e8e5b5a107190a5aa82a4b9d187fbfde3f36f3f7
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 /*
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
88 * called.
89 */
90 smp_mb();
91 while (!RB_EMPTY_ROOT(&tree->state)) {
92 struct rb_node *node;
93 struct extent_state *state;
94
95 node = rb_first(&tree->state);
96 state = rb_entry(node, struct extent_state, rb_node);
97 rb_erase(&state->rb_node, &tree->state);
98 RB_CLEAR_NODE(&state->rb_node);
99 /*
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
102 */
103 ASSERT(!waitqueue_active(&state->wq));
104 free_extent_state(state);
105
106 cond_resched_lock(&tree->lock);
107 }
108 spin_unlock(&tree->lock);
109 }
110
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 struct btrfs_fs_info *fs_info)
113 {
114 struct btrfs_root *root, *tmp;
115
116 down_write(&fs_info->commit_root_sem);
117 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 dirty_list) {
119 list_del_init(&root->dirty_list);
120 free_extent_buffer(root->commit_root);
121 root->commit_root = btrfs_root_node(root);
122 if (is_fstree(root->objectid))
123 btrfs_unpin_free_ino(root);
124 clear_btree_io_tree(&root->dirty_log_pages);
125 }
126
127 /* We can free old roots now. */
128 spin_lock(&trans->dropped_roots_lock);
129 while (!list_empty(&trans->dropped_roots)) {
130 root = list_first_entry(&trans->dropped_roots,
131 struct btrfs_root, root_list);
132 list_del_init(&root->root_list);
133 spin_unlock(&trans->dropped_roots_lock);
134 btrfs_drop_and_free_fs_root(fs_info, root);
135 spin_lock(&trans->dropped_roots_lock);
136 }
137 spin_unlock(&trans->dropped_roots_lock);
138 up_write(&fs_info->commit_root_sem);
139 }
140
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 unsigned int type)
143 {
144 if (type & TRANS_EXTWRITERS)
145 atomic_inc(&trans->num_extwriters);
146 }
147
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 unsigned int type)
150 {
151 if (type & TRANS_EXTWRITERS)
152 atomic_dec(&trans->num_extwriters);
153 }
154
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 unsigned int type)
157 {
158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 return atomic_read(&trans->num_extwriters);
164 }
165
166 /*
167 * either allocate a new transaction or hop into the existing one
168 */
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 struct btrfs_transaction *cur_trans;
172 struct btrfs_fs_info *fs_info = root->fs_info;
173
174 spin_lock(&fs_info->trans_lock);
175 loop:
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 spin_unlock(&fs_info->trans_lock);
179 return -EROFS;
180 }
181
182 cur_trans = fs_info->running_transaction;
183 if (cur_trans) {
184 if (cur_trans->aborted) {
185 spin_unlock(&fs_info->trans_lock);
186 return cur_trans->aborted;
187 }
188 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 spin_unlock(&fs_info->trans_lock);
190 return -EBUSY;
191 }
192 atomic_inc(&cur_trans->use_count);
193 atomic_inc(&cur_trans->num_writers);
194 extwriter_counter_inc(cur_trans, type);
195 spin_unlock(&fs_info->trans_lock);
196 return 0;
197 }
198 spin_unlock(&fs_info->trans_lock);
199
200 /*
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
203 */
204 if (type == TRANS_ATTACH)
205 return -ENOENT;
206
207 /*
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
210 */
211 BUG_ON(type == TRANS_JOIN_NOLOCK);
212
213 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 if (!cur_trans)
215 return -ENOMEM;
216
217 spin_lock(&fs_info->trans_lock);
218 if (fs_info->running_transaction) {
219 /*
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
222 */
223 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 goto loop;
225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 spin_unlock(&fs_info->trans_lock);
227 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 return -EROFS;
229 }
230
231 atomic_set(&cur_trans->num_writers, 1);
232 extwriter_counter_init(cur_trans, type);
233 init_waitqueue_head(&cur_trans->writer_wait);
234 init_waitqueue_head(&cur_trans->commit_wait);
235 cur_trans->state = TRANS_STATE_RUNNING;
236 /*
237 * One for this trans handle, one so it will live on until we
238 * commit the transaction.
239 */
240 atomic_set(&cur_trans->use_count, 2);
241 cur_trans->have_free_bgs = 0;
242 cur_trans->start_time = get_seconds();
243 cur_trans->dirty_bg_run = 0;
244
245 cur_trans->delayed_refs.href_root = RB_ROOT;
246 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
247 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
248 cur_trans->delayed_refs.num_heads_ready = 0;
249 cur_trans->delayed_refs.pending_csums = 0;
250 cur_trans->delayed_refs.num_heads = 0;
251 cur_trans->delayed_refs.flushing = 0;
252 cur_trans->delayed_refs.run_delayed_start = 0;
253 cur_trans->delayed_refs.qgroup_to_skip = 0;
254
255 /*
256 * although the tree mod log is per file system and not per transaction,
257 * the log must never go across transaction boundaries.
258 */
259 smp_mb();
260 if (!list_empty(&fs_info->tree_mod_seq_list))
261 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
262 "creating a fresh transaction\n");
263 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
264 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
265 "creating a fresh transaction\n");
266 atomic64_set(&fs_info->tree_mod_seq, 0);
267
268 spin_lock_init(&cur_trans->delayed_refs.lock);
269
270 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
271 INIT_LIST_HEAD(&cur_trans->pending_chunks);
272 INIT_LIST_HEAD(&cur_trans->switch_commits);
273 INIT_LIST_HEAD(&cur_trans->pending_ordered);
274 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
275 INIT_LIST_HEAD(&cur_trans->io_bgs);
276 INIT_LIST_HEAD(&cur_trans->dropped_roots);
277 mutex_init(&cur_trans->cache_write_mutex);
278 cur_trans->num_dirty_bgs = 0;
279 spin_lock_init(&cur_trans->dirty_bgs_lock);
280 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
281 spin_lock_init(&cur_trans->deleted_bgs_lock);
282 spin_lock_init(&cur_trans->dropped_roots_lock);
283 list_add_tail(&cur_trans->list, &fs_info->trans_list);
284 extent_io_tree_init(&cur_trans->dirty_pages,
285 fs_info->btree_inode->i_mapping);
286 fs_info->generation++;
287 cur_trans->transid = fs_info->generation;
288 fs_info->running_transaction = cur_trans;
289 cur_trans->aborted = 0;
290 spin_unlock(&fs_info->trans_lock);
291
292 return 0;
293 }
294
295 /*
296 * this does all the record keeping required to make sure that a reference
297 * counted root is properly recorded in a given transaction. This is required
298 * to make sure the old root from before we joined the transaction is deleted
299 * when the transaction commits
300 */
301 static int record_root_in_trans(struct btrfs_trans_handle *trans,
302 struct btrfs_root *root)
303 {
304 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
305 root->last_trans < trans->transid) {
306 WARN_ON(root == root->fs_info->extent_root);
307 WARN_ON(root->commit_root != root->node);
308
309 /*
310 * see below for IN_TRANS_SETUP usage rules
311 * we have the reloc mutex held now, so there
312 * is only one writer in this function
313 */
314 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
315
316 /* make sure readers find IN_TRANS_SETUP before
317 * they find our root->last_trans update
318 */
319 smp_wmb();
320
321 spin_lock(&root->fs_info->fs_roots_radix_lock);
322 if (root->last_trans == trans->transid) {
323 spin_unlock(&root->fs_info->fs_roots_radix_lock);
324 return 0;
325 }
326 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
327 (unsigned long)root->root_key.objectid,
328 BTRFS_ROOT_TRANS_TAG);
329 spin_unlock(&root->fs_info->fs_roots_radix_lock);
330 root->last_trans = trans->transid;
331
332 /* this is pretty tricky. We don't want to
333 * take the relocation lock in btrfs_record_root_in_trans
334 * unless we're really doing the first setup for this root in
335 * this transaction.
336 *
337 * Normally we'd use root->last_trans as a flag to decide
338 * if we want to take the expensive mutex.
339 *
340 * But, we have to set root->last_trans before we
341 * init the relocation root, otherwise, we trip over warnings
342 * in ctree.c. The solution used here is to flag ourselves
343 * with root IN_TRANS_SETUP. When this is 1, we're still
344 * fixing up the reloc trees and everyone must wait.
345 *
346 * When this is zero, they can trust root->last_trans and fly
347 * through btrfs_record_root_in_trans without having to take the
348 * lock. smp_wmb() makes sure that all the writes above are
349 * done before we pop in the zero below
350 */
351 btrfs_init_reloc_root(trans, root);
352 smp_mb__before_atomic();
353 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
354 }
355 return 0;
356 }
357
358
359 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
360 struct btrfs_root *root)
361 {
362 struct btrfs_transaction *cur_trans = trans->transaction;
363
364 /* Add ourselves to the transaction dropped list */
365 spin_lock(&cur_trans->dropped_roots_lock);
366 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
367 spin_unlock(&cur_trans->dropped_roots_lock);
368
369 /* Make sure we don't try to update the root at commit time */
370 spin_lock(&root->fs_info->fs_roots_radix_lock);
371 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
372 (unsigned long)root->root_key.objectid,
373 BTRFS_ROOT_TRANS_TAG);
374 spin_unlock(&root->fs_info->fs_roots_radix_lock);
375 }
376
377 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
378 struct btrfs_root *root)
379 {
380 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
381 return 0;
382
383 /*
384 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
385 * and barriers
386 */
387 smp_rmb();
388 if (root->last_trans == trans->transid &&
389 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
390 return 0;
391
392 mutex_lock(&root->fs_info->reloc_mutex);
393 record_root_in_trans(trans, root);
394 mutex_unlock(&root->fs_info->reloc_mutex);
395
396 return 0;
397 }
398
399 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
400 {
401 return (trans->state >= TRANS_STATE_BLOCKED &&
402 trans->state < TRANS_STATE_UNBLOCKED &&
403 !trans->aborted);
404 }
405
406 /* wait for commit against the current transaction to become unblocked
407 * when this is done, it is safe to start a new transaction, but the current
408 * transaction might not be fully on disk.
409 */
410 static void wait_current_trans(struct btrfs_root *root)
411 {
412 struct btrfs_transaction *cur_trans;
413
414 spin_lock(&root->fs_info->trans_lock);
415 cur_trans = root->fs_info->running_transaction;
416 if (cur_trans && is_transaction_blocked(cur_trans)) {
417 atomic_inc(&cur_trans->use_count);
418 spin_unlock(&root->fs_info->trans_lock);
419
420 wait_event(root->fs_info->transaction_wait,
421 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
422 cur_trans->aborted);
423 btrfs_put_transaction(cur_trans);
424 } else {
425 spin_unlock(&root->fs_info->trans_lock);
426 }
427 }
428
429 static int may_wait_transaction(struct btrfs_root *root, int type)
430 {
431 if (root->fs_info->log_root_recovering)
432 return 0;
433
434 if (type == TRANS_USERSPACE)
435 return 1;
436
437 if (type == TRANS_START &&
438 !atomic_read(&root->fs_info->open_ioctl_trans))
439 return 1;
440
441 return 0;
442 }
443
444 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
445 {
446 if (!root->fs_info->reloc_ctl ||
447 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
448 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
449 root->reloc_root)
450 return false;
451
452 return true;
453 }
454
455 static struct btrfs_trans_handle *
456 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
457 enum btrfs_reserve_flush_enum flush)
458 {
459 struct btrfs_trans_handle *h;
460 struct btrfs_transaction *cur_trans;
461 u64 num_bytes = 0;
462 u64 qgroup_reserved = 0;
463 bool reloc_reserved = false;
464 int ret;
465
466 /* Send isn't supposed to start transactions. */
467 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
468
469 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
470 return ERR_PTR(-EROFS);
471
472 if (current->journal_info) {
473 WARN_ON(type & TRANS_EXTWRITERS);
474 h = current->journal_info;
475 h->use_count++;
476 WARN_ON(h->use_count > 2);
477 h->orig_rsv = h->block_rsv;
478 h->block_rsv = NULL;
479 goto got_it;
480 }
481
482 /*
483 * Do the reservation before we join the transaction so we can do all
484 * the appropriate flushing if need be.
485 */
486 if (num_items > 0 && root != root->fs_info->chunk_root) {
487 if (root->fs_info->quota_enabled &&
488 is_fstree(root->root_key.objectid)) {
489 qgroup_reserved = num_items * root->nodesize;
490 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
491 if (ret)
492 return ERR_PTR(ret);
493 }
494
495 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
496 /*
497 * Do the reservation for the relocation root creation
498 */
499 if (need_reserve_reloc_root(root)) {
500 num_bytes += root->nodesize;
501 reloc_reserved = true;
502 }
503
504 ret = btrfs_block_rsv_add(root,
505 &root->fs_info->trans_block_rsv,
506 num_bytes, flush);
507 if (ret)
508 goto reserve_fail;
509 }
510 again:
511 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
512 if (!h) {
513 ret = -ENOMEM;
514 goto alloc_fail;
515 }
516
517 /*
518 * If we are JOIN_NOLOCK we're already committing a transaction and
519 * waiting on this guy, so we don't need to do the sb_start_intwrite
520 * because we're already holding a ref. We need this because we could
521 * have raced in and did an fsync() on a file which can kick a commit
522 * and then we deadlock with somebody doing a freeze.
523 *
524 * If we are ATTACH, it means we just want to catch the current
525 * transaction and commit it, so we needn't do sb_start_intwrite().
526 */
527 if (type & __TRANS_FREEZABLE)
528 sb_start_intwrite(root->fs_info->sb);
529
530 if (may_wait_transaction(root, type))
531 wait_current_trans(root);
532
533 do {
534 ret = join_transaction(root, type);
535 if (ret == -EBUSY) {
536 wait_current_trans(root);
537 if (unlikely(type == TRANS_ATTACH))
538 ret = -ENOENT;
539 }
540 } while (ret == -EBUSY);
541
542 if (ret < 0) {
543 /* We must get the transaction if we are JOIN_NOLOCK. */
544 BUG_ON(type == TRANS_JOIN_NOLOCK);
545 goto join_fail;
546 }
547
548 cur_trans = root->fs_info->running_transaction;
549
550 h->transid = cur_trans->transid;
551 h->transaction = cur_trans;
552 h->blocks_used = 0;
553 h->bytes_reserved = 0;
554 h->chunk_bytes_reserved = 0;
555 h->root = root;
556 h->delayed_ref_updates = 0;
557 h->use_count = 1;
558 h->adding_csums = 0;
559 h->block_rsv = NULL;
560 h->orig_rsv = NULL;
561 h->aborted = 0;
562 h->qgroup_reserved = 0;
563 h->delayed_ref_elem.seq = 0;
564 h->type = type;
565 h->allocating_chunk = false;
566 h->reloc_reserved = false;
567 h->sync = false;
568 INIT_LIST_HEAD(&h->qgroup_ref_list);
569 INIT_LIST_HEAD(&h->new_bgs);
570 INIT_LIST_HEAD(&h->ordered);
571
572 smp_mb();
573 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
574 may_wait_transaction(root, type)) {
575 current->journal_info = h;
576 btrfs_commit_transaction(h, root);
577 goto again;
578 }
579
580 if (num_bytes) {
581 trace_btrfs_space_reservation(root->fs_info, "transaction",
582 h->transid, num_bytes, 1);
583 h->block_rsv = &root->fs_info->trans_block_rsv;
584 h->bytes_reserved = num_bytes;
585 h->reloc_reserved = reloc_reserved;
586 }
587 h->qgroup_reserved = qgroup_reserved;
588
589 got_it:
590 btrfs_record_root_in_trans(h, root);
591
592 if (!current->journal_info && type != TRANS_USERSPACE)
593 current->journal_info = h;
594 return h;
595
596 join_fail:
597 if (type & __TRANS_FREEZABLE)
598 sb_end_intwrite(root->fs_info->sb);
599 kmem_cache_free(btrfs_trans_handle_cachep, h);
600 alloc_fail:
601 if (num_bytes)
602 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
603 num_bytes);
604 reserve_fail:
605 if (qgroup_reserved)
606 btrfs_qgroup_free(root, qgroup_reserved);
607 return ERR_PTR(ret);
608 }
609
610 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
611 int num_items)
612 {
613 return start_transaction(root, num_items, TRANS_START,
614 BTRFS_RESERVE_FLUSH_ALL);
615 }
616
617 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
618 struct btrfs_root *root, int num_items)
619 {
620 return start_transaction(root, num_items, TRANS_START,
621 BTRFS_RESERVE_FLUSH_LIMIT);
622 }
623
624 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
625 {
626 return start_transaction(root, 0, TRANS_JOIN, 0);
627 }
628
629 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
630 {
631 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
632 }
633
634 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
635 {
636 return start_transaction(root, 0, TRANS_USERSPACE, 0);
637 }
638
639 /*
640 * btrfs_attach_transaction() - catch the running transaction
641 *
642 * It is used when we want to commit the current the transaction, but
643 * don't want to start a new one.
644 *
645 * Note: If this function return -ENOENT, it just means there is no
646 * running transaction. But it is possible that the inactive transaction
647 * is still in the memory, not fully on disk. If you hope there is no
648 * inactive transaction in the fs when -ENOENT is returned, you should
649 * invoke
650 * btrfs_attach_transaction_barrier()
651 */
652 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
653 {
654 return start_transaction(root, 0, TRANS_ATTACH, 0);
655 }
656
657 /*
658 * btrfs_attach_transaction_barrier() - catch the running transaction
659 *
660 * It is similar to the above function, the differentia is this one
661 * will wait for all the inactive transactions until they fully
662 * complete.
663 */
664 struct btrfs_trans_handle *
665 btrfs_attach_transaction_barrier(struct btrfs_root *root)
666 {
667 struct btrfs_trans_handle *trans;
668
669 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
670 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
671 btrfs_wait_for_commit(root, 0);
672
673 return trans;
674 }
675
676 /* wait for a transaction commit to be fully complete */
677 static noinline void wait_for_commit(struct btrfs_root *root,
678 struct btrfs_transaction *commit)
679 {
680 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
681 }
682
683 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
684 {
685 struct btrfs_transaction *cur_trans = NULL, *t;
686 int ret = 0;
687
688 if (transid) {
689 if (transid <= root->fs_info->last_trans_committed)
690 goto out;
691
692 /* find specified transaction */
693 spin_lock(&root->fs_info->trans_lock);
694 list_for_each_entry(t, &root->fs_info->trans_list, list) {
695 if (t->transid == transid) {
696 cur_trans = t;
697 atomic_inc(&cur_trans->use_count);
698 ret = 0;
699 break;
700 }
701 if (t->transid > transid) {
702 ret = 0;
703 break;
704 }
705 }
706 spin_unlock(&root->fs_info->trans_lock);
707
708 /*
709 * The specified transaction doesn't exist, or we
710 * raced with btrfs_commit_transaction
711 */
712 if (!cur_trans) {
713 if (transid > root->fs_info->last_trans_committed)
714 ret = -EINVAL;
715 goto out;
716 }
717 } else {
718 /* find newest transaction that is committing | committed */
719 spin_lock(&root->fs_info->trans_lock);
720 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
721 list) {
722 if (t->state >= TRANS_STATE_COMMIT_START) {
723 if (t->state == TRANS_STATE_COMPLETED)
724 break;
725 cur_trans = t;
726 atomic_inc(&cur_trans->use_count);
727 break;
728 }
729 }
730 spin_unlock(&root->fs_info->trans_lock);
731 if (!cur_trans)
732 goto out; /* nothing committing|committed */
733 }
734
735 wait_for_commit(root, cur_trans);
736 btrfs_put_transaction(cur_trans);
737 out:
738 return ret;
739 }
740
741 void btrfs_throttle(struct btrfs_root *root)
742 {
743 if (!atomic_read(&root->fs_info->open_ioctl_trans))
744 wait_current_trans(root);
745 }
746
747 static int should_end_transaction(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root)
749 {
750 if (root->fs_info->global_block_rsv.space_info->full &&
751 btrfs_check_space_for_delayed_refs(trans, root))
752 return 1;
753
754 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
755 }
756
757 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
758 struct btrfs_root *root)
759 {
760 struct btrfs_transaction *cur_trans = trans->transaction;
761 int updates;
762 int err;
763
764 smp_mb();
765 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
766 cur_trans->delayed_refs.flushing)
767 return 1;
768
769 updates = trans->delayed_ref_updates;
770 trans->delayed_ref_updates = 0;
771 if (updates) {
772 err = btrfs_run_delayed_refs(trans, root, updates * 2);
773 if (err) /* Error code will also eval true */
774 return err;
775 }
776
777 return should_end_transaction(trans, root);
778 }
779
780 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
781 struct btrfs_root *root, int throttle)
782 {
783 struct btrfs_transaction *cur_trans = trans->transaction;
784 struct btrfs_fs_info *info = root->fs_info;
785 unsigned long cur = trans->delayed_ref_updates;
786 int lock = (trans->type != TRANS_JOIN_NOLOCK);
787 int err = 0;
788 int must_run_delayed_refs = 0;
789
790 if (trans->use_count > 1) {
791 trans->use_count--;
792 trans->block_rsv = trans->orig_rsv;
793 return 0;
794 }
795
796 btrfs_trans_release_metadata(trans, root);
797 trans->block_rsv = NULL;
798
799 if (!list_empty(&trans->new_bgs))
800 btrfs_create_pending_block_groups(trans, root);
801
802 if (!list_empty(&trans->ordered)) {
803 spin_lock(&info->trans_lock);
804 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
805 spin_unlock(&info->trans_lock);
806 }
807
808 trans->delayed_ref_updates = 0;
809 if (!trans->sync) {
810 must_run_delayed_refs =
811 btrfs_should_throttle_delayed_refs(trans, root);
812 cur = max_t(unsigned long, cur, 32);
813
814 /*
815 * don't make the caller wait if they are from a NOLOCK
816 * or ATTACH transaction, it will deadlock with commit
817 */
818 if (must_run_delayed_refs == 1 &&
819 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
820 must_run_delayed_refs = 2;
821 }
822
823 if (trans->qgroup_reserved) {
824 /*
825 * the same root has to be passed here between start_transaction
826 * and end_transaction. Subvolume quota depends on this.
827 */
828 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
829 trans->qgroup_reserved = 0;
830 }
831
832 btrfs_trans_release_metadata(trans, root);
833 trans->block_rsv = NULL;
834
835 if (!list_empty(&trans->new_bgs))
836 btrfs_create_pending_block_groups(trans, root);
837
838 btrfs_trans_release_chunk_metadata(trans);
839
840 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
841 should_end_transaction(trans, root) &&
842 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
843 spin_lock(&info->trans_lock);
844 if (cur_trans->state == TRANS_STATE_RUNNING)
845 cur_trans->state = TRANS_STATE_BLOCKED;
846 spin_unlock(&info->trans_lock);
847 }
848
849 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
850 if (throttle)
851 return btrfs_commit_transaction(trans, root);
852 else
853 wake_up_process(info->transaction_kthread);
854 }
855
856 if (trans->type & __TRANS_FREEZABLE)
857 sb_end_intwrite(root->fs_info->sb);
858
859 WARN_ON(cur_trans != info->running_transaction);
860 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
861 atomic_dec(&cur_trans->num_writers);
862 extwriter_counter_dec(cur_trans, trans->type);
863
864 smp_mb();
865 if (waitqueue_active(&cur_trans->writer_wait))
866 wake_up(&cur_trans->writer_wait);
867 btrfs_put_transaction(cur_trans);
868
869 if (current->journal_info == trans)
870 current->journal_info = NULL;
871
872 if (throttle)
873 btrfs_run_delayed_iputs(root);
874
875 if (trans->aborted ||
876 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
877 wake_up_process(info->transaction_kthread);
878 err = -EIO;
879 }
880 assert_qgroups_uptodate(trans);
881
882 kmem_cache_free(btrfs_trans_handle_cachep, trans);
883 if (must_run_delayed_refs) {
884 btrfs_async_run_delayed_refs(root, cur,
885 must_run_delayed_refs == 1);
886 }
887 return err;
888 }
889
890 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
891 struct btrfs_root *root)
892 {
893 return __btrfs_end_transaction(trans, root, 0);
894 }
895
896 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
897 struct btrfs_root *root)
898 {
899 return __btrfs_end_transaction(trans, root, 1);
900 }
901
902 /*
903 * when btree blocks are allocated, they have some corresponding bits set for
904 * them in one of two extent_io trees. This is used to make sure all of
905 * those extents are sent to disk but does not wait on them
906 */
907 int btrfs_write_marked_extents(struct btrfs_root *root,
908 struct extent_io_tree *dirty_pages, int mark)
909 {
910 int err = 0;
911 int werr = 0;
912 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
913 struct extent_state *cached_state = NULL;
914 u64 start = 0;
915 u64 end;
916
917 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
918 mark, &cached_state)) {
919 bool wait_writeback = false;
920
921 err = convert_extent_bit(dirty_pages, start, end,
922 EXTENT_NEED_WAIT,
923 mark, &cached_state, GFP_NOFS);
924 /*
925 * convert_extent_bit can return -ENOMEM, which is most of the
926 * time a temporary error. So when it happens, ignore the error
927 * and wait for writeback of this range to finish - because we
928 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
929 * to btrfs_wait_marked_extents() would not know that writeback
930 * for this range started and therefore wouldn't wait for it to
931 * finish - we don't want to commit a superblock that points to
932 * btree nodes/leafs for which writeback hasn't finished yet
933 * (and without errors).
934 * We cleanup any entries left in the io tree when committing
935 * the transaction (through clear_btree_io_tree()).
936 */
937 if (err == -ENOMEM) {
938 err = 0;
939 wait_writeback = true;
940 }
941 if (!err)
942 err = filemap_fdatawrite_range(mapping, start, end);
943 if (err)
944 werr = err;
945 else if (wait_writeback)
946 werr = filemap_fdatawait_range(mapping, start, end);
947 free_extent_state(cached_state);
948 cached_state = NULL;
949 cond_resched();
950 start = end + 1;
951 }
952 return werr;
953 }
954
955 /*
956 * when btree blocks are allocated, they have some corresponding bits set for
957 * them in one of two extent_io trees. This is used to make sure all of
958 * those extents are on disk for transaction or log commit. We wait
959 * on all the pages and clear them from the dirty pages state tree
960 */
961 int btrfs_wait_marked_extents(struct btrfs_root *root,
962 struct extent_io_tree *dirty_pages, int mark)
963 {
964 int err = 0;
965 int werr = 0;
966 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
967 struct extent_state *cached_state = NULL;
968 u64 start = 0;
969 u64 end;
970 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
971 bool errors = false;
972
973 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
974 EXTENT_NEED_WAIT, &cached_state)) {
975 /*
976 * Ignore -ENOMEM errors returned by clear_extent_bit().
977 * When committing the transaction, we'll remove any entries
978 * left in the io tree. For a log commit, we don't remove them
979 * after committing the log because the tree can be accessed
980 * concurrently - we do it only at transaction commit time when
981 * it's safe to do it (through clear_btree_io_tree()).
982 */
983 err = clear_extent_bit(dirty_pages, start, end,
984 EXTENT_NEED_WAIT,
985 0, 0, &cached_state, GFP_NOFS);
986 if (err == -ENOMEM)
987 err = 0;
988 if (!err)
989 err = filemap_fdatawait_range(mapping, start, end);
990 if (err)
991 werr = err;
992 free_extent_state(cached_state);
993 cached_state = NULL;
994 cond_resched();
995 start = end + 1;
996 }
997 if (err)
998 werr = err;
999
1000 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1001 if ((mark & EXTENT_DIRTY) &&
1002 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1003 &btree_ino->runtime_flags))
1004 errors = true;
1005
1006 if ((mark & EXTENT_NEW) &&
1007 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1008 &btree_ino->runtime_flags))
1009 errors = true;
1010 } else {
1011 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1012 &btree_ino->runtime_flags))
1013 errors = true;
1014 }
1015
1016 if (errors && !werr)
1017 werr = -EIO;
1018
1019 return werr;
1020 }
1021
1022 /*
1023 * when btree blocks are allocated, they have some corresponding bits set for
1024 * them in one of two extent_io trees. This is used to make sure all of
1025 * those extents are on disk for transaction or log commit
1026 */
1027 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1028 struct extent_io_tree *dirty_pages, int mark)
1029 {
1030 int ret;
1031 int ret2;
1032 struct blk_plug plug;
1033
1034 blk_start_plug(&plug);
1035 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1036 blk_finish_plug(&plug);
1037 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1038
1039 if (ret)
1040 return ret;
1041 if (ret2)
1042 return ret2;
1043 return 0;
1044 }
1045
1046 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1047 struct btrfs_root *root)
1048 {
1049 int ret;
1050
1051 ret = btrfs_write_and_wait_marked_extents(root,
1052 &trans->transaction->dirty_pages,
1053 EXTENT_DIRTY);
1054 clear_btree_io_tree(&trans->transaction->dirty_pages);
1055
1056 return ret;
1057 }
1058
1059 /*
1060 * this is used to update the root pointer in the tree of tree roots.
1061 *
1062 * But, in the case of the extent allocation tree, updating the root
1063 * pointer may allocate blocks which may change the root of the extent
1064 * allocation tree.
1065 *
1066 * So, this loops and repeats and makes sure the cowonly root didn't
1067 * change while the root pointer was being updated in the metadata.
1068 */
1069 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root)
1071 {
1072 int ret;
1073 u64 old_root_bytenr;
1074 u64 old_root_used;
1075 struct btrfs_root *tree_root = root->fs_info->tree_root;
1076
1077 old_root_used = btrfs_root_used(&root->root_item);
1078
1079 while (1) {
1080 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1081 if (old_root_bytenr == root->node->start &&
1082 old_root_used == btrfs_root_used(&root->root_item))
1083 break;
1084
1085 btrfs_set_root_node(&root->root_item, root->node);
1086 ret = btrfs_update_root(trans, tree_root,
1087 &root->root_key,
1088 &root->root_item);
1089 if (ret)
1090 return ret;
1091
1092 old_root_used = btrfs_root_used(&root->root_item);
1093 }
1094
1095 return 0;
1096 }
1097
1098 /*
1099 * update all the cowonly tree roots on disk
1100 *
1101 * The error handling in this function may not be obvious. Any of the
1102 * failures will cause the file system to go offline. We still need
1103 * to clean up the delayed refs.
1104 */
1105 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root)
1107 {
1108 struct btrfs_fs_info *fs_info = root->fs_info;
1109 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1110 struct list_head *io_bgs = &trans->transaction->io_bgs;
1111 struct list_head *next;
1112 struct extent_buffer *eb;
1113 int ret;
1114
1115 eb = btrfs_lock_root_node(fs_info->tree_root);
1116 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1117 0, &eb);
1118 btrfs_tree_unlock(eb);
1119 free_extent_buffer(eb);
1120
1121 if (ret)
1122 return ret;
1123
1124 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1125 if (ret)
1126 return ret;
1127
1128 ret = btrfs_run_dev_stats(trans, root->fs_info);
1129 if (ret)
1130 return ret;
1131 ret = btrfs_run_dev_replace(trans, root->fs_info);
1132 if (ret)
1133 return ret;
1134 ret = btrfs_run_qgroups(trans, root->fs_info);
1135 if (ret)
1136 return ret;
1137
1138 ret = btrfs_setup_space_cache(trans, root);
1139 if (ret)
1140 return ret;
1141
1142 /* run_qgroups might have added some more refs */
1143 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1144 if (ret)
1145 return ret;
1146 again:
1147 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1148 next = fs_info->dirty_cowonly_roots.next;
1149 list_del_init(next);
1150 root = list_entry(next, struct btrfs_root, dirty_list);
1151 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1152
1153 if (root != fs_info->extent_root)
1154 list_add_tail(&root->dirty_list,
1155 &trans->transaction->switch_commits);
1156 ret = update_cowonly_root(trans, root);
1157 if (ret)
1158 return ret;
1159 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1160 if (ret)
1161 return ret;
1162 }
1163
1164 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1165 ret = btrfs_write_dirty_block_groups(trans, root);
1166 if (ret)
1167 return ret;
1168 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1169 if (ret)
1170 return ret;
1171 }
1172
1173 if (!list_empty(&fs_info->dirty_cowonly_roots))
1174 goto again;
1175
1176 list_add_tail(&fs_info->extent_root->dirty_list,
1177 &trans->transaction->switch_commits);
1178 btrfs_after_dev_replace_commit(fs_info);
1179
1180 return 0;
1181 }
1182
1183 /*
1184 * dead roots are old snapshots that need to be deleted. This allocates
1185 * a dirty root struct and adds it into the list of dead roots that need to
1186 * be deleted
1187 */
1188 void btrfs_add_dead_root(struct btrfs_root *root)
1189 {
1190 spin_lock(&root->fs_info->trans_lock);
1191 if (list_empty(&root->root_list))
1192 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1193 spin_unlock(&root->fs_info->trans_lock);
1194 }
1195
1196 /*
1197 * update all the cowonly tree roots on disk
1198 */
1199 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1200 struct btrfs_root *root)
1201 {
1202 struct btrfs_root *gang[8];
1203 struct btrfs_fs_info *fs_info = root->fs_info;
1204 int i;
1205 int ret;
1206 int err = 0;
1207
1208 spin_lock(&fs_info->fs_roots_radix_lock);
1209 while (1) {
1210 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1211 (void **)gang, 0,
1212 ARRAY_SIZE(gang),
1213 BTRFS_ROOT_TRANS_TAG);
1214 if (ret == 0)
1215 break;
1216 for (i = 0; i < ret; i++) {
1217 root = gang[i];
1218 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1219 (unsigned long)root->root_key.objectid,
1220 BTRFS_ROOT_TRANS_TAG);
1221 spin_unlock(&fs_info->fs_roots_radix_lock);
1222
1223 btrfs_free_log(trans, root);
1224 btrfs_update_reloc_root(trans, root);
1225 btrfs_orphan_commit_root(trans, root);
1226
1227 btrfs_save_ino_cache(root, trans);
1228
1229 /* see comments in should_cow_block() */
1230 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1231 smp_mb__after_atomic();
1232
1233 if (root->commit_root != root->node) {
1234 list_add_tail(&root->dirty_list,
1235 &trans->transaction->switch_commits);
1236 btrfs_set_root_node(&root->root_item,
1237 root->node);
1238 }
1239
1240 err = btrfs_update_root(trans, fs_info->tree_root,
1241 &root->root_key,
1242 &root->root_item);
1243 spin_lock(&fs_info->fs_roots_radix_lock);
1244 if (err)
1245 break;
1246 }
1247 }
1248 spin_unlock(&fs_info->fs_roots_radix_lock);
1249 return err;
1250 }
1251
1252 /*
1253 * defrag a given btree.
1254 * Every leaf in the btree is read and defragged.
1255 */
1256 int btrfs_defrag_root(struct btrfs_root *root)
1257 {
1258 struct btrfs_fs_info *info = root->fs_info;
1259 struct btrfs_trans_handle *trans;
1260 int ret;
1261
1262 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1263 return 0;
1264
1265 while (1) {
1266 trans = btrfs_start_transaction(root, 0);
1267 if (IS_ERR(trans))
1268 return PTR_ERR(trans);
1269
1270 ret = btrfs_defrag_leaves(trans, root);
1271
1272 btrfs_end_transaction(trans, root);
1273 btrfs_btree_balance_dirty(info->tree_root);
1274 cond_resched();
1275
1276 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1277 break;
1278
1279 if (btrfs_defrag_cancelled(root->fs_info)) {
1280 pr_debug("BTRFS: defrag_root cancelled\n");
1281 ret = -EAGAIN;
1282 break;
1283 }
1284 }
1285 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1286 return ret;
1287 }
1288
1289 /*
1290 * new snapshots need to be created at a very specific time in the
1291 * transaction commit. This does the actual creation.
1292 *
1293 * Note:
1294 * If the error which may affect the commitment of the current transaction
1295 * happens, we should return the error number. If the error which just affect
1296 * the creation of the pending snapshots, just return 0.
1297 */
1298 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1299 struct btrfs_fs_info *fs_info,
1300 struct btrfs_pending_snapshot *pending)
1301 {
1302 struct btrfs_key key;
1303 struct btrfs_root_item *new_root_item;
1304 struct btrfs_root *tree_root = fs_info->tree_root;
1305 struct btrfs_root *root = pending->root;
1306 struct btrfs_root *parent_root;
1307 struct btrfs_block_rsv *rsv;
1308 struct inode *parent_inode;
1309 struct btrfs_path *path;
1310 struct btrfs_dir_item *dir_item;
1311 struct dentry *dentry;
1312 struct extent_buffer *tmp;
1313 struct extent_buffer *old;
1314 struct timespec cur_time = CURRENT_TIME;
1315 int ret = 0;
1316 u64 to_reserve = 0;
1317 u64 index = 0;
1318 u64 objectid;
1319 u64 root_flags;
1320 uuid_le new_uuid;
1321
1322 path = btrfs_alloc_path();
1323 if (!path) {
1324 pending->error = -ENOMEM;
1325 return 0;
1326 }
1327
1328 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1329 if (!new_root_item) {
1330 pending->error = -ENOMEM;
1331 goto root_item_alloc_fail;
1332 }
1333
1334 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1335 if (pending->error)
1336 goto no_free_objectid;
1337
1338 /*
1339 * Make qgroup to skip current new snapshot's qgroupid, as it is
1340 * accounted by later btrfs_qgroup_inherit().
1341 */
1342 btrfs_set_skip_qgroup(trans, objectid);
1343
1344 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1345
1346 if (to_reserve > 0) {
1347 pending->error = btrfs_block_rsv_add(root,
1348 &pending->block_rsv,
1349 to_reserve,
1350 BTRFS_RESERVE_NO_FLUSH);
1351 if (pending->error)
1352 goto clear_skip_qgroup;
1353 }
1354
1355 key.objectid = objectid;
1356 key.offset = (u64)-1;
1357 key.type = BTRFS_ROOT_ITEM_KEY;
1358
1359 rsv = trans->block_rsv;
1360 trans->block_rsv = &pending->block_rsv;
1361 trans->bytes_reserved = trans->block_rsv->reserved;
1362
1363 dentry = pending->dentry;
1364 parent_inode = pending->dir;
1365 parent_root = BTRFS_I(parent_inode)->root;
1366 record_root_in_trans(trans, parent_root);
1367
1368 /*
1369 * insert the directory item
1370 */
1371 ret = btrfs_set_inode_index(parent_inode, &index);
1372 BUG_ON(ret); /* -ENOMEM */
1373
1374 /* check if there is a file/dir which has the same name. */
1375 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1376 btrfs_ino(parent_inode),
1377 dentry->d_name.name,
1378 dentry->d_name.len, 0);
1379 if (dir_item != NULL && !IS_ERR(dir_item)) {
1380 pending->error = -EEXIST;
1381 goto dir_item_existed;
1382 } else if (IS_ERR(dir_item)) {
1383 ret = PTR_ERR(dir_item);
1384 btrfs_abort_transaction(trans, root, ret);
1385 goto fail;
1386 }
1387 btrfs_release_path(path);
1388
1389 /*
1390 * pull in the delayed directory update
1391 * and the delayed inode item
1392 * otherwise we corrupt the FS during
1393 * snapshot
1394 */
1395 ret = btrfs_run_delayed_items(trans, root);
1396 if (ret) { /* Transaction aborted */
1397 btrfs_abort_transaction(trans, root, ret);
1398 goto fail;
1399 }
1400
1401 record_root_in_trans(trans, root);
1402 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1403 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1404 btrfs_check_and_init_root_item(new_root_item);
1405
1406 root_flags = btrfs_root_flags(new_root_item);
1407 if (pending->readonly)
1408 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1409 else
1410 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1411 btrfs_set_root_flags(new_root_item, root_flags);
1412
1413 btrfs_set_root_generation_v2(new_root_item,
1414 trans->transid);
1415 uuid_le_gen(&new_uuid);
1416 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1417 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1418 BTRFS_UUID_SIZE);
1419 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1420 memset(new_root_item->received_uuid, 0,
1421 sizeof(new_root_item->received_uuid));
1422 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1423 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1424 btrfs_set_root_stransid(new_root_item, 0);
1425 btrfs_set_root_rtransid(new_root_item, 0);
1426 }
1427 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1428 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1429 btrfs_set_root_otransid(new_root_item, trans->transid);
1430
1431 old = btrfs_lock_root_node(root);
1432 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1433 if (ret) {
1434 btrfs_tree_unlock(old);
1435 free_extent_buffer(old);
1436 btrfs_abort_transaction(trans, root, ret);
1437 goto fail;
1438 }
1439
1440 btrfs_set_lock_blocking(old);
1441
1442 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1443 /* clean up in any case */
1444 btrfs_tree_unlock(old);
1445 free_extent_buffer(old);
1446 if (ret) {
1447 btrfs_abort_transaction(trans, root, ret);
1448 goto fail;
1449 }
1450 /* see comments in should_cow_block() */
1451 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1452 smp_wmb();
1453
1454 btrfs_set_root_node(new_root_item, tmp);
1455 /* record when the snapshot was created in key.offset */
1456 key.offset = trans->transid;
1457 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1458 btrfs_tree_unlock(tmp);
1459 free_extent_buffer(tmp);
1460 if (ret) {
1461 btrfs_abort_transaction(trans, root, ret);
1462 goto fail;
1463 }
1464
1465 /*
1466 * insert root back/forward references
1467 */
1468 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1469 parent_root->root_key.objectid,
1470 btrfs_ino(parent_inode), index,
1471 dentry->d_name.name, dentry->d_name.len);
1472 if (ret) {
1473 btrfs_abort_transaction(trans, root, ret);
1474 goto fail;
1475 }
1476
1477 key.offset = (u64)-1;
1478 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1479 if (IS_ERR(pending->snap)) {
1480 ret = PTR_ERR(pending->snap);
1481 btrfs_abort_transaction(trans, root, ret);
1482 goto fail;
1483 }
1484
1485 ret = btrfs_reloc_post_snapshot(trans, pending);
1486 if (ret) {
1487 btrfs_abort_transaction(trans, root, ret);
1488 goto fail;
1489 }
1490
1491 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1492 if (ret) {
1493 btrfs_abort_transaction(trans, root, ret);
1494 goto fail;
1495 }
1496
1497 ret = btrfs_insert_dir_item(trans, parent_root,
1498 dentry->d_name.name, dentry->d_name.len,
1499 parent_inode, &key,
1500 BTRFS_FT_DIR, index);
1501 /* We have check then name at the beginning, so it is impossible. */
1502 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1503 if (ret) {
1504 btrfs_abort_transaction(trans, root, ret);
1505 goto fail;
1506 }
1507
1508 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1509 dentry->d_name.len * 2);
1510 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1511 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1512 if (ret) {
1513 btrfs_abort_transaction(trans, root, ret);
1514 goto fail;
1515 }
1516 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1517 BTRFS_UUID_KEY_SUBVOL, objectid);
1518 if (ret) {
1519 btrfs_abort_transaction(trans, root, ret);
1520 goto fail;
1521 }
1522 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1523 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1524 new_root_item->received_uuid,
1525 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1526 objectid);
1527 if (ret && ret != -EEXIST) {
1528 btrfs_abort_transaction(trans, root, ret);
1529 goto fail;
1530 }
1531 }
1532
1533 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1534 if (ret) {
1535 btrfs_abort_transaction(trans, root, ret);
1536 goto fail;
1537 }
1538
1539 /*
1540 * account qgroup counters before qgroup_inherit()
1541 */
1542 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1543 if (ret)
1544 goto fail;
1545 ret = btrfs_qgroup_account_extents(trans, fs_info);
1546 if (ret)
1547 goto fail;
1548 ret = btrfs_qgroup_inherit(trans, fs_info,
1549 root->root_key.objectid,
1550 objectid, pending->inherit);
1551 if (ret) {
1552 btrfs_abort_transaction(trans, root, ret);
1553 goto fail;
1554 }
1555
1556 fail:
1557 pending->error = ret;
1558 dir_item_existed:
1559 trans->block_rsv = rsv;
1560 trans->bytes_reserved = 0;
1561 clear_skip_qgroup:
1562 btrfs_clear_skip_qgroup(trans);
1563 no_free_objectid:
1564 kfree(new_root_item);
1565 root_item_alloc_fail:
1566 btrfs_free_path(path);
1567 return ret;
1568 }
1569
1570 /*
1571 * create all the snapshots we've scheduled for creation
1572 */
1573 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1574 struct btrfs_fs_info *fs_info)
1575 {
1576 struct btrfs_pending_snapshot *pending, *next;
1577 struct list_head *head = &trans->transaction->pending_snapshots;
1578 int ret = 0;
1579
1580 list_for_each_entry_safe(pending, next, head, list) {
1581 list_del(&pending->list);
1582 ret = create_pending_snapshot(trans, fs_info, pending);
1583 if (ret)
1584 break;
1585 }
1586 return ret;
1587 }
1588
1589 static void update_super_roots(struct btrfs_root *root)
1590 {
1591 struct btrfs_root_item *root_item;
1592 struct btrfs_super_block *super;
1593
1594 super = root->fs_info->super_copy;
1595
1596 root_item = &root->fs_info->chunk_root->root_item;
1597 super->chunk_root = root_item->bytenr;
1598 super->chunk_root_generation = root_item->generation;
1599 super->chunk_root_level = root_item->level;
1600
1601 root_item = &root->fs_info->tree_root->root_item;
1602 super->root = root_item->bytenr;
1603 super->generation = root_item->generation;
1604 super->root_level = root_item->level;
1605 if (btrfs_test_opt(root, SPACE_CACHE))
1606 super->cache_generation = root_item->generation;
1607 if (root->fs_info->update_uuid_tree_gen)
1608 super->uuid_tree_generation = root_item->generation;
1609 }
1610
1611 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1612 {
1613 struct btrfs_transaction *trans;
1614 int ret = 0;
1615
1616 spin_lock(&info->trans_lock);
1617 trans = info->running_transaction;
1618 if (trans)
1619 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1620 spin_unlock(&info->trans_lock);
1621 return ret;
1622 }
1623
1624 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1625 {
1626 struct btrfs_transaction *trans;
1627 int ret = 0;
1628
1629 spin_lock(&info->trans_lock);
1630 trans = info->running_transaction;
1631 if (trans)
1632 ret = is_transaction_blocked(trans);
1633 spin_unlock(&info->trans_lock);
1634 return ret;
1635 }
1636
1637 /*
1638 * wait for the current transaction commit to start and block subsequent
1639 * transaction joins
1640 */
1641 static void wait_current_trans_commit_start(struct btrfs_root *root,
1642 struct btrfs_transaction *trans)
1643 {
1644 wait_event(root->fs_info->transaction_blocked_wait,
1645 trans->state >= TRANS_STATE_COMMIT_START ||
1646 trans->aborted);
1647 }
1648
1649 /*
1650 * wait for the current transaction to start and then become unblocked.
1651 * caller holds ref.
1652 */
1653 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1654 struct btrfs_transaction *trans)
1655 {
1656 wait_event(root->fs_info->transaction_wait,
1657 trans->state >= TRANS_STATE_UNBLOCKED ||
1658 trans->aborted);
1659 }
1660
1661 /*
1662 * commit transactions asynchronously. once btrfs_commit_transaction_async
1663 * returns, any subsequent transaction will not be allowed to join.
1664 */
1665 struct btrfs_async_commit {
1666 struct btrfs_trans_handle *newtrans;
1667 struct btrfs_root *root;
1668 struct work_struct work;
1669 };
1670
1671 static void do_async_commit(struct work_struct *work)
1672 {
1673 struct btrfs_async_commit *ac =
1674 container_of(work, struct btrfs_async_commit, work);
1675
1676 /*
1677 * We've got freeze protection passed with the transaction.
1678 * Tell lockdep about it.
1679 */
1680 if (ac->newtrans->type & __TRANS_FREEZABLE)
1681 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1682
1683 current->journal_info = ac->newtrans;
1684
1685 btrfs_commit_transaction(ac->newtrans, ac->root);
1686 kfree(ac);
1687 }
1688
1689 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1690 struct btrfs_root *root,
1691 int wait_for_unblock)
1692 {
1693 struct btrfs_async_commit *ac;
1694 struct btrfs_transaction *cur_trans;
1695
1696 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1697 if (!ac)
1698 return -ENOMEM;
1699
1700 INIT_WORK(&ac->work, do_async_commit);
1701 ac->root = root;
1702 ac->newtrans = btrfs_join_transaction(root);
1703 if (IS_ERR(ac->newtrans)) {
1704 int err = PTR_ERR(ac->newtrans);
1705 kfree(ac);
1706 return err;
1707 }
1708
1709 /* take transaction reference */
1710 cur_trans = trans->transaction;
1711 atomic_inc(&cur_trans->use_count);
1712
1713 btrfs_end_transaction(trans, root);
1714
1715 /*
1716 * Tell lockdep we've released the freeze rwsem, since the
1717 * async commit thread will be the one to unlock it.
1718 */
1719 if (ac->newtrans->type & __TRANS_FREEZABLE)
1720 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1721
1722 schedule_work(&ac->work);
1723
1724 /* wait for transaction to start and unblock */
1725 if (wait_for_unblock)
1726 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1727 else
1728 wait_current_trans_commit_start(root, cur_trans);
1729
1730 if (current->journal_info == trans)
1731 current->journal_info = NULL;
1732
1733 btrfs_put_transaction(cur_trans);
1734 return 0;
1735 }
1736
1737
1738 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1739 struct btrfs_root *root, int err)
1740 {
1741 struct btrfs_transaction *cur_trans = trans->transaction;
1742 DEFINE_WAIT(wait);
1743
1744 WARN_ON(trans->use_count > 1);
1745
1746 btrfs_abort_transaction(trans, root, err);
1747
1748 spin_lock(&root->fs_info->trans_lock);
1749
1750 /*
1751 * If the transaction is removed from the list, it means this
1752 * transaction has been committed successfully, so it is impossible
1753 * to call the cleanup function.
1754 */
1755 BUG_ON(list_empty(&cur_trans->list));
1756
1757 list_del_init(&cur_trans->list);
1758 if (cur_trans == root->fs_info->running_transaction) {
1759 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1760 spin_unlock(&root->fs_info->trans_lock);
1761 wait_event(cur_trans->writer_wait,
1762 atomic_read(&cur_trans->num_writers) == 1);
1763
1764 spin_lock(&root->fs_info->trans_lock);
1765 }
1766 spin_unlock(&root->fs_info->trans_lock);
1767
1768 btrfs_cleanup_one_transaction(trans->transaction, root);
1769
1770 spin_lock(&root->fs_info->trans_lock);
1771 if (cur_trans == root->fs_info->running_transaction)
1772 root->fs_info->running_transaction = NULL;
1773 spin_unlock(&root->fs_info->trans_lock);
1774
1775 if (trans->type & __TRANS_FREEZABLE)
1776 sb_end_intwrite(root->fs_info->sb);
1777 btrfs_put_transaction(cur_trans);
1778 btrfs_put_transaction(cur_trans);
1779
1780 trace_btrfs_transaction_commit(root);
1781
1782 if (current->journal_info == trans)
1783 current->journal_info = NULL;
1784 btrfs_scrub_cancel(root->fs_info);
1785
1786 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1787 }
1788
1789 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1790 {
1791 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1792 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1793 return 0;
1794 }
1795
1796 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1797 {
1798 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1799 btrfs_wait_ordered_roots(fs_info, -1);
1800 }
1801
1802 static inline void
1803 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1804 struct btrfs_fs_info *fs_info)
1805 {
1806 struct btrfs_ordered_extent *ordered;
1807
1808 spin_lock(&fs_info->trans_lock);
1809 while (!list_empty(&cur_trans->pending_ordered)) {
1810 ordered = list_first_entry(&cur_trans->pending_ordered,
1811 struct btrfs_ordered_extent,
1812 trans_list);
1813 list_del_init(&ordered->trans_list);
1814 spin_unlock(&fs_info->trans_lock);
1815
1816 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1817 &ordered->flags));
1818 btrfs_put_ordered_extent(ordered);
1819 spin_lock(&fs_info->trans_lock);
1820 }
1821 spin_unlock(&fs_info->trans_lock);
1822 }
1823
1824 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root)
1826 {
1827 struct btrfs_transaction *cur_trans = trans->transaction;
1828 struct btrfs_transaction *prev_trans = NULL;
1829 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1830 int ret;
1831
1832 /* Stop the commit early if ->aborted is set */
1833 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1834 ret = cur_trans->aborted;
1835 btrfs_end_transaction(trans, root);
1836 return ret;
1837 }
1838
1839 /* make a pass through all the delayed refs we have so far
1840 * any runnings procs may add more while we are here
1841 */
1842 ret = btrfs_run_delayed_refs(trans, root, 0);
1843 if (ret) {
1844 btrfs_end_transaction(trans, root);
1845 return ret;
1846 }
1847
1848 btrfs_trans_release_metadata(trans, root);
1849 trans->block_rsv = NULL;
1850 if (trans->qgroup_reserved) {
1851 btrfs_qgroup_free(root, trans->qgroup_reserved);
1852 trans->qgroup_reserved = 0;
1853 }
1854
1855 cur_trans = trans->transaction;
1856
1857 /*
1858 * set the flushing flag so procs in this transaction have to
1859 * start sending their work down.
1860 */
1861 cur_trans->delayed_refs.flushing = 1;
1862 smp_wmb();
1863
1864 if (!list_empty(&trans->new_bgs))
1865 btrfs_create_pending_block_groups(trans, root);
1866
1867 ret = btrfs_run_delayed_refs(trans, root, 0);
1868 if (ret) {
1869 btrfs_end_transaction(trans, root);
1870 return ret;
1871 }
1872
1873 if (!cur_trans->dirty_bg_run) {
1874 int run_it = 0;
1875
1876 /* this mutex is also taken before trying to set
1877 * block groups readonly. We need to make sure
1878 * that nobody has set a block group readonly
1879 * after a extents from that block group have been
1880 * allocated for cache files. btrfs_set_block_group_ro
1881 * will wait for the transaction to commit if it
1882 * finds dirty_bg_run = 1
1883 *
1884 * The dirty_bg_run flag is also used to make sure only
1885 * one process starts all the block group IO. It wouldn't
1886 * hurt to have more than one go through, but there's no
1887 * real advantage to it either.
1888 */
1889 mutex_lock(&root->fs_info->ro_block_group_mutex);
1890 if (!cur_trans->dirty_bg_run) {
1891 run_it = 1;
1892 cur_trans->dirty_bg_run = 1;
1893 }
1894 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1895
1896 if (run_it)
1897 ret = btrfs_start_dirty_block_groups(trans, root);
1898 }
1899 if (ret) {
1900 btrfs_end_transaction(trans, root);
1901 return ret;
1902 }
1903
1904 spin_lock(&root->fs_info->trans_lock);
1905 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1906 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1907 spin_unlock(&root->fs_info->trans_lock);
1908 atomic_inc(&cur_trans->use_count);
1909 ret = btrfs_end_transaction(trans, root);
1910
1911 wait_for_commit(root, cur_trans);
1912
1913 if (unlikely(cur_trans->aborted))
1914 ret = cur_trans->aborted;
1915
1916 btrfs_put_transaction(cur_trans);
1917
1918 return ret;
1919 }
1920
1921 cur_trans->state = TRANS_STATE_COMMIT_START;
1922 wake_up(&root->fs_info->transaction_blocked_wait);
1923
1924 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1925 prev_trans = list_entry(cur_trans->list.prev,
1926 struct btrfs_transaction, list);
1927 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1928 atomic_inc(&prev_trans->use_count);
1929 spin_unlock(&root->fs_info->trans_lock);
1930
1931 wait_for_commit(root, prev_trans);
1932 ret = prev_trans->aborted;
1933
1934 btrfs_put_transaction(prev_trans);
1935 if (ret)
1936 goto cleanup_transaction;
1937 } else {
1938 spin_unlock(&root->fs_info->trans_lock);
1939 }
1940 } else {
1941 spin_unlock(&root->fs_info->trans_lock);
1942 }
1943
1944 extwriter_counter_dec(cur_trans, trans->type);
1945
1946 ret = btrfs_start_delalloc_flush(root->fs_info);
1947 if (ret)
1948 goto cleanup_transaction;
1949
1950 ret = btrfs_run_delayed_items(trans, root);
1951 if (ret)
1952 goto cleanup_transaction;
1953
1954 wait_event(cur_trans->writer_wait,
1955 extwriter_counter_read(cur_trans) == 0);
1956
1957 /* some pending stuffs might be added after the previous flush. */
1958 ret = btrfs_run_delayed_items(trans, root);
1959 if (ret)
1960 goto cleanup_transaction;
1961
1962 btrfs_wait_delalloc_flush(root->fs_info);
1963
1964 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1965
1966 btrfs_scrub_pause(root);
1967 /*
1968 * Ok now we need to make sure to block out any other joins while we
1969 * commit the transaction. We could have started a join before setting
1970 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1971 */
1972 spin_lock(&root->fs_info->trans_lock);
1973 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1974 spin_unlock(&root->fs_info->trans_lock);
1975 wait_event(cur_trans->writer_wait,
1976 atomic_read(&cur_trans->num_writers) == 1);
1977
1978 /* ->aborted might be set after the previous check, so check it */
1979 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1980 ret = cur_trans->aborted;
1981 goto scrub_continue;
1982 }
1983 /*
1984 * the reloc mutex makes sure that we stop
1985 * the balancing code from coming in and moving
1986 * extents around in the middle of the commit
1987 */
1988 mutex_lock(&root->fs_info->reloc_mutex);
1989
1990 /*
1991 * We needn't worry about the delayed items because we will
1992 * deal with them in create_pending_snapshot(), which is the
1993 * core function of the snapshot creation.
1994 */
1995 ret = create_pending_snapshots(trans, root->fs_info);
1996 if (ret) {
1997 mutex_unlock(&root->fs_info->reloc_mutex);
1998 goto scrub_continue;
1999 }
2000
2001 /*
2002 * We insert the dir indexes of the snapshots and update the inode
2003 * of the snapshots' parents after the snapshot creation, so there
2004 * are some delayed items which are not dealt with. Now deal with
2005 * them.
2006 *
2007 * We needn't worry that this operation will corrupt the snapshots,
2008 * because all the tree which are snapshoted will be forced to COW
2009 * the nodes and leaves.
2010 */
2011 ret = btrfs_run_delayed_items(trans, root);
2012 if (ret) {
2013 mutex_unlock(&root->fs_info->reloc_mutex);
2014 goto scrub_continue;
2015 }
2016
2017 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2018 if (ret) {
2019 mutex_unlock(&root->fs_info->reloc_mutex);
2020 goto scrub_continue;
2021 }
2022
2023 /* Reocrd old roots for later qgroup accounting */
2024 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2025 if (ret) {
2026 mutex_unlock(&root->fs_info->reloc_mutex);
2027 goto scrub_continue;
2028 }
2029
2030 /*
2031 * make sure none of the code above managed to slip in a
2032 * delayed item
2033 */
2034 btrfs_assert_delayed_root_empty(root);
2035
2036 WARN_ON(cur_trans != trans->transaction);
2037
2038 /* btrfs_commit_tree_roots is responsible for getting the
2039 * various roots consistent with each other. Every pointer
2040 * in the tree of tree roots has to point to the most up to date
2041 * root for every subvolume and other tree. So, we have to keep
2042 * the tree logging code from jumping in and changing any
2043 * of the trees.
2044 *
2045 * At this point in the commit, there can't be any tree-log
2046 * writers, but a little lower down we drop the trans mutex
2047 * and let new people in. By holding the tree_log_mutex
2048 * from now until after the super is written, we avoid races
2049 * with the tree-log code.
2050 */
2051 mutex_lock(&root->fs_info->tree_log_mutex);
2052
2053 ret = commit_fs_roots(trans, root);
2054 if (ret) {
2055 mutex_unlock(&root->fs_info->tree_log_mutex);
2056 mutex_unlock(&root->fs_info->reloc_mutex);
2057 goto scrub_continue;
2058 }
2059
2060 /*
2061 * Since the transaction is done, we can apply the pending changes
2062 * before the next transaction.
2063 */
2064 btrfs_apply_pending_changes(root->fs_info);
2065
2066 /* commit_fs_roots gets rid of all the tree log roots, it is now
2067 * safe to free the root of tree log roots
2068 */
2069 btrfs_free_log_root_tree(trans, root->fs_info);
2070
2071 /*
2072 * Since fs roots are all committed, we can get a quite accurate
2073 * new_roots. So let's do quota accounting.
2074 */
2075 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2076 if (ret < 0) {
2077 mutex_unlock(&root->fs_info->tree_log_mutex);
2078 mutex_unlock(&root->fs_info->reloc_mutex);
2079 goto scrub_continue;
2080 }
2081
2082 ret = commit_cowonly_roots(trans, root);
2083 if (ret) {
2084 mutex_unlock(&root->fs_info->tree_log_mutex);
2085 mutex_unlock(&root->fs_info->reloc_mutex);
2086 goto scrub_continue;
2087 }
2088
2089 /*
2090 * The tasks which save the space cache and inode cache may also
2091 * update ->aborted, check it.
2092 */
2093 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2094 ret = cur_trans->aborted;
2095 mutex_unlock(&root->fs_info->tree_log_mutex);
2096 mutex_unlock(&root->fs_info->reloc_mutex);
2097 goto scrub_continue;
2098 }
2099
2100 btrfs_prepare_extent_commit(trans, root);
2101
2102 cur_trans = root->fs_info->running_transaction;
2103
2104 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2105 root->fs_info->tree_root->node);
2106 list_add_tail(&root->fs_info->tree_root->dirty_list,
2107 &cur_trans->switch_commits);
2108
2109 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2110 root->fs_info->chunk_root->node);
2111 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2112 &cur_trans->switch_commits);
2113
2114 switch_commit_roots(cur_trans, root->fs_info);
2115
2116 assert_qgroups_uptodate(trans);
2117 ASSERT(list_empty(&cur_trans->dirty_bgs));
2118 ASSERT(list_empty(&cur_trans->io_bgs));
2119 update_super_roots(root);
2120
2121 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2122 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2123 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2124 sizeof(*root->fs_info->super_copy));
2125
2126 btrfs_update_commit_device_size(root->fs_info);
2127 btrfs_update_commit_device_bytes_used(root, cur_trans);
2128
2129 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2130 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2131
2132 btrfs_trans_release_chunk_metadata(trans);
2133
2134 spin_lock(&root->fs_info->trans_lock);
2135 cur_trans->state = TRANS_STATE_UNBLOCKED;
2136 root->fs_info->running_transaction = NULL;
2137 spin_unlock(&root->fs_info->trans_lock);
2138 mutex_unlock(&root->fs_info->reloc_mutex);
2139
2140 wake_up(&root->fs_info->transaction_wait);
2141
2142 ret = btrfs_write_and_wait_transaction(trans, root);
2143 if (ret) {
2144 btrfs_error(root->fs_info, ret,
2145 "Error while writing out transaction");
2146 mutex_unlock(&root->fs_info->tree_log_mutex);
2147 goto scrub_continue;
2148 }
2149
2150 ret = write_ctree_super(trans, root, 0);
2151 if (ret) {
2152 mutex_unlock(&root->fs_info->tree_log_mutex);
2153 goto scrub_continue;
2154 }
2155
2156 /*
2157 * the super is written, we can safely allow the tree-loggers
2158 * to go about their business
2159 */
2160 mutex_unlock(&root->fs_info->tree_log_mutex);
2161
2162 btrfs_finish_extent_commit(trans, root);
2163
2164 if (cur_trans->have_free_bgs)
2165 btrfs_clear_space_info_full(root->fs_info);
2166
2167 root->fs_info->last_trans_committed = cur_trans->transid;
2168 /*
2169 * We needn't acquire the lock here because there is no other task
2170 * which can change it.
2171 */
2172 cur_trans->state = TRANS_STATE_COMPLETED;
2173 wake_up(&cur_trans->commit_wait);
2174
2175 spin_lock(&root->fs_info->trans_lock);
2176 list_del_init(&cur_trans->list);
2177 spin_unlock(&root->fs_info->trans_lock);
2178
2179 btrfs_put_transaction(cur_trans);
2180 btrfs_put_transaction(cur_trans);
2181
2182 if (trans->type & __TRANS_FREEZABLE)
2183 sb_end_intwrite(root->fs_info->sb);
2184
2185 trace_btrfs_transaction_commit(root);
2186
2187 btrfs_scrub_continue(root);
2188
2189 if (current->journal_info == trans)
2190 current->journal_info = NULL;
2191
2192 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2193
2194 if (current != root->fs_info->transaction_kthread &&
2195 current != root->fs_info->cleaner_kthread)
2196 btrfs_run_delayed_iputs(root);
2197
2198 return ret;
2199
2200 scrub_continue:
2201 btrfs_scrub_continue(root);
2202 cleanup_transaction:
2203 btrfs_trans_release_metadata(trans, root);
2204 btrfs_trans_release_chunk_metadata(trans);
2205 trans->block_rsv = NULL;
2206 if (trans->qgroup_reserved) {
2207 btrfs_qgroup_free(root, trans->qgroup_reserved);
2208 trans->qgroup_reserved = 0;
2209 }
2210 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2211 if (current->journal_info == trans)
2212 current->journal_info = NULL;
2213 cleanup_transaction(trans, root, ret);
2214
2215 return ret;
2216 }
2217
2218 /*
2219 * return < 0 if error
2220 * 0 if there are no more dead_roots at the time of call
2221 * 1 there are more to be processed, call me again
2222 *
2223 * The return value indicates there are certainly more snapshots to delete, but
2224 * if there comes a new one during processing, it may return 0. We don't mind,
2225 * because btrfs_commit_super will poke cleaner thread and it will process it a
2226 * few seconds later.
2227 */
2228 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2229 {
2230 int ret;
2231 struct btrfs_fs_info *fs_info = root->fs_info;
2232
2233 spin_lock(&fs_info->trans_lock);
2234 if (list_empty(&fs_info->dead_roots)) {
2235 spin_unlock(&fs_info->trans_lock);
2236 return 0;
2237 }
2238 root = list_first_entry(&fs_info->dead_roots,
2239 struct btrfs_root, root_list);
2240 list_del_init(&root->root_list);
2241 spin_unlock(&fs_info->trans_lock);
2242
2243 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2244
2245 btrfs_kill_all_delayed_nodes(root);
2246
2247 if (btrfs_header_backref_rev(root->node) <
2248 BTRFS_MIXED_BACKREF_REV)
2249 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2250 else
2251 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2252
2253 return (ret < 0) ? 0 : 1;
2254 }
2255
2256 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2257 {
2258 unsigned long prev;
2259 unsigned long bit;
2260
2261 prev = xchg(&fs_info->pending_changes, 0);
2262 if (!prev)
2263 return;
2264
2265 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2266 if (prev & bit)
2267 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2268 prev &= ~bit;
2269
2270 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2271 if (prev & bit)
2272 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2273 prev &= ~bit;
2274
2275 bit = 1 << BTRFS_PENDING_COMMIT;
2276 if (prev & bit)
2277 btrfs_debug(fs_info, "pending commit done");
2278 prev &= ~bit;
2279
2280 if (prev)
2281 btrfs_warn(fs_info,
2282 "unknown pending changes left 0x%lx, ignoring", prev);
2283 }
This page took 0.077627 seconds and 5 git commands to generate.