3fd70f797b7d7c7edd9ab5d3598289310b780bb0
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 /*
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
88 * called.
89 */
90 smp_mb();
91 while (!RB_EMPTY_ROOT(&tree->state)) {
92 struct rb_node *node;
93 struct extent_state *state;
94
95 node = rb_first(&tree->state);
96 state = rb_entry(node, struct extent_state, rb_node);
97 rb_erase(&state->rb_node, &tree->state);
98 RB_CLEAR_NODE(&state->rb_node);
99 /*
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
102 */
103 ASSERT(!waitqueue_active(&state->wq));
104 free_extent_state(state);
105
106 cond_resched_lock(&tree->lock);
107 }
108 spin_unlock(&tree->lock);
109 }
110
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 struct btrfs_fs_info *fs_info)
113 {
114 struct btrfs_root *root, *tmp;
115
116 down_write(&fs_info->commit_root_sem);
117 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 dirty_list) {
119 list_del_init(&root->dirty_list);
120 free_extent_buffer(root->commit_root);
121 root->commit_root = btrfs_root_node(root);
122 if (is_fstree(root->objectid))
123 btrfs_unpin_free_ino(root);
124 clear_btree_io_tree(&root->dirty_log_pages);
125 }
126
127 /* We can free old roots now. */
128 spin_lock(&trans->dropped_roots_lock);
129 while (!list_empty(&trans->dropped_roots)) {
130 root = list_first_entry(&trans->dropped_roots,
131 struct btrfs_root, root_list);
132 list_del_init(&root->root_list);
133 spin_unlock(&trans->dropped_roots_lock);
134 btrfs_drop_and_free_fs_root(fs_info, root);
135 spin_lock(&trans->dropped_roots_lock);
136 }
137 spin_unlock(&trans->dropped_roots_lock);
138 up_write(&fs_info->commit_root_sem);
139 }
140
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 unsigned int type)
143 {
144 if (type & TRANS_EXTWRITERS)
145 atomic_inc(&trans->num_extwriters);
146 }
147
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 unsigned int type)
150 {
151 if (type & TRANS_EXTWRITERS)
152 atomic_dec(&trans->num_extwriters);
153 }
154
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 unsigned int type)
157 {
158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 return atomic_read(&trans->num_extwriters);
164 }
165
166 /*
167 * either allocate a new transaction or hop into the existing one
168 */
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 struct btrfs_transaction *cur_trans;
172 struct btrfs_fs_info *fs_info = root->fs_info;
173
174 spin_lock(&fs_info->trans_lock);
175 loop:
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 spin_unlock(&fs_info->trans_lock);
179 return -EROFS;
180 }
181
182 cur_trans = fs_info->running_transaction;
183 if (cur_trans) {
184 if (cur_trans->aborted) {
185 spin_unlock(&fs_info->trans_lock);
186 return cur_trans->aborted;
187 }
188 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 spin_unlock(&fs_info->trans_lock);
190 return -EBUSY;
191 }
192 atomic_inc(&cur_trans->use_count);
193 atomic_inc(&cur_trans->num_writers);
194 extwriter_counter_inc(cur_trans, type);
195 spin_unlock(&fs_info->trans_lock);
196 return 0;
197 }
198 spin_unlock(&fs_info->trans_lock);
199
200 /*
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
203 */
204 if (type == TRANS_ATTACH)
205 return -ENOENT;
206
207 /*
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
210 */
211 BUG_ON(type == TRANS_JOIN_NOLOCK);
212
213 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 if (!cur_trans)
215 return -ENOMEM;
216
217 spin_lock(&fs_info->trans_lock);
218 if (fs_info->running_transaction) {
219 /*
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
222 */
223 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 goto loop;
225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 spin_unlock(&fs_info->trans_lock);
227 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 return -EROFS;
229 }
230
231 atomic_set(&cur_trans->num_writers, 1);
232 extwriter_counter_init(cur_trans, type);
233 init_waitqueue_head(&cur_trans->writer_wait);
234 init_waitqueue_head(&cur_trans->commit_wait);
235 cur_trans->state = TRANS_STATE_RUNNING;
236 /*
237 * One for this trans handle, one so it will live on until we
238 * commit the transaction.
239 */
240 atomic_set(&cur_trans->use_count, 2);
241 cur_trans->have_free_bgs = 0;
242 cur_trans->start_time = get_seconds();
243 cur_trans->dirty_bg_run = 0;
244
245 cur_trans->delayed_refs.href_root = RB_ROOT;
246 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
247 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
248 cur_trans->delayed_refs.num_heads_ready = 0;
249 cur_trans->delayed_refs.pending_csums = 0;
250 cur_trans->delayed_refs.num_heads = 0;
251 cur_trans->delayed_refs.flushing = 0;
252 cur_trans->delayed_refs.run_delayed_start = 0;
253 cur_trans->delayed_refs.qgroup_to_skip = 0;
254
255 /*
256 * although the tree mod log is per file system and not per transaction,
257 * the log must never go across transaction boundaries.
258 */
259 smp_mb();
260 if (!list_empty(&fs_info->tree_mod_seq_list))
261 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
262 "creating a fresh transaction\n");
263 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
264 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
265 "creating a fresh transaction\n");
266 atomic64_set(&fs_info->tree_mod_seq, 0);
267
268 spin_lock_init(&cur_trans->delayed_refs.lock);
269
270 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
271 INIT_LIST_HEAD(&cur_trans->pending_chunks);
272 INIT_LIST_HEAD(&cur_trans->switch_commits);
273 INIT_LIST_HEAD(&cur_trans->pending_ordered);
274 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
275 INIT_LIST_HEAD(&cur_trans->io_bgs);
276 INIT_LIST_HEAD(&cur_trans->dropped_roots);
277 mutex_init(&cur_trans->cache_write_mutex);
278 cur_trans->num_dirty_bgs = 0;
279 spin_lock_init(&cur_trans->dirty_bgs_lock);
280 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
281 spin_lock_init(&cur_trans->deleted_bgs_lock);
282 spin_lock_init(&cur_trans->dropped_roots_lock);
283 list_add_tail(&cur_trans->list, &fs_info->trans_list);
284 extent_io_tree_init(&cur_trans->dirty_pages,
285 fs_info->btree_inode->i_mapping);
286 fs_info->generation++;
287 cur_trans->transid = fs_info->generation;
288 fs_info->running_transaction = cur_trans;
289 cur_trans->aborted = 0;
290 spin_unlock(&fs_info->trans_lock);
291
292 return 0;
293 }
294
295 /*
296 * this does all the record keeping required to make sure that a reference
297 * counted root is properly recorded in a given transaction. This is required
298 * to make sure the old root from before we joined the transaction is deleted
299 * when the transaction commits
300 */
301 static int record_root_in_trans(struct btrfs_trans_handle *trans,
302 struct btrfs_root *root)
303 {
304 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
305 root->last_trans < trans->transid) {
306 WARN_ON(root == root->fs_info->extent_root);
307 WARN_ON(root->commit_root != root->node);
308
309 /*
310 * see below for IN_TRANS_SETUP usage rules
311 * we have the reloc mutex held now, so there
312 * is only one writer in this function
313 */
314 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
315
316 /* make sure readers find IN_TRANS_SETUP before
317 * they find our root->last_trans update
318 */
319 smp_wmb();
320
321 spin_lock(&root->fs_info->fs_roots_radix_lock);
322 if (root->last_trans == trans->transid) {
323 spin_unlock(&root->fs_info->fs_roots_radix_lock);
324 return 0;
325 }
326 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
327 (unsigned long)root->root_key.objectid,
328 BTRFS_ROOT_TRANS_TAG);
329 spin_unlock(&root->fs_info->fs_roots_radix_lock);
330 root->last_trans = trans->transid;
331
332 /* this is pretty tricky. We don't want to
333 * take the relocation lock in btrfs_record_root_in_trans
334 * unless we're really doing the first setup for this root in
335 * this transaction.
336 *
337 * Normally we'd use root->last_trans as a flag to decide
338 * if we want to take the expensive mutex.
339 *
340 * But, we have to set root->last_trans before we
341 * init the relocation root, otherwise, we trip over warnings
342 * in ctree.c. The solution used here is to flag ourselves
343 * with root IN_TRANS_SETUP. When this is 1, we're still
344 * fixing up the reloc trees and everyone must wait.
345 *
346 * When this is zero, they can trust root->last_trans and fly
347 * through btrfs_record_root_in_trans without having to take the
348 * lock. smp_wmb() makes sure that all the writes above are
349 * done before we pop in the zero below
350 */
351 btrfs_init_reloc_root(trans, root);
352 smp_mb__before_atomic();
353 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
354 }
355 return 0;
356 }
357
358
359 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
360 struct btrfs_root *root)
361 {
362 struct btrfs_transaction *cur_trans = trans->transaction;
363
364 /* Add ourselves to the transaction dropped list */
365 spin_lock(&cur_trans->dropped_roots_lock);
366 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
367 spin_unlock(&cur_trans->dropped_roots_lock);
368
369 /* Make sure we don't try to update the root at commit time */
370 spin_lock(&root->fs_info->fs_roots_radix_lock);
371 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
372 (unsigned long)root->root_key.objectid,
373 BTRFS_ROOT_TRANS_TAG);
374 spin_unlock(&root->fs_info->fs_roots_radix_lock);
375 }
376
377 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
378 struct btrfs_root *root)
379 {
380 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
381 return 0;
382
383 /*
384 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
385 * and barriers
386 */
387 smp_rmb();
388 if (root->last_trans == trans->transid &&
389 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
390 return 0;
391
392 mutex_lock(&root->fs_info->reloc_mutex);
393 record_root_in_trans(trans, root);
394 mutex_unlock(&root->fs_info->reloc_mutex);
395
396 return 0;
397 }
398
399 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
400 {
401 return (trans->state >= TRANS_STATE_BLOCKED &&
402 trans->state < TRANS_STATE_UNBLOCKED &&
403 !trans->aborted);
404 }
405
406 /* wait for commit against the current transaction to become unblocked
407 * when this is done, it is safe to start a new transaction, but the current
408 * transaction might not be fully on disk.
409 */
410 static void wait_current_trans(struct btrfs_root *root)
411 {
412 struct btrfs_transaction *cur_trans;
413
414 spin_lock(&root->fs_info->trans_lock);
415 cur_trans = root->fs_info->running_transaction;
416 if (cur_trans && is_transaction_blocked(cur_trans)) {
417 atomic_inc(&cur_trans->use_count);
418 spin_unlock(&root->fs_info->trans_lock);
419
420 wait_event(root->fs_info->transaction_wait,
421 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
422 cur_trans->aborted);
423 btrfs_put_transaction(cur_trans);
424 } else {
425 spin_unlock(&root->fs_info->trans_lock);
426 }
427 }
428
429 static int may_wait_transaction(struct btrfs_root *root, int type)
430 {
431 if (root->fs_info->log_root_recovering)
432 return 0;
433
434 if (type == TRANS_USERSPACE)
435 return 1;
436
437 if (type == TRANS_START &&
438 !atomic_read(&root->fs_info->open_ioctl_trans))
439 return 1;
440
441 return 0;
442 }
443
444 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
445 {
446 if (!root->fs_info->reloc_ctl ||
447 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
448 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
449 root->reloc_root)
450 return false;
451
452 return true;
453 }
454
455 static struct btrfs_trans_handle *
456 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
457 enum btrfs_reserve_flush_enum flush)
458 {
459 struct btrfs_trans_handle *h;
460 struct btrfs_transaction *cur_trans;
461 u64 num_bytes = 0;
462 u64 qgroup_reserved = 0;
463 bool reloc_reserved = false;
464 int ret;
465
466 /* Send isn't supposed to start transactions. */
467 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
468
469 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
470 return ERR_PTR(-EROFS);
471
472 if (current->journal_info) {
473 WARN_ON(type & TRANS_EXTWRITERS);
474 h = current->journal_info;
475 h->use_count++;
476 WARN_ON(h->use_count > 2);
477 h->orig_rsv = h->block_rsv;
478 h->block_rsv = NULL;
479 goto got_it;
480 }
481
482 /*
483 * Do the reservation before we join the transaction so we can do all
484 * the appropriate flushing if need be.
485 */
486 if (num_items > 0 && root != root->fs_info->chunk_root) {
487 if (root->fs_info->quota_enabled &&
488 is_fstree(root->root_key.objectid)) {
489 qgroup_reserved = num_items * root->nodesize;
490 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
491 if (ret)
492 return ERR_PTR(ret);
493 }
494
495 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
496 /*
497 * Do the reservation for the relocation root creation
498 */
499 if (need_reserve_reloc_root(root)) {
500 num_bytes += root->nodesize;
501 reloc_reserved = true;
502 }
503
504 ret = btrfs_block_rsv_add(root,
505 &root->fs_info->trans_block_rsv,
506 num_bytes, flush);
507 if (ret)
508 goto reserve_fail;
509 }
510 again:
511 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
512 if (!h) {
513 ret = -ENOMEM;
514 goto alloc_fail;
515 }
516
517 /*
518 * If we are JOIN_NOLOCK we're already committing a transaction and
519 * waiting on this guy, so we don't need to do the sb_start_intwrite
520 * because we're already holding a ref. We need this because we could
521 * have raced in and did an fsync() on a file which can kick a commit
522 * and then we deadlock with somebody doing a freeze.
523 *
524 * If we are ATTACH, it means we just want to catch the current
525 * transaction and commit it, so we needn't do sb_start_intwrite().
526 */
527 if (type & __TRANS_FREEZABLE)
528 sb_start_intwrite(root->fs_info->sb);
529
530 if (may_wait_transaction(root, type))
531 wait_current_trans(root);
532
533 do {
534 ret = join_transaction(root, type);
535 if (ret == -EBUSY) {
536 wait_current_trans(root);
537 if (unlikely(type == TRANS_ATTACH))
538 ret = -ENOENT;
539 }
540 } while (ret == -EBUSY);
541
542 if (ret < 0) {
543 /* We must get the transaction if we are JOIN_NOLOCK. */
544 BUG_ON(type == TRANS_JOIN_NOLOCK);
545 goto join_fail;
546 }
547
548 cur_trans = root->fs_info->running_transaction;
549
550 h->transid = cur_trans->transid;
551 h->transaction = cur_trans;
552 h->blocks_used = 0;
553 h->bytes_reserved = 0;
554 h->chunk_bytes_reserved = 0;
555 h->root = root;
556 h->delayed_ref_updates = 0;
557 h->use_count = 1;
558 h->adding_csums = 0;
559 h->block_rsv = NULL;
560 h->orig_rsv = NULL;
561 h->aborted = 0;
562 h->qgroup_reserved = 0;
563 h->delayed_ref_elem.seq = 0;
564 h->type = type;
565 h->allocating_chunk = false;
566 h->reloc_reserved = false;
567 h->sync = false;
568 INIT_LIST_HEAD(&h->qgroup_ref_list);
569 INIT_LIST_HEAD(&h->new_bgs);
570 INIT_LIST_HEAD(&h->ordered);
571
572 smp_mb();
573 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
574 may_wait_transaction(root, type)) {
575 current->journal_info = h;
576 btrfs_commit_transaction(h, root);
577 goto again;
578 }
579
580 if (num_bytes) {
581 trace_btrfs_space_reservation(root->fs_info, "transaction",
582 h->transid, num_bytes, 1);
583 h->block_rsv = &root->fs_info->trans_block_rsv;
584 h->bytes_reserved = num_bytes;
585 h->reloc_reserved = reloc_reserved;
586 }
587 h->qgroup_reserved = qgroup_reserved;
588
589 got_it:
590 btrfs_record_root_in_trans(h, root);
591
592 if (!current->journal_info && type != TRANS_USERSPACE)
593 current->journal_info = h;
594 return h;
595
596 join_fail:
597 if (type & __TRANS_FREEZABLE)
598 sb_end_intwrite(root->fs_info->sb);
599 kmem_cache_free(btrfs_trans_handle_cachep, h);
600 alloc_fail:
601 if (num_bytes)
602 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
603 num_bytes);
604 reserve_fail:
605 if (qgroup_reserved)
606 btrfs_qgroup_free(root, qgroup_reserved);
607 return ERR_PTR(ret);
608 }
609
610 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
611 int num_items)
612 {
613 return start_transaction(root, num_items, TRANS_START,
614 BTRFS_RESERVE_FLUSH_ALL);
615 }
616
617 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
618 struct btrfs_root *root, int num_items)
619 {
620 return start_transaction(root, num_items, TRANS_START,
621 BTRFS_RESERVE_FLUSH_LIMIT);
622 }
623
624 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
625 {
626 return start_transaction(root, 0, TRANS_JOIN, 0);
627 }
628
629 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
630 {
631 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
632 }
633
634 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
635 {
636 return start_transaction(root, 0, TRANS_USERSPACE, 0);
637 }
638
639 /*
640 * btrfs_attach_transaction() - catch the running transaction
641 *
642 * It is used when we want to commit the current the transaction, but
643 * don't want to start a new one.
644 *
645 * Note: If this function return -ENOENT, it just means there is no
646 * running transaction. But it is possible that the inactive transaction
647 * is still in the memory, not fully on disk. If you hope there is no
648 * inactive transaction in the fs when -ENOENT is returned, you should
649 * invoke
650 * btrfs_attach_transaction_barrier()
651 */
652 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
653 {
654 return start_transaction(root, 0, TRANS_ATTACH, 0);
655 }
656
657 /*
658 * btrfs_attach_transaction_barrier() - catch the running transaction
659 *
660 * It is similar to the above function, the differentia is this one
661 * will wait for all the inactive transactions until they fully
662 * complete.
663 */
664 struct btrfs_trans_handle *
665 btrfs_attach_transaction_barrier(struct btrfs_root *root)
666 {
667 struct btrfs_trans_handle *trans;
668
669 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
670 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
671 btrfs_wait_for_commit(root, 0);
672
673 return trans;
674 }
675
676 /* wait for a transaction commit to be fully complete */
677 static noinline void wait_for_commit(struct btrfs_root *root,
678 struct btrfs_transaction *commit)
679 {
680 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
681 }
682
683 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
684 {
685 struct btrfs_transaction *cur_trans = NULL, *t;
686 int ret = 0;
687
688 if (transid) {
689 if (transid <= root->fs_info->last_trans_committed)
690 goto out;
691
692 /* find specified transaction */
693 spin_lock(&root->fs_info->trans_lock);
694 list_for_each_entry(t, &root->fs_info->trans_list, list) {
695 if (t->transid == transid) {
696 cur_trans = t;
697 atomic_inc(&cur_trans->use_count);
698 ret = 0;
699 break;
700 }
701 if (t->transid > transid) {
702 ret = 0;
703 break;
704 }
705 }
706 spin_unlock(&root->fs_info->trans_lock);
707
708 /*
709 * The specified transaction doesn't exist, or we
710 * raced with btrfs_commit_transaction
711 */
712 if (!cur_trans) {
713 if (transid > root->fs_info->last_trans_committed)
714 ret = -EINVAL;
715 goto out;
716 }
717 } else {
718 /* find newest transaction that is committing | committed */
719 spin_lock(&root->fs_info->trans_lock);
720 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
721 list) {
722 if (t->state >= TRANS_STATE_COMMIT_START) {
723 if (t->state == TRANS_STATE_COMPLETED)
724 break;
725 cur_trans = t;
726 atomic_inc(&cur_trans->use_count);
727 break;
728 }
729 }
730 spin_unlock(&root->fs_info->trans_lock);
731 if (!cur_trans)
732 goto out; /* nothing committing|committed */
733 }
734
735 wait_for_commit(root, cur_trans);
736 btrfs_put_transaction(cur_trans);
737 out:
738 return ret;
739 }
740
741 void btrfs_throttle(struct btrfs_root *root)
742 {
743 if (!atomic_read(&root->fs_info->open_ioctl_trans))
744 wait_current_trans(root);
745 }
746
747 static int should_end_transaction(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root)
749 {
750 if (root->fs_info->global_block_rsv.space_info->full &&
751 btrfs_check_space_for_delayed_refs(trans, root))
752 return 1;
753
754 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
755 }
756
757 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
758 struct btrfs_root *root)
759 {
760 struct btrfs_transaction *cur_trans = trans->transaction;
761 int updates;
762 int err;
763
764 smp_mb();
765 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
766 cur_trans->delayed_refs.flushing)
767 return 1;
768
769 updates = trans->delayed_ref_updates;
770 trans->delayed_ref_updates = 0;
771 if (updates) {
772 err = btrfs_run_delayed_refs(trans, root, updates * 2);
773 if (err) /* Error code will also eval true */
774 return err;
775 }
776
777 return should_end_transaction(trans, root);
778 }
779
780 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
781 struct btrfs_root *root, int throttle)
782 {
783 struct btrfs_transaction *cur_trans = trans->transaction;
784 struct btrfs_fs_info *info = root->fs_info;
785 unsigned long cur = trans->delayed_ref_updates;
786 int lock = (trans->type != TRANS_JOIN_NOLOCK);
787 int err = 0;
788 int must_run_delayed_refs = 0;
789
790 if (trans->use_count > 1) {
791 trans->use_count--;
792 trans->block_rsv = trans->orig_rsv;
793 return 0;
794 }
795
796 btrfs_trans_release_metadata(trans, root);
797 trans->block_rsv = NULL;
798
799 if (!list_empty(&trans->new_bgs))
800 btrfs_create_pending_block_groups(trans, root);
801
802 if (!list_empty(&trans->ordered)) {
803 spin_lock(&info->trans_lock);
804 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
805 spin_unlock(&info->trans_lock);
806 }
807
808 trans->delayed_ref_updates = 0;
809 if (!trans->sync) {
810 must_run_delayed_refs =
811 btrfs_should_throttle_delayed_refs(trans, root);
812 cur = max_t(unsigned long, cur, 32);
813
814 /*
815 * don't make the caller wait if they are from a NOLOCK
816 * or ATTACH transaction, it will deadlock with commit
817 */
818 if (must_run_delayed_refs == 1 &&
819 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
820 must_run_delayed_refs = 2;
821 }
822
823 if (trans->qgroup_reserved) {
824 /*
825 * the same root has to be passed here between start_transaction
826 * and end_transaction. Subvolume quota depends on this.
827 */
828 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
829 trans->qgroup_reserved = 0;
830 }
831
832 btrfs_trans_release_metadata(trans, root);
833 trans->block_rsv = NULL;
834
835 if (!list_empty(&trans->new_bgs))
836 btrfs_create_pending_block_groups(trans, root);
837
838 btrfs_trans_release_chunk_metadata(trans);
839
840 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
841 should_end_transaction(trans, root) &&
842 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
843 spin_lock(&info->trans_lock);
844 if (cur_trans->state == TRANS_STATE_RUNNING)
845 cur_trans->state = TRANS_STATE_BLOCKED;
846 spin_unlock(&info->trans_lock);
847 }
848
849 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
850 if (throttle)
851 return btrfs_commit_transaction(trans, root);
852 else
853 wake_up_process(info->transaction_kthread);
854 }
855
856 if (trans->type & __TRANS_FREEZABLE)
857 sb_end_intwrite(root->fs_info->sb);
858
859 WARN_ON(cur_trans != info->running_transaction);
860 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
861 atomic_dec(&cur_trans->num_writers);
862 extwriter_counter_dec(cur_trans, trans->type);
863
864 /*
865 * Make sure counter is updated before we wake up waiters.
866 */
867 smp_mb();
868 if (waitqueue_active(&cur_trans->writer_wait))
869 wake_up(&cur_trans->writer_wait);
870 btrfs_put_transaction(cur_trans);
871
872 if (current->journal_info == trans)
873 current->journal_info = NULL;
874
875 if (throttle)
876 btrfs_run_delayed_iputs(root);
877
878 if (trans->aborted ||
879 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
880 wake_up_process(info->transaction_kthread);
881 err = -EIO;
882 }
883 assert_qgroups_uptodate(trans);
884
885 kmem_cache_free(btrfs_trans_handle_cachep, trans);
886 if (must_run_delayed_refs) {
887 btrfs_async_run_delayed_refs(root, cur,
888 must_run_delayed_refs == 1);
889 }
890 return err;
891 }
892
893 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
894 struct btrfs_root *root)
895 {
896 return __btrfs_end_transaction(trans, root, 0);
897 }
898
899 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
900 struct btrfs_root *root)
901 {
902 return __btrfs_end_transaction(trans, root, 1);
903 }
904
905 /*
906 * when btree blocks are allocated, they have some corresponding bits set for
907 * them in one of two extent_io trees. This is used to make sure all of
908 * those extents are sent to disk but does not wait on them
909 */
910 int btrfs_write_marked_extents(struct btrfs_root *root,
911 struct extent_io_tree *dirty_pages, int mark)
912 {
913 int err = 0;
914 int werr = 0;
915 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
916 struct extent_state *cached_state = NULL;
917 u64 start = 0;
918 u64 end;
919
920 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
921 mark, &cached_state)) {
922 bool wait_writeback = false;
923
924 err = convert_extent_bit(dirty_pages, start, end,
925 EXTENT_NEED_WAIT,
926 mark, &cached_state, GFP_NOFS);
927 /*
928 * convert_extent_bit can return -ENOMEM, which is most of the
929 * time a temporary error. So when it happens, ignore the error
930 * and wait for writeback of this range to finish - because we
931 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
932 * to btrfs_wait_marked_extents() would not know that writeback
933 * for this range started and therefore wouldn't wait for it to
934 * finish - we don't want to commit a superblock that points to
935 * btree nodes/leafs for which writeback hasn't finished yet
936 * (and without errors).
937 * We cleanup any entries left in the io tree when committing
938 * the transaction (through clear_btree_io_tree()).
939 */
940 if (err == -ENOMEM) {
941 err = 0;
942 wait_writeback = true;
943 }
944 if (!err)
945 err = filemap_fdatawrite_range(mapping, start, end);
946 if (err)
947 werr = err;
948 else if (wait_writeback)
949 werr = filemap_fdatawait_range(mapping, start, end);
950 free_extent_state(cached_state);
951 cached_state = NULL;
952 cond_resched();
953 start = end + 1;
954 }
955 return werr;
956 }
957
958 /*
959 * when btree blocks are allocated, they have some corresponding bits set for
960 * them in one of two extent_io trees. This is used to make sure all of
961 * those extents are on disk for transaction or log commit. We wait
962 * on all the pages and clear them from the dirty pages state tree
963 */
964 int btrfs_wait_marked_extents(struct btrfs_root *root,
965 struct extent_io_tree *dirty_pages, int mark)
966 {
967 int err = 0;
968 int werr = 0;
969 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
970 struct extent_state *cached_state = NULL;
971 u64 start = 0;
972 u64 end;
973 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
974 bool errors = false;
975
976 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
977 EXTENT_NEED_WAIT, &cached_state)) {
978 /*
979 * Ignore -ENOMEM errors returned by clear_extent_bit().
980 * When committing the transaction, we'll remove any entries
981 * left in the io tree. For a log commit, we don't remove them
982 * after committing the log because the tree can be accessed
983 * concurrently - we do it only at transaction commit time when
984 * it's safe to do it (through clear_btree_io_tree()).
985 */
986 err = clear_extent_bit(dirty_pages, start, end,
987 EXTENT_NEED_WAIT,
988 0, 0, &cached_state, GFP_NOFS);
989 if (err == -ENOMEM)
990 err = 0;
991 if (!err)
992 err = filemap_fdatawait_range(mapping, start, end);
993 if (err)
994 werr = err;
995 free_extent_state(cached_state);
996 cached_state = NULL;
997 cond_resched();
998 start = end + 1;
999 }
1000 if (err)
1001 werr = err;
1002
1003 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1004 if ((mark & EXTENT_DIRTY) &&
1005 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1006 &btree_ino->runtime_flags))
1007 errors = true;
1008
1009 if ((mark & EXTENT_NEW) &&
1010 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1011 &btree_ino->runtime_flags))
1012 errors = true;
1013 } else {
1014 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1015 &btree_ino->runtime_flags))
1016 errors = true;
1017 }
1018
1019 if (errors && !werr)
1020 werr = -EIO;
1021
1022 return werr;
1023 }
1024
1025 /*
1026 * when btree blocks are allocated, they have some corresponding bits set for
1027 * them in one of two extent_io trees. This is used to make sure all of
1028 * those extents are on disk for transaction or log commit
1029 */
1030 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1031 struct extent_io_tree *dirty_pages, int mark)
1032 {
1033 int ret;
1034 int ret2;
1035 struct blk_plug plug;
1036
1037 blk_start_plug(&plug);
1038 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1039 blk_finish_plug(&plug);
1040 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1041
1042 if (ret)
1043 return ret;
1044 if (ret2)
1045 return ret2;
1046 return 0;
1047 }
1048
1049 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1050 struct btrfs_root *root)
1051 {
1052 int ret;
1053
1054 ret = btrfs_write_and_wait_marked_extents(root,
1055 &trans->transaction->dirty_pages,
1056 EXTENT_DIRTY);
1057 clear_btree_io_tree(&trans->transaction->dirty_pages);
1058
1059 return ret;
1060 }
1061
1062 /*
1063 * this is used to update the root pointer in the tree of tree roots.
1064 *
1065 * But, in the case of the extent allocation tree, updating the root
1066 * pointer may allocate blocks which may change the root of the extent
1067 * allocation tree.
1068 *
1069 * So, this loops and repeats and makes sure the cowonly root didn't
1070 * change while the root pointer was being updated in the metadata.
1071 */
1072 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1073 struct btrfs_root *root)
1074 {
1075 int ret;
1076 u64 old_root_bytenr;
1077 u64 old_root_used;
1078 struct btrfs_root *tree_root = root->fs_info->tree_root;
1079
1080 old_root_used = btrfs_root_used(&root->root_item);
1081
1082 while (1) {
1083 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1084 if (old_root_bytenr == root->node->start &&
1085 old_root_used == btrfs_root_used(&root->root_item))
1086 break;
1087
1088 btrfs_set_root_node(&root->root_item, root->node);
1089 ret = btrfs_update_root(trans, tree_root,
1090 &root->root_key,
1091 &root->root_item);
1092 if (ret)
1093 return ret;
1094
1095 old_root_used = btrfs_root_used(&root->root_item);
1096 }
1097
1098 return 0;
1099 }
1100
1101 /*
1102 * update all the cowonly tree roots on disk
1103 *
1104 * The error handling in this function may not be obvious. Any of the
1105 * failures will cause the file system to go offline. We still need
1106 * to clean up the delayed refs.
1107 */
1108 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1109 struct btrfs_root *root)
1110 {
1111 struct btrfs_fs_info *fs_info = root->fs_info;
1112 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1113 struct list_head *io_bgs = &trans->transaction->io_bgs;
1114 struct list_head *next;
1115 struct extent_buffer *eb;
1116 int ret;
1117
1118 eb = btrfs_lock_root_node(fs_info->tree_root);
1119 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1120 0, &eb);
1121 btrfs_tree_unlock(eb);
1122 free_extent_buffer(eb);
1123
1124 if (ret)
1125 return ret;
1126
1127 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1128 if (ret)
1129 return ret;
1130
1131 ret = btrfs_run_dev_stats(trans, root->fs_info);
1132 if (ret)
1133 return ret;
1134 ret = btrfs_run_dev_replace(trans, root->fs_info);
1135 if (ret)
1136 return ret;
1137 ret = btrfs_run_qgroups(trans, root->fs_info);
1138 if (ret)
1139 return ret;
1140
1141 ret = btrfs_setup_space_cache(trans, root);
1142 if (ret)
1143 return ret;
1144
1145 /* run_qgroups might have added some more refs */
1146 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1147 if (ret)
1148 return ret;
1149 again:
1150 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1151 next = fs_info->dirty_cowonly_roots.next;
1152 list_del_init(next);
1153 root = list_entry(next, struct btrfs_root, dirty_list);
1154 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1155
1156 if (root != fs_info->extent_root)
1157 list_add_tail(&root->dirty_list,
1158 &trans->transaction->switch_commits);
1159 ret = update_cowonly_root(trans, root);
1160 if (ret)
1161 return ret;
1162 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1163 if (ret)
1164 return ret;
1165 }
1166
1167 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1168 ret = btrfs_write_dirty_block_groups(trans, root);
1169 if (ret)
1170 return ret;
1171 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1172 if (ret)
1173 return ret;
1174 }
1175
1176 if (!list_empty(&fs_info->dirty_cowonly_roots))
1177 goto again;
1178
1179 list_add_tail(&fs_info->extent_root->dirty_list,
1180 &trans->transaction->switch_commits);
1181 btrfs_after_dev_replace_commit(fs_info);
1182
1183 return 0;
1184 }
1185
1186 /*
1187 * dead roots are old snapshots that need to be deleted. This allocates
1188 * a dirty root struct and adds it into the list of dead roots that need to
1189 * be deleted
1190 */
1191 void btrfs_add_dead_root(struct btrfs_root *root)
1192 {
1193 spin_lock(&root->fs_info->trans_lock);
1194 if (list_empty(&root->root_list))
1195 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1196 spin_unlock(&root->fs_info->trans_lock);
1197 }
1198
1199 /*
1200 * update all the cowonly tree roots on disk
1201 */
1202 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1203 struct btrfs_root *root)
1204 {
1205 struct btrfs_root *gang[8];
1206 struct btrfs_fs_info *fs_info = root->fs_info;
1207 int i;
1208 int ret;
1209 int err = 0;
1210
1211 spin_lock(&fs_info->fs_roots_radix_lock);
1212 while (1) {
1213 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1214 (void **)gang, 0,
1215 ARRAY_SIZE(gang),
1216 BTRFS_ROOT_TRANS_TAG);
1217 if (ret == 0)
1218 break;
1219 for (i = 0; i < ret; i++) {
1220 root = gang[i];
1221 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1222 (unsigned long)root->root_key.objectid,
1223 BTRFS_ROOT_TRANS_TAG);
1224 spin_unlock(&fs_info->fs_roots_radix_lock);
1225
1226 btrfs_free_log(trans, root);
1227 btrfs_update_reloc_root(trans, root);
1228 btrfs_orphan_commit_root(trans, root);
1229
1230 btrfs_save_ino_cache(root, trans);
1231
1232 /* see comments in should_cow_block() */
1233 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1234 smp_mb__after_atomic();
1235
1236 if (root->commit_root != root->node) {
1237 list_add_tail(&root->dirty_list,
1238 &trans->transaction->switch_commits);
1239 btrfs_set_root_node(&root->root_item,
1240 root->node);
1241 }
1242
1243 err = btrfs_update_root(trans, fs_info->tree_root,
1244 &root->root_key,
1245 &root->root_item);
1246 spin_lock(&fs_info->fs_roots_radix_lock);
1247 if (err)
1248 break;
1249 }
1250 }
1251 spin_unlock(&fs_info->fs_roots_radix_lock);
1252 return err;
1253 }
1254
1255 /*
1256 * defrag a given btree.
1257 * Every leaf in the btree is read and defragged.
1258 */
1259 int btrfs_defrag_root(struct btrfs_root *root)
1260 {
1261 struct btrfs_fs_info *info = root->fs_info;
1262 struct btrfs_trans_handle *trans;
1263 int ret;
1264
1265 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1266 return 0;
1267
1268 while (1) {
1269 trans = btrfs_start_transaction(root, 0);
1270 if (IS_ERR(trans))
1271 return PTR_ERR(trans);
1272
1273 ret = btrfs_defrag_leaves(trans, root);
1274
1275 btrfs_end_transaction(trans, root);
1276 btrfs_btree_balance_dirty(info->tree_root);
1277 cond_resched();
1278
1279 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1280 break;
1281
1282 if (btrfs_defrag_cancelled(root->fs_info)) {
1283 pr_debug("BTRFS: defrag_root cancelled\n");
1284 ret = -EAGAIN;
1285 break;
1286 }
1287 }
1288 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1289 return ret;
1290 }
1291
1292 /*
1293 * new snapshots need to be created at a very specific time in the
1294 * transaction commit. This does the actual creation.
1295 *
1296 * Note:
1297 * If the error which may affect the commitment of the current transaction
1298 * happens, we should return the error number. If the error which just affect
1299 * the creation of the pending snapshots, just return 0.
1300 */
1301 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1302 struct btrfs_fs_info *fs_info,
1303 struct btrfs_pending_snapshot *pending)
1304 {
1305 struct btrfs_key key;
1306 struct btrfs_root_item *new_root_item;
1307 struct btrfs_root *tree_root = fs_info->tree_root;
1308 struct btrfs_root *root = pending->root;
1309 struct btrfs_root *parent_root;
1310 struct btrfs_block_rsv *rsv;
1311 struct inode *parent_inode;
1312 struct btrfs_path *path;
1313 struct btrfs_dir_item *dir_item;
1314 struct dentry *dentry;
1315 struct extent_buffer *tmp;
1316 struct extent_buffer *old;
1317 struct timespec cur_time = CURRENT_TIME;
1318 int ret = 0;
1319 u64 to_reserve = 0;
1320 u64 index = 0;
1321 u64 objectid;
1322 u64 root_flags;
1323 uuid_le new_uuid;
1324
1325 path = btrfs_alloc_path();
1326 if (!path) {
1327 pending->error = -ENOMEM;
1328 return 0;
1329 }
1330
1331 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1332 if (!new_root_item) {
1333 pending->error = -ENOMEM;
1334 goto root_item_alloc_fail;
1335 }
1336
1337 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1338 if (pending->error)
1339 goto no_free_objectid;
1340
1341 /*
1342 * Make qgroup to skip current new snapshot's qgroupid, as it is
1343 * accounted by later btrfs_qgroup_inherit().
1344 */
1345 btrfs_set_skip_qgroup(trans, objectid);
1346
1347 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1348
1349 if (to_reserve > 0) {
1350 pending->error = btrfs_block_rsv_add(root,
1351 &pending->block_rsv,
1352 to_reserve,
1353 BTRFS_RESERVE_NO_FLUSH);
1354 if (pending->error)
1355 goto clear_skip_qgroup;
1356 }
1357
1358 key.objectid = objectid;
1359 key.offset = (u64)-1;
1360 key.type = BTRFS_ROOT_ITEM_KEY;
1361
1362 rsv = trans->block_rsv;
1363 trans->block_rsv = &pending->block_rsv;
1364 trans->bytes_reserved = trans->block_rsv->reserved;
1365
1366 dentry = pending->dentry;
1367 parent_inode = pending->dir;
1368 parent_root = BTRFS_I(parent_inode)->root;
1369 record_root_in_trans(trans, parent_root);
1370
1371 /*
1372 * insert the directory item
1373 */
1374 ret = btrfs_set_inode_index(parent_inode, &index);
1375 BUG_ON(ret); /* -ENOMEM */
1376
1377 /* check if there is a file/dir which has the same name. */
1378 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1379 btrfs_ino(parent_inode),
1380 dentry->d_name.name,
1381 dentry->d_name.len, 0);
1382 if (dir_item != NULL && !IS_ERR(dir_item)) {
1383 pending->error = -EEXIST;
1384 goto dir_item_existed;
1385 } else if (IS_ERR(dir_item)) {
1386 ret = PTR_ERR(dir_item);
1387 btrfs_abort_transaction(trans, root, ret);
1388 goto fail;
1389 }
1390 btrfs_release_path(path);
1391
1392 /*
1393 * pull in the delayed directory update
1394 * and the delayed inode item
1395 * otherwise we corrupt the FS during
1396 * snapshot
1397 */
1398 ret = btrfs_run_delayed_items(trans, root);
1399 if (ret) { /* Transaction aborted */
1400 btrfs_abort_transaction(trans, root, ret);
1401 goto fail;
1402 }
1403
1404 record_root_in_trans(trans, root);
1405 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1406 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1407 btrfs_check_and_init_root_item(new_root_item);
1408
1409 root_flags = btrfs_root_flags(new_root_item);
1410 if (pending->readonly)
1411 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1412 else
1413 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1414 btrfs_set_root_flags(new_root_item, root_flags);
1415
1416 btrfs_set_root_generation_v2(new_root_item,
1417 trans->transid);
1418 uuid_le_gen(&new_uuid);
1419 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1420 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1421 BTRFS_UUID_SIZE);
1422 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1423 memset(new_root_item->received_uuid, 0,
1424 sizeof(new_root_item->received_uuid));
1425 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1426 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1427 btrfs_set_root_stransid(new_root_item, 0);
1428 btrfs_set_root_rtransid(new_root_item, 0);
1429 }
1430 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1431 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1432 btrfs_set_root_otransid(new_root_item, trans->transid);
1433
1434 old = btrfs_lock_root_node(root);
1435 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1436 if (ret) {
1437 btrfs_tree_unlock(old);
1438 free_extent_buffer(old);
1439 btrfs_abort_transaction(trans, root, ret);
1440 goto fail;
1441 }
1442
1443 btrfs_set_lock_blocking(old);
1444
1445 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1446 /* clean up in any case */
1447 btrfs_tree_unlock(old);
1448 free_extent_buffer(old);
1449 if (ret) {
1450 btrfs_abort_transaction(trans, root, ret);
1451 goto fail;
1452 }
1453 /* see comments in should_cow_block() */
1454 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1455 smp_wmb();
1456
1457 btrfs_set_root_node(new_root_item, tmp);
1458 /* record when the snapshot was created in key.offset */
1459 key.offset = trans->transid;
1460 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1461 btrfs_tree_unlock(tmp);
1462 free_extent_buffer(tmp);
1463 if (ret) {
1464 btrfs_abort_transaction(trans, root, ret);
1465 goto fail;
1466 }
1467
1468 /*
1469 * insert root back/forward references
1470 */
1471 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1472 parent_root->root_key.objectid,
1473 btrfs_ino(parent_inode), index,
1474 dentry->d_name.name, dentry->d_name.len);
1475 if (ret) {
1476 btrfs_abort_transaction(trans, root, ret);
1477 goto fail;
1478 }
1479
1480 key.offset = (u64)-1;
1481 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1482 if (IS_ERR(pending->snap)) {
1483 ret = PTR_ERR(pending->snap);
1484 btrfs_abort_transaction(trans, root, ret);
1485 goto fail;
1486 }
1487
1488 ret = btrfs_reloc_post_snapshot(trans, pending);
1489 if (ret) {
1490 btrfs_abort_transaction(trans, root, ret);
1491 goto fail;
1492 }
1493
1494 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1495 if (ret) {
1496 btrfs_abort_transaction(trans, root, ret);
1497 goto fail;
1498 }
1499
1500 ret = btrfs_insert_dir_item(trans, parent_root,
1501 dentry->d_name.name, dentry->d_name.len,
1502 parent_inode, &key,
1503 BTRFS_FT_DIR, index);
1504 /* We have check then name at the beginning, so it is impossible. */
1505 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1506 if (ret) {
1507 btrfs_abort_transaction(trans, root, ret);
1508 goto fail;
1509 }
1510
1511 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1512 dentry->d_name.len * 2);
1513 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1514 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1515 if (ret) {
1516 btrfs_abort_transaction(trans, root, ret);
1517 goto fail;
1518 }
1519 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1520 BTRFS_UUID_KEY_SUBVOL, objectid);
1521 if (ret) {
1522 btrfs_abort_transaction(trans, root, ret);
1523 goto fail;
1524 }
1525 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1526 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1527 new_root_item->received_uuid,
1528 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1529 objectid);
1530 if (ret && ret != -EEXIST) {
1531 btrfs_abort_transaction(trans, root, ret);
1532 goto fail;
1533 }
1534 }
1535
1536 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1537 if (ret) {
1538 btrfs_abort_transaction(trans, root, ret);
1539 goto fail;
1540 }
1541
1542 /*
1543 * account qgroup counters before qgroup_inherit()
1544 */
1545 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1546 if (ret)
1547 goto fail;
1548 ret = btrfs_qgroup_account_extents(trans, fs_info);
1549 if (ret)
1550 goto fail;
1551 ret = btrfs_qgroup_inherit(trans, fs_info,
1552 root->root_key.objectid,
1553 objectid, pending->inherit);
1554 if (ret) {
1555 btrfs_abort_transaction(trans, root, ret);
1556 goto fail;
1557 }
1558
1559 fail:
1560 pending->error = ret;
1561 dir_item_existed:
1562 trans->block_rsv = rsv;
1563 trans->bytes_reserved = 0;
1564 clear_skip_qgroup:
1565 btrfs_clear_skip_qgroup(trans);
1566 no_free_objectid:
1567 kfree(new_root_item);
1568 root_item_alloc_fail:
1569 btrfs_free_path(path);
1570 return ret;
1571 }
1572
1573 /*
1574 * create all the snapshots we've scheduled for creation
1575 */
1576 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1577 struct btrfs_fs_info *fs_info)
1578 {
1579 struct btrfs_pending_snapshot *pending, *next;
1580 struct list_head *head = &trans->transaction->pending_snapshots;
1581 int ret = 0;
1582
1583 list_for_each_entry_safe(pending, next, head, list) {
1584 list_del(&pending->list);
1585 ret = create_pending_snapshot(trans, fs_info, pending);
1586 if (ret)
1587 break;
1588 }
1589 return ret;
1590 }
1591
1592 static void update_super_roots(struct btrfs_root *root)
1593 {
1594 struct btrfs_root_item *root_item;
1595 struct btrfs_super_block *super;
1596
1597 super = root->fs_info->super_copy;
1598
1599 root_item = &root->fs_info->chunk_root->root_item;
1600 super->chunk_root = root_item->bytenr;
1601 super->chunk_root_generation = root_item->generation;
1602 super->chunk_root_level = root_item->level;
1603
1604 root_item = &root->fs_info->tree_root->root_item;
1605 super->root = root_item->bytenr;
1606 super->generation = root_item->generation;
1607 super->root_level = root_item->level;
1608 if (btrfs_test_opt(root, SPACE_CACHE))
1609 super->cache_generation = root_item->generation;
1610 if (root->fs_info->update_uuid_tree_gen)
1611 super->uuid_tree_generation = root_item->generation;
1612 }
1613
1614 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1615 {
1616 struct btrfs_transaction *trans;
1617 int ret = 0;
1618
1619 spin_lock(&info->trans_lock);
1620 trans = info->running_transaction;
1621 if (trans)
1622 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1623 spin_unlock(&info->trans_lock);
1624 return ret;
1625 }
1626
1627 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1628 {
1629 struct btrfs_transaction *trans;
1630 int ret = 0;
1631
1632 spin_lock(&info->trans_lock);
1633 trans = info->running_transaction;
1634 if (trans)
1635 ret = is_transaction_blocked(trans);
1636 spin_unlock(&info->trans_lock);
1637 return ret;
1638 }
1639
1640 /*
1641 * wait for the current transaction commit to start and block subsequent
1642 * transaction joins
1643 */
1644 static void wait_current_trans_commit_start(struct btrfs_root *root,
1645 struct btrfs_transaction *trans)
1646 {
1647 wait_event(root->fs_info->transaction_blocked_wait,
1648 trans->state >= TRANS_STATE_COMMIT_START ||
1649 trans->aborted);
1650 }
1651
1652 /*
1653 * wait for the current transaction to start and then become unblocked.
1654 * caller holds ref.
1655 */
1656 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1657 struct btrfs_transaction *trans)
1658 {
1659 wait_event(root->fs_info->transaction_wait,
1660 trans->state >= TRANS_STATE_UNBLOCKED ||
1661 trans->aborted);
1662 }
1663
1664 /*
1665 * commit transactions asynchronously. once btrfs_commit_transaction_async
1666 * returns, any subsequent transaction will not be allowed to join.
1667 */
1668 struct btrfs_async_commit {
1669 struct btrfs_trans_handle *newtrans;
1670 struct btrfs_root *root;
1671 struct work_struct work;
1672 };
1673
1674 static void do_async_commit(struct work_struct *work)
1675 {
1676 struct btrfs_async_commit *ac =
1677 container_of(work, struct btrfs_async_commit, work);
1678
1679 /*
1680 * We've got freeze protection passed with the transaction.
1681 * Tell lockdep about it.
1682 */
1683 if (ac->newtrans->type & __TRANS_FREEZABLE)
1684 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1685
1686 current->journal_info = ac->newtrans;
1687
1688 btrfs_commit_transaction(ac->newtrans, ac->root);
1689 kfree(ac);
1690 }
1691
1692 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1693 struct btrfs_root *root,
1694 int wait_for_unblock)
1695 {
1696 struct btrfs_async_commit *ac;
1697 struct btrfs_transaction *cur_trans;
1698
1699 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1700 if (!ac)
1701 return -ENOMEM;
1702
1703 INIT_WORK(&ac->work, do_async_commit);
1704 ac->root = root;
1705 ac->newtrans = btrfs_join_transaction(root);
1706 if (IS_ERR(ac->newtrans)) {
1707 int err = PTR_ERR(ac->newtrans);
1708 kfree(ac);
1709 return err;
1710 }
1711
1712 /* take transaction reference */
1713 cur_trans = trans->transaction;
1714 atomic_inc(&cur_trans->use_count);
1715
1716 btrfs_end_transaction(trans, root);
1717
1718 /*
1719 * Tell lockdep we've released the freeze rwsem, since the
1720 * async commit thread will be the one to unlock it.
1721 */
1722 if (ac->newtrans->type & __TRANS_FREEZABLE)
1723 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1724
1725 schedule_work(&ac->work);
1726
1727 /* wait for transaction to start and unblock */
1728 if (wait_for_unblock)
1729 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1730 else
1731 wait_current_trans_commit_start(root, cur_trans);
1732
1733 if (current->journal_info == trans)
1734 current->journal_info = NULL;
1735
1736 btrfs_put_transaction(cur_trans);
1737 return 0;
1738 }
1739
1740
1741 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1742 struct btrfs_root *root, int err)
1743 {
1744 struct btrfs_transaction *cur_trans = trans->transaction;
1745 DEFINE_WAIT(wait);
1746
1747 WARN_ON(trans->use_count > 1);
1748
1749 btrfs_abort_transaction(trans, root, err);
1750
1751 spin_lock(&root->fs_info->trans_lock);
1752
1753 /*
1754 * If the transaction is removed from the list, it means this
1755 * transaction has been committed successfully, so it is impossible
1756 * to call the cleanup function.
1757 */
1758 BUG_ON(list_empty(&cur_trans->list));
1759
1760 list_del_init(&cur_trans->list);
1761 if (cur_trans == root->fs_info->running_transaction) {
1762 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1763 spin_unlock(&root->fs_info->trans_lock);
1764 wait_event(cur_trans->writer_wait,
1765 atomic_read(&cur_trans->num_writers) == 1);
1766
1767 spin_lock(&root->fs_info->trans_lock);
1768 }
1769 spin_unlock(&root->fs_info->trans_lock);
1770
1771 btrfs_cleanup_one_transaction(trans->transaction, root);
1772
1773 spin_lock(&root->fs_info->trans_lock);
1774 if (cur_trans == root->fs_info->running_transaction)
1775 root->fs_info->running_transaction = NULL;
1776 spin_unlock(&root->fs_info->trans_lock);
1777
1778 if (trans->type & __TRANS_FREEZABLE)
1779 sb_end_intwrite(root->fs_info->sb);
1780 btrfs_put_transaction(cur_trans);
1781 btrfs_put_transaction(cur_trans);
1782
1783 trace_btrfs_transaction_commit(root);
1784
1785 if (current->journal_info == trans)
1786 current->journal_info = NULL;
1787 btrfs_scrub_cancel(root->fs_info);
1788
1789 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1790 }
1791
1792 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1793 {
1794 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1795 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1796 return 0;
1797 }
1798
1799 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1800 {
1801 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1802 btrfs_wait_ordered_roots(fs_info, -1);
1803 }
1804
1805 static inline void
1806 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1807 struct btrfs_fs_info *fs_info)
1808 {
1809 struct btrfs_ordered_extent *ordered;
1810
1811 spin_lock(&fs_info->trans_lock);
1812 while (!list_empty(&cur_trans->pending_ordered)) {
1813 ordered = list_first_entry(&cur_trans->pending_ordered,
1814 struct btrfs_ordered_extent,
1815 trans_list);
1816 list_del_init(&ordered->trans_list);
1817 spin_unlock(&fs_info->trans_lock);
1818
1819 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1820 &ordered->flags));
1821 btrfs_put_ordered_extent(ordered);
1822 spin_lock(&fs_info->trans_lock);
1823 }
1824 spin_unlock(&fs_info->trans_lock);
1825 }
1826
1827 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1828 struct btrfs_root *root)
1829 {
1830 struct btrfs_transaction *cur_trans = trans->transaction;
1831 struct btrfs_transaction *prev_trans = NULL;
1832 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1833 int ret;
1834
1835 /* Stop the commit early if ->aborted is set */
1836 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1837 ret = cur_trans->aborted;
1838 btrfs_end_transaction(trans, root);
1839 return ret;
1840 }
1841
1842 /* make a pass through all the delayed refs we have so far
1843 * any runnings procs may add more while we are here
1844 */
1845 ret = btrfs_run_delayed_refs(trans, root, 0);
1846 if (ret) {
1847 btrfs_end_transaction(trans, root);
1848 return ret;
1849 }
1850
1851 btrfs_trans_release_metadata(trans, root);
1852 trans->block_rsv = NULL;
1853 if (trans->qgroup_reserved) {
1854 btrfs_qgroup_free(root, trans->qgroup_reserved);
1855 trans->qgroup_reserved = 0;
1856 }
1857
1858 cur_trans = trans->transaction;
1859
1860 /*
1861 * set the flushing flag so procs in this transaction have to
1862 * start sending their work down.
1863 */
1864 cur_trans->delayed_refs.flushing = 1;
1865 smp_wmb();
1866
1867 if (!list_empty(&trans->new_bgs))
1868 btrfs_create_pending_block_groups(trans, root);
1869
1870 ret = btrfs_run_delayed_refs(trans, root, 0);
1871 if (ret) {
1872 btrfs_end_transaction(trans, root);
1873 return ret;
1874 }
1875
1876 if (!cur_trans->dirty_bg_run) {
1877 int run_it = 0;
1878
1879 /* this mutex is also taken before trying to set
1880 * block groups readonly. We need to make sure
1881 * that nobody has set a block group readonly
1882 * after a extents from that block group have been
1883 * allocated for cache files. btrfs_set_block_group_ro
1884 * will wait for the transaction to commit if it
1885 * finds dirty_bg_run = 1
1886 *
1887 * The dirty_bg_run flag is also used to make sure only
1888 * one process starts all the block group IO. It wouldn't
1889 * hurt to have more than one go through, but there's no
1890 * real advantage to it either.
1891 */
1892 mutex_lock(&root->fs_info->ro_block_group_mutex);
1893 if (!cur_trans->dirty_bg_run) {
1894 run_it = 1;
1895 cur_trans->dirty_bg_run = 1;
1896 }
1897 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1898
1899 if (run_it)
1900 ret = btrfs_start_dirty_block_groups(trans, root);
1901 }
1902 if (ret) {
1903 btrfs_end_transaction(trans, root);
1904 return ret;
1905 }
1906
1907 spin_lock(&root->fs_info->trans_lock);
1908 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1909 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1910 spin_unlock(&root->fs_info->trans_lock);
1911 atomic_inc(&cur_trans->use_count);
1912 ret = btrfs_end_transaction(trans, root);
1913
1914 wait_for_commit(root, cur_trans);
1915
1916 if (unlikely(cur_trans->aborted))
1917 ret = cur_trans->aborted;
1918
1919 btrfs_put_transaction(cur_trans);
1920
1921 return ret;
1922 }
1923
1924 cur_trans->state = TRANS_STATE_COMMIT_START;
1925 wake_up(&root->fs_info->transaction_blocked_wait);
1926
1927 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1928 prev_trans = list_entry(cur_trans->list.prev,
1929 struct btrfs_transaction, list);
1930 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1931 atomic_inc(&prev_trans->use_count);
1932 spin_unlock(&root->fs_info->trans_lock);
1933
1934 wait_for_commit(root, prev_trans);
1935 ret = prev_trans->aborted;
1936
1937 btrfs_put_transaction(prev_trans);
1938 if (ret)
1939 goto cleanup_transaction;
1940 } else {
1941 spin_unlock(&root->fs_info->trans_lock);
1942 }
1943 } else {
1944 spin_unlock(&root->fs_info->trans_lock);
1945 }
1946
1947 extwriter_counter_dec(cur_trans, trans->type);
1948
1949 ret = btrfs_start_delalloc_flush(root->fs_info);
1950 if (ret)
1951 goto cleanup_transaction;
1952
1953 ret = btrfs_run_delayed_items(trans, root);
1954 if (ret)
1955 goto cleanup_transaction;
1956
1957 wait_event(cur_trans->writer_wait,
1958 extwriter_counter_read(cur_trans) == 0);
1959
1960 /* some pending stuffs might be added after the previous flush. */
1961 ret = btrfs_run_delayed_items(trans, root);
1962 if (ret)
1963 goto cleanup_transaction;
1964
1965 btrfs_wait_delalloc_flush(root->fs_info);
1966
1967 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1968
1969 btrfs_scrub_pause(root);
1970 /*
1971 * Ok now we need to make sure to block out any other joins while we
1972 * commit the transaction. We could have started a join before setting
1973 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1974 */
1975 spin_lock(&root->fs_info->trans_lock);
1976 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1977 spin_unlock(&root->fs_info->trans_lock);
1978 wait_event(cur_trans->writer_wait,
1979 atomic_read(&cur_trans->num_writers) == 1);
1980
1981 /* ->aborted might be set after the previous check, so check it */
1982 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1983 ret = cur_trans->aborted;
1984 goto scrub_continue;
1985 }
1986 /*
1987 * the reloc mutex makes sure that we stop
1988 * the balancing code from coming in and moving
1989 * extents around in the middle of the commit
1990 */
1991 mutex_lock(&root->fs_info->reloc_mutex);
1992
1993 /*
1994 * We needn't worry about the delayed items because we will
1995 * deal with them in create_pending_snapshot(), which is the
1996 * core function of the snapshot creation.
1997 */
1998 ret = create_pending_snapshots(trans, root->fs_info);
1999 if (ret) {
2000 mutex_unlock(&root->fs_info->reloc_mutex);
2001 goto scrub_continue;
2002 }
2003
2004 /*
2005 * We insert the dir indexes of the snapshots and update the inode
2006 * of the snapshots' parents after the snapshot creation, so there
2007 * are some delayed items which are not dealt with. Now deal with
2008 * them.
2009 *
2010 * We needn't worry that this operation will corrupt the snapshots,
2011 * because all the tree which are snapshoted will be forced to COW
2012 * the nodes and leaves.
2013 */
2014 ret = btrfs_run_delayed_items(trans, root);
2015 if (ret) {
2016 mutex_unlock(&root->fs_info->reloc_mutex);
2017 goto scrub_continue;
2018 }
2019
2020 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2021 if (ret) {
2022 mutex_unlock(&root->fs_info->reloc_mutex);
2023 goto scrub_continue;
2024 }
2025
2026 /* Reocrd old roots for later qgroup accounting */
2027 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2028 if (ret) {
2029 mutex_unlock(&root->fs_info->reloc_mutex);
2030 goto scrub_continue;
2031 }
2032
2033 /*
2034 * make sure none of the code above managed to slip in a
2035 * delayed item
2036 */
2037 btrfs_assert_delayed_root_empty(root);
2038
2039 WARN_ON(cur_trans != trans->transaction);
2040
2041 /* btrfs_commit_tree_roots is responsible for getting the
2042 * various roots consistent with each other. Every pointer
2043 * in the tree of tree roots has to point to the most up to date
2044 * root for every subvolume and other tree. So, we have to keep
2045 * the tree logging code from jumping in and changing any
2046 * of the trees.
2047 *
2048 * At this point in the commit, there can't be any tree-log
2049 * writers, but a little lower down we drop the trans mutex
2050 * and let new people in. By holding the tree_log_mutex
2051 * from now until after the super is written, we avoid races
2052 * with the tree-log code.
2053 */
2054 mutex_lock(&root->fs_info->tree_log_mutex);
2055
2056 ret = commit_fs_roots(trans, root);
2057 if (ret) {
2058 mutex_unlock(&root->fs_info->tree_log_mutex);
2059 mutex_unlock(&root->fs_info->reloc_mutex);
2060 goto scrub_continue;
2061 }
2062
2063 /*
2064 * Since the transaction is done, we can apply the pending changes
2065 * before the next transaction.
2066 */
2067 btrfs_apply_pending_changes(root->fs_info);
2068
2069 /* commit_fs_roots gets rid of all the tree log roots, it is now
2070 * safe to free the root of tree log roots
2071 */
2072 btrfs_free_log_root_tree(trans, root->fs_info);
2073
2074 /*
2075 * Since fs roots are all committed, we can get a quite accurate
2076 * new_roots. So let's do quota accounting.
2077 */
2078 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2079 if (ret < 0) {
2080 mutex_unlock(&root->fs_info->tree_log_mutex);
2081 mutex_unlock(&root->fs_info->reloc_mutex);
2082 goto scrub_continue;
2083 }
2084
2085 ret = commit_cowonly_roots(trans, root);
2086 if (ret) {
2087 mutex_unlock(&root->fs_info->tree_log_mutex);
2088 mutex_unlock(&root->fs_info->reloc_mutex);
2089 goto scrub_continue;
2090 }
2091
2092 /*
2093 * The tasks which save the space cache and inode cache may also
2094 * update ->aborted, check it.
2095 */
2096 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2097 ret = cur_trans->aborted;
2098 mutex_unlock(&root->fs_info->tree_log_mutex);
2099 mutex_unlock(&root->fs_info->reloc_mutex);
2100 goto scrub_continue;
2101 }
2102
2103 btrfs_prepare_extent_commit(trans, root);
2104
2105 cur_trans = root->fs_info->running_transaction;
2106
2107 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2108 root->fs_info->tree_root->node);
2109 list_add_tail(&root->fs_info->tree_root->dirty_list,
2110 &cur_trans->switch_commits);
2111
2112 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2113 root->fs_info->chunk_root->node);
2114 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2115 &cur_trans->switch_commits);
2116
2117 switch_commit_roots(cur_trans, root->fs_info);
2118
2119 assert_qgroups_uptodate(trans);
2120 ASSERT(list_empty(&cur_trans->dirty_bgs));
2121 ASSERT(list_empty(&cur_trans->io_bgs));
2122 update_super_roots(root);
2123
2124 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2125 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2126 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2127 sizeof(*root->fs_info->super_copy));
2128
2129 btrfs_update_commit_device_size(root->fs_info);
2130 btrfs_update_commit_device_bytes_used(root, cur_trans);
2131
2132 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2133 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2134
2135 btrfs_trans_release_chunk_metadata(trans);
2136
2137 spin_lock(&root->fs_info->trans_lock);
2138 cur_trans->state = TRANS_STATE_UNBLOCKED;
2139 root->fs_info->running_transaction = NULL;
2140 spin_unlock(&root->fs_info->trans_lock);
2141 mutex_unlock(&root->fs_info->reloc_mutex);
2142
2143 wake_up(&root->fs_info->transaction_wait);
2144
2145 ret = btrfs_write_and_wait_transaction(trans, root);
2146 if (ret) {
2147 btrfs_error(root->fs_info, ret,
2148 "Error while writing out transaction");
2149 mutex_unlock(&root->fs_info->tree_log_mutex);
2150 goto scrub_continue;
2151 }
2152
2153 ret = write_ctree_super(trans, root, 0);
2154 if (ret) {
2155 mutex_unlock(&root->fs_info->tree_log_mutex);
2156 goto scrub_continue;
2157 }
2158
2159 /*
2160 * the super is written, we can safely allow the tree-loggers
2161 * to go about their business
2162 */
2163 mutex_unlock(&root->fs_info->tree_log_mutex);
2164
2165 btrfs_finish_extent_commit(trans, root);
2166
2167 if (cur_trans->have_free_bgs)
2168 btrfs_clear_space_info_full(root->fs_info);
2169
2170 root->fs_info->last_trans_committed = cur_trans->transid;
2171 /*
2172 * We needn't acquire the lock here because there is no other task
2173 * which can change it.
2174 */
2175 cur_trans->state = TRANS_STATE_COMPLETED;
2176 wake_up(&cur_trans->commit_wait);
2177
2178 spin_lock(&root->fs_info->trans_lock);
2179 list_del_init(&cur_trans->list);
2180 spin_unlock(&root->fs_info->trans_lock);
2181
2182 btrfs_put_transaction(cur_trans);
2183 btrfs_put_transaction(cur_trans);
2184
2185 if (trans->type & __TRANS_FREEZABLE)
2186 sb_end_intwrite(root->fs_info->sb);
2187
2188 trace_btrfs_transaction_commit(root);
2189
2190 btrfs_scrub_continue(root);
2191
2192 if (current->journal_info == trans)
2193 current->journal_info = NULL;
2194
2195 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2196
2197 if (current != root->fs_info->transaction_kthread &&
2198 current != root->fs_info->cleaner_kthread)
2199 btrfs_run_delayed_iputs(root);
2200
2201 return ret;
2202
2203 scrub_continue:
2204 btrfs_scrub_continue(root);
2205 cleanup_transaction:
2206 btrfs_trans_release_metadata(trans, root);
2207 btrfs_trans_release_chunk_metadata(trans);
2208 trans->block_rsv = NULL;
2209 if (trans->qgroup_reserved) {
2210 btrfs_qgroup_free(root, trans->qgroup_reserved);
2211 trans->qgroup_reserved = 0;
2212 }
2213 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2214 if (current->journal_info == trans)
2215 current->journal_info = NULL;
2216 cleanup_transaction(trans, root, ret);
2217
2218 return ret;
2219 }
2220
2221 /*
2222 * return < 0 if error
2223 * 0 if there are no more dead_roots at the time of call
2224 * 1 there are more to be processed, call me again
2225 *
2226 * The return value indicates there are certainly more snapshots to delete, but
2227 * if there comes a new one during processing, it may return 0. We don't mind,
2228 * because btrfs_commit_super will poke cleaner thread and it will process it a
2229 * few seconds later.
2230 */
2231 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2232 {
2233 int ret;
2234 struct btrfs_fs_info *fs_info = root->fs_info;
2235
2236 spin_lock(&fs_info->trans_lock);
2237 if (list_empty(&fs_info->dead_roots)) {
2238 spin_unlock(&fs_info->trans_lock);
2239 return 0;
2240 }
2241 root = list_first_entry(&fs_info->dead_roots,
2242 struct btrfs_root, root_list);
2243 list_del_init(&root->root_list);
2244 spin_unlock(&fs_info->trans_lock);
2245
2246 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2247
2248 btrfs_kill_all_delayed_nodes(root);
2249
2250 if (btrfs_header_backref_rev(root->node) <
2251 BTRFS_MIXED_BACKREF_REV)
2252 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2253 else
2254 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2255
2256 return (ret < 0) ? 0 : 1;
2257 }
2258
2259 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2260 {
2261 unsigned long prev;
2262 unsigned long bit;
2263
2264 prev = xchg(&fs_info->pending_changes, 0);
2265 if (!prev)
2266 return;
2267
2268 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2269 if (prev & bit)
2270 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2271 prev &= ~bit;
2272
2273 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2274 if (prev & bit)
2275 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2276 prev &= ~bit;
2277
2278 bit = 1 << BTRFS_PENDING_COMMIT;
2279 if (prev & bit)
2280 btrfs_debug(fs_info, "pending commit done");
2281 prev &= ~bit;
2282
2283 if (prev)
2284 btrfs_warn(fs_info,
2285 "unknown pending changes left 0x%lx, ignoring", prev);
2286 }
This page took 0.078412 seconds and 5 git commands to generate.