2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
38 static int g_verbose
= 0;
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
56 unsigned short buf_len
:15;
57 unsigned short reversed
:1;
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
68 #define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 /* reused for each extent */
74 struct btrfs_root
*root
;
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
85 struct file
*send_filp
;
91 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
92 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
94 struct btrfs_root
*send_root
;
95 struct btrfs_root
*parent_root
;
96 struct clone_root
*clone_roots
;
99 /* current state of the compare_tree call */
100 struct btrfs_path
*left_path
;
101 struct btrfs_path
*right_path
;
102 struct btrfs_key
*cmp_key
;
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
111 int cur_inode_new_gen
;
112 int cur_inode_deleted
;
116 u64 cur_inode_last_extent
;
120 struct list_head new_refs
;
121 struct list_head deleted_refs
;
123 struct radix_tree_root name_cache
;
124 struct list_head name_cache_list
;
127 struct file_ra_state ra
;
132 * We process inodes by their increasing order, so if before an
133 * incremental send we reverse the parent/child relationship of
134 * directories such that a directory with a lower inode number was
135 * the parent of a directory with a higher inode number, and the one
136 * becoming the new parent got renamed too, we can't rename/move the
137 * directory with lower inode number when we finish processing it - we
138 * must process the directory with higher inode number first, then
139 * rename/move it and then rename/move the directory with lower inode
140 * number. Example follows.
142 * Tree state when the first send was performed:
154 * Tree state when the second (incremental) send is performed:
163 * The sequence of steps that lead to the second state was:
165 * mv /a/b/c/d /a/b/c2/d2
166 * mv /a/b/c /a/b/c2/d2/cc
168 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 * before we move "d", which has higher inode number.
171 * So we just memorize which move/rename operations must be performed
172 * later when their respective parent is processed and moved/renamed.
175 /* Indexed by parent directory inode number. */
176 struct rb_root pending_dir_moves
;
179 * Reverse index, indexed by the inode number of a directory that
180 * is waiting for the move/rename of its immediate parent before its
181 * own move/rename can be performed.
183 struct rb_root waiting_dir_moves
;
186 * A directory that is going to be rm'ed might have a child directory
187 * which is in the pending directory moves index above. In this case,
188 * the directory can only be removed after the move/rename of its child
189 * is performed. Example:
209 * Sequence of steps that lead to the send snapshot:
210 * rm -f /a/b/c/foo.txt
212 * mv /a/b/c/x /a/b/YY
215 * When the child is processed, its move/rename is delayed until its
216 * parent is processed (as explained above), but all other operations
217 * like update utimes, chown, chgrp, etc, are performed and the paths
218 * that it uses for those operations must use the orphanized name of
219 * its parent (the directory we're going to rm later), so we need to
220 * memorize that name.
222 * Indexed by the inode number of the directory to be deleted.
224 struct rb_root orphan_dirs
;
227 struct pending_dir_move
{
229 struct list_head list
;
234 struct list_head update_refs
;
237 struct waiting_dir_move
{
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
249 struct orphan_dir_info
{
255 struct name_cache_entry
{
256 struct list_head list
;
258 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 * more then one inum would fall into the same entry, we use radix_list
261 * to store the additional entries. radix_list is also used to store
262 * entries where two entries have the same inum but different
265 struct list_head radix_list
;
271 int need_later_update
;
276 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
);
278 static struct waiting_dir_move
*
279 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
);
281 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
);
283 static int need_send_hole(struct send_ctx
*sctx
)
285 return (sctx
->parent_root
&& !sctx
->cur_inode_new
&&
286 !sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
&&
287 S_ISREG(sctx
->cur_inode_mode
));
290 static void fs_path_reset(struct fs_path
*p
)
293 p
->start
= p
->buf
+ p
->buf_len
- 1;
303 static struct fs_path
*fs_path_alloc(void)
307 p
= kmalloc(sizeof(*p
), GFP_NOFS
);
311 p
->buf
= p
->inline_buf
;
312 p
->buf_len
= FS_PATH_INLINE_SIZE
;
317 static struct fs_path
*fs_path_alloc_reversed(void)
329 static void fs_path_free(struct fs_path
*p
)
333 if (p
->buf
!= p
->inline_buf
)
338 static int fs_path_len(struct fs_path
*p
)
340 return p
->end
- p
->start
;
343 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
351 if (p
->buf_len
>= len
)
354 if (len
> PATH_MAX
) {
359 path_len
= p
->end
- p
->start
;
360 old_buf_len
= p
->buf_len
;
363 * First time the inline_buf does not suffice
365 if (p
->buf
== p
->inline_buf
) {
366 tmp_buf
= kmalloc(len
, GFP_NOFS
);
368 memcpy(tmp_buf
, p
->buf
, old_buf_len
);
370 tmp_buf
= krealloc(p
->buf
, len
, GFP_NOFS
);
376 * The real size of the buffer is bigger, this will let the fast path
377 * happen most of the time
379 p
->buf_len
= ksize(p
->buf
);
382 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
383 p
->end
= p
->buf
+ p
->buf_len
- 1;
384 p
->start
= p
->end
- path_len
;
385 memmove(p
->start
, tmp_buf
, path_len
+ 1);
388 p
->end
= p
->start
+ path_len
;
393 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
,
399 new_len
= p
->end
- p
->start
+ name_len
;
400 if (p
->start
!= p
->end
)
402 ret
= fs_path_ensure_buf(p
, new_len
);
407 if (p
->start
!= p
->end
)
409 p
->start
-= name_len
;
410 *prepared
= p
->start
;
412 if (p
->start
!= p
->end
)
423 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
428 ret
= fs_path_prepare_for_add(p
, name_len
, &prepared
);
431 memcpy(prepared
, name
, name_len
);
437 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
442 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
, &prepared
);
445 memcpy(prepared
, p2
->start
, p2
->end
- p2
->start
);
451 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
452 struct extent_buffer
*eb
,
453 unsigned long off
, int len
)
458 ret
= fs_path_prepare_for_add(p
, len
, &prepared
);
462 read_extent_buffer(eb
, prepared
, off
, len
);
468 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
472 p
->reversed
= from
->reversed
;
475 ret
= fs_path_add_path(p
, from
);
481 static void fs_path_unreverse(struct fs_path
*p
)
490 len
= p
->end
- p
->start
;
492 p
->end
= p
->start
+ len
;
493 memmove(p
->start
, tmp
, len
+ 1);
497 static struct btrfs_path
*alloc_path_for_send(void)
499 struct btrfs_path
*path
;
501 path
= btrfs_alloc_path();
504 path
->search_commit_root
= 1;
505 path
->skip_locking
= 1;
506 path
->need_commit_sem
= 1;
510 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
520 ret
= vfs_write(filp
, (__force
const char __user
*)buf
+ pos
,
522 /* TODO handle that correctly */
523 /*if (ret == -ERESTARTSYS) {
542 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
544 struct btrfs_tlv_header
*hdr
;
545 int total_len
= sizeof(*hdr
) + len
;
546 int left
= sctx
->send_max_size
- sctx
->send_size
;
548 if (unlikely(left
< total_len
))
551 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
552 hdr
->tlv_type
= cpu_to_le16(attr
);
553 hdr
->tlv_len
= cpu_to_le16(len
);
554 memcpy(hdr
+ 1, data
, len
);
555 sctx
->send_size
+= total_len
;
560 #define TLV_PUT_DEFINE_INT(bits) \
561 static int tlv_put_u##bits(struct send_ctx *sctx, \
562 u##bits attr, u##bits value) \
564 __le##bits __tmp = cpu_to_le##bits(value); \
565 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
568 TLV_PUT_DEFINE_INT(64)
570 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
571 const char *str
, int len
)
575 return tlv_put(sctx
, attr
, str
, len
);
578 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
581 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
584 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
585 struct extent_buffer
*eb
,
586 struct btrfs_timespec
*ts
)
588 struct btrfs_timespec bts
;
589 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
590 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
594 #define TLV_PUT(sctx, attrtype, attrlen, data) \
596 ret = tlv_put(sctx, attrtype, attrlen, data); \
598 goto tlv_put_failure; \
601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
603 ret = tlv_put_u##bits(sctx, attrtype, value); \
605 goto tlv_put_failure; \
608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
614 ret = tlv_put_string(sctx, attrtype, str, len); \
616 goto tlv_put_failure; \
618 #define TLV_PUT_PATH(sctx, attrtype, p) \
620 ret = tlv_put_string(sctx, attrtype, p->start, \
621 p->end - p->start); \
623 goto tlv_put_failure; \
625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
627 ret = tlv_put_uuid(sctx, attrtype, uuid); \
629 goto tlv_put_failure; \
631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
633 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
635 goto tlv_put_failure; \
638 static int send_header(struct send_ctx
*sctx
)
640 struct btrfs_stream_header hdr
;
642 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
643 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
645 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
650 * For each command/item we want to send to userspace, we call this function.
652 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
654 struct btrfs_cmd_header
*hdr
;
656 if (WARN_ON(!sctx
->send_buf
))
659 BUG_ON(sctx
->send_size
);
661 sctx
->send_size
+= sizeof(*hdr
);
662 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
663 hdr
->cmd
= cpu_to_le16(cmd
);
668 static int send_cmd(struct send_ctx
*sctx
)
671 struct btrfs_cmd_header
*hdr
;
674 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
675 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
678 crc
= btrfs_crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
679 hdr
->crc
= cpu_to_le32(crc
);
681 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
684 sctx
->total_send_size
+= sctx
->send_size
;
685 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
692 * Sends a move instruction to user space
694 static int send_rename(struct send_ctx
*sctx
,
695 struct fs_path
*from
, struct fs_path
*to
)
699 verbose_printk("btrfs: send_rename %s -> %s\n", from
->start
, to
->start
);
701 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
705 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
706 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
708 ret
= send_cmd(sctx
);
716 * Sends a link instruction to user space
718 static int send_link(struct send_ctx
*sctx
,
719 struct fs_path
*path
, struct fs_path
*lnk
)
723 verbose_printk("btrfs: send_link %s -> %s\n", path
->start
, lnk
->start
);
725 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
729 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
730 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
732 ret
= send_cmd(sctx
);
740 * Sends an unlink instruction to user space
742 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
746 verbose_printk("btrfs: send_unlink %s\n", path
->start
);
748 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
752 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
754 ret
= send_cmd(sctx
);
762 * Sends a rmdir instruction to user space
764 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
768 verbose_printk("btrfs: send_rmdir %s\n", path
->start
);
770 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
774 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
776 ret
= send_cmd(sctx
);
784 * Helper function to retrieve some fields from an inode item.
786 static int __get_inode_info(struct btrfs_root
*root
, struct btrfs_path
*path
,
787 u64 ino
, u64
*size
, u64
*gen
, u64
*mode
, u64
*uid
,
791 struct btrfs_inode_item
*ii
;
792 struct btrfs_key key
;
795 key
.type
= BTRFS_INODE_ITEM_KEY
;
797 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
804 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
805 struct btrfs_inode_item
);
807 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
809 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
811 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
813 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
815 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
817 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
822 static int get_inode_info(struct btrfs_root
*root
,
823 u64 ino
, u64
*size
, u64
*gen
,
824 u64
*mode
, u64
*uid
, u64
*gid
,
827 struct btrfs_path
*path
;
830 path
= alloc_path_for_send();
833 ret
= __get_inode_info(root
, path
, ino
, size
, gen
, mode
, uid
, gid
,
835 btrfs_free_path(path
);
839 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
844 * Helper function to iterate the entries in ONE btrfs_inode_ref or
845 * btrfs_inode_extref.
846 * The iterate callback may return a non zero value to stop iteration. This can
847 * be a negative value for error codes or 1 to simply stop it.
849 * path must point to the INODE_REF or INODE_EXTREF when called.
851 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
852 struct btrfs_key
*found_key
, int resolve
,
853 iterate_inode_ref_t iterate
, void *ctx
)
855 struct extent_buffer
*eb
= path
->nodes
[0];
856 struct btrfs_item
*item
;
857 struct btrfs_inode_ref
*iref
;
858 struct btrfs_inode_extref
*extref
;
859 struct btrfs_path
*tmp_path
;
863 int slot
= path
->slots
[0];
870 unsigned long name_off
;
871 unsigned long elem_size
;
874 p
= fs_path_alloc_reversed();
878 tmp_path
= alloc_path_for_send();
885 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
886 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
887 struct btrfs_inode_ref
);
888 item
= btrfs_item_nr(slot
);
889 total
= btrfs_item_size(eb
, item
);
890 elem_size
= sizeof(*iref
);
892 ptr
= btrfs_item_ptr_offset(eb
, slot
);
893 total
= btrfs_item_size_nr(eb
, slot
);
894 elem_size
= sizeof(*extref
);
897 while (cur
< total
) {
900 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
901 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
902 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
903 name_off
= (unsigned long)(iref
+ 1);
904 index
= btrfs_inode_ref_index(eb
, iref
);
905 dir
= found_key
->offset
;
907 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
908 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
909 name_off
= (unsigned long)&extref
->name
;
910 index
= btrfs_inode_extref_index(eb
, extref
);
911 dir
= btrfs_inode_extref_parent(eb
, extref
);
915 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
919 ret
= PTR_ERR(start
);
922 if (start
< p
->buf
) {
923 /* overflow , try again with larger buffer */
924 ret
= fs_path_ensure_buf(p
,
925 p
->buf_len
+ p
->buf
- start
);
928 start
= btrfs_ref_to_path(root
, tmp_path
,
933 ret
= PTR_ERR(start
);
936 BUG_ON(start
< p
->buf
);
940 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
946 cur
+= elem_size
+ name_len
;
947 ret
= iterate(num
, dir
, index
, p
, ctx
);
954 btrfs_free_path(tmp_path
);
959 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
960 const char *name
, int name_len
,
961 const char *data
, int data_len
,
965 * Helper function to iterate the entries in ONE btrfs_dir_item.
966 * The iterate callback may return a non zero value to stop iteration. This can
967 * be a negative value for error codes or 1 to simply stop it.
969 * path must point to the dir item when called.
971 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
972 struct btrfs_key
*found_key
,
973 iterate_dir_item_t iterate
, void *ctx
)
976 struct extent_buffer
*eb
;
977 struct btrfs_item
*item
;
978 struct btrfs_dir_item
*di
;
979 struct btrfs_key di_key
;
992 * Start with a small buffer (1 page). If later we end up needing more
993 * space, which can happen for xattrs on a fs with a leaf size greater
994 * then the page size, attempt to increase the buffer. Typically xattr
998 buf
= kmalloc(buf_len
, GFP_NOFS
);
1004 eb
= path
->nodes
[0];
1005 slot
= path
->slots
[0];
1006 item
= btrfs_item_nr(slot
);
1007 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
1010 total
= btrfs_item_size(eb
, item
);
1013 while (cur
< total
) {
1014 name_len
= btrfs_dir_name_len(eb
, di
);
1015 data_len
= btrfs_dir_data_len(eb
, di
);
1016 type
= btrfs_dir_type(eb
, di
);
1017 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1019 if (type
== BTRFS_FT_XATTR
) {
1020 if (name_len
> XATTR_NAME_MAX
) {
1021 ret
= -ENAMETOOLONG
;
1024 if (name_len
+ data_len
> BTRFS_MAX_XATTR_SIZE(root
)) {
1032 if (name_len
+ data_len
> PATH_MAX
) {
1033 ret
= -ENAMETOOLONG
;
1038 if (name_len
+ data_len
> buf_len
) {
1039 buf_len
= name_len
+ data_len
;
1040 if (is_vmalloc_addr(buf
)) {
1044 char *tmp
= krealloc(buf
, buf_len
,
1045 GFP_NOFS
| __GFP_NOWARN
);
1052 buf
= vmalloc(buf_len
);
1060 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
1061 name_len
+ data_len
);
1063 len
= sizeof(*di
) + name_len
+ data_len
;
1064 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
1067 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
1068 data_len
, type
, ctx
);
1084 static int __copy_first_ref(int num
, u64 dir
, int index
,
1085 struct fs_path
*p
, void *ctx
)
1088 struct fs_path
*pt
= ctx
;
1090 ret
= fs_path_copy(pt
, p
);
1094 /* we want the first only */
1099 * Retrieve the first path of an inode. If an inode has more then one
1100 * ref/hardlink, this is ignored.
1102 static int get_inode_path(struct btrfs_root
*root
,
1103 u64 ino
, struct fs_path
*path
)
1106 struct btrfs_key key
, found_key
;
1107 struct btrfs_path
*p
;
1109 p
= alloc_path_for_send();
1113 fs_path_reset(path
);
1116 key
.type
= BTRFS_INODE_REF_KEY
;
1119 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1126 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1127 if (found_key
.objectid
!= ino
||
1128 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1129 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1134 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1135 __copy_first_ref
, path
);
1145 struct backref_ctx
{
1146 struct send_ctx
*sctx
;
1148 struct btrfs_path
*path
;
1149 /* number of total found references */
1153 * used for clones found in send_root. clones found behind cur_objectid
1154 * and cur_offset are not considered as allowed clones.
1159 /* may be truncated in case it's the last extent in a file */
1162 /* data offset in the file extent item */
1165 /* Just to check for bugs in backref resolving */
1169 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1171 u64 root
= (u64
)(uintptr_t)key
;
1172 struct clone_root
*cr
= (struct clone_root
*)elt
;
1174 if (root
< cr
->root
->objectid
)
1176 if (root
> cr
->root
->objectid
)
1181 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1183 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1184 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1186 if (cr1
->root
->objectid
< cr2
->root
->objectid
)
1188 if (cr1
->root
->objectid
> cr2
->root
->objectid
)
1194 * Called for every backref that is found for the current extent.
1195 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1197 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1199 struct backref_ctx
*bctx
= ctx_
;
1200 struct clone_root
*found
;
1204 /* First check if the root is in the list of accepted clone sources */
1205 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1206 bctx
->sctx
->clone_roots_cnt
,
1207 sizeof(struct clone_root
),
1208 __clone_root_cmp_bsearch
);
1212 if (found
->root
== bctx
->sctx
->send_root
&&
1213 ino
== bctx
->cur_objectid
&&
1214 offset
== bctx
->cur_offset
) {
1215 bctx
->found_itself
= 1;
1219 * There are inodes that have extents that lie behind its i_size. Don't
1220 * accept clones from these extents.
1222 ret
= __get_inode_info(found
->root
, bctx
->path
, ino
, &i_size
, NULL
, NULL
,
1224 btrfs_release_path(bctx
->path
);
1228 if (offset
+ bctx
->data_offset
+ bctx
->extent_len
> i_size
)
1232 * Make sure we don't consider clones from send_root that are
1233 * behind the current inode/offset.
1235 if (found
->root
== bctx
->sctx
->send_root
) {
1237 * TODO for the moment we don't accept clones from the inode
1238 * that is currently send. We may change this when
1239 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1242 if (ino
>= bctx
->cur_objectid
)
1245 if (ino
> bctx
->cur_objectid
)
1247 if (offset
+ bctx
->extent_len
> bctx
->cur_offset
)
1253 found
->found_refs
++;
1254 if (ino
< found
->ino
) {
1256 found
->offset
= offset
;
1257 } else if (found
->ino
== ino
) {
1259 * same extent found more then once in the same file.
1261 if (found
->offset
> offset
+ bctx
->extent_len
)
1262 found
->offset
= offset
;
1269 * Given an inode, offset and extent item, it finds a good clone for a clone
1270 * instruction. Returns -ENOENT when none could be found. The function makes
1271 * sure that the returned clone is usable at the point where sending is at the
1272 * moment. This means, that no clones are accepted which lie behind the current
1275 * path must point to the extent item when called.
1277 static int find_extent_clone(struct send_ctx
*sctx
,
1278 struct btrfs_path
*path
,
1279 u64 ino
, u64 data_offset
,
1281 struct clone_root
**found
)
1288 u64 extent_item_pos
;
1290 struct btrfs_file_extent_item
*fi
;
1291 struct extent_buffer
*eb
= path
->nodes
[0];
1292 struct backref_ctx
*backref_ctx
= NULL
;
1293 struct clone_root
*cur_clone_root
;
1294 struct btrfs_key found_key
;
1295 struct btrfs_path
*tmp_path
;
1299 tmp_path
= alloc_path_for_send();
1303 /* We only use this path under the commit sem */
1304 tmp_path
->need_commit_sem
= 0;
1306 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_NOFS
);
1312 backref_ctx
->path
= tmp_path
;
1314 if (data_offset
>= ino_size
) {
1316 * There may be extents that lie behind the file's size.
1317 * I at least had this in combination with snapshotting while
1318 * writing large files.
1324 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1325 struct btrfs_file_extent_item
);
1326 extent_type
= btrfs_file_extent_type(eb
, fi
);
1327 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1331 compressed
= btrfs_file_extent_compression(eb
, fi
);
1333 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1334 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1335 if (disk_byte
== 0) {
1339 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1341 down_read(&sctx
->send_root
->fs_info
->commit_root_sem
);
1342 ret
= extent_from_logical(sctx
->send_root
->fs_info
, disk_byte
, tmp_path
,
1343 &found_key
, &flags
);
1344 up_read(&sctx
->send_root
->fs_info
->commit_root_sem
);
1345 btrfs_release_path(tmp_path
);
1349 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1355 * Setup the clone roots.
1357 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1358 cur_clone_root
= sctx
->clone_roots
+ i
;
1359 cur_clone_root
->ino
= (u64
)-1;
1360 cur_clone_root
->offset
= 0;
1361 cur_clone_root
->found_refs
= 0;
1364 backref_ctx
->sctx
= sctx
;
1365 backref_ctx
->found
= 0;
1366 backref_ctx
->cur_objectid
= ino
;
1367 backref_ctx
->cur_offset
= data_offset
;
1368 backref_ctx
->found_itself
= 0;
1369 backref_ctx
->extent_len
= num_bytes
;
1371 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 * offsets that already take into account the data offset, but not for
1373 * compressed extents, since the offset is logical and not relative to
1374 * the physical extent locations. We must take this into account to
1375 * avoid sending clone offsets that go beyond the source file's size,
1376 * which would result in the clone ioctl failing with -EINVAL on the
1379 if (compressed
== BTRFS_COMPRESS_NONE
)
1380 backref_ctx
->data_offset
= 0;
1382 backref_ctx
->data_offset
= btrfs_file_extent_offset(eb
, fi
);
1385 * The last extent of a file may be too large due to page alignment.
1386 * We need to adjust extent_len in this case so that the checks in
1387 * __iterate_backrefs work.
1389 if (data_offset
+ num_bytes
>= ino_size
)
1390 backref_ctx
->extent_len
= ino_size
- data_offset
;
1393 * Now collect all backrefs.
1395 if (compressed
== BTRFS_COMPRESS_NONE
)
1396 extent_item_pos
= logical
- found_key
.objectid
;
1398 extent_item_pos
= 0;
1399 ret
= iterate_extent_inodes(sctx
->send_root
->fs_info
,
1400 found_key
.objectid
, extent_item_pos
, 1,
1401 __iterate_backrefs
, backref_ctx
);
1406 if (!backref_ctx
->found_itself
) {
1407 /* found a bug in backref code? */
1409 btrfs_err(sctx
->send_root
->fs_info
, "did not find backref in "
1410 "send_root. inode=%llu, offset=%llu, "
1411 "disk_byte=%llu found extent=%llu",
1412 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1416 verbose_printk(KERN_DEBUG
"btrfs: find_extent_clone: data_offset=%llu, "
1418 "num_bytes=%llu, logical=%llu\n",
1419 data_offset
, ino
, num_bytes
, logical
);
1421 if (!backref_ctx
->found
)
1422 verbose_printk("btrfs: no clones found\n");
1424 cur_clone_root
= NULL
;
1425 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1426 if (sctx
->clone_roots
[i
].found_refs
) {
1427 if (!cur_clone_root
)
1428 cur_clone_root
= sctx
->clone_roots
+ i
;
1429 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1430 /* prefer clones from send_root over others */
1431 cur_clone_root
= sctx
->clone_roots
+ i
;
1436 if (cur_clone_root
) {
1437 *found
= cur_clone_root
;
1444 btrfs_free_path(tmp_path
);
1449 static int read_symlink(struct btrfs_root
*root
,
1451 struct fs_path
*dest
)
1454 struct btrfs_path
*path
;
1455 struct btrfs_key key
;
1456 struct btrfs_file_extent_item
*ei
;
1462 path
= alloc_path_for_send();
1467 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1469 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1474 * An empty symlink inode. Can happen in rare error paths when
1475 * creating a symlink (transaction committed before the inode
1476 * eviction handler removed the symlink inode items and a crash
1477 * happened in between or the subvol was snapshoted in between).
1478 * Print an informative message to dmesg/syslog so that the user
1479 * can delete the symlink.
1481 btrfs_err(root
->fs_info
,
1482 "Found empty symlink inode %llu at root %llu",
1483 ino
, root
->root_key
.objectid
);
1488 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1489 struct btrfs_file_extent_item
);
1490 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1491 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1492 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1493 BUG_ON(compression
);
1495 off
= btrfs_file_extent_inline_start(ei
);
1496 len
= btrfs_file_extent_inline_len(path
->nodes
[0], path
->slots
[0], ei
);
1498 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1501 btrfs_free_path(path
);
1506 * Helper function to generate a file name that is unique in the root of
1507 * send_root and parent_root. This is used to generate names for orphan inodes.
1509 static int gen_unique_name(struct send_ctx
*sctx
,
1511 struct fs_path
*dest
)
1514 struct btrfs_path
*path
;
1515 struct btrfs_dir_item
*di
;
1520 path
= alloc_path_for_send();
1525 len
= snprintf(tmp
, sizeof(tmp
), "o%llu-%llu-%llu",
1527 ASSERT(len
< sizeof(tmp
));
1529 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1530 path
, BTRFS_FIRST_FREE_OBJECTID
,
1531 tmp
, strlen(tmp
), 0);
1532 btrfs_release_path(path
);
1538 /* not unique, try again */
1543 if (!sctx
->parent_root
) {
1549 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1550 path
, BTRFS_FIRST_FREE_OBJECTID
,
1551 tmp
, strlen(tmp
), 0);
1552 btrfs_release_path(path
);
1558 /* not unique, try again */
1566 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1569 btrfs_free_path(path
);
1574 inode_state_no_change
,
1575 inode_state_will_create
,
1576 inode_state_did_create
,
1577 inode_state_will_delete
,
1578 inode_state_did_delete
,
1581 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1589 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1591 if (ret
< 0 && ret
!= -ENOENT
)
1595 if (!sctx
->parent_root
) {
1596 right_ret
= -ENOENT
;
1598 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1599 NULL
, NULL
, NULL
, NULL
);
1600 if (ret
< 0 && ret
!= -ENOENT
)
1605 if (!left_ret
&& !right_ret
) {
1606 if (left_gen
== gen
&& right_gen
== gen
) {
1607 ret
= inode_state_no_change
;
1608 } else if (left_gen
== gen
) {
1609 if (ino
< sctx
->send_progress
)
1610 ret
= inode_state_did_create
;
1612 ret
= inode_state_will_create
;
1613 } else if (right_gen
== gen
) {
1614 if (ino
< sctx
->send_progress
)
1615 ret
= inode_state_did_delete
;
1617 ret
= inode_state_will_delete
;
1621 } else if (!left_ret
) {
1622 if (left_gen
== gen
) {
1623 if (ino
< sctx
->send_progress
)
1624 ret
= inode_state_did_create
;
1626 ret
= inode_state_will_create
;
1630 } else if (!right_ret
) {
1631 if (right_gen
== gen
) {
1632 if (ino
< sctx
->send_progress
)
1633 ret
= inode_state_did_delete
;
1635 ret
= inode_state_will_delete
;
1647 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1651 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1655 if (ret
== inode_state_no_change
||
1656 ret
== inode_state_did_create
||
1657 ret
== inode_state_will_delete
)
1667 * Helper function to lookup a dir item in a dir.
1669 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1670 u64 dir
, const char *name
, int name_len
,
1675 struct btrfs_dir_item
*di
;
1676 struct btrfs_key key
;
1677 struct btrfs_path
*path
;
1679 path
= alloc_path_for_send();
1683 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1684 dir
, name
, name_len
, 0);
1693 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1694 if (key
.type
== BTRFS_ROOT_ITEM_KEY
) {
1698 *found_inode
= key
.objectid
;
1699 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1702 btrfs_free_path(path
);
1707 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1708 * generation of the parent dir and the name of the dir entry.
1710 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1711 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1714 struct btrfs_key key
;
1715 struct btrfs_key found_key
;
1716 struct btrfs_path
*path
;
1720 path
= alloc_path_for_send();
1725 key
.type
= BTRFS_INODE_REF_KEY
;
1728 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1732 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1734 if (ret
|| found_key
.objectid
!= ino
||
1735 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1736 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1741 if (found_key
.type
== BTRFS_INODE_REF_KEY
) {
1742 struct btrfs_inode_ref
*iref
;
1743 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1744 struct btrfs_inode_ref
);
1745 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1746 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1747 (unsigned long)(iref
+ 1),
1749 parent_dir
= found_key
.offset
;
1751 struct btrfs_inode_extref
*extref
;
1752 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1753 struct btrfs_inode_extref
);
1754 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1755 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1756 (unsigned long)&extref
->name
, len
);
1757 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1761 btrfs_release_path(path
);
1764 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
,
1773 btrfs_free_path(path
);
1777 static int is_first_ref(struct btrfs_root
*root
,
1779 const char *name
, int name_len
)
1782 struct fs_path
*tmp_name
;
1785 tmp_name
= fs_path_alloc();
1789 ret
= get_first_ref(root
, ino
, &tmp_dir
, NULL
, tmp_name
);
1793 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1798 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1801 fs_path_free(tmp_name
);
1806 * Used by process_recorded_refs to determine if a new ref would overwrite an
1807 * already existing ref. In case it detects an overwrite, it returns the
1808 * inode/gen in who_ino/who_gen.
1809 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1810 * to make sure later references to the overwritten inode are possible.
1811 * Orphanizing is however only required for the first ref of an inode.
1812 * process_recorded_refs does an additional is_first_ref check to see if
1813 * orphanizing is really required.
1815 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1816 const char *name
, int name_len
,
1817 u64
*who_ino
, u64
*who_gen
)
1821 u64 other_inode
= 0;
1824 if (!sctx
->parent_root
)
1827 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1832 * If we have a parent root we need to verify that the parent dir was
1833 * not delted and then re-created, if it was then we have no overwrite
1834 * and we can just unlink this entry.
1836 if (sctx
->parent_root
) {
1837 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1839 if (ret
< 0 && ret
!= -ENOENT
)
1849 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1850 &other_inode
, &other_type
);
1851 if (ret
< 0 && ret
!= -ENOENT
)
1859 * Check if the overwritten ref was already processed. If yes, the ref
1860 * was already unlinked/moved, so we can safely assume that we will not
1861 * overwrite anything at this point in time.
1863 if (other_inode
> sctx
->send_progress
) {
1864 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1865 who_gen
, NULL
, NULL
, NULL
, NULL
);
1870 *who_ino
= other_inode
;
1880 * Checks if the ref was overwritten by an already processed inode. This is
1881 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1882 * thus the orphan name needs be used.
1883 * process_recorded_refs also uses it to avoid unlinking of refs that were
1886 static int did_overwrite_ref(struct send_ctx
*sctx
,
1887 u64 dir
, u64 dir_gen
,
1888 u64 ino
, u64 ino_gen
,
1889 const char *name
, int name_len
)
1896 if (!sctx
->parent_root
)
1899 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1903 /* check if the ref was overwritten by another ref */
1904 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1905 &ow_inode
, &other_type
);
1906 if (ret
< 0 && ret
!= -ENOENT
)
1909 /* was never and will never be overwritten */
1914 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1919 if (ow_inode
== ino
&& gen
== ino_gen
) {
1925 * We know that it is or will be overwritten. Check this now.
1926 * The current inode being processed might have been the one that caused
1927 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1928 * the current inode being processed.
1930 if ((ow_inode
< sctx
->send_progress
) ||
1931 (ino
!= sctx
->cur_ino
&& ow_inode
== sctx
->cur_ino
&&
1932 gen
== sctx
->cur_inode_gen
))
1942 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1943 * that got overwritten. This is used by process_recorded_refs to determine
1944 * if it has to use the path as returned by get_cur_path or the orphan name.
1946 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1949 struct fs_path
*name
= NULL
;
1953 if (!sctx
->parent_root
)
1956 name
= fs_path_alloc();
1960 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
1964 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
1965 name
->start
, fs_path_len(name
));
1973 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1974 * so we need to do some special handling in case we have clashes. This function
1975 * takes care of this with the help of name_cache_entry::radix_list.
1976 * In case of error, nce is kfreed.
1978 static int name_cache_insert(struct send_ctx
*sctx
,
1979 struct name_cache_entry
*nce
)
1982 struct list_head
*nce_head
;
1984 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
1985 (unsigned long)nce
->ino
);
1987 nce_head
= kmalloc(sizeof(*nce_head
), GFP_NOFS
);
1992 INIT_LIST_HEAD(nce_head
);
1994 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
2001 list_add_tail(&nce
->radix_list
, nce_head
);
2002 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2003 sctx
->name_cache_size
++;
2008 static void name_cache_delete(struct send_ctx
*sctx
,
2009 struct name_cache_entry
*nce
)
2011 struct list_head
*nce_head
;
2013 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2014 (unsigned long)nce
->ino
);
2016 btrfs_err(sctx
->send_root
->fs_info
,
2017 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2018 nce
->ino
, sctx
->name_cache_size
);
2021 list_del(&nce
->radix_list
);
2022 list_del(&nce
->list
);
2023 sctx
->name_cache_size
--;
2026 * We may not get to the final release of nce_head if the lookup fails
2028 if (nce_head
&& list_empty(nce_head
)) {
2029 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
2034 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
2037 struct list_head
*nce_head
;
2038 struct name_cache_entry
*cur
;
2040 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
2044 list_for_each_entry(cur
, nce_head
, radix_list
) {
2045 if (cur
->ino
== ino
&& cur
->gen
== gen
)
2052 * Removes the entry from the list and adds it back to the end. This marks the
2053 * entry as recently used so that name_cache_clean_unused does not remove it.
2055 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
2057 list_del(&nce
->list
);
2058 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2062 * Remove some entries from the beginning of name_cache_list.
2064 static void name_cache_clean_unused(struct send_ctx
*sctx
)
2066 struct name_cache_entry
*nce
;
2068 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
2071 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
2072 nce
= list_entry(sctx
->name_cache_list
.next
,
2073 struct name_cache_entry
, list
);
2074 name_cache_delete(sctx
, nce
);
2079 static void name_cache_free(struct send_ctx
*sctx
)
2081 struct name_cache_entry
*nce
;
2083 while (!list_empty(&sctx
->name_cache_list
)) {
2084 nce
= list_entry(sctx
->name_cache_list
.next
,
2085 struct name_cache_entry
, list
);
2086 name_cache_delete(sctx
, nce
);
2092 * Used by get_cur_path for each ref up to the root.
2093 * Returns 0 if it succeeded.
2094 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2095 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2096 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2097 * Returns <0 in case of error.
2099 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
2103 struct fs_path
*dest
)
2107 struct name_cache_entry
*nce
= NULL
;
2110 * First check if we already did a call to this function with the same
2111 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2112 * return the cached result.
2114 nce
= name_cache_search(sctx
, ino
, gen
);
2116 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
2117 name_cache_delete(sctx
, nce
);
2121 name_cache_used(sctx
, nce
);
2122 *parent_ino
= nce
->parent_ino
;
2123 *parent_gen
= nce
->parent_gen
;
2124 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
2133 * If the inode is not existent yet, add the orphan name and return 1.
2134 * This should only happen for the parent dir that we determine in
2137 ret
= is_inode_existent(sctx
, ino
, gen
);
2142 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2150 * Depending on whether the inode was already processed or not, use
2151 * send_root or parent_root for ref lookup.
2153 if (ino
< sctx
->send_progress
)
2154 ret
= get_first_ref(sctx
->send_root
, ino
,
2155 parent_ino
, parent_gen
, dest
);
2157 ret
= get_first_ref(sctx
->parent_root
, ino
,
2158 parent_ino
, parent_gen
, dest
);
2163 * Check if the ref was overwritten by an inode's ref that was processed
2164 * earlier. If yes, treat as orphan and return 1.
2166 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2167 dest
->start
, dest
->end
- dest
->start
);
2171 fs_path_reset(dest
);
2172 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2180 * Store the result of the lookup in the name cache.
2182 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_NOFS
);
2190 nce
->parent_ino
= *parent_ino
;
2191 nce
->parent_gen
= *parent_gen
;
2192 nce
->name_len
= fs_path_len(dest
);
2194 strcpy(nce
->name
, dest
->start
);
2196 if (ino
< sctx
->send_progress
)
2197 nce
->need_later_update
= 0;
2199 nce
->need_later_update
= 1;
2201 nce_ret
= name_cache_insert(sctx
, nce
);
2204 name_cache_clean_unused(sctx
);
2211 * Magic happens here. This function returns the first ref to an inode as it
2212 * would look like while receiving the stream at this point in time.
2213 * We walk the path up to the root. For every inode in between, we check if it
2214 * was already processed/sent. If yes, we continue with the parent as found
2215 * in send_root. If not, we continue with the parent as found in parent_root.
2216 * If we encounter an inode that was deleted at this point in time, we use the
2217 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2218 * that were not created yet and overwritten inodes/refs.
2220 * When do we have have orphan inodes:
2221 * 1. When an inode is freshly created and thus no valid refs are available yet
2222 * 2. When a directory lost all it's refs (deleted) but still has dir items
2223 * inside which were not processed yet (pending for move/delete). If anyone
2224 * tried to get the path to the dir items, it would get a path inside that
2226 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2227 * of an unprocessed inode. If in that case the first ref would be
2228 * overwritten, the overwritten inode gets "orphanized". Later when we
2229 * process this overwritten inode, it is restored at a new place by moving
2232 * sctx->send_progress tells this function at which point in time receiving
2235 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2236 struct fs_path
*dest
)
2239 struct fs_path
*name
= NULL
;
2240 u64 parent_inode
= 0;
2244 name
= fs_path_alloc();
2251 fs_path_reset(dest
);
2253 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2254 struct waiting_dir_move
*wdm
;
2256 fs_path_reset(name
);
2258 if (is_waiting_for_rm(sctx
, ino
)) {
2259 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2262 ret
= fs_path_add_path(dest
, name
);
2266 wdm
= get_waiting_dir_move(sctx
, ino
);
2267 if (wdm
&& wdm
->orphanized
) {
2268 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2271 ret
= get_first_ref(sctx
->parent_root
, ino
,
2272 &parent_inode
, &parent_gen
, name
);
2274 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2284 ret
= fs_path_add_path(dest
, name
);
2295 fs_path_unreverse(dest
);
2300 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2302 static int send_subvol_begin(struct send_ctx
*sctx
)
2305 struct btrfs_root
*send_root
= sctx
->send_root
;
2306 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2307 struct btrfs_path
*path
;
2308 struct btrfs_key key
;
2309 struct btrfs_root_ref
*ref
;
2310 struct extent_buffer
*leaf
;
2314 path
= btrfs_alloc_path();
2318 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_NOFS
);
2320 btrfs_free_path(path
);
2324 key
.objectid
= send_root
->objectid
;
2325 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2328 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2337 leaf
= path
->nodes
[0];
2338 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2339 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2340 key
.objectid
!= send_root
->objectid
) {
2344 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2345 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2346 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2347 btrfs_release_path(path
);
2350 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2354 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2359 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2361 if (!btrfs_is_empty_uuid(sctx
->send_root
->root_item
.received_uuid
))
2362 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2363 sctx
->send_root
->root_item
.received_uuid
);
2365 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2366 sctx
->send_root
->root_item
.uuid
);
2368 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2369 le64_to_cpu(sctx
->send_root
->root_item
.ctransid
));
2371 if (!btrfs_is_empty_uuid(parent_root
->root_item
.received_uuid
))
2372 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2373 parent_root
->root_item
.received_uuid
);
2375 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2376 parent_root
->root_item
.uuid
);
2377 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2378 le64_to_cpu(sctx
->parent_root
->root_item
.ctransid
));
2381 ret
= send_cmd(sctx
);
2385 btrfs_free_path(path
);
2390 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2395 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino
, size
);
2397 p
= fs_path_alloc();
2401 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2405 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2408 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2409 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2411 ret
= send_cmd(sctx
);
2419 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2424 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino
, mode
);
2426 p
= fs_path_alloc();
2430 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2434 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2437 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2438 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2440 ret
= send_cmd(sctx
);
2448 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2453 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino
, uid
, gid
);
2455 p
= fs_path_alloc();
2459 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2463 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2466 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2467 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2468 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2470 ret
= send_cmd(sctx
);
2478 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2481 struct fs_path
*p
= NULL
;
2482 struct btrfs_inode_item
*ii
;
2483 struct btrfs_path
*path
= NULL
;
2484 struct extent_buffer
*eb
;
2485 struct btrfs_key key
;
2488 verbose_printk("btrfs: send_utimes %llu\n", ino
);
2490 p
= fs_path_alloc();
2494 path
= alloc_path_for_send();
2501 key
.type
= BTRFS_INODE_ITEM_KEY
;
2503 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2507 eb
= path
->nodes
[0];
2508 slot
= path
->slots
[0];
2509 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2511 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2515 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2518 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2519 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
, &ii
->atime
);
2520 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
, &ii
->mtime
);
2521 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
, &ii
->ctime
);
2522 /* TODO Add otime support when the otime patches get into upstream */
2524 ret
= send_cmd(sctx
);
2529 btrfs_free_path(path
);
2534 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2535 * a valid path yet because we did not process the refs yet. So, the inode
2536 * is created as orphan.
2538 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2547 verbose_printk("btrfs: send_create_inode %llu\n", ino
);
2549 p
= fs_path_alloc();
2553 if (ino
!= sctx
->cur_ino
) {
2554 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
,
2559 gen
= sctx
->cur_inode_gen
;
2560 mode
= sctx
->cur_inode_mode
;
2561 rdev
= sctx
->cur_inode_rdev
;
2564 if (S_ISREG(mode
)) {
2565 cmd
= BTRFS_SEND_C_MKFILE
;
2566 } else if (S_ISDIR(mode
)) {
2567 cmd
= BTRFS_SEND_C_MKDIR
;
2568 } else if (S_ISLNK(mode
)) {
2569 cmd
= BTRFS_SEND_C_SYMLINK
;
2570 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2571 cmd
= BTRFS_SEND_C_MKNOD
;
2572 } else if (S_ISFIFO(mode
)) {
2573 cmd
= BTRFS_SEND_C_MKFIFO
;
2574 } else if (S_ISSOCK(mode
)) {
2575 cmd
= BTRFS_SEND_C_MKSOCK
;
2577 btrfs_warn(sctx
->send_root
->fs_info
, "unexpected inode type %o",
2578 (int)(mode
& S_IFMT
));
2583 ret
= begin_cmd(sctx
, cmd
);
2587 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2591 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2592 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2594 if (S_ISLNK(mode
)) {
2596 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2599 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2600 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2601 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2602 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2603 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2606 ret
= send_cmd(sctx
);
2618 * We need some special handling for inodes that get processed before the parent
2619 * directory got created. See process_recorded_refs for details.
2620 * This function does the check if we already created the dir out of order.
2622 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2625 struct btrfs_path
*path
= NULL
;
2626 struct btrfs_key key
;
2627 struct btrfs_key found_key
;
2628 struct btrfs_key di_key
;
2629 struct extent_buffer
*eb
;
2630 struct btrfs_dir_item
*di
;
2633 path
= alloc_path_for_send();
2640 key
.type
= BTRFS_DIR_INDEX_KEY
;
2642 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2647 eb
= path
->nodes
[0];
2648 slot
= path
->slots
[0];
2649 if (slot
>= btrfs_header_nritems(eb
)) {
2650 ret
= btrfs_next_leaf(sctx
->send_root
, path
);
2653 } else if (ret
> 0) {
2660 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2661 if (found_key
.objectid
!= key
.objectid
||
2662 found_key
.type
!= key
.type
) {
2667 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2668 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2670 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2671 di_key
.objectid
< sctx
->send_progress
) {
2680 btrfs_free_path(path
);
2685 * Only creates the inode if it is:
2686 * 1. Not a directory
2687 * 2. Or a directory which was not created already due to out of order
2688 * directories. See did_create_dir and process_recorded_refs for details.
2690 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2694 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2695 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2704 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2712 struct recorded_ref
{
2713 struct list_head list
;
2716 struct fs_path
*full_path
;
2724 * We need to process new refs before deleted refs, but compare_tree gives us
2725 * everything mixed. So we first record all refs and later process them.
2726 * This function is a helper to record one ref.
2728 static int __record_ref(struct list_head
*head
, u64 dir
,
2729 u64 dir_gen
, struct fs_path
*path
)
2731 struct recorded_ref
*ref
;
2733 ref
= kmalloc(sizeof(*ref
), GFP_NOFS
);
2738 ref
->dir_gen
= dir_gen
;
2739 ref
->full_path
= path
;
2741 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2742 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2743 ref
->dir_path
= ref
->full_path
->start
;
2744 if (ref
->name
== ref
->full_path
->start
)
2745 ref
->dir_path_len
= 0;
2747 ref
->dir_path_len
= ref
->full_path
->end
-
2748 ref
->full_path
->start
- 1 - ref
->name_len
;
2750 list_add_tail(&ref
->list
, head
);
2754 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2756 struct recorded_ref
*new;
2758 new = kmalloc(sizeof(*ref
), GFP_NOFS
);
2762 new->dir
= ref
->dir
;
2763 new->dir_gen
= ref
->dir_gen
;
2764 new->full_path
= NULL
;
2765 INIT_LIST_HEAD(&new->list
);
2766 list_add_tail(&new->list
, list
);
2770 static void __free_recorded_refs(struct list_head
*head
)
2772 struct recorded_ref
*cur
;
2774 while (!list_empty(head
)) {
2775 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2776 fs_path_free(cur
->full_path
);
2777 list_del(&cur
->list
);
2782 static void free_recorded_refs(struct send_ctx
*sctx
)
2784 __free_recorded_refs(&sctx
->new_refs
);
2785 __free_recorded_refs(&sctx
->deleted_refs
);
2789 * Renames/moves a file/dir to its orphan name. Used when the first
2790 * ref of an unprocessed inode gets overwritten and for all non empty
2793 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2794 struct fs_path
*path
)
2797 struct fs_path
*orphan
;
2799 orphan
= fs_path_alloc();
2803 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2807 ret
= send_rename(sctx
, path
, orphan
);
2810 fs_path_free(orphan
);
2814 static struct orphan_dir_info
*
2815 add_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2817 struct rb_node
**p
= &sctx
->orphan_dirs
.rb_node
;
2818 struct rb_node
*parent
= NULL
;
2819 struct orphan_dir_info
*entry
, *odi
;
2821 odi
= kmalloc(sizeof(*odi
), GFP_NOFS
);
2823 return ERR_PTR(-ENOMEM
);
2829 entry
= rb_entry(parent
, struct orphan_dir_info
, node
);
2830 if (dir_ino
< entry
->ino
) {
2832 } else if (dir_ino
> entry
->ino
) {
2833 p
= &(*p
)->rb_right
;
2840 rb_link_node(&odi
->node
, parent
, p
);
2841 rb_insert_color(&odi
->node
, &sctx
->orphan_dirs
);
2845 static struct orphan_dir_info
*
2846 get_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2848 struct rb_node
*n
= sctx
->orphan_dirs
.rb_node
;
2849 struct orphan_dir_info
*entry
;
2852 entry
= rb_entry(n
, struct orphan_dir_info
, node
);
2853 if (dir_ino
< entry
->ino
)
2855 else if (dir_ino
> entry
->ino
)
2863 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
)
2865 struct orphan_dir_info
*odi
= get_orphan_dir_info(sctx
, dir_ino
);
2870 static void free_orphan_dir_info(struct send_ctx
*sctx
,
2871 struct orphan_dir_info
*odi
)
2875 rb_erase(&odi
->node
, &sctx
->orphan_dirs
);
2880 * Returns 1 if a directory can be removed at this point in time.
2881 * We check this by iterating all dir items and checking if the inode behind
2882 * the dir item was already processed.
2884 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
2888 struct btrfs_root
*root
= sctx
->parent_root
;
2889 struct btrfs_path
*path
;
2890 struct btrfs_key key
;
2891 struct btrfs_key found_key
;
2892 struct btrfs_key loc
;
2893 struct btrfs_dir_item
*di
;
2896 * Don't try to rmdir the top/root subvolume dir.
2898 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2901 path
= alloc_path_for_send();
2906 key
.type
= BTRFS_DIR_INDEX_KEY
;
2908 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2913 struct waiting_dir_move
*dm
;
2915 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2916 ret
= btrfs_next_leaf(root
, path
);
2923 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2925 if (found_key
.objectid
!= key
.objectid
||
2926 found_key
.type
!= key
.type
)
2929 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2930 struct btrfs_dir_item
);
2931 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2933 dm
= get_waiting_dir_move(sctx
, loc
.objectid
);
2935 struct orphan_dir_info
*odi
;
2937 odi
= add_orphan_dir_info(sctx
, dir
);
2943 dm
->rmdir_ino
= dir
;
2948 if (loc
.objectid
> send_progress
) {
2959 btrfs_free_path(path
);
2963 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
)
2965 struct waiting_dir_move
*entry
= get_waiting_dir_move(sctx
, ino
);
2967 return entry
!= NULL
;
2970 static int add_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
, bool orphanized
)
2972 struct rb_node
**p
= &sctx
->waiting_dir_moves
.rb_node
;
2973 struct rb_node
*parent
= NULL
;
2974 struct waiting_dir_move
*entry
, *dm
;
2976 dm
= kmalloc(sizeof(*dm
), GFP_NOFS
);
2981 dm
->orphanized
= orphanized
;
2985 entry
= rb_entry(parent
, struct waiting_dir_move
, node
);
2986 if (ino
< entry
->ino
) {
2988 } else if (ino
> entry
->ino
) {
2989 p
= &(*p
)->rb_right
;
2996 rb_link_node(&dm
->node
, parent
, p
);
2997 rb_insert_color(&dm
->node
, &sctx
->waiting_dir_moves
);
3001 static struct waiting_dir_move
*
3002 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
)
3004 struct rb_node
*n
= sctx
->waiting_dir_moves
.rb_node
;
3005 struct waiting_dir_move
*entry
;
3008 entry
= rb_entry(n
, struct waiting_dir_move
, node
);
3009 if (ino
< entry
->ino
)
3011 else if (ino
> entry
->ino
)
3019 static void free_waiting_dir_move(struct send_ctx
*sctx
,
3020 struct waiting_dir_move
*dm
)
3024 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
3028 static int add_pending_dir_move(struct send_ctx
*sctx
,
3032 struct list_head
*new_refs
,
3033 struct list_head
*deleted_refs
,
3034 const bool is_orphan
)
3036 struct rb_node
**p
= &sctx
->pending_dir_moves
.rb_node
;
3037 struct rb_node
*parent
= NULL
;
3038 struct pending_dir_move
*entry
= NULL
, *pm
;
3039 struct recorded_ref
*cur
;
3043 pm
= kmalloc(sizeof(*pm
), GFP_NOFS
);
3046 pm
->parent_ino
= parent_ino
;
3049 pm
->is_orphan
= is_orphan
;
3050 INIT_LIST_HEAD(&pm
->list
);
3051 INIT_LIST_HEAD(&pm
->update_refs
);
3052 RB_CLEAR_NODE(&pm
->node
);
3056 entry
= rb_entry(parent
, struct pending_dir_move
, node
);
3057 if (parent_ino
< entry
->parent_ino
) {
3059 } else if (parent_ino
> entry
->parent_ino
) {
3060 p
= &(*p
)->rb_right
;
3067 list_for_each_entry(cur
, deleted_refs
, list
) {
3068 ret
= dup_ref(cur
, &pm
->update_refs
);
3072 list_for_each_entry(cur
, new_refs
, list
) {
3073 ret
= dup_ref(cur
, &pm
->update_refs
);
3078 ret
= add_waiting_dir_move(sctx
, pm
->ino
, is_orphan
);
3083 list_add_tail(&pm
->list
, &entry
->list
);
3085 rb_link_node(&pm
->node
, parent
, p
);
3086 rb_insert_color(&pm
->node
, &sctx
->pending_dir_moves
);
3091 __free_recorded_refs(&pm
->update_refs
);
3097 static struct pending_dir_move
*get_pending_dir_moves(struct send_ctx
*sctx
,
3100 struct rb_node
*n
= sctx
->pending_dir_moves
.rb_node
;
3101 struct pending_dir_move
*entry
;
3104 entry
= rb_entry(n
, struct pending_dir_move
, node
);
3105 if (parent_ino
< entry
->parent_ino
)
3107 else if (parent_ino
> entry
->parent_ino
)
3115 static int apply_dir_move(struct send_ctx
*sctx
, struct pending_dir_move
*pm
)
3117 struct fs_path
*from_path
= NULL
;
3118 struct fs_path
*to_path
= NULL
;
3119 struct fs_path
*name
= NULL
;
3120 u64 orig_progress
= sctx
->send_progress
;
3121 struct recorded_ref
*cur
;
3122 u64 parent_ino
, parent_gen
;
3123 struct waiting_dir_move
*dm
= NULL
;
3127 name
= fs_path_alloc();
3128 from_path
= fs_path_alloc();
3129 if (!name
|| !from_path
) {
3134 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3136 rmdir_ino
= dm
->rmdir_ino
;
3137 free_waiting_dir_move(sctx
, dm
);
3139 if (pm
->is_orphan
) {
3140 ret
= gen_unique_name(sctx
, pm
->ino
,
3141 pm
->gen
, from_path
);
3143 ret
= get_first_ref(sctx
->parent_root
, pm
->ino
,
3144 &parent_ino
, &parent_gen
, name
);
3147 ret
= get_cur_path(sctx
, parent_ino
, parent_gen
,
3151 ret
= fs_path_add_path(from_path
, name
);
3156 sctx
->send_progress
= sctx
->cur_ino
+ 1;
3157 fs_path_reset(name
);
3160 ret
= get_cur_path(sctx
, pm
->ino
, pm
->gen
, to_path
);
3164 ret
= send_rename(sctx
, from_path
, to_path
);
3169 struct orphan_dir_info
*odi
;
3171 odi
= get_orphan_dir_info(sctx
, rmdir_ino
);
3173 /* already deleted */
3176 ret
= can_rmdir(sctx
, rmdir_ino
, odi
->gen
, sctx
->cur_ino
+ 1);
3182 name
= fs_path_alloc();
3187 ret
= get_cur_path(sctx
, rmdir_ino
, odi
->gen
, name
);
3190 ret
= send_rmdir(sctx
, name
);
3193 free_orphan_dir_info(sctx
, odi
);
3197 ret
= send_utimes(sctx
, pm
->ino
, pm
->gen
);
3202 * After rename/move, need to update the utimes of both new parent(s)
3203 * and old parent(s).
3205 list_for_each_entry(cur
, &pm
->update_refs
, list
) {
3206 if (cur
->dir
== rmdir_ino
)
3208 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3215 fs_path_free(from_path
);
3216 fs_path_free(to_path
);
3217 sctx
->send_progress
= orig_progress
;
3222 static void free_pending_move(struct send_ctx
*sctx
, struct pending_dir_move
*m
)
3224 if (!list_empty(&m
->list
))
3226 if (!RB_EMPTY_NODE(&m
->node
))
3227 rb_erase(&m
->node
, &sctx
->pending_dir_moves
);
3228 __free_recorded_refs(&m
->update_refs
);
3232 static void tail_append_pending_moves(struct pending_dir_move
*moves
,
3233 struct list_head
*stack
)
3235 if (list_empty(&moves
->list
)) {
3236 list_add_tail(&moves
->list
, stack
);
3239 list_splice_init(&moves
->list
, &list
);
3240 list_add_tail(&moves
->list
, stack
);
3241 list_splice_tail(&list
, stack
);
3245 static int apply_children_dir_moves(struct send_ctx
*sctx
)
3247 struct pending_dir_move
*pm
;
3248 struct list_head stack
;
3249 u64 parent_ino
= sctx
->cur_ino
;
3252 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3256 INIT_LIST_HEAD(&stack
);
3257 tail_append_pending_moves(pm
, &stack
);
3259 while (!list_empty(&stack
)) {
3260 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3261 parent_ino
= pm
->ino
;
3262 ret
= apply_dir_move(sctx
, pm
);
3263 free_pending_move(sctx
, pm
);
3266 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3268 tail_append_pending_moves(pm
, &stack
);
3273 while (!list_empty(&stack
)) {
3274 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3275 free_pending_move(sctx
, pm
);
3281 * We might need to delay a directory rename even when no ancestor directory
3282 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3283 * renamed. This happens when we rename a directory to the old name (the name
3284 * in the parent root) of some other unrelated directory that got its rename
3285 * delayed due to some ancestor with higher number that got renamed.
3291 * |---- a/ (ino 257)
3292 * | |---- file (ino 260)
3294 * |---- b/ (ino 258)
3295 * |---- c/ (ino 259)
3299 * |---- a/ (ino 258)
3300 * |---- x/ (ino 259)
3301 * |---- y/ (ino 257)
3302 * |----- file (ino 260)
3304 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3305 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3306 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3309 * 1 - rename 259 from 'c' to 'x'
3310 * 2 - rename 257 from 'a' to 'x/y'
3311 * 3 - rename 258 from 'b' to 'a'
3313 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3314 * be done right away and < 0 on error.
3316 static int wait_for_dest_dir_move(struct send_ctx
*sctx
,
3317 struct recorded_ref
*parent_ref
,
3318 const bool is_orphan
)
3320 struct btrfs_path
*path
;
3321 struct btrfs_key key
;
3322 struct btrfs_key di_key
;
3323 struct btrfs_dir_item
*di
;
3328 if (RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
))
3331 path
= alloc_path_for_send();
3335 key
.objectid
= parent_ref
->dir
;
3336 key
.type
= BTRFS_DIR_ITEM_KEY
;
3337 key
.offset
= btrfs_name_hash(parent_ref
->name
, parent_ref
->name_len
);
3339 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
3342 } else if (ret
> 0) {
3347 di
= btrfs_match_dir_item_name(sctx
->parent_root
, path
,
3348 parent_ref
->name
, parent_ref
->name_len
);
3354 * di_key.objectid has the number of the inode that has a dentry in the
3355 * parent directory with the same name that sctx->cur_ino is being
3356 * renamed to. We need to check if that inode is in the send root as
3357 * well and if it is currently marked as an inode with a pending rename,
3358 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3359 * that it happens after that other inode is renamed.
3361 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &di_key
);
3362 if (di_key
.type
!= BTRFS_INODE_ITEM_KEY
) {
3367 ret
= get_inode_info(sctx
->parent_root
, di_key
.objectid
, NULL
,
3368 &left_gen
, NULL
, NULL
, NULL
, NULL
);
3371 ret
= get_inode_info(sctx
->send_root
, di_key
.objectid
, NULL
,
3372 &right_gen
, NULL
, NULL
, NULL
, NULL
);
3379 /* Different inode, no need to delay the rename of sctx->cur_ino */
3380 if (right_gen
!= left_gen
) {
3385 if (is_waiting_for_move(sctx
, di_key
.objectid
)) {
3386 ret
= add_pending_dir_move(sctx
,
3388 sctx
->cur_inode_gen
,
3391 &sctx
->deleted_refs
,
3397 btrfs_free_path(path
);
3402 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3403 * Return 1 if true, 0 if false and < 0 on error.
3405 static int is_ancestor(struct btrfs_root
*root
,
3409 struct fs_path
*fs_path
)
3413 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3418 fs_path_reset(fs_path
);
3419 ret
= get_first_ref(root
, ino
, &parent
, &parent_gen
, fs_path
);
3421 if (ret
== -ENOENT
&& ino
== ino2
)
3426 return parent_gen
== ino1_gen
? 1 : 0;
3432 static int wait_for_parent_move(struct send_ctx
*sctx
,
3433 struct recorded_ref
*parent_ref
,
3434 const bool is_orphan
)
3437 u64 ino
= parent_ref
->dir
;
3438 u64 parent_ino_before
, parent_ino_after
;
3439 struct fs_path
*path_before
= NULL
;
3440 struct fs_path
*path_after
= NULL
;
3443 path_after
= fs_path_alloc();
3444 path_before
= fs_path_alloc();
3445 if (!path_after
|| !path_before
) {
3451 * Our current directory inode may not yet be renamed/moved because some
3452 * ancestor (immediate or not) has to be renamed/moved first. So find if
3453 * such ancestor exists and make sure our own rename/move happens after
3454 * that ancestor is processed to avoid path build infinite loops (done
3455 * at get_cur_path()).
3457 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3458 if (is_waiting_for_move(sctx
, ino
)) {
3460 * If the current inode is an ancestor of ino in the
3461 * parent root, we need to delay the rename of the
3462 * current inode, otherwise don't delayed the rename
3463 * because we can end up with a circular dependency
3464 * of renames, resulting in some directories never
3465 * getting the respective rename operations issued in
3466 * the send stream or getting into infinite path build
3469 ret
= is_ancestor(sctx
->parent_root
,
3470 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3475 fs_path_reset(path_before
);
3476 fs_path_reset(path_after
);
3478 ret
= get_first_ref(sctx
->send_root
, ino
, &parent_ino_after
,
3482 ret
= get_first_ref(sctx
->parent_root
, ino
, &parent_ino_before
,
3484 if (ret
< 0 && ret
!= -ENOENT
) {
3486 } else if (ret
== -ENOENT
) {
3491 len1
= fs_path_len(path_before
);
3492 len2
= fs_path_len(path_after
);
3493 if (ino
> sctx
->cur_ino
&&
3494 (parent_ino_before
!= parent_ino_after
|| len1
!= len2
||
3495 memcmp(path_before
->start
, path_after
->start
, len1
))) {
3499 ino
= parent_ino_after
;
3503 fs_path_free(path_before
);
3504 fs_path_free(path_after
);
3507 ret
= add_pending_dir_move(sctx
,
3509 sctx
->cur_inode_gen
,
3512 &sctx
->deleted_refs
,
3522 * This does all the move/link/unlink/rmdir magic.
3524 static int process_recorded_refs(struct send_ctx
*sctx
, int *pending_move
)
3527 struct recorded_ref
*cur
;
3528 struct recorded_ref
*cur2
;
3529 struct list_head check_dirs
;
3530 struct fs_path
*valid_path
= NULL
;
3533 int did_overwrite
= 0;
3535 u64 last_dir_ino_rm
= 0;
3536 bool can_rename
= true;
3538 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx
->cur_ino
);
3541 * This should never happen as the root dir always has the same ref
3542 * which is always '..'
3544 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
3545 INIT_LIST_HEAD(&check_dirs
);
3547 valid_path
= fs_path_alloc();
3554 * First, check if the first ref of the current inode was overwritten
3555 * before. If yes, we know that the current inode was already orphanized
3556 * and thus use the orphan name. If not, we can use get_cur_path to
3557 * get the path of the first ref as it would like while receiving at
3558 * this point in time.
3559 * New inodes are always orphan at the beginning, so force to use the
3560 * orphan name in this case.
3561 * The first ref is stored in valid_path and will be updated if it
3562 * gets moved around.
3564 if (!sctx
->cur_inode_new
) {
3565 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
3566 sctx
->cur_inode_gen
);
3572 if (sctx
->cur_inode_new
|| did_overwrite
) {
3573 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
3574 sctx
->cur_inode_gen
, valid_path
);
3579 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3585 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
3587 * We may have refs where the parent directory does not exist
3588 * yet. This happens if the parent directories inum is higher
3589 * the the current inum. To handle this case, we create the
3590 * parent directory out of order. But we need to check if this
3591 * did already happen before due to other refs in the same dir.
3593 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3596 if (ret
== inode_state_will_create
) {
3599 * First check if any of the current inodes refs did
3600 * already create the dir.
3602 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
3605 if (cur2
->dir
== cur
->dir
) {
3612 * If that did not happen, check if a previous inode
3613 * did already create the dir.
3616 ret
= did_create_dir(sctx
, cur
->dir
);
3620 ret
= send_create_inode(sctx
, cur
->dir
);
3627 * Check if this new ref would overwrite the first ref of
3628 * another unprocessed inode. If yes, orphanize the
3629 * overwritten inode. If we find an overwritten ref that is
3630 * not the first ref, simply unlink it.
3632 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3633 cur
->name
, cur
->name_len
,
3634 &ow_inode
, &ow_gen
);
3638 ret
= is_first_ref(sctx
->parent_root
,
3639 ow_inode
, cur
->dir
, cur
->name
,
3644 struct name_cache_entry
*nce
;
3646 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
3651 * Make sure we clear our orphanized inode's
3652 * name from the name cache. This is because the
3653 * inode ow_inode might be an ancestor of some
3654 * other inode that will be orphanized as well
3655 * later and has an inode number greater than
3656 * sctx->send_progress. We need to prevent
3657 * future name lookups from using the old name
3658 * and get instead the orphan name.
3660 nce
= name_cache_search(sctx
, ow_inode
, ow_gen
);
3662 name_cache_delete(sctx
, nce
);
3666 ret
= send_unlink(sctx
, cur
->full_path
);
3672 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
) {
3673 ret
= wait_for_dest_dir_move(sctx
, cur
, is_orphan
);
3682 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
&&
3684 ret
= wait_for_parent_move(sctx
, cur
, is_orphan
);
3694 * link/move the ref to the new place. If we have an orphan
3695 * inode, move it and update valid_path. If not, link or move
3696 * it depending on the inode mode.
3698 if (is_orphan
&& can_rename
) {
3699 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
3703 ret
= fs_path_copy(valid_path
, cur
->full_path
);
3706 } else if (can_rename
) {
3707 if (S_ISDIR(sctx
->cur_inode_mode
)) {
3709 * Dirs can't be linked, so move it. For moved
3710 * dirs, we always have one new and one deleted
3711 * ref. The deleted ref is ignored later.
3713 ret
= send_rename(sctx
, valid_path
,
3716 ret
= fs_path_copy(valid_path
,
3721 ret
= send_link(sctx
, cur
->full_path
,
3727 ret
= dup_ref(cur
, &check_dirs
);
3732 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
3734 * Check if we can already rmdir the directory. If not,
3735 * orphanize it. For every dir item inside that gets deleted
3736 * later, we do this check again and rmdir it then if possible.
3737 * See the use of check_dirs for more details.
3739 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3744 ret
= send_rmdir(sctx
, valid_path
);
3747 } else if (!is_orphan
) {
3748 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
3749 sctx
->cur_inode_gen
, valid_path
);
3755 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
3756 ret
= dup_ref(cur
, &check_dirs
);
3760 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
3761 !list_empty(&sctx
->deleted_refs
)) {
3763 * We have a moved dir. Add the old parent to check_dirs
3765 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
3767 ret
= dup_ref(cur
, &check_dirs
);
3770 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
3772 * We have a non dir inode. Go through all deleted refs and
3773 * unlink them if they were not already overwritten by other
3776 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
3777 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3778 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3779 cur
->name
, cur
->name_len
);
3783 ret
= send_unlink(sctx
, cur
->full_path
);
3787 ret
= dup_ref(cur
, &check_dirs
);
3792 * If the inode is still orphan, unlink the orphan. This may
3793 * happen when a previous inode did overwrite the first ref
3794 * of this inode and no new refs were added for the current
3795 * inode. Unlinking does not mean that the inode is deleted in
3796 * all cases. There may still be links to this inode in other
3800 ret
= send_unlink(sctx
, valid_path
);
3807 * We did collect all parent dirs where cur_inode was once located. We
3808 * now go through all these dirs and check if they are pending for
3809 * deletion and if it's finally possible to perform the rmdir now.
3810 * We also update the inode stats of the parent dirs here.
3812 list_for_each_entry(cur
, &check_dirs
, list
) {
3814 * In case we had refs into dirs that were not processed yet,
3815 * we don't need to do the utime and rmdir logic for these dirs.
3816 * The dir will be processed later.
3818 if (cur
->dir
> sctx
->cur_ino
)
3821 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3825 if (ret
== inode_state_did_create
||
3826 ret
== inode_state_no_change
) {
3827 /* TODO delayed utimes */
3828 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3831 } else if (ret
== inode_state_did_delete
&&
3832 cur
->dir
!= last_dir_ino_rm
) {
3833 ret
= can_rmdir(sctx
, cur
->dir
, cur
->dir_gen
,
3838 ret
= get_cur_path(sctx
, cur
->dir
,
3839 cur
->dir_gen
, valid_path
);
3842 ret
= send_rmdir(sctx
, valid_path
);
3845 last_dir_ino_rm
= cur
->dir
;
3853 __free_recorded_refs(&check_dirs
);
3854 free_recorded_refs(sctx
);
3855 fs_path_free(valid_path
);
3859 static int record_ref(struct btrfs_root
*root
, int num
, u64 dir
, int index
,
3860 struct fs_path
*name
, void *ctx
, struct list_head
*refs
)
3863 struct send_ctx
*sctx
= ctx
;
3867 p
= fs_path_alloc();
3871 ret
= get_inode_info(root
, dir
, NULL
, &gen
, NULL
, NULL
,
3876 ret
= get_cur_path(sctx
, dir
, gen
, p
);
3879 ret
= fs_path_add_path(p
, name
);
3883 ret
= __record_ref(refs
, dir
, gen
, p
);
3891 static int __record_new_ref(int num
, u64 dir
, int index
,
3892 struct fs_path
*name
,
3895 struct send_ctx
*sctx
= ctx
;
3896 return record_ref(sctx
->send_root
, num
, dir
, index
, name
,
3897 ctx
, &sctx
->new_refs
);
3901 static int __record_deleted_ref(int num
, u64 dir
, int index
,
3902 struct fs_path
*name
,
3905 struct send_ctx
*sctx
= ctx
;
3906 return record_ref(sctx
->parent_root
, num
, dir
, index
, name
,
3907 ctx
, &sctx
->deleted_refs
);
3910 static int record_new_ref(struct send_ctx
*sctx
)
3914 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
3915 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
3924 static int record_deleted_ref(struct send_ctx
*sctx
)
3928 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
3929 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
3938 struct find_ref_ctx
{
3941 struct btrfs_root
*root
;
3942 struct fs_path
*name
;
3946 static int __find_iref(int num
, u64 dir
, int index
,
3947 struct fs_path
*name
,
3950 struct find_ref_ctx
*ctx
= ctx_
;
3954 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
3955 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
3957 * To avoid doing extra lookups we'll only do this if everything
3960 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
3964 if (dir_gen
!= ctx
->dir_gen
)
3966 ctx
->found_idx
= num
;
3972 static int find_iref(struct btrfs_root
*root
,
3973 struct btrfs_path
*path
,
3974 struct btrfs_key
*key
,
3975 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
3978 struct find_ref_ctx ctx
;
3982 ctx
.dir_gen
= dir_gen
;
3986 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
3990 if (ctx
.found_idx
== -1)
3993 return ctx
.found_idx
;
3996 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
3997 struct fs_path
*name
,
4002 struct send_ctx
*sctx
= ctx
;
4004 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
4009 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
4010 sctx
->cmp_key
, dir
, dir_gen
, name
);
4012 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
4019 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
4020 struct fs_path
*name
,
4025 struct send_ctx
*sctx
= ctx
;
4027 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
4032 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4033 dir
, dir_gen
, name
);
4035 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
4042 static int record_changed_ref(struct send_ctx
*sctx
)
4046 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4047 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
4050 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4051 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
4061 * Record and process all refs at once. Needed when an inode changes the
4062 * generation number, which means that it was deleted and recreated.
4064 static int process_all_refs(struct send_ctx
*sctx
,
4065 enum btrfs_compare_tree_result cmd
)
4068 struct btrfs_root
*root
;
4069 struct btrfs_path
*path
;
4070 struct btrfs_key key
;
4071 struct btrfs_key found_key
;
4072 struct extent_buffer
*eb
;
4074 iterate_inode_ref_t cb
;
4075 int pending_move
= 0;
4077 path
= alloc_path_for_send();
4081 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
4082 root
= sctx
->send_root
;
4083 cb
= __record_new_ref
;
4084 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
4085 root
= sctx
->parent_root
;
4086 cb
= __record_deleted_ref
;
4088 btrfs_err(sctx
->send_root
->fs_info
,
4089 "Wrong command %d in process_all_refs", cmd
);
4094 key
.objectid
= sctx
->cmp_key
->objectid
;
4095 key
.type
= BTRFS_INODE_REF_KEY
;
4097 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4102 eb
= path
->nodes
[0];
4103 slot
= path
->slots
[0];
4104 if (slot
>= btrfs_header_nritems(eb
)) {
4105 ret
= btrfs_next_leaf(root
, path
);
4113 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4115 if (found_key
.objectid
!= key
.objectid
||
4116 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
4117 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
4120 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
4126 btrfs_release_path(path
);
4128 ret
= process_recorded_refs(sctx
, &pending_move
);
4129 /* Only applicable to an incremental send. */
4130 ASSERT(pending_move
== 0);
4133 btrfs_free_path(path
);
4137 static int send_set_xattr(struct send_ctx
*sctx
,
4138 struct fs_path
*path
,
4139 const char *name
, int name_len
,
4140 const char *data
, int data_len
)
4144 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
4148 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4149 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4150 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
4152 ret
= send_cmd(sctx
);
4159 static int send_remove_xattr(struct send_ctx
*sctx
,
4160 struct fs_path
*path
,
4161 const char *name
, int name_len
)
4165 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
4169 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4170 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4172 ret
= send_cmd(sctx
);
4179 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
4180 const char *name
, int name_len
,
4181 const char *data
, int data_len
,
4185 struct send_ctx
*sctx
= ctx
;
4187 posix_acl_xattr_header dummy_acl
;
4189 p
= fs_path_alloc();
4194 * This hack is needed because empty acl's are stored as zero byte
4195 * data in xattrs. Problem with that is, that receiving these zero byte
4196 * acl's will fail later. To fix this, we send a dummy acl list that
4197 * only contains the version number and no entries.
4199 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
4200 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
4201 if (data_len
== 0) {
4202 dummy_acl
.a_version
=
4203 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
4204 data
= (char *)&dummy_acl
;
4205 data_len
= sizeof(dummy_acl
);
4209 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4213 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
4220 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4221 const char *name
, int name_len
,
4222 const char *data
, int data_len
,
4226 struct send_ctx
*sctx
= ctx
;
4229 p
= fs_path_alloc();
4233 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4237 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
4244 static int process_new_xattr(struct send_ctx
*sctx
)
4248 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4249 sctx
->cmp_key
, __process_new_xattr
, sctx
);
4254 static int process_deleted_xattr(struct send_ctx
*sctx
)
4258 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4259 sctx
->cmp_key
, __process_deleted_xattr
, sctx
);
4264 struct find_xattr_ctx
{
4272 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
4273 const char *name
, int name_len
,
4274 const char *data
, int data_len
,
4275 u8 type
, void *vctx
)
4277 struct find_xattr_ctx
*ctx
= vctx
;
4279 if (name_len
== ctx
->name_len
&&
4280 strncmp(name
, ctx
->name
, name_len
) == 0) {
4281 ctx
->found_idx
= num
;
4282 ctx
->found_data_len
= data_len
;
4283 ctx
->found_data
= kmemdup(data
, data_len
, GFP_NOFS
);
4284 if (!ctx
->found_data
)
4291 static int find_xattr(struct btrfs_root
*root
,
4292 struct btrfs_path
*path
,
4293 struct btrfs_key
*key
,
4294 const char *name
, int name_len
,
4295 char **data
, int *data_len
)
4298 struct find_xattr_ctx ctx
;
4301 ctx
.name_len
= name_len
;
4303 ctx
.found_data
= NULL
;
4304 ctx
.found_data_len
= 0;
4306 ret
= iterate_dir_item(root
, path
, key
, __find_xattr
, &ctx
);
4310 if (ctx
.found_idx
== -1)
4313 *data
= ctx
.found_data
;
4314 *data_len
= ctx
.found_data_len
;
4316 kfree(ctx
.found_data
);
4318 return ctx
.found_idx
;
4322 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
4323 const char *name
, int name_len
,
4324 const char *data
, int data_len
,
4328 struct send_ctx
*sctx
= ctx
;
4329 char *found_data
= NULL
;
4330 int found_data_len
= 0;
4332 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
4333 sctx
->cmp_key
, name
, name_len
, &found_data
,
4335 if (ret
== -ENOENT
) {
4336 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
4337 data_len
, type
, ctx
);
4338 } else if (ret
>= 0) {
4339 if (data_len
!= found_data_len
||
4340 memcmp(data
, found_data
, data_len
)) {
4341 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
4342 data
, data_len
, type
, ctx
);
4352 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4353 const char *name
, int name_len
,
4354 const char *data
, int data_len
,
4358 struct send_ctx
*sctx
= ctx
;
4360 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4361 name
, name_len
, NULL
, NULL
);
4363 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
4364 data_len
, type
, ctx
);
4371 static int process_changed_xattr(struct send_ctx
*sctx
)
4375 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4376 sctx
->cmp_key
, __process_changed_new_xattr
, sctx
);
4379 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4380 sctx
->cmp_key
, __process_changed_deleted_xattr
, sctx
);
4386 static int process_all_new_xattrs(struct send_ctx
*sctx
)
4389 struct btrfs_root
*root
;
4390 struct btrfs_path
*path
;
4391 struct btrfs_key key
;
4392 struct btrfs_key found_key
;
4393 struct extent_buffer
*eb
;
4396 path
= alloc_path_for_send();
4400 root
= sctx
->send_root
;
4402 key
.objectid
= sctx
->cmp_key
->objectid
;
4403 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4405 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4410 eb
= path
->nodes
[0];
4411 slot
= path
->slots
[0];
4412 if (slot
>= btrfs_header_nritems(eb
)) {
4413 ret
= btrfs_next_leaf(root
, path
);
4416 } else if (ret
> 0) {
4423 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4424 if (found_key
.objectid
!= key
.objectid
||
4425 found_key
.type
!= key
.type
) {
4430 ret
= iterate_dir_item(root
, path
, &found_key
,
4431 __process_new_xattr
, sctx
);
4439 btrfs_free_path(path
);
4443 static ssize_t
fill_read_buf(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4445 struct btrfs_root
*root
= sctx
->send_root
;
4446 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4447 struct inode
*inode
;
4450 struct btrfs_key key
;
4451 pgoff_t index
= offset
>> PAGE_CACHE_SHIFT
;
4453 unsigned pg_offset
= offset
& ~PAGE_CACHE_MASK
;
4456 key
.objectid
= sctx
->cur_ino
;
4457 key
.type
= BTRFS_INODE_ITEM_KEY
;
4460 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
4462 return PTR_ERR(inode
);
4464 if (offset
+ len
> i_size_read(inode
)) {
4465 if (offset
> i_size_read(inode
))
4468 len
= offset
- i_size_read(inode
);
4473 last_index
= (offset
+ len
- 1) >> PAGE_CACHE_SHIFT
;
4475 /* initial readahead */
4476 memset(&sctx
->ra
, 0, sizeof(struct file_ra_state
));
4477 file_ra_state_init(&sctx
->ra
, inode
->i_mapping
);
4478 btrfs_force_ra(inode
->i_mapping
, &sctx
->ra
, NULL
, index
,
4479 last_index
- index
+ 1);
4481 while (index
<= last_index
) {
4482 unsigned cur_len
= min_t(unsigned, len
,
4483 PAGE_CACHE_SIZE
- pg_offset
);
4484 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
4490 if (!PageUptodate(page
)) {
4491 btrfs_readpage(NULL
, page
);
4493 if (!PageUptodate(page
)) {
4495 page_cache_release(page
);
4502 memcpy(sctx
->read_buf
+ ret
, addr
+ pg_offset
, cur_len
);
4505 page_cache_release(page
);
4517 * Read some bytes from the current inode/file and send a write command to
4520 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4524 ssize_t num_read
= 0;
4526 p
= fs_path_alloc();
4530 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset
, len
);
4532 num_read
= fill_read_buf(sctx
, offset
, len
);
4533 if (num_read
<= 0) {
4539 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4543 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4547 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4548 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4549 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
4551 ret
= send_cmd(sctx
);
4562 * Send a clone command to user space.
4564 static int send_clone(struct send_ctx
*sctx
,
4565 u64 offset
, u32 len
,
4566 struct clone_root
*clone_root
)
4572 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4573 "clone_inode=%llu, clone_offset=%llu\n", offset
, len
,
4574 clone_root
->root
->objectid
, clone_root
->ino
,
4575 clone_root
->offset
);
4577 p
= fs_path_alloc();
4581 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
4585 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4589 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4590 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
4591 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4593 if (clone_root
->root
== sctx
->send_root
) {
4594 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
4595 &gen
, NULL
, NULL
, NULL
, NULL
);
4598 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
4600 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
4606 * If the parent we're using has a received_uuid set then use that as
4607 * our clone source as that is what we will look for when doing a
4610 * This covers the case that we create a snapshot off of a received
4611 * subvolume and then use that as the parent and try to receive on a
4614 if (!btrfs_is_empty_uuid(clone_root
->root
->root_item
.received_uuid
))
4615 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4616 clone_root
->root
->root_item
.received_uuid
);
4618 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4619 clone_root
->root
->root_item
.uuid
);
4620 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
4621 le64_to_cpu(clone_root
->root
->root_item
.ctransid
));
4622 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
4623 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
4624 clone_root
->offset
);
4626 ret
= send_cmd(sctx
);
4635 * Send an update extent command to user space.
4637 static int send_update_extent(struct send_ctx
*sctx
,
4638 u64 offset
, u32 len
)
4643 p
= fs_path_alloc();
4647 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
4651 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4655 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4656 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4657 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
4659 ret
= send_cmd(sctx
);
4667 static int send_hole(struct send_ctx
*sctx
, u64 end
)
4669 struct fs_path
*p
= NULL
;
4670 u64 offset
= sctx
->cur_inode_last_extent
;
4674 p
= fs_path_alloc();
4677 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4679 goto tlv_put_failure
;
4680 memset(sctx
->read_buf
, 0, BTRFS_SEND_READ_SIZE
);
4681 while (offset
< end
) {
4682 len
= min_t(u64
, end
- offset
, BTRFS_SEND_READ_SIZE
);
4684 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4687 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4688 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4689 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, len
);
4690 ret
= send_cmd(sctx
);
4700 static int send_extent_data(struct send_ctx
*sctx
,
4706 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
4707 return send_update_extent(sctx
, offset
, len
);
4709 while (sent
< len
) {
4710 u64 size
= len
- sent
;
4713 if (size
> BTRFS_SEND_READ_SIZE
)
4714 size
= BTRFS_SEND_READ_SIZE
;
4715 ret
= send_write(sctx
, offset
+ sent
, size
);
4725 static int clone_range(struct send_ctx
*sctx
,
4726 struct clone_root
*clone_root
,
4727 const u64 disk_byte
,
4732 struct btrfs_path
*path
;
4733 struct btrfs_key key
;
4736 path
= alloc_path_for_send();
4741 * We can't send a clone operation for the entire range if we find
4742 * extent items in the respective range in the source file that
4743 * refer to different extents or if we find holes.
4744 * So check for that and do a mix of clone and regular write/copy
4745 * operations if needed.
4749 * mkfs.btrfs -f /dev/sda
4750 * mount /dev/sda /mnt
4751 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4752 * cp --reflink=always /mnt/foo /mnt/bar
4753 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4754 * btrfs subvolume snapshot -r /mnt /mnt/snap
4756 * If when we send the snapshot and we are processing file bar (which
4757 * has a higher inode number than foo) we blindly send a clone operation
4758 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4759 * a file bar that matches the content of file foo - iow, doesn't match
4760 * the content from bar in the original filesystem.
4762 key
.objectid
= clone_root
->ino
;
4763 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4764 key
.offset
= clone_root
->offset
;
4765 ret
= btrfs_search_slot(NULL
, clone_root
->root
, &key
, path
, 0, 0);
4768 if (ret
> 0 && path
->slots
[0] > 0) {
4769 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0] - 1);
4770 if (key
.objectid
== clone_root
->ino
&&
4771 key
.type
== BTRFS_EXTENT_DATA_KEY
)
4776 struct extent_buffer
*leaf
= path
->nodes
[0];
4777 int slot
= path
->slots
[0];
4778 struct btrfs_file_extent_item
*ei
;
4783 if (slot
>= btrfs_header_nritems(leaf
)) {
4784 ret
= btrfs_next_leaf(clone_root
->root
, path
);
4792 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4795 * We might have an implicit trailing hole (NO_HOLES feature
4796 * enabled). We deal with it after leaving this loop.
4798 if (key
.objectid
!= clone_root
->ino
||
4799 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4802 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
4803 type
= btrfs_file_extent_type(leaf
, ei
);
4804 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
4805 ext_len
= btrfs_file_extent_inline_len(leaf
, slot
, ei
);
4806 ext_len
= PAGE_CACHE_ALIGN(ext_len
);
4808 ext_len
= btrfs_file_extent_num_bytes(leaf
, ei
);
4811 if (key
.offset
+ ext_len
<= clone_root
->offset
)
4814 if (key
.offset
> clone_root
->offset
) {
4815 /* Implicit hole, NO_HOLES feature enabled. */
4816 u64 hole_len
= key
.offset
- clone_root
->offset
;
4820 ret
= send_extent_data(sctx
, offset
, hole_len
);
4828 clone_root
->offset
+= hole_len
;
4829 data_offset
+= hole_len
;
4832 if (key
.offset
>= clone_root
->offset
+ len
)
4835 clone_len
= min_t(u64
, ext_len
, len
);
4837 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
&&
4838 btrfs_file_extent_offset(leaf
, ei
) == data_offset
)
4839 ret
= send_clone(sctx
, offset
, clone_len
, clone_root
);
4841 ret
= send_extent_data(sctx
, offset
, clone_len
);
4849 offset
+= clone_len
;
4850 clone_root
->offset
+= clone_len
;
4851 data_offset
+= clone_len
;
4857 ret
= send_extent_data(sctx
, offset
, len
);
4861 btrfs_free_path(path
);
4865 static int send_write_or_clone(struct send_ctx
*sctx
,
4866 struct btrfs_path
*path
,
4867 struct btrfs_key
*key
,
4868 struct clone_root
*clone_root
)
4871 struct btrfs_file_extent_item
*ei
;
4872 u64 offset
= key
->offset
;
4875 u64 bs
= sctx
->send_root
->fs_info
->sb
->s_blocksize
;
4877 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4878 struct btrfs_file_extent_item
);
4879 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
4880 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
4881 len
= btrfs_file_extent_inline_len(path
->nodes
[0],
4882 path
->slots
[0], ei
);
4884 * it is possible the inline item won't cover the whole page,
4885 * but there may be items after this page. Make
4886 * sure to send the whole thing
4888 len
= PAGE_CACHE_ALIGN(len
);
4890 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
4893 if (offset
+ len
> sctx
->cur_inode_size
)
4894 len
= sctx
->cur_inode_size
- offset
;
4900 if (clone_root
&& IS_ALIGNED(offset
+ len
, bs
)) {
4904 disk_byte
= btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
);
4905 data_offset
= btrfs_file_extent_offset(path
->nodes
[0], ei
);
4906 ret
= clone_range(sctx
, clone_root
, disk_byte
, data_offset
,
4909 ret
= send_extent_data(sctx
, offset
, len
);
4915 static int is_extent_unchanged(struct send_ctx
*sctx
,
4916 struct btrfs_path
*left_path
,
4917 struct btrfs_key
*ekey
)
4920 struct btrfs_key key
;
4921 struct btrfs_path
*path
= NULL
;
4922 struct extent_buffer
*eb
;
4924 struct btrfs_key found_key
;
4925 struct btrfs_file_extent_item
*ei
;
4930 u64 left_offset_fixed
;
4938 path
= alloc_path_for_send();
4942 eb
= left_path
->nodes
[0];
4943 slot
= left_path
->slots
[0];
4944 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
4945 left_type
= btrfs_file_extent_type(eb
, ei
);
4947 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
4951 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
4952 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
4953 left_offset
= btrfs_file_extent_offset(eb
, ei
);
4954 left_gen
= btrfs_file_extent_generation(eb
, ei
);
4957 * Following comments will refer to these graphics. L is the left
4958 * extents which we are checking at the moment. 1-8 are the right
4959 * extents that we iterate.
4962 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4965 * |--1--|-2b-|...(same as above)
4967 * Alternative situation. Happens on files where extents got split.
4969 * |-----------7-----------|-6-|
4971 * Alternative situation. Happens on files which got larger.
4974 * Nothing follows after 8.
4977 key
.objectid
= ekey
->objectid
;
4978 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4979 key
.offset
= ekey
->offset
;
4980 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
4989 * Handle special case where the right side has no extents at all.
4991 eb
= path
->nodes
[0];
4992 slot
= path
->slots
[0];
4993 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4994 if (found_key
.objectid
!= key
.objectid
||
4995 found_key
.type
!= key
.type
) {
4996 /* If we're a hole then just pretend nothing changed */
4997 ret
= (left_disknr
) ? 0 : 1;
5002 * We're now on 2a, 2b or 7.
5005 while (key
.offset
< ekey
->offset
+ left_len
) {
5006 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5007 right_type
= btrfs_file_extent_type(eb
, ei
);
5008 if (right_type
!= BTRFS_FILE_EXTENT_REG
) {
5013 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5014 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5015 right_offset
= btrfs_file_extent_offset(eb
, ei
);
5016 right_gen
= btrfs_file_extent_generation(eb
, ei
);
5019 * Are we at extent 8? If yes, we know the extent is changed.
5020 * This may only happen on the first iteration.
5022 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
5023 /* If we're a hole just pretend nothing changed */
5024 ret
= (left_disknr
) ? 0 : 1;
5028 left_offset_fixed
= left_offset
;
5029 if (key
.offset
< ekey
->offset
) {
5030 /* Fix the right offset for 2a and 7. */
5031 right_offset
+= ekey
->offset
- key
.offset
;
5033 /* Fix the left offset for all behind 2a and 2b */
5034 left_offset_fixed
+= key
.offset
- ekey
->offset
;
5038 * Check if we have the same extent.
5040 if (left_disknr
!= right_disknr
||
5041 left_offset_fixed
!= right_offset
||
5042 left_gen
!= right_gen
) {
5048 * Go to the next extent.
5050 ret
= btrfs_next_item(sctx
->parent_root
, path
);
5054 eb
= path
->nodes
[0];
5055 slot
= path
->slots
[0];
5056 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5058 if (ret
|| found_key
.objectid
!= key
.objectid
||
5059 found_key
.type
!= key
.type
) {
5060 key
.offset
+= right_len
;
5063 if (found_key
.offset
!= key
.offset
+ right_len
) {
5071 * We're now behind the left extent (treat as unchanged) or at the end
5072 * of the right side (treat as changed).
5074 if (key
.offset
>= ekey
->offset
+ left_len
)
5081 btrfs_free_path(path
);
5085 static int get_last_extent(struct send_ctx
*sctx
, u64 offset
)
5087 struct btrfs_path
*path
;
5088 struct btrfs_root
*root
= sctx
->send_root
;
5089 struct btrfs_file_extent_item
*fi
;
5090 struct btrfs_key key
;
5095 path
= alloc_path_for_send();
5099 sctx
->cur_inode_last_extent
= 0;
5101 key
.objectid
= sctx
->cur_ino
;
5102 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5103 key
.offset
= offset
;
5104 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 0, 1);
5108 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
5109 if (key
.objectid
!= sctx
->cur_ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5112 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5113 struct btrfs_file_extent_item
);
5114 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5115 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5116 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
5117 path
->slots
[0], fi
);
5118 extent_end
= ALIGN(key
.offset
+ size
,
5119 sctx
->send_root
->sectorsize
);
5121 extent_end
= key
.offset
+
5122 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5124 sctx
->cur_inode_last_extent
= extent_end
;
5126 btrfs_free_path(path
);
5130 static int maybe_send_hole(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5131 struct btrfs_key
*key
)
5133 struct btrfs_file_extent_item
*fi
;
5138 if (sctx
->cur_ino
!= key
->objectid
|| !need_send_hole(sctx
))
5141 if (sctx
->cur_inode_last_extent
== (u64
)-1) {
5142 ret
= get_last_extent(sctx
, key
->offset
- 1);
5147 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5148 struct btrfs_file_extent_item
);
5149 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5150 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5151 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
5152 path
->slots
[0], fi
);
5153 extent_end
= ALIGN(key
->offset
+ size
,
5154 sctx
->send_root
->sectorsize
);
5156 extent_end
= key
->offset
+
5157 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5160 if (path
->slots
[0] == 0 &&
5161 sctx
->cur_inode_last_extent
< key
->offset
) {
5163 * We might have skipped entire leafs that contained only
5164 * file extent items for our current inode. These leafs have
5165 * a generation number smaller (older) than the one in the
5166 * current leaf and the leaf our last extent came from, and
5167 * are located between these 2 leafs.
5169 ret
= get_last_extent(sctx
, key
->offset
- 1);
5174 if (sctx
->cur_inode_last_extent
< key
->offset
)
5175 ret
= send_hole(sctx
, key
->offset
);
5176 sctx
->cur_inode_last_extent
= extent_end
;
5180 static int process_extent(struct send_ctx
*sctx
,
5181 struct btrfs_path
*path
,
5182 struct btrfs_key
*key
)
5184 struct clone_root
*found_clone
= NULL
;
5187 if (S_ISLNK(sctx
->cur_inode_mode
))
5190 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
5191 ret
= is_extent_unchanged(sctx
, path
, key
);
5199 struct btrfs_file_extent_item
*ei
;
5202 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5203 struct btrfs_file_extent_item
);
5204 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5205 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
5206 type
== BTRFS_FILE_EXTENT_REG
) {
5208 * The send spec does not have a prealloc command yet,
5209 * so just leave a hole for prealloc'ed extents until
5210 * we have enough commands queued up to justify rev'ing
5213 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5218 /* Have a hole, just skip it. */
5219 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
5226 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
5227 sctx
->cur_inode_size
, &found_clone
);
5228 if (ret
!= -ENOENT
&& ret
< 0)
5231 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
5235 ret
= maybe_send_hole(sctx
, path
, key
);
5240 static int process_all_extents(struct send_ctx
*sctx
)
5243 struct btrfs_root
*root
;
5244 struct btrfs_path
*path
;
5245 struct btrfs_key key
;
5246 struct btrfs_key found_key
;
5247 struct extent_buffer
*eb
;
5250 root
= sctx
->send_root
;
5251 path
= alloc_path_for_send();
5255 key
.objectid
= sctx
->cmp_key
->objectid
;
5256 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5258 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5263 eb
= path
->nodes
[0];
5264 slot
= path
->slots
[0];
5266 if (slot
>= btrfs_header_nritems(eb
)) {
5267 ret
= btrfs_next_leaf(root
, path
);
5270 } else if (ret
> 0) {
5277 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5279 if (found_key
.objectid
!= key
.objectid
||
5280 found_key
.type
!= key
.type
) {
5285 ret
= process_extent(sctx
, path
, &found_key
);
5293 btrfs_free_path(path
);
5297 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
,
5299 int *refs_processed
)
5303 if (sctx
->cur_ino
== 0)
5305 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
5306 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
5308 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
5311 ret
= process_recorded_refs(sctx
, pending_move
);
5315 *refs_processed
= 1;
5320 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
5331 int pending_move
= 0;
5332 int refs_processed
= 0;
5334 ret
= process_recorded_refs_if_needed(sctx
, at_end
, &pending_move
,
5340 * We have processed the refs and thus need to advance send_progress.
5341 * Now, calls to get_cur_xxx will take the updated refs of the current
5342 * inode into account.
5344 * On the other hand, if our current inode is a directory and couldn't
5345 * be moved/renamed because its parent was renamed/moved too and it has
5346 * a higher inode number, we can only move/rename our current inode
5347 * after we moved/renamed its parent. Therefore in this case operate on
5348 * the old path (pre move/rename) of our current inode, and the
5349 * move/rename will be performed later.
5351 if (refs_processed
&& !pending_move
)
5352 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5354 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
5356 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
5359 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
5360 &left_mode
, &left_uid
, &left_gid
, NULL
);
5364 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
5366 if (!S_ISLNK(sctx
->cur_inode_mode
))
5369 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
5370 NULL
, NULL
, &right_mode
, &right_uid
,
5375 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
5377 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
5381 if (S_ISREG(sctx
->cur_inode_mode
)) {
5382 if (need_send_hole(sctx
)) {
5383 if (sctx
->cur_inode_last_extent
== (u64
)-1 ||
5384 sctx
->cur_inode_last_extent
<
5385 sctx
->cur_inode_size
) {
5386 ret
= get_last_extent(sctx
, (u64
)-1);
5390 if (sctx
->cur_inode_last_extent
<
5391 sctx
->cur_inode_size
) {
5392 ret
= send_hole(sctx
, sctx
->cur_inode_size
);
5397 ret
= send_truncate(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5398 sctx
->cur_inode_size
);
5404 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5405 left_uid
, left_gid
);
5410 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5417 * If other directory inodes depended on our current directory
5418 * inode's move/rename, now do their move/rename operations.
5420 if (!is_waiting_for_move(sctx
, sctx
->cur_ino
)) {
5421 ret
= apply_children_dir_moves(sctx
);
5425 * Need to send that every time, no matter if it actually
5426 * changed between the two trees as we have done changes to
5427 * the inode before. If our inode is a directory and it's
5428 * waiting to be moved/renamed, we will send its utimes when
5429 * it's moved/renamed, therefore we don't need to do it here.
5431 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5432 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
5441 static int changed_inode(struct send_ctx
*sctx
,
5442 enum btrfs_compare_tree_result result
)
5445 struct btrfs_key
*key
= sctx
->cmp_key
;
5446 struct btrfs_inode_item
*left_ii
= NULL
;
5447 struct btrfs_inode_item
*right_ii
= NULL
;
5451 sctx
->cur_ino
= key
->objectid
;
5452 sctx
->cur_inode_new_gen
= 0;
5453 sctx
->cur_inode_last_extent
= (u64
)-1;
5456 * Set send_progress to current inode. This will tell all get_cur_xxx
5457 * functions that the current inode's refs are not updated yet. Later,
5458 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5460 sctx
->send_progress
= sctx
->cur_ino
;
5462 if (result
== BTRFS_COMPARE_TREE_NEW
||
5463 result
== BTRFS_COMPARE_TREE_CHANGED
) {
5464 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
5465 sctx
->left_path
->slots
[0],
5466 struct btrfs_inode_item
);
5467 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
5470 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5471 sctx
->right_path
->slots
[0],
5472 struct btrfs_inode_item
);
5473 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5476 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5477 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5478 sctx
->right_path
->slots
[0],
5479 struct btrfs_inode_item
);
5481 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5485 * The cur_ino = root dir case is special here. We can't treat
5486 * the inode as deleted+reused because it would generate a
5487 * stream that tries to delete/mkdir the root dir.
5489 if (left_gen
!= right_gen
&&
5490 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5491 sctx
->cur_inode_new_gen
= 1;
5494 if (result
== BTRFS_COMPARE_TREE_NEW
) {
5495 sctx
->cur_inode_gen
= left_gen
;
5496 sctx
->cur_inode_new
= 1;
5497 sctx
->cur_inode_deleted
= 0;
5498 sctx
->cur_inode_size
= btrfs_inode_size(
5499 sctx
->left_path
->nodes
[0], left_ii
);
5500 sctx
->cur_inode_mode
= btrfs_inode_mode(
5501 sctx
->left_path
->nodes
[0], left_ii
);
5502 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5503 sctx
->left_path
->nodes
[0], left_ii
);
5504 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5505 ret
= send_create_inode_if_needed(sctx
);
5506 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
5507 sctx
->cur_inode_gen
= right_gen
;
5508 sctx
->cur_inode_new
= 0;
5509 sctx
->cur_inode_deleted
= 1;
5510 sctx
->cur_inode_size
= btrfs_inode_size(
5511 sctx
->right_path
->nodes
[0], right_ii
);
5512 sctx
->cur_inode_mode
= btrfs_inode_mode(
5513 sctx
->right_path
->nodes
[0], right_ii
);
5514 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5516 * We need to do some special handling in case the inode was
5517 * reported as changed with a changed generation number. This
5518 * means that the original inode was deleted and new inode
5519 * reused the same inum. So we have to treat the old inode as
5520 * deleted and the new one as new.
5522 if (sctx
->cur_inode_new_gen
) {
5524 * First, process the inode as if it was deleted.
5526 sctx
->cur_inode_gen
= right_gen
;
5527 sctx
->cur_inode_new
= 0;
5528 sctx
->cur_inode_deleted
= 1;
5529 sctx
->cur_inode_size
= btrfs_inode_size(
5530 sctx
->right_path
->nodes
[0], right_ii
);
5531 sctx
->cur_inode_mode
= btrfs_inode_mode(
5532 sctx
->right_path
->nodes
[0], right_ii
);
5533 ret
= process_all_refs(sctx
,
5534 BTRFS_COMPARE_TREE_DELETED
);
5539 * Now process the inode as if it was new.
5541 sctx
->cur_inode_gen
= left_gen
;
5542 sctx
->cur_inode_new
= 1;
5543 sctx
->cur_inode_deleted
= 0;
5544 sctx
->cur_inode_size
= btrfs_inode_size(
5545 sctx
->left_path
->nodes
[0], left_ii
);
5546 sctx
->cur_inode_mode
= btrfs_inode_mode(
5547 sctx
->left_path
->nodes
[0], left_ii
);
5548 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5549 sctx
->left_path
->nodes
[0], left_ii
);
5550 ret
= send_create_inode_if_needed(sctx
);
5554 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
5558 * Advance send_progress now as we did not get into
5559 * process_recorded_refs_if_needed in the new_gen case.
5561 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5564 * Now process all extents and xattrs of the inode as if
5565 * they were all new.
5567 ret
= process_all_extents(sctx
);
5570 ret
= process_all_new_xattrs(sctx
);
5574 sctx
->cur_inode_gen
= left_gen
;
5575 sctx
->cur_inode_new
= 0;
5576 sctx
->cur_inode_new_gen
= 0;
5577 sctx
->cur_inode_deleted
= 0;
5578 sctx
->cur_inode_size
= btrfs_inode_size(
5579 sctx
->left_path
->nodes
[0], left_ii
);
5580 sctx
->cur_inode_mode
= btrfs_inode_mode(
5581 sctx
->left_path
->nodes
[0], left_ii
);
5590 * We have to process new refs before deleted refs, but compare_trees gives us
5591 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5592 * first and later process them in process_recorded_refs.
5593 * For the cur_inode_new_gen case, we skip recording completely because
5594 * changed_inode did already initiate processing of refs. The reason for this is
5595 * that in this case, compare_tree actually compares the refs of 2 different
5596 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5597 * refs of the right tree as deleted and all refs of the left tree as new.
5599 static int changed_ref(struct send_ctx
*sctx
,
5600 enum btrfs_compare_tree_result result
)
5604 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
5606 if (!sctx
->cur_inode_new_gen
&&
5607 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
5608 if (result
== BTRFS_COMPARE_TREE_NEW
)
5609 ret
= record_new_ref(sctx
);
5610 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5611 ret
= record_deleted_ref(sctx
);
5612 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5613 ret
= record_changed_ref(sctx
);
5620 * Process new/deleted/changed xattrs. We skip processing in the
5621 * cur_inode_new_gen case because changed_inode did already initiate processing
5622 * of xattrs. The reason is the same as in changed_ref
5624 static int changed_xattr(struct send_ctx
*sctx
,
5625 enum btrfs_compare_tree_result result
)
5629 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
5631 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
5632 if (result
== BTRFS_COMPARE_TREE_NEW
)
5633 ret
= process_new_xattr(sctx
);
5634 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5635 ret
= process_deleted_xattr(sctx
);
5636 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5637 ret
= process_changed_xattr(sctx
);
5644 * Process new/deleted/changed extents. We skip processing in the
5645 * cur_inode_new_gen case because changed_inode did already initiate processing
5646 * of extents. The reason is the same as in changed_ref
5648 static int changed_extent(struct send_ctx
*sctx
,
5649 enum btrfs_compare_tree_result result
)
5653 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
5655 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
5656 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
5657 ret
= process_extent(sctx
, sctx
->left_path
,
5664 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
5666 u64 orig_gen
, new_gen
;
5669 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
5674 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
5679 return (orig_gen
!= new_gen
) ? 1 : 0;
5682 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5683 struct btrfs_key
*key
)
5685 struct btrfs_inode_extref
*extref
;
5686 struct extent_buffer
*leaf
;
5687 u64 dirid
= 0, last_dirid
= 0;
5694 /* Easy case, just check this one dirid */
5695 if (key
->type
== BTRFS_INODE_REF_KEY
) {
5696 dirid
= key
->offset
;
5698 ret
= dir_changed(sctx
, dirid
);
5702 leaf
= path
->nodes
[0];
5703 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
5704 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
5705 while (cur_offset
< item_size
) {
5706 extref
= (struct btrfs_inode_extref
*)(ptr
+
5708 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
5709 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
5710 cur_offset
+= ref_name_len
+ sizeof(*extref
);
5711 if (dirid
== last_dirid
)
5713 ret
= dir_changed(sctx
, dirid
);
5723 * Updates compare related fields in sctx and simply forwards to the actual
5724 * changed_xxx functions.
5726 static int changed_cb(struct btrfs_root
*left_root
,
5727 struct btrfs_root
*right_root
,
5728 struct btrfs_path
*left_path
,
5729 struct btrfs_path
*right_path
,
5730 struct btrfs_key
*key
,
5731 enum btrfs_compare_tree_result result
,
5735 struct send_ctx
*sctx
= ctx
;
5737 if (result
== BTRFS_COMPARE_TREE_SAME
) {
5738 if (key
->type
== BTRFS_INODE_REF_KEY
||
5739 key
->type
== BTRFS_INODE_EXTREF_KEY
) {
5740 ret
= compare_refs(sctx
, left_path
, key
);
5745 } else if (key
->type
== BTRFS_EXTENT_DATA_KEY
) {
5746 return maybe_send_hole(sctx
, left_path
, key
);
5750 result
= BTRFS_COMPARE_TREE_CHANGED
;
5754 sctx
->left_path
= left_path
;
5755 sctx
->right_path
= right_path
;
5756 sctx
->cmp_key
= key
;
5758 ret
= finish_inode_if_needed(sctx
, 0);
5762 /* Ignore non-FS objects */
5763 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
5764 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
5767 if (key
->type
== BTRFS_INODE_ITEM_KEY
)
5768 ret
= changed_inode(sctx
, result
);
5769 else if (key
->type
== BTRFS_INODE_REF_KEY
||
5770 key
->type
== BTRFS_INODE_EXTREF_KEY
)
5771 ret
= changed_ref(sctx
, result
);
5772 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
5773 ret
= changed_xattr(sctx
, result
);
5774 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
5775 ret
= changed_extent(sctx
, result
);
5781 static int full_send_tree(struct send_ctx
*sctx
)
5784 struct btrfs_root
*send_root
= sctx
->send_root
;
5785 struct btrfs_key key
;
5786 struct btrfs_key found_key
;
5787 struct btrfs_path
*path
;
5788 struct extent_buffer
*eb
;
5791 path
= alloc_path_for_send();
5795 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
5796 key
.type
= BTRFS_INODE_ITEM_KEY
;
5799 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
5806 eb
= path
->nodes
[0];
5807 slot
= path
->slots
[0];
5808 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5810 ret
= changed_cb(send_root
, NULL
, path
, NULL
,
5811 &found_key
, BTRFS_COMPARE_TREE_NEW
, sctx
);
5815 key
.objectid
= found_key
.objectid
;
5816 key
.type
= found_key
.type
;
5817 key
.offset
= found_key
.offset
+ 1;
5819 ret
= btrfs_next_item(send_root
, path
);
5829 ret
= finish_inode_if_needed(sctx
, 1);
5832 btrfs_free_path(path
);
5836 static int send_subvol(struct send_ctx
*sctx
)
5840 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
5841 ret
= send_header(sctx
);
5846 ret
= send_subvol_begin(sctx
);
5850 if (sctx
->parent_root
) {
5851 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
5855 ret
= finish_inode_if_needed(sctx
, 1);
5859 ret
= full_send_tree(sctx
);
5865 free_recorded_refs(sctx
);
5870 * If orphan cleanup did remove any orphans from a root, it means the tree
5871 * was modified and therefore the commit root is not the same as the current
5872 * root anymore. This is a problem, because send uses the commit root and
5873 * therefore can see inode items that don't exist in the current root anymore,
5874 * and for example make calls to btrfs_iget, which will do tree lookups based
5875 * on the current root and not on the commit root. Those lookups will fail,
5876 * returning a -ESTALE error, and making send fail with that error. So make
5877 * sure a send does not see any orphans we have just removed, and that it will
5878 * see the same inodes regardless of whether a transaction commit happened
5879 * before it started (meaning that the commit root will be the same as the
5880 * current root) or not.
5882 static int ensure_commit_roots_uptodate(struct send_ctx
*sctx
)
5885 struct btrfs_trans_handle
*trans
= NULL
;
5888 if (sctx
->parent_root
&&
5889 sctx
->parent_root
->node
!= sctx
->parent_root
->commit_root
)
5892 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
5893 if (sctx
->clone_roots
[i
].root
->node
!=
5894 sctx
->clone_roots
[i
].root
->commit_root
)
5898 return btrfs_end_transaction(trans
, sctx
->send_root
);
5903 /* Use any root, all fs roots will get their commit roots updated. */
5905 trans
= btrfs_join_transaction(sctx
->send_root
);
5907 return PTR_ERR(trans
);
5911 return btrfs_commit_transaction(trans
, sctx
->send_root
);
5914 static void btrfs_root_dec_send_in_progress(struct btrfs_root
* root
)
5916 spin_lock(&root
->root_item_lock
);
5917 root
->send_in_progress
--;
5919 * Not much left to do, we don't know why it's unbalanced and
5920 * can't blindly reset it to 0.
5922 if (root
->send_in_progress
< 0)
5923 btrfs_err(root
->fs_info
,
5924 "send_in_progres unbalanced %d root %llu",
5925 root
->send_in_progress
, root
->root_key
.objectid
);
5926 spin_unlock(&root
->root_item_lock
);
5929 long btrfs_ioctl_send(struct file
*mnt_file
, void __user
*arg_
)
5932 struct btrfs_root
*send_root
;
5933 struct btrfs_root
*clone_root
;
5934 struct btrfs_fs_info
*fs_info
;
5935 struct btrfs_ioctl_send_args
*arg
= NULL
;
5936 struct btrfs_key key
;
5937 struct send_ctx
*sctx
= NULL
;
5939 u64
*clone_sources_tmp
= NULL
;
5940 int clone_sources_to_rollback
= 0;
5941 int sort_clone_roots
= 0;
5944 if (!capable(CAP_SYS_ADMIN
))
5947 send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
5948 fs_info
= send_root
->fs_info
;
5951 * The subvolume must remain read-only during send, protect against
5952 * making it RW. This also protects against deletion.
5954 spin_lock(&send_root
->root_item_lock
);
5955 send_root
->send_in_progress
++;
5956 spin_unlock(&send_root
->root_item_lock
);
5959 * This is done when we lookup the root, it should already be complete
5960 * by the time we get here.
5962 WARN_ON(send_root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
);
5965 * Userspace tools do the checks and warn the user if it's
5968 if (!btrfs_root_readonly(send_root
)) {
5973 arg
= memdup_user(arg_
, sizeof(*arg
));
5980 if (!access_ok(VERIFY_READ
, arg
->clone_sources
,
5981 sizeof(*arg
->clone_sources
) *
5982 arg
->clone_sources_count
)) {
5987 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
5992 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_NOFS
);
5998 INIT_LIST_HEAD(&sctx
->new_refs
);
5999 INIT_LIST_HEAD(&sctx
->deleted_refs
);
6000 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_NOFS
);
6001 INIT_LIST_HEAD(&sctx
->name_cache_list
);
6003 sctx
->flags
= arg
->flags
;
6005 sctx
->send_filp
= fget(arg
->send_fd
);
6006 if (!sctx
->send_filp
) {
6011 sctx
->send_root
= send_root
;
6013 * Unlikely but possible, if the subvolume is marked for deletion but
6014 * is slow to remove the directory entry, send can still be started
6016 if (btrfs_root_dead(sctx
->send_root
)) {
6021 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
6023 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
6024 sctx
->send_buf
= vmalloc(sctx
->send_max_size
);
6025 if (!sctx
->send_buf
) {
6030 sctx
->read_buf
= vmalloc(BTRFS_SEND_READ_SIZE
);
6031 if (!sctx
->read_buf
) {
6036 sctx
->pending_dir_moves
= RB_ROOT
;
6037 sctx
->waiting_dir_moves
= RB_ROOT
;
6038 sctx
->orphan_dirs
= RB_ROOT
;
6040 sctx
->clone_roots
= vzalloc(sizeof(struct clone_root
) *
6041 (arg
->clone_sources_count
+ 1));
6042 if (!sctx
->clone_roots
) {
6047 if (arg
->clone_sources_count
) {
6048 clone_sources_tmp
= vmalloc(arg
->clone_sources_count
*
6049 sizeof(*arg
->clone_sources
));
6050 if (!clone_sources_tmp
) {
6055 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
6056 arg
->clone_sources_count
*
6057 sizeof(*arg
->clone_sources
));
6063 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
6064 key
.objectid
= clone_sources_tmp
[i
];
6065 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6066 key
.offset
= (u64
)-1;
6068 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
6070 clone_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
6071 if (IS_ERR(clone_root
)) {
6072 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6073 ret
= PTR_ERR(clone_root
);
6076 spin_lock(&clone_root
->root_item_lock
);
6077 if (!btrfs_root_readonly(clone_root
) ||
6078 btrfs_root_dead(clone_root
)) {
6079 spin_unlock(&clone_root
->root_item_lock
);
6080 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6084 clone_root
->send_in_progress
++;
6085 spin_unlock(&clone_root
->root_item_lock
);
6086 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6088 sctx
->clone_roots
[i
].root
= clone_root
;
6089 clone_sources_to_rollback
= i
+ 1;
6091 vfree(clone_sources_tmp
);
6092 clone_sources_tmp
= NULL
;
6095 if (arg
->parent_root
) {
6096 key
.objectid
= arg
->parent_root
;
6097 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6098 key
.offset
= (u64
)-1;
6100 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
6102 sctx
->parent_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
6103 if (IS_ERR(sctx
->parent_root
)) {
6104 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6105 ret
= PTR_ERR(sctx
->parent_root
);
6109 spin_lock(&sctx
->parent_root
->root_item_lock
);
6110 sctx
->parent_root
->send_in_progress
++;
6111 if (!btrfs_root_readonly(sctx
->parent_root
) ||
6112 btrfs_root_dead(sctx
->parent_root
)) {
6113 spin_unlock(&sctx
->parent_root
->root_item_lock
);
6114 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6118 spin_unlock(&sctx
->parent_root
->root_item_lock
);
6120 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6124 * Clones from send_root are allowed, but only if the clone source
6125 * is behind the current send position. This is checked while searching
6126 * for possible clone sources.
6128 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
= sctx
->send_root
;
6130 /* We do a bsearch later */
6131 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
6132 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
6134 sort_clone_roots
= 1;
6136 ret
= ensure_commit_roots_uptodate(sctx
);
6140 current
->journal_info
= BTRFS_SEND_TRANS_STUB
;
6141 ret
= send_subvol(sctx
);
6142 current
->journal_info
= NULL
;
6146 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
6147 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
6150 ret
= send_cmd(sctx
);
6156 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
));
6157 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
)) {
6159 struct pending_dir_move
*pm
;
6161 n
= rb_first(&sctx
->pending_dir_moves
);
6162 pm
= rb_entry(n
, struct pending_dir_move
, node
);
6163 while (!list_empty(&pm
->list
)) {
6164 struct pending_dir_move
*pm2
;
6166 pm2
= list_first_entry(&pm
->list
,
6167 struct pending_dir_move
, list
);
6168 free_pending_move(sctx
, pm2
);
6170 free_pending_move(sctx
, pm
);
6173 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
));
6174 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
)) {
6176 struct waiting_dir_move
*dm
;
6178 n
= rb_first(&sctx
->waiting_dir_moves
);
6179 dm
= rb_entry(n
, struct waiting_dir_move
, node
);
6180 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
6184 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
));
6185 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
)) {
6187 struct orphan_dir_info
*odi
;
6189 n
= rb_first(&sctx
->orphan_dirs
);
6190 odi
= rb_entry(n
, struct orphan_dir_info
, node
);
6191 free_orphan_dir_info(sctx
, odi
);
6194 if (sort_clone_roots
) {
6195 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
6196 btrfs_root_dec_send_in_progress(
6197 sctx
->clone_roots
[i
].root
);
6199 for (i
= 0; sctx
&& i
< clone_sources_to_rollback
; i
++)
6200 btrfs_root_dec_send_in_progress(
6201 sctx
->clone_roots
[i
].root
);
6203 btrfs_root_dec_send_in_progress(send_root
);
6205 if (sctx
&& !IS_ERR_OR_NULL(sctx
->parent_root
))
6206 btrfs_root_dec_send_in_progress(sctx
->parent_root
);
6209 vfree(clone_sources_tmp
);
6212 if (sctx
->send_filp
)
6213 fput(sctx
->send_filp
);
6215 vfree(sctx
->clone_roots
);
6216 vfree(sctx
->send_buf
);
6217 vfree(sctx
->read_buf
);
6219 name_cache_free(sctx
);