Btrfs: allow mount -o remount,compress=no
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 char nbuf[16])
67 {
68 char *errstr = NULL;
69
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 default:
84 if (nbuf) {
85 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 errstr = nbuf;
87 }
88 break;
89 }
90
91 return errstr;
92 }
93
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96 /*
97 * today we only save the error info into ram. Long term we'll
98 * also send it down to the disk
99 */
100 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102
103 /* NOTE:
104 * We move write_super stuff at umount in order to avoid deadlock
105 * for umount hold all lock.
106 */
107 static void save_error_info(struct btrfs_fs_info *fs_info)
108 {
109 __save_error_info(fs_info);
110 }
111
112 /* btrfs handle error by forcing the filesystem readonly */
113 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
114 {
115 struct super_block *sb = fs_info->sb;
116
117 if (sb->s_flags & MS_RDONLY)
118 return;
119
120 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
121 sb->s_flags |= MS_RDONLY;
122 printk(KERN_INFO "btrfs is forced readonly\n");
123 __btrfs_scrub_cancel(fs_info);
124 // WARN_ON(1);
125 }
126 }
127
128 /*
129 * __btrfs_std_error decodes expected errors from the caller and
130 * invokes the approciate error response.
131 */
132 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
133 unsigned int line, int errno, const char *fmt, ...)
134 {
135 struct super_block *sb = fs_info->sb;
136 char nbuf[16];
137 const char *errstr;
138 va_list args;
139 va_start(args, fmt);
140
141 /*
142 * Special case: if the error is EROFS, and we're already
143 * under MS_RDONLY, then it is safe here.
144 */
145 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
146 return;
147
148 errstr = btrfs_decode_error(fs_info, errno, nbuf);
149 if (fmt) {
150 struct va_format vaf = {
151 .fmt = fmt,
152 .va = &args,
153 };
154
155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
156 sb->s_id, function, line, errstr, &vaf);
157 } else {
158 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
159 sb->s_id, function, line, errstr);
160 }
161
162 /* Don't go through full error handling during mount */
163 if (sb->s_flags & MS_BORN) {
164 save_error_info(fs_info);
165 btrfs_handle_error(fs_info);
166 }
167 va_end(args);
168 }
169
170 const char *logtypes[] = {
171 "emergency",
172 "alert",
173 "critical",
174 "error",
175 "warning",
176 "notice",
177 "info",
178 "debug",
179 };
180
181 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
182 {
183 struct super_block *sb = fs_info->sb;
184 char lvl[4];
185 struct va_format vaf;
186 va_list args;
187 const char *type = logtypes[4];
188
189 va_start(args, fmt);
190
191 if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
192 memcpy(lvl, fmt, 3);
193 lvl[3] = '\0';
194 fmt += 3;
195 type = logtypes[fmt[1] - '0'];
196 } else
197 *lvl = '\0';
198
199 vaf.fmt = fmt;
200 vaf.va = &args;
201 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
202 }
203
204 /*
205 * We only mark the transaction aborted and then set the file system read-only.
206 * This will prevent new transactions from starting or trying to join this
207 * one.
208 *
209 * This means that error recovery at the call site is limited to freeing
210 * any local memory allocations and passing the error code up without
211 * further cleanup. The transaction should complete as it normally would
212 * in the call path but will return -EIO.
213 *
214 * We'll complete the cleanup in btrfs_end_transaction and
215 * btrfs_commit_transaction.
216 */
217 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root, const char *function,
219 unsigned int line, int errno)
220 {
221 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
222 trans->aborted = errno;
223 /* Nothing used. The other threads that have joined this
224 * transaction may be able to continue. */
225 if (!trans->blocks_used) {
226 btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
227 return;
228 }
229 trans->transaction->aborted = errno;
230 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
231 }
232 /*
233 * __btrfs_panic decodes unexpected, fatal errors from the caller,
234 * issues an alert, and either panics or BUGs, depending on mount options.
235 */
236 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
237 unsigned int line, int errno, const char *fmt, ...)
238 {
239 char nbuf[16];
240 char *s_id = "<unknown>";
241 const char *errstr;
242 struct va_format vaf = { .fmt = fmt };
243 va_list args;
244
245 if (fs_info)
246 s_id = fs_info->sb->s_id;
247
248 va_start(args, fmt);
249 vaf.va = &args;
250
251 errstr = btrfs_decode_error(fs_info, errno, nbuf);
252 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
253 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
254 s_id, function, line, &vaf, errstr);
255
256 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
257 s_id, function, line, &vaf, errstr);
258 va_end(args);
259 /* Caller calls BUG() */
260 }
261
262 static void btrfs_put_super(struct super_block *sb)
263 {
264 (void)close_ctree(btrfs_sb(sb)->tree_root);
265 /* FIXME: need to fix VFS to return error? */
266 /* AV: return it _where_? ->put_super() can be triggered by any number
267 * of async events, up to and including delivery of SIGKILL to the
268 * last process that kept it busy. Or segfault in the aforementioned
269 * process... Whom would you report that to?
270 */
271 }
272
273 enum {
274 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
275 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
276 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
277 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
278 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
279 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
280 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
281 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
282 Opt_check_integrity, Opt_check_integrity_including_extent_data,
283 Opt_check_integrity_print_mask, Opt_fatal_errors,
284 Opt_err,
285 };
286
287 static match_table_t tokens = {
288 {Opt_degraded, "degraded"},
289 {Opt_subvol, "subvol=%s"},
290 {Opt_subvolid, "subvolid=%d"},
291 {Opt_device, "device=%s"},
292 {Opt_nodatasum, "nodatasum"},
293 {Opt_nodatacow, "nodatacow"},
294 {Opt_nobarrier, "nobarrier"},
295 {Opt_max_inline, "max_inline=%s"},
296 {Opt_alloc_start, "alloc_start=%s"},
297 {Opt_thread_pool, "thread_pool=%d"},
298 {Opt_compress, "compress"},
299 {Opt_compress_type, "compress=%s"},
300 {Opt_compress_force, "compress-force"},
301 {Opt_compress_force_type, "compress-force=%s"},
302 {Opt_ssd, "ssd"},
303 {Opt_ssd_spread, "ssd_spread"},
304 {Opt_nossd, "nossd"},
305 {Opt_noacl, "noacl"},
306 {Opt_notreelog, "notreelog"},
307 {Opt_flushoncommit, "flushoncommit"},
308 {Opt_ratio, "metadata_ratio=%d"},
309 {Opt_discard, "discard"},
310 {Opt_space_cache, "space_cache"},
311 {Opt_clear_cache, "clear_cache"},
312 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
313 {Opt_enospc_debug, "enospc_debug"},
314 {Opt_subvolrootid, "subvolrootid=%d"},
315 {Opt_defrag, "autodefrag"},
316 {Opt_inode_cache, "inode_cache"},
317 {Opt_no_space_cache, "nospace_cache"},
318 {Opt_recovery, "recovery"},
319 {Opt_skip_balance, "skip_balance"},
320 {Opt_check_integrity, "check_int"},
321 {Opt_check_integrity_including_extent_data, "check_int_data"},
322 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
323 {Opt_fatal_errors, "fatal_errors=%s"},
324 {Opt_err, NULL},
325 };
326
327 /*
328 * Regular mount options parser. Everything that is needed only when
329 * reading in a new superblock is parsed here.
330 * XXX JDM: This needs to be cleaned up for remount.
331 */
332 int btrfs_parse_options(struct btrfs_root *root, char *options)
333 {
334 struct btrfs_fs_info *info = root->fs_info;
335 substring_t args[MAX_OPT_ARGS];
336 char *p, *num, *orig = NULL;
337 u64 cache_gen;
338 int intarg;
339 int ret = 0;
340 char *compress_type;
341 bool compress_force = false;
342
343 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
344 if (cache_gen)
345 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
346
347 if (!options)
348 goto out;
349
350 /*
351 * strsep changes the string, duplicate it because parse_options
352 * gets called twice
353 */
354 options = kstrdup(options, GFP_NOFS);
355 if (!options)
356 return -ENOMEM;
357
358 orig = options;
359
360 while ((p = strsep(&options, ",")) != NULL) {
361 int token;
362 if (!*p)
363 continue;
364
365 token = match_token(p, tokens, args);
366 switch (token) {
367 case Opt_degraded:
368 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
369 btrfs_set_opt(info->mount_opt, DEGRADED);
370 break;
371 case Opt_subvol:
372 case Opt_subvolid:
373 case Opt_subvolrootid:
374 case Opt_device:
375 /*
376 * These are parsed by btrfs_parse_early_options
377 * and can be happily ignored here.
378 */
379 break;
380 case Opt_nodatasum:
381 printk(KERN_INFO "btrfs: setting nodatasum\n");
382 btrfs_set_opt(info->mount_opt, NODATASUM);
383 break;
384 case Opt_nodatacow:
385 printk(KERN_INFO "btrfs: setting nodatacow\n");
386 btrfs_set_opt(info->mount_opt, NODATACOW);
387 btrfs_set_opt(info->mount_opt, NODATASUM);
388 break;
389 case Opt_compress_force:
390 case Opt_compress_force_type:
391 compress_force = true;
392 case Opt_compress:
393 case Opt_compress_type:
394 if (token == Opt_compress ||
395 token == Opt_compress_force ||
396 strcmp(args[0].from, "zlib") == 0) {
397 compress_type = "zlib";
398 info->compress_type = BTRFS_COMPRESS_ZLIB;
399 btrfs_set_opt(info->mount_opt, COMPRESS);
400 } else if (strcmp(args[0].from, "lzo") == 0) {
401 compress_type = "lzo";
402 info->compress_type = BTRFS_COMPRESS_LZO;
403 btrfs_set_opt(info->mount_opt, COMPRESS);
404 } else if (strncmp(args[0].from, "no", 2) == 0) {
405 compress_type = "no";
406 info->compress_type = BTRFS_COMPRESS_NONE;
407 btrfs_clear_opt(info->mount_opt, COMPRESS);
408 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
409 compress_force = false;
410 } else {
411 ret = -EINVAL;
412 goto out;
413 }
414
415 if (compress_force) {
416 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
417 pr_info("btrfs: force %s compression\n",
418 compress_type);
419 } else
420 pr_info("btrfs: use %s compression\n",
421 compress_type);
422 break;
423 case Opt_ssd:
424 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
425 btrfs_set_opt(info->mount_opt, SSD);
426 break;
427 case Opt_ssd_spread:
428 printk(KERN_INFO "btrfs: use spread ssd "
429 "allocation scheme\n");
430 btrfs_set_opt(info->mount_opt, SSD);
431 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
432 break;
433 case Opt_nossd:
434 printk(KERN_INFO "btrfs: not using ssd allocation "
435 "scheme\n");
436 btrfs_set_opt(info->mount_opt, NOSSD);
437 btrfs_clear_opt(info->mount_opt, SSD);
438 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
439 break;
440 case Opt_nobarrier:
441 printk(KERN_INFO "btrfs: turning off barriers\n");
442 btrfs_set_opt(info->mount_opt, NOBARRIER);
443 break;
444 case Opt_thread_pool:
445 intarg = 0;
446 match_int(&args[0], &intarg);
447 if (intarg)
448 info->thread_pool_size = intarg;
449 break;
450 case Opt_max_inline:
451 num = match_strdup(&args[0]);
452 if (num) {
453 info->max_inline = memparse(num, NULL);
454 kfree(num);
455
456 if (info->max_inline) {
457 info->max_inline = max_t(u64,
458 info->max_inline,
459 root->sectorsize);
460 }
461 printk(KERN_INFO "btrfs: max_inline at %llu\n",
462 (unsigned long long)info->max_inline);
463 }
464 break;
465 case Opt_alloc_start:
466 num = match_strdup(&args[0]);
467 if (num) {
468 info->alloc_start = memparse(num, NULL);
469 kfree(num);
470 printk(KERN_INFO
471 "btrfs: allocations start at %llu\n",
472 (unsigned long long)info->alloc_start);
473 }
474 break;
475 case Opt_noacl:
476 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
477 break;
478 case Opt_notreelog:
479 printk(KERN_INFO "btrfs: disabling tree log\n");
480 btrfs_set_opt(info->mount_opt, NOTREELOG);
481 break;
482 case Opt_flushoncommit:
483 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
484 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
485 break;
486 case Opt_ratio:
487 intarg = 0;
488 match_int(&args[0], &intarg);
489 if (intarg) {
490 info->metadata_ratio = intarg;
491 printk(KERN_INFO "btrfs: metadata ratio %d\n",
492 info->metadata_ratio);
493 }
494 break;
495 case Opt_discard:
496 btrfs_set_opt(info->mount_opt, DISCARD);
497 break;
498 case Opt_space_cache:
499 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
500 break;
501 case Opt_no_space_cache:
502 printk(KERN_INFO "btrfs: disabling disk space caching\n");
503 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
504 break;
505 case Opt_inode_cache:
506 printk(KERN_INFO "btrfs: enabling inode map caching\n");
507 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
508 break;
509 case Opt_clear_cache:
510 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
511 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
512 break;
513 case Opt_user_subvol_rm_allowed:
514 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
515 break;
516 case Opt_enospc_debug:
517 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
518 break;
519 case Opt_defrag:
520 printk(KERN_INFO "btrfs: enabling auto defrag");
521 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
522 break;
523 case Opt_recovery:
524 printk(KERN_INFO "btrfs: enabling auto recovery");
525 btrfs_set_opt(info->mount_opt, RECOVERY);
526 break;
527 case Opt_skip_balance:
528 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
529 break;
530 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
531 case Opt_check_integrity_including_extent_data:
532 printk(KERN_INFO "btrfs: enabling check integrity"
533 " including extent data\n");
534 btrfs_set_opt(info->mount_opt,
535 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
536 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
537 break;
538 case Opt_check_integrity:
539 printk(KERN_INFO "btrfs: enabling check integrity\n");
540 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
541 break;
542 case Opt_check_integrity_print_mask:
543 intarg = 0;
544 match_int(&args[0], &intarg);
545 if (intarg) {
546 info->check_integrity_print_mask = intarg;
547 printk(KERN_INFO "btrfs:"
548 " check_integrity_print_mask 0x%x\n",
549 info->check_integrity_print_mask);
550 }
551 break;
552 #else
553 case Opt_check_integrity_including_extent_data:
554 case Opt_check_integrity:
555 case Opt_check_integrity_print_mask:
556 printk(KERN_ERR "btrfs: support for check_integrity*"
557 " not compiled in!\n");
558 ret = -EINVAL;
559 goto out;
560 #endif
561 case Opt_fatal_errors:
562 if (strcmp(args[0].from, "panic") == 0)
563 btrfs_set_opt(info->mount_opt,
564 PANIC_ON_FATAL_ERROR);
565 else if (strcmp(args[0].from, "bug") == 0)
566 btrfs_clear_opt(info->mount_opt,
567 PANIC_ON_FATAL_ERROR);
568 else {
569 ret = -EINVAL;
570 goto out;
571 }
572 break;
573 case Opt_err:
574 printk(KERN_INFO "btrfs: unrecognized mount option "
575 "'%s'\n", p);
576 ret = -EINVAL;
577 goto out;
578 default:
579 break;
580 }
581 }
582 out:
583 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
584 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
585 kfree(orig);
586 return ret;
587 }
588
589 /*
590 * Parse mount options that are required early in the mount process.
591 *
592 * All other options will be parsed on much later in the mount process and
593 * only when we need to allocate a new super block.
594 */
595 static int btrfs_parse_early_options(const char *options, fmode_t flags,
596 void *holder, char **subvol_name, u64 *subvol_objectid,
597 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
598 {
599 substring_t args[MAX_OPT_ARGS];
600 char *device_name, *opts, *orig, *p;
601 int error = 0;
602 int intarg;
603
604 if (!options)
605 return 0;
606
607 /*
608 * strsep changes the string, duplicate it because parse_options
609 * gets called twice
610 */
611 opts = kstrdup(options, GFP_KERNEL);
612 if (!opts)
613 return -ENOMEM;
614 orig = opts;
615
616 while ((p = strsep(&opts, ",")) != NULL) {
617 int token;
618 if (!*p)
619 continue;
620
621 token = match_token(p, tokens, args);
622 switch (token) {
623 case Opt_subvol:
624 kfree(*subvol_name);
625 *subvol_name = match_strdup(&args[0]);
626 break;
627 case Opt_subvolid:
628 intarg = 0;
629 error = match_int(&args[0], &intarg);
630 if (!error) {
631 /* we want the original fs_tree */
632 if (!intarg)
633 *subvol_objectid =
634 BTRFS_FS_TREE_OBJECTID;
635 else
636 *subvol_objectid = intarg;
637 }
638 break;
639 case Opt_subvolrootid:
640 intarg = 0;
641 error = match_int(&args[0], &intarg);
642 if (!error) {
643 /* we want the original fs_tree */
644 if (!intarg)
645 *subvol_rootid =
646 BTRFS_FS_TREE_OBJECTID;
647 else
648 *subvol_rootid = intarg;
649 }
650 break;
651 case Opt_device:
652 device_name = match_strdup(&args[0]);
653 if (!device_name) {
654 error = -ENOMEM;
655 goto out;
656 }
657 error = btrfs_scan_one_device(device_name,
658 flags, holder, fs_devices);
659 kfree(device_name);
660 if (error)
661 goto out;
662 break;
663 default:
664 break;
665 }
666 }
667
668 out:
669 kfree(orig);
670 return error;
671 }
672
673 static struct dentry *get_default_root(struct super_block *sb,
674 u64 subvol_objectid)
675 {
676 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
677 struct btrfs_root *root = fs_info->tree_root;
678 struct btrfs_root *new_root;
679 struct btrfs_dir_item *di;
680 struct btrfs_path *path;
681 struct btrfs_key location;
682 struct inode *inode;
683 u64 dir_id;
684 int new = 0;
685
686 /*
687 * We have a specific subvol we want to mount, just setup location and
688 * go look up the root.
689 */
690 if (subvol_objectid) {
691 location.objectid = subvol_objectid;
692 location.type = BTRFS_ROOT_ITEM_KEY;
693 location.offset = (u64)-1;
694 goto find_root;
695 }
696
697 path = btrfs_alloc_path();
698 if (!path)
699 return ERR_PTR(-ENOMEM);
700 path->leave_spinning = 1;
701
702 /*
703 * Find the "default" dir item which points to the root item that we
704 * will mount by default if we haven't been given a specific subvolume
705 * to mount.
706 */
707 dir_id = btrfs_super_root_dir(fs_info->super_copy);
708 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
709 if (IS_ERR(di)) {
710 btrfs_free_path(path);
711 return ERR_CAST(di);
712 }
713 if (!di) {
714 /*
715 * Ok the default dir item isn't there. This is weird since
716 * it's always been there, but don't freak out, just try and
717 * mount to root most subvolume.
718 */
719 btrfs_free_path(path);
720 dir_id = BTRFS_FIRST_FREE_OBJECTID;
721 new_root = fs_info->fs_root;
722 goto setup_root;
723 }
724
725 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
726 btrfs_free_path(path);
727
728 find_root:
729 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
730 if (IS_ERR(new_root))
731 return ERR_CAST(new_root);
732
733 if (btrfs_root_refs(&new_root->root_item) == 0)
734 return ERR_PTR(-ENOENT);
735
736 dir_id = btrfs_root_dirid(&new_root->root_item);
737 setup_root:
738 location.objectid = dir_id;
739 location.type = BTRFS_INODE_ITEM_KEY;
740 location.offset = 0;
741
742 inode = btrfs_iget(sb, &location, new_root, &new);
743 if (IS_ERR(inode))
744 return ERR_CAST(inode);
745
746 /*
747 * If we're just mounting the root most subvol put the inode and return
748 * a reference to the dentry. We will have already gotten a reference
749 * to the inode in btrfs_fill_super so we're good to go.
750 */
751 if (!new && sb->s_root->d_inode == inode) {
752 iput(inode);
753 return dget(sb->s_root);
754 }
755
756 return d_obtain_alias(inode);
757 }
758
759 static int btrfs_fill_super(struct super_block *sb,
760 struct btrfs_fs_devices *fs_devices,
761 void *data, int silent)
762 {
763 struct inode *inode;
764 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
765 struct btrfs_key key;
766 int err;
767
768 sb->s_maxbytes = MAX_LFS_FILESIZE;
769 sb->s_magic = BTRFS_SUPER_MAGIC;
770 sb->s_op = &btrfs_super_ops;
771 sb->s_d_op = &btrfs_dentry_operations;
772 sb->s_export_op = &btrfs_export_ops;
773 sb->s_xattr = btrfs_xattr_handlers;
774 sb->s_time_gran = 1;
775 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
776 sb->s_flags |= MS_POSIXACL;
777 #endif
778 sb->s_flags |= MS_I_VERSION;
779 err = open_ctree(sb, fs_devices, (char *)data);
780 if (err) {
781 printk("btrfs: open_ctree failed\n");
782 return err;
783 }
784
785 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
786 key.type = BTRFS_INODE_ITEM_KEY;
787 key.offset = 0;
788 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
789 if (IS_ERR(inode)) {
790 err = PTR_ERR(inode);
791 goto fail_close;
792 }
793
794 sb->s_root = d_make_root(inode);
795 if (!sb->s_root) {
796 err = -ENOMEM;
797 goto fail_close;
798 }
799
800 save_mount_options(sb, data);
801 cleancache_init_fs(sb);
802 sb->s_flags |= MS_ACTIVE;
803 return 0;
804
805 fail_close:
806 close_ctree(fs_info->tree_root);
807 return err;
808 }
809
810 int btrfs_sync_fs(struct super_block *sb, int wait)
811 {
812 struct btrfs_trans_handle *trans;
813 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
814 struct btrfs_root *root = fs_info->tree_root;
815 int ret;
816
817 trace_btrfs_sync_fs(wait);
818
819 if (!wait) {
820 filemap_flush(fs_info->btree_inode->i_mapping);
821 return 0;
822 }
823
824 btrfs_wait_ordered_extents(root, 0, 0);
825
826 trans = btrfs_start_transaction(root, 0);
827 if (IS_ERR(trans))
828 return PTR_ERR(trans);
829 ret = btrfs_commit_transaction(trans, root);
830 return ret;
831 }
832
833 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
834 {
835 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
836 struct btrfs_root *root = info->tree_root;
837 char *compress_type;
838
839 if (btrfs_test_opt(root, DEGRADED))
840 seq_puts(seq, ",degraded");
841 if (btrfs_test_opt(root, NODATASUM))
842 seq_puts(seq, ",nodatasum");
843 if (btrfs_test_opt(root, NODATACOW))
844 seq_puts(seq, ",nodatacow");
845 if (btrfs_test_opt(root, NOBARRIER))
846 seq_puts(seq, ",nobarrier");
847 if (info->max_inline != 8192 * 1024)
848 seq_printf(seq, ",max_inline=%llu",
849 (unsigned long long)info->max_inline);
850 if (info->alloc_start != 0)
851 seq_printf(seq, ",alloc_start=%llu",
852 (unsigned long long)info->alloc_start);
853 if (info->thread_pool_size != min_t(unsigned long,
854 num_online_cpus() + 2, 8))
855 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
856 if (btrfs_test_opt(root, COMPRESS)) {
857 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
858 compress_type = "zlib";
859 else
860 compress_type = "lzo";
861 if (btrfs_test_opt(root, FORCE_COMPRESS))
862 seq_printf(seq, ",compress-force=%s", compress_type);
863 else
864 seq_printf(seq, ",compress=%s", compress_type);
865 }
866 if (btrfs_test_opt(root, NOSSD))
867 seq_puts(seq, ",nossd");
868 if (btrfs_test_opt(root, SSD_SPREAD))
869 seq_puts(seq, ",ssd_spread");
870 else if (btrfs_test_opt(root, SSD))
871 seq_puts(seq, ",ssd");
872 if (btrfs_test_opt(root, NOTREELOG))
873 seq_puts(seq, ",notreelog");
874 if (btrfs_test_opt(root, FLUSHONCOMMIT))
875 seq_puts(seq, ",flushoncommit");
876 if (btrfs_test_opt(root, DISCARD))
877 seq_puts(seq, ",discard");
878 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
879 seq_puts(seq, ",noacl");
880 if (btrfs_test_opt(root, SPACE_CACHE))
881 seq_puts(seq, ",space_cache");
882 else
883 seq_puts(seq, ",nospace_cache");
884 if (btrfs_test_opt(root, CLEAR_CACHE))
885 seq_puts(seq, ",clear_cache");
886 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
887 seq_puts(seq, ",user_subvol_rm_allowed");
888 if (btrfs_test_opt(root, ENOSPC_DEBUG))
889 seq_puts(seq, ",enospc_debug");
890 if (btrfs_test_opt(root, AUTO_DEFRAG))
891 seq_puts(seq, ",autodefrag");
892 if (btrfs_test_opt(root, INODE_MAP_CACHE))
893 seq_puts(seq, ",inode_cache");
894 if (btrfs_test_opt(root, SKIP_BALANCE))
895 seq_puts(seq, ",skip_balance");
896 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
897 seq_puts(seq, ",fatal_errors=panic");
898 return 0;
899 }
900
901 static int btrfs_test_super(struct super_block *s, void *data)
902 {
903 struct btrfs_fs_info *p = data;
904 struct btrfs_fs_info *fs_info = btrfs_sb(s);
905
906 return fs_info->fs_devices == p->fs_devices;
907 }
908
909 static int btrfs_set_super(struct super_block *s, void *data)
910 {
911 int err = set_anon_super(s, data);
912 if (!err)
913 s->s_fs_info = data;
914 return err;
915 }
916
917 /*
918 * subvolumes are identified by ino 256
919 */
920 static inline int is_subvolume_inode(struct inode *inode)
921 {
922 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
923 return 1;
924 return 0;
925 }
926
927 /*
928 * This will strip out the subvol=%s argument for an argument string and add
929 * subvolid=0 to make sure we get the actual tree root for path walking to the
930 * subvol we want.
931 */
932 static char *setup_root_args(char *args)
933 {
934 unsigned len = strlen(args) + 2 + 1;
935 char *src, *dst, *buf;
936
937 /*
938 * We need the same args as before, but with this substitution:
939 * s!subvol=[^,]+!subvolid=0!
940 *
941 * Since the replacement string is up to 2 bytes longer than the
942 * original, allocate strlen(args) + 2 + 1 bytes.
943 */
944
945 src = strstr(args, "subvol=");
946 /* This shouldn't happen, but just in case.. */
947 if (!src)
948 return NULL;
949
950 buf = dst = kmalloc(len, GFP_NOFS);
951 if (!buf)
952 return NULL;
953
954 /*
955 * If the subvol= arg is not at the start of the string,
956 * copy whatever precedes it into buf.
957 */
958 if (src != args) {
959 *src++ = '\0';
960 strcpy(buf, args);
961 dst += strlen(args);
962 }
963
964 strcpy(dst, "subvolid=0");
965 dst += strlen("subvolid=0");
966
967 /*
968 * If there is a "," after the original subvol=... string,
969 * copy that suffix into our buffer. Otherwise, we're done.
970 */
971 src = strchr(src, ',');
972 if (src)
973 strcpy(dst, src);
974
975 return buf;
976 }
977
978 static struct dentry *mount_subvol(const char *subvol_name, int flags,
979 const char *device_name, char *data)
980 {
981 struct dentry *root;
982 struct vfsmount *mnt;
983 char *newargs;
984
985 newargs = setup_root_args(data);
986 if (!newargs)
987 return ERR_PTR(-ENOMEM);
988 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
989 newargs);
990 kfree(newargs);
991 if (IS_ERR(mnt))
992 return ERR_CAST(mnt);
993
994 root = mount_subtree(mnt, subvol_name);
995
996 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
997 struct super_block *s = root->d_sb;
998 dput(root);
999 root = ERR_PTR(-EINVAL);
1000 deactivate_locked_super(s);
1001 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1002 subvol_name);
1003 }
1004
1005 return root;
1006 }
1007
1008 /*
1009 * Find a superblock for the given device / mount point.
1010 *
1011 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1012 * for multiple device setup. Make sure to keep it in sync.
1013 */
1014 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1015 const char *device_name, void *data)
1016 {
1017 struct block_device *bdev = NULL;
1018 struct super_block *s;
1019 struct dentry *root;
1020 struct btrfs_fs_devices *fs_devices = NULL;
1021 struct btrfs_fs_info *fs_info = NULL;
1022 fmode_t mode = FMODE_READ;
1023 char *subvol_name = NULL;
1024 u64 subvol_objectid = 0;
1025 u64 subvol_rootid = 0;
1026 int error = 0;
1027
1028 if (!(flags & MS_RDONLY))
1029 mode |= FMODE_WRITE;
1030
1031 error = btrfs_parse_early_options(data, mode, fs_type,
1032 &subvol_name, &subvol_objectid,
1033 &subvol_rootid, &fs_devices);
1034 if (error) {
1035 kfree(subvol_name);
1036 return ERR_PTR(error);
1037 }
1038
1039 if (subvol_name) {
1040 root = mount_subvol(subvol_name, flags, device_name, data);
1041 kfree(subvol_name);
1042 return root;
1043 }
1044
1045 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1046 if (error)
1047 return ERR_PTR(error);
1048
1049 /*
1050 * Setup a dummy root and fs_info for test/set super. This is because
1051 * we don't actually fill this stuff out until open_ctree, but we need
1052 * it for searching for existing supers, so this lets us do that and
1053 * then open_ctree will properly initialize everything later.
1054 */
1055 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1056 if (!fs_info)
1057 return ERR_PTR(-ENOMEM);
1058
1059 fs_info->fs_devices = fs_devices;
1060
1061 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1062 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1063 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1064 error = -ENOMEM;
1065 goto error_fs_info;
1066 }
1067
1068 error = btrfs_open_devices(fs_devices, mode, fs_type);
1069 if (error)
1070 goto error_fs_info;
1071
1072 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1073 error = -EACCES;
1074 goto error_close_devices;
1075 }
1076
1077 bdev = fs_devices->latest_bdev;
1078 s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1079 if (IS_ERR(s)) {
1080 error = PTR_ERR(s);
1081 goto error_close_devices;
1082 }
1083
1084 if (s->s_root) {
1085 btrfs_close_devices(fs_devices);
1086 free_fs_info(fs_info);
1087 if ((flags ^ s->s_flags) & MS_RDONLY)
1088 error = -EBUSY;
1089 } else {
1090 char b[BDEVNAME_SIZE];
1091
1092 s->s_flags = flags | MS_NOSEC;
1093 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1094 btrfs_sb(s)->bdev_holder = fs_type;
1095 error = btrfs_fill_super(s, fs_devices, data,
1096 flags & MS_SILENT ? 1 : 0);
1097 }
1098
1099 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1100 if (IS_ERR(root))
1101 deactivate_locked_super(s);
1102
1103 return root;
1104
1105 error_close_devices:
1106 btrfs_close_devices(fs_devices);
1107 error_fs_info:
1108 free_fs_info(fs_info);
1109 return ERR_PTR(error);
1110 }
1111
1112 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1113 {
1114 spin_lock_irq(&workers->lock);
1115 workers->max_workers = new_limit;
1116 spin_unlock_irq(&workers->lock);
1117 }
1118
1119 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1120 int new_pool_size, int old_pool_size)
1121 {
1122 if (new_pool_size == old_pool_size)
1123 return;
1124
1125 fs_info->thread_pool_size = new_pool_size;
1126
1127 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1128 old_pool_size, new_pool_size);
1129
1130 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1131 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1132 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1133 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1134 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1135 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1136 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1137 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1138 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1139 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1140 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1141 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1142 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1143 btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1144 }
1145
1146 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1147 {
1148 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1149 struct btrfs_root *root = fs_info->tree_root;
1150 unsigned old_flags = sb->s_flags;
1151 unsigned long old_opts = fs_info->mount_opt;
1152 unsigned long old_compress_type = fs_info->compress_type;
1153 u64 old_max_inline = fs_info->max_inline;
1154 u64 old_alloc_start = fs_info->alloc_start;
1155 int old_thread_pool_size = fs_info->thread_pool_size;
1156 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1157 int ret;
1158
1159 ret = btrfs_parse_options(root, data);
1160 if (ret) {
1161 ret = -EINVAL;
1162 goto restore;
1163 }
1164
1165 btrfs_resize_thread_pool(fs_info,
1166 fs_info->thread_pool_size, old_thread_pool_size);
1167
1168 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1169 return 0;
1170
1171 if (*flags & MS_RDONLY) {
1172 sb->s_flags |= MS_RDONLY;
1173
1174 ret = btrfs_commit_super(root);
1175 if (ret)
1176 goto restore;
1177 } else {
1178 if (fs_info->fs_devices->rw_devices == 0) {
1179 ret = -EACCES;
1180 goto restore;
1181 }
1182
1183 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1184 ret = -EINVAL;
1185 goto restore;
1186 }
1187
1188 ret = btrfs_cleanup_fs_roots(fs_info);
1189 if (ret)
1190 goto restore;
1191
1192 /* recover relocation */
1193 ret = btrfs_recover_relocation(root);
1194 if (ret)
1195 goto restore;
1196
1197 ret = btrfs_resume_balance_async(fs_info);
1198 if (ret)
1199 goto restore;
1200
1201 sb->s_flags &= ~MS_RDONLY;
1202 }
1203
1204 return 0;
1205
1206 restore:
1207 /* We've hit an error - don't reset MS_RDONLY */
1208 if (sb->s_flags & MS_RDONLY)
1209 old_flags |= MS_RDONLY;
1210 sb->s_flags = old_flags;
1211 fs_info->mount_opt = old_opts;
1212 fs_info->compress_type = old_compress_type;
1213 fs_info->max_inline = old_max_inline;
1214 fs_info->alloc_start = old_alloc_start;
1215 btrfs_resize_thread_pool(fs_info,
1216 old_thread_pool_size, fs_info->thread_pool_size);
1217 fs_info->metadata_ratio = old_metadata_ratio;
1218 return ret;
1219 }
1220
1221 /* Used to sort the devices by max_avail(descending sort) */
1222 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1223 const void *dev_info2)
1224 {
1225 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1226 ((struct btrfs_device_info *)dev_info2)->max_avail)
1227 return -1;
1228 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1229 ((struct btrfs_device_info *)dev_info2)->max_avail)
1230 return 1;
1231 else
1232 return 0;
1233 }
1234
1235 /*
1236 * sort the devices by max_avail, in which max free extent size of each device
1237 * is stored.(Descending Sort)
1238 */
1239 static inline void btrfs_descending_sort_devices(
1240 struct btrfs_device_info *devices,
1241 size_t nr_devices)
1242 {
1243 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1244 btrfs_cmp_device_free_bytes, NULL);
1245 }
1246
1247 /*
1248 * The helper to calc the free space on the devices that can be used to store
1249 * file data.
1250 */
1251 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1252 {
1253 struct btrfs_fs_info *fs_info = root->fs_info;
1254 struct btrfs_device_info *devices_info;
1255 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1256 struct btrfs_device *device;
1257 u64 skip_space;
1258 u64 type;
1259 u64 avail_space;
1260 u64 used_space;
1261 u64 min_stripe_size;
1262 int min_stripes = 1, num_stripes = 1;
1263 int i = 0, nr_devices;
1264 int ret;
1265
1266 nr_devices = fs_info->fs_devices->open_devices;
1267 BUG_ON(!nr_devices);
1268
1269 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1270 GFP_NOFS);
1271 if (!devices_info)
1272 return -ENOMEM;
1273
1274 /* calc min stripe number for data space alloction */
1275 type = btrfs_get_alloc_profile(root, 1);
1276 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1277 min_stripes = 2;
1278 num_stripes = nr_devices;
1279 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1280 min_stripes = 2;
1281 num_stripes = 2;
1282 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1283 min_stripes = 4;
1284 num_stripes = 4;
1285 }
1286
1287 if (type & BTRFS_BLOCK_GROUP_DUP)
1288 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1289 else
1290 min_stripe_size = BTRFS_STRIPE_LEN;
1291
1292 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1293 if (!device->in_fs_metadata || !device->bdev)
1294 continue;
1295
1296 avail_space = device->total_bytes - device->bytes_used;
1297
1298 /* align with stripe_len */
1299 do_div(avail_space, BTRFS_STRIPE_LEN);
1300 avail_space *= BTRFS_STRIPE_LEN;
1301
1302 /*
1303 * In order to avoid overwritting the superblock on the drive,
1304 * btrfs starts at an offset of at least 1MB when doing chunk
1305 * allocation.
1306 */
1307 skip_space = 1024 * 1024;
1308
1309 /* user can set the offset in fs_info->alloc_start. */
1310 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1311 device->total_bytes)
1312 skip_space = max(fs_info->alloc_start, skip_space);
1313
1314 /*
1315 * btrfs can not use the free space in [0, skip_space - 1],
1316 * we must subtract it from the total. In order to implement
1317 * it, we account the used space in this range first.
1318 */
1319 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1320 &used_space);
1321 if (ret) {
1322 kfree(devices_info);
1323 return ret;
1324 }
1325
1326 /* calc the free space in [0, skip_space - 1] */
1327 skip_space -= used_space;
1328
1329 /*
1330 * we can use the free space in [0, skip_space - 1], subtract
1331 * it from the total.
1332 */
1333 if (avail_space && avail_space >= skip_space)
1334 avail_space -= skip_space;
1335 else
1336 avail_space = 0;
1337
1338 if (avail_space < min_stripe_size)
1339 continue;
1340
1341 devices_info[i].dev = device;
1342 devices_info[i].max_avail = avail_space;
1343
1344 i++;
1345 }
1346
1347 nr_devices = i;
1348
1349 btrfs_descending_sort_devices(devices_info, nr_devices);
1350
1351 i = nr_devices - 1;
1352 avail_space = 0;
1353 while (nr_devices >= min_stripes) {
1354 if (num_stripes > nr_devices)
1355 num_stripes = nr_devices;
1356
1357 if (devices_info[i].max_avail >= min_stripe_size) {
1358 int j;
1359 u64 alloc_size;
1360
1361 avail_space += devices_info[i].max_avail * num_stripes;
1362 alloc_size = devices_info[i].max_avail;
1363 for (j = i + 1 - num_stripes; j <= i; j++)
1364 devices_info[j].max_avail -= alloc_size;
1365 }
1366 i--;
1367 nr_devices--;
1368 }
1369
1370 kfree(devices_info);
1371 *free_bytes = avail_space;
1372 return 0;
1373 }
1374
1375 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1376 {
1377 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1378 struct btrfs_super_block *disk_super = fs_info->super_copy;
1379 struct list_head *head = &fs_info->space_info;
1380 struct btrfs_space_info *found;
1381 u64 total_used = 0;
1382 u64 total_free_data = 0;
1383 int bits = dentry->d_sb->s_blocksize_bits;
1384 __be32 *fsid = (__be32 *)fs_info->fsid;
1385 int ret;
1386
1387 /* holding chunk_muext to avoid allocating new chunks */
1388 mutex_lock(&fs_info->chunk_mutex);
1389 rcu_read_lock();
1390 list_for_each_entry_rcu(found, head, list) {
1391 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1392 total_free_data += found->disk_total - found->disk_used;
1393 total_free_data -=
1394 btrfs_account_ro_block_groups_free_space(found);
1395 }
1396
1397 total_used += found->disk_used;
1398 }
1399 rcu_read_unlock();
1400
1401 buf->f_namelen = BTRFS_NAME_LEN;
1402 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1403 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1404 buf->f_bsize = dentry->d_sb->s_blocksize;
1405 buf->f_type = BTRFS_SUPER_MAGIC;
1406 buf->f_bavail = total_free_data;
1407 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1408 if (ret) {
1409 mutex_unlock(&fs_info->chunk_mutex);
1410 return ret;
1411 }
1412 buf->f_bavail += total_free_data;
1413 buf->f_bavail = buf->f_bavail >> bits;
1414 mutex_unlock(&fs_info->chunk_mutex);
1415
1416 /* We treat it as constant endianness (it doesn't matter _which_)
1417 because we want the fsid to come out the same whether mounted
1418 on a big-endian or little-endian host */
1419 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1420 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1421 /* Mask in the root object ID too, to disambiguate subvols */
1422 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1423 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1424
1425 return 0;
1426 }
1427
1428 static void btrfs_kill_super(struct super_block *sb)
1429 {
1430 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1431 kill_anon_super(sb);
1432 free_fs_info(fs_info);
1433 }
1434
1435 static struct file_system_type btrfs_fs_type = {
1436 .owner = THIS_MODULE,
1437 .name = "btrfs",
1438 .mount = btrfs_mount,
1439 .kill_sb = btrfs_kill_super,
1440 .fs_flags = FS_REQUIRES_DEV,
1441 };
1442
1443 /*
1444 * used by btrfsctl to scan devices when no FS is mounted
1445 */
1446 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1447 unsigned long arg)
1448 {
1449 struct btrfs_ioctl_vol_args *vol;
1450 struct btrfs_fs_devices *fs_devices;
1451 int ret = -ENOTTY;
1452
1453 if (!capable(CAP_SYS_ADMIN))
1454 return -EPERM;
1455
1456 vol = memdup_user((void __user *)arg, sizeof(*vol));
1457 if (IS_ERR(vol))
1458 return PTR_ERR(vol);
1459
1460 switch (cmd) {
1461 case BTRFS_IOC_SCAN_DEV:
1462 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1463 &btrfs_fs_type, &fs_devices);
1464 break;
1465 }
1466
1467 kfree(vol);
1468 return ret;
1469 }
1470
1471 static int btrfs_freeze(struct super_block *sb)
1472 {
1473 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1474 mutex_lock(&fs_info->transaction_kthread_mutex);
1475 mutex_lock(&fs_info->cleaner_mutex);
1476 return 0;
1477 }
1478
1479 static int btrfs_unfreeze(struct super_block *sb)
1480 {
1481 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1482 mutex_unlock(&fs_info->cleaner_mutex);
1483 mutex_unlock(&fs_info->transaction_kthread_mutex);
1484 return 0;
1485 }
1486
1487 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1488 {
1489 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1490 struct btrfs_fs_devices *cur_devices;
1491 struct btrfs_device *dev, *first_dev = NULL;
1492 struct list_head *head;
1493 struct rcu_string *name;
1494
1495 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1496 cur_devices = fs_info->fs_devices;
1497 while (cur_devices) {
1498 head = &cur_devices->devices;
1499 list_for_each_entry(dev, head, dev_list) {
1500 if (!first_dev || dev->devid < first_dev->devid)
1501 first_dev = dev;
1502 }
1503 cur_devices = cur_devices->seed;
1504 }
1505
1506 if (first_dev) {
1507 rcu_read_lock();
1508 name = rcu_dereference(first_dev->name);
1509 seq_escape(m, name->str, " \t\n\\");
1510 rcu_read_unlock();
1511 } else {
1512 WARN_ON(1);
1513 }
1514 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1515 return 0;
1516 }
1517
1518 static const struct super_operations btrfs_super_ops = {
1519 .drop_inode = btrfs_drop_inode,
1520 .evict_inode = btrfs_evict_inode,
1521 .put_super = btrfs_put_super,
1522 .sync_fs = btrfs_sync_fs,
1523 .show_options = btrfs_show_options,
1524 .show_devname = btrfs_show_devname,
1525 .write_inode = btrfs_write_inode,
1526 .alloc_inode = btrfs_alloc_inode,
1527 .destroy_inode = btrfs_destroy_inode,
1528 .statfs = btrfs_statfs,
1529 .remount_fs = btrfs_remount,
1530 .freeze_fs = btrfs_freeze,
1531 .unfreeze_fs = btrfs_unfreeze,
1532 };
1533
1534 static const struct file_operations btrfs_ctl_fops = {
1535 .unlocked_ioctl = btrfs_control_ioctl,
1536 .compat_ioctl = btrfs_control_ioctl,
1537 .owner = THIS_MODULE,
1538 .llseek = noop_llseek,
1539 };
1540
1541 static struct miscdevice btrfs_misc = {
1542 .minor = BTRFS_MINOR,
1543 .name = "btrfs-control",
1544 .fops = &btrfs_ctl_fops
1545 };
1546
1547 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1548 MODULE_ALIAS("devname:btrfs-control");
1549
1550 static int btrfs_interface_init(void)
1551 {
1552 return misc_register(&btrfs_misc);
1553 }
1554
1555 static void btrfs_interface_exit(void)
1556 {
1557 if (misc_deregister(&btrfs_misc) < 0)
1558 printk(KERN_INFO "misc_deregister failed for control device");
1559 }
1560
1561 static int __init init_btrfs_fs(void)
1562 {
1563 int err;
1564
1565 err = btrfs_init_sysfs();
1566 if (err)
1567 return err;
1568
1569 btrfs_init_compress();
1570
1571 err = btrfs_init_cachep();
1572 if (err)
1573 goto free_compress;
1574
1575 err = extent_io_init();
1576 if (err)
1577 goto free_cachep;
1578
1579 err = extent_map_init();
1580 if (err)
1581 goto free_extent_io;
1582
1583 err = btrfs_delayed_inode_init();
1584 if (err)
1585 goto free_extent_map;
1586
1587 err = btrfs_interface_init();
1588 if (err)
1589 goto free_delayed_inode;
1590
1591 err = register_filesystem(&btrfs_fs_type);
1592 if (err)
1593 goto unregister_ioctl;
1594
1595 btrfs_init_lockdep();
1596
1597 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1598 return 0;
1599
1600 unregister_ioctl:
1601 btrfs_interface_exit();
1602 free_delayed_inode:
1603 btrfs_delayed_inode_exit();
1604 free_extent_map:
1605 extent_map_exit();
1606 free_extent_io:
1607 extent_io_exit();
1608 free_cachep:
1609 btrfs_destroy_cachep();
1610 free_compress:
1611 btrfs_exit_compress();
1612 btrfs_exit_sysfs();
1613 return err;
1614 }
1615
1616 static void __exit exit_btrfs_fs(void)
1617 {
1618 btrfs_destroy_cachep();
1619 btrfs_delayed_inode_exit();
1620 extent_map_exit();
1621 extent_io_exit();
1622 btrfs_interface_exit();
1623 unregister_filesystem(&btrfs_fs_type);
1624 btrfs_exit_sysfs();
1625 btrfs_cleanup_fs_uuids();
1626 btrfs_exit_compress();
1627 }
1628
1629 module_init(init_btrfs_fs)
1630 module_exit(exit_btrfs_fs)
1631
1632 MODULE_LICENSE("GPL");
This page took 0.105456 seconds and 5 git commands to generate.