2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
61 #include "tests/btrfs-tests.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
67 static const struct super_operations btrfs_super_ops
;
68 static struct file_system_type btrfs_fs_type
;
70 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
);
72 const char *btrfs_decode_error(int errno
)
74 char *errstr
= "unknown";
78 errstr
= "IO failure";
81 errstr
= "Out of memory";
84 errstr
= "Readonly filesystem";
87 errstr
= "Object already exists";
90 errstr
= "No space left";
93 errstr
= "No such entry";
100 static void save_error_info(struct btrfs_fs_info
*fs_info
)
103 * today we only save the error info into ram. Long term we'll
104 * also send it down to the disk
106 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info
*fs_info
)
112 struct super_block
*sb
= fs_info
->sb
;
114 if (sb
->s_flags
& MS_RDONLY
)
117 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
118 sb
->s_flags
|= MS_RDONLY
;
119 btrfs_info(fs_info
, "forced readonly");
121 * Note that a running device replace operation is not
122 * canceled here although there is no way to update
123 * the progress. It would add the risk of a deadlock,
124 * therefore the canceling is ommited. The only penalty
125 * is that some I/O remains active until the procedure
126 * completes. The next time when the filesystem is
127 * mounted writeable again, the device replace
128 * operation continues.
134 * __btrfs_std_error decodes expected errors from the caller and
135 * invokes the approciate error response.
138 void __btrfs_std_error(struct btrfs_fs_info
*fs_info
, const char *function
,
139 unsigned int line
, int errno
, const char *fmt
, ...)
141 struct super_block
*sb
= fs_info
->sb
;
147 * Special case: if the error is EROFS, and we're already
148 * under MS_RDONLY, then it is safe here.
150 if (errno
== -EROFS
&& (sb
->s_flags
& MS_RDONLY
))
154 errstr
= btrfs_decode_error(errno
);
156 struct va_format vaf
;
164 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
165 sb
->s_id
, function
, line
, errno
, errstr
, &vaf
);
168 printk(KERN_CRIT
"BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
169 sb
->s_id
, function
, line
, errno
, errstr
);
173 /* Don't go through full error handling during mount */
174 save_error_info(fs_info
);
175 if (sb
->s_flags
& MS_BORN
)
176 btrfs_handle_error(fs_info
);
180 static const char * const logtypes
[] = {
191 void btrfs_printk(const struct btrfs_fs_info
*fs_info
, const char *fmt
, ...)
193 struct super_block
*sb
= fs_info
->sb
;
195 struct va_format vaf
;
197 const char *type
= logtypes
[4];
202 kern_level
= printk_get_level(fmt
);
204 size_t size
= printk_skip_level(fmt
) - fmt
;
205 memcpy(lvl
, fmt
, size
);
208 type
= logtypes
[kern_level
- '0'];
215 printk("%sBTRFS %s (device %s): %pV\n", lvl
, type
, sb
->s_id
, &vaf
);
222 * We only mark the transaction aborted and then set the file system read-only.
223 * This will prevent new transactions from starting or trying to join this
226 * This means that error recovery at the call site is limited to freeing
227 * any local memory allocations and passing the error code up without
228 * further cleanup. The transaction should complete as it normally would
229 * in the call path but will return -EIO.
231 * We'll complete the cleanup in btrfs_end_transaction and
232 * btrfs_commit_transaction.
235 void __btrfs_abort_transaction(struct btrfs_trans_handle
*trans
,
236 struct btrfs_root
*root
, const char *function
,
237 unsigned int line
, int errno
)
239 trans
->aborted
= errno
;
240 /* Nothing used. The other threads that have joined this
241 * transaction may be able to continue. */
242 if (!trans
->blocks_used
&& list_empty(&trans
->new_bgs
)) {
245 errstr
= btrfs_decode_error(errno
);
246 btrfs_warn(root
->fs_info
,
247 "%s:%d: Aborting unused transaction(%s).",
248 function
, line
, errstr
);
251 ACCESS_ONCE(trans
->transaction
->aborted
) = errno
;
252 /* Wake up anybody who may be waiting on this transaction */
253 wake_up(&root
->fs_info
->transaction_wait
);
254 wake_up(&root
->fs_info
->transaction_blocked_wait
);
255 __btrfs_std_error(root
->fs_info
, function
, line
, errno
, NULL
);
258 * __btrfs_panic decodes unexpected, fatal errors from the caller,
259 * issues an alert, and either panics or BUGs, depending on mount options.
262 void __btrfs_panic(struct btrfs_fs_info
*fs_info
, const char *function
,
263 unsigned int line
, int errno
, const char *fmt
, ...)
265 char *s_id
= "<unknown>";
267 struct va_format vaf
= { .fmt
= fmt
};
271 s_id
= fs_info
->sb
->s_id
;
276 errstr
= btrfs_decode_error(errno
);
277 if (fs_info
&& (fs_info
->mount_opt
& BTRFS_MOUNT_PANIC_ON_FATAL_ERROR
))
278 panic(KERN_CRIT
"BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
279 s_id
, function
, line
, &vaf
, errno
, errstr
);
281 btrfs_crit(fs_info
, "panic in %s:%d: %pV (errno=%d %s)",
282 function
, line
, &vaf
, errno
, errstr
);
284 /* Caller calls BUG() */
287 static void btrfs_put_super(struct super_block
*sb
)
289 close_ctree(btrfs_sb(sb
)->tree_root
);
293 Opt_degraded
, Opt_subvol
, Opt_subvolid
, Opt_device
, Opt_nodatasum
,
294 Opt_nodatacow
, Opt_max_inline
, Opt_alloc_start
, Opt_nobarrier
, Opt_ssd
,
295 Opt_nossd
, Opt_ssd_spread
, Opt_thread_pool
, Opt_noacl
, Opt_compress
,
296 Opt_compress_type
, Opt_compress_force
, Opt_compress_force_type
,
297 Opt_notreelog
, Opt_ratio
, Opt_flushoncommit
, Opt_discard
,
298 Opt_space_cache
, Opt_space_cache_version
, Opt_clear_cache
,
299 Opt_user_subvol_rm_allowed
, Opt_enospc_debug
, Opt_subvolrootid
,
300 Opt_defrag
, Opt_inode_cache
, Opt_no_space_cache
, Opt_recovery
,
301 Opt_skip_balance
, Opt_check_integrity
,
302 Opt_check_integrity_including_extent_data
,
303 Opt_check_integrity_print_mask
, Opt_fatal_errors
, Opt_rescan_uuid_tree
,
304 Opt_commit_interval
, Opt_barrier
, Opt_nodefrag
, Opt_nodiscard
,
305 Opt_noenospc_debug
, Opt_noflushoncommit
, Opt_acl
, Opt_datacow
,
306 Opt_datasum
, Opt_treelog
, Opt_noinode_cache
,
307 #ifdef CONFIG_BTRFS_DEBUG
308 Opt_fragment_data
, Opt_fragment_metadata
, Opt_fragment_all
,
313 static const match_table_t tokens
= {
314 {Opt_degraded
, "degraded"},
315 {Opt_subvol
, "subvol=%s"},
316 {Opt_subvolid
, "subvolid=%s"},
317 {Opt_device
, "device=%s"},
318 {Opt_nodatasum
, "nodatasum"},
319 {Opt_datasum
, "datasum"},
320 {Opt_nodatacow
, "nodatacow"},
321 {Opt_datacow
, "datacow"},
322 {Opt_nobarrier
, "nobarrier"},
323 {Opt_barrier
, "barrier"},
324 {Opt_max_inline
, "max_inline=%s"},
325 {Opt_alloc_start
, "alloc_start=%s"},
326 {Opt_thread_pool
, "thread_pool=%d"},
327 {Opt_compress
, "compress"},
328 {Opt_compress_type
, "compress=%s"},
329 {Opt_compress_force
, "compress-force"},
330 {Opt_compress_force_type
, "compress-force=%s"},
332 {Opt_ssd_spread
, "ssd_spread"},
333 {Opt_nossd
, "nossd"},
335 {Opt_noacl
, "noacl"},
336 {Opt_notreelog
, "notreelog"},
337 {Opt_treelog
, "treelog"},
338 {Opt_flushoncommit
, "flushoncommit"},
339 {Opt_noflushoncommit
, "noflushoncommit"},
340 {Opt_ratio
, "metadata_ratio=%d"},
341 {Opt_discard
, "discard"},
342 {Opt_nodiscard
, "nodiscard"},
343 {Opt_space_cache
, "space_cache"},
344 {Opt_space_cache_version
, "space_cache=%s"},
345 {Opt_clear_cache
, "clear_cache"},
346 {Opt_user_subvol_rm_allowed
, "user_subvol_rm_allowed"},
347 {Opt_enospc_debug
, "enospc_debug"},
348 {Opt_noenospc_debug
, "noenospc_debug"},
349 {Opt_subvolrootid
, "subvolrootid=%d"},
350 {Opt_defrag
, "autodefrag"},
351 {Opt_nodefrag
, "noautodefrag"},
352 {Opt_inode_cache
, "inode_cache"},
353 {Opt_noinode_cache
, "noinode_cache"},
354 {Opt_no_space_cache
, "nospace_cache"},
355 {Opt_recovery
, "recovery"},
356 {Opt_skip_balance
, "skip_balance"},
357 {Opt_check_integrity
, "check_int"},
358 {Opt_check_integrity_including_extent_data
, "check_int_data"},
359 {Opt_check_integrity_print_mask
, "check_int_print_mask=%d"},
360 {Opt_rescan_uuid_tree
, "rescan_uuid_tree"},
361 {Opt_fatal_errors
, "fatal_errors=%s"},
362 {Opt_commit_interval
, "commit=%d"},
363 #ifdef CONFIG_BTRFS_DEBUG
364 {Opt_fragment_data
, "fragment=data"},
365 {Opt_fragment_metadata
, "fragment=metadata"},
366 {Opt_fragment_all
, "fragment=all"},
372 * Regular mount options parser. Everything that is needed only when
373 * reading in a new superblock is parsed here.
374 * XXX JDM: This needs to be cleaned up for remount.
376 int btrfs_parse_options(struct btrfs_root
*root
, char *options
)
378 struct btrfs_fs_info
*info
= root
->fs_info
;
379 substring_t args
[MAX_OPT_ARGS
];
380 char *p
, *num
, *orig
= NULL
;
385 bool compress_force
= false;
386 enum btrfs_compression_type saved_compress_type
;
387 bool saved_compress_force
;
390 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
391 if (btrfs_fs_compat_ro(root
->fs_info
, FREE_SPACE_TREE
))
392 btrfs_set_opt(info
->mount_opt
, FREE_SPACE_TREE
);
394 btrfs_set_opt(info
->mount_opt
, SPACE_CACHE
);
400 * strsep changes the string, duplicate it because parse_options
403 options
= kstrdup(options
, GFP_NOFS
);
409 while ((p
= strsep(&options
, ",")) != NULL
) {
414 token
= match_token(p
, tokens
, args
);
417 btrfs_info(root
->fs_info
, "allowing degraded mounts");
418 btrfs_set_opt(info
->mount_opt
, DEGRADED
);
422 case Opt_subvolrootid
:
425 * These are parsed by btrfs_parse_early_options
426 * and can be happily ignored here.
430 btrfs_set_and_info(root
, NODATASUM
,
431 "setting nodatasum");
434 if (btrfs_test_opt(root
, NODATASUM
)) {
435 if (btrfs_test_opt(root
, NODATACOW
))
436 btrfs_info(root
->fs_info
, "setting datasum, datacow enabled");
438 btrfs_info(root
->fs_info
, "setting datasum");
440 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
441 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
444 if (!btrfs_test_opt(root
, NODATACOW
)) {
445 if (!btrfs_test_opt(root
, COMPRESS
) ||
446 !btrfs_test_opt(root
, FORCE_COMPRESS
)) {
447 btrfs_info(root
->fs_info
,
448 "setting nodatacow, compression disabled");
450 btrfs_info(root
->fs_info
, "setting nodatacow");
453 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
454 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
455 btrfs_set_opt(info
->mount_opt
, NODATACOW
);
456 btrfs_set_opt(info
->mount_opt
, NODATASUM
);
459 btrfs_clear_and_info(root
, NODATACOW
,
462 case Opt_compress_force
:
463 case Opt_compress_force_type
:
464 compress_force
= true;
467 case Opt_compress_type
:
468 saved_compress_type
= btrfs_test_opt(root
, COMPRESS
) ?
469 info
->compress_type
: BTRFS_COMPRESS_NONE
;
470 saved_compress_force
=
471 btrfs_test_opt(root
, FORCE_COMPRESS
);
472 if (token
== Opt_compress
||
473 token
== Opt_compress_force
||
474 strcmp(args
[0].from
, "zlib") == 0) {
475 compress_type
= "zlib";
476 info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
477 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
478 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
479 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
481 } else if (strcmp(args
[0].from
, "lzo") == 0) {
482 compress_type
= "lzo";
483 info
->compress_type
= BTRFS_COMPRESS_LZO
;
484 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
485 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
486 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
487 btrfs_set_fs_incompat(info
, COMPRESS_LZO
);
489 } else if (strncmp(args
[0].from
, "no", 2) == 0) {
490 compress_type
= "no";
491 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
492 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
493 compress_force
= false;
500 if (compress_force
) {
501 btrfs_set_opt(info
->mount_opt
, FORCE_COMPRESS
);
504 * If we remount from compress-force=xxx to
505 * compress=xxx, we need clear FORCE_COMPRESS
506 * flag, otherwise, there is no way for users
507 * to disable forcible compression separately.
509 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
511 if ((btrfs_test_opt(root
, COMPRESS
) &&
512 (info
->compress_type
!= saved_compress_type
||
513 compress_force
!= saved_compress_force
)) ||
514 (!btrfs_test_opt(root
, COMPRESS
) &&
516 btrfs_info(root
->fs_info
,
518 (compress_force
) ? "force" : "use",
521 compress_force
= false;
524 btrfs_set_and_info(root
, SSD
,
525 "use ssd allocation scheme");
528 btrfs_set_and_info(root
, SSD_SPREAD
,
529 "use spread ssd allocation scheme");
530 btrfs_set_opt(info
->mount_opt
, SSD
);
533 btrfs_set_and_info(root
, NOSSD
,
534 "not using ssd allocation scheme");
535 btrfs_clear_opt(info
->mount_opt
, SSD
);
538 btrfs_clear_and_info(root
, NOBARRIER
,
539 "turning on barriers");
542 btrfs_set_and_info(root
, NOBARRIER
,
543 "turning off barriers");
545 case Opt_thread_pool
:
546 ret
= match_int(&args
[0], &intarg
);
549 } else if (intarg
> 0) {
550 info
->thread_pool_size
= intarg
;
557 num
= match_strdup(&args
[0]);
559 info
->max_inline
= memparse(num
, NULL
);
562 if (info
->max_inline
) {
563 info
->max_inline
= min_t(u64
,
567 btrfs_info(root
->fs_info
, "max_inline at %llu",
574 case Opt_alloc_start
:
575 num
= match_strdup(&args
[0]);
577 mutex_lock(&info
->chunk_mutex
);
578 info
->alloc_start
= memparse(num
, NULL
);
579 mutex_unlock(&info
->chunk_mutex
);
581 btrfs_info(root
->fs_info
, "allocations start at %llu",
589 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
590 root
->fs_info
->sb
->s_flags
|= MS_POSIXACL
;
593 btrfs_err(root
->fs_info
,
594 "support for ACL not compiled in!");
599 root
->fs_info
->sb
->s_flags
&= ~MS_POSIXACL
;
602 btrfs_set_and_info(root
, NOTREELOG
,
603 "disabling tree log");
606 btrfs_clear_and_info(root
, NOTREELOG
,
607 "enabling tree log");
609 case Opt_flushoncommit
:
610 btrfs_set_and_info(root
, FLUSHONCOMMIT
,
611 "turning on flush-on-commit");
613 case Opt_noflushoncommit
:
614 btrfs_clear_and_info(root
, FLUSHONCOMMIT
,
615 "turning off flush-on-commit");
618 ret
= match_int(&args
[0], &intarg
);
621 } else if (intarg
>= 0) {
622 info
->metadata_ratio
= intarg
;
623 btrfs_info(root
->fs_info
, "metadata ratio %d",
624 info
->metadata_ratio
);
631 btrfs_set_and_info(root
, DISCARD
,
632 "turning on discard");
635 btrfs_clear_and_info(root
, DISCARD
,
636 "turning off discard");
638 case Opt_space_cache
:
639 case Opt_space_cache_version
:
640 if (token
== Opt_space_cache
||
641 strcmp(args
[0].from
, "v1") == 0) {
642 btrfs_clear_opt(root
->fs_info
->mount_opt
,
644 btrfs_set_and_info(root
, SPACE_CACHE
,
645 "enabling disk space caching");
646 } else if (strcmp(args
[0].from
, "v2") == 0) {
647 btrfs_clear_opt(root
->fs_info
->mount_opt
,
649 btrfs_set_and_info(root
, FREE_SPACE_TREE
,
650 "enabling free space tree");
656 case Opt_rescan_uuid_tree
:
657 btrfs_set_opt(info
->mount_opt
, RESCAN_UUID_TREE
);
659 case Opt_no_space_cache
:
660 if (btrfs_test_opt(root
, SPACE_CACHE
)) {
661 btrfs_clear_and_info(root
, SPACE_CACHE
,
662 "disabling disk space caching");
664 if (btrfs_test_opt(root
, FREE_SPACE_TREE
)) {
665 btrfs_clear_and_info(root
, FREE_SPACE_TREE
,
666 "disabling free space tree");
669 case Opt_inode_cache
:
670 btrfs_set_pending_and_info(info
, INODE_MAP_CACHE
,
671 "enabling inode map caching");
673 case Opt_noinode_cache
:
674 btrfs_clear_pending_and_info(info
, INODE_MAP_CACHE
,
675 "disabling inode map caching");
677 case Opt_clear_cache
:
678 btrfs_set_and_info(root
, CLEAR_CACHE
,
679 "force clearing of disk cache");
681 case Opt_user_subvol_rm_allowed
:
682 btrfs_set_opt(info
->mount_opt
, USER_SUBVOL_RM_ALLOWED
);
684 case Opt_enospc_debug
:
685 btrfs_set_opt(info
->mount_opt
, ENOSPC_DEBUG
);
687 case Opt_noenospc_debug
:
688 btrfs_clear_opt(info
->mount_opt
, ENOSPC_DEBUG
);
691 btrfs_set_and_info(root
, AUTO_DEFRAG
,
692 "enabling auto defrag");
695 btrfs_clear_and_info(root
, AUTO_DEFRAG
,
696 "disabling auto defrag");
699 btrfs_info(root
->fs_info
, "enabling auto recovery");
700 btrfs_set_opt(info
->mount_opt
, RECOVERY
);
702 case Opt_skip_balance
:
703 btrfs_set_opt(info
->mount_opt
, SKIP_BALANCE
);
705 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
706 case Opt_check_integrity_including_extent_data
:
707 btrfs_info(root
->fs_info
,
708 "enabling check integrity including extent data");
709 btrfs_set_opt(info
->mount_opt
,
710 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
);
711 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
713 case Opt_check_integrity
:
714 btrfs_info(root
->fs_info
, "enabling check integrity");
715 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
717 case Opt_check_integrity_print_mask
:
718 ret
= match_int(&args
[0], &intarg
);
721 } else if (intarg
>= 0) {
722 info
->check_integrity_print_mask
= intarg
;
723 btrfs_info(root
->fs_info
, "check_integrity_print_mask 0x%x",
724 info
->check_integrity_print_mask
);
731 case Opt_check_integrity_including_extent_data
:
732 case Opt_check_integrity
:
733 case Opt_check_integrity_print_mask
:
734 btrfs_err(root
->fs_info
,
735 "support for check_integrity* not compiled in!");
739 case Opt_fatal_errors
:
740 if (strcmp(args
[0].from
, "panic") == 0)
741 btrfs_set_opt(info
->mount_opt
,
742 PANIC_ON_FATAL_ERROR
);
743 else if (strcmp(args
[0].from
, "bug") == 0)
744 btrfs_clear_opt(info
->mount_opt
,
745 PANIC_ON_FATAL_ERROR
);
751 case Opt_commit_interval
:
753 ret
= match_int(&args
[0], &intarg
);
755 btrfs_err(root
->fs_info
, "invalid commit interval");
761 btrfs_warn(root
->fs_info
, "excessive commit interval %d",
764 info
->commit_interval
= intarg
;
766 btrfs_info(root
->fs_info
, "using default commit interval %ds",
767 BTRFS_DEFAULT_COMMIT_INTERVAL
);
768 info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
771 #ifdef CONFIG_BTRFS_DEBUG
772 case Opt_fragment_all
:
773 btrfs_info(root
->fs_info
, "fragmenting all space");
774 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
775 btrfs_set_opt(info
->mount_opt
, FRAGMENT_METADATA
);
777 case Opt_fragment_metadata
:
778 btrfs_info(root
->fs_info
, "fragmenting metadata");
779 btrfs_set_opt(info
->mount_opt
,
782 case Opt_fragment_data
:
783 btrfs_info(root
->fs_info
, "fragmenting data");
784 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
788 btrfs_info(root
->fs_info
, "unrecognized mount option '%s'", p
);
796 if (btrfs_fs_compat_ro(root
->fs_info
, FREE_SPACE_TREE
) &&
797 !btrfs_test_opt(root
, FREE_SPACE_TREE
) &&
798 !btrfs_test_opt(root
, CLEAR_CACHE
)) {
799 btrfs_err(root
->fs_info
, "cannot disable free space tree");
803 if (!ret
&& btrfs_test_opt(root
, SPACE_CACHE
))
804 btrfs_info(root
->fs_info
, "disk space caching is enabled");
805 if (!ret
&& btrfs_test_opt(root
, FREE_SPACE_TREE
))
806 btrfs_info(root
->fs_info
, "using free space tree");
812 * Parse mount options that are required early in the mount process.
814 * All other options will be parsed on much later in the mount process and
815 * only when we need to allocate a new super block.
817 static int btrfs_parse_early_options(const char *options
, fmode_t flags
,
818 void *holder
, char **subvol_name
, u64
*subvol_objectid
,
819 struct btrfs_fs_devices
**fs_devices
)
821 substring_t args
[MAX_OPT_ARGS
];
822 char *device_name
, *opts
, *orig
, *p
;
830 * strsep changes the string, duplicate it because parse_options
833 opts
= kstrdup(options
, GFP_KERNEL
);
838 while ((p
= strsep(&opts
, ",")) != NULL
) {
843 token
= match_token(p
, tokens
, args
);
847 *subvol_name
= match_strdup(&args
[0]);
854 num
= match_strdup(&args
[0]);
856 *subvol_objectid
= memparse(num
, NULL
);
858 /* we want the original fs_tree */
859 if (!*subvol_objectid
)
861 BTRFS_FS_TREE_OBJECTID
;
867 case Opt_subvolrootid
:
869 "BTRFS: 'subvolrootid' mount option is deprecated and has "
873 device_name
= match_strdup(&args
[0]);
878 error
= btrfs_scan_one_device(device_name
,
879 flags
, holder
, fs_devices
);
894 static char *get_subvol_name_from_objectid(struct btrfs_fs_info
*fs_info
,
897 struct btrfs_root
*root
= fs_info
->tree_root
;
898 struct btrfs_root
*fs_root
;
899 struct btrfs_root_ref
*root_ref
;
900 struct btrfs_inode_ref
*inode_ref
;
901 struct btrfs_key key
;
902 struct btrfs_path
*path
= NULL
;
903 char *name
= NULL
, *ptr
;
908 path
= btrfs_alloc_path();
913 path
->leave_spinning
= 1;
915 name
= kmalloc(PATH_MAX
, GFP_NOFS
);
920 ptr
= name
+ PATH_MAX
- 1;
924 * Walk up the subvolume trees in the tree of tree roots by root
925 * backrefs until we hit the top-level subvolume.
927 while (subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
928 key
.objectid
= subvol_objectid
;
929 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
930 key
.offset
= (u64
)-1;
932 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
935 } else if (ret
> 0) {
936 ret
= btrfs_previous_item(root
, path
, subvol_objectid
,
937 BTRFS_ROOT_BACKREF_KEY
);
940 } else if (ret
> 0) {
946 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
947 subvol_objectid
= key
.offset
;
949 root_ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
950 struct btrfs_root_ref
);
951 len
= btrfs_root_ref_name_len(path
->nodes
[0], root_ref
);
957 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
958 (unsigned long)(root_ref
+ 1), len
);
960 dirid
= btrfs_root_ref_dirid(path
->nodes
[0], root_ref
);
961 btrfs_release_path(path
);
963 key
.objectid
= subvol_objectid
;
964 key
.type
= BTRFS_ROOT_ITEM_KEY
;
965 key
.offset
= (u64
)-1;
966 fs_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
967 if (IS_ERR(fs_root
)) {
968 ret
= PTR_ERR(fs_root
);
973 * Walk up the filesystem tree by inode refs until we hit the
976 while (dirid
!= BTRFS_FIRST_FREE_OBJECTID
) {
977 key
.objectid
= dirid
;
978 key
.type
= BTRFS_INODE_REF_KEY
;
979 key
.offset
= (u64
)-1;
981 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
984 } else if (ret
> 0) {
985 ret
= btrfs_previous_item(fs_root
, path
, dirid
,
986 BTRFS_INODE_REF_KEY
);
989 } else if (ret
> 0) {
995 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
998 inode_ref
= btrfs_item_ptr(path
->nodes
[0],
1000 struct btrfs_inode_ref
);
1001 len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1005 ret
= -ENAMETOOLONG
;
1008 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1009 (unsigned long)(inode_ref
+ 1), len
);
1011 btrfs_release_path(path
);
1015 btrfs_free_path(path
);
1016 if (ptr
== name
+ PATH_MAX
- 1) {
1020 memmove(name
, ptr
, name
+ PATH_MAX
- ptr
);
1025 btrfs_free_path(path
);
1027 return ERR_PTR(ret
);
1030 static int get_default_subvol_objectid(struct btrfs_fs_info
*fs_info
, u64
*objectid
)
1032 struct btrfs_root
*root
= fs_info
->tree_root
;
1033 struct btrfs_dir_item
*di
;
1034 struct btrfs_path
*path
;
1035 struct btrfs_key location
;
1038 path
= btrfs_alloc_path();
1041 path
->leave_spinning
= 1;
1044 * Find the "default" dir item which points to the root item that we
1045 * will mount by default if we haven't been given a specific subvolume
1048 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1049 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir_id
, "default", 7, 0);
1051 btrfs_free_path(path
);
1056 * Ok the default dir item isn't there. This is weird since
1057 * it's always been there, but don't freak out, just try and
1058 * mount the top-level subvolume.
1060 btrfs_free_path(path
);
1061 *objectid
= BTRFS_FS_TREE_OBJECTID
;
1065 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
1066 btrfs_free_path(path
);
1067 *objectid
= location
.objectid
;
1071 static int btrfs_fill_super(struct super_block
*sb
,
1072 struct btrfs_fs_devices
*fs_devices
,
1073 void *data
, int silent
)
1075 struct inode
*inode
;
1076 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1077 struct btrfs_key key
;
1080 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1081 sb
->s_magic
= BTRFS_SUPER_MAGIC
;
1082 sb
->s_op
= &btrfs_super_ops
;
1083 sb
->s_d_op
= &btrfs_dentry_operations
;
1084 sb
->s_export_op
= &btrfs_export_ops
;
1085 sb
->s_xattr
= btrfs_xattr_handlers
;
1086 sb
->s_time_gran
= 1;
1087 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1088 sb
->s_flags
|= MS_POSIXACL
;
1090 sb
->s_flags
|= MS_I_VERSION
;
1091 sb
->s_iflags
|= SB_I_CGROUPWB
;
1092 err
= open_ctree(sb
, fs_devices
, (char *)data
);
1094 printk(KERN_ERR
"BTRFS: open_ctree failed\n");
1098 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
1099 key
.type
= BTRFS_INODE_ITEM_KEY
;
1101 inode
= btrfs_iget(sb
, &key
, fs_info
->fs_root
, NULL
);
1102 if (IS_ERR(inode
)) {
1103 err
= PTR_ERR(inode
);
1107 sb
->s_root
= d_make_root(inode
);
1113 save_mount_options(sb
, data
);
1114 cleancache_init_fs(sb
);
1115 sb
->s_flags
|= MS_ACTIVE
;
1119 close_ctree(fs_info
->tree_root
);
1123 int btrfs_sync_fs(struct super_block
*sb
, int wait
)
1125 struct btrfs_trans_handle
*trans
;
1126 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1127 struct btrfs_root
*root
= fs_info
->tree_root
;
1129 trace_btrfs_sync_fs(wait
);
1132 filemap_flush(fs_info
->btree_inode
->i_mapping
);
1136 btrfs_wait_ordered_roots(fs_info
, -1);
1138 trans
= btrfs_attach_transaction_barrier(root
);
1139 if (IS_ERR(trans
)) {
1140 /* no transaction, don't bother */
1141 if (PTR_ERR(trans
) == -ENOENT
) {
1143 * Exit unless we have some pending changes
1144 * that need to go through commit
1146 if (fs_info
->pending_changes
== 0)
1149 * A non-blocking test if the fs is frozen. We must not
1150 * start a new transaction here otherwise a deadlock
1151 * happens. The pending operations are delayed to the
1152 * next commit after thawing.
1154 if (__sb_start_write(sb
, SB_FREEZE_WRITE
, false))
1155 __sb_end_write(sb
, SB_FREEZE_WRITE
);
1158 trans
= btrfs_start_transaction(root
, 0);
1161 return PTR_ERR(trans
);
1163 return btrfs_commit_transaction(trans
, root
);
1166 static int btrfs_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1168 struct btrfs_fs_info
*info
= btrfs_sb(dentry
->d_sb
);
1169 struct btrfs_root
*root
= info
->tree_root
;
1170 char *compress_type
;
1172 if (btrfs_test_opt(root
, DEGRADED
))
1173 seq_puts(seq
, ",degraded");
1174 if (btrfs_test_opt(root
, NODATASUM
))
1175 seq_puts(seq
, ",nodatasum");
1176 if (btrfs_test_opt(root
, NODATACOW
))
1177 seq_puts(seq
, ",nodatacow");
1178 if (btrfs_test_opt(root
, NOBARRIER
))
1179 seq_puts(seq
, ",nobarrier");
1180 if (info
->max_inline
!= BTRFS_DEFAULT_MAX_INLINE
)
1181 seq_printf(seq
, ",max_inline=%llu", info
->max_inline
);
1182 if (info
->alloc_start
!= 0)
1183 seq_printf(seq
, ",alloc_start=%llu", info
->alloc_start
);
1184 if (info
->thread_pool_size
!= min_t(unsigned long,
1185 num_online_cpus() + 2, 8))
1186 seq_printf(seq
, ",thread_pool=%d", info
->thread_pool_size
);
1187 if (btrfs_test_opt(root
, COMPRESS
)) {
1188 if (info
->compress_type
== BTRFS_COMPRESS_ZLIB
)
1189 compress_type
= "zlib";
1191 compress_type
= "lzo";
1192 if (btrfs_test_opt(root
, FORCE_COMPRESS
))
1193 seq_printf(seq
, ",compress-force=%s", compress_type
);
1195 seq_printf(seq
, ",compress=%s", compress_type
);
1197 if (btrfs_test_opt(root
, NOSSD
))
1198 seq_puts(seq
, ",nossd");
1199 if (btrfs_test_opt(root
, SSD_SPREAD
))
1200 seq_puts(seq
, ",ssd_spread");
1201 else if (btrfs_test_opt(root
, SSD
))
1202 seq_puts(seq
, ",ssd");
1203 if (btrfs_test_opt(root
, NOTREELOG
))
1204 seq_puts(seq
, ",notreelog");
1205 if (btrfs_test_opt(root
, FLUSHONCOMMIT
))
1206 seq_puts(seq
, ",flushoncommit");
1207 if (btrfs_test_opt(root
, DISCARD
))
1208 seq_puts(seq
, ",discard");
1209 if (!(root
->fs_info
->sb
->s_flags
& MS_POSIXACL
))
1210 seq_puts(seq
, ",noacl");
1211 if (btrfs_test_opt(root
, SPACE_CACHE
))
1212 seq_puts(seq
, ",space_cache");
1213 else if (btrfs_test_opt(root
, FREE_SPACE_TREE
))
1214 seq_puts(seq
, ",space_cache=v2");
1216 seq_puts(seq
, ",nospace_cache");
1217 if (btrfs_test_opt(root
, RESCAN_UUID_TREE
))
1218 seq_puts(seq
, ",rescan_uuid_tree");
1219 if (btrfs_test_opt(root
, CLEAR_CACHE
))
1220 seq_puts(seq
, ",clear_cache");
1221 if (btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
1222 seq_puts(seq
, ",user_subvol_rm_allowed");
1223 if (btrfs_test_opt(root
, ENOSPC_DEBUG
))
1224 seq_puts(seq
, ",enospc_debug");
1225 if (btrfs_test_opt(root
, AUTO_DEFRAG
))
1226 seq_puts(seq
, ",autodefrag");
1227 if (btrfs_test_opt(root
, INODE_MAP_CACHE
))
1228 seq_puts(seq
, ",inode_cache");
1229 if (btrfs_test_opt(root
, SKIP_BALANCE
))
1230 seq_puts(seq
, ",skip_balance");
1231 if (btrfs_test_opt(root
, RECOVERY
))
1232 seq_puts(seq
, ",recovery");
1233 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1234 if (btrfs_test_opt(root
, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
))
1235 seq_puts(seq
, ",check_int_data");
1236 else if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
1237 seq_puts(seq
, ",check_int");
1238 if (info
->check_integrity_print_mask
)
1239 seq_printf(seq
, ",check_int_print_mask=%d",
1240 info
->check_integrity_print_mask
);
1242 if (info
->metadata_ratio
)
1243 seq_printf(seq
, ",metadata_ratio=%d",
1244 info
->metadata_ratio
);
1245 if (btrfs_test_opt(root
, PANIC_ON_FATAL_ERROR
))
1246 seq_puts(seq
, ",fatal_errors=panic");
1247 if (info
->commit_interval
!= BTRFS_DEFAULT_COMMIT_INTERVAL
)
1248 seq_printf(seq
, ",commit=%d", info
->commit_interval
);
1249 #ifdef CONFIG_BTRFS_DEBUG
1250 if (btrfs_test_opt(root
, FRAGMENT_DATA
))
1251 seq_puts(seq
, ",fragment=data");
1252 if (btrfs_test_opt(root
, FRAGMENT_METADATA
))
1253 seq_puts(seq
, ",fragment=metadata");
1255 seq_printf(seq
, ",subvolid=%llu",
1256 BTRFS_I(d_inode(dentry
))->root
->root_key
.objectid
);
1257 seq_puts(seq
, ",subvol=");
1258 seq_dentry(seq
, dentry
, " \t\n\\");
1262 static int btrfs_test_super(struct super_block
*s
, void *data
)
1264 struct btrfs_fs_info
*p
= data
;
1265 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1267 return fs_info
->fs_devices
== p
->fs_devices
;
1270 static int btrfs_set_super(struct super_block
*s
, void *data
)
1272 int err
= set_anon_super(s
, data
);
1274 s
->s_fs_info
= data
;
1279 * subvolumes are identified by ino 256
1281 static inline int is_subvolume_inode(struct inode
*inode
)
1283 if (inode
&& inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
1289 * This will add subvolid=0 to the argument string while removing any subvol=
1290 * and subvolid= arguments to make sure we get the top-level root for path
1291 * walking to the subvol we want.
1293 static char *setup_root_args(char *args
)
1295 char *buf
, *dst
, *sep
;
1298 return kstrdup("subvolid=0", GFP_NOFS
);
1300 /* The worst case is that we add ",subvolid=0" to the end. */
1301 buf
= dst
= kmalloc(strlen(args
) + strlen(",subvolid=0") + 1, GFP_NOFS
);
1306 sep
= strchrnul(args
, ',');
1307 if (!strstarts(args
, "subvol=") &&
1308 !strstarts(args
, "subvolid=")) {
1309 memcpy(dst
, args
, sep
- args
);
1318 strcpy(dst
, "subvolid=0");
1323 static struct dentry
*mount_subvol(const char *subvol_name
, u64 subvol_objectid
,
1324 int flags
, const char *device_name
,
1327 struct dentry
*root
;
1328 struct vfsmount
*mnt
= NULL
;
1332 newargs
= setup_root_args(data
);
1334 root
= ERR_PTR(-ENOMEM
);
1338 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
, device_name
, newargs
);
1339 if (PTR_ERR_OR_ZERO(mnt
) == -EBUSY
) {
1340 if (flags
& MS_RDONLY
) {
1341 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
& ~MS_RDONLY
,
1342 device_name
, newargs
);
1344 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
| MS_RDONLY
,
1345 device_name
, newargs
);
1347 root
= ERR_CAST(mnt
);
1352 down_write(&mnt
->mnt_sb
->s_umount
);
1353 ret
= btrfs_remount(mnt
->mnt_sb
, &flags
, NULL
);
1354 up_write(&mnt
->mnt_sb
->s_umount
);
1356 root
= ERR_PTR(ret
);
1362 root
= ERR_CAST(mnt
);
1368 if (!subvol_objectid
) {
1369 ret
= get_default_subvol_objectid(btrfs_sb(mnt
->mnt_sb
),
1372 root
= ERR_PTR(ret
);
1376 subvol_name
= get_subvol_name_from_objectid(btrfs_sb(mnt
->mnt_sb
),
1378 if (IS_ERR(subvol_name
)) {
1379 root
= ERR_CAST(subvol_name
);
1386 root
= mount_subtree(mnt
, subvol_name
);
1387 /* mount_subtree() drops our reference on the vfsmount. */
1390 if (!IS_ERR(root
)) {
1391 struct super_block
*s
= root
->d_sb
;
1392 struct inode
*root_inode
= d_inode(root
);
1393 u64 root_objectid
= BTRFS_I(root_inode
)->root
->root_key
.objectid
;
1396 if (!is_subvolume_inode(root_inode
)) {
1397 pr_err("BTRFS: '%s' is not a valid subvolume\n",
1401 if (subvol_objectid
&& root_objectid
!= subvol_objectid
) {
1403 * This will also catch a race condition where a
1404 * subvolume which was passed by ID is renamed and
1405 * another subvolume is renamed over the old location.
1407 pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n",
1408 subvol_name
, subvol_objectid
);
1413 root
= ERR_PTR(ret
);
1414 deactivate_locked_super(s
);
1425 static int parse_security_options(char *orig_opts
,
1426 struct security_mnt_opts
*sec_opts
)
1428 char *secdata
= NULL
;
1431 secdata
= alloc_secdata();
1434 ret
= security_sb_copy_data(orig_opts
, secdata
);
1436 free_secdata(secdata
);
1439 ret
= security_sb_parse_opts_str(secdata
, sec_opts
);
1440 free_secdata(secdata
);
1444 static int setup_security_options(struct btrfs_fs_info
*fs_info
,
1445 struct super_block
*sb
,
1446 struct security_mnt_opts
*sec_opts
)
1451 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1454 ret
= security_sb_set_mnt_opts(sb
, sec_opts
, 0, NULL
);
1458 #ifdef CONFIG_SECURITY
1459 if (!fs_info
->security_opts
.num_mnt_opts
) {
1460 /* first time security setup, copy sec_opts to fs_info */
1461 memcpy(&fs_info
->security_opts
, sec_opts
, sizeof(*sec_opts
));
1464 * Since SELinux(the only one supports security_mnt_opts) does
1465 * NOT support changing context during remount/mount same sb,
1466 * This must be the same or part of the same security options,
1469 security_free_mnt_opts(sec_opts
);
1476 * Find a superblock for the given device / mount point.
1478 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1479 * for multiple device setup. Make sure to keep it in sync.
1481 static struct dentry
*btrfs_mount(struct file_system_type
*fs_type
, int flags
,
1482 const char *device_name
, void *data
)
1484 struct block_device
*bdev
= NULL
;
1485 struct super_block
*s
;
1486 struct btrfs_fs_devices
*fs_devices
= NULL
;
1487 struct btrfs_fs_info
*fs_info
= NULL
;
1488 struct security_mnt_opts new_sec_opts
;
1489 fmode_t mode
= FMODE_READ
;
1490 char *subvol_name
= NULL
;
1491 u64 subvol_objectid
= 0;
1494 if (!(flags
& MS_RDONLY
))
1495 mode
|= FMODE_WRITE
;
1497 error
= btrfs_parse_early_options(data
, mode
, fs_type
,
1498 &subvol_name
, &subvol_objectid
,
1502 return ERR_PTR(error
);
1505 if (subvol_name
|| subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
1506 /* mount_subvol() will free subvol_name. */
1507 return mount_subvol(subvol_name
, subvol_objectid
, flags
,
1511 security_init_mnt_opts(&new_sec_opts
);
1513 error
= parse_security_options(data
, &new_sec_opts
);
1515 return ERR_PTR(error
);
1518 error
= btrfs_scan_one_device(device_name
, mode
, fs_type
, &fs_devices
);
1520 goto error_sec_opts
;
1523 * Setup a dummy root and fs_info for test/set super. This is because
1524 * we don't actually fill this stuff out until open_ctree, but we need
1525 * it for searching for existing supers, so this lets us do that and
1526 * then open_ctree will properly initialize everything later.
1528 fs_info
= kzalloc(sizeof(struct btrfs_fs_info
), GFP_NOFS
);
1531 goto error_sec_opts
;
1534 fs_info
->fs_devices
= fs_devices
;
1536 fs_info
->super_copy
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_NOFS
);
1537 fs_info
->super_for_commit
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_NOFS
);
1538 security_init_mnt_opts(&fs_info
->security_opts
);
1539 if (!fs_info
->super_copy
|| !fs_info
->super_for_commit
) {
1544 error
= btrfs_open_devices(fs_devices
, mode
, fs_type
);
1548 if (!(flags
& MS_RDONLY
) && fs_devices
->rw_devices
== 0) {
1550 goto error_close_devices
;
1553 bdev
= fs_devices
->latest_bdev
;
1554 s
= sget(fs_type
, btrfs_test_super
, btrfs_set_super
, flags
| MS_NOSEC
,
1558 goto error_close_devices
;
1562 btrfs_close_devices(fs_devices
);
1563 free_fs_info(fs_info
);
1564 if ((flags
^ s
->s_flags
) & MS_RDONLY
)
1567 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1568 btrfs_sb(s
)->bdev_holder
= fs_type
;
1569 error
= btrfs_fill_super(s
, fs_devices
, data
,
1570 flags
& MS_SILENT
? 1 : 0);
1573 deactivate_locked_super(s
);
1574 goto error_sec_opts
;
1577 fs_info
= btrfs_sb(s
);
1578 error
= setup_security_options(fs_info
, s
, &new_sec_opts
);
1580 deactivate_locked_super(s
);
1581 goto error_sec_opts
;
1584 return dget(s
->s_root
);
1586 error_close_devices
:
1587 btrfs_close_devices(fs_devices
);
1589 free_fs_info(fs_info
);
1591 security_free_mnt_opts(&new_sec_opts
);
1592 return ERR_PTR(error
);
1595 static void btrfs_resize_thread_pool(struct btrfs_fs_info
*fs_info
,
1596 int new_pool_size
, int old_pool_size
)
1598 if (new_pool_size
== old_pool_size
)
1601 fs_info
->thread_pool_size
= new_pool_size
;
1603 btrfs_info(fs_info
, "resize thread pool %d -> %d",
1604 old_pool_size
, new_pool_size
);
1606 btrfs_workqueue_set_max(fs_info
->workers
, new_pool_size
);
1607 btrfs_workqueue_set_max(fs_info
->delalloc_workers
, new_pool_size
);
1608 btrfs_workqueue_set_max(fs_info
->submit_workers
, new_pool_size
);
1609 btrfs_workqueue_set_max(fs_info
->caching_workers
, new_pool_size
);
1610 btrfs_workqueue_set_max(fs_info
->endio_workers
, new_pool_size
);
1611 btrfs_workqueue_set_max(fs_info
->endio_meta_workers
, new_pool_size
);
1612 btrfs_workqueue_set_max(fs_info
->endio_meta_write_workers
,
1614 btrfs_workqueue_set_max(fs_info
->endio_write_workers
, new_pool_size
);
1615 btrfs_workqueue_set_max(fs_info
->endio_freespace_worker
, new_pool_size
);
1616 btrfs_workqueue_set_max(fs_info
->delayed_workers
, new_pool_size
);
1617 btrfs_workqueue_set_max(fs_info
->readahead_workers
, new_pool_size
);
1618 btrfs_workqueue_set_max(fs_info
->scrub_wr_completion_workers
,
1622 static inline void btrfs_remount_prepare(struct btrfs_fs_info
*fs_info
)
1624 set_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1627 static inline void btrfs_remount_begin(struct btrfs_fs_info
*fs_info
,
1628 unsigned long old_opts
, int flags
)
1630 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1631 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1632 (flags
& MS_RDONLY
))) {
1633 /* wait for any defraggers to finish */
1634 wait_event(fs_info
->transaction_wait
,
1635 (atomic_read(&fs_info
->defrag_running
) == 0));
1636 if (flags
& MS_RDONLY
)
1637 sync_filesystem(fs_info
->sb
);
1641 static inline void btrfs_remount_cleanup(struct btrfs_fs_info
*fs_info
,
1642 unsigned long old_opts
)
1645 * We need cleanup all defragable inodes if the autodefragment is
1646 * close or the fs is R/O.
1648 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1649 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1650 (fs_info
->sb
->s_flags
& MS_RDONLY
))) {
1651 btrfs_cleanup_defrag_inodes(fs_info
);
1654 clear_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1657 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
)
1659 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1660 struct btrfs_root
*root
= fs_info
->tree_root
;
1661 unsigned old_flags
= sb
->s_flags
;
1662 unsigned long old_opts
= fs_info
->mount_opt
;
1663 unsigned long old_compress_type
= fs_info
->compress_type
;
1664 u64 old_max_inline
= fs_info
->max_inline
;
1665 u64 old_alloc_start
= fs_info
->alloc_start
;
1666 int old_thread_pool_size
= fs_info
->thread_pool_size
;
1667 unsigned int old_metadata_ratio
= fs_info
->metadata_ratio
;
1670 sync_filesystem(sb
);
1671 btrfs_remount_prepare(fs_info
);
1674 struct security_mnt_opts new_sec_opts
;
1676 security_init_mnt_opts(&new_sec_opts
);
1677 ret
= parse_security_options(data
, &new_sec_opts
);
1680 ret
= setup_security_options(fs_info
, sb
,
1683 security_free_mnt_opts(&new_sec_opts
);
1688 ret
= btrfs_parse_options(root
, data
);
1694 btrfs_remount_begin(fs_info
, old_opts
, *flags
);
1695 btrfs_resize_thread_pool(fs_info
,
1696 fs_info
->thread_pool_size
, old_thread_pool_size
);
1698 if ((*flags
& MS_RDONLY
) == (sb
->s_flags
& MS_RDONLY
))
1701 if (*flags
& MS_RDONLY
) {
1703 * this also happens on 'umount -rf' or on shutdown, when
1704 * the filesystem is busy.
1706 cancel_work_sync(&fs_info
->async_reclaim_work
);
1708 /* wait for the uuid_scan task to finish */
1709 down(&fs_info
->uuid_tree_rescan_sem
);
1710 /* avoid complains from lockdep et al. */
1711 up(&fs_info
->uuid_tree_rescan_sem
);
1713 sb
->s_flags
|= MS_RDONLY
;
1716 * Setting MS_RDONLY will put the cleaner thread to
1717 * sleep at the next loop if it's already active.
1718 * If it's already asleep, we'll leave unused block
1719 * groups on disk until we're mounted read-write again
1720 * unless we clean them up here.
1722 btrfs_delete_unused_bgs(fs_info
);
1724 btrfs_dev_replace_suspend_for_unmount(fs_info
);
1725 btrfs_scrub_cancel(fs_info
);
1726 btrfs_pause_balance(fs_info
);
1728 ret
= btrfs_commit_super(root
);
1732 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
1734 "Remounting read-write after error is not allowed");
1738 if (fs_info
->fs_devices
->rw_devices
== 0) {
1743 if (fs_info
->fs_devices
->missing_devices
>
1744 fs_info
->num_tolerated_disk_barrier_failures
&&
1745 !(*flags
& MS_RDONLY
)) {
1747 "too many missing devices, writeable remount is not allowed");
1752 if (btrfs_super_log_root(fs_info
->super_copy
) != 0) {
1757 ret
= btrfs_cleanup_fs_roots(fs_info
);
1761 /* recover relocation */
1762 mutex_lock(&fs_info
->cleaner_mutex
);
1763 ret
= btrfs_recover_relocation(root
);
1764 mutex_unlock(&fs_info
->cleaner_mutex
);
1768 ret
= btrfs_resume_balance_async(fs_info
);
1772 ret
= btrfs_resume_dev_replace_async(fs_info
);
1774 btrfs_warn(fs_info
, "failed to resume dev_replace");
1778 if (!fs_info
->uuid_root
) {
1779 btrfs_info(fs_info
, "creating UUID tree");
1780 ret
= btrfs_create_uuid_tree(fs_info
);
1782 btrfs_warn(fs_info
, "failed to create the UUID tree %d", ret
);
1786 sb
->s_flags
&= ~MS_RDONLY
;
1789 wake_up_process(fs_info
->transaction_kthread
);
1790 btrfs_remount_cleanup(fs_info
, old_opts
);
1794 /* We've hit an error - don't reset MS_RDONLY */
1795 if (sb
->s_flags
& MS_RDONLY
)
1796 old_flags
|= MS_RDONLY
;
1797 sb
->s_flags
= old_flags
;
1798 fs_info
->mount_opt
= old_opts
;
1799 fs_info
->compress_type
= old_compress_type
;
1800 fs_info
->max_inline
= old_max_inline
;
1801 mutex_lock(&fs_info
->chunk_mutex
);
1802 fs_info
->alloc_start
= old_alloc_start
;
1803 mutex_unlock(&fs_info
->chunk_mutex
);
1804 btrfs_resize_thread_pool(fs_info
,
1805 old_thread_pool_size
, fs_info
->thread_pool_size
);
1806 fs_info
->metadata_ratio
= old_metadata_ratio
;
1807 btrfs_remount_cleanup(fs_info
, old_opts
);
1811 /* Used to sort the devices by max_avail(descending sort) */
1812 static int btrfs_cmp_device_free_bytes(const void *dev_info1
,
1813 const void *dev_info2
)
1815 if (((struct btrfs_device_info
*)dev_info1
)->max_avail
>
1816 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1818 else if (((struct btrfs_device_info
*)dev_info1
)->max_avail
<
1819 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1826 * sort the devices by max_avail, in which max free extent size of each device
1827 * is stored.(Descending Sort)
1829 static inline void btrfs_descending_sort_devices(
1830 struct btrfs_device_info
*devices
,
1833 sort(devices
, nr_devices
, sizeof(struct btrfs_device_info
),
1834 btrfs_cmp_device_free_bytes
, NULL
);
1838 * The helper to calc the free space on the devices that can be used to store
1841 static int btrfs_calc_avail_data_space(struct btrfs_root
*root
, u64
*free_bytes
)
1843 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1844 struct btrfs_device_info
*devices_info
;
1845 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
1846 struct btrfs_device
*device
;
1851 u64 min_stripe_size
;
1852 int min_stripes
= 1, num_stripes
= 1;
1853 int i
= 0, nr_devices
;
1857 * We aren't under the device list lock, so this is racey-ish, but good
1858 * enough for our purposes.
1860 nr_devices
= fs_info
->fs_devices
->open_devices
;
1863 nr_devices
= fs_info
->fs_devices
->open_devices
;
1871 devices_info
= kmalloc_array(nr_devices
, sizeof(*devices_info
),
1876 /* calc min stripe number for data space alloction */
1877 type
= btrfs_get_alloc_profile(root
, 1);
1878 if (type
& BTRFS_BLOCK_GROUP_RAID0
) {
1880 num_stripes
= nr_devices
;
1881 } else if (type
& BTRFS_BLOCK_GROUP_RAID1
) {
1884 } else if (type
& BTRFS_BLOCK_GROUP_RAID10
) {
1889 if (type
& BTRFS_BLOCK_GROUP_DUP
)
1890 min_stripe_size
= 2 * BTRFS_STRIPE_LEN
;
1892 min_stripe_size
= BTRFS_STRIPE_LEN
;
1894 if (fs_info
->alloc_start
)
1895 mutex_lock(&fs_devices
->device_list_mutex
);
1897 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
1898 if (!device
->in_fs_metadata
|| !device
->bdev
||
1899 device
->is_tgtdev_for_dev_replace
)
1902 if (i
>= nr_devices
)
1905 avail_space
= device
->total_bytes
- device
->bytes_used
;
1907 /* align with stripe_len */
1908 avail_space
= div_u64(avail_space
, BTRFS_STRIPE_LEN
);
1909 avail_space
*= BTRFS_STRIPE_LEN
;
1912 * In order to avoid overwritting the superblock on the drive,
1913 * btrfs starts at an offset of at least 1MB when doing chunk
1918 /* user can set the offset in fs_info->alloc_start. */
1919 if (fs_info
->alloc_start
&&
1920 fs_info
->alloc_start
+ BTRFS_STRIPE_LEN
<=
1921 device
->total_bytes
) {
1923 skip_space
= max(fs_info
->alloc_start
, skip_space
);
1926 * btrfs can not use the free space in
1927 * [0, skip_space - 1], we must subtract it from the
1928 * total. In order to implement it, we account the used
1929 * space in this range first.
1931 ret
= btrfs_account_dev_extents_size(device
, 0,
1935 kfree(devices_info
);
1936 mutex_unlock(&fs_devices
->device_list_mutex
);
1942 /* calc the free space in [0, skip_space - 1] */
1943 skip_space
-= used_space
;
1947 * we can use the free space in [0, skip_space - 1], subtract
1948 * it from the total.
1950 if (avail_space
&& avail_space
>= skip_space
)
1951 avail_space
-= skip_space
;
1955 if (avail_space
< min_stripe_size
)
1958 devices_info
[i
].dev
= device
;
1959 devices_info
[i
].max_avail
= avail_space
;
1964 if (fs_info
->alloc_start
)
1965 mutex_unlock(&fs_devices
->device_list_mutex
);
1969 btrfs_descending_sort_devices(devices_info
, nr_devices
);
1973 while (nr_devices
>= min_stripes
) {
1974 if (num_stripes
> nr_devices
)
1975 num_stripes
= nr_devices
;
1977 if (devices_info
[i
].max_avail
>= min_stripe_size
) {
1981 avail_space
+= devices_info
[i
].max_avail
* num_stripes
;
1982 alloc_size
= devices_info
[i
].max_avail
;
1983 for (j
= i
+ 1 - num_stripes
; j
<= i
; j
++)
1984 devices_info
[j
].max_avail
-= alloc_size
;
1990 kfree(devices_info
);
1991 *free_bytes
= avail_space
;
1996 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1998 * If there's a redundant raid level at DATA block groups, use the respective
1999 * multiplier to scale the sizes.
2001 * Unused device space usage is based on simulating the chunk allocator
2002 * algorithm that respects the device sizes, order of allocations and the
2003 * 'alloc_start' value, this is a close approximation of the actual use but
2004 * there are other factors that may change the result (like a new metadata
2007 * If metadata is exhausted, f_bavail will be 0.
2009 * FIXME: not accurate for mixed block groups, total and free/used are ok,
2010 * available appears slightly larger.
2012 static int btrfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2014 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
2015 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2016 struct list_head
*head
= &fs_info
->space_info
;
2017 struct btrfs_space_info
*found
;
2019 u64 total_free_data
= 0;
2020 u64 total_free_meta
= 0;
2021 int bits
= dentry
->d_sb
->s_blocksize_bits
;
2022 __be32
*fsid
= (__be32
*)fs_info
->fsid
;
2023 unsigned factor
= 1;
2024 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
2029 * holding chunk_muext to avoid allocating new chunks, holding
2030 * device_list_mutex to avoid the device being removed
2033 list_for_each_entry_rcu(found
, head
, list
) {
2034 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
) {
2037 total_free_data
+= found
->disk_total
- found
->disk_used
;
2039 btrfs_account_ro_block_groups_free_space(found
);
2041 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
2042 if (!list_empty(&found
->block_groups
[i
])) {
2044 case BTRFS_RAID_DUP
:
2045 case BTRFS_RAID_RAID1
:
2046 case BTRFS_RAID_RAID10
:
2052 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
2053 total_free_meta
+= found
->disk_total
- found
->disk_used
;
2055 total_used
+= found
->disk_used
;
2060 buf
->f_blocks
= div_u64(btrfs_super_total_bytes(disk_super
), factor
);
2061 buf
->f_blocks
>>= bits
;
2062 buf
->f_bfree
= buf
->f_blocks
- (div_u64(total_used
, factor
) >> bits
);
2064 /* Account global block reserve as used, it's in logical size already */
2065 spin_lock(&block_rsv
->lock
);
2066 buf
->f_bfree
-= block_rsv
->size
>> bits
;
2067 spin_unlock(&block_rsv
->lock
);
2069 buf
->f_bavail
= div_u64(total_free_data
, factor
);
2070 ret
= btrfs_calc_avail_data_space(fs_info
->tree_root
, &total_free_data
);
2073 buf
->f_bavail
+= div_u64(total_free_data
, factor
);
2074 buf
->f_bavail
= buf
->f_bavail
>> bits
;
2077 * We calculate the remaining metadata space minus global reserve. If
2078 * this is (supposedly) smaller than zero, there's no space. But this
2079 * does not hold in practice, the exhausted state happens where's still
2080 * some positive delta. So we apply some guesswork and compare the
2081 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2083 * We probably cannot calculate the exact threshold value because this
2084 * depends on the internal reservations requested by various
2085 * operations, so some operations that consume a few metadata will
2086 * succeed even if the Avail is zero. But this is better than the other
2089 thresh
= 4 * 1024 * 1024;
2091 if (total_free_meta
- thresh
< block_rsv
->size
)
2094 buf
->f_type
= BTRFS_SUPER_MAGIC
;
2095 buf
->f_bsize
= dentry
->d_sb
->s_blocksize
;
2096 buf
->f_namelen
= BTRFS_NAME_LEN
;
2098 /* We treat it as constant endianness (it doesn't matter _which_)
2099 because we want the fsid to come out the same whether mounted
2100 on a big-endian or little-endian host */
2101 buf
->f_fsid
.val
[0] = be32_to_cpu(fsid
[0]) ^ be32_to_cpu(fsid
[2]);
2102 buf
->f_fsid
.val
[1] = be32_to_cpu(fsid
[1]) ^ be32_to_cpu(fsid
[3]);
2103 /* Mask in the root object ID too, to disambiguate subvols */
2104 buf
->f_fsid
.val
[0] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
>> 32;
2105 buf
->f_fsid
.val
[1] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
;
2110 static void btrfs_kill_super(struct super_block
*sb
)
2112 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2113 kill_anon_super(sb
);
2114 free_fs_info(fs_info
);
2117 static struct file_system_type btrfs_fs_type
= {
2118 .owner
= THIS_MODULE
,
2120 .mount
= btrfs_mount
,
2121 .kill_sb
= btrfs_kill_super
,
2122 .fs_flags
= FS_REQUIRES_DEV
| FS_BINARY_MOUNTDATA
,
2124 MODULE_ALIAS_FS("btrfs");
2126 static int btrfs_control_open(struct inode
*inode
, struct file
*file
)
2129 * The control file's private_data is used to hold the
2130 * transaction when it is started and is used to keep
2131 * track of whether a transaction is already in progress.
2133 file
->private_data
= NULL
;
2138 * used by btrfsctl to scan devices when no FS is mounted
2140 static long btrfs_control_ioctl(struct file
*file
, unsigned int cmd
,
2143 struct btrfs_ioctl_vol_args
*vol
;
2144 struct btrfs_fs_devices
*fs_devices
;
2147 if (!capable(CAP_SYS_ADMIN
))
2150 vol
= memdup_user((void __user
*)arg
, sizeof(*vol
));
2152 return PTR_ERR(vol
);
2155 case BTRFS_IOC_SCAN_DEV
:
2156 ret
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2157 &btrfs_fs_type
, &fs_devices
);
2159 case BTRFS_IOC_DEVICES_READY
:
2160 ret
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2161 &btrfs_fs_type
, &fs_devices
);
2164 ret
= !(fs_devices
->num_devices
== fs_devices
->total_devices
);
2172 static int btrfs_freeze(struct super_block
*sb
)
2174 struct btrfs_trans_handle
*trans
;
2175 struct btrfs_root
*root
= btrfs_sb(sb
)->tree_root
;
2177 trans
= btrfs_attach_transaction_barrier(root
);
2178 if (IS_ERR(trans
)) {
2179 /* no transaction, don't bother */
2180 if (PTR_ERR(trans
) == -ENOENT
)
2182 return PTR_ERR(trans
);
2184 return btrfs_commit_transaction(trans
, root
);
2187 static int btrfs_show_devname(struct seq_file
*m
, struct dentry
*root
)
2189 struct btrfs_fs_info
*fs_info
= btrfs_sb(root
->d_sb
);
2190 struct btrfs_fs_devices
*cur_devices
;
2191 struct btrfs_device
*dev
, *first_dev
= NULL
;
2192 struct list_head
*head
;
2193 struct rcu_string
*name
;
2195 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2196 cur_devices
= fs_info
->fs_devices
;
2197 while (cur_devices
) {
2198 head
= &cur_devices
->devices
;
2199 list_for_each_entry(dev
, head
, dev_list
) {
2204 if (!first_dev
|| dev
->devid
< first_dev
->devid
)
2207 cur_devices
= cur_devices
->seed
;
2212 name
= rcu_dereference(first_dev
->name
);
2213 seq_escape(m
, name
->str
, " \t\n\\");
2218 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2222 static const struct super_operations btrfs_super_ops
= {
2223 .drop_inode
= btrfs_drop_inode
,
2224 .evict_inode
= btrfs_evict_inode
,
2225 .put_super
= btrfs_put_super
,
2226 .sync_fs
= btrfs_sync_fs
,
2227 .show_options
= btrfs_show_options
,
2228 .show_devname
= btrfs_show_devname
,
2229 .write_inode
= btrfs_write_inode
,
2230 .alloc_inode
= btrfs_alloc_inode
,
2231 .destroy_inode
= btrfs_destroy_inode
,
2232 .statfs
= btrfs_statfs
,
2233 .remount_fs
= btrfs_remount
,
2234 .freeze_fs
= btrfs_freeze
,
2237 static const struct file_operations btrfs_ctl_fops
= {
2238 .open
= btrfs_control_open
,
2239 .unlocked_ioctl
= btrfs_control_ioctl
,
2240 .compat_ioctl
= btrfs_control_ioctl
,
2241 .owner
= THIS_MODULE
,
2242 .llseek
= noop_llseek
,
2245 static struct miscdevice btrfs_misc
= {
2246 .minor
= BTRFS_MINOR
,
2247 .name
= "btrfs-control",
2248 .fops
= &btrfs_ctl_fops
2251 MODULE_ALIAS_MISCDEV(BTRFS_MINOR
);
2252 MODULE_ALIAS("devname:btrfs-control");
2254 static int btrfs_interface_init(void)
2256 return misc_register(&btrfs_misc
);
2259 static void btrfs_interface_exit(void)
2261 misc_deregister(&btrfs_misc
);
2264 static void btrfs_print_info(void)
2266 printk(KERN_INFO
"Btrfs loaded"
2267 #ifdef CONFIG_BTRFS_DEBUG
2270 #ifdef CONFIG_BTRFS_ASSERT
2273 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2274 ", integrity-checker=on"
2279 static int btrfs_run_sanity_tests(void)
2283 ret
= btrfs_init_test_fs();
2287 ret
= btrfs_test_free_space_cache();
2290 ret
= btrfs_test_extent_buffer_operations();
2293 ret
= btrfs_test_extent_io();
2296 ret
= btrfs_test_inodes();
2299 ret
= btrfs_test_qgroups();
2302 ret
= btrfs_test_free_space_tree();
2304 btrfs_destroy_test_fs();
2308 static int __init
init_btrfs_fs(void)
2312 err
= btrfs_hash_init();
2318 err
= btrfs_init_sysfs();
2322 btrfs_init_compress();
2324 err
= btrfs_init_cachep();
2328 err
= extent_io_init();
2332 err
= extent_map_init();
2334 goto free_extent_io
;
2336 err
= ordered_data_init();
2338 goto free_extent_map
;
2340 err
= btrfs_delayed_inode_init();
2342 goto free_ordered_data
;
2344 err
= btrfs_auto_defrag_init();
2346 goto free_delayed_inode
;
2348 err
= btrfs_delayed_ref_init();
2350 goto free_auto_defrag
;
2352 err
= btrfs_prelim_ref_init();
2354 goto free_delayed_ref
;
2356 err
= btrfs_end_io_wq_init();
2358 goto free_prelim_ref
;
2360 err
= btrfs_interface_init();
2362 goto free_end_io_wq
;
2364 btrfs_init_lockdep();
2368 err
= btrfs_run_sanity_tests();
2370 goto unregister_ioctl
;
2372 err
= register_filesystem(&btrfs_fs_type
);
2374 goto unregister_ioctl
;
2379 btrfs_interface_exit();
2381 btrfs_end_io_wq_exit();
2383 btrfs_prelim_ref_exit();
2385 btrfs_delayed_ref_exit();
2387 btrfs_auto_defrag_exit();
2389 btrfs_delayed_inode_exit();
2391 ordered_data_exit();
2397 btrfs_destroy_cachep();
2399 btrfs_exit_compress();
2406 static void __exit
exit_btrfs_fs(void)
2408 btrfs_destroy_cachep();
2409 btrfs_delayed_ref_exit();
2410 btrfs_auto_defrag_exit();
2411 btrfs_delayed_inode_exit();
2412 btrfs_prelim_ref_exit();
2413 ordered_data_exit();
2416 btrfs_interface_exit();
2417 btrfs_end_io_wq_exit();
2418 unregister_filesystem(&btrfs_fs_type
);
2420 btrfs_cleanup_fs_uuids();
2421 btrfs_exit_compress();
2425 late_initcall(init_btrfs_fs
);
2426 module_exit(exit_btrfs_fs
)
2428 MODULE_LICENSE("GPL");