Btrfs: add some free space cache tests
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66
67 static const char *btrfs_decode_error(int errno, char nbuf[16])
68 {
69 char *errstr = NULL;
70
71 switch (errno) {
72 case -EIO:
73 errstr = "IO failure";
74 break;
75 case -ENOMEM:
76 errstr = "Out of memory";
77 break;
78 case -EROFS:
79 errstr = "Readonly filesystem";
80 break;
81 case -EEXIST:
82 errstr = "Object already exists";
83 break;
84 default:
85 if (nbuf) {
86 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
87 errstr = nbuf;
88 }
89 break;
90 }
91
92 return errstr;
93 }
94
95 static void __save_error_info(struct btrfs_fs_info *fs_info)
96 {
97 /*
98 * today we only save the error info into ram. Long term we'll
99 * also send it down to the disk
100 */
101 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102 }
103
104 static void save_error_info(struct btrfs_fs_info *fs_info)
105 {
106 __save_error_info(fs_info);
107 }
108
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112 struct super_block *sb = fs_info->sb;
113
114 if (sb->s_flags & MS_RDONLY)
115 return;
116
117 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118 sb->s_flags |= MS_RDONLY;
119 printk(KERN_INFO "btrfs is forced readonly\n");
120 /*
121 * Note that a running device replace operation is not
122 * canceled here although there is no way to update
123 * the progress. It would add the risk of a deadlock,
124 * therefore the canceling is ommited. The only penalty
125 * is that some I/O remains active until the procedure
126 * completes. The next time when the filesystem is
127 * mounted writeable again, the device replace
128 * operation continues.
129 */
130 // WARN_ON(1);
131 }
132 }
133
134 #ifdef CONFIG_PRINTK
135 /*
136 * __btrfs_std_error decodes expected errors from the caller and
137 * invokes the approciate error response.
138 */
139 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
140 unsigned int line, int errno, const char *fmt, ...)
141 {
142 struct super_block *sb = fs_info->sb;
143 char nbuf[16];
144 const char *errstr;
145
146 /*
147 * Special case: if the error is EROFS, and we're already
148 * under MS_RDONLY, then it is safe here.
149 */
150 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
151 return;
152
153 errstr = btrfs_decode_error(errno, nbuf);
154 if (fmt) {
155 struct va_format vaf;
156 va_list args;
157
158 va_start(args, fmt);
159 vaf.fmt = fmt;
160 vaf.va = &args;
161
162 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
163 sb->s_id, function, line, errstr, &vaf);
164 va_end(args);
165 } else {
166 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
167 sb->s_id, function, line, errstr);
168 }
169
170 /* Don't go through full error handling during mount */
171 if (sb->s_flags & MS_BORN) {
172 save_error_info(fs_info);
173 btrfs_handle_error(fs_info);
174 }
175 }
176
177 static const char * const logtypes[] = {
178 "emergency",
179 "alert",
180 "critical",
181 "error",
182 "warning",
183 "notice",
184 "info",
185 "debug",
186 };
187
188 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
189 {
190 struct super_block *sb = fs_info->sb;
191 char lvl[4];
192 struct va_format vaf;
193 va_list args;
194 const char *type = logtypes[4];
195 int kern_level;
196
197 va_start(args, fmt);
198
199 kern_level = printk_get_level(fmt);
200 if (kern_level) {
201 size_t size = printk_skip_level(fmt) - fmt;
202 memcpy(lvl, fmt, size);
203 lvl[size] = '\0';
204 fmt += size;
205 type = logtypes[kern_level - '0'];
206 } else
207 *lvl = '\0';
208
209 vaf.fmt = fmt;
210 vaf.va = &args;
211
212 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
213
214 va_end(args);
215 }
216
217 #else
218
219 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
220 unsigned int line, int errno, const char *fmt, ...)
221 {
222 struct super_block *sb = fs_info->sb;
223
224 /*
225 * Special case: if the error is EROFS, and we're already
226 * under MS_RDONLY, then it is safe here.
227 */
228 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
229 return;
230
231 /* Don't go through full error handling during mount */
232 if (sb->s_flags & MS_BORN) {
233 save_error_info(fs_info);
234 btrfs_handle_error(fs_info);
235 }
236 }
237 #endif
238
239 /*
240 * We only mark the transaction aborted and then set the file system read-only.
241 * This will prevent new transactions from starting or trying to join this
242 * one.
243 *
244 * This means that error recovery at the call site is limited to freeing
245 * any local memory allocations and passing the error code up without
246 * further cleanup. The transaction should complete as it normally would
247 * in the call path but will return -EIO.
248 *
249 * We'll complete the cleanup in btrfs_end_transaction and
250 * btrfs_commit_transaction.
251 */
252 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
253 struct btrfs_root *root, const char *function,
254 unsigned int line, int errno)
255 {
256 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n");
257 trans->aborted = errno;
258 /* Nothing used. The other threads that have joined this
259 * transaction may be able to continue. */
260 if (!trans->blocks_used) {
261 char nbuf[16];
262 const char *errstr;
263
264 errstr = btrfs_decode_error(errno, nbuf);
265 btrfs_printk(root->fs_info,
266 "%s:%d: Aborting unused transaction(%s).\n",
267 function, line, errstr);
268 return;
269 }
270 ACCESS_ONCE(trans->transaction->aborted) = errno;
271 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
272 }
273 /*
274 * __btrfs_panic decodes unexpected, fatal errors from the caller,
275 * issues an alert, and either panics or BUGs, depending on mount options.
276 */
277 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
278 unsigned int line, int errno, const char *fmt, ...)
279 {
280 char nbuf[16];
281 char *s_id = "<unknown>";
282 const char *errstr;
283 struct va_format vaf = { .fmt = fmt };
284 va_list args;
285
286 if (fs_info)
287 s_id = fs_info->sb->s_id;
288
289 va_start(args, fmt);
290 vaf.va = &args;
291
292 errstr = btrfs_decode_error(errno, nbuf);
293 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
294 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
295 s_id, function, line, &vaf, errstr);
296
297 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
298 s_id, function, line, &vaf, errstr);
299 va_end(args);
300 /* Caller calls BUG() */
301 }
302
303 static void btrfs_put_super(struct super_block *sb)
304 {
305 (void)close_ctree(btrfs_sb(sb)->tree_root);
306 /* FIXME: need to fix VFS to return error? */
307 /* AV: return it _where_? ->put_super() can be triggered by any number
308 * of async events, up to and including delivery of SIGKILL to the
309 * last process that kept it busy. Or segfault in the aforementioned
310 * process... Whom would you report that to?
311 */
312 }
313
314 enum {
315 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
316 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
317 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
318 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
319 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
320 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
321 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
322 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
323 Opt_check_integrity, Opt_check_integrity_including_extent_data,
324 Opt_check_integrity_print_mask, Opt_fatal_errors,
325 Opt_err,
326 };
327
328 static match_table_t tokens = {
329 {Opt_degraded, "degraded"},
330 {Opt_subvol, "subvol=%s"},
331 {Opt_subvolid, "subvolid=%d"},
332 {Opt_device, "device=%s"},
333 {Opt_nodatasum, "nodatasum"},
334 {Opt_nodatacow, "nodatacow"},
335 {Opt_nobarrier, "nobarrier"},
336 {Opt_max_inline, "max_inline=%s"},
337 {Opt_alloc_start, "alloc_start=%s"},
338 {Opt_thread_pool, "thread_pool=%d"},
339 {Opt_compress, "compress"},
340 {Opt_compress_type, "compress=%s"},
341 {Opt_compress_force, "compress-force"},
342 {Opt_compress_force_type, "compress-force=%s"},
343 {Opt_ssd, "ssd"},
344 {Opt_ssd_spread, "ssd_spread"},
345 {Opt_nossd, "nossd"},
346 {Opt_noacl, "noacl"},
347 {Opt_notreelog, "notreelog"},
348 {Opt_flushoncommit, "flushoncommit"},
349 {Opt_ratio, "metadata_ratio=%d"},
350 {Opt_discard, "discard"},
351 {Opt_space_cache, "space_cache"},
352 {Opt_clear_cache, "clear_cache"},
353 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
354 {Opt_enospc_debug, "enospc_debug"},
355 {Opt_subvolrootid, "subvolrootid=%d"},
356 {Opt_defrag, "autodefrag"},
357 {Opt_inode_cache, "inode_cache"},
358 {Opt_no_space_cache, "nospace_cache"},
359 {Opt_recovery, "recovery"},
360 {Opt_skip_balance, "skip_balance"},
361 {Opt_check_integrity, "check_int"},
362 {Opt_check_integrity_including_extent_data, "check_int_data"},
363 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
364 {Opt_fatal_errors, "fatal_errors=%s"},
365 {Opt_err, NULL},
366 };
367
368 /*
369 * Regular mount options parser. Everything that is needed only when
370 * reading in a new superblock is parsed here.
371 * XXX JDM: This needs to be cleaned up for remount.
372 */
373 int btrfs_parse_options(struct btrfs_root *root, char *options)
374 {
375 struct btrfs_fs_info *info = root->fs_info;
376 substring_t args[MAX_OPT_ARGS];
377 char *p, *num, *orig = NULL;
378 u64 cache_gen;
379 int intarg;
380 int ret = 0;
381 char *compress_type;
382 bool compress_force = false;
383
384 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
385 if (cache_gen)
386 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
387
388 if (!options)
389 goto out;
390
391 /*
392 * strsep changes the string, duplicate it because parse_options
393 * gets called twice
394 */
395 options = kstrdup(options, GFP_NOFS);
396 if (!options)
397 return -ENOMEM;
398
399 orig = options;
400
401 while ((p = strsep(&options, ",")) != NULL) {
402 int token;
403 if (!*p)
404 continue;
405
406 token = match_token(p, tokens, args);
407 switch (token) {
408 case Opt_degraded:
409 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
410 btrfs_set_opt(info->mount_opt, DEGRADED);
411 break;
412 case Opt_subvol:
413 case Opt_subvolid:
414 case Opt_subvolrootid:
415 case Opt_device:
416 /*
417 * These are parsed by btrfs_parse_early_options
418 * and can be happily ignored here.
419 */
420 break;
421 case Opt_nodatasum:
422 printk(KERN_INFO "btrfs: setting nodatasum\n");
423 btrfs_set_opt(info->mount_opt, NODATASUM);
424 break;
425 case Opt_nodatacow:
426 if (!btrfs_test_opt(root, COMPRESS) ||
427 !btrfs_test_opt(root, FORCE_COMPRESS)) {
428 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
429 } else {
430 printk(KERN_INFO "btrfs: setting nodatacow\n");
431 }
432 info->compress_type = BTRFS_COMPRESS_NONE;
433 btrfs_clear_opt(info->mount_opt, COMPRESS);
434 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
435 btrfs_set_opt(info->mount_opt, NODATACOW);
436 btrfs_set_opt(info->mount_opt, NODATASUM);
437 break;
438 case Opt_compress_force:
439 case Opt_compress_force_type:
440 compress_force = true;
441 /* Fallthrough */
442 case Opt_compress:
443 case Opt_compress_type:
444 if (token == Opt_compress ||
445 token == Opt_compress_force ||
446 strcmp(args[0].from, "zlib") == 0) {
447 compress_type = "zlib";
448 info->compress_type = BTRFS_COMPRESS_ZLIB;
449 btrfs_set_opt(info->mount_opt, COMPRESS);
450 btrfs_clear_opt(info->mount_opt, NODATACOW);
451 btrfs_clear_opt(info->mount_opt, NODATASUM);
452 } else if (strcmp(args[0].from, "lzo") == 0) {
453 compress_type = "lzo";
454 info->compress_type = BTRFS_COMPRESS_LZO;
455 btrfs_set_opt(info->mount_opt, COMPRESS);
456 btrfs_clear_opt(info->mount_opt, NODATACOW);
457 btrfs_clear_opt(info->mount_opt, NODATASUM);
458 btrfs_set_fs_incompat(info, COMPRESS_LZO);
459 } else if (strncmp(args[0].from, "no", 2) == 0) {
460 compress_type = "no";
461 info->compress_type = BTRFS_COMPRESS_NONE;
462 btrfs_clear_opt(info->mount_opt, COMPRESS);
463 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
464 compress_force = false;
465 } else {
466 ret = -EINVAL;
467 goto out;
468 }
469
470 if (compress_force) {
471 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
472 pr_info("btrfs: force %s compression\n",
473 compress_type);
474 } else
475 pr_info("btrfs: use %s compression\n",
476 compress_type);
477 break;
478 case Opt_ssd:
479 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
480 btrfs_set_opt(info->mount_opt, SSD);
481 break;
482 case Opt_ssd_spread:
483 printk(KERN_INFO "btrfs: use spread ssd "
484 "allocation scheme\n");
485 btrfs_set_opt(info->mount_opt, SSD);
486 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
487 break;
488 case Opt_nossd:
489 printk(KERN_INFO "btrfs: not using ssd allocation "
490 "scheme\n");
491 btrfs_set_opt(info->mount_opt, NOSSD);
492 btrfs_clear_opt(info->mount_opt, SSD);
493 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
494 break;
495 case Opt_nobarrier:
496 printk(KERN_INFO "btrfs: turning off barriers\n");
497 btrfs_set_opt(info->mount_opt, NOBARRIER);
498 break;
499 case Opt_thread_pool:
500 intarg = 0;
501 match_int(&args[0], &intarg);
502 if (intarg)
503 info->thread_pool_size = intarg;
504 break;
505 case Opt_max_inline:
506 num = match_strdup(&args[0]);
507 if (num) {
508 info->max_inline = memparse(num, NULL);
509 kfree(num);
510
511 if (info->max_inline) {
512 info->max_inline = max_t(u64,
513 info->max_inline,
514 root->sectorsize);
515 }
516 printk(KERN_INFO "btrfs: max_inline at %llu\n",
517 (unsigned long long)info->max_inline);
518 }
519 break;
520 case Opt_alloc_start:
521 num = match_strdup(&args[0]);
522 if (num) {
523 mutex_lock(&info->chunk_mutex);
524 info->alloc_start = memparse(num, NULL);
525 mutex_unlock(&info->chunk_mutex);
526 kfree(num);
527 printk(KERN_INFO
528 "btrfs: allocations start at %llu\n",
529 (unsigned long long)info->alloc_start);
530 }
531 break;
532 case Opt_noacl:
533 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
534 break;
535 case Opt_notreelog:
536 printk(KERN_INFO "btrfs: disabling tree log\n");
537 btrfs_set_opt(info->mount_opt, NOTREELOG);
538 break;
539 case Opt_flushoncommit:
540 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
541 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
542 break;
543 case Opt_ratio:
544 intarg = 0;
545 match_int(&args[0], &intarg);
546 if (intarg) {
547 info->metadata_ratio = intarg;
548 printk(KERN_INFO "btrfs: metadata ratio %d\n",
549 info->metadata_ratio);
550 }
551 break;
552 case Opt_discard:
553 btrfs_set_opt(info->mount_opt, DISCARD);
554 break;
555 case Opt_space_cache:
556 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
557 break;
558 case Opt_no_space_cache:
559 printk(KERN_INFO "btrfs: disabling disk space caching\n");
560 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
561 break;
562 case Opt_inode_cache:
563 printk(KERN_INFO "btrfs: enabling inode map caching\n");
564 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
565 break;
566 case Opt_clear_cache:
567 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
568 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
569 break;
570 case Opt_user_subvol_rm_allowed:
571 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
572 break;
573 case Opt_enospc_debug:
574 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
575 break;
576 case Opt_defrag:
577 printk(KERN_INFO "btrfs: enabling auto defrag\n");
578 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
579 break;
580 case Opt_recovery:
581 printk(KERN_INFO "btrfs: enabling auto recovery\n");
582 btrfs_set_opt(info->mount_opt, RECOVERY);
583 break;
584 case Opt_skip_balance:
585 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
586 break;
587 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
588 case Opt_check_integrity_including_extent_data:
589 printk(KERN_INFO "btrfs: enabling check integrity"
590 " including extent data\n");
591 btrfs_set_opt(info->mount_opt,
592 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
593 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
594 break;
595 case Opt_check_integrity:
596 printk(KERN_INFO "btrfs: enabling check integrity\n");
597 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
598 break;
599 case Opt_check_integrity_print_mask:
600 intarg = 0;
601 match_int(&args[0], &intarg);
602 if (intarg) {
603 info->check_integrity_print_mask = intarg;
604 printk(KERN_INFO "btrfs:"
605 " check_integrity_print_mask 0x%x\n",
606 info->check_integrity_print_mask);
607 }
608 break;
609 #else
610 case Opt_check_integrity_including_extent_data:
611 case Opt_check_integrity:
612 case Opt_check_integrity_print_mask:
613 printk(KERN_ERR "btrfs: support for check_integrity*"
614 " not compiled in!\n");
615 ret = -EINVAL;
616 goto out;
617 #endif
618 case Opt_fatal_errors:
619 if (strcmp(args[0].from, "panic") == 0)
620 btrfs_set_opt(info->mount_opt,
621 PANIC_ON_FATAL_ERROR);
622 else if (strcmp(args[0].from, "bug") == 0)
623 btrfs_clear_opt(info->mount_opt,
624 PANIC_ON_FATAL_ERROR);
625 else {
626 ret = -EINVAL;
627 goto out;
628 }
629 break;
630 case Opt_err:
631 printk(KERN_INFO "btrfs: unrecognized mount option "
632 "'%s'\n", p);
633 ret = -EINVAL;
634 goto out;
635 default:
636 break;
637 }
638 }
639 out:
640 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
641 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
642 kfree(orig);
643 return ret;
644 }
645
646 /*
647 * Parse mount options that are required early in the mount process.
648 *
649 * All other options will be parsed on much later in the mount process and
650 * only when we need to allocate a new super block.
651 */
652 static int btrfs_parse_early_options(const char *options, fmode_t flags,
653 void *holder, char **subvol_name, u64 *subvol_objectid,
654 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
655 {
656 substring_t args[MAX_OPT_ARGS];
657 char *device_name, *opts, *orig, *p;
658 int error = 0;
659 int intarg;
660
661 if (!options)
662 return 0;
663
664 /*
665 * strsep changes the string, duplicate it because parse_options
666 * gets called twice
667 */
668 opts = kstrdup(options, GFP_KERNEL);
669 if (!opts)
670 return -ENOMEM;
671 orig = opts;
672
673 while ((p = strsep(&opts, ",")) != NULL) {
674 int token;
675 if (!*p)
676 continue;
677
678 token = match_token(p, tokens, args);
679 switch (token) {
680 case Opt_subvol:
681 kfree(*subvol_name);
682 *subvol_name = match_strdup(&args[0]);
683 break;
684 case Opt_subvolid:
685 intarg = 0;
686 error = match_int(&args[0], &intarg);
687 if (!error) {
688 /* we want the original fs_tree */
689 if (!intarg)
690 *subvol_objectid =
691 BTRFS_FS_TREE_OBJECTID;
692 else
693 *subvol_objectid = intarg;
694 }
695 break;
696 case Opt_subvolrootid:
697 intarg = 0;
698 error = match_int(&args[0], &intarg);
699 if (!error) {
700 /* we want the original fs_tree */
701 if (!intarg)
702 *subvol_rootid =
703 BTRFS_FS_TREE_OBJECTID;
704 else
705 *subvol_rootid = intarg;
706 }
707 break;
708 case Opt_device:
709 device_name = match_strdup(&args[0]);
710 if (!device_name) {
711 error = -ENOMEM;
712 goto out;
713 }
714 error = btrfs_scan_one_device(device_name,
715 flags, holder, fs_devices);
716 kfree(device_name);
717 if (error)
718 goto out;
719 break;
720 default:
721 break;
722 }
723 }
724
725 out:
726 kfree(orig);
727 return error;
728 }
729
730 static struct dentry *get_default_root(struct super_block *sb,
731 u64 subvol_objectid)
732 {
733 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
734 struct btrfs_root *root = fs_info->tree_root;
735 struct btrfs_root *new_root;
736 struct btrfs_dir_item *di;
737 struct btrfs_path *path;
738 struct btrfs_key location;
739 struct inode *inode;
740 u64 dir_id;
741 int new = 0;
742
743 /*
744 * We have a specific subvol we want to mount, just setup location and
745 * go look up the root.
746 */
747 if (subvol_objectid) {
748 location.objectid = subvol_objectid;
749 location.type = BTRFS_ROOT_ITEM_KEY;
750 location.offset = (u64)-1;
751 goto find_root;
752 }
753
754 path = btrfs_alloc_path();
755 if (!path)
756 return ERR_PTR(-ENOMEM);
757 path->leave_spinning = 1;
758
759 /*
760 * Find the "default" dir item which points to the root item that we
761 * will mount by default if we haven't been given a specific subvolume
762 * to mount.
763 */
764 dir_id = btrfs_super_root_dir(fs_info->super_copy);
765 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
766 if (IS_ERR(di)) {
767 btrfs_free_path(path);
768 return ERR_CAST(di);
769 }
770 if (!di) {
771 /*
772 * Ok the default dir item isn't there. This is weird since
773 * it's always been there, but don't freak out, just try and
774 * mount to root most subvolume.
775 */
776 btrfs_free_path(path);
777 dir_id = BTRFS_FIRST_FREE_OBJECTID;
778 new_root = fs_info->fs_root;
779 goto setup_root;
780 }
781
782 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
783 btrfs_free_path(path);
784
785 find_root:
786 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
787 if (IS_ERR(new_root))
788 return ERR_CAST(new_root);
789
790 if (btrfs_root_refs(&new_root->root_item) == 0)
791 return ERR_PTR(-ENOENT);
792
793 dir_id = btrfs_root_dirid(&new_root->root_item);
794 setup_root:
795 location.objectid = dir_id;
796 location.type = BTRFS_INODE_ITEM_KEY;
797 location.offset = 0;
798
799 inode = btrfs_iget(sb, &location, new_root, &new);
800 if (IS_ERR(inode))
801 return ERR_CAST(inode);
802
803 /*
804 * If we're just mounting the root most subvol put the inode and return
805 * a reference to the dentry. We will have already gotten a reference
806 * to the inode in btrfs_fill_super so we're good to go.
807 */
808 if (!new && sb->s_root->d_inode == inode) {
809 iput(inode);
810 return dget(sb->s_root);
811 }
812
813 return d_obtain_alias(inode);
814 }
815
816 static int btrfs_fill_super(struct super_block *sb,
817 struct btrfs_fs_devices *fs_devices,
818 void *data, int silent)
819 {
820 struct inode *inode;
821 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
822 struct btrfs_key key;
823 int err;
824
825 sb->s_maxbytes = MAX_LFS_FILESIZE;
826 sb->s_magic = BTRFS_SUPER_MAGIC;
827 sb->s_op = &btrfs_super_ops;
828 sb->s_d_op = &btrfs_dentry_operations;
829 sb->s_export_op = &btrfs_export_ops;
830 sb->s_xattr = btrfs_xattr_handlers;
831 sb->s_time_gran = 1;
832 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
833 sb->s_flags |= MS_POSIXACL;
834 #endif
835 sb->s_flags |= MS_I_VERSION;
836 err = open_ctree(sb, fs_devices, (char *)data);
837 if (err) {
838 printk("btrfs: open_ctree failed\n");
839 return err;
840 }
841
842 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
843 key.type = BTRFS_INODE_ITEM_KEY;
844 key.offset = 0;
845 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
846 if (IS_ERR(inode)) {
847 err = PTR_ERR(inode);
848 goto fail_close;
849 }
850
851 sb->s_root = d_make_root(inode);
852 if (!sb->s_root) {
853 err = -ENOMEM;
854 goto fail_close;
855 }
856
857 save_mount_options(sb, data);
858 cleancache_init_fs(sb);
859 sb->s_flags |= MS_ACTIVE;
860 return 0;
861
862 fail_close:
863 close_ctree(fs_info->tree_root);
864 return err;
865 }
866
867 int btrfs_sync_fs(struct super_block *sb, int wait)
868 {
869 struct btrfs_trans_handle *trans;
870 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
871 struct btrfs_root *root = fs_info->tree_root;
872
873 trace_btrfs_sync_fs(wait);
874
875 if (!wait) {
876 filemap_flush(fs_info->btree_inode->i_mapping);
877 return 0;
878 }
879
880 btrfs_wait_ordered_extents(root, 0);
881
882 trans = btrfs_attach_transaction_barrier(root);
883 if (IS_ERR(trans)) {
884 /* no transaction, don't bother */
885 if (PTR_ERR(trans) == -ENOENT)
886 return 0;
887 return PTR_ERR(trans);
888 }
889 return btrfs_commit_transaction(trans, root);
890 }
891
892 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
893 {
894 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
895 struct btrfs_root *root = info->tree_root;
896 char *compress_type;
897
898 if (btrfs_test_opt(root, DEGRADED))
899 seq_puts(seq, ",degraded");
900 if (btrfs_test_opt(root, NODATASUM))
901 seq_puts(seq, ",nodatasum");
902 if (btrfs_test_opt(root, NODATACOW))
903 seq_puts(seq, ",nodatacow");
904 if (btrfs_test_opt(root, NOBARRIER))
905 seq_puts(seq, ",nobarrier");
906 if (info->max_inline != 8192 * 1024)
907 seq_printf(seq, ",max_inline=%llu",
908 (unsigned long long)info->max_inline);
909 if (info->alloc_start != 0)
910 seq_printf(seq, ",alloc_start=%llu",
911 (unsigned long long)info->alloc_start);
912 if (info->thread_pool_size != min_t(unsigned long,
913 num_online_cpus() + 2, 8))
914 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
915 if (btrfs_test_opt(root, COMPRESS)) {
916 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
917 compress_type = "zlib";
918 else
919 compress_type = "lzo";
920 if (btrfs_test_opt(root, FORCE_COMPRESS))
921 seq_printf(seq, ",compress-force=%s", compress_type);
922 else
923 seq_printf(seq, ",compress=%s", compress_type);
924 }
925 if (btrfs_test_opt(root, NOSSD))
926 seq_puts(seq, ",nossd");
927 if (btrfs_test_opt(root, SSD_SPREAD))
928 seq_puts(seq, ",ssd_spread");
929 else if (btrfs_test_opt(root, SSD))
930 seq_puts(seq, ",ssd");
931 if (btrfs_test_opt(root, NOTREELOG))
932 seq_puts(seq, ",notreelog");
933 if (btrfs_test_opt(root, FLUSHONCOMMIT))
934 seq_puts(seq, ",flushoncommit");
935 if (btrfs_test_opt(root, DISCARD))
936 seq_puts(seq, ",discard");
937 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
938 seq_puts(seq, ",noacl");
939 if (btrfs_test_opt(root, SPACE_CACHE))
940 seq_puts(seq, ",space_cache");
941 else
942 seq_puts(seq, ",nospace_cache");
943 if (btrfs_test_opt(root, CLEAR_CACHE))
944 seq_puts(seq, ",clear_cache");
945 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
946 seq_puts(seq, ",user_subvol_rm_allowed");
947 if (btrfs_test_opt(root, ENOSPC_DEBUG))
948 seq_puts(seq, ",enospc_debug");
949 if (btrfs_test_opt(root, AUTO_DEFRAG))
950 seq_puts(seq, ",autodefrag");
951 if (btrfs_test_opt(root, INODE_MAP_CACHE))
952 seq_puts(seq, ",inode_cache");
953 if (btrfs_test_opt(root, SKIP_BALANCE))
954 seq_puts(seq, ",skip_balance");
955 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
956 seq_puts(seq, ",fatal_errors=panic");
957 return 0;
958 }
959
960 static int btrfs_test_super(struct super_block *s, void *data)
961 {
962 struct btrfs_fs_info *p = data;
963 struct btrfs_fs_info *fs_info = btrfs_sb(s);
964
965 return fs_info->fs_devices == p->fs_devices;
966 }
967
968 static int btrfs_set_super(struct super_block *s, void *data)
969 {
970 int err = set_anon_super(s, data);
971 if (!err)
972 s->s_fs_info = data;
973 return err;
974 }
975
976 /*
977 * subvolumes are identified by ino 256
978 */
979 static inline int is_subvolume_inode(struct inode *inode)
980 {
981 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
982 return 1;
983 return 0;
984 }
985
986 /*
987 * This will strip out the subvol=%s argument for an argument string and add
988 * subvolid=0 to make sure we get the actual tree root for path walking to the
989 * subvol we want.
990 */
991 static char *setup_root_args(char *args)
992 {
993 unsigned len = strlen(args) + 2 + 1;
994 char *src, *dst, *buf;
995
996 /*
997 * We need the same args as before, but with this substitution:
998 * s!subvol=[^,]+!subvolid=0!
999 *
1000 * Since the replacement string is up to 2 bytes longer than the
1001 * original, allocate strlen(args) + 2 + 1 bytes.
1002 */
1003
1004 src = strstr(args, "subvol=");
1005 /* This shouldn't happen, but just in case.. */
1006 if (!src)
1007 return NULL;
1008
1009 buf = dst = kmalloc(len, GFP_NOFS);
1010 if (!buf)
1011 return NULL;
1012
1013 /*
1014 * If the subvol= arg is not at the start of the string,
1015 * copy whatever precedes it into buf.
1016 */
1017 if (src != args) {
1018 *src++ = '\0';
1019 strcpy(buf, args);
1020 dst += strlen(args);
1021 }
1022
1023 strcpy(dst, "subvolid=0");
1024 dst += strlen("subvolid=0");
1025
1026 /*
1027 * If there is a "," after the original subvol=... string,
1028 * copy that suffix into our buffer. Otherwise, we're done.
1029 */
1030 src = strchr(src, ',');
1031 if (src)
1032 strcpy(dst, src);
1033
1034 return buf;
1035 }
1036
1037 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1038 const char *device_name, char *data)
1039 {
1040 struct dentry *root;
1041 struct vfsmount *mnt;
1042 char *newargs;
1043
1044 newargs = setup_root_args(data);
1045 if (!newargs)
1046 return ERR_PTR(-ENOMEM);
1047 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1048 newargs);
1049 kfree(newargs);
1050 if (IS_ERR(mnt))
1051 return ERR_CAST(mnt);
1052
1053 root = mount_subtree(mnt, subvol_name);
1054
1055 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1056 struct super_block *s = root->d_sb;
1057 dput(root);
1058 root = ERR_PTR(-EINVAL);
1059 deactivate_locked_super(s);
1060 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1061 subvol_name);
1062 }
1063
1064 return root;
1065 }
1066
1067 /*
1068 * Find a superblock for the given device / mount point.
1069 *
1070 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1071 * for multiple device setup. Make sure to keep it in sync.
1072 */
1073 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1074 const char *device_name, void *data)
1075 {
1076 struct block_device *bdev = NULL;
1077 struct super_block *s;
1078 struct dentry *root;
1079 struct btrfs_fs_devices *fs_devices = NULL;
1080 struct btrfs_fs_info *fs_info = NULL;
1081 fmode_t mode = FMODE_READ;
1082 char *subvol_name = NULL;
1083 u64 subvol_objectid = 0;
1084 u64 subvol_rootid = 0;
1085 int error = 0;
1086
1087 if (!(flags & MS_RDONLY))
1088 mode |= FMODE_WRITE;
1089
1090 error = btrfs_parse_early_options(data, mode, fs_type,
1091 &subvol_name, &subvol_objectid,
1092 &subvol_rootid, &fs_devices);
1093 if (error) {
1094 kfree(subvol_name);
1095 return ERR_PTR(error);
1096 }
1097
1098 if (subvol_name) {
1099 root = mount_subvol(subvol_name, flags, device_name, data);
1100 kfree(subvol_name);
1101 return root;
1102 }
1103
1104 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1105 if (error)
1106 return ERR_PTR(error);
1107
1108 /*
1109 * Setup a dummy root and fs_info for test/set super. This is because
1110 * we don't actually fill this stuff out until open_ctree, but we need
1111 * it for searching for existing supers, so this lets us do that and
1112 * then open_ctree will properly initialize everything later.
1113 */
1114 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1115 if (!fs_info)
1116 return ERR_PTR(-ENOMEM);
1117
1118 fs_info->fs_devices = fs_devices;
1119
1120 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1121 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1122 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1123 error = -ENOMEM;
1124 goto error_fs_info;
1125 }
1126
1127 error = btrfs_open_devices(fs_devices, mode, fs_type);
1128 if (error)
1129 goto error_fs_info;
1130
1131 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1132 error = -EACCES;
1133 goto error_close_devices;
1134 }
1135
1136 bdev = fs_devices->latest_bdev;
1137 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1138 fs_info);
1139 if (IS_ERR(s)) {
1140 error = PTR_ERR(s);
1141 goto error_close_devices;
1142 }
1143
1144 if (s->s_root) {
1145 btrfs_close_devices(fs_devices);
1146 free_fs_info(fs_info);
1147 if ((flags ^ s->s_flags) & MS_RDONLY)
1148 error = -EBUSY;
1149 } else {
1150 char b[BDEVNAME_SIZE];
1151
1152 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1153 btrfs_sb(s)->bdev_holder = fs_type;
1154 error = btrfs_fill_super(s, fs_devices, data,
1155 flags & MS_SILENT ? 1 : 0);
1156 }
1157
1158 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1159 if (IS_ERR(root))
1160 deactivate_locked_super(s);
1161
1162 return root;
1163
1164 error_close_devices:
1165 btrfs_close_devices(fs_devices);
1166 error_fs_info:
1167 free_fs_info(fs_info);
1168 return ERR_PTR(error);
1169 }
1170
1171 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1172 {
1173 spin_lock_irq(&workers->lock);
1174 workers->max_workers = new_limit;
1175 spin_unlock_irq(&workers->lock);
1176 }
1177
1178 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1179 int new_pool_size, int old_pool_size)
1180 {
1181 if (new_pool_size == old_pool_size)
1182 return;
1183
1184 fs_info->thread_pool_size = new_pool_size;
1185
1186 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1187 old_pool_size, new_pool_size);
1188
1189 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1190 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1191 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1192 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1193 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1194 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1195 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1196 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1197 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1198 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1199 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1200 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1201 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1202 btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1203 new_pool_size);
1204 }
1205
1206 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info,
1207 unsigned long old_opts, int flags)
1208 {
1209 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1210
1211 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1212 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1213 (flags & MS_RDONLY))) {
1214 /* wait for any defraggers to finish */
1215 wait_event(fs_info->transaction_wait,
1216 (atomic_read(&fs_info->defrag_running) == 0));
1217 if (flags & MS_RDONLY)
1218 sync_filesystem(fs_info->sb);
1219 }
1220 }
1221
1222 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1223 unsigned long old_opts)
1224 {
1225 /*
1226 * We need cleanup all defragable inodes if the autodefragment is
1227 * close or the fs is R/O.
1228 */
1229 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1230 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1231 (fs_info->sb->s_flags & MS_RDONLY))) {
1232 btrfs_cleanup_defrag_inodes(fs_info);
1233 }
1234
1235 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1236 }
1237
1238 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1239 {
1240 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1241 struct btrfs_root *root = fs_info->tree_root;
1242 unsigned old_flags = sb->s_flags;
1243 unsigned long old_opts = fs_info->mount_opt;
1244 unsigned long old_compress_type = fs_info->compress_type;
1245 u64 old_max_inline = fs_info->max_inline;
1246 u64 old_alloc_start = fs_info->alloc_start;
1247 int old_thread_pool_size = fs_info->thread_pool_size;
1248 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1249 int ret;
1250
1251 btrfs_remount_prepare(fs_info, old_opts, *flags);
1252
1253 ret = btrfs_parse_options(root, data);
1254 if (ret) {
1255 ret = -EINVAL;
1256 goto restore;
1257 }
1258
1259 btrfs_resize_thread_pool(fs_info,
1260 fs_info->thread_pool_size, old_thread_pool_size);
1261
1262 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1263 goto out;
1264
1265 if (*flags & MS_RDONLY) {
1266 /*
1267 * this also happens on 'umount -rf' or on shutdown, when
1268 * the filesystem is busy.
1269 */
1270 sb->s_flags |= MS_RDONLY;
1271
1272 btrfs_dev_replace_suspend_for_unmount(fs_info);
1273 btrfs_scrub_cancel(fs_info);
1274
1275 ret = btrfs_commit_super(root);
1276 if (ret)
1277 goto restore;
1278 } else {
1279 if (fs_info->fs_devices->rw_devices == 0) {
1280 ret = -EACCES;
1281 goto restore;
1282 }
1283
1284 if (fs_info->fs_devices->missing_devices >
1285 fs_info->num_tolerated_disk_barrier_failures &&
1286 !(*flags & MS_RDONLY)) {
1287 printk(KERN_WARNING
1288 "Btrfs: too many missing devices, writeable remount is not allowed\n");
1289 ret = -EACCES;
1290 goto restore;
1291 }
1292
1293 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1294 ret = -EINVAL;
1295 goto restore;
1296 }
1297
1298 ret = btrfs_cleanup_fs_roots(fs_info);
1299 if (ret)
1300 goto restore;
1301
1302 /* recover relocation */
1303 ret = btrfs_recover_relocation(root);
1304 if (ret)
1305 goto restore;
1306
1307 ret = btrfs_resume_balance_async(fs_info);
1308 if (ret)
1309 goto restore;
1310
1311 ret = btrfs_resume_dev_replace_async(fs_info);
1312 if (ret) {
1313 pr_warn("btrfs: failed to resume dev_replace\n");
1314 goto restore;
1315 }
1316 sb->s_flags &= ~MS_RDONLY;
1317 }
1318 out:
1319 btrfs_remount_cleanup(fs_info, old_opts);
1320 return 0;
1321
1322 restore:
1323 /* We've hit an error - don't reset MS_RDONLY */
1324 if (sb->s_flags & MS_RDONLY)
1325 old_flags |= MS_RDONLY;
1326 sb->s_flags = old_flags;
1327 fs_info->mount_opt = old_opts;
1328 fs_info->compress_type = old_compress_type;
1329 fs_info->max_inline = old_max_inline;
1330 mutex_lock(&fs_info->chunk_mutex);
1331 fs_info->alloc_start = old_alloc_start;
1332 mutex_unlock(&fs_info->chunk_mutex);
1333 btrfs_resize_thread_pool(fs_info,
1334 old_thread_pool_size, fs_info->thread_pool_size);
1335 fs_info->metadata_ratio = old_metadata_ratio;
1336 btrfs_remount_cleanup(fs_info, old_opts);
1337 return ret;
1338 }
1339
1340 /* Used to sort the devices by max_avail(descending sort) */
1341 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1342 const void *dev_info2)
1343 {
1344 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1345 ((struct btrfs_device_info *)dev_info2)->max_avail)
1346 return -1;
1347 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1348 ((struct btrfs_device_info *)dev_info2)->max_avail)
1349 return 1;
1350 else
1351 return 0;
1352 }
1353
1354 /*
1355 * sort the devices by max_avail, in which max free extent size of each device
1356 * is stored.(Descending Sort)
1357 */
1358 static inline void btrfs_descending_sort_devices(
1359 struct btrfs_device_info *devices,
1360 size_t nr_devices)
1361 {
1362 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1363 btrfs_cmp_device_free_bytes, NULL);
1364 }
1365
1366 /*
1367 * The helper to calc the free space on the devices that can be used to store
1368 * file data.
1369 */
1370 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1371 {
1372 struct btrfs_fs_info *fs_info = root->fs_info;
1373 struct btrfs_device_info *devices_info;
1374 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1375 struct btrfs_device *device;
1376 u64 skip_space;
1377 u64 type;
1378 u64 avail_space;
1379 u64 used_space;
1380 u64 min_stripe_size;
1381 int min_stripes = 1, num_stripes = 1;
1382 int i = 0, nr_devices;
1383 int ret;
1384
1385 nr_devices = fs_info->fs_devices->open_devices;
1386 BUG_ON(!nr_devices);
1387
1388 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1389 GFP_NOFS);
1390 if (!devices_info)
1391 return -ENOMEM;
1392
1393 /* calc min stripe number for data space alloction */
1394 type = btrfs_get_alloc_profile(root, 1);
1395 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1396 min_stripes = 2;
1397 num_stripes = nr_devices;
1398 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1399 min_stripes = 2;
1400 num_stripes = 2;
1401 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1402 min_stripes = 4;
1403 num_stripes = 4;
1404 }
1405
1406 if (type & BTRFS_BLOCK_GROUP_DUP)
1407 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1408 else
1409 min_stripe_size = BTRFS_STRIPE_LEN;
1410
1411 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1412 if (!device->in_fs_metadata || !device->bdev ||
1413 device->is_tgtdev_for_dev_replace)
1414 continue;
1415
1416 avail_space = device->total_bytes - device->bytes_used;
1417
1418 /* align with stripe_len */
1419 do_div(avail_space, BTRFS_STRIPE_LEN);
1420 avail_space *= BTRFS_STRIPE_LEN;
1421
1422 /*
1423 * In order to avoid overwritting the superblock on the drive,
1424 * btrfs starts at an offset of at least 1MB when doing chunk
1425 * allocation.
1426 */
1427 skip_space = 1024 * 1024;
1428
1429 /* user can set the offset in fs_info->alloc_start. */
1430 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1431 device->total_bytes)
1432 skip_space = max(fs_info->alloc_start, skip_space);
1433
1434 /*
1435 * btrfs can not use the free space in [0, skip_space - 1],
1436 * we must subtract it from the total. In order to implement
1437 * it, we account the used space in this range first.
1438 */
1439 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1440 &used_space);
1441 if (ret) {
1442 kfree(devices_info);
1443 return ret;
1444 }
1445
1446 /* calc the free space in [0, skip_space - 1] */
1447 skip_space -= used_space;
1448
1449 /*
1450 * we can use the free space in [0, skip_space - 1], subtract
1451 * it from the total.
1452 */
1453 if (avail_space && avail_space >= skip_space)
1454 avail_space -= skip_space;
1455 else
1456 avail_space = 0;
1457
1458 if (avail_space < min_stripe_size)
1459 continue;
1460
1461 devices_info[i].dev = device;
1462 devices_info[i].max_avail = avail_space;
1463
1464 i++;
1465 }
1466
1467 nr_devices = i;
1468
1469 btrfs_descending_sort_devices(devices_info, nr_devices);
1470
1471 i = nr_devices - 1;
1472 avail_space = 0;
1473 while (nr_devices >= min_stripes) {
1474 if (num_stripes > nr_devices)
1475 num_stripes = nr_devices;
1476
1477 if (devices_info[i].max_avail >= min_stripe_size) {
1478 int j;
1479 u64 alloc_size;
1480
1481 avail_space += devices_info[i].max_avail * num_stripes;
1482 alloc_size = devices_info[i].max_avail;
1483 for (j = i + 1 - num_stripes; j <= i; j++)
1484 devices_info[j].max_avail -= alloc_size;
1485 }
1486 i--;
1487 nr_devices--;
1488 }
1489
1490 kfree(devices_info);
1491 *free_bytes = avail_space;
1492 return 0;
1493 }
1494
1495 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1496 {
1497 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1498 struct btrfs_super_block *disk_super = fs_info->super_copy;
1499 struct list_head *head = &fs_info->space_info;
1500 struct btrfs_space_info *found;
1501 u64 total_used = 0;
1502 u64 total_free_data = 0;
1503 int bits = dentry->d_sb->s_blocksize_bits;
1504 __be32 *fsid = (__be32 *)fs_info->fsid;
1505 int ret;
1506
1507 /* holding chunk_muext to avoid allocating new chunks */
1508 mutex_lock(&fs_info->chunk_mutex);
1509 rcu_read_lock();
1510 list_for_each_entry_rcu(found, head, list) {
1511 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1512 total_free_data += found->disk_total - found->disk_used;
1513 total_free_data -=
1514 btrfs_account_ro_block_groups_free_space(found);
1515 }
1516
1517 total_used += found->disk_used;
1518 }
1519 rcu_read_unlock();
1520
1521 buf->f_namelen = BTRFS_NAME_LEN;
1522 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1523 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1524 buf->f_bsize = dentry->d_sb->s_blocksize;
1525 buf->f_type = BTRFS_SUPER_MAGIC;
1526 buf->f_bavail = total_free_data;
1527 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1528 if (ret) {
1529 mutex_unlock(&fs_info->chunk_mutex);
1530 return ret;
1531 }
1532 buf->f_bavail += total_free_data;
1533 buf->f_bavail = buf->f_bavail >> bits;
1534 mutex_unlock(&fs_info->chunk_mutex);
1535
1536 /* We treat it as constant endianness (it doesn't matter _which_)
1537 because we want the fsid to come out the same whether mounted
1538 on a big-endian or little-endian host */
1539 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1540 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1541 /* Mask in the root object ID too, to disambiguate subvols */
1542 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1543 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1544
1545 return 0;
1546 }
1547
1548 static void btrfs_kill_super(struct super_block *sb)
1549 {
1550 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1551 kill_anon_super(sb);
1552 free_fs_info(fs_info);
1553 }
1554
1555 static struct file_system_type btrfs_fs_type = {
1556 .owner = THIS_MODULE,
1557 .name = "btrfs",
1558 .mount = btrfs_mount,
1559 .kill_sb = btrfs_kill_super,
1560 .fs_flags = FS_REQUIRES_DEV,
1561 };
1562 MODULE_ALIAS_FS("btrfs");
1563
1564 /*
1565 * used by btrfsctl to scan devices when no FS is mounted
1566 */
1567 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1568 unsigned long arg)
1569 {
1570 struct btrfs_ioctl_vol_args *vol;
1571 struct btrfs_fs_devices *fs_devices;
1572 int ret = -ENOTTY;
1573
1574 if (!capable(CAP_SYS_ADMIN))
1575 return -EPERM;
1576
1577 vol = memdup_user((void __user *)arg, sizeof(*vol));
1578 if (IS_ERR(vol))
1579 return PTR_ERR(vol);
1580
1581 switch (cmd) {
1582 case BTRFS_IOC_SCAN_DEV:
1583 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1584 &btrfs_fs_type, &fs_devices);
1585 break;
1586 case BTRFS_IOC_DEVICES_READY:
1587 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1588 &btrfs_fs_type, &fs_devices);
1589 if (ret)
1590 break;
1591 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1592 break;
1593 }
1594
1595 kfree(vol);
1596 return ret;
1597 }
1598
1599 static int btrfs_freeze(struct super_block *sb)
1600 {
1601 struct btrfs_trans_handle *trans;
1602 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1603
1604 trans = btrfs_attach_transaction_barrier(root);
1605 if (IS_ERR(trans)) {
1606 /* no transaction, don't bother */
1607 if (PTR_ERR(trans) == -ENOENT)
1608 return 0;
1609 return PTR_ERR(trans);
1610 }
1611 return btrfs_commit_transaction(trans, root);
1612 }
1613
1614 static int btrfs_unfreeze(struct super_block *sb)
1615 {
1616 return 0;
1617 }
1618
1619 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1620 {
1621 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1622 struct btrfs_fs_devices *cur_devices;
1623 struct btrfs_device *dev, *first_dev = NULL;
1624 struct list_head *head;
1625 struct rcu_string *name;
1626
1627 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1628 cur_devices = fs_info->fs_devices;
1629 while (cur_devices) {
1630 head = &cur_devices->devices;
1631 list_for_each_entry(dev, head, dev_list) {
1632 if (dev->missing)
1633 continue;
1634 if (!first_dev || dev->devid < first_dev->devid)
1635 first_dev = dev;
1636 }
1637 cur_devices = cur_devices->seed;
1638 }
1639
1640 if (first_dev) {
1641 rcu_read_lock();
1642 name = rcu_dereference(first_dev->name);
1643 seq_escape(m, name->str, " \t\n\\");
1644 rcu_read_unlock();
1645 } else {
1646 WARN_ON(1);
1647 }
1648 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1649 return 0;
1650 }
1651
1652 static const struct super_operations btrfs_super_ops = {
1653 .drop_inode = btrfs_drop_inode,
1654 .evict_inode = btrfs_evict_inode,
1655 .put_super = btrfs_put_super,
1656 .sync_fs = btrfs_sync_fs,
1657 .show_options = btrfs_show_options,
1658 .show_devname = btrfs_show_devname,
1659 .write_inode = btrfs_write_inode,
1660 .alloc_inode = btrfs_alloc_inode,
1661 .destroy_inode = btrfs_destroy_inode,
1662 .statfs = btrfs_statfs,
1663 .remount_fs = btrfs_remount,
1664 .freeze_fs = btrfs_freeze,
1665 .unfreeze_fs = btrfs_unfreeze,
1666 };
1667
1668 static const struct file_operations btrfs_ctl_fops = {
1669 .unlocked_ioctl = btrfs_control_ioctl,
1670 .compat_ioctl = btrfs_control_ioctl,
1671 .owner = THIS_MODULE,
1672 .llseek = noop_llseek,
1673 };
1674
1675 static struct miscdevice btrfs_misc = {
1676 .minor = BTRFS_MINOR,
1677 .name = "btrfs-control",
1678 .fops = &btrfs_ctl_fops
1679 };
1680
1681 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1682 MODULE_ALIAS("devname:btrfs-control");
1683
1684 static int btrfs_interface_init(void)
1685 {
1686 return misc_register(&btrfs_misc);
1687 }
1688
1689 static void btrfs_interface_exit(void)
1690 {
1691 if (misc_deregister(&btrfs_misc) < 0)
1692 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1693 }
1694
1695 static int __init init_btrfs_fs(void)
1696 {
1697 int err;
1698
1699 err = btrfs_init_sysfs();
1700 if (err)
1701 return err;
1702
1703 btrfs_init_compress();
1704
1705 err = btrfs_init_cachep();
1706 if (err)
1707 goto free_compress;
1708
1709 err = extent_io_init();
1710 if (err)
1711 goto free_cachep;
1712
1713 err = extent_map_init();
1714 if (err)
1715 goto free_extent_io;
1716
1717 err = ordered_data_init();
1718 if (err)
1719 goto free_extent_map;
1720
1721 err = btrfs_delayed_inode_init();
1722 if (err)
1723 goto free_ordered_data;
1724
1725 err = btrfs_auto_defrag_init();
1726 if (err)
1727 goto free_delayed_inode;
1728
1729 err = btrfs_delayed_ref_init();
1730 if (err)
1731 goto free_auto_defrag;
1732
1733 err = btrfs_interface_init();
1734 if (err)
1735 goto free_delayed_ref;
1736
1737 err = register_filesystem(&btrfs_fs_type);
1738 if (err)
1739 goto unregister_ioctl;
1740
1741 btrfs_init_lockdep();
1742
1743 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1744 btrfs_test_free_space_cache();
1745 #endif
1746
1747 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1748 return 0;
1749
1750 unregister_ioctl:
1751 btrfs_interface_exit();
1752 free_delayed_ref:
1753 btrfs_delayed_ref_exit();
1754 free_auto_defrag:
1755 btrfs_auto_defrag_exit();
1756 free_delayed_inode:
1757 btrfs_delayed_inode_exit();
1758 free_ordered_data:
1759 ordered_data_exit();
1760 free_extent_map:
1761 extent_map_exit();
1762 free_extent_io:
1763 extent_io_exit();
1764 free_cachep:
1765 btrfs_destroy_cachep();
1766 free_compress:
1767 btrfs_exit_compress();
1768 btrfs_exit_sysfs();
1769 return err;
1770 }
1771
1772 static void __exit exit_btrfs_fs(void)
1773 {
1774 btrfs_destroy_cachep();
1775 btrfs_delayed_ref_exit();
1776 btrfs_auto_defrag_exit();
1777 btrfs_delayed_inode_exit();
1778 ordered_data_exit();
1779 extent_map_exit();
1780 extent_io_exit();
1781 btrfs_interface_exit();
1782 unregister_filesystem(&btrfs_fs_type);
1783 btrfs_exit_sysfs();
1784 btrfs_cleanup_fs_uuids();
1785 btrfs_exit_compress();
1786 }
1787
1788 module_init(init_btrfs_fs)
1789 module_exit(exit_btrfs_fs)
1790
1791 MODULE_LICENSE("GPL");
This page took 0.148382 seconds and 5 git commands to generate.