Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68
69 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70
71 static const char *btrfs_decode_error(int errno)
72 {
73 char *errstr = "unknown";
74
75 switch (errno) {
76 case -EIO:
77 errstr = "IO failure";
78 break;
79 case -ENOMEM:
80 errstr = "Out of memory";
81 break;
82 case -EROFS:
83 errstr = "Readonly filesystem";
84 break;
85 case -EEXIST:
86 errstr = "Object already exists";
87 break;
88 case -ENOSPC:
89 errstr = "No space left";
90 break;
91 case -ENOENT:
92 errstr = "No such entry";
93 break;
94 }
95
96 return errstr;
97 }
98
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101 /*
102 * today we only save the error info into ram. Long term we'll
103 * also send it down to the disk
104 */
105 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 struct super_block *sb = fs_info->sb;
112
113 if (sb->s_flags & MS_RDONLY)
114 return;
115
116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117 sb->s_flags |= MS_RDONLY;
118 btrfs_info(fs_info, "forced readonly");
119 /*
120 * Note that a running device replace operation is not
121 * canceled here although there is no way to update
122 * the progress. It would add the risk of a deadlock,
123 * therefore the canceling is ommited. The only penalty
124 * is that some I/O remains active until the procedure
125 * completes. The next time when the filesystem is
126 * mounted writeable again, the device replace
127 * operation continues.
128 */
129 }
130 }
131
132 #ifdef CONFIG_PRINTK
133 /*
134 * __btrfs_std_error decodes expected errors from the caller and
135 * invokes the approciate error response.
136 */
137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
138 unsigned int line, int errno, const char *fmt, ...)
139 {
140 struct super_block *sb = fs_info->sb;
141 const char *errstr;
142
143 /*
144 * Special case: if the error is EROFS, and we're already
145 * under MS_RDONLY, then it is safe here.
146 */
147 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
148 return;
149
150 errstr = btrfs_decode_error(errno);
151 if (fmt) {
152 struct va_format vaf;
153 va_list args;
154
155 va_start(args, fmt);
156 vaf.fmt = fmt;
157 vaf.va = &args;
158
159 printk(KERN_CRIT
160 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
161 sb->s_id, function, line, errno, errstr, &vaf);
162 va_end(args);
163 } else {
164 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
165 sb->s_id, function, line, errno, errstr);
166 }
167
168 /* Don't go through full error handling during mount */
169 save_error_info(fs_info);
170 if (sb->s_flags & MS_BORN)
171 btrfs_handle_error(fs_info);
172 }
173
174 static const char * const logtypes[] = {
175 "emergency",
176 "alert",
177 "critical",
178 "error",
179 "warning",
180 "notice",
181 "info",
182 "debug",
183 };
184
185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
186 {
187 struct super_block *sb = fs_info->sb;
188 char lvl[4];
189 struct va_format vaf;
190 va_list args;
191 const char *type = logtypes[4];
192 int kern_level;
193
194 va_start(args, fmt);
195
196 kern_level = printk_get_level(fmt);
197 if (kern_level) {
198 size_t size = printk_skip_level(fmt) - fmt;
199 memcpy(lvl, fmt, size);
200 lvl[size] = '\0';
201 fmt += size;
202 type = logtypes[kern_level - '0'];
203 } else
204 *lvl = '\0';
205
206 vaf.fmt = fmt;
207 vaf.va = &args;
208
209 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
210
211 va_end(args);
212 }
213
214 #else
215
216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
217 unsigned int line, int errno, const char *fmt, ...)
218 {
219 struct super_block *sb = fs_info->sb;
220
221 /*
222 * Special case: if the error is EROFS, and we're already
223 * under MS_RDONLY, then it is safe here.
224 */
225 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
226 return;
227
228 /* Don't go through full error handling during mount */
229 if (sb->s_flags & MS_BORN) {
230 save_error_info(fs_info);
231 btrfs_handle_error(fs_info);
232 }
233 }
234 #endif
235
236 /*
237 * We only mark the transaction aborted and then set the file system read-only.
238 * This will prevent new transactions from starting or trying to join this
239 * one.
240 *
241 * This means that error recovery at the call site is limited to freeing
242 * any local memory allocations and passing the error code up without
243 * further cleanup. The transaction should complete as it normally would
244 * in the call path but will return -EIO.
245 *
246 * We'll complete the cleanup in btrfs_end_transaction and
247 * btrfs_commit_transaction.
248 */
249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
250 struct btrfs_root *root, const char *function,
251 unsigned int line, int errno)
252 {
253 /*
254 * Report first abort since mount
255 */
256 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
257 &root->fs_info->fs_state)) {
258 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
259 errno);
260 }
261 trans->aborted = errno;
262 /* Nothing used. The other threads that have joined this
263 * transaction may be able to continue. */
264 if (!trans->blocks_used) {
265 const char *errstr;
266
267 errstr = btrfs_decode_error(errno);
268 btrfs_warn(root->fs_info,
269 "%s:%d: Aborting unused transaction(%s).",
270 function, line, errstr);
271 return;
272 }
273 ACCESS_ONCE(trans->transaction->aborted) = errno;
274 /* Wake up anybody who may be waiting on this transaction */
275 wake_up(&root->fs_info->transaction_wait);
276 wake_up(&root->fs_info->transaction_blocked_wait);
277 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
278 }
279 /*
280 * __btrfs_panic decodes unexpected, fatal errors from the caller,
281 * issues an alert, and either panics or BUGs, depending on mount options.
282 */
283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
284 unsigned int line, int errno, const char *fmt, ...)
285 {
286 char *s_id = "<unknown>";
287 const char *errstr;
288 struct va_format vaf = { .fmt = fmt };
289 va_list args;
290
291 if (fs_info)
292 s_id = fs_info->sb->s_id;
293
294 va_start(args, fmt);
295 vaf.va = &args;
296
297 errstr = btrfs_decode_error(errno);
298 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
299 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
300 s_id, function, line, &vaf, errno, errstr);
301
302 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
303 function, line, &vaf, errno, errstr);
304 va_end(args);
305 /* Caller calls BUG() */
306 }
307
308 static void btrfs_put_super(struct super_block *sb)
309 {
310 (void)close_ctree(btrfs_sb(sb)->tree_root);
311 /* FIXME: need to fix VFS to return error? */
312 /* AV: return it _where_? ->put_super() can be triggered by any number
313 * of async events, up to and including delivery of SIGKILL to the
314 * last process that kept it busy. Or segfault in the aforementioned
315 * process... Whom would you report that to?
316 */
317 }
318
319 enum {
320 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
321 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
322 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
323 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
324 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
325 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
326 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
327 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
328 Opt_check_integrity, Opt_check_integrity_including_extent_data,
329 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
330 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
331 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
332 Opt_datasum, Opt_treelog, Opt_noinode_cache,
333 Opt_err,
334 };
335
336 static match_table_t tokens = {
337 {Opt_degraded, "degraded"},
338 {Opt_subvol, "subvol=%s"},
339 {Opt_subvolid, "subvolid=%s"},
340 {Opt_device, "device=%s"},
341 {Opt_nodatasum, "nodatasum"},
342 {Opt_datasum, "datasum"},
343 {Opt_nodatacow, "nodatacow"},
344 {Opt_datacow, "datacow"},
345 {Opt_nobarrier, "nobarrier"},
346 {Opt_barrier, "barrier"},
347 {Opt_max_inline, "max_inline=%s"},
348 {Opt_alloc_start, "alloc_start=%s"},
349 {Opt_thread_pool, "thread_pool=%d"},
350 {Opt_compress, "compress"},
351 {Opt_compress_type, "compress=%s"},
352 {Opt_compress_force, "compress-force"},
353 {Opt_compress_force_type, "compress-force=%s"},
354 {Opt_ssd, "ssd"},
355 {Opt_ssd_spread, "ssd_spread"},
356 {Opt_nossd, "nossd"},
357 {Opt_acl, "acl"},
358 {Opt_noacl, "noacl"},
359 {Opt_notreelog, "notreelog"},
360 {Opt_treelog, "treelog"},
361 {Opt_flushoncommit, "flushoncommit"},
362 {Opt_noflushoncommit, "noflushoncommit"},
363 {Opt_ratio, "metadata_ratio=%d"},
364 {Opt_discard, "discard"},
365 {Opt_nodiscard, "nodiscard"},
366 {Opt_space_cache, "space_cache"},
367 {Opt_clear_cache, "clear_cache"},
368 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369 {Opt_enospc_debug, "enospc_debug"},
370 {Opt_noenospc_debug, "noenospc_debug"},
371 {Opt_subvolrootid, "subvolrootid=%d"},
372 {Opt_defrag, "autodefrag"},
373 {Opt_nodefrag, "noautodefrag"},
374 {Opt_inode_cache, "inode_cache"},
375 {Opt_noinode_cache, "noinode_cache"},
376 {Opt_no_space_cache, "nospace_cache"},
377 {Opt_recovery, "recovery"},
378 {Opt_skip_balance, "skip_balance"},
379 {Opt_check_integrity, "check_int"},
380 {Opt_check_integrity_including_extent_data, "check_int_data"},
381 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 {Opt_fatal_errors, "fatal_errors=%s"},
384 {Opt_commit_interval, "commit=%d"},
385 {Opt_err, NULL},
386 };
387
388 #define btrfs_set_and_info(root, opt, fmt, args...) \
389 { \
390 if (!btrfs_test_opt(root, opt)) \
391 btrfs_info(root->fs_info, fmt, ##args); \
392 btrfs_set_opt(root->fs_info->mount_opt, opt); \
393 }
394
395 #define btrfs_clear_and_info(root, opt, fmt, args...) \
396 { \
397 if (btrfs_test_opt(root, opt)) \
398 btrfs_info(root->fs_info, fmt, ##args); \
399 btrfs_clear_opt(root->fs_info->mount_opt, opt); \
400 }
401
402 /*
403 * Regular mount options parser. Everything that is needed only when
404 * reading in a new superblock is parsed here.
405 * XXX JDM: This needs to be cleaned up for remount.
406 */
407 int btrfs_parse_options(struct btrfs_root *root, char *options)
408 {
409 struct btrfs_fs_info *info = root->fs_info;
410 substring_t args[MAX_OPT_ARGS];
411 char *p, *num, *orig = NULL;
412 u64 cache_gen;
413 int intarg;
414 int ret = 0;
415 char *compress_type;
416 bool compress_force = false;
417 bool compress = false;
418
419 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
420 if (cache_gen)
421 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
422
423 if (!options)
424 goto out;
425
426 /*
427 * strsep changes the string, duplicate it because parse_options
428 * gets called twice
429 */
430 options = kstrdup(options, GFP_NOFS);
431 if (!options)
432 return -ENOMEM;
433
434 orig = options;
435
436 while ((p = strsep(&options, ",")) != NULL) {
437 int token;
438 if (!*p)
439 continue;
440
441 token = match_token(p, tokens, args);
442 switch (token) {
443 case Opt_degraded:
444 btrfs_info(root->fs_info, "allowing degraded mounts");
445 btrfs_set_opt(info->mount_opt, DEGRADED);
446 break;
447 case Opt_subvol:
448 case Opt_subvolid:
449 case Opt_subvolrootid:
450 case Opt_device:
451 /*
452 * These are parsed by btrfs_parse_early_options
453 * and can be happily ignored here.
454 */
455 break;
456 case Opt_nodatasum:
457 btrfs_set_and_info(root, NODATASUM,
458 "setting nodatasum");
459 break;
460 case Opt_datasum:
461 if (btrfs_test_opt(root, NODATASUM)) {
462 if (btrfs_test_opt(root, NODATACOW))
463 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
464 else
465 btrfs_info(root->fs_info, "setting datasum");
466 }
467 btrfs_clear_opt(info->mount_opt, NODATACOW);
468 btrfs_clear_opt(info->mount_opt, NODATASUM);
469 break;
470 case Opt_nodatacow:
471 if (!btrfs_test_opt(root, NODATACOW)) {
472 if (!btrfs_test_opt(root, COMPRESS) ||
473 !btrfs_test_opt(root, FORCE_COMPRESS)) {
474 btrfs_info(root->fs_info,
475 "setting nodatacow, compression disabled");
476 } else {
477 btrfs_info(root->fs_info, "setting nodatacow");
478 }
479 }
480 btrfs_clear_opt(info->mount_opt, COMPRESS);
481 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
482 btrfs_set_opt(info->mount_opt, NODATACOW);
483 btrfs_set_opt(info->mount_opt, NODATASUM);
484 break;
485 case Opt_datacow:
486 btrfs_clear_and_info(root, NODATACOW,
487 "setting datacow");
488 break;
489 case Opt_compress_force:
490 case Opt_compress_force_type:
491 compress_force = true;
492 /* Fallthrough */
493 case Opt_compress:
494 case Opt_compress_type:
495 compress = true;
496 if (token == Opt_compress ||
497 token == Opt_compress_force ||
498 strcmp(args[0].from, "zlib") == 0) {
499 compress_type = "zlib";
500 info->compress_type = BTRFS_COMPRESS_ZLIB;
501 btrfs_set_opt(info->mount_opt, COMPRESS);
502 btrfs_clear_opt(info->mount_opt, NODATACOW);
503 btrfs_clear_opt(info->mount_opt, NODATASUM);
504 } else if (strcmp(args[0].from, "lzo") == 0) {
505 compress_type = "lzo";
506 info->compress_type = BTRFS_COMPRESS_LZO;
507 btrfs_set_opt(info->mount_opt, COMPRESS);
508 btrfs_clear_opt(info->mount_opt, NODATACOW);
509 btrfs_clear_opt(info->mount_opt, NODATASUM);
510 btrfs_set_fs_incompat(info, COMPRESS_LZO);
511 } else if (strncmp(args[0].from, "no", 2) == 0) {
512 compress_type = "no";
513 btrfs_clear_opt(info->mount_opt, COMPRESS);
514 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
515 compress_force = false;
516 } else {
517 ret = -EINVAL;
518 goto out;
519 }
520
521 if (compress_force) {
522 btrfs_set_and_info(root, FORCE_COMPRESS,
523 "force %s compression",
524 compress_type);
525 } else if (compress) {
526 if (!btrfs_test_opt(root, COMPRESS))
527 btrfs_info(root->fs_info,
528 "btrfs: use %s compression\n",
529 compress_type);
530 }
531 break;
532 case Opt_ssd:
533 btrfs_set_and_info(root, SSD,
534 "use ssd allocation scheme");
535 break;
536 case Opt_ssd_spread:
537 btrfs_set_and_info(root, SSD_SPREAD,
538 "use spread ssd allocation scheme");
539 break;
540 case Opt_nossd:
541 btrfs_clear_and_info(root, NOSSD,
542 "not using ssd allocation scheme");
543 btrfs_clear_opt(info->mount_opt, SSD);
544 break;
545 case Opt_barrier:
546 btrfs_clear_and_info(root, NOBARRIER,
547 "turning on barriers");
548 break;
549 case Opt_nobarrier:
550 btrfs_set_and_info(root, NOBARRIER,
551 "turning off barriers");
552 break;
553 case Opt_thread_pool:
554 ret = match_int(&args[0], &intarg);
555 if (ret) {
556 goto out;
557 } else if (intarg > 0) {
558 info->thread_pool_size = intarg;
559 } else {
560 ret = -EINVAL;
561 goto out;
562 }
563 break;
564 case Opt_max_inline:
565 num = match_strdup(&args[0]);
566 if (num) {
567 info->max_inline = memparse(num, NULL);
568 kfree(num);
569
570 if (info->max_inline) {
571 info->max_inline = min_t(u64,
572 info->max_inline,
573 root->sectorsize);
574 }
575 btrfs_info(root->fs_info, "max_inline at %llu",
576 info->max_inline);
577 } else {
578 ret = -ENOMEM;
579 goto out;
580 }
581 break;
582 case Opt_alloc_start:
583 num = match_strdup(&args[0]);
584 if (num) {
585 mutex_lock(&info->chunk_mutex);
586 info->alloc_start = memparse(num, NULL);
587 mutex_unlock(&info->chunk_mutex);
588 kfree(num);
589 btrfs_info(root->fs_info, "allocations start at %llu",
590 info->alloc_start);
591 } else {
592 ret = -ENOMEM;
593 goto out;
594 }
595 break;
596 case Opt_acl:
597 root->fs_info->sb->s_flags |= MS_POSIXACL;
598 break;
599 case Opt_noacl:
600 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
601 break;
602 case Opt_notreelog:
603 btrfs_set_and_info(root, NOTREELOG,
604 "disabling tree log");
605 break;
606 case Opt_treelog:
607 btrfs_clear_and_info(root, NOTREELOG,
608 "enabling tree log");
609 break;
610 case Opt_flushoncommit:
611 btrfs_set_and_info(root, FLUSHONCOMMIT,
612 "turning on flush-on-commit");
613 break;
614 case Opt_noflushoncommit:
615 btrfs_clear_and_info(root, FLUSHONCOMMIT,
616 "turning off flush-on-commit");
617 break;
618 case Opt_ratio:
619 ret = match_int(&args[0], &intarg);
620 if (ret) {
621 goto out;
622 } else if (intarg >= 0) {
623 info->metadata_ratio = intarg;
624 btrfs_info(root->fs_info, "metadata ratio %d",
625 info->metadata_ratio);
626 } else {
627 ret = -EINVAL;
628 goto out;
629 }
630 break;
631 case Opt_discard:
632 btrfs_set_and_info(root, DISCARD,
633 "turning on discard");
634 break;
635 case Opt_nodiscard:
636 btrfs_clear_and_info(root, DISCARD,
637 "turning off discard");
638 break;
639 case Opt_space_cache:
640 btrfs_set_and_info(root, SPACE_CACHE,
641 "enabling disk space caching");
642 break;
643 case Opt_rescan_uuid_tree:
644 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
645 break;
646 case Opt_no_space_cache:
647 btrfs_clear_and_info(root, SPACE_CACHE,
648 "disabling disk space caching");
649 break;
650 case Opt_inode_cache:
651 btrfs_set_and_info(root, CHANGE_INODE_CACHE,
652 "enabling inode map caching");
653 break;
654 case Opt_noinode_cache:
655 btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
656 "disabling inode map caching");
657 break;
658 case Opt_clear_cache:
659 btrfs_set_and_info(root, CLEAR_CACHE,
660 "force clearing of disk cache");
661 break;
662 case Opt_user_subvol_rm_allowed:
663 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
664 break;
665 case Opt_enospc_debug:
666 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
667 break;
668 case Opt_noenospc_debug:
669 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
670 break;
671 case Opt_defrag:
672 btrfs_set_and_info(root, AUTO_DEFRAG,
673 "enabling auto defrag");
674 break;
675 case Opt_nodefrag:
676 btrfs_clear_and_info(root, AUTO_DEFRAG,
677 "disabling auto defrag");
678 break;
679 case Opt_recovery:
680 btrfs_info(root->fs_info, "enabling auto recovery");
681 btrfs_set_opt(info->mount_opt, RECOVERY);
682 break;
683 case Opt_skip_balance:
684 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
685 break;
686 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
687 case Opt_check_integrity_including_extent_data:
688 btrfs_info(root->fs_info,
689 "enabling check integrity including extent data");
690 btrfs_set_opt(info->mount_opt,
691 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
692 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
693 break;
694 case Opt_check_integrity:
695 btrfs_info(root->fs_info, "enabling check integrity");
696 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
697 break;
698 case Opt_check_integrity_print_mask:
699 ret = match_int(&args[0], &intarg);
700 if (ret) {
701 goto out;
702 } else if (intarg >= 0) {
703 info->check_integrity_print_mask = intarg;
704 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
705 info->check_integrity_print_mask);
706 } else {
707 ret = -EINVAL;
708 goto out;
709 }
710 break;
711 #else
712 case Opt_check_integrity_including_extent_data:
713 case Opt_check_integrity:
714 case Opt_check_integrity_print_mask:
715 btrfs_err(root->fs_info,
716 "support for check_integrity* not compiled in!");
717 ret = -EINVAL;
718 goto out;
719 #endif
720 case Opt_fatal_errors:
721 if (strcmp(args[0].from, "panic") == 0)
722 btrfs_set_opt(info->mount_opt,
723 PANIC_ON_FATAL_ERROR);
724 else if (strcmp(args[0].from, "bug") == 0)
725 btrfs_clear_opt(info->mount_opt,
726 PANIC_ON_FATAL_ERROR);
727 else {
728 ret = -EINVAL;
729 goto out;
730 }
731 break;
732 case Opt_commit_interval:
733 intarg = 0;
734 ret = match_int(&args[0], &intarg);
735 if (ret < 0) {
736 btrfs_err(root->fs_info, "invalid commit interval");
737 ret = -EINVAL;
738 goto out;
739 }
740 if (intarg > 0) {
741 if (intarg > 300) {
742 btrfs_warn(root->fs_info, "excessive commit interval %d",
743 intarg);
744 }
745 info->commit_interval = intarg;
746 } else {
747 btrfs_info(root->fs_info, "using default commit interval %ds",
748 BTRFS_DEFAULT_COMMIT_INTERVAL);
749 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
750 }
751 break;
752 case Opt_err:
753 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
754 ret = -EINVAL;
755 goto out;
756 default:
757 break;
758 }
759 }
760 out:
761 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
762 btrfs_info(root->fs_info, "disk space caching is enabled");
763 kfree(orig);
764 return ret;
765 }
766
767 /*
768 * Parse mount options that are required early in the mount process.
769 *
770 * All other options will be parsed on much later in the mount process and
771 * only when we need to allocate a new super block.
772 */
773 static int btrfs_parse_early_options(const char *options, fmode_t flags,
774 void *holder, char **subvol_name, u64 *subvol_objectid,
775 struct btrfs_fs_devices **fs_devices)
776 {
777 substring_t args[MAX_OPT_ARGS];
778 char *device_name, *opts, *orig, *p;
779 char *num = NULL;
780 int error = 0;
781
782 if (!options)
783 return 0;
784
785 /*
786 * strsep changes the string, duplicate it because parse_options
787 * gets called twice
788 */
789 opts = kstrdup(options, GFP_KERNEL);
790 if (!opts)
791 return -ENOMEM;
792 orig = opts;
793
794 while ((p = strsep(&opts, ",")) != NULL) {
795 int token;
796 if (!*p)
797 continue;
798
799 token = match_token(p, tokens, args);
800 switch (token) {
801 case Opt_subvol:
802 kfree(*subvol_name);
803 *subvol_name = match_strdup(&args[0]);
804 if (!*subvol_name) {
805 error = -ENOMEM;
806 goto out;
807 }
808 break;
809 case Opt_subvolid:
810 num = match_strdup(&args[0]);
811 if (num) {
812 *subvol_objectid = memparse(num, NULL);
813 kfree(num);
814 /* we want the original fs_tree */
815 if (!*subvol_objectid)
816 *subvol_objectid =
817 BTRFS_FS_TREE_OBJECTID;
818 } else {
819 error = -EINVAL;
820 goto out;
821 }
822 break;
823 case Opt_subvolrootid:
824 printk(KERN_WARNING
825 "BTRFS: 'subvolrootid' mount option is deprecated and has "
826 "no effect\n");
827 break;
828 case Opt_device:
829 device_name = match_strdup(&args[0]);
830 if (!device_name) {
831 error = -ENOMEM;
832 goto out;
833 }
834 error = btrfs_scan_one_device(device_name,
835 flags, holder, fs_devices);
836 kfree(device_name);
837 if (error)
838 goto out;
839 break;
840 default:
841 break;
842 }
843 }
844
845 out:
846 kfree(orig);
847 return error;
848 }
849
850 static struct dentry *get_default_root(struct super_block *sb,
851 u64 subvol_objectid)
852 {
853 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
854 struct btrfs_root *root = fs_info->tree_root;
855 struct btrfs_root *new_root;
856 struct btrfs_dir_item *di;
857 struct btrfs_path *path;
858 struct btrfs_key location;
859 struct inode *inode;
860 struct dentry *dentry;
861 u64 dir_id;
862 int new = 0;
863
864 /*
865 * We have a specific subvol we want to mount, just setup location and
866 * go look up the root.
867 */
868 if (subvol_objectid) {
869 location.objectid = subvol_objectid;
870 location.type = BTRFS_ROOT_ITEM_KEY;
871 location.offset = (u64)-1;
872 goto find_root;
873 }
874
875 path = btrfs_alloc_path();
876 if (!path)
877 return ERR_PTR(-ENOMEM);
878 path->leave_spinning = 1;
879
880 /*
881 * Find the "default" dir item which points to the root item that we
882 * will mount by default if we haven't been given a specific subvolume
883 * to mount.
884 */
885 dir_id = btrfs_super_root_dir(fs_info->super_copy);
886 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
887 if (IS_ERR(di)) {
888 btrfs_free_path(path);
889 return ERR_CAST(di);
890 }
891 if (!di) {
892 /*
893 * Ok the default dir item isn't there. This is weird since
894 * it's always been there, but don't freak out, just try and
895 * mount to root most subvolume.
896 */
897 btrfs_free_path(path);
898 dir_id = BTRFS_FIRST_FREE_OBJECTID;
899 new_root = fs_info->fs_root;
900 goto setup_root;
901 }
902
903 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
904 btrfs_free_path(path);
905
906 find_root:
907 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
908 if (IS_ERR(new_root))
909 return ERR_CAST(new_root);
910
911 dir_id = btrfs_root_dirid(&new_root->root_item);
912 setup_root:
913 location.objectid = dir_id;
914 location.type = BTRFS_INODE_ITEM_KEY;
915 location.offset = 0;
916
917 inode = btrfs_iget(sb, &location, new_root, &new);
918 if (IS_ERR(inode))
919 return ERR_CAST(inode);
920
921 /*
922 * If we're just mounting the root most subvol put the inode and return
923 * a reference to the dentry. We will have already gotten a reference
924 * to the inode in btrfs_fill_super so we're good to go.
925 */
926 if (!new && sb->s_root->d_inode == inode) {
927 iput(inode);
928 return dget(sb->s_root);
929 }
930
931 dentry = d_obtain_alias(inode);
932 if (!IS_ERR(dentry)) {
933 spin_lock(&dentry->d_lock);
934 dentry->d_flags &= ~DCACHE_DISCONNECTED;
935 spin_unlock(&dentry->d_lock);
936 }
937 return dentry;
938 }
939
940 static int btrfs_fill_super(struct super_block *sb,
941 struct btrfs_fs_devices *fs_devices,
942 void *data, int silent)
943 {
944 struct inode *inode;
945 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
946 struct btrfs_key key;
947 int err;
948
949 sb->s_maxbytes = MAX_LFS_FILESIZE;
950 sb->s_magic = BTRFS_SUPER_MAGIC;
951 sb->s_op = &btrfs_super_ops;
952 sb->s_d_op = &btrfs_dentry_operations;
953 sb->s_export_op = &btrfs_export_ops;
954 sb->s_xattr = btrfs_xattr_handlers;
955 sb->s_time_gran = 1;
956 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
957 sb->s_flags |= MS_POSIXACL;
958 #endif
959 sb->s_flags |= MS_I_VERSION;
960 err = open_ctree(sb, fs_devices, (char *)data);
961 if (err) {
962 printk(KERN_ERR "BTRFS: open_ctree failed\n");
963 return err;
964 }
965
966 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
967 key.type = BTRFS_INODE_ITEM_KEY;
968 key.offset = 0;
969 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
970 if (IS_ERR(inode)) {
971 err = PTR_ERR(inode);
972 goto fail_close;
973 }
974
975 sb->s_root = d_make_root(inode);
976 if (!sb->s_root) {
977 err = -ENOMEM;
978 goto fail_close;
979 }
980
981 save_mount_options(sb, data);
982 cleancache_init_fs(sb);
983 sb->s_flags |= MS_ACTIVE;
984 return 0;
985
986 fail_close:
987 close_ctree(fs_info->tree_root);
988 return err;
989 }
990
991 int btrfs_sync_fs(struct super_block *sb, int wait)
992 {
993 struct btrfs_trans_handle *trans;
994 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
995 struct btrfs_root *root = fs_info->tree_root;
996
997 trace_btrfs_sync_fs(wait);
998
999 if (!wait) {
1000 filemap_flush(fs_info->btree_inode->i_mapping);
1001 return 0;
1002 }
1003
1004 btrfs_wait_ordered_roots(fs_info, -1);
1005
1006 trans = btrfs_attach_transaction_barrier(root);
1007 if (IS_ERR(trans)) {
1008 /* no transaction, don't bother */
1009 if (PTR_ERR(trans) == -ENOENT)
1010 return 0;
1011 return PTR_ERR(trans);
1012 }
1013 return btrfs_commit_transaction(trans, root);
1014 }
1015
1016 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1017 {
1018 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1019 struct btrfs_root *root = info->tree_root;
1020 char *compress_type;
1021
1022 if (btrfs_test_opt(root, DEGRADED))
1023 seq_puts(seq, ",degraded");
1024 if (btrfs_test_opt(root, NODATASUM))
1025 seq_puts(seq, ",nodatasum");
1026 if (btrfs_test_opt(root, NODATACOW))
1027 seq_puts(seq, ",nodatacow");
1028 if (btrfs_test_opt(root, NOBARRIER))
1029 seq_puts(seq, ",nobarrier");
1030 if (info->max_inline != 8192 * 1024)
1031 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1032 if (info->alloc_start != 0)
1033 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1034 if (info->thread_pool_size != min_t(unsigned long,
1035 num_online_cpus() + 2, 8))
1036 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1037 if (btrfs_test_opt(root, COMPRESS)) {
1038 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1039 compress_type = "zlib";
1040 else
1041 compress_type = "lzo";
1042 if (btrfs_test_opt(root, FORCE_COMPRESS))
1043 seq_printf(seq, ",compress-force=%s", compress_type);
1044 else
1045 seq_printf(seq, ",compress=%s", compress_type);
1046 }
1047 if (btrfs_test_opt(root, NOSSD))
1048 seq_puts(seq, ",nossd");
1049 if (btrfs_test_opt(root, SSD_SPREAD))
1050 seq_puts(seq, ",ssd_spread");
1051 else if (btrfs_test_opt(root, SSD))
1052 seq_puts(seq, ",ssd");
1053 if (btrfs_test_opt(root, NOTREELOG))
1054 seq_puts(seq, ",notreelog");
1055 if (btrfs_test_opt(root, FLUSHONCOMMIT))
1056 seq_puts(seq, ",flushoncommit");
1057 if (btrfs_test_opt(root, DISCARD))
1058 seq_puts(seq, ",discard");
1059 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1060 seq_puts(seq, ",noacl");
1061 if (btrfs_test_opt(root, SPACE_CACHE))
1062 seq_puts(seq, ",space_cache");
1063 else
1064 seq_puts(seq, ",nospace_cache");
1065 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1066 seq_puts(seq, ",rescan_uuid_tree");
1067 if (btrfs_test_opt(root, CLEAR_CACHE))
1068 seq_puts(seq, ",clear_cache");
1069 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1070 seq_puts(seq, ",user_subvol_rm_allowed");
1071 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1072 seq_puts(seq, ",enospc_debug");
1073 if (btrfs_test_opt(root, AUTO_DEFRAG))
1074 seq_puts(seq, ",autodefrag");
1075 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1076 seq_puts(seq, ",inode_cache");
1077 if (btrfs_test_opt(root, SKIP_BALANCE))
1078 seq_puts(seq, ",skip_balance");
1079 if (btrfs_test_opt(root, RECOVERY))
1080 seq_puts(seq, ",recovery");
1081 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1082 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1083 seq_puts(seq, ",check_int_data");
1084 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1085 seq_puts(seq, ",check_int");
1086 if (info->check_integrity_print_mask)
1087 seq_printf(seq, ",check_int_print_mask=%d",
1088 info->check_integrity_print_mask);
1089 #endif
1090 if (info->metadata_ratio)
1091 seq_printf(seq, ",metadata_ratio=%d",
1092 info->metadata_ratio);
1093 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1094 seq_puts(seq, ",fatal_errors=panic");
1095 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1096 seq_printf(seq, ",commit=%d", info->commit_interval);
1097 return 0;
1098 }
1099
1100 static int btrfs_test_super(struct super_block *s, void *data)
1101 {
1102 struct btrfs_fs_info *p = data;
1103 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1104
1105 return fs_info->fs_devices == p->fs_devices;
1106 }
1107
1108 static int btrfs_set_super(struct super_block *s, void *data)
1109 {
1110 int err = set_anon_super(s, data);
1111 if (!err)
1112 s->s_fs_info = data;
1113 return err;
1114 }
1115
1116 /*
1117 * subvolumes are identified by ino 256
1118 */
1119 static inline int is_subvolume_inode(struct inode *inode)
1120 {
1121 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1122 return 1;
1123 return 0;
1124 }
1125
1126 /*
1127 * This will strip out the subvol=%s argument for an argument string and add
1128 * subvolid=0 to make sure we get the actual tree root for path walking to the
1129 * subvol we want.
1130 */
1131 static char *setup_root_args(char *args)
1132 {
1133 unsigned len = strlen(args) + 2 + 1;
1134 char *src, *dst, *buf;
1135
1136 /*
1137 * We need the same args as before, but with this substitution:
1138 * s!subvol=[^,]+!subvolid=0!
1139 *
1140 * Since the replacement string is up to 2 bytes longer than the
1141 * original, allocate strlen(args) + 2 + 1 bytes.
1142 */
1143
1144 src = strstr(args, "subvol=");
1145 /* This shouldn't happen, but just in case.. */
1146 if (!src)
1147 return NULL;
1148
1149 buf = dst = kmalloc(len, GFP_NOFS);
1150 if (!buf)
1151 return NULL;
1152
1153 /*
1154 * If the subvol= arg is not at the start of the string,
1155 * copy whatever precedes it into buf.
1156 */
1157 if (src != args) {
1158 *src++ = '\0';
1159 strcpy(buf, args);
1160 dst += strlen(args);
1161 }
1162
1163 strcpy(dst, "subvolid=0");
1164 dst += strlen("subvolid=0");
1165
1166 /*
1167 * If there is a "," after the original subvol=... string,
1168 * copy that suffix into our buffer. Otherwise, we're done.
1169 */
1170 src = strchr(src, ',');
1171 if (src)
1172 strcpy(dst, src);
1173
1174 return buf;
1175 }
1176
1177 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1178 const char *device_name, char *data)
1179 {
1180 struct dentry *root;
1181 struct vfsmount *mnt;
1182 char *newargs;
1183
1184 newargs = setup_root_args(data);
1185 if (!newargs)
1186 return ERR_PTR(-ENOMEM);
1187 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1188 newargs);
1189 kfree(newargs);
1190
1191 if (PTR_RET(mnt) == -EBUSY) {
1192 if (flags & MS_RDONLY) {
1193 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1194 newargs);
1195 } else {
1196 int r;
1197 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1198 newargs);
1199 if (IS_ERR(mnt))
1200 return ERR_CAST(mnt);
1201
1202 r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1203 if (r < 0) {
1204 /* FIXME: release vfsmount mnt ??*/
1205 return ERR_PTR(r);
1206 }
1207 }
1208 }
1209
1210 if (IS_ERR(mnt))
1211 return ERR_CAST(mnt);
1212
1213 root = mount_subtree(mnt, subvol_name);
1214
1215 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1216 struct super_block *s = root->d_sb;
1217 dput(root);
1218 root = ERR_PTR(-EINVAL);
1219 deactivate_locked_super(s);
1220 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1221 subvol_name);
1222 }
1223
1224 return root;
1225 }
1226
1227 /*
1228 * Find a superblock for the given device / mount point.
1229 *
1230 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1231 * for multiple device setup. Make sure to keep it in sync.
1232 */
1233 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1234 const char *device_name, void *data)
1235 {
1236 struct block_device *bdev = NULL;
1237 struct super_block *s;
1238 struct dentry *root;
1239 struct btrfs_fs_devices *fs_devices = NULL;
1240 struct btrfs_fs_info *fs_info = NULL;
1241 fmode_t mode = FMODE_READ;
1242 char *subvol_name = NULL;
1243 u64 subvol_objectid = 0;
1244 int error = 0;
1245
1246 if (!(flags & MS_RDONLY))
1247 mode |= FMODE_WRITE;
1248
1249 error = btrfs_parse_early_options(data, mode, fs_type,
1250 &subvol_name, &subvol_objectid,
1251 &fs_devices);
1252 if (error) {
1253 kfree(subvol_name);
1254 return ERR_PTR(error);
1255 }
1256
1257 if (subvol_name) {
1258 root = mount_subvol(subvol_name, flags, device_name, data);
1259 kfree(subvol_name);
1260 return root;
1261 }
1262
1263 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1264 if (error)
1265 return ERR_PTR(error);
1266
1267 /*
1268 * Setup a dummy root and fs_info for test/set super. This is because
1269 * we don't actually fill this stuff out until open_ctree, but we need
1270 * it for searching for existing supers, so this lets us do that and
1271 * then open_ctree will properly initialize everything later.
1272 */
1273 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1274 if (!fs_info)
1275 return ERR_PTR(-ENOMEM);
1276
1277 fs_info->fs_devices = fs_devices;
1278
1279 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1280 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1281 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1282 error = -ENOMEM;
1283 goto error_fs_info;
1284 }
1285
1286 error = btrfs_open_devices(fs_devices, mode, fs_type);
1287 if (error)
1288 goto error_fs_info;
1289
1290 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1291 error = -EACCES;
1292 goto error_close_devices;
1293 }
1294
1295 bdev = fs_devices->latest_bdev;
1296 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1297 fs_info);
1298 if (IS_ERR(s)) {
1299 error = PTR_ERR(s);
1300 goto error_close_devices;
1301 }
1302
1303 if (s->s_root) {
1304 btrfs_close_devices(fs_devices);
1305 free_fs_info(fs_info);
1306 if ((flags ^ s->s_flags) & MS_RDONLY)
1307 error = -EBUSY;
1308 } else {
1309 char b[BDEVNAME_SIZE];
1310
1311 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1312 btrfs_sb(s)->bdev_holder = fs_type;
1313 error = btrfs_fill_super(s, fs_devices, data,
1314 flags & MS_SILENT ? 1 : 0);
1315 }
1316
1317 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1318 if (IS_ERR(root))
1319 deactivate_locked_super(s);
1320
1321 return root;
1322
1323 error_close_devices:
1324 btrfs_close_devices(fs_devices);
1325 error_fs_info:
1326 free_fs_info(fs_info);
1327 return ERR_PTR(error);
1328 }
1329
1330 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1331 int new_pool_size, int old_pool_size)
1332 {
1333 if (new_pool_size == old_pool_size)
1334 return;
1335
1336 fs_info->thread_pool_size = new_pool_size;
1337
1338 btrfs_info(fs_info, "resize thread pool %d -> %d",
1339 old_pool_size, new_pool_size);
1340
1341 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1342 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1343 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1344 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1345 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1346 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1347 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1348 new_pool_size);
1349 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1350 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1351 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1352 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1353 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1354 new_pool_size);
1355 }
1356
1357 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1358 {
1359 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1360 }
1361
1362 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1363 unsigned long old_opts, int flags)
1364 {
1365 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1366 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1367 (flags & MS_RDONLY))) {
1368 /* wait for any defraggers to finish */
1369 wait_event(fs_info->transaction_wait,
1370 (atomic_read(&fs_info->defrag_running) == 0));
1371 if (flags & MS_RDONLY)
1372 sync_filesystem(fs_info->sb);
1373 }
1374 }
1375
1376 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1377 unsigned long old_opts)
1378 {
1379 /*
1380 * We need cleanup all defragable inodes if the autodefragment is
1381 * close or the fs is R/O.
1382 */
1383 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1384 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1385 (fs_info->sb->s_flags & MS_RDONLY))) {
1386 btrfs_cleanup_defrag_inodes(fs_info);
1387 }
1388
1389 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1390 }
1391
1392 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1393 {
1394 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1395 struct btrfs_root *root = fs_info->tree_root;
1396 unsigned old_flags = sb->s_flags;
1397 unsigned long old_opts = fs_info->mount_opt;
1398 unsigned long old_compress_type = fs_info->compress_type;
1399 u64 old_max_inline = fs_info->max_inline;
1400 u64 old_alloc_start = fs_info->alloc_start;
1401 int old_thread_pool_size = fs_info->thread_pool_size;
1402 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1403 int ret;
1404
1405 sync_filesystem(sb);
1406 btrfs_remount_prepare(fs_info);
1407
1408 ret = btrfs_parse_options(root, data);
1409 if (ret) {
1410 ret = -EINVAL;
1411 goto restore;
1412 }
1413
1414 btrfs_remount_begin(fs_info, old_opts, *flags);
1415 btrfs_resize_thread_pool(fs_info,
1416 fs_info->thread_pool_size, old_thread_pool_size);
1417
1418 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1419 goto out;
1420
1421 if (*flags & MS_RDONLY) {
1422 /*
1423 * this also happens on 'umount -rf' or on shutdown, when
1424 * the filesystem is busy.
1425 */
1426
1427 /* wait for the uuid_scan task to finish */
1428 down(&fs_info->uuid_tree_rescan_sem);
1429 /* avoid complains from lockdep et al. */
1430 up(&fs_info->uuid_tree_rescan_sem);
1431
1432 sb->s_flags |= MS_RDONLY;
1433
1434 btrfs_dev_replace_suspend_for_unmount(fs_info);
1435 btrfs_scrub_cancel(fs_info);
1436 btrfs_pause_balance(fs_info);
1437
1438 ret = btrfs_commit_super(root);
1439 if (ret)
1440 goto restore;
1441 } else {
1442 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1443 btrfs_err(fs_info,
1444 "Remounting read-write after error is not allowed");
1445 ret = -EINVAL;
1446 goto restore;
1447 }
1448 if (fs_info->fs_devices->rw_devices == 0) {
1449 ret = -EACCES;
1450 goto restore;
1451 }
1452
1453 if (fs_info->fs_devices->missing_devices >
1454 fs_info->num_tolerated_disk_barrier_failures &&
1455 !(*flags & MS_RDONLY)) {
1456 btrfs_warn(fs_info,
1457 "too many missing devices, writeable remount is not allowed");
1458 ret = -EACCES;
1459 goto restore;
1460 }
1461
1462 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1463 ret = -EINVAL;
1464 goto restore;
1465 }
1466
1467 ret = btrfs_cleanup_fs_roots(fs_info);
1468 if (ret)
1469 goto restore;
1470
1471 /* recover relocation */
1472 ret = btrfs_recover_relocation(root);
1473 if (ret)
1474 goto restore;
1475
1476 ret = btrfs_resume_balance_async(fs_info);
1477 if (ret)
1478 goto restore;
1479
1480 ret = btrfs_resume_dev_replace_async(fs_info);
1481 if (ret) {
1482 btrfs_warn(fs_info, "failed to resume dev_replace");
1483 goto restore;
1484 }
1485
1486 if (!fs_info->uuid_root) {
1487 btrfs_info(fs_info, "creating UUID tree");
1488 ret = btrfs_create_uuid_tree(fs_info);
1489 if (ret) {
1490 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1491 goto restore;
1492 }
1493 }
1494 sb->s_flags &= ~MS_RDONLY;
1495 }
1496 out:
1497 wake_up_process(fs_info->transaction_kthread);
1498 btrfs_remount_cleanup(fs_info, old_opts);
1499 return 0;
1500
1501 restore:
1502 /* We've hit an error - don't reset MS_RDONLY */
1503 if (sb->s_flags & MS_RDONLY)
1504 old_flags |= MS_RDONLY;
1505 sb->s_flags = old_flags;
1506 fs_info->mount_opt = old_opts;
1507 fs_info->compress_type = old_compress_type;
1508 fs_info->max_inline = old_max_inline;
1509 mutex_lock(&fs_info->chunk_mutex);
1510 fs_info->alloc_start = old_alloc_start;
1511 mutex_unlock(&fs_info->chunk_mutex);
1512 btrfs_resize_thread_pool(fs_info,
1513 old_thread_pool_size, fs_info->thread_pool_size);
1514 fs_info->metadata_ratio = old_metadata_ratio;
1515 btrfs_remount_cleanup(fs_info, old_opts);
1516 return ret;
1517 }
1518
1519 /* Used to sort the devices by max_avail(descending sort) */
1520 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1521 const void *dev_info2)
1522 {
1523 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1524 ((struct btrfs_device_info *)dev_info2)->max_avail)
1525 return -1;
1526 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1527 ((struct btrfs_device_info *)dev_info2)->max_avail)
1528 return 1;
1529 else
1530 return 0;
1531 }
1532
1533 /*
1534 * sort the devices by max_avail, in which max free extent size of each device
1535 * is stored.(Descending Sort)
1536 */
1537 static inline void btrfs_descending_sort_devices(
1538 struct btrfs_device_info *devices,
1539 size_t nr_devices)
1540 {
1541 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1542 btrfs_cmp_device_free_bytes, NULL);
1543 }
1544
1545 /*
1546 * The helper to calc the free space on the devices that can be used to store
1547 * file data.
1548 */
1549 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1550 {
1551 struct btrfs_fs_info *fs_info = root->fs_info;
1552 struct btrfs_device_info *devices_info;
1553 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1554 struct btrfs_device *device;
1555 u64 skip_space;
1556 u64 type;
1557 u64 avail_space;
1558 u64 used_space;
1559 u64 min_stripe_size;
1560 int min_stripes = 1, num_stripes = 1;
1561 int i = 0, nr_devices;
1562 int ret;
1563
1564 nr_devices = fs_info->fs_devices->open_devices;
1565 BUG_ON(!nr_devices);
1566
1567 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1568 GFP_NOFS);
1569 if (!devices_info)
1570 return -ENOMEM;
1571
1572 /* calc min stripe number for data space alloction */
1573 type = btrfs_get_alloc_profile(root, 1);
1574 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1575 min_stripes = 2;
1576 num_stripes = nr_devices;
1577 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1578 min_stripes = 2;
1579 num_stripes = 2;
1580 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1581 min_stripes = 4;
1582 num_stripes = 4;
1583 }
1584
1585 if (type & BTRFS_BLOCK_GROUP_DUP)
1586 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1587 else
1588 min_stripe_size = BTRFS_STRIPE_LEN;
1589
1590 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1591 if (!device->in_fs_metadata || !device->bdev ||
1592 device->is_tgtdev_for_dev_replace)
1593 continue;
1594
1595 avail_space = device->total_bytes - device->bytes_used;
1596
1597 /* align with stripe_len */
1598 do_div(avail_space, BTRFS_STRIPE_LEN);
1599 avail_space *= BTRFS_STRIPE_LEN;
1600
1601 /*
1602 * In order to avoid overwritting the superblock on the drive,
1603 * btrfs starts at an offset of at least 1MB when doing chunk
1604 * allocation.
1605 */
1606 skip_space = 1024 * 1024;
1607
1608 /* user can set the offset in fs_info->alloc_start. */
1609 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1610 device->total_bytes)
1611 skip_space = max(fs_info->alloc_start, skip_space);
1612
1613 /*
1614 * btrfs can not use the free space in [0, skip_space - 1],
1615 * we must subtract it from the total. In order to implement
1616 * it, we account the used space in this range first.
1617 */
1618 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1619 &used_space);
1620 if (ret) {
1621 kfree(devices_info);
1622 return ret;
1623 }
1624
1625 /* calc the free space in [0, skip_space - 1] */
1626 skip_space -= used_space;
1627
1628 /*
1629 * we can use the free space in [0, skip_space - 1], subtract
1630 * it from the total.
1631 */
1632 if (avail_space && avail_space >= skip_space)
1633 avail_space -= skip_space;
1634 else
1635 avail_space = 0;
1636
1637 if (avail_space < min_stripe_size)
1638 continue;
1639
1640 devices_info[i].dev = device;
1641 devices_info[i].max_avail = avail_space;
1642
1643 i++;
1644 }
1645
1646 nr_devices = i;
1647
1648 btrfs_descending_sort_devices(devices_info, nr_devices);
1649
1650 i = nr_devices - 1;
1651 avail_space = 0;
1652 while (nr_devices >= min_stripes) {
1653 if (num_stripes > nr_devices)
1654 num_stripes = nr_devices;
1655
1656 if (devices_info[i].max_avail >= min_stripe_size) {
1657 int j;
1658 u64 alloc_size;
1659
1660 avail_space += devices_info[i].max_avail * num_stripes;
1661 alloc_size = devices_info[i].max_avail;
1662 for (j = i + 1 - num_stripes; j <= i; j++)
1663 devices_info[j].max_avail -= alloc_size;
1664 }
1665 i--;
1666 nr_devices--;
1667 }
1668
1669 kfree(devices_info);
1670 *free_bytes = avail_space;
1671 return 0;
1672 }
1673
1674 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1675 {
1676 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1677 struct btrfs_super_block *disk_super = fs_info->super_copy;
1678 struct list_head *head = &fs_info->space_info;
1679 struct btrfs_space_info *found;
1680 u64 total_used = 0;
1681 u64 total_free_data = 0;
1682 int bits = dentry->d_sb->s_blocksize_bits;
1683 __be32 *fsid = (__be32 *)fs_info->fsid;
1684 int ret;
1685
1686 /* holding chunk_muext to avoid allocating new chunks */
1687 mutex_lock(&fs_info->chunk_mutex);
1688 rcu_read_lock();
1689 list_for_each_entry_rcu(found, head, list) {
1690 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1691 total_free_data += found->disk_total - found->disk_used;
1692 total_free_data -=
1693 btrfs_account_ro_block_groups_free_space(found);
1694 }
1695
1696 total_used += found->disk_used;
1697 }
1698 rcu_read_unlock();
1699
1700 buf->f_namelen = BTRFS_NAME_LEN;
1701 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1702 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1703 buf->f_bsize = dentry->d_sb->s_blocksize;
1704 buf->f_type = BTRFS_SUPER_MAGIC;
1705 buf->f_bavail = total_free_data;
1706 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1707 if (ret) {
1708 mutex_unlock(&fs_info->chunk_mutex);
1709 return ret;
1710 }
1711 buf->f_bavail += total_free_data;
1712 buf->f_bavail = buf->f_bavail >> bits;
1713 mutex_unlock(&fs_info->chunk_mutex);
1714
1715 /* We treat it as constant endianness (it doesn't matter _which_)
1716 because we want the fsid to come out the same whether mounted
1717 on a big-endian or little-endian host */
1718 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1719 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1720 /* Mask in the root object ID too, to disambiguate subvols */
1721 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1722 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1723
1724 return 0;
1725 }
1726
1727 static void btrfs_kill_super(struct super_block *sb)
1728 {
1729 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1730 kill_anon_super(sb);
1731 free_fs_info(fs_info);
1732 }
1733
1734 static struct file_system_type btrfs_fs_type = {
1735 .owner = THIS_MODULE,
1736 .name = "btrfs",
1737 .mount = btrfs_mount,
1738 .kill_sb = btrfs_kill_super,
1739 .fs_flags = FS_REQUIRES_DEV,
1740 };
1741 MODULE_ALIAS_FS("btrfs");
1742
1743 /*
1744 * used by btrfsctl to scan devices when no FS is mounted
1745 */
1746 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1747 unsigned long arg)
1748 {
1749 struct btrfs_ioctl_vol_args *vol;
1750 struct btrfs_fs_devices *fs_devices;
1751 int ret = -ENOTTY;
1752
1753 if (!capable(CAP_SYS_ADMIN))
1754 return -EPERM;
1755
1756 vol = memdup_user((void __user *)arg, sizeof(*vol));
1757 if (IS_ERR(vol))
1758 return PTR_ERR(vol);
1759
1760 switch (cmd) {
1761 case BTRFS_IOC_SCAN_DEV:
1762 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1763 &btrfs_fs_type, &fs_devices);
1764 break;
1765 case BTRFS_IOC_DEVICES_READY:
1766 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1767 &btrfs_fs_type, &fs_devices);
1768 if (ret)
1769 break;
1770 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1771 break;
1772 }
1773
1774 kfree(vol);
1775 return ret;
1776 }
1777
1778 static int btrfs_freeze(struct super_block *sb)
1779 {
1780 struct btrfs_trans_handle *trans;
1781 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1782
1783 trans = btrfs_attach_transaction_barrier(root);
1784 if (IS_ERR(trans)) {
1785 /* no transaction, don't bother */
1786 if (PTR_ERR(trans) == -ENOENT)
1787 return 0;
1788 return PTR_ERR(trans);
1789 }
1790 return btrfs_commit_transaction(trans, root);
1791 }
1792
1793 static int btrfs_unfreeze(struct super_block *sb)
1794 {
1795 return 0;
1796 }
1797
1798 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1799 {
1800 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1801 struct btrfs_fs_devices *cur_devices;
1802 struct btrfs_device *dev, *first_dev = NULL;
1803 struct list_head *head;
1804 struct rcu_string *name;
1805
1806 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1807 cur_devices = fs_info->fs_devices;
1808 while (cur_devices) {
1809 head = &cur_devices->devices;
1810 list_for_each_entry(dev, head, dev_list) {
1811 if (dev->missing)
1812 continue;
1813 if (!first_dev || dev->devid < first_dev->devid)
1814 first_dev = dev;
1815 }
1816 cur_devices = cur_devices->seed;
1817 }
1818
1819 if (first_dev) {
1820 rcu_read_lock();
1821 name = rcu_dereference(first_dev->name);
1822 seq_escape(m, name->str, " \t\n\\");
1823 rcu_read_unlock();
1824 } else {
1825 WARN_ON(1);
1826 }
1827 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1828 return 0;
1829 }
1830
1831 static const struct super_operations btrfs_super_ops = {
1832 .drop_inode = btrfs_drop_inode,
1833 .evict_inode = btrfs_evict_inode,
1834 .put_super = btrfs_put_super,
1835 .sync_fs = btrfs_sync_fs,
1836 .show_options = btrfs_show_options,
1837 .show_devname = btrfs_show_devname,
1838 .write_inode = btrfs_write_inode,
1839 .alloc_inode = btrfs_alloc_inode,
1840 .destroy_inode = btrfs_destroy_inode,
1841 .statfs = btrfs_statfs,
1842 .remount_fs = btrfs_remount,
1843 .freeze_fs = btrfs_freeze,
1844 .unfreeze_fs = btrfs_unfreeze,
1845 };
1846
1847 static const struct file_operations btrfs_ctl_fops = {
1848 .unlocked_ioctl = btrfs_control_ioctl,
1849 .compat_ioctl = btrfs_control_ioctl,
1850 .owner = THIS_MODULE,
1851 .llseek = noop_llseek,
1852 };
1853
1854 static struct miscdevice btrfs_misc = {
1855 .minor = BTRFS_MINOR,
1856 .name = "btrfs-control",
1857 .fops = &btrfs_ctl_fops
1858 };
1859
1860 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1861 MODULE_ALIAS("devname:btrfs-control");
1862
1863 static int btrfs_interface_init(void)
1864 {
1865 return misc_register(&btrfs_misc);
1866 }
1867
1868 static void btrfs_interface_exit(void)
1869 {
1870 if (misc_deregister(&btrfs_misc) < 0)
1871 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1872 }
1873
1874 static void btrfs_print_info(void)
1875 {
1876 printk(KERN_INFO "Btrfs loaded"
1877 #ifdef CONFIG_BTRFS_DEBUG
1878 ", debug=on"
1879 #endif
1880 #ifdef CONFIG_BTRFS_ASSERT
1881 ", assert=on"
1882 #endif
1883 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1884 ", integrity-checker=on"
1885 #endif
1886 "\n");
1887 }
1888
1889 static int btrfs_run_sanity_tests(void)
1890 {
1891 int ret;
1892
1893 ret = btrfs_init_test_fs();
1894 if (ret)
1895 return ret;
1896
1897 ret = btrfs_test_free_space_cache();
1898 if (ret)
1899 goto out;
1900 ret = btrfs_test_extent_buffer_operations();
1901 if (ret)
1902 goto out;
1903 ret = btrfs_test_extent_io();
1904 if (ret)
1905 goto out;
1906 ret = btrfs_test_inodes();
1907 out:
1908 btrfs_destroy_test_fs();
1909 return ret;
1910 }
1911
1912 static int __init init_btrfs_fs(void)
1913 {
1914 int err;
1915
1916 err = btrfs_hash_init();
1917 if (err)
1918 return err;
1919
1920 btrfs_props_init();
1921
1922 err = btrfs_init_sysfs();
1923 if (err)
1924 goto free_hash;
1925
1926 btrfs_init_compress();
1927
1928 err = btrfs_init_cachep();
1929 if (err)
1930 goto free_compress;
1931
1932 err = extent_io_init();
1933 if (err)
1934 goto free_cachep;
1935
1936 err = extent_map_init();
1937 if (err)
1938 goto free_extent_io;
1939
1940 err = ordered_data_init();
1941 if (err)
1942 goto free_extent_map;
1943
1944 err = btrfs_delayed_inode_init();
1945 if (err)
1946 goto free_ordered_data;
1947
1948 err = btrfs_auto_defrag_init();
1949 if (err)
1950 goto free_delayed_inode;
1951
1952 err = btrfs_delayed_ref_init();
1953 if (err)
1954 goto free_auto_defrag;
1955
1956 err = btrfs_prelim_ref_init();
1957 if (err)
1958 goto free_prelim_ref;
1959
1960 err = btrfs_interface_init();
1961 if (err)
1962 goto free_delayed_ref;
1963
1964 btrfs_init_lockdep();
1965
1966 btrfs_print_info();
1967
1968 err = btrfs_run_sanity_tests();
1969 if (err)
1970 goto unregister_ioctl;
1971
1972 err = register_filesystem(&btrfs_fs_type);
1973 if (err)
1974 goto unregister_ioctl;
1975
1976 return 0;
1977
1978 unregister_ioctl:
1979 btrfs_interface_exit();
1980 free_prelim_ref:
1981 btrfs_prelim_ref_exit();
1982 free_delayed_ref:
1983 btrfs_delayed_ref_exit();
1984 free_auto_defrag:
1985 btrfs_auto_defrag_exit();
1986 free_delayed_inode:
1987 btrfs_delayed_inode_exit();
1988 free_ordered_data:
1989 ordered_data_exit();
1990 free_extent_map:
1991 extent_map_exit();
1992 free_extent_io:
1993 extent_io_exit();
1994 free_cachep:
1995 btrfs_destroy_cachep();
1996 free_compress:
1997 btrfs_exit_compress();
1998 btrfs_exit_sysfs();
1999 free_hash:
2000 btrfs_hash_exit();
2001 return err;
2002 }
2003
2004 static void __exit exit_btrfs_fs(void)
2005 {
2006 btrfs_destroy_cachep();
2007 btrfs_delayed_ref_exit();
2008 btrfs_auto_defrag_exit();
2009 btrfs_delayed_inode_exit();
2010 btrfs_prelim_ref_exit();
2011 ordered_data_exit();
2012 extent_map_exit();
2013 extent_io_exit();
2014 btrfs_interface_exit();
2015 unregister_filesystem(&btrfs_fs_type);
2016 btrfs_exit_sysfs();
2017 btrfs_cleanup_fs_uuids();
2018 btrfs_exit_compress();
2019 btrfs_hash_exit();
2020 }
2021
2022 late_initcall(init_btrfs_fs);
2023 module_exit(exit_btrfs_fs)
2024
2025 MODULE_LICENSE("GPL");
This page took 0.077124 seconds and 5 git commands to generate.