking = 1;
3046 /*
3047 * trigger the readahead for extent tree csum tree and wait for
3048 * completion. During readahead, the scrub is officially paused
3049 * to not hold off transaction commits
3050 */
3051 logical = base + offset;
3052 physical_end = physical + nstripes * map->stripe_len;
3053 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3054 get_raid56_logic_offset(physical_end, num,
3055 map, &logic_end, NULL);
3056 logic_end += base;
3057 } else {
3058 logic_end = logical + increment * nstripes;
3059 }
3060 wait_event(sctx->list_wait,
3061 atomic_read(&sctx->bios_in_flight) == 0);
3062 scrub_blocked_if_needed(fs_info);
3063
3064 /* FIXME it might be better to start readahead at commit root */
3065 key_start.objectid = logical;
3066 key_start.type = BTRFS_EXTENT_ITEM_KEY;
3067 key_start.offset = (u64)0;
3068 key_end.objectid = logic_end;
3069 key_end.type = BTRFS_METADATA_ITEM_KEY;
3070 key_end.offset = (u64)-1;
3071 reada1 = btrfs_reada_add(root, &key_start, &key_end);
3072
3073 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3074 key_start.type = BTRFS_EXTENT_CSUM_KEY;
3075 key_start.offset = logical;
3076 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3077 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3078 key_end.offset = logic_end;
3079 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3080
3081 if (!IS_ERR(reada1))
3082 btrfs_reada_wait(reada1);
3083 if (!IS_ERR(reada2))
3084 btrfs_reada_wait(reada2);
3085
3086
3087 /*
3088 * collect all data csums for the stripe to avoid seeking during
3089 * the scrub. This might currently (crc32) end up to be about 1MB
3090 */
3091 blk_start_plug(&plug);
3092
3093 /*
3094 * now find all extents for each stripe and scrub them
3095 */
3096 ret = 0;
3097 while (physical < physical_end) {
3098 /* for raid56, we skip parity stripe */
3099 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3100 ret = get_raid56_logic_offset(physical, num,
3101 map, &logical, &stripe_logical);
3102 logical += base;
3103 if (ret) {
3104 stripe_logical += base;
3105 stripe_end = stripe_logical + increment - 1;
3106 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3107 ppath, stripe_logical,
3108 stripe_end);
3109 if (ret)
3110 goto out;
3111 goto skip;
3112 }
3113 }
3114 /*
3115 * canceled?
3116 */
3117 if (atomic_read(&fs_info->scrub_cancel_req) ||
3118 atomic_read(&sctx->cancel_req)) {
3119 ret = -ECANCELED;
3120 goto out;
3121 }
3122 /*
3123 * check to see if we have to pause
3124 */
3125 if (atomic_read(&fs_info->scrub_pause_req)) {
3126 /* push queued extents */
3127 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3128 scrub_submit(sctx);
3129 mutex_lock(&sctx->wr_ctx.wr_lock);
3130 scrub_wr_submit(sctx);
3131 mutex_unlock(&sctx->wr_ctx.wr_lock);
3132 wait_event(sctx->list_wait,
3133 atomic_read(&sctx->bios_in_flight) == 0);
3134 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3135 scrub_blocked_if_needed(fs_info);
3136 }
3137
3138 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3139 key.type = BTRFS_METADATA_ITEM_KEY;
3140 else
3141 key.type = BTRFS_EXTENT_ITEM_KEY;
3142 key.objectid = logical;
3143 key.offset = (u64)-1;
3144
3145 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3146 if (ret < 0)
3147 goto out;
3148
3149 if (ret > 0) {
3150 ret = btrfs_previous_extent_item(root, path, 0);
3151 if (ret < 0)
3152 goto out;
3153 if (ret > 0) {
3154 /* there's no smaller item, so stick with the
3155 * larger one */
3156 btrfs_release_path(path);
3157 ret = btrfs_search_slot(NULL, root, &key,
3158 path, 0, 0);
3159 if (ret < 0)
3160 goto out;
3161 }
3162 }
3163
3164 stop_loop = 0;
3165 while (1) {
3166 u64 bytes;
3167
3168 l = path->nodes[0];
3169 slot = path->slots[0];
3170 if (slot >= btrfs_header_nritems(l)) {
3171 ret = btrfs_next_leaf(root, path);
3172 if (ret == 0)
3173 continue;
3174 if (ret < 0)
3175 goto out;
3176
3177 stop_loop = 1;
3178 break;
3179 }
3180 btrfs_item_key_to_cpu(l, &key, slot);
3181
3182 if (key.type == BTRFS_METADATA_ITEM_KEY)
3183 bytes = root->nodesize;
3184 else
3185 bytes = key.offset;
3186
3187 if (key.objectid + bytes <= logical)
3188 goto next;
3189
3190 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3191 key.type != BTRFS_METADATA_ITEM_KEY)
3192 goto next;
3193
3194 if (key.objectid >= logical + map->stripe_len) {
3195 /* out of this device extent */
3196 if (key.objectid >= logic_end)
3197 stop_loop = 1;
3198 break;
3199 }
3200
3201 extent = btrfs_item_ptr(l, slot,
3202 struct btrfs_extent_item);
3203 flags = btrfs_extent_flags(l, extent);
3204 generation = btrfs_extent_generation(l, extent);
3205
3206 if (key.objectid < logical &&
3207 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3208 btrfs_err(fs_info,
3209 "scrub: tree block %llu spanning "
3210 "stripes, ignored. logical=%llu",
3211 key.objectid, logical);
3212 goto next;
3213 }
3214
3215 again:
3216 extent_logical = key.objectid;
3217 extent_len = bytes;
3218
3219 /*
3220 * trim extent to this stripe
3221 */
3222 if (extent_logical < logical) {
3223 extent_len -= logical - extent_logical;
3224 extent_logical = logical;
3225 }
3226 if (extent_logical + extent_len >
3227 logical + map->stripe_len) {
3228 extent_len = logical + map->stripe_len -
3229 extent_logical;
3230 }
3231
3232 extent_physical = extent_logical - logical + physical;
3233 extent_dev = scrub_dev;
3234 extent_mirror_num = mirror_num;
3235 if (is_dev_replace)
3236 scrub_remap_extent(fs_info, extent_logical,
3237 extent_len, &extent_physical,
3238 &extent_dev,
3239 &extent_mirror_num);
3240
3241 ret = btrfs_lookup_csums_range(csum_root, logical,
3242 logical + map->stripe_len - 1,
3243 &sctx->csum_list, 1);
3244 if (ret)
3245 goto out;
3246
3247 ret = scrub_extent(sctx, extent_logical, extent_len,
3248 extent_physical, extent_dev, flags,
3249 generation, extent_mirror_num,
3250 extent_logical - logical + physical);
3251 if (ret)
3252 goto out;
3253
3254 scrub_free_csums(sctx);
3255 if (extent_logical + extent_len <
3256 key.objectid + bytes) {
3257 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3258 /*
3259 * loop until we find next data stripe
3260 * or we have finished all stripes.
3261 */
3262 loop:
3263 physical += map->stripe_len;
3264 ret = get_raid56_logic_offset(physical,
3265 num, map, &logical,
3266 &stripe_logical);
3267 logical += base;
3268
3269 if (ret && physical < physical_end) {
3270 stripe_logical += base;
3271 stripe_end = stripe_logical +
3272 increment - 1;
3273 ret = scrub_raid56_parity(sctx,
3274 map, scrub_dev, ppath,
3275 stripe_logical,
3276 stripe_end);
3277 if (ret)
3278 goto out;
3279 goto loop;
3280 }
3281 } else {
3282 physical += map->stripe_len;
3283 logical += increment;
3284 }
3285 if (logical < key.objectid + bytes) {
3286 cond_resched();
3287 goto again;
3288 }
3289
3290 if (physical >= physical_end) {
3291 stop_loop = 1;
3292 break;
3293 }
3294 }
3295 next:
3296 path->slots[0]++;
3297 }
3298 btrfs_release_path(path);
3299 skip:
3300 logical += increment;
3301 physical += map->stripe_len;
3302 spin_lock(&sctx->stat_lock);
3303 if (stop_loop)
3304 sctx->stat.last_physical = map->stripes[num].physical +
3305 length;
3306 else
3307 sctx->stat.last_physical = physical;
3308 spin_unlock(&sctx->stat_lock);
3309 if (stop_loop)
3310 break;
3311 }
3312 out:
3313 /* push queued extents */
3314 scrub_submit(sctx);
3315 mutex_lock(&sctx->wr_ctx.wr_lock);
3316 scrub_wr_submit(sctx);
3317 mutex_unlock(&sctx->wr_ctx.wr_lock);
3318
3319 blk_finish_plug(&plug);
3320 btrfs_free_path(path);
3321 btrfs_free_path(ppath);
3322 return ret < 0 ? ret : 0;
3323 }
3324
3325 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3326 struct btrfs_device *scrub_dev,
3327 u64 chunk_tree, u64 chunk_objectid,
3328 u64 chunk_offset, u64 length,
3329 u64 dev_offset, int is_dev_replace)
3330 {
3331 struct btrfs_mapping_tree *map_tree =
3332 &sctx->dev_root->fs_info->mapping_tree;
3333 struct map_lookup *map;
3334 struct extent_map *em;
3335 int i;
3336 int ret = 0;
3337
3338 read_lock(&map_tree->map_tree.lock);
3339 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3340 read_unlock(&map_tree->map_tree.lock);
3341
3342 if (!em)
3343 return -EINVAL;
3344
3345 map = (struct map_lookup *)em->bdev;
3346 if (em->start != chunk_offset)
3347 goto out;
3348
3349 if (em->len < length)
3350 goto out;
3351
3352 for (i = 0; i < map->num_stripes; ++i) {
3353 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3354 map->stripes[i].physical == dev_offset) {
3355 ret = scrub_stripe(sctx, map, scrub_dev, i,
3356 chunk_offset, length,
3357 is_dev_replace);
3358 if (ret)
3359 goto out;
3360 }
3361 }
3362 out:
3363 free_extent_map(em);
3364
3365 return ret;
3366 }
3367
3368 static noinline_for_stack
3369 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3370 struct btrfs_device *scrub_dev, u64 start, u64 end,
3371 int is_dev_replace)
3372 {
3373 struct btrfs_dev_extent *dev_extent = NULL;
3374 struct btrfs_path *path;
3375 struct btrfs_root *root = sctx->dev_root;
3376 struct btrfs_fs_info *fs_info = root->fs_info;
3377 u64 length;
3378 u64 chunk_tree;
3379 u64 chunk_objectid;
3380 u64 chunk_offset;
3381 int ret;
3382 int slot;
3383 struct extent_buffer *l;
3384 struct btrfs_key key;
3385 struct btrfs_key found_key;
3386 struct btrfs_block_group_cache *cache;
3387 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3388
3389 path = btrfs_alloc_path();
3390 if (!path)
3391 return -ENOMEM;
3392
3393 path->reada = 2;
3394 path->search_commit_root = 1;
3395 path->skip_locking = 1;
3396
3397 key.objectid = scrub_dev->devid;
3398 key.offset = 0ull;
3399 key.type = BTRFS_DEV_EXTENT_KEY;
3400
3401 while (1) {
3402 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3403 if (ret < 0)
3404 break;
3405 if (ret > 0) {
3406 if (path->slots[0] >=
3407 btrfs_header_nritems(path->nodes[0])) {
3408 ret = btrfs_next_leaf(root, path);
3409 if (ret)
3410 break;
3411 }
3412 }
3413
3414 l = path->nodes[0];
3415 slot = path->slots[0];
3416
3417 btrfs_item_key_to_cpu(l, &found_key, slot);
3418
3419 if (found_key.objectid != scrub_dev->devid)
3420 break;
3421
3422 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3423 break;
3424
3425 if (found_key.offset >= end)
3426 break;
3427
3428 if (found_key.offset < key.offset)
3429 break;
3430
3431 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3432 length = btrfs_dev_extent_length(l, dev_extent);
3433
3434 if (found_key.offset + length <= start)
3435 goto skip;
3436
3437 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3438 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3439 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3440
3441 /*
3442 * get a reference on the corresponding block group to prevent
3443 * the chunk from going away while we scrub it
3444 */
3445 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3446
3447 /* some chunks are removed but not committed to disk yet,
3448 * continue scrubbing */
3449 if (!cache)
3450 goto skip;
3451
3452 dev_replace->cursor_right = found_key.offset + length;
3453 dev_replace->cursor_left = found_key.offset;
3454 dev_replace->item_needs_writeback = 1;
3455 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3456 chunk_offset, length, found_key.offset,
3457 is_dev_replace);
3458
3459 /*
3460 * flush, submit all pending read and write bios, afterwards
3461 * wait for them.
3462 * Note that in the dev replace case, a read request causes
3463 * write requests that are submitted in the read completion
3464 * worker. Therefore in the current situation, it is required
3465 * that all write requests are flushed, so that all read and
3466 * write requests are really completed when bios_in_flight
3467 * changes to 0.
3468 */
3469 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3470 scrub_submit(sctx);
3471 mutex_lock(&sctx->wr_ctx.wr_lock);
3472 scrub_wr_submit(sctx);
3473 mutex_unlock(&sctx->wr_ctx.wr_lock);
3474
3475 wait_event(sctx->list_wait,
3476 atomic_read(&sctx->bios_in_flight) == 0);
3477 atomic_inc(&fs_info->scrubs_paused);
3478 wake_up(&fs_info->scrub_pause_wait);
3479
3480 /*
3481 * must be called before we decrease @scrub_paused.
3482 * make sure we don't block transaction commit while
3483 * we are waiting pending workers finished.
3484 */
3485 wait_event(sctx->list_wait,
3486 atomic_read(&sctx->workers_pending) == 0);
3487 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3488
3489 mutex_lock(&fs_info->scrub_lock);
3490 __scrub_blocked_if_needed(fs_info);
3491 atomic_dec(&fs_info->scrubs_paused);
3492 mutex_unlock(&fs_info->scrub_lock);
3493 wake_up(&fs_info->scrub_pause_wait);
3494
3495 btrfs_put_block_group(cache);
3496 if (ret)
3497 break;
3498 if (is_dev_replace &&
3499 atomic64_read(&dev_replace->num_write_errors) > 0) {
3500 ret = -EIO;
3501 break;
3502 }
3503 if (sctx->stat.malloc_errors > 0) {
3504 ret = -ENOMEM;
3505 break;
3506 }
3507
3508 dev_replace->cursor_left = dev_replace->cursor_right;
3509 dev_replace->item_needs_writeback = 1;
3510 skip:
3511 key.offset = found_key.offset + length;
3512 btrfs_release_path(path);
3513 }
3514
3515 btrfs_free_path(path);
3516
3517 /*
3518 * ret can still be 1 from search_slot or next_leaf,
3519 * that's not an error
3520 */
3521 return ret < 0 ? ret : 0;
3522 }
3523
3524 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3525 struct btrfs_device *scrub_dev)
3526 {
3527 int i;
3528 u64 bytenr;
3529 u64 gen;
3530 int ret;
3531 struct btrfs_root *root = sctx->dev_root;
3532
3533 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3534 return -EIO;
3535
3536 /* Seed devices of a new filesystem has their own generation. */
3537 if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3538 gen = scrub_dev->generation;
3539 else
3540 gen = root->fs_info->last_trans_committed;
3541
3542 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3543 bytenr = btrfs_sb_offset(i);
3544 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3545 scrub_dev->commit_total_bytes)
3546 break;
3547
3548 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3549 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3550 NULL, 1, bytenr);
3551 if (ret)
3552 return ret;
3553 }
3554 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3555
3556 return 0;
3557 }
3558
3559 /*
3560 * get a reference count on fs_info->scrub_workers. start worker if necessary
3561 */
3562 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3563 int is_dev_replace)
3564 {
3565 int ret = 0;
3566 int flags = WQ_FREEZABLE | WQ_UNBOUND;
3567 int max_active = fs_info->thread_pool_size;
3568
3569 if (fs_info->scrub_workers_refcnt == 0) {
3570 if (is_dev_replace)
3571 fs_info->scrub_workers =
3572 btrfs_alloc_workqueue("btrfs-scrub", flags,
3573 1, 4);
3574 else
3575 fs_info->scrub_workers =
3576 btrfs_alloc_workqueue("btrfs-scrub", flags,
3577 max_active, 4);
3578 if (!fs_info->scrub_workers) {
3579 ret = -ENOMEM;
3580 goto out;
3581 }
3582 fs_info->scrub_wr_completion_workers =
3583 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
3584 max_active, 2);
3585 if (!fs_info->scrub_wr_completion_workers) {
3586 ret = -ENOMEM;
3587 goto out;
3588 }
3589 fs_info->scrub_nocow_workers =
3590 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3591 if (!fs_info->scrub_nocow_workers) {
3592 ret = -ENOMEM;
3593 goto out;
3594 }
3595 }
3596 ++fs_info->scrub_workers_refcnt;
3597 out:
3598 return ret;
3599 }
3600
3601 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3602 {
3603 if (--fs_info->scrub_workers_refcnt == 0) {
3604 btrfs_destroy_workqueue(fs_info->scrub_workers);
3605 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3606 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3607 }
3608 WARN_ON(fs_info->scrub_workers_refcnt < 0);
3609 }
3610
3611 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3612 u64 end, struct btrfs_scrub_progress *progress,
3613 int readonly, int is_dev_replace)
3614 {
3615 struct scrub_ctx *sctx;
3616 int ret;
3617 struct btrfs_device *dev;
3618 struct rcu_string *name;
3619
3620 if (btrfs_fs_closing(fs_info))
3621 return -EINVAL;
3622
3623 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3624 /*
3625 * in this case scrub is unable to calculate the checksum
3626 * the way scrub is implemented. Do not handle this
3627 * situation at all because it won't ever happen.
3628 */
3629 btrfs_err(fs_info,
3630 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3631 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3632 return -EINVAL;
3633 }
3634
3635 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3636 /* not supported for data w/o checksums */
3637 btrfs_err(fs_info,
3638 "scrub: size assumption sectorsize != PAGE_SIZE "
3639 "(%d != %lu) fails",
3640 fs_info->chunk_root->sectorsize, PAGE_SIZE);
3641 return -EINVAL;
3642 }
3643
3644 if (fs_info->chunk_root->nodesize >
3645 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3646 fs_info->chunk_root->sectorsize >
3647 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3648 /*
3649 * would exhaust the array bounds of pagev member in
3650 * struct scrub_block
3651 */
3652 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3653 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3654 fs_info->chunk_root->nodesize,
3655 SCRUB_MAX_PAGES_PER_BLOCK,
3656 fs_info->chunk_root->sectorsize,
3657 SCRUB_MAX_PAGES_PER_BLOCK);
3658 return -EINVAL;
3659 }
3660
3661
3662 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3663 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3664 if (!dev || (dev->missing && !is_dev_replace)) {
3665 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3666 return -ENODEV;
3667 }
3668
3669 if (!is_dev_replace && !readonly && !dev->writeable) {
3670 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3671 rcu_read_lock();
3672 name = rcu_dereference(dev->name);
3673 btrfs_err(fs_info, "scrub: device %s is not writable",
3674 name->str);
3675 rcu_read_unlock();
3676 return -EROFS;
3677 }
3678
3679 mutex_lock(&fs_info->scrub_lock);
3680 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3681 mutex_unlock(&fs_info->scrub_lock);
3682 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3683 return -EIO;
3684 }
3685
3686 btrfs_dev_replace_lock(&fs_info->dev_replace);
3687 if (dev->scrub_device ||
3688 (!is_dev_replace &&
3689 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3690 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3691 mutex_unlock(&fs_info->scrub_lock);
3692 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3693 return -EINPROGRESS;
3694 }
3695 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3696
3697 ret = scrub_workers_get(fs_info, is_dev_replace);
3698 if (ret) {
3699 mutex_unlock(&fs_info->scrub_lock);
3700 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3701 return ret;
3702 }
3703
3704 sctx = scrub_setup_ctx(dev, is_dev_replace);
3705 if (IS_ERR(sctx)) {
3706 mutex_unlock(&fs_info->scrub_lock);
3707 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3708 scrub_workers_put(fs_info);
3709 return PTR_ERR(sctx);
3710 }
3711 sctx->readonly = readonly;
3712 dev->scrub_device = sctx;
3713 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3714
3715 /*
3716 * checking @scrub_pause_req here, we can avoid
3717 * race between committing transaction and scrubbing.
3718 */
3719 __scrub_blocked_if_needed(fs_info);
3720 atomic_inc(&fs_info->scrubs_running);
3721 mutex_unlock(&fs_info->scrub_lock);
3722
3723 if (!is_dev_replace) {
3724 /*
3725 * by holding device list mutex, we can
3726 * kick off writing super in log tree sync.
3727 */
3728 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3729 ret = scrub_supers(sctx, dev);
3730 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3731 }
3732
3733 if (!ret)
3734 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3735 is_dev_replace);
3736
3737 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3738 atomic_dec(&fs_info->scrubs_running);
3739 wake_up(&fs_info->scrub_pause_wait);
3740
3741 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3742
3743 if (progress)
3744 memcpy(progress, &sctx->stat, sizeof(*progress));
3745
3746 mutex_lock(&fs_info->scrub_lock);
3747 dev->scrub_device = NULL;
3748 scrub_workers_put(fs_info);
3749 mutex_unlock(&fs_info->scrub_lock);
3750
3751 scrub_put_ctx(sctx);
3752
3753 return ret;
3754 }
3755
3756 void btrfs_scrub_pause(struct btrfs_root *root)
3757 {
3758 struct btrfs_fs_info *fs_info = root->fs_info;
3759
3760 mutex_lock(&fs_info->scrub_lock);
3761 atomic_inc(&fs_info->scrub_pause_req);
3762 while (atomic_read(&fs_info->scrubs_paused) !=
3763 atomic_read(&fs_info->scrubs_running)) {
3764 mutex_unlock(&fs_info->scrub_lock);
3765 wait_event(fs_info->scrub_pause_wait,
3766 atomic_read(&fs_info->scrubs_paused) ==
3767 atomic_read(&fs_info->scrubs_running));
3768 mutex_lock(&fs_info->scrub_lock);
3769 }
3770 mutex_unlock(&fs_info->scrub_lock);
3771 }
3772
3773 void btrfs_scrub_continue(struct btrfs_root *root)
3774 {
3775 struct btrfs_fs_info *fs_info = root->fs_info;
3776
3777 atomic_dec(&fs_info->scrub_pause_req);
3778 wake_up(&fs_info->scrub_pause_wait);
3779 }
3780
3781 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3782 {
3783 mutex_lock(&fs_info->scrub_lock);
3784 if (!atomic_read(&fs_info->scrubs_running)) {
3785 mutex_unlock(&fs_info->scrub_lock);
3786 return -ENOTCONN;
3787 }
3788
3789 atomic_inc(&fs_info->scrub_cancel_req);
3790 while (atomic_read(&fs_info->scrubs_running)) {
3791 mutex_unlock(&fs_info->scrub_lock);
3792 wait_event(fs_info->scrub_pause_wait,
3793 atomic_read(&fs_info->scrubs_running) == 0);
3794 mutex_lock(&fs_info->scrub_lock);
3795 }
3796 atomic_dec(&fs_info->scrub_cancel_req);
3797 mutex_unlock(&fs_info->scrub_lock);
3798
3799 return 0;
3800 }
3801
3802 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3803 struct btrfs_device *dev)
3804 {
3805 struct scrub_ctx *sctx;
3806
3807 mutex_lock(&fs_info->scrub_lock);
3808 sctx = dev->scrub_device;
3809 if (!sctx) {
3810 mutex_unlock(&fs_info->scrub_lock);
3811 return -ENOTCONN;
3812 }
3813 atomic_inc(&sctx->cancel_req);
3814 while (dev->scrub_device) {
3815 mutex_unlock(&fs_info->scrub_lock);
3816 wait_event(fs_info->scrub_pause_wait,
3817 dev->scrub_device == NULL);
3818 mutex_lock(&fs_info->scrub_lock);
3819 }
3820 mutex_unlock(&fs_info->scrub_lock);
3821
3822 return 0;
3823 }
3824
3825 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3826 struct btrfs_scrub_progress *progress)
3827 {
3828 struct btrfs_device *dev;
3829 struct scrub_ctx *sctx = NULL;
3830
3831 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3832 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3833 if (dev)
3834 sctx = dev->scrub_device;
3835 if (sctx)
3836 memcpy(progress, &sctx->stat, sizeof(*progress));
3837 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3838
3839 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3840 }
3841
3842 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3843 u64 extent_logical, u64 extent_len,
3844 u64 *extent_physical,
3845 struct btrfs_device **extent_dev,
3846 int *extent_mirror_num)
3847 {
3848 u64 mapped_length;
3849 struct btrfs_bio *bbio = NULL;
3850 int ret;
3851
3852 mapped_length = extent_len;
3853 ret = btrfs_map_block(fs_info, READ, extent_logical,
3854 &mapped_length, &bbio, 0);
3855 if (ret || !bbio || mapped_length < extent_len ||
3856 !bbio->stripes[0].dev->bdev) {
3857 btrfs_put_bbio(bbio);
3858 return;
3859 }
3860
3861 *extent_physical = bbio->stripes[0].physical;
3862 *extent_mirror_num = bbio->mirror_num;
3863 *extent_dev = bbio->stripes[0].dev;
3864 btrfs_put_bbio(bbio);
3865 }
3866
3867 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3868 struct scrub_wr_ctx *wr_ctx,
3869 struct btrfs_fs_info *fs_info,
3870 struct btrfs_device *dev,
3871 int is_dev_replace)
3872 {
3873 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3874
3875 mutex_init(&wr_ctx->wr_lock);
3876 wr_ctx->wr_curr_bio = NULL;
3877 if (!is_dev_replace)
3878 return 0;
3879
3880 WARN_ON(!dev->bdev);
3881 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3882 bio_get_nr_vecs(dev->bdev));
3883 wr_ctx->tgtdev = dev;
3884 atomic_set(&wr_ctx->flush_all_writes, 0);
3885 return 0;
3886 }
3887
3888 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3889 {
3890 mutex_lock(&wr_ctx->wr_lock);
3891 kfree(wr_ctx->wr_curr_bio);
3892 wr_ctx->wr_curr_bio = NULL;
3893 mutex_unlock(&wr_ctx->wr_lock);
3894 }
3895
3896 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3897 int mirror_num, u64 physical_for_dev_replace)
3898 {
3899 struct scrub_copy_nocow_ctx *nocow_ctx;
3900 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3901
3902 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3903 if (!nocow_ctx) {
3904 spin_lock(&sctx->stat_lock);
3905 sctx->stat.malloc_errors++;
3906 spin_unlock(&sctx->stat_lock);
3907 return -ENOMEM;
3908 }
3909
3910 scrub_pending_trans_workers_inc(sctx);
3911
3912 nocow_ctx->sctx = sctx;
3913 nocow_ctx->logical = logical;
3914 nocow_ctx->len = len;
3915 nocow_ctx->mirror_num = mirror_num;
3916 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3917 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3918 copy_nocow_pages_worker, NULL, NULL);
3919 INIT_LIST_HEAD(&nocow_ctx->inodes);
3920 btrfs_queue_work(fs_info->scrub_nocow_workers,
3921 &nocow_ctx->work);
3922
3923 return 0;
3924 }
3925
3926 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3927 {
3928 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3929 struct scrub_nocow_inode *nocow_inode;
3930
3931 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3932 if (!nocow_inode)
3933 return -ENOMEM;
3934 nocow_inode->inum = inum;
3935 nocow_inode->offset = offset;
3936 nocow_inode->root = root;
3937 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3938 return 0;
3939 }
3940
3941 #define COPY_COMPLETE 1
3942
3943 static void copy_nocow_pages_worker(struct btrfs_work *work)
3944 {
3945 struct scrub_copy_nocow_ctx *nocow_ctx =
3946 container_of(work, struct scrub_copy_nocow_ctx, work);
3947 struct scrub_ctx *sctx = nocow_ctx->sctx;
3948 u64 logical = nocow_ctx->logical;
3949 u64 len = nocow_ctx->len;
3950 int mirror_num = nocow_ctx->mirror_num;
3951 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3952 int ret;
3953 struct btrfs_trans_handle *trans = NULL;
3954 struct btrfs_fs_info *fs_info;
3955 struct btrfs_path *path;
3956 struct btrfs_root *root;
3957 int not_written = 0;
3958
3959 fs_info = sctx->dev_root->fs_info;
3960 root = fs_info->extent_root;
3961
3962 path = btrfs_alloc_path();
3963 if (!path) {
3964 spin_lock(&sctx->stat_lock);
3965 sctx->stat.malloc_errors++;
3966 spin_unlock(&sctx->stat_lock);
3967 not_written = 1;
3968 goto out;
3969 }
3970
3971 trans = btrfs_join_transaction(root);
3972 if (IS_ERR(trans)) {
3973 not_written = 1;
3974 goto out;
3975 }
3976
3977 ret = iterate_inodes_from_logical(logical, fs_info, path,
3978 record_inode_for_nocow, nocow_ctx);
3979 if (ret != 0 && ret != -ENOENT) {
3980 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3981 "phys %llu, len %llu, mir %u, ret %d",
3982 logical, physical_for_dev_replace, len, mirror_num,
3983 ret);
3984 not_written = 1;
3985 goto out;
3986 }
3987
3988 btrfs_end_transaction(trans, root);
3989 trans = NULL;
3990 while (!list_empty(&nocow_ctx->inodes)) {
3991 struct scrub_nocow_inode *entry;
3992 entry = list_first_entry(&nocow_ctx->inodes,
3993 struct scrub_nocow_inode,
3994 list);
3995 list_del_init(&entry->list);
3996 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3997 entry->root, nocow_ctx);
3998 kfree(entry);
3999 if (ret == COPY_COMPLETE) {
4000 ret = 0;
4001 break;
4002 } else if (ret) {
4003 break;
4004 }
4005 }
4006 out:
4007 while (!list_empty(&nocow_ctx->inodes)) {
4008 struct scrub_nocow_inode *entry;
4009 entry = list_first_entry(&nocow_ctx->inodes,
4010 struct scrub_nocow_inode,
4011 list);
4012 list_del_init(&entry->list);
4013 kfree(entry);
4014 }
4015 if (trans && !IS_ERR(trans))
4016 btrfs_end_transaction(trans, root);
4017 if (not_written)
4018 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4019 num_uncorrectable_read_errors);
4020
4021 btrfs_free_path(path);
4022 kfree(nocow_ctx);
4023
4024 scrub_pending_trans_workers_dec(sctx);
4025 }
4026
4027 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4028 u64 logical)
4029 {
4030 struct extent_state *cached_state = NULL;
4031 struct btrfs_ordered_extent *ordered;
4032 struct extent_io_tree *io_tree;
4033 struct extent_map *em;
4034 u64 lockstart = start, lockend = start + len - 1;
4035 int ret = 0;
4036
4037 io_tree = &BTRFS_I(inode)->io_tree;
4038
4039 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
4040 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4041 if (ordered) {
4042 btrfs_put_ordered_extent(ordered);
4043 ret = 1;
4044 goto out_unlock;
4045 }
4046
4047 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4048 if (IS_ERR(em)) {
4049 ret = PTR_ERR(em);
4050 goto out_unlock;
4051 }
4052
4053 /*
4054 * This extent does not actually cover the logical extent anymore,
4055 * move on to the next inode.
4056 */
4057 if (em->block_start > logical ||
4058 em->block_start + em->block_len < logical + len) {
4059 free_extent_map(em);
4060 ret = 1;
4061 goto out_unlock;
4062 }
4063 free_extent_map(em);
4064
4065 out_unlock:
4066 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4067 GFP_NOFS);
4068 return ret;
4069 }
4070
4071 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4072 struct scrub_copy_nocow_ctx *nocow_ctx)
4073 {
4074 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4075 struct btrfs_key key;
4076 struct inode *inode;
4077 struct page *page;
4078 struct btrfs_root *local_root;
4079 struct extent_io_tree *io_tree;
4080 u64 physical_for_dev_replace;
4081 u64 nocow_ctx_logical;
4082 u64 len = nocow_ctx->len;
4083 unsigned long index;
4084 int srcu_index;
4085 int ret = 0;
4086 int err = 0;
4087
4088 key.objectid = root;
4089 key.type = BTRFS_ROOT_ITEM_KEY;
4090 key.offset = (u64)-1;
4091
4092 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4093
4094 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4095 if (IS_ERR(local_root)) {
4096 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4097 return PTR_ERR(local_root);
4098 }
4099
4100 key.type = BTRFS_INODE_ITEM_KEY;
4101 key.objectid = inum;
4102 key.offset = 0;
4103 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4104 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4105 if (IS_ERR(inode))
4106 return PTR_ERR(inode);
4107
4108 /* Avoid truncate/dio/punch hole.. */
4109 mutex_lock(&inode->i_mutex);
4110 inode_dio_wait(inode);
4111
4112 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4113 io_tree = &BTRFS_I(inode)->io_tree;
4114 nocow_ctx_logical = nocow_ctx->logical;
4115
4116 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4117 if (ret) {
4118 ret = ret > 0 ? 0 : ret;
4119 goto out;
4120 }
4121
4122 while (len >= PAGE_CACHE_SIZE) {
4123 index = offset >> PAGE_CACHE_SHIFT;
4124 again:
4125 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4126 if (!page) {
4127 btrfs_err(fs_info, "find_or_create_page() failed");
4128 ret = -ENOMEM;
4129 goto out;
4130 }
4131
4132 if (PageUptodate(page)) {
4133 if (PageDirty(page))
4134 goto next_page;
4135 } else {
4136 ClearPageError(page);
4137 err = extent_read_full_page(io_tree, page,
4138 btrfs_get_extent,
4139 nocow_ctx->mirror_num);
4140 if (err) {
4141 ret = err;
4142 goto next_page;
4143 }
4144
4145 lock_page(page);
4146 /*
4147 * If the page has been remove from the page cache,
4148 * the data on it is meaningless, because it may be
4149 * old one, the new data may be written into the new
4150 * page in the page cache.
4151 */
4152 if (page->mapping != inode->i_mapping) {
4153 unlock_page(page);
4154 page_cache_release(page);
4155 goto again;
4156 }
4157 if (!PageUptodate(page)) {
4158 ret = -EIO;
4159 goto next_page;
4160 }
4161 }
4162
4163 ret = check_extent_to_block(inode, offset, len,
4164 nocow_ctx_logical);
4165 if (ret) {
4166 ret = ret > 0 ? 0 : ret;
4167 goto next_page;
4168 }
4169
4170 err = write_page_nocow(nocow_ctx->sctx,
4171 physical_for_dev_replace, page);
4172 if (err)
4173 ret = err;
4174 next_page:
4175 unlock_page(page);
4176 page_cache_release(page);
4177
4178 if (ret)
4179 break;
4180
4181 offset += PAGE_CACHE_SIZE;
4182 physical_for_dev_replace += PAGE_CACHE_SIZE;
4183 nocow_ctx_logical += PAGE_CACHE_SIZE;
4184 len -= PAGE_CACHE_SIZE;
4185 }
4186 ret = COPY_COMPLETE;
4187 out:
4188 mutex_unlock(&inode->i_mutex);
4189 iput(inode);
4190 return ret;
4191 }
4192
4193 static int write_page_nocow(struct scrub_ctx *sctx,
4194 u64 physical_for_dev_replace, struct page *page)
4195 {
4196 struct bio *bio;
4197 struct btrfs_device *dev;
4198 int ret;
4199
4200 dev = sctx->wr_ctx.tgtdev;
4201 if (!dev)
4202 return -EIO;
4203 if (!dev->bdev) {
4204 printk_ratelimited(KERN_WARNING
4205 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4206 return -EIO;
4207 }
4208 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4209 if (!bio) {
4210 spin_lock(&sctx->stat_lock);
4211 sctx->stat.malloc_errors++;
4212 spin_unlock(&sctx->stat_lock);
4213 return -ENOMEM;
4214 }
4215 bio->bi_iter.bi_size = 0;
4216 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4217 bio->bi_bdev = dev->bdev;
4218 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
4219 if (ret != PAGE_CACHE_SIZE) {
4220 leave_with_eio:
4221 bio_put(bio);
4222 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4223 return -EIO;
4224 }
4225
4226 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4227 goto leave_with_eio;
4228
4229 bio_put(bio);
4230 return 0;
4231 }
This page took 0.562215 seconds and 6 git commands to generate.