btrfs: allow changing 'thread_pool' size at remount time
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65 char nbuf[16])
66 {
67 char *errstr = NULL;
68
69 switch (errno) {
70 case -EIO:
71 errstr = "IO failure";
72 break;
73 case -ENOMEM:
74 errstr = "Out of memory";
75 break;
76 case -EROFS:
77 errstr = "Readonly filesystem";
78 break;
79 case -EEXIST:
80 errstr = "Object already exists";
81 break;
82 default:
83 if (nbuf) {
84 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
85 errstr = nbuf;
86 }
87 break;
88 }
89
90 return errstr;
91 }
92
93 static void __save_error_info(struct btrfs_fs_info *fs_info)
94 {
95 /*
96 * today we only save the error info into ram. Long term we'll
97 * also send it down to the disk
98 */
99 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
100 }
101
102 /* NOTE:
103 * We move write_super stuff at umount in order to avoid deadlock
104 * for umount hold all lock.
105 */
106 static void save_error_info(struct btrfs_fs_info *fs_info)
107 {
108 __save_error_info(fs_info);
109 }
110
111 /* btrfs handle error by forcing the filesystem readonly */
112 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
113 {
114 struct super_block *sb = fs_info->sb;
115
116 if (sb->s_flags & MS_RDONLY)
117 return;
118
119 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
120 sb->s_flags |= MS_RDONLY;
121 printk(KERN_INFO "btrfs is forced readonly\n");
122 __btrfs_scrub_cancel(fs_info);
123 // WARN_ON(1);
124 }
125 }
126
127 /*
128 * __btrfs_std_error decodes expected errors from the caller and
129 * invokes the approciate error response.
130 */
131 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
132 unsigned int line, int errno, const char *fmt, ...)
133 {
134 struct super_block *sb = fs_info->sb;
135 char nbuf[16];
136 const char *errstr;
137 va_list args;
138 va_start(args, fmt);
139
140 /*
141 * Special case: if the error is EROFS, and we're already
142 * under MS_RDONLY, then it is safe here.
143 */
144 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
145 return;
146
147 errstr = btrfs_decode_error(fs_info, errno, nbuf);
148 if (fmt) {
149 struct va_format vaf = {
150 .fmt = fmt,
151 .va = &args,
152 };
153
154 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
155 sb->s_id, function, line, errstr, &vaf);
156 } else {
157 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
158 sb->s_id, function, line, errstr);
159 }
160
161 /* Don't go through full error handling during mount */
162 if (sb->s_flags & MS_BORN) {
163 save_error_info(fs_info);
164 btrfs_handle_error(fs_info);
165 }
166 va_end(args);
167 }
168
169 const char *logtypes[] = {
170 "emergency",
171 "alert",
172 "critical",
173 "error",
174 "warning",
175 "notice",
176 "info",
177 "debug",
178 };
179
180 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
181 {
182 struct super_block *sb = fs_info->sb;
183 char lvl[4];
184 struct va_format vaf;
185 va_list args;
186 const char *type = logtypes[4];
187
188 va_start(args, fmt);
189
190 if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
191 strncpy(lvl, fmt, 3);
192 fmt += 3;
193 type = logtypes[fmt[1] - '0'];
194 } else
195 *lvl = '\0';
196
197 vaf.fmt = fmt;
198 vaf.va = &args;
199 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
200 }
201
202 /*
203 * We only mark the transaction aborted and then set the file system read-only.
204 * This will prevent new transactions from starting or trying to join this
205 * one.
206 *
207 * This means that error recovery at the call site is limited to freeing
208 * any local memory allocations and passing the error code up without
209 * further cleanup. The transaction should complete as it normally would
210 * in the call path but will return -EIO.
211 *
212 * We'll complete the cleanup in btrfs_end_transaction and
213 * btrfs_commit_transaction.
214 */
215 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
216 struct btrfs_root *root, const char *function,
217 unsigned int line, int errno)
218 {
219 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
220 trans->aborted = errno;
221 /* Nothing used. The other threads that have joined this
222 * transaction may be able to continue. */
223 if (!trans->blocks_used) {
224 btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
225 return;
226 }
227 trans->transaction->aborted = errno;
228 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
229 }
230 /*
231 * __btrfs_panic decodes unexpected, fatal errors from the caller,
232 * issues an alert, and either panics or BUGs, depending on mount options.
233 */
234 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
235 unsigned int line, int errno, const char *fmt, ...)
236 {
237 char nbuf[16];
238 char *s_id = "<unknown>";
239 const char *errstr;
240 struct va_format vaf = { .fmt = fmt };
241 va_list args;
242
243 if (fs_info)
244 s_id = fs_info->sb->s_id;
245
246 va_start(args, fmt);
247 vaf.va = &args;
248
249 errstr = btrfs_decode_error(fs_info, errno, nbuf);
250 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
251 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
252 s_id, function, line, &vaf, errstr);
253
254 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
255 s_id, function, line, &vaf, errstr);
256 va_end(args);
257 /* Caller calls BUG() */
258 }
259
260 static void btrfs_put_super(struct super_block *sb)
261 {
262 (void)close_ctree(btrfs_sb(sb)->tree_root);
263 /* FIXME: need to fix VFS to return error? */
264 /* AV: return it _where_? ->put_super() can be triggered by any number
265 * of async events, up to and including delivery of SIGKILL to the
266 * last process that kept it busy. Or segfault in the aforementioned
267 * process... Whom would you report that to?
268 */
269 }
270
271 enum {
272 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
273 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
274 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
275 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
276 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
277 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
278 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
279 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
280 Opt_check_integrity, Opt_check_integrity_including_extent_data,
281 Opt_check_integrity_print_mask, Opt_fatal_errors,
282 Opt_err,
283 };
284
285 static match_table_t tokens = {
286 {Opt_degraded, "degraded"},
287 {Opt_subvol, "subvol=%s"},
288 {Opt_subvolid, "subvolid=%d"},
289 {Opt_device, "device=%s"},
290 {Opt_nodatasum, "nodatasum"},
291 {Opt_nodatacow, "nodatacow"},
292 {Opt_nobarrier, "nobarrier"},
293 {Opt_max_inline, "max_inline=%s"},
294 {Opt_alloc_start, "alloc_start=%s"},
295 {Opt_thread_pool, "thread_pool=%d"},
296 {Opt_compress, "compress"},
297 {Opt_compress_type, "compress=%s"},
298 {Opt_compress_force, "compress-force"},
299 {Opt_compress_force_type, "compress-force=%s"},
300 {Opt_ssd, "ssd"},
301 {Opt_ssd_spread, "ssd_spread"},
302 {Opt_nossd, "nossd"},
303 {Opt_noacl, "noacl"},
304 {Opt_notreelog, "notreelog"},
305 {Opt_flushoncommit, "flushoncommit"},
306 {Opt_ratio, "metadata_ratio=%d"},
307 {Opt_discard, "discard"},
308 {Opt_space_cache, "space_cache"},
309 {Opt_clear_cache, "clear_cache"},
310 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
311 {Opt_enospc_debug, "enospc_debug"},
312 {Opt_subvolrootid, "subvolrootid=%d"},
313 {Opt_defrag, "autodefrag"},
314 {Opt_inode_cache, "inode_cache"},
315 {Opt_no_space_cache, "nospace_cache"},
316 {Opt_recovery, "recovery"},
317 {Opt_skip_balance, "skip_balance"},
318 {Opt_check_integrity, "check_int"},
319 {Opt_check_integrity_including_extent_data, "check_int_data"},
320 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
321 {Opt_fatal_errors, "fatal_errors=%s"},
322 {Opt_err, NULL},
323 };
324
325 /*
326 * Regular mount options parser. Everything that is needed only when
327 * reading in a new superblock is parsed here.
328 * XXX JDM: This needs to be cleaned up for remount.
329 */
330 int btrfs_parse_options(struct btrfs_root *root, char *options)
331 {
332 struct btrfs_fs_info *info = root->fs_info;
333 substring_t args[MAX_OPT_ARGS];
334 char *p, *num, *orig = NULL;
335 u64 cache_gen;
336 int intarg;
337 int ret = 0;
338 char *compress_type;
339 bool compress_force = false;
340
341 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
342 if (cache_gen)
343 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
344
345 if (!options)
346 goto out;
347
348 /*
349 * strsep changes the string, duplicate it because parse_options
350 * gets called twice
351 */
352 options = kstrdup(options, GFP_NOFS);
353 if (!options)
354 return -ENOMEM;
355
356 orig = options;
357
358 while ((p = strsep(&options, ",")) != NULL) {
359 int token;
360 if (!*p)
361 continue;
362
363 token = match_token(p, tokens, args);
364 switch (token) {
365 case Opt_degraded:
366 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
367 btrfs_set_opt(info->mount_opt, DEGRADED);
368 break;
369 case Opt_subvol:
370 case Opt_subvolid:
371 case Opt_subvolrootid:
372 case Opt_device:
373 /*
374 * These are parsed by btrfs_parse_early_options
375 * and can be happily ignored here.
376 */
377 break;
378 case Opt_nodatasum:
379 printk(KERN_INFO "btrfs: setting nodatasum\n");
380 btrfs_set_opt(info->mount_opt, NODATASUM);
381 break;
382 case Opt_nodatacow:
383 printk(KERN_INFO "btrfs: setting nodatacow\n");
384 btrfs_set_opt(info->mount_opt, NODATACOW);
385 btrfs_set_opt(info->mount_opt, NODATASUM);
386 break;
387 case Opt_compress_force:
388 case Opt_compress_force_type:
389 compress_force = true;
390 case Opt_compress:
391 case Opt_compress_type:
392 if (token == Opt_compress ||
393 token == Opt_compress_force ||
394 strcmp(args[0].from, "zlib") == 0) {
395 compress_type = "zlib";
396 info->compress_type = BTRFS_COMPRESS_ZLIB;
397 } else if (strcmp(args[0].from, "lzo") == 0) {
398 compress_type = "lzo";
399 info->compress_type = BTRFS_COMPRESS_LZO;
400 } else {
401 ret = -EINVAL;
402 goto out;
403 }
404
405 btrfs_set_opt(info->mount_opt, COMPRESS);
406 if (compress_force) {
407 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
408 pr_info("btrfs: force %s compression\n",
409 compress_type);
410 } else
411 pr_info("btrfs: use %s compression\n",
412 compress_type);
413 break;
414 case Opt_ssd:
415 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
416 btrfs_set_opt(info->mount_opt, SSD);
417 break;
418 case Opt_ssd_spread:
419 printk(KERN_INFO "btrfs: use spread ssd "
420 "allocation scheme\n");
421 btrfs_set_opt(info->mount_opt, SSD);
422 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
423 break;
424 case Opt_nossd:
425 printk(KERN_INFO "btrfs: not using ssd allocation "
426 "scheme\n");
427 btrfs_set_opt(info->mount_opt, NOSSD);
428 btrfs_clear_opt(info->mount_opt, SSD);
429 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
430 break;
431 case Opt_nobarrier:
432 printk(KERN_INFO "btrfs: turning off barriers\n");
433 btrfs_set_opt(info->mount_opt, NOBARRIER);
434 break;
435 case Opt_thread_pool:
436 intarg = 0;
437 match_int(&args[0], &intarg);
438 if (intarg)
439 info->thread_pool_size = intarg;
440 break;
441 case Opt_max_inline:
442 num = match_strdup(&args[0]);
443 if (num) {
444 info->max_inline = memparse(num, NULL);
445 kfree(num);
446
447 if (info->max_inline) {
448 info->max_inline = max_t(u64,
449 info->max_inline,
450 root->sectorsize);
451 }
452 printk(KERN_INFO "btrfs: max_inline at %llu\n",
453 (unsigned long long)info->max_inline);
454 }
455 break;
456 case Opt_alloc_start:
457 num = match_strdup(&args[0]);
458 if (num) {
459 info->alloc_start = memparse(num, NULL);
460 kfree(num);
461 printk(KERN_INFO
462 "btrfs: allocations start at %llu\n",
463 (unsigned long long)info->alloc_start);
464 }
465 break;
466 case Opt_noacl:
467 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
468 break;
469 case Opt_notreelog:
470 printk(KERN_INFO "btrfs: disabling tree log\n");
471 btrfs_set_opt(info->mount_opt, NOTREELOG);
472 break;
473 case Opt_flushoncommit:
474 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
475 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
476 break;
477 case Opt_ratio:
478 intarg = 0;
479 match_int(&args[0], &intarg);
480 if (intarg) {
481 info->metadata_ratio = intarg;
482 printk(KERN_INFO "btrfs: metadata ratio %d\n",
483 info->metadata_ratio);
484 }
485 break;
486 case Opt_discard:
487 btrfs_set_opt(info->mount_opt, DISCARD);
488 break;
489 case Opt_space_cache:
490 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
491 break;
492 case Opt_no_space_cache:
493 printk(KERN_INFO "btrfs: disabling disk space caching\n");
494 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
495 break;
496 case Opt_inode_cache:
497 printk(KERN_INFO "btrfs: enabling inode map caching\n");
498 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
499 break;
500 case Opt_clear_cache:
501 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
502 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
503 break;
504 case Opt_user_subvol_rm_allowed:
505 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
506 break;
507 case Opt_enospc_debug:
508 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
509 break;
510 case Opt_defrag:
511 printk(KERN_INFO "btrfs: enabling auto defrag");
512 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
513 break;
514 case Opt_recovery:
515 printk(KERN_INFO "btrfs: enabling auto recovery");
516 btrfs_set_opt(info->mount_opt, RECOVERY);
517 break;
518 case Opt_skip_balance:
519 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
520 break;
521 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
522 case Opt_check_integrity_including_extent_data:
523 printk(KERN_INFO "btrfs: enabling check integrity"
524 " including extent data\n");
525 btrfs_set_opt(info->mount_opt,
526 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
527 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
528 break;
529 case Opt_check_integrity:
530 printk(KERN_INFO "btrfs: enabling check integrity\n");
531 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
532 break;
533 case Opt_check_integrity_print_mask:
534 intarg = 0;
535 match_int(&args[0], &intarg);
536 if (intarg) {
537 info->check_integrity_print_mask = intarg;
538 printk(KERN_INFO "btrfs:"
539 " check_integrity_print_mask 0x%x\n",
540 info->check_integrity_print_mask);
541 }
542 break;
543 #else
544 case Opt_check_integrity_including_extent_data:
545 case Opt_check_integrity:
546 case Opt_check_integrity_print_mask:
547 printk(KERN_ERR "btrfs: support for check_integrity*"
548 " not compiled in!\n");
549 ret = -EINVAL;
550 goto out;
551 #endif
552 case Opt_fatal_errors:
553 if (strcmp(args[0].from, "panic") == 0)
554 btrfs_set_opt(info->mount_opt,
555 PANIC_ON_FATAL_ERROR);
556 else if (strcmp(args[0].from, "bug") == 0)
557 btrfs_clear_opt(info->mount_opt,
558 PANIC_ON_FATAL_ERROR);
559 else {
560 ret = -EINVAL;
561 goto out;
562 }
563 break;
564 case Opt_err:
565 printk(KERN_INFO "btrfs: unrecognized mount option "
566 "'%s'\n", p);
567 ret = -EINVAL;
568 goto out;
569 default:
570 break;
571 }
572 }
573 out:
574 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
575 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
576 kfree(orig);
577 return ret;
578 }
579
580 /*
581 * Parse mount options that are required early in the mount process.
582 *
583 * All other options will be parsed on much later in the mount process and
584 * only when we need to allocate a new super block.
585 */
586 static int btrfs_parse_early_options(const char *options, fmode_t flags,
587 void *holder, char **subvol_name, u64 *subvol_objectid,
588 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
589 {
590 substring_t args[MAX_OPT_ARGS];
591 char *device_name, *opts, *orig, *p;
592 int error = 0;
593 int intarg;
594
595 if (!options)
596 return 0;
597
598 /*
599 * strsep changes the string, duplicate it because parse_options
600 * gets called twice
601 */
602 opts = kstrdup(options, GFP_KERNEL);
603 if (!opts)
604 return -ENOMEM;
605 orig = opts;
606
607 while ((p = strsep(&opts, ",")) != NULL) {
608 int token;
609 if (!*p)
610 continue;
611
612 token = match_token(p, tokens, args);
613 switch (token) {
614 case Opt_subvol:
615 kfree(*subvol_name);
616 *subvol_name = match_strdup(&args[0]);
617 break;
618 case Opt_subvolid:
619 intarg = 0;
620 error = match_int(&args[0], &intarg);
621 if (!error) {
622 /* we want the original fs_tree */
623 if (!intarg)
624 *subvol_objectid =
625 BTRFS_FS_TREE_OBJECTID;
626 else
627 *subvol_objectid = intarg;
628 }
629 break;
630 case Opt_subvolrootid:
631 intarg = 0;
632 error = match_int(&args[0], &intarg);
633 if (!error) {
634 /* we want the original fs_tree */
635 if (!intarg)
636 *subvol_rootid =
637 BTRFS_FS_TREE_OBJECTID;
638 else
639 *subvol_rootid = intarg;
640 }
641 break;
642 case Opt_device:
643 device_name = match_strdup(&args[0]);
644 if (!device_name) {
645 error = -ENOMEM;
646 goto out;
647 }
648 error = btrfs_scan_one_device(device_name,
649 flags, holder, fs_devices);
650 kfree(device_name);
651 if (error)
652 goto out;
653 break;
654 default:
655 break;
656 }
657 }
658
659 out:
660 kfree(orig);
661 return error;
662 }
663
664 static struct dentry *get_default_root(struct super_block *sb,
665 u64 subvol_objectid)
666 {
667 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
668 struct btrfs_root *root = fs_info->tree_root;
669 struct btrfs_root *new_root;
670 struct btrfs_dir_item *di;
671 struct btrfs_path *path;
672 struct btrfs_key location;
673 struct inode *inode;
674 u64 dir_id;
675 int new = 0;
676
677 /*
678 * We have a specific subvol we want to mount, just setup location and
679 * go look up the root.
680 */
681 if (subvol_objectid) {
682 location.objectid = subvol_objectid;
683 location.type = BTRFS_ROOT_ITEM_KEY;
684 location.offset = (u64)-1;
685 goto find_root;
686 }
687
688 path = btrfs_alloc_path();
689 if (!path)
690 return ERR_PTR(-ENOMEM);
691 path->leave_spinning = 1;
692
693 /*
694 * Find the "default" dir item which points to the root item that we
695 * will mount by default if we haven't been given a specific subvolume
696 * to mount.
697 */
698 dir_id = btrfs_super_root_dir(fs_info->super_copy);
699 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
700 if (IS_ERR(di)) {
701 btrfs_free_path(path);
702 return ERR_CAST(di);
703 }
704 if (!di) {
705 /*
706 * Ok the default dir item isn't there. This is weird since
707 * it's always been there, but don't freak out, just try and
708 * mount to root most subvolume.
709 */
710 btrfs_free_path(path);
711 dir_id = BTRFS_FIRST_FREE_OBJECTID;
712 new_root = fs_info->fs_root;
713 goto setup_root;
714 }
715
716 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
717 btrfs_free_path(path);
718
719 find_root:
720 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
721 if (IS_ERR(new_root))
722 return ERR_CAST(new_root);
723
724 if (btrfs_root_refs(&new_root->root_item) == 0)
725 return ERR_PTR(-ENOENT);
726
727 dir_id = btrfs_root_dirid(&new_root->root_item);
728 setup_root:
729 location.objectid = dir_id;
730 location.type = BTRFS_INODE_ITEM_KEY;
731 location.offset = 0;
732
733 inode = btrfs_iget(sb, &location, new_root, &new);
734 if (IS_ERR(inode))
735 return ERR_CAST(inode);
736
737 /*
738 * If we're just mounting the root most subvol put the inode and return
739 * a reference to the dentry. We will have already gotten a reference
740 * to the inode in btrfs_fill_super so we're good to go.
741 */
742 if (!new && sb->s_root->d_inode == inode) {
743 iput(inode);
744 return dget(sb->s_root);
745 }
746
747 return d_obtain_alias(inode);
748 }
749
750 static int btrfs_fill_super(struct super_block *sb,
751 struct btrfs_fs_devices *fs_devices,
752 void *data, int silent)
753 {
754 struct inode *inode;
755 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
756 struct btrfs_key key;
757 int err;
758
759 sb->s_maxbytes = MAX_LFS_FILESIZE;
760 sb->s_magic = BTRFS_SUPER_MAGIC;
761 sb->s_op = &btrfs_super_ops;
762 sb->s_d_op = &btrfs_dentry_operations;
763 sb->s_export_op = &btrfs_export_ops;
764 sb->s_xattr = btrfs_xattr_handlers;
765 sb->s_time_gran = 1;
766 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
767 sb->s_flags |= MS_POSIXACL;
768 #endif
769 sb->s_flags |= MS_I_VERSION;
770 err = open_ctree(sb, fs_devices, (char *)data);
771 if (err) {
772 printk("btrfs: open_ctree failed\n");
773 return err;
774 }
775
776 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
777 key.type = BTRFS_INODE_ITEM_KEY;
778 key.offset = 0;
779 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
780 if (IS_ERR(inode)) {
781 err = PTR_ERR(inode);
782 goto fail_close;
783 }
784
785 sb->s_root = d_make_root(inode);
786 if (!sb->s_root) {
787 err = -ENOMEM;
788 goto fail_close;
789 }
790
791 save_mount_options(sb, data);
792 cleancache_init_fs(sb);
793 sb->s_flags |= MS_ACTIVE;
794 return 0;
795
796 fail_close:
797 close_ctree(fs_info->tree_root);
798 return err;
799 }
800
801 int btrfs_sync_fs(struct super_block *sb, int wait)
802 {
803 struct btrfs_trans_handle *trans;
804 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
805 struct btrfs_root *root = fs_info->tree_root;
806 int ret;
807
808 trace_btrfs_sync_fs(wait);
809
810 if (!wait) {
811 filemap_flush(fs_info->btree_inode->i_mapping);
812 return 0;
813 }
814
815 btrfs_wait_ordered_extents(root, 0, 0);
816
817 trans = btrfs_start_transaction(root, 0);
818 if (IS_ERR(trans))
819 return PTR_ERR(trans);
820 ret = btrfs_commit_transaction(trans, root);
821 return ret;
822 }
823
824 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
825 {
826 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
827 struct btrfs_root *root = info->tree_root;
828 char *compress_type;
829
830 if (btrfs_test_opt(root, DEGRADED))
831 seq_puts(seq, ",degraded");
832 if (btrfs_test_opt(root, NODATASUM))
833 seq_puts(seq, ",nodatasum");
834 if (btrfs_test_opt(root, NODATACOW))
835 seq_puts(seq, ",nodatacow");
836 if (btrfs_test_opt(root, NOBARRIER))
837 seq_puts(seq, ",nobarrier");
838 if (info->max_inline != 8192 * 1024)
839 seq_printf(seq, ",max_inline=%llu",
840 (unsigned long long)info->max_inline);
841 if (info->alloc_start != 0)
842 seq_printf(seq, ",alloc_start=%llu",
843 (unsigned long long)info->alloc_start);
844 if (info->thread_pool_size != min_t(unsigned long,
845 num_online_cpus() + 2, 8))
846 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
847 if (btrfs_test_opt(root, COMPRESS)) {
848 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
849 compress_type = "zlib";
850 else
851 compress_type = "lzo";
852 if (btrfs_test_opt(root, FORCE_COMPRESS))
853 seq_printf(seq, ",compress-force=%s", compress_type);
854 else
855 seq_printf(seq, ",compress=%s", compress_type);
856 }
857 if (btrfs_test_opt(root, NOSSD))
858 seq_puts(seq, ",nossd");
859 if (btrfs_test_opt(root, SSD_SPREAD))
860 seq_puts(seq, ",ssd_spread");
861 else if (btrfs_test_opt(root, SSD))
862 seq_puts(seq, ",ssd");
863 if (btrfs_test_opt(root, NOTREELOG))
864 seq_puts(seq, ",notreelog");
865 if (btrfs_test_opt(root, FLUSHONCOMMIT))
866 seq_puts(seq, ",flushoncommit");
867 if (btrfs_test_opt(root, DISCARD))
868 seq_puts(seq, ",discard");
869 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
870 seq_puts(seq, ",noacl");
871 if (btrfs_test_opt(root, SPACE_CACHE))
872 seq_puts(seq, ",space_cache");
873 else
874 seq_puts(seq, ",nospace_cache");
875 if (btrfs_test_opt(root, CLEAR_CACHE))
876 seq_puts(seq, ",clear_cache");
877 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
878 seq_puts(seq, ",user_subvol_rm_allowed");
879 if (btrfs_test_opt(root, ENOSPC_DEBUG))
880 seq_puts(seq, ",enospc_debug");
881 if (btrfs_test_opt(root, AUTO_DEFRAG))
882 seq_puts(seq, ",autodefrag");
883 if (btrfs_test_opt(root, INODE_MAP_CACHE))
884 seq_puts(seq, ",inode_cache");
885 if (btrfs_test_opt(root, SKIP_BALANCE))
886 seq_puts(seq, ",skip_balance");
887 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
888 seq_puts(seq, ",fatal_errors=panic");
889 return 0;
890 }
891
892 static int btrfs_test_super(struct super_block *s, void *data)
893 {
894 struct btrfs_fs_info *p = data;
895 struct btrfs_fs_info *fs_info = btrfs_sb(s);
896
897 return fs_info->fs_devices == p->fs_devices;
898 }
899
900 static int btrfs_set_super(struct super_block *s, void *data)
901 {
902 int err = set_anon_super(s, data);
903 if (!err)
904 s->s_fs_info = data;
905 return err;
906 }
907
908 /*
909 * subvolumes are identified by ino 256
910 */
911 static inline int is_subvolume_inode(struct inode *inode)
912 {
913 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
914 return 1;
915 return 0;
916 }
917
918 /*
919 * This will strip out the subvol=%s argument for an argument string and add
920 * subvolid=0 to make sure we get the actual tree root for path walking to the
921 * subvol we want.
922 */
923 static char *setup_root_args(char *args)
924 {
925 unsigned copied = 0;
926 unsigned len = strlen(args) + 2;
927 char *pos;
928 char *ret;
929
930 /*
931 * We need the same args as before, but minus
932 *
933 * subvol=a
934 *
935 * and add
936 *
937 * subvolid=0
938 *
939 * which is a difference of 2 characters, so we allocate strlen(args) +
940 * 2 characters.
941 */
942 ret = kzalloc(len * sizeof(char), GFP_NOFS);
943 if (!ret)
944 return NULL;
945 pos = strstr(args, "subvol=");
946
947 /* This shouldn't happen, but just in case.. */
948 if (!pos) {
949 kfree(ret);
950 return NULL;
951 }
952
953 /*
954 * The subvol=<> arg is not at the front of the string, copy everybody
955 * up to that into ret.
956 */
957 if (pos != args) {
958 *pos = '\0';
959 strcpy(ret, args);
960 copied += strlen(args);
961 pos++;
962 }
963
964 strncpy(ret + copied, "subvolid=0", len - copied);
965
966 /* Length of subvolid=0 */
967 copied += 10;
968
969 /*
970 * If there is no , after the subvol= option then we know there's no
971 * other options and we can just return.
972 */
973 pos = strchr(pos, ',');
974 if (!pos)
975 return ret;
976
977 /* Copy the rest of the arguments into our buffer */
978 strncpy(ret + copied, pos, len - copied);
979 copied += strlen(pos);
980
981 return ret;
982 }
983
984 static struct dentry *mount_subvol(const char *subvol_name, int flags,
985 const char *device_name, char *data)
986 {
987 struct dentry *root;
988 struct vfsmount *mnt;
989 char *newargs;
990
991 newargs = setup_root_args(data);
992 if (!newargs)
993 return ERR_PTR(-ENOMEM);
994 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
995 newargs);
996 kfree(newargs);
997 if (IS_ERR(mnt))
998 return ERR_CAST(mnt);
999
1000 root = mount_subtree(mnt, subvol_name);
1001
1002 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1003 struct super_block *s = root->d_sb;
1004 dput(root);
1005 root = ERR_PTR(-EINVAL);
1006 deactivate_locked_super(s);
1007 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1008 subvol_name);
1009 }
1010
1011 return root;
1012 }
1013
1014 /*
1015 * Find a superblock for the given device / mount point.
1016 *
1017 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1018 * for multiple device setup. Make sure to keep it in sync.
1019 */
1020 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1021 const char *device_name, void *data)
1022 {
1023 struct block_device *bdev = NULL;
1024 struct super_block *s;
1025 struct dentry *root;
1026 struct btrfs_fs_devices *fs_devices = NULL;
1027 struct btrfs_fs_info *fs_info = NULL;
1028 fmode_t mode = FMODE_READ;
1029 char *subvol_name = NULL;
1030 u64 subvol_objectid = 0;
1031 u64 subvol_rootid = 0;
1032 int error = 0;
1033
1034 if (!(flags & MS_RDONLY))
1035 mode |= FMODE_WRITE;
1036
1037 error = btrfs_parse_early_options(data, mode, fs_type,
1038 &subvol_name, &subvol_objectid,
1039 &subvol_rootid, &fs_devices);
1040 if (error) {
1041 kfree(subvol_name);
1042 return ERR_PTR(error);
1043 }
1044
1045 if (subvol_name) {
1046 root = mount_subvol(subvol_name, flags, device_name, data);
1047 kfree(subvol_name);
1048 return root;
1049 }
1050
1051 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1052 if (error)
1053 return ERR_PTR(error);
1054
1055 /*
1056 * Setup a dummy root and fs_info for test/set super. This is because
1057 * we don't actually fill this stuff out until open_ctree, but we need
1058 * it for searching for existing supers, so this lets us do that and
1059 * then open_ctree will properly initialize everything later.
1060 */
1061 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1062 if (!fs_info)
1063 return ERR_PTR(-ENOMEM);
1064
1065 fs_info->fs_devices = fs_devices;
1066
1067 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1068 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1069 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1070 error = -ENOMEM;
1071 goto error_fs_info;
1072 }
1073
1074 error = btrfs_open_devices(fs_devices, mode, fs_type);
1075 if (error)
1076 goto error_fs_info;
1077
1078 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1079 error = -EACCES;
1080 goto error_close_devices;
1081 }
1082
1083 bdev = fs_devices->latest_bdev;
1084 s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1085 if (IS_ERR(s)) {
1086 error = PTR_ERR(s);
1087 goto error_close_devices;
1088 }
1089
1090 if (s->s_root) {
1091 btrfs_close_devices(fs_devices);
1092 free_fs_info(fs_info);
1093 if ((flags ^ s->s_flags) & MS_RDONLY)
1094 error = -EBUSY;
1095 } else {
1096 char b[BDEVNAME_SIZE];
1097
1098 s->s_flags = flags | MS_NOSEC;
1099 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1100 btrfs_sb(s)->bdev_holder = fs_type;
1101 error = btrfs_fill_super(s, fs_devices, data,
1102 flags & MS_SILENT ? 1 : 0);
1103 }
1104
1105 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1106 if (IS_ERR(root))
1107 deactivate_locked_super(s);
1108
1109 return root;
1110
1111 error_close_devices:
1112 btrfs_close_devices(fs_devices);
1113 error_fs_info:
1114 free_fs_info(fs_info);
1115 return ERR_PTR(error);
1116 }
1117
1118 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1119 {
1120 spin_lock_irq(&workers->lock);
1121 workers->max_workers = new_limit;
1122 spin_unlock_irq(&workers->lock);
1123 }
1124
1125 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1126 int new_pool_size, int old_pool_size)
1127 {
1128 if (new_pool_size == old_pool_size)
1129 return;
1130
1131 fs_info->thread_pool_size = new_pool_size;
1132
1133 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1134 old_pool_size, new_pool_size);
1135
1136 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1137 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1138 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1139 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1140 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1141 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1142 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1143 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1144 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1145 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1146 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1147 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1148 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1149 btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1150 }
1151
1152 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1153 {
1154 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1155 struct btrfs_root *root = fs_info->tree_root;
1156 unsigned old_flags = sb->s_flags;
1157 unsigned long old_opts = fs_info->mount_opt;
1158 unsigned long old_compress_type = fs_info->compress_type;
1159 u64 old_max_inline = fs_info->max_inline;
1160 u64 old_alloc_start = fs_info->alloc_start;
1161 int old_thread_pool_size = fs_info->thread_pool_size;
1162 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1163 int ret;
1164
1165 ret = btrfs_parse_options(root, data);
1166 if (ret) {
1167 ret = -EINVAL;
1168 goto restore;
1169 }
1170
1171 btrfs_resize_thread_pool(fs_info,
1172 fs_info->thread_pool_size, old_thread_pool_size);
1173
1174 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1175 return 0;
1176
1177 if (*flags & MS_RDONLY) {
1178 sb->s_flags |= MS_RDONLY;
1179
1180 ret = btrfs_commit_super(root);
1181 if (ret)
1182 goto restore;
1183 } else {
1184 if (fs_info->fs_devices->rw_devices == 0) {
1185 ret = -EACCES;
1186 goto restore;
1187 }
1188
1189 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1190 ret = -EINVAL;
1191 goto restore;
1192 }
1193
1194 ret = btrfs_cleanup_fs_roots(fs_info);
1195 if (ret)
1196 goto restore;
1197
1198 /* recover relocation */
1199 ret = btrfs_recover_relocation(root);
1200 if (ret)
1201 goto restore;
1202
1203 sb->s_flags &= ~MS_RDONLY;
1204 }
1205
1206 return 0;
1207
1208 restore:
1209 /* We've hit an error - don't reset MS_RDONLY */
1210 if (sb->s_flags & MS_RDONLY)
1211 old_flags |= MS_RDONLY;
1212 sb->s_flags = old_flags;
1213 fs_info->mount_opt = old_opts;
1214 fs_info->compress_type = old_compress_type;
1215 fs_info->max_inline = old_max_inline;
1216 fs_info->alloc_start = old_alloc_start;
1217 btrfs_resize_thread_pool(fs_info,
1218 old_thread_pool_size, fs_info->thread_pool_size);
1219 fs_info->metadata_ratio = old_metadata_ratio;
1220 return ret;
1221 }
1222
1223 /* Used to sort the devices by max_avail(descending sort) */
1224 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1225 const void *dev_info2)
1226 {
1227 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1228 ((struct btrfs_device_info *)dev_info2)->max_avail)
1229 return -1;
1230 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1231 ((struct btrfs_device_info *)dev_info2)->max_avail)
1232 return 1;
1233 else
1234 return 0;
1235 }
1236
1237 /*
1238 * sort the devices by max_avail, in which max free extent size of each device
1239 * is stored.(Descending Sort)
1240 */
1241 static inline void btrfs_descending_sort_devices(
1242 struct btrfs_device_info *devices,
1243 size_t nr_devices)
1244 {
1245 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1246 btrfs_cmp_device_free_bytes, NULL);
1247 }
1248
1249 /*
1250 * The helper to calc the free space on the devices that can be used to store
1251 * file data.
1252 */
1253 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1254 {
1255 struct btrfs_fs_info *fs_info = root->fs_info;
1256 struct btrfs_device_info *devices_info;
1257 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1258 struct btrfs_device *device;
1259 u64 skip_space;
1260 u64 type;
1261 u64 avail_space;
1262 u64 used_space;
1263 u64 min_stripe_size;
1264 int min_stripes = 1, num_stripes = 1;
1265 int i = 0, nr_devices;
1266 int ret;
1267
1268 nr_devices = fs_info->fs_devices->open_devices;
1269 BUG_ON(!nr_devices);
1270
1271 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1272 GFP_NOFS);
1273 if (!devices_info)
1274 return -ENOMEM;
1275
1276 /* calc min stripe number for data space alloction */
1277 type = btrfs_get_alloc_profile(root, 1);
1278 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1279 min_stripes = 2;
1280 num_stripes = nr_devices;
1281 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1282 min_stripes = 2;
1283 num_stripes = 2;
1284 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1285 min_stripes = 4;
1286 num_stripes = 4;
1287 }
1288
1289 if (type & BTRFS_BLOCK_GROUP_DUP)
1290 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1291 else
1292 min_stripe_size = BTRFS_STRIPE_LEN;
1293
1294 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1295 if (!device->in_fs_metadata || !device->bdev)
1296 continue;
1297
1298 avail_space = device->total_bytes - device->bytes_used;
1299
1300 /* align with stripe_len */
1301 do_div(avail_space, BTRFS_STRIPE_LEN);
1302 avail_space *= BTRFS_STRIPE_LEN;
1303
1304 /*
1305 * In order to avoid overwritting the superblock on the drive,
1306 * btrfs starts at an offset of at least 1MB when doing chunk
1307 * allocation.
1308 */
1309 skip_space = 1024 * 1024;
1310
1311 /* user can set the offset in fs_info->alloc_start. */
1312 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1313 device->total_bytes)
1314 skip_space = max(fs_info->alloc_start, skip_space);
1315
1316 /*
1317 * btrfs can not use the free space in [0, skip_space - 1],
1318 * we must subtract it from the total. In order to implement
1319 * it, we account the used space in this range first.
1320 */
1321 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1322 &used_space);
1323 if (ret) {
1324 kfree(devices_info);
1325 return ret;
1326 }
1327
1328 /* calc the free space in [0, skip_space - 1] */
1329 skip_space -= used_space;
1330
1331 /*
1332 * we can use the free space in [0, skip_space - 1], subtract
1333 * it from the total.
1334 */
1335 if (avail_space && avail_space >= skip_space)
1336 avail_space -= skip_space;
1337 else
1338 avail_space = 0;
1339
1340 if (avail_space < min_stripe_size)
1341 continue;
1342
1343 devices_info[i].dev = device;
1344 devices_info[i].max_avail = avail_space;
1345
1346 i++;
1347 }
1348
1349 nr_devices = i;
1350
1351 btrfs_descending_sort_devices(devices_info, nr_devices);
1352
1353 i = nr_devices - 1;
1354 avail_space = 0;
1355 while (nr_devices >= min_stripes) {
1356 if (num_stripes > nr_devices)
1357 num_stripes = nr_devices;
1358
1359 if (devices_info[i].max_avail >= min_stripe_size) {
1360 int j;
1361 u64 alloc_size;
1362
1363 avail_space += devices_info[i].max_avail * num_stripes;
1364 alloc_size = devices_info[i].max_avail;
1365 for (j = i + 1 - num_stripes; j <= i; j++)
1366 devices_info[j].max_avail -= alloc_size;
1367 }
1368 i--;
1369 nr_devices--;
1370 }
1371
1372 kfree(devices_info);
1373 *free_bytes = avail_space;
1374 return 0;
1375 }
1376
1377 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1378 {
1379 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1380 struct btrfs_super_block *disk_super = fs_info->super_copy;
1381 struct list_head *head = &fs_info->space_info;
1382 struct btrfs_space_info *found;
1383 u64 total_used = 0;
1384 u64 total_free_data = 0;
1385 int bits = dentry->d_sb->s_blocksize_bits;
1386 __be32 *fsid = (__be32 *)fs_info->fsid;
1387 int ret;
1388
1389 /* holding chunk_muext to avoid allocating new chunks */
1390 mutex_lock(&fs_info->chunk_mutex);
1391 rcu_read_lock();
1392 list_for_each_entry_rcu(found, head, list) {
1393 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1394 total_free_data += found->disk_total - found->disk_used;
1395 total_free_data -=
1396 btrfs_account_ro_block_groups_free_space(found);
1397 }
1398
1399 total_used += found->disk_used;
1400 }
1401 rcu_read_unlock();
1402
1403 buf->f_namelen = BTRFS_NAME_LEN;
1404 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1405 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1406 buf->f_bsize = dentry->d_sb->s_blocksize;
1407 buf->f_type = BTRFS_SUPER_MAGIC;
1408 buf->f_bavail = total_free_data;
1409 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1410 if (ret) {
1411 mutex_unlock(&fs_info->chunk_mutex);
1412 return ret;
1413 }
1414 buf->f_bavail += total_free_data;
1415 buf->f_bavail = buf->f_bavail >> bits;
1416 mutex_unlock(&fs_info->chunk_mutex);
1417
1418 /* We treat it as constant endianness (it doesn't matter _which_)
1419 because we want the fsid to come out the same whether mounted
1420 on a big-endian or little-endian host */
1421 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1422 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1423 /* Mask in the root object ID too, to disambiguate subvols */
1424 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1425 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1426
1427 return 0;
1428 }
1429
1430 static void btrfs_kill_super(struct super_block *sb)
1431 {
1432 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1433 kill_anon_super(sb);
1434 free_fs_info(fs_info);
1435 }
1436
1437 static struct file_system_type btrfs_fs_type = {
1438 .owner = THIS_MODULE,
1439 .name = "btrfs",
1440 .mount = btrfs_mount,
1441 .kill_sb = btrfs_kill_super,
1442 .fs_flags = FS_REQUIRES_DEV,
1443 };
1444
1445 /*
1446 * used by btrfsctl to scan devices when no FS is mounted
1447 */
1448 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1449 unsigned long arg)
1450 {
1451 struct btrfs_ioctl_vol_args *vol;
1452 struct btrfs_fs_devices *fs_devices;
1453 int ret = -ENOTTY;
1454
1455 if (!capable(CAP_SYS_ADMIN))
1456 return -EPERM;
1457
1458 vol = memdup_user((void __user *)arg, sizeof(*vol));
1459 if (IS_ERR(vol))
1460 return PTR_ERR(vol);
1461
1462 switch (cmd) {
1463 case BTRFS_IOC_SCAN_DEV:
1464 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1465 &btrfs_fs_type, &fs_devices);
1466 break;
1467 }
1468
1469 kfree(vol);
1470 return ret;
1471 }
1472
1473 static int btrfs_freeze(struct super_block *sb)
1474 {
1475 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1476 mutex_lock(&fs_info->transaction_kthread_mutex);
1477 mutex_lock(&fs_info->cleaner_mutex);
1478 return 0;
1479 }
1480
1481 static int btrfs_unfreeze(struct super_block *sb)
1482 {
1483 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1484 mutex_unlock(&fs_info->cleaner_mutex);
1485 mutex_unlock(&fs_info->transaction_kthread_mutex);
1486 return 0;
1487 }
1488
1489 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1490 {
1491 int ret;
1492
1493 ret = btrfs_dirty_inode(inode);
1494 if (ret)
1495 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1496 "error %d\n", btrfs_ino(inode), ret);
1497 }
1498
1499 static const struct super_operations btrfs_super_ops = {
1500 .drop_inode = btrfs_drop_inode,
1501 .evict_inode = btrfs_evict_inode,
1502 .put_super = btrfs_put_super,
1503 .sync_fs = btrfs_sync_fs,
1504 .show_options = btrfs_show_options,
1505 .write_inode = btrfs_write_inode,
1506 .dirty_inode = btrfs_fs_dirty_inode,
1507 .alloc_inode = btrfs_alloc_inode,
1508 .destroy_inode = btrfs_destroy_inode,
1509 .statfs = btrfs_statfs,
1510 .remount_fs = btrfs_remount,
1511 .freeze_fs = btrfs_freeze,
1512 .unfreeze_fs = btrfs_unfreeze,
1513 };
1514
1515 static const struct file_operations btrfs_ctl_fops = {
1516 .unlocked_ioctl = btrfs_control_ioctl,
1517 .compat_ioctl = btrfs_control_ioctl,
1518 .owner = THIS_MODULE,
1519 .llseek = noop_llseek,
1520 };
1521
1522 static struct miscdevice btrfs_misc = {
1523 .minor = BTRFS_MINOR,
1524 .name = "btrfs-control",
1525 .fops = &btrfs_ctl_fops
1526 };
1527
1528 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1529 MODULE_ALIAS("devname:btrfs-control");
1530
1531 static int btrfs_interface_init(void)
1532 {
1533 return misc_register(&btrfs_misc);
1534 }
1535
1536 static void btrfs_interface_exit(void)
1537 {
1538 if (misc_deregister(&btrfs_misc) < 0)
1539 printk(KERN_INFO "misc_deregister failed for control device");
1540 }
1541
1542 static int __init init_btrfs_fs(void)
1543 {
1544 int err;
1545
1546 err = btrfs_init_sysfs();
1547 if (err)
1548 return err;
1549
1550 btrfs_init_compress();
1551
1552 err = btrfs_init_cachep();
1553 if (err)
1554 goto free_compress;
1555
1556 err = extent_io_init();
1557 if (err)
1558 goto free_cachep;
1559
1560 err = extent_map_init();
1561 if (err)
1562 goto free_extent_io;
1563
1564 err = btrfs_delayed_inode_init();
1565 if (err)
1566 goto free_extent_map;
1567
1568 err = btrfs_interface_init();
1569 if (err)
1570 goto free_delayed_inode;
1571
1572 err = register_filesystem(&btrfs_fs_type);
1573 if (err)
1574 goto unregister_ioctl;
1575
1576 btrfs_init_lockdep();
1577
1578 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1579 return 0;
1580
1581 unregister_ioctl:
1582 btrfs_interface_exit();
1583 free_delayed_inode:
1584 btrfs_delayed_inode_exit();
1585 free_extent_map:
1586 extent_map_exit();
1587 free_extent_io:
1588 extent_io_exit();
1589 free_cachep:
1590 btrfs_destroy_cachep();
1591 free_compress:
1592 btrfs_exit_compress();
1593 btrfs_exit_sysfs();
1594 return err;
1595 }
1596
1597 static void __exit exit_btrfs_fs(void)
1598 {
1599 btrfs_destroy_cachep();
1600 btrfs_delayed_inode_exit();
1601 extent_map_exit();
1602 extent_io_exit();
1603 btrfs_interface_exit();
1604 unregister_filesystem(&btrfs_fs_type);
1605 btrfs_exit_sysfs();
1606 btrfs_cleanup_fs_uuids();
1607 btrfs_exit_compress();
1608 }
1609
1610 module_init(init_btrfs_fs)
1611 module_exit(exit_btrfs_fs)
1612
1613 MODULE_LICENSE("GPL");
This page took 0.066172 seconds and 5 git commands to generate.