Btrfs: make fsync latency less sucky
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
40 __TRANS_START),
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
42 __TRANS_START |
43 __TRANS_ATTACH),
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
45 __TRANS_START |
46 __TRANS_ATTACH |
47 __TRANS_JOIN),
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
49 __TRANS_START |
50 __TRANS_ATTACH |
51 __TRANS_JOIN |
52 __TRANS_JOIN_NOLOCK),
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
54 __TRANS_START |
55 __TRANS_ATTACH |
56 __TRANS_JOIN |
57 __TRANS_JOIN_NOLOCK),
58 };
59
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
61 {
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.root));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 while (!list_empty(&transaction->pending_chunks)) {
68 struct extent_map *em;
69
70 em = list_first_entry(&transaction->pending_chunks,
71 struct extent_map, list);
72 list_del_init(&em->list);
73 free_extent_map(em);
74 }
75 kmem_cache_free(btrfs_transaction_cachep, transaction);
76 }
77 }
78
79 static noinline void switch_commit_root(struct btrfs_root *root)
80 {
81 free_extent_buffer(root->commit_root);
82 root->commit_root = btrfs_root_node(root);
83 }
84
85 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
86 unsigned int type)
87 {
88 if (type & TRANS_EXTWRITERS)
89 atomic_inc(&trans->num_extwriters);
90 }
91
92 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
93 unsigned int type)
94 {
95 if (type & TRANS_EXTWRITERS)
96 atomic_dec(&trans->num_extwriters);
97 }
98
99 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
100 unsigned int type)
101 {
102 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
103 }
104
105 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
106 {
107 return atomic_read(&trans->num_extwriters);
108 }
109
110 /*
111 * either allocate a new transaction or hop into the existing one
112 */
113 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
114 {
115 struct btrfs_transaction *cur_trans;
116 struct btrfs_fs_info *fs_info = root->fs_info;
117
118 spin_lock(&fs_info->trans_lock);
119 loop:
120 /* The file system has been taken offline. No new transactions. */
121 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
122 spin_unlock(&fs_info->trans_lock);
123 return -EROFS;
124 }
125
126 cur_trans = fs_info->running_transaction;
127 if (cur_trans) {
128 if (cur_trans->aborted) {
129 spin_unlock(&fs_info->trans_lock);
130 return cur_trans->aborted;
131 }
132 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
133 spin_unlock(&fs_info->trans_lock);
134 return -EBUSY;
135 }
136 atomic_inc(&cur_trans->use_count);
137 atomic_inc(&cur_trans->num_writers);
138 extwriter_counter_inc(cur_trans, type);
139 spin_unlock(&fs_info->trans_lock);
140 return 0;
141 }
142 spin_unlock(&fs_info->trans_lock);
143
144 /*
145 * If we are ATTACH, we just want to catch the current transaction,
146 * and commit it. If there is no transaction, just return ENOENT.
147 */
148 if (type == TRANS_ATTACH)
149 return -ENOENT;
150
151 /*
152 * JOIN_NOLOCK only happens during the transaction commit, so
153 * it is impossible that ->running_transaction is NULL
154 */
155 BUG_ON(type == TRANS_JOIN_NOLOCK);
156
157 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
158 if (!cur_trans)
159 return -ENOMEM;
160
161 spin_lock(&fs_info->trans_lock);
162 if (fs_info->running_transaction) {
163 /*
164 * someone started a transaction after we unlocked. Make sure
165 * to redo the checks above
166 */
167 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
168 goto loop;
169 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
170 spin_unlock(&fs_info->trans_lock);
171 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
172 return -EROFS;
173 }
174
175 atomic_set(&cur_trans->num_writers, 1);
176 extwriter_counter_init(cur_trans, type);
177 init_waitqueue_head(&cur_trans->writer_wait);
178 init_waitqueue_head(&cur_trans->commit_wait);
179 cur_trans->state = TRANS_STATE_RUNNING;
180 /*
181 * One for this trans handle, one so it will live on until we
182 * commit the transaction.
183 */
184 atomic_set(&cur_trans->use_count, 2);
185 cur_trans->start_time = get_seconds();
186
187 cur_trans->delayed_refs.root = RB_ROOT;
188 cur_trans->delayed_refs.href_root = RB_ROOT;
189 cur_trans->delayed_refs.num_entries = 0;
190 cur_trans->delayed_refs.num_heads_ready = 0;
191 cur_trans->delayed_refs.num_heads = 0;
192 cur_trans->delayed_refs.flushing = 0;
193 cur_trans->delayed_refs.run_delayed_start = 0;
194
195 /*
196 * although the tree mod log is per file system and not per transaction,
197 * the log must never go across transaction boundaries.
198 */
199 smp_mb();
200 if (!list_empty(&fs_info->tree_mod_seq_list))
201 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
202 "creating a fresh transaction\n");
203 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
204 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
205 "creating a fresh transaction\n");
206 atomic64_set(&fs_info->tree_mod_seq, 0);
207
208 spin_lock_init(&cur_trans->delayed_refs.lock);
209 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
210 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
211 init_waitqueue_head(&cur_trans->delayed_refs.wait);
212
213 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
214 INIT_LIST_HEAD(&cur_trans->ordered_operations);
215 INIT_LIST_HEAD(&cur_trans->pending_chunks);
216 list_add_tail(&cur_trans->list, &fs_info->trans_list);
217 extent_io_tree_init(&cur_trans->dirty_pages,
218 fs_info->btree_inode->i_mapping);
219 fs_info->generation++;
220 cur_trans->transid = fs_info->generation;
221 fs_info->running_transaction = cur_trans;
222 cur_trans->aborted = 0;
223 spin_unlock(&fs_info->trans_lock);
224
225 return 0;
226 }
227
228 /*
229 * this does all the record keeping required to make sure that a reference
230 * counted root is properly recorded in a given transaction. This is required
231 * to make sure the old root from before we joined the transaction is deleted
232 * when the transaction commits
233 */
234 static int record_root_in_trans(struct btrfs_trans_handle *trans,
235 struct btrfs_root *root)
236 {
237 if (root->ref_cows && root->last_trans < trans->transid) {
238 WARN_ON(root == root->fs_info->extent_root);
239 WARN_ON(root->commit_root != root->node);
240
241 /*
242 * see below for in_trans_setup usage rules
243 * we have the reloc mutex held now, so there
244 * is only one writer in this function
245 */
246 root->in_trans_setup = 1;
247
248 /* make sure readers find in_trans_setup before
249 * they find our root->last_trans update
250 */
251 smp_wmb();
252
253 spin_lock(&root->fs_info->fs_roots_radix_lock);
254 if (root->last_trans == trans->transid) {
255 spin_unlock(&root->fs_info->fs_roots_radix_lock);
256 return 0;
257 }
258 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
259 (unsigned long)root->root_key.objectid,
260 BTRFS_ROOT_TRANS_TAG);
261 spin_unlock(&root->fs_info->fs_roots_radix_lock);
262 root->last_trans = trans->transid;
263
264 /* this is pretty tricky. We don't want to
265 * take the relocation lock in btrfs_record_root_in_trans
266 * unless we're really doing the first setup for this root in
267 * this transaction.
268 *
269 * Normally we'd use root->last_trans as a flag to decide
270 * if we want to take the expensive mutex.
271 *
272 * But, we have to set root->last_trans before we
273 * init the relocation root, otherwise, we trip over warnings
274 * in ctree.c. The solution used here is to flag ourselves
275 * with root->in_trans_setup. When this is 1, we're still
276 * fixing up the reloc trees and everyone must wait.
277 *
278 * When this is zero, they can trust root->last_trans and fly
279 * through btrfs_record_root_in_trans without having to take the
280 * lock. smp_wmb() makes sure that all the writes above are
281 * done before we pop in the zero below
282 */
283 btrfs_init_reloc_root(trans, root);
284 smp_wmb();
285 root->in_trans_setup = 0;
286 }
287 return 0;
288 }
289
290
291 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
292 struct btrfs_root *root)
293 {
294 if (!root->ref_cows)
295 return 0;
296
297 /*
298 * see record_root_in_trans for comments about in_trans_setup usage
299 * and barriers
300 */
301 smp_rmb();
302 if (root->last_trans == trans->transid &&
303 !root->in_trans_setup)
304 return 0;
305
306 mutex_lock(&root->fs_info->reloc_mutex);
307 record_root_in_trans(trans, root);
308 mutex_unlock(&root->fs_info->reloc_mutex);
309
310 return 0;
311 }
312
313 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
314 {
315 return (trans->state >= TRANS_STATE_BLOCKED &&
316 trans->state < TRANS_STATE_UNBLOCKED &&
317 !trans->aborted);
318 }
319
320 /* wait for commit against the current transaction to become unblocked
321 * when this is done, it is safe to start a new transaction, but the current
322 * transaction might not be fully on disk.
323 */
324 static void wait_current_trans(struct btrfs_root *root)
325 {
326 struct btrfs_transaction *cur_trans;
327
328 spin_lock(&root->fs_info->trans_lock);
329 cur_trans = root->fs_info->running_transaction;
330 if (cur_trans && is_transaction_blocked(cur_trans)) {
331 atomic_inc(&cur_trans->use_count);
332 spin_unlock(&root->fs_info->trans_lock);
333
334 wait_event(root->fs_info->transaction_wait,
335 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
336 cur_trans->aborted);
337 btrfs_put_transaction(cur_trans);
338 } else {
339 spin_unlock(&root->fs_info->trans_lock);
340 }
341 }
342
343 static int may_wait_transaction(struct btrfs_root *root, int type)
344 {
345 if (root->fs_info->log_root_recovering)
346 return 0;
347
348 if (type == TRANS_USERSPACE)
349 return 1;
350
351 if (type == TRANS_START &&
352 !atomic_read(&root->fs_info->open_ioctl_trans))
353 return 1;
354
355 return 0;
356 }
357
358 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
359 {
360 if (!root->fs_info->reloc_ctl ||
361 !root->ref_cows ||
362 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
363 root->reloc_root)
364 return false;
365
366 return true;
367 }
368
369 static struct btrfs_trans_handle *
370 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
371 enum btrfs_reserve_flush_enum flush)
372 {
373 struct btrfs_trans_handle *h;
374 struct btrfs_transaction *cur_trans;
375 u64 num_bytes = 0;
376 u64 qgroup_reserved = 0;
377 bool reloc_reserved = false;
378 int ret;
379
380 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
381 return ERR_PTR(-EROFS);
382
383 if (current->journal_info) {
384 WARN_ON(type & TRANS_EXTWRITERS);
385 h = current->journal_info;
386 h->use_count++;
387 WARN_ON(h->use_count > 2);
388 h->orig_rsv = h->block_rsv;
389 h->block_rsv = NULL;
390 goto got_it;
391 }
392
393 /*
394 * Do the reservation before we join the transaction so we can do all
395 * the appropriate flushing if need be.
396 */
397 if (num_items > 0 && root != root->fs_info->chunk_root) {
398 if (root->fs_info->quota_enabled &&
399 is_fstree(root->root_key.objectid)) {
400 qgroup_reserved = num_items * root->leafsize;
401 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
402 if (ret)
403 return ERR_PTR(ret);
404 }
405
406 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
407 /*
408 * Do the reservation for the relocation root creation
409 */
410 if (unlikely(need_reserve_reloc_root(root))) {
411 num_bytes += root->nodesize;
412 reloc_reserved = true;
413 }
414
415 ret = btrfs_block_rsv_add(root,
416 &root->fs_info->trans_block_rsv,
417 num_bytes, flush);
418 if (ret)
419 goto reserve_fail;
420 }
421 again:
422 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
423 if (!h) {
424 ret = -ENOMEM;
425 goto alloc_fail;
426 }
427
428 /*
429 * If we are JOIN_NOLOCK we're already committing a transaction and
430 * waiting on this guy, so we don't need to do the sb_start_intwrite
431 * because we're already holding a ref. We need this because we could
432 * have raced in and did an fsync() on a file which can kick a commit
433 * and then we deadlock with somebody doing a freeze.
434 *
435 * If we are ATTACH, it means we just want to catch the current
436 * transaction and commit it, so we needn't do sb_start_intwrite().
437 */
438 if (type & __TRANS_FREEZABLE)
439 sb_start_intwrite(root->fs_info->sb);
440
441 if (may_wait_transaction(root, type))
442 wait_current_trans(root);
443
444 do {
445 ret = join_transaction(root, type);
446 if (ret == -EBUSY) {
447 wait_current_trans(root);
448 if (unlikely(type == TRANS_ATTACH))
449 ret = -ENOENT;
450 }
451 } while (ret == -EBUSY);
452
453 if (ret < 0) {
454 /* We must get the transaction if we are JOIN_NOLOCK. */
455 BUG_ON(type == TRANS_JOIN_NOLOCK);
456 goto join_fail;
457 }
458
459 cur_trans = root->fs_info->running_transaction;
460
461 h->transid = cur_trans->transid;
462 h->transaction = cur_trans;
463 h->blocks_used = 0;
464 h->bytes_reserved = 0;
465 h->root = root;
466 h->delayed_ref_updates = 0;
467 h->use_count = 1;
468 h->adding_csums = 0;
469 h->block_rsv = NULL;
470 h->orig_rsv = NULL;
471 h->aborted = 0;
472 h->qgroup_reserved = 0;
473 h->delayed_ref_elem.seq = 0;
474 h->type = type;
475 h->allocating_chunk = false;
476 h->reloc_reserved = false;
477 h->sync = false;
478 INIT_LIST_HEAD(&h->qgroup_ref_list);
479 INIT_LIST_HEAD(&h->new_bgs);
480
481 smp_mb();
482 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
483 may_wait_transaction(root, type)) {
484 btrfs_commit_transaction(h, root);
485 goto again;
486 }
487
488 if (num_bytes) {
489 trace_btrfs_space_reservation(root->fs_info, "transaction",
490 h->transid, num_bytes, 1);
491 h->block_rsv = &root->fs_info->trans_block_rsv;
492 h->bytes_reserved = num_bytes;
493 h->reloc_reserved = reloc_reserved;
494 }
495 h->qgroup_reserved = qgroup_reserved;
496
497 got_it:
498 btrfs_record_root_in_trans(h, root);
499
500 if (!current->journal_info && type != TRANS_USERSPACE)
501 current->journal_info = h;
502 return h;
503
504 join_fail:
505 if (type & __TRANS_FREEZABLE)
506 sb_end_intwrite(root->fs_info->sb);
507 kmem_cache_free(btrfs_trans_handle_cachep, h);
508 alloc_fail:
509 if (num_bytes)
510 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
511 num_bytes);
512 reserve_fail:
513 if (qgroup_reserved)
514 btrfs_qgroup_free(root, qgroup_reserved);
515 return ERR_PTR(ret);
516 }
517
518 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
519 int num_items)
520 {
521 return start_transaction(root, num_items, TRANS_START,
522 BTRFS_RESERVE_FLUSH_ALL);
523 }
524
525 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
526 struct btrfs_root *root, int num_items)
527 {
528 return start_transaction(root, num_items, TRANS_START,
529 BTRFS_RESERVE_FLUSH_LIMIT);
530 }
531
532 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
533 {
534 return start_transaction(root, 0, TRANS_JOIN, 0);
535 }
536
537 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
538 {
539 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
540 }
541
542 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
543 {
544 return start_transaction(root, 0, TRANS_USERSPACE, 0);
545 }
546
547 /*
548 * btrfs_attach_transaction() - catch the running transaction
549 *
550 * It is used when we want to commit the current the transaction, but
551 * don't want to start a new one.
552 *
553 * Note: If this function return -ENOENT, it just means there is no
554 * running transaction. But it is possible that the inactive transaction
555 * is still in the memory, not fully on disk. If you hope there is no
556 * inactive transaction in the fs when -ENOENT is returned, you should
557 * invoke
558 * btrfs_attach_transaction_barrier()
559 */
560 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
561 {
562 return start_transaction(root, 0, TRANS_ATTACH, 0);
563 }
564
565 /*
566 * btrfs_attach_transaction_barrier() - catch the running transaction
567 *
568 * It is similar to the above function, the differentia is this one
569 * will wait for all the inactive transactions until they fully
570 * complete.
571 */
572 struct btrfs_trans_handle *
573 btrfs_attach_transaction_barrier(struct btrfs_root *root)
574 {
575 struct btrfs_trans_handle *trans;
576
577 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
578 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
579 btrfs_wait_for_commit(root, 0);
580
581 return trans;
582 }
583
584 /* wait for a transaction commit to be fully complete */
585 static noinline void wait_for_commit(struct btrfs_root *root,
586 struct btrfs_transaction *commit)
587 {
588 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
589 }
590
591 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
592 {
593 struct btrfs_transaction *cur_trans = NULL, *t;
594 int ret = 0;
595
596 if (transid) {
597 if (transid <= root->fs_info->last_trans_committed)
598 goto out;
599
600 ret = -EINVAL;
601 /* find specified transaction */
602 spin_lock(&root->fs_info->trans_lock);
603 list_for_each_entry(t, &root->fs_info->trans_list, list) {
604 if (t->transid == transid) {
605 cur_trans = t;
606 atomic_inc(&cur_trans->use_count);
607 ret = 0;
608 break;
609 }
610 if (t->transid > transid) {
611 ret = 0;
612 break;
613 }
614 }
615 spin_unlock(&root->fs_info->trans_lock);
616 /* The specified transaction doesn't exist */
617 if (!cur_trans)
618 goto out;
619 } else {
620 /* find newest transaction that is committing | committed */
621 spin_lock(&root->fs_info->trans_lock);
622 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
623 list) {
624 if (t->state >= TRANS_STATE_COMMIT_START) {
625 if (t->state == TRANS_STATE_COMPLETED)
626 break;
627 cur_trans = t;
628 atomic_inc(&cur_trans->use_count);
629 break;
630 }
631 }
632 spin_unlock(&root->fs_info->trans_lock);
633 if (!cur_trans)
634 goto out; /* nothing committing|committed */
635 }
636
637 wait_for_commit(root, cur_trans);
638 btrfs_put_transaction(cur_trans);
639 out:
640 return ret;
641 }
642
643 void btrfs_throttle(struct btrfs_root *root)
644 {
645 if (!atomic_read(&root->fs_info->open_ioctl_trans))
646 wait_current_trans(root);
647 }
648
649 static int should_end_transaction(struct btrfs_trans_handle *trans,
650 struct btrfs_root *root)
651 {
652 if (root->fs_info->global_block_rsv.space_info->full &&
653 btrfs_should_throttle_delayed_refs(trans, root))
654 return 1;
655
656 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
657 }
658
659 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
660 struct btrfs_root *root)
661 {
662 struct btrfs_transaction *cur_trans = trans->transaction;
663 int updates;
664 int err;
665
666 smp_mb();
667 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
668 cur_trans->delayed_refs.flushing)
669 return 1;
670
671 updates = trans->delayed_ref_updates;
672 trans->delayed_ref_updates = 0;
673 if (updates) {
674 err = btrfs_run_delayed_refs(trans, root, updates);
675 if (err) /* Error code will also eval true */
676 return err;
677 }
678
679 return should_end_transaction(trans, root);
680 }
681
682 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
683 struct btrfs_root *root, int throttle)
684 {
685 struct btrfs_transaction *cur_trans = trans->transaction;
686 struct btrfs_fs_info *info = root->fs_info;
687 unsigned long cur = trans->delayed_ref_updates;
688 int lock = (trans->type != TRANS_JOIN_NOLOCK);
689 int err = 0;
690
691 if (--trans->use_count) {
692 trans->block_rsv = trans->orig_rsv;
693 return 0;
694 }
695
696 /*
697 * do the qgroup accounting as early as possible
698 */
699 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
700
701 btrfs_trans_release_metadata(trans, root);
702 trans->block_rsv = NULL;
703
704 if (trans->qgroup_reserved) {
705 /*
706 * the same root has to be passed here between start_transaction
707 * and end_transaction. Subvolume quota depends on this.
708 */
709 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
710 trans->qgroup_reserved = 0;
711 }
712
713 if (!list_empty(&trans->new_bgs))
714 btrfs_create_pending_block_groups(trans, root);
715
716 trans->delayed_ref_updates = 0;
717 if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
718 cur = max_t(unsigned long, cur, 1);
719 trans->delayed_ref_updates = 0;
720 btrfs_run_delayed_refs(trans, root, cur);
721 }
722
723 btrfs_trans_release_metadata(trans, root);
724 trans->block_rsv = NULL;
725
726 if (!list_empty(&trans->new_bgs))
727 btrfs_create_pending_block_groups(trans, root);
728
729 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
730 should_end_transaction(trans, root) &&
731 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
732 spin_lock(&info->trans_lock);
733 if (cur_trans->state == TRANS_STATE_RUNNING)
734 cur_trans->state = TRANS_STATE_BLOCKED;
735 spin_unlock(&info->trans_lock);
736 }
737
738 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
739 if (throttle) {
740 /*
741 * We may race with somebody else here so end up having
742 * to call end_transaction on ourselves again, so inc
743 * our use_count.
744 */
745 trans->use_count++;
746 return btrfs_commit_transaction(trans, root);
747 } else {
748 wake_up_process(info->transaction_kthread);
749 }
750 }
751
752 if (trans->type & __TRANS_FREEZABLE)
753 sb_end_intwrite(root->fs_info->sb);
754
755 WARN_ON(cur_trans != info->running_transaction);
756 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
757 atomic_dec(&cur_trans->num_writers);
758 extwriter_counter_dec(cur_trans, trans->type);
759
760 smp_mb();
761 if (waitqueue_active(&cur_trans->writer_wait))
762 wake_up(&cur_trans->writer_wait);
763 btrfs_put_transaction(cur_trans);
764
765 if (current->journal_info == trans)
766 current->journal_info = NULL;
767
768 if (throttle)
769 btrfs_run_delayed_iputs(root);
770
771 if (trans->aborted ||
772 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
773 wake_up_process(info->transaction_kthread);
774 err = -EIO;
775 }
776 assert_qgroups_uptodate(trans);
777
778 kmem_cache_free(btrfs_trans_handle_cachep, trans);
779 return err;
780 }
781
782 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
783 struct btrfs_root *root)
784 {
785 return __btrfs_end_transaction(trans, root, 0);
786 }
787
788 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
789 struct btrfs_root *root)
790 {
791 return __btrfs_end_transaction(trans, root, 1);
792 }
793
794 /*
795 * when btree blocks are allocated, they have some corresponding bits set for
796 * them in one of two extent_io trees. This is used to make sure all of
797 * those extents are sent to disk but does not wait on them
798 */
799 int btrfs_write_marked_extents(struct btrfs_root *root,
800 struct extent_io_tree *dirty_pages, int mark)
801 {
802 int err = 0;
803 int werr = 0;
804 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
805 struct extent_state *cached_state = NULL;
806 u64 start = 0;
807 u64 end;
808
809 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
810 mark, &cached_state)) {
811 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
812 mark, &cached_state, GFP_NOFS);
813 cached_state = NULL;
814 err = filemap_fdatawrite_range(mapping, start, end);
815 if (err)
816 werr = err;
817 cond_resched();
818 start = end + 1;
819 }
820 if (err)
821 werr = err;
822 return werr;
823 }
824
825 /*
826 * when btree blocks are allocated, they have some corresponding bits set for
827 * them in one of two extent_io trees. This is used to make sure all of
828 * those extents are on disk for transaction or log commit. We wait
829 * on all the pages and clear them from the dirty pages state tree
830 */
831 int btrfs_wait_marked_extents(struct btrfs_root *root,
832 struct extent_io_tree *dirty_pages, int mark)
833 {
834 int err = 0;
835 int werr = 0;
836 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
837 struct extent_state *cached_state = NULL;
838 u64 start = 0;
839 u64 end;
840
841 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
842 EXTENT_NEED_WAIT, &cached_state)) {
843 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
844 0, 0, &cached_state, GFP_NOFS);
845 err = filemap_fdatawait_range(mapping, start, end);
846 if (err)
847 werr = err;
848 cond_resched();
849 start = end + 1;
850 }
851 if (err)
852 werr = err;
853 return werr;
854 }
855
856 /*
857 * when btree blocks are allocated, they have some corresponding bits set for
858 * them in one of two extent_io trees. This is used to make sure all of
859 * those extents are on disk for transaction or log commit
860 */
861 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
862 struct extent_io_tree *dirty_pages, int mark)
863 {
864 int ret;
865 int ret2;
866 struct blk_plug plug;
867
868 blk_start_plug(&plug);
869 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
870 blk_finish_plug(&plug);
871 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
872
873 if (ret)
874 return ret;
875 if (ret2)
876 return ret2;
877 return 0;
878 }
879
880 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root)
882 {
883 if (!trans || !trans->transaction) {
884 struct inode *btree_inode;
885 btree_inode = root->fs_info->btree_inode;
886 return filemap_write_and_wait(btree_inode->i_mapping);
887 }
888 return btrfs_write_and_wait_marked_extents(root,
889 &trans->transaction->dirty_pages,
890 EXTENT_DIRTY);
891 }
892
893 /*
894 * this is used to update the root pointer in the tree of tree roots.
895 *
896 * But, in the case of the extent allocation tree, updating the root
897 * pointer may allocate blocks which may change the root of the extent
898 * allocation tree.
899 *
900 * So, this loops and repeats and makes sure the cowonly root didn't
901 * change while the root pointer was being updated in the metadata.
902 */
903 static int update_cowonly_root(struct btrfs_trans_handle *trans,
904 struct btrfs_root *root)
905 {
906 int ret;
907 u64 old_root_bytenr;
908 u64 old_root_used;
909 struct btrfs_root *tree_root = root->fs_info->tree_root;
910
911 old_root_used = btrfs_root_used(&root->root_item);
912 btrfs_write_dirty_block_groups(trans, root);
913
914 while (1) {
915 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
916 if (old_root_bytenr == root->node->start &&
917 old_root_used == btrfs_root_used(&root->root_item))
918 break;
919
920 btrfs_set_root_node(&root->root_item, root->node);
921 ret = btrfs_update_root(trans, tree_root,
922 &root->root_key,
923 &root->root_item);
924 if (ret)
925 return ret;
926
927 old_root_used = btrfs_root_used(&root->root_item);
928 ret = btrfs_write_dirty_block_groups(trans, root);
929 if (ret)
930 return ret;
931 }
932
933 if (root != root->fs_info->extent_root)
934 switch_commit_root(root);
935
936 return 0;
937 }
938
939 /*
940 * update all the cowonly tree roots on disk
941 *
942 * The error handling in this function may not be obvious. Any of the
943 * failures will cause the file system to go offline. We still need
944 * to clean up the delayed refs.
945 */
946 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
947 struct btrfs_root *root)
948 {
949 struct btrfs_fs_info *fs_info = root->fs_info;
950 struct list_head *next;
951 struct extent_buffer *eb;
952 int ret;
953
954 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
955 if (ret)
956 return ret;
957
958 eb = btrfs_lock_root_node(fs_info->tree_root);
959 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
960 0, &eb);
961 btrfs_tree_unlock(eb);
962 free_extent_buffer(eb);
963
964 if (ret)
965 return ret;
966
967 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
968 if (ret)
969 return ret;
970
971 ret = btrfs_run_dev_stats(trans, root->fs_info);
972 if (ret)
973 return ret;
974 ret = btrfs_run_dev_replace(trans, root->fs_info);
975 if (ret)
976 return ret;
977 ret = btrfs_run_qgroups(trans, root->fs_info);
978 if (ret)
979 return ret;
980
981 /* run_qgroups might have added some more refs */
982 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
983 if (ret)
984 return ret;
985
986 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
987 next = fs_info->dirty_cowonly_roots.next;
988 list_del_init(next);
989 root = list_entry(next, struct btrfs_root, dirty_list);
990
991 ret = update_cowonly_root(trans, root);
992 if (ret)
993 return ret;
994 }
995
996 down_write(&fs_info->extent_commit_sem);
997 switch_commit_root(fs_info->extent_root);
998 up_write(&fs_info->extent_commit_sem);
999
1000 btrfs_after_dev_replace_commit(fs_info);
1001
1002 return 0;
1003 }
1004
1005 /*
1006 * dead roots are old snapshots that need to be deleted. This allocates
1007 * a dirty root struct and adds it into the list of dead roots that need to
1008 * be deleted
1009 */
1010 void btrfs_add_dead_root(struct btrfs_root *root)
1011 {
1012 spin_lock(&root->fs_info->trans_lock);
1013 if (list_empty(&root->root_list))
1014 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1015 spin_unlock(&root->fs_info->trans_lock);
1016 }
1017
1018 /*
1019 * update all the cowonly tree roots on disk
1020 */
1021 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1022 struct btrfs_root *root)
1023 {
1024 struct btrfs_root *gang[8];
1025 struct btrfs_fs_info *fs_info = root->fs_info;
1026 int i;
1027 int ret;
1028 int err = 0;
1029
1030 spin_lock(&fs_info->fs_roots_radix_lock);
1031 while (1) {
1032 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1033 (void **)gang, 0,
1034 ARRAY_SIZE(gang),
1035 BTRFS_ROOT_TRANS_TAG);
1036 if (ret == 0)
1037 break;
1038 for (i = 0; i < ret; i++) {
1039 root = gang[i];
1040 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1041 (unsigned long)root->root_key.objectid,
1042 BTRFS_ROOT_TRANS_TAG);
1043 spin_unlock(&fs_info->fs_roots_radix_lock);
1044
1045 btrfs_free_log(trans, root);
1046 btrfs_update_reloc_root(trans, root);
1047 btrfs_orphan_commit_root(trans, root);
1048
1049 btrfs_save_ino_cache(root, trans);
1050
1051 /* see comments in should_cow_block() */
1052 root->force_cow = 0;
1053 smp_wmb();
1054
1055 if (root->commit_root != root->node) {
1056 mutex_lock(&root->fs_commit_mutex);
1057 switch_commit_root(root);
1058 btrfs_unpin_free_ino(root);
1059 mutex_unlock(&root->fs_commit_mutex);
1060
1061 btrfs_set_root_node(&root->root_item,
1062 root->node);
1063 }
1064
1065 err = btrfs_update_root(trans, fs_info->tree_root,
1066 &root->root_key,
1067 &root->root_item);
1068 spin_lock(&fs_info->fs_roots_radix_lock);
1069 if (err)
1070 break;
1071 }
1072 }
1073 spin_unlock(&fs_info->fs_roots_radix_lock);
1074 return err;
1075 }
1076
1077 /*
1078 * defrag a given btree.
1079 * Every leaf in the btree is read and defragged.
1080 */
1081 int btrfs_defrag_root(struct btrfs_root *root)
1082 {
1083 struct btrfs_fs_info *info = root->fs_info;
1084 struct btrfs_trans_handle *trans;
1085 int ret;
1086
1087 if (xchg(&root->defrag_running, 1))
1088 return 0;
1089
1090 while (1) {
1091 trans = btrfs_start_transaction(root, 0);
1092 if (IS_ERR(trans))
1093 return PTR_ERR(trans);
1094
1095 ret = btrfs_defrag_leaves(trans, root);
1096
1097 btrfs_end_transaction(trans, root);
1098 btrfs_btree_balance_dirty(info->tree_root);
1099 cond_resched();
1100
1101 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1102 break;
1103
1104 if (btrfs_defrag_cancelled(root->fs_info)) {
1105 pr_debug("BTRFS: defrag_root cancelled\n");
1106 ret = -EAGAIN;
1107 break;
1108 }
1109 }
1110 root->defrag_running = 0;
1111 return ret;
1112 }
1113
1114 /*
1115 * new snapshots need to be created at a very specific time in the
1116 * transaction commit. This does the actual creation.
1117 *
1118 * Note:
1119 * If the error which may affect the commitment of the current transaction
1120 * happens, we should return the error number. If the error which just affect
1121 * the creation of the pending snapshots, just return 0.
1122 */
1123 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1124 struct btrfs_fs_info *fs_info,
1125 struct btrfs_pending_snapshot *pending)
1126 {
1127 struct btrfs_key key;
1128 struct btrfs_root_item *new_root_item;
1129 struct btrfs_root *tree_root = fs_info->tree_root;
1130 struct btrfs_root *root = pending->root;
1131 struct btrfs_root *parent_root;
1132 struct btrfs_block_rsv *rsv;
1133 struct inode *parent_inode;
1134 struct btrfs_path *path;
1135 struct btrfs_dir_item *dir_item;
1136 struct dentry *dentry;
1137 struct extent_buffer *tmp;
1138 struct extent_buffer *old;
1139 struct timespec cur_time = CURRENT_TIME;
1140 int ret = 0;
1141 u64 to_reserve = 0;
1142 u64 index = 0;
1143 u64 objectid;
1144 u64 root_flags;
1145 uuid_le new_uuid;
1146
1147 path = btrfs_alloc_path();
1148 if (!path) {
1149 pending->error = -ENOMEM;
1150 return 0;
1151 }
1152
1153 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1154 if (!new_root_item) {
1155 pending->error = -ENOMEM;
1156 goto root_item_alloc_fail;
1157 }
1158
1159 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1160 if (pending->error)
1161 goto no_free_objectid;
1162
1163 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1164
1165 if (to_reserve > 0) {
1166 pending->error = btrfs_block_rsv_add(root,
1167 &pending->block_rsv,
1168 to_reserve,
1169 BTRFS_RESERVE_NO_FLUSH);
1170 if (pending->error)
1171 goto no_free_objectid;
1172 }
1173
1174 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1175 root->root_key.objectid,
1176 objectid, pending->inherit);
1177 if (pending->error)
1178 goto no_free_objectid;
1179
1180 key.objectid = objectid;
1181 key.offset = (u64)-1;
1182 key.type = BTRFS_ROOT_ITEM_KEY;
1183
1184 rsv = trans->block_rsv;
1185 trans->block_rsv = &pending->block_rsv;
1186 trans->bytes_reserved = trans->block_rsv->reserved;
1187
1188 dentry = pending->dentry;
1189 parent_inode = pending->dir;
1190 parent_root = BTRFS_I(parent_inode)->root;
1191 record_root_in_trans(trans, parent_root);
1192
1193 /*
1194 * insert the directory item
1195 */
1196 ret = btrfs_set_inode_index(parent_inode, &index);
1197 BUG_ON(ret); /* -ENOMEM */
1198
1199 /* check if there is a file/dir which has the same name. */
1200 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1201 btrfs_ino(parent_inode),
1202 dentry->d_name.name,
1203 dentry->d_name.len, 0);
1204 if (dir_item != NULL && !IS_ERR(dir_item)) {
1205 pending->error = -EEXIST;
1206 goto dir_item_existed;
1207 } else if (IS_ERR(dir_item)) {
1208 ret = PTR_ERR(dir_item);
1209 btrfs_abort_transaction(trans, root, ret);
1210 goto fail;
1211 }
1212 btrfs_release_path(path);
1213
1214 /*
1215 * pull in the delayed directory update
1216 * and the delayed inode item
1217 * otherwise we corrupt the FS during
1218 * snapshot
1219 */
1220 ret = btrfs_run_delayed_items(trans, root);
1221 if (ret) { /* Transaction aborted */
1222 btrfs_abort_transaction(trans, root, ret);
1223 goto fail;
1224 }
1225
1226 record_root_in_trans(trans, root);
1227 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1228 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1229 btrfs_check_and_init_root_item(new_root_item);
1230
1231 root_flags = btrfs_root_flags(new_root_item);
1232 if (pending->readonly)
1233 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1234 else
1235 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1236 btrfs_set_root_flags(new_root_item, root_flags);
1237
1238 btrfs_set_root_generation_v2(new_root_item,
1239 trans->transid);
1240 uuid_le_gen(&new_uuid);
1241 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1242 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1243 BTRFS_UUID_SIZE);
1244 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1245 memset(new_root_item->received_uuid, 0,
1246 sizeof(new_root_item->received_uuid));
1247 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1248 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1249 btrfs_set_root_stransid(new_root_item, 0);
1250 btrfs_set_root_rtransid(new_root_item, 0);
1251 }
1252 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1253 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1254 btrfs_set_root_otransid(new_root_item, trans->transid);
1255
1256 old = btrfs_lock_root_node(root);
1257 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1258 if (ret) {
1259 btrfs_tree_unlock(old);
1260 free_extent_buffer(old);
1261 btrfs_abort_transaction(trans, root, ret);
1262 goto fail;
1263 }
1264
1265 btrfs_set_lock_blocking(old);
1266
1267 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1268 /* clean up in any case */
1269 btrfs_tree_unlock(old);
1270 free_extent_buffer(old);
1271 if (ret) {
1272 btrfs_abort_transaction(trans, root, ret);
1273 goto fail;
1274 }
1275
1276 /* see comments in should_cow_block() */
1277 root->force_cow = 1;
1278 smp_wmb();
1279
1280 btrfs_set_root_node(new_root_item, tmp);
1281 /* record when the snapshot was created in key.offset */
1282 key.offset = trans->transid;
1283 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1284 btrfs_tree_unlock(tmp);
1285 free_extent_buffer(tmp);
1286 if (ret) {
1287 btrfs_abort_transaction(trans, root, ret);
1288 goto fail;
1289 }
1290
1291 /*
1292 * insert root back/forward references
1293 */
1294 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1295 parent_root->root_key.objectid,
1296 btrfs_ino(parent_inode), index,
1297 dentry->d_name.name, dentry->d_name.len);
1298 if (ret) {
1299 btrfs_abort_transaction(trans, root, ret);
1300 goto fail;
1301 }
1302
1303 key.offset = (u64)-1;
1304 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1305 if (IS_ERR(pending->snap)) {
1306 ret = PTR_ERR(pending->snap);
1307 btrfs_abort_transaction(trans, root, ret);
1308 goto fail;
1309 }
1310
1311 ret = btrfs_reloc_post_snapshot(trans, pending);
1312 if (ret) {
1313 btrfs_abort_transaction(trans, root, ret);
1314 goto fail;
1315 }
1316
1317 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1318 if (ret) {
1319 btrfs_abort_transaction(trans, root, ret);
1320 goto fail;
1321 }
1322
1323 ret = btrfs_insert_dir_item(trans, parent_root,
1324 dentry->d_name.name, dentry->d_name.len,
1325 parent_inode, &key,
1326 BTRFS_FT_DIR, index);
1327 /* We have check then name at the beginning, so it is impossible. */
1328 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1329 if (ret) {
1330 btrfs_abort_transaction(trans, root, ret);
1331 goto fail;
1332 }
1333
1334 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1335 dentry->d_name.len * 2);
1336 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1337 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1338 if (ret) {
1339 btrfs_abort_transaction(trans, root, ret);
1340 goto fail;
1341 }
1342 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1343 BTRFS_UUID_KEY_SUBVOL, objectid);
1344 if (ret) {
1345 btrfs_abort_transaction(trans, root, ret);
1346 goto fail;
1347 }
1348 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1349 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1350 new_root_item->received_uuid,
1351 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1352 objectid);
1353 if (ret && ret != -EEXIST) {
1354 btrfs_abort_transaction(trans, root, ret);
1355 goto fail;
1356 }
1357 }
1358 fail:
1359 pending->error = ret;
1360 dir_item_existed:
1361 trans->block_rsv = rsv;
1362 trans->bytes_reserved = 0;
1363 no_free_objectid:
1364 kfree(new_root_item);
1365 root_item_alloc_fail:
1366 btrfs_free_path(path);
1367 return ret;
1368 }
1369
1370 /*
1371 * create all the snapshots we've scheduled for creation
1372 */
1373 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1374 struct btrfs_fs_info *fs_info)
1375 {
1376 struct btrfs_pending_snapshot *pending, *next;
1377 struct list_head *head = &trans->transaction->pending_snapshots;
1378 int ret = 0;
1379
1380 list_for_each_entry_safe(pending, next, head, list) {
1381 list_del(&pending->list);
1382 ret = create_pending_snapshot(trans, fs_info, pending);
1383 if (ret)
1384 break;
1385 }
1386 return ret;
1387 }
1388
1389 static void update_super_roots(struct btrfs_root *root)
1390 {
1391 struct btrfs_root_item *root_item;
1392 struct btrfs_super_block *super;
1393
1394 super = root->fs_info->super_copy;
1395
1396 root_item = &root->fs_info->chunk_root->root_item;
1397 super->chunk_root = root_item->bytenr;
1398 super->chunk_root_generation = root_item->generation;
1399 super->chunk_root_level = root_item->level;
1400
1401 root_item = &root->fs_info->tree_root->root_item;
1402 super->root = root_item->bytenr;
1403 super->generation = root_item->generation;
1404 super->root_level = root_item->level;
1405 if (btrfs_test_opt(root, SPACE_CACHE))
1406 super->cache_generation = root_item->generation;
1407 if (root->fs_info->update_uuid_tree_gen)
1408 super->uuid_tree_generation = root_item->generation;
1409 }
1410
1411 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1412 {
1413 struct btrfs_transaction *trans;
1414 int ret = 0;
1415
1416 spin_lock(&info->trans_lock);
1417 trans = info->running_transaction;
1418 if (trans)
1419 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1420 spin_unlock(&info->trans_lock);
1421 return ret;
1422 }
1423
1424 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1425 {
1426 struct btrfs_transaction *trans;
1427 int ret = 0;
1428
1429 spin_lock(&info->trans_lock);
1430 trans = info->running_transaction;
1431 if (trans)
1432 ret = is_transaction_blocked(trans);
1433 spin_unlock(&info->trans_lock);
1434 return ret;
1435 }
1436
1437 /*
1438 * wait for the current transaction commit to start and block subsequent
1439 * transaction joins
1440 */
1441 static void wait_current_trans_commit_start(struct btrfs_root *root,
1442 struct btrfs_transaction *trans)
1443 {
1444 wait_event(root->fs_info->transaction_blocked_wait,
1445 trans->state >= TRANS_STATE_COMMIT_START ||
1446 trans->aborted);
1447 }
1448
1449 /*
1450 * wait for the current transaction to start and then become unblocked.
1451 * caller holds ref.
1452 */
1453 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1454 struct btrfs_transaction *trans)
1455 {
1456 wait_event(root->fs_info->transaction_wait,
1457 trans->state >= TRANS_STATE_UNBLOCKED ||
1458 trans->aborted);
1459 }
1460
1461 /*
1462 * commit transactions asynchronously. once btrfs_commit_transaction_async
1463 * returns, any subsequent transaction will not be allowed to join.
1464 */
1465 struct btrfs_async_commit {
1466 struct btrfs_trans_handle *newtrans;
1467 struct btrfs_root *root;
1468 struct work_struct work;
1469 };
1470
1471 static void do_async_commit(struct work_struct *work)
1472 {
1473 struct btrfs_async_commit *ac =
1474 container_of(work, struct btrfs_async_commit, work);
1475
1476 /*
1477 * We've got freeze protection passed with the transaction.
1478 * Tell lockdep about it.
1479 */
1480 if (ac->newtrans->type & __TRANS_FREEZABLE)
1481 rwsem_acquire_read(
1482 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1483 0, 1, _THIS_IP_);
1484
1485 current->journal_info = ac->newtrans;
1486
1487 btrfs_commit_transaction(ac->newtrans, ac->root);
1488 kfree(ac);
1489 }
1490
1491 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1492 struct btrfs_root *root,
1493 int wait_for_unblock)
1494 {
1495 struct btrfs_async_commit *ac;
1496 struct btrfs_transaction *cur_trans;
1497
1498 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1499 if (!ac)
1500 return -ENOMEM;
1501
1502 INIT_WORK(&ac->work, do_async_commit);
1503 ac->root = root;
1504 ac->newtrans = btrfs_join_transaction(root);
1505 if (IS_ERR(ac->newtrans)) {
1506 int err = PTR_ERR(ac->newtrans);
1507 kfree(ac);
1508 return err;
1509 }
1510
1511 /* take transaction reference */
1512 cur_trans = trans->transaction;
1513 atomic_inc(&cur_trans->use_count);
1514
1515 btrfs_end_transaction(trans, root);
1516
1517 /*
1518 * Tell lockdep we've released the freeze rwsem, since the
1519 * async commit thread will be the one to unlock it.
1520 */
1521 if (ac->newtrans->type & __TRANS_FREEZABLE)
1522 rwsem_release(
1523 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1524 1, _THIS_IP_);
1525
1526 schedule_work(&ac->work);
1527
1528 /* wait for transaction to start and unblock */
1529 if (wait_for_unblock)
1530 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1531 else
1532 wait_current_trans_commit_start(root, cur_trans);
1533
1534 if (current->journal_info == trans)
1535 current->journal_info = NULL;
1536
1537 btrfs_put_transaction(cur_trans);
1538 return 0;
1539 }
1540
1541
1542 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1543 struct btrfs_root *root, int err)
1544 {
1545 struct btrfs_transaction *cur_trans = trans->transaction;
1546 DEFINE_WAIT(wait);
1547
1548 WARN_ON(trans->use_count > 1);
1549
1550 btrfs_abort_transaction(trans, root, err);
1551
1552 spin_lock(&root->fs_info->trans_lock);
1553
1554 /*
1555 * If the transaction is removed from the list, it means this
1556 * transaction has been committed successfully, so it is impossible
1557 * to call the cleanup function.
1558 */
1559 BUG_ON(list_empty(&cur_trans->list));
1560
1561 list_del_init(&cur_trans->list);
1562 if (cur_trans == root->fs_info->running_transaction) {
1563 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1564 spin_unlock(&root->fs_info->trans_lock);
1565 wait_event(cur_trans->writer_wait,
1566 atomic_read(&cur_trans->num_writers) == 1);
1567
1568 spin_lock(&root->fs_info->trans_lock);
1569 }
1570 spin_unlock(&root->fs_info->trans_lock);
1571
1572 btrfs_cleanup_one_transaction(trans->transaction, root);
1573
1574 spin_lock(&root->fs_info->trans_lock);
1575 if (cur_trans == root->fs_info->running_transaction)
1576 root->fs_info->running_transaction = NULL;
1577 spin_unlock(&root->fs_info->trans_lock);
1578
1579 if (trans->type & __TRANS_FREEZABLE)
1580 sb_end_intwrite(root->fs_info->sb);
1581 btrfs_put_transaction(cur_trans);
1582 btrfs_put_transaction(cur_trans);
1583
1584 trace_btrfs_transaction_commit(root);
1585
1586 btrfs_scrub_continue(root);
1587
1588 if (current->journal_info == trans)
1589 current->journal_info = NULL;
1590
1591 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1592 }
1593
1594 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1595 struct btrfs_root *root)
1596 {
1597 int ret;
1598
1599 ret = btrfs_run_delayed_items(trans, root);
1600 /*
1601 * running the delayed items may have added new refs. account
1602 * them now so that they hinder processing of more delayed refs
1603 * as little as possible.
1604 */
1605 if (ret) {
1606 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1607 return ret;
1608 }
1609
1610 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1611 if (ret)
1612 return ret;
1613
1614 /*
1615 * rename don't use btrfs_join_transaction, so, once we
1616 * set the transaction to blocked above, we aren't going
1617 * to get any new ordered operations. We can safely run
1618 * it here and no for sure that nothing new will be added
1619 * to the list
1620 */
1621 ret = btrfs_run_ordered_operations(trans, root, 1);
1622
1623 return ret;
1624 }
1625
1626 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1627 {
1628 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1629 return btrfs_start_delalloc_roots(fs_info, 1);
1630 return 0;
1631 }
1632
1633 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1634 {
1635 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1636 btrfs_wait_ordered_roots(fs_info, -1);
1637 }
1638
1639 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1640 struct btrfs_root *root)
1641 {
1642 struct btrfs_transaction *cur_trans = trans->transaction;
1643 struct btrfs_transaction *prev_trans = NULL;
1644 int ret;
1645
1646 ret = btrfs_run_ordered_operations(trans, root, 0);
1647 if (ret) {
1648 btrfs_abort_transaction(trans, root, ret);
1649 btrfs_end_transaction(trans, root);
1650 return ret;
1651 }
1652
1653 /* Stop the commit early if ->aborted is set */
1654 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1655 ret = cur_trans->aborted;
1656 btrfs_end_transaction(trans, root);
1657 return ret;
1658 }
1659
1660 /* make a pass through all the delayed refs we have so far
1661 * any runnings procs may add more while we are here
1662 */
1663 ret = btrfs_run_delayed_refs(trans, root, 0);
1664 if (ret) {
1665 btrfs_end_transaction(trans, root);
1666 return ret;
1667 }
1668
1669 btrfs_trans_release_metadata(trans, root);
1670 trans->block_rsv = NULL;
1671 if (trans->qgroup_reserved) {
1672 btrfs_qgroup_free(root, trans->qgroup_reserved);
1673 trans->qgroup_reserved = 0;
1674 }
1675
1676 cur_trans = trans->transaction;
1677
1678 /*
1679 * set the flushing flag so procs in this transaction have to
1680 * start sending their work down.
1681 */
1682 cur_trans->delayed_refs.flushing = 1;
1683 smp_wmb();
1684
1685 if (!list_empty(&trans->new_bgs))
1686 btrfs_create_pending_block_groups(trans, root);
1687
1688 ret = btrfs_run_delayed_refs(trans, root, 0);
1689 if (ret) {
1690 btrfs_end_transaction(trans, root);
1691 return ret;
1692 }
1693
1694 spin_lock(&root->fs_info->trans_lock);
1695 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1696 spin_unlock(&root->fs_info->trans_lock);
1697 atomic_inc(&cur_trans->use_count);
1698 ret = btrfs_end_transaction(trans, root);
1699
1700 wait_for_commit(root, cur_trans);
1701
1702 btrfs_put_transaction(cur_trans);
1703
1704 return ret;
1705 }
1706
1707 cur_trans->state = TRANS_STATE_COMMIT_START;
1708 wake_up(&root->fs_info->transaction_blocked_wait);
1709
1710 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1711 prev_trans = list_entry(cur_trans->list.prev,
1712 struct btrfs_transaction, list);
1713 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1714 atomic_inc(&prev_trans->use_count);
1715 spin_unlock(&root->fs_info->trans_lock);
1716
1717 wait_for_commit(root, prev_trans);
1718
1719 btrfs_put_transaction(prev_trans);
1720 } else {
1721 spin_unlock(&root->fs_info->trans_lock);
1722 }
1723 } else {
1724 spin_unlock(&root->fs_info->trans_lock);
1725 }
1726
1727 extwriter_counter_dec(cur_trans, trans->type);
1728
1729 ret = btrfs_start_delalloc_flush(root->fs_info);
1730 if (ret)
1731 goto cleanup_transaction;
1732
1733 ret = btrfs_flush_all_pending_stuffs(trans, root);
1734 if (ret)
1735 goto cleanup_transaction;
1736
1737 wait_event(cur_trans->writer_wait,
1738 extwriter_counter_read(cur_trans) == 0);
1739
1740 /* some pending stuffs might be added after the previous flush. */
1741 ret = btrfs_flush_all_pending_stuffs(trans, root);
1742 if (ret)
1743 goto cleanup_transaction;
1744
1745 btrfs_wait_delalloc_flush(root->fs_info);
1746
1747 btrfs_scrub_pause(root);
1748 /*
1749 * Ok now we need to make sure to block out any other joins while we
1750 * commit the transaction. We could have started a join before setting
1751 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1752 */
1753 spin_lock(&root->fs_info->trans_lock);
1754 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1755 spin_unlock(&root->fs_info->trans_lock);
1756 wait_event(cur_trans->writer_wait,
1757 atomic_read(&cur_trans->num_writers) == 1);
1758
1759 /* ->aborted might be set after the previous check, so check it */
1760 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1761 ret = cur_trans->aborted;
1762 goto cleanup_transaction;
1763 }
1764 /*
1765 * the reloc mutex makes sure that we stop
1766 * the balancing code from coming in and moving
1767 * extents around in the middle of the commit
1768 */
1769 mutex_lock(&root->fs_info->reloc_mutex);
1770
1771 /*
1772 * We needn't worry about the delayed items because we will
1773 * deal with them in create_pending_snapshot(), which is the
1774 * core function of the snapshot creation.
1775 */
1776 ret = create_pending_snapshots(trans, root->fs_info);
1777 if (ret) {
1778 mutex_unlock(&root->fs_info->reloc_mutex);
1779 goto cleanup_transaction;
1780 }
1781
1782 /*
1783 * We insert the dir indexes of the snapshots and update the inode
1784 * of the snapshots' parents after the snapshot creation, so there
1785 * are some delayed items which are not dealt with. Now deal with
1786 * them.
1787 *
1788 * We needn't worry that this operation will corrupt the snapshots,
1789 * because all the tree which are snapshoted will be forced to COW
1790 * the nodes and leaves.
1791 */
1792 ret = btrfs_run_delayed_items(trans, root);
1793 if (ret) {
1794 mutex_unlock(&root->fs_info->reloc_mutex);
1795 goto cleanup_transaction;
1796 }
1797
1798 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1799 if (ret) {
1800 mutex_unlock(&root->fs_info->reloc_mutex);
1801 goto cleanup_transaction;
1802 }
1803
1804 /*
1805 * make sure none of the code above managed to slip in a
1806 * delayed item
1807 */
1808 btrfs_assert_delayed_root_empty(root);
1809
1810 WARN_ON(cur_trans != trans->transaction);
1811
1812 /* btrfs_commit_tree_roots is responsible for getting the
1813 * various roots consistent with each other. Every pointer
1814 * in the tree of tree roots has to point to the most up to date
1815 * root for every subvolume and other tree. So, we have to keep
1816 * the tree logging code from jumping in and changing any
1817 * of the trees.
1818 *
1819 * At this point in the commit, there can't be any tree-log
1820 * writers, but a little lower down we drop the trans mutex
1821 * and let new people in. By holding the tree_log_mutex
1822 * from now until after the super is written, we avoid races
1823 * with the tree-log code.
1824 */
1825 mutex_lock(&root->fs_info->tree_log_mutex);
1826
1827 ret = commit_fs_roots(trans, root);
1828 if (ret) {
1829 mutex_unlock(&root->fs_info->tree_log_mutex);
1830 mutex_unlock(&root->fs_info->reloc_mutex);
1831 goto cleanup_transaction;
1832 }
1833
1834 /* commit_fs_roots gets rid of all the tree log roots, it is now
1835 * safe to free the root of tree log roots
1836 */
1837 btrfs_free_log_root_tree(trans, root->fs_info);
1838
1839 ret = commit_cowonly_roots(trans, root);
1840 if (ret) {
1841 mutex_unlock(&root->fs_info->tree_log_mutex);
1842 mutex_unlock(&root->fs_info->reloc_mutex);
1843 goto cleanup_transaction;
1844 }
1845
1846 /*
1847 * The tasks which save the space cache and inode cache may also
1848 * update ->aborted, check it.
1849 */
1850 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1851 ret = cur_trans->aborted;
1852 mutex_unlock(&root->fs_info->tree_log_mutex);
1853 mutex_unlock(&root->fs_info->reloc_mutex);
1854 goto cleanup_transaction;
1855 }
1856
1857 btrfs_prepare_extent_commit(trans, root);
1858
1859 cur_trans = root->fs_info->running_transaction;
1860
1861 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1862 root->fs_info->tree_root->node);
1863 switch_commit_root(root->fs_info->tree_root);
1864
1865 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1866 root->fs_info->chunk_root->node);
1867 switch_commit_root(root->fs_info->chunk_root);
1868
1869 assert_qgroups_uptodate(trans);
1870 update_super_roots(root);
1871
1872 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1873 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1874 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1875 sizeof(*root->fs_info->super_copy));
1876
1877 spin_lock(&root->fs_info->trans_lock);
1878 cur_trans->state = TRANS_STATE_UNBLOCKED;
1879 root->fs_info->running_transaction = NULL;
1880 spin_unlock(&root->fs_info->trans_lock);
1881 mutex_unlock(&root->fs_info->reloc_mutex);
1882
1883 wake_up(&root->fs_info->transaction_wait);
1884
1885 ret = btrfs_write_and_wait_transaction(trans, root);
1886 if (ret) {
1887 btrfs_error(root->fs_info, ret,
1888 "Error while writing out transaction");
1889 mutex_unlock(&root->fs_info->tree_log_mutex);
1890 goto cleanup_transaction;
1891 }
1892
1893 ret = write_ctree_super(trans, root, 0);
1894 if (ret) {
1895 mutex_unlock(&root->fs_info->tree_log_mutex);
1896 goto cleanup_transaction;
1897 }
1898
1899 /*
1900 * the super is written, we can safely allow the tree-loggers
1901 * to go about their business
1902 */
1903 mutex_unlock(&root->fs_info->tree_log_mutex);
1904
1905 btrfs_finish_extent_commit(trans, root);
1906
1907 root->fs_info->last_trans_committed = cur_trans->transid;
1908 /*
1909 * We needn't acquire the lock here because there is no other task
1910 * which can change it.
1911 */
1912 cur_trans->state = TRANS_STATE_COMPLETED;
1913 wake_up(&cur_trans->commit_wait);
1914
1915 spin_lock(&root->fs_info->trans_lock);
1916 list_del_init(&cur_trans->list);
1917 spin_unlock(&root->fs_info->trans_lock);
1918
1919 btrfs_put_transaction(cur_trans);
1920 btrfs_put_transaction(cur_trans);
1921
1922 if (trans->type & __TRANS_FREEZABLE)
1923 sb_end_intwrite(root->fs_info->sb);
1924
1925 trace_btrfs_transaction_commit(root);
1926
1927 btrfs_scrub_continue(root);
1928
1929 if (current->journal_info == trans)
1930 current->journal_info = NULL;
1931
1932 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1933
1934 if (current != root->fs_info->transaction_kthread)
1935 btrfs_run_delayed_iputs(root);
1936
1937 return ret;
1938
1939 cleanup_transaction:
1940 btrfs_trans_release_metadata(trans, root);
1941 trans->block_rsv = NULL;
1942 if (trans->qgroup_reserved) {
1943 btrfs_qgroup_free(root, trans->qgroup_reserved);
1944 trans->qgroup_reserved = 0;
1945 }
1946 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1947 if (current->journal_info == trans)
1948 current->journal_info = NULL;
1949 cleanup_transaction(trans, root, ret);
1950
1951 return ret;
1952 }
1953
1954 /*
1955 * return < 0 if error
1956 * 0 if there are no more dead_roots at the time of call
1957 * 1 there are more to be processed, call me again
1958 *
1959 * The return value indicates there are certainly more snapshots to delete, but
1960 * if there comes a new one during processing, it may return 0. We don't mind,
1961 * because btrfs_commit_super will poke cleaner thread and it will process it a
1962 * few seconds later.
1963 */
1964 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1965 {
1966 int ret;
1967 struct btrfs_fs_info *fs_info = root->fs_info;
1968
1969 spin_lock(&fs_info->trans_lock);
1970 if (list_empty(&fs_info->dead_roots)) {
1971 spin_unlock(&fs_info->trans_lock);
1972 return 0;
1973 }
1974 root = list_first_entry(&fs_info->dead_roots,
1975 struct btrfs_root, root_list);
1976 /*
1977 * Make sure root is not involved in send,
1978 * if we fail with first root, we return
1979 * directly rather than continue.
1980 */
1981 spin_lock(&root->root_item_lock);
1982 if (root->send_in_progress) {
1983 spin_unlock(&fs_info->trans_lock);
1984 spin_unlock(&root->root_item_lock);
1985 return 0;
1986 }
1987 spin_unlock(&root->root_item_lock);
1988
1989 list_del_init(&root->root_list);
1990 spin_unlock(&fs_info->trans_lock);
1991
1992 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
1993
1994 btrfs_kill_all_delayed_nodes(root);
1995
1996 if (btrfs_header_backref_rev(root->node) <
1997 BTRFS_MIXED_BACKREF_REV)
1998 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1999 else
2000 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2001 /*
2002 * If we encounter a transaction abort during snapshot cleaning, we
2003 * don't want to crash here
2004 */
2005 return (ret < 0) ? 0 : 1;
2006 }
This page took 0.097244 seconds and 5 git commands to generate.