Btrfs: Fix race in running_transaction checks
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26
27 static int total_trans = 0;
28 extern struct kmem_cache *btrfs_trans_handle_cachep;
29 extern struct kmem_cache *btrfs_transaction_cachep;
30
31 static struct workqueue_struct *trans_wq;
32
33 #define BTRFS_ROOT_TRANS_TAG 0
34 #define BTRFS_ROOT_DEFRAG_TAG 1
35
36 static noinline void put_transaction(struct btrfs_transaction *transaction)
37 {
38 WARN_ON(transaction->use_count == 0);
39 transaction->use_count--;
40 if (transaction->use_count == 0) {
41 WARN_ON(total_trans == 0);
42 total_trans--;
43 list_del_init(&transaction->list);
44 memset(transaction, 0, sizeof(*transaction));
45 kmem_cache_free(btrfs_transaction_cachep, transaction);
46 }
47 }
48
49 static noinline int join_transaction(struct btrfs_root *root)
50 {
51 struct btrfs_transaction *cur_trans;
52 cur_trans = root->fs_info->running_transaction;
53 if (!cur_trans) {
54 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
55 GFP_NOFS);
56 total_trans++;
57 BUG_ON(!cur_trans);
58 root->fs_info->generation++;
59 root->fs_info->last_alloc = 0;
60 root->fs_info->last_data_alloc = 0;
61 cur_trans->num_writers = 1;
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->use_count = 1;
68 cur_trans->commit_done = 0;
69 cur_trans->start_time = get_seconds();
70 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
71 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
72 btrfs_ordered_inode_tree_init(&cur_trans->ordered_inode_tree);
73 extent_io_tree_init(&cur_trans->dirty_pages,
74 root->fs_info->btree_inode->i_mapping,
75 GFP_NOFS);
76 spin_lock(&root->fs_info->new_trans_lock);
77 root->fs_info->running_transaction = cur_trans;
78 spin_unlock(&root->fs_info->new_trans_lock);
79 } else {
80 cur_trans->num_writers++;
81 cur_trans->num_joined++;
82 }
83
84 return 0;
85 }
86
87 static noinline int record_root_in_trans(struct btrfs_root *root)
88 {
89 u64 running_trans_id = root->fs_info->running_transaction->transid;
90 if (root->ref_cows && root->last_trans < running_trans_id) {
91 WARN_ON(root == root->fs_info->extent_root);
92 if (root->root_item.refs != 0) {
93 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
94 (unsigned long)root->root_key.objectid,
95 BTRFS_ROOT_TRANS_TAG);
96 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
97 (unsigned long)root->root_key.objectid,
98 BTRFS_ROOT_DEFRAG_TAG);
99 root->commit_root = root->node;
100 extent_buffer_get(root->node);
101 } else {
102 WARN_ON(1);
103 }
104 root->last_trans = running_trans_id;
105 }
106 return 0;
107 }
108
109 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
110 int num_blocks)
111 {
112 struct btrfs_trans_handle *h =
113 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
114 int ret;
115
116 mutex_lock(&root->fs_info->trans_mutex);
117 ret = join_transaction(root);
118 BUG_ON(ret);
119
120 record_root_in_trans(root);
121 h->transid = root->fs_info->running_transaction->transid;
122 h->transaction = root->fs_info->running_transaction;
123 h->blocks_reserved = num_blocks;
124 h->blocks_used = 0;
125 h->block_group = NULL;
126 h->alloc_exclude_nr = 0;
127 h->alloc_exclude_start = 0;
128 root->fs_info->running_transaction->use_count++;
129 mutex_unlock(&root->fs_info->trans_mutex);
130 return h;
131 }
132
133 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
134 struct btrfs_root *root)
135 {
136 struct btrfs_transaction *cur_trans;
137
138 mutex_lock(&root->fs_info->trans_mutex);
139 cur_trans = root->fs_info->running_transaction;
140 WARN_ON(cur_trans != trans->transaction);
141 WARN_ON(cur_trans->num_writers < 1);
142 cur_trans->num_writers--;
143 if (waitqueue_active(&cur_trans->writer_wait))
144 wake_up(&cur_trans->writer_wait);
145 put_transaction(cur_trans);
146 mutex_unlock(&root->fs_info->trans_mutex);
147 memset(trans, 0, sizeof(*trans));
148 kmem_cache_free(btrfs_trans_handle_cachep, trans);
149 return 0;
150 }
151
152
153 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
154 struct btrfs_root *root)
155 {
156 int ret;
157 int err;
158 int werr = 0;
159 struct extent_io_tree *dirty_pages;
160 struct page *page;
161 struct inode *btree_inode = root->fs_info->btree_inode;
162 u64 start;
163 u64 end;
164 unsigned long index;
165
166 if (!trans || !trans->transaction) {
167 return filemap_write_and_wait(btree_inode->i_mapping);
168 }
169 dirty_pages = &trans->transaction->dirty_pages;
170 while(1) {
171 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
172 EXTENT_DIRTY);
173 if (ret)
174 break;
175 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
176 while(start <= end) {
177 index = start >> PAGE_CACHE_SHIFT;
178 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
179 page = find_lock_page(btree_inode->i_mapping, index);
180 if (!page)
181 continue;
182 if (PageWriteback(page)) {
183 if (PageDirty(page))
184 wait_on_page_writeback(page);
185 else {
186 unlock_page(page);
187 page_cache_release(page);
188 continue;
189 }
190 }
191 err = write_one_page(page, 0);
192 if (err)
193 werr = err;
194 page_cache_release(page);
195 }
196 }
197 err = filemap_fdatawait(btree_inode->i_mapping);
198 if (err)
199 werr = err;
200 return werr;
201 }
202
203 static int update_cowonly_root(struct btrfs_trans_handle *trans,
204 struct btrfs_root *root)
205 {
206 int ret;
207 u64 old_root_bytenr;
208 struct btrfs_root *tree_root = root->fs_info->tree_root;
209
210 btrfs_write_dirty_block_groups(trans, root);
211 while(1) {
212 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
213 if (old_root_bytenr == root->node->start)
214 break;
215 btrfs_set_root_bytenr(&root->root_item,
216 root->node->start);
217 btrfs_set_root_level(&root->root_item,
218 btrfs_header_level(root->node));
219 ret = btrfs_update_root(trans, tree_root,
220 &root->root_key,
221 &root->root_item);
222 BUG_ON(ret);
223 btrfs_write_dirty_block_groups(trans, root);
224 }
225 return 0;
226 }
227
228 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
229 struct btrfs_root *root)
230 {
231 struct btrfs_fs_info *fs_info = root->fs_info;
232 struct list_head *next;
233
234 while(!list_empty(&fs_info->dirty_cowonly_roots)) {
235 next = fs_info->dirty_cowonly_roots.next;
236 list_del_init(next);
237 root = list_entry(next, struct btrfs_root, dirty_list);
238 update_cowonly_root(trans, root);
239 }
240 return 0;
241 }
242
243 static noinline int wait_for_commit(struct btrfs_root *root,
244 struct btrfs_transaction *commit)
245 {
246 DEFINE_WAIT(wait);
247 mutex_lock(&root->fs_info->trans_mutex);
248 while(!commit->commit_done) {
249 prepare_to_wait(&commit->commit_wait, &wait,
250 TASK_UNINTERRUPTIBLE);
251 if (commit->commit_done)
252 break;
253 mutex_unlock(&root->fs_info->trans_mutex);
254 schedule();
255 mutex_lock(&root->fs_info->trans_mutex);
256 }
257 mutex_unlock(&root->fs_info->trans_mutex);
258 finish_wait(&commit->commit_wait, &wait);
259 return 0;
260 }
261
262 struct dirty_root {
263 struct list_head list;
264 struct btrfs_root *root;
265 struct btrfs_root *latest_root;
266 };
267
268 int btrfs_add_dead_root(struct btrfs_root *root,
269 struct btrfs_root *latest,
270 struct list_head *dead_list)
271 {
272 struct dirty_root *dirty;
273
274 dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
275 if (!dirty)
276 return -ENOMEM;
277 dirty->root = root;
278 dirty->latest_root = latest;
279 list_add(&dirty->list, dead_list);
280 return 0;
281 }
282
283 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
284 struct radix_tree_root *radix,
285 struct list_head *list)
286 {
287 struct dirty_root *dirty;
288 struct btrfs_root *gang[8];
289 struct btrfs_root *root;
290 int i;
291 int ret;
292 int err = 0;
293 u32 refs;
294
295 while(1) {
296 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
297 ARRAY_SIZE(gang),
298 BTRFS_ROOT_TRANS_TAG);
299 if (ret == 0)
300 break;
301 for (i = 0; i < ret; i++) {
302 root = gang[i];
303 radix_tree_tag_clear(radix,
304 (unsigned long)root->root_key.objectid,
305 BTRFS_ROOT_TRANS_TAG);
306 if (root->commit_root == root->node) {
307 WARN_ON(root->node->start !=
308 btrfs_root_bytenr(&root->root_item));
309 free_extent_buffer(root->commit_root);
310 root->commit_root = NULL;
311
312 /* make sure to update the root on disk
313 * so we get any updates to the block used
314 * counts
315 */
316 err = btrfs_update_root(trans,
317 root->fs_info->tree_root,
318 &root->root_key,
319 &root->root_item);
320 continue;
321 }
322 dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
323 BUG_ON(!dirty);
324 dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
325 BUG_ON(!dirty->root);
326
327 memset(&root->root_item.drop_progress, 0,
328 sizeof(struct btrfs_disk_key));
329 root->root_item.drop_level = 0;
330
331 memcpy(dirty->root, root, sizeof(*root));
332 dirty->root->node = root->commit_root;
333 dirty->latest_root = root;
334 root->commit_root = NULL;
335
336 root->root_key.offset = root->fs_info->generation;
337 btrfs_set_root_bytenr(&root->root_item,
338 root->node->start);
339 btrfs_set_root_level(&root->root_item,
340 btrfs_header_level(root->node));
341 err = btrfs_insert_root(trans, root->fs_info->tree_root,
342 &root->root_key,
343 &root->root_item);
344 if (err)
345 break;
346
347 refs = btrfs_root_refs(&dirty->root->root_item);
348 btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
349 err = btrfs_update_root(trans, root->fs_info->tree_root,
350 &dirty->root->root_key,
351 &dirty->root->root_item);
352
353 BUG_ON(err);
354 if (refs == 1) {
355 list_add(&dirty->list, list);
356 } else {
357 WARN_ON(1);
358 kfree(dirty->root);
359 kfree(dirty);
360 }
361 }
362 }
363 return err;
364 }
365
366 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
367 {
368 struct btrfs_fs_info *info = root->fs_info;
369 int ret;
370 struct btrfs_trans_handle *trans;
371 unsigned long nr;
372
373 if (root->defrag_running)
374 return 0;
375 trans = btrfs_start_transaction(root, 1);
376 while (1) {
377 root->defrag_running = 1;
378 ret = btrfs_defrag_leaves(trans, root, cacheonly);
379 nr = trans->blocks_used;
380 btrfs_end_transaction(trans, root);
381 mutex_unlock(&info->fs_mutex);
382 btrfs_btree_balance_dirty(info->tree_root, nr);
383 cond_resched();
384
385 mutex_lock(&info->fs_mutex);
386 trans = btrfs_start_transaction(root, 1);
387 if (ret != -EAGAIN)
388 break;
389 }
390 root->defrag_running = 0;
391 radix_tree_tag_clear(&info->fs_roots_radix,
392 (unsigned long)root->root_key.objectid,
393 BTRFS_ROOT_DEFRAG_TAG);
394 btrfs_end_transaction(trans, root);
395 return 0;
396 }
397
398 int btrfs_defrag_dirty_roots(struct btrfs_fs_info *info)
399 {
400 struct btrfs_root *gang[1];
401 struct btrfs_root *root;
402 int i;
403 int ret;
404 int err = 0;
405 u64 last = 0;
406
407 while(1) {
408 ret = radix_tree_gang_lookup_tag(&info->fs_roots_radix,
409 (void **)gang, last,
410 ARRAY_SIZE(gang),
411 BTRFS_ROOT_DEFRAG_TAG);
412 if (ret == 0)
413 break;
414 for (i = 0; i < ret; i++) {
415 root = gang[i];
416 last = root->root_key.objectid + 1;
417 btrfs_defrag_root(root, 1);
418 }
419 }
420 btrfs_defrag_root(info->extent_root, 1);
421 return err;
422 }
423
424 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
425 struct list_head *list)
426 {
427 struct dirty_root *dirty;
428 struct btrfs_trans_handle *trans;
429 unsigned long nr;
430 u64 num_bytes;
431 u64 bytes_used;
432 int ret = 0;
433 int err;
434
435 while(!list_empty(list)) {
436 struct btrfs_root *root;
437
438 mutex_lock(&tree_root->fs_info->fs_mutex);
439 dirty = list_entry(list->next, struct dirty_root, list);
440 list_del_init(&dirty->list);
441
442 num_bytes = btrfs_root_used(&dirty->root->root_item);
443 root = dirty->latest_root;
444 root->fs_info->throttles++;
445
446 while(1) {
447 trans = btrfs_start_transaction(tree_root, 1);
448 ret = btrfs_drop_snapshot(trans, dirty->root);
449 if (ret != -EAGAIN) {
450 break;
451 }
452
453 err = btrfs_update_root(trans,
454 tree_root,
455 &dirty->root->root_key,
456 &dirty->root->root_item);
457 if (err)
458 ret = err;
459 nr = trans->blocks_used;
460 ret = btrfs_end_transaction(trans, tree_root);
461 BUG_ON(ret);
462 mutex_unlock(&tree_root->fs_info->fs_mutex);
463 btrfs_btree_balance_dirty(tree_root, nr);
464 cond_resched();
465 mutex_lock(&tree_root->fs_info->fs_mutex);
466 }
467 BUG_ON(ret);
468 root->fs_info->throttles--;
469
470 num_bytes -= btrfs_root_used(&dirty->root->root_item);
471 bytes_used = btrfs_root_used(&root->root_item);
472 if (num_bytes) {
473 record_root_in_trans(root);
474 btrfs_set_root_used(&root->root_item,
475 bytes_used - num_bytes);
476 }
477 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
478 if (ret) {
479 BUG();
480 break;
481 }
482 nr = trans->blocks_used;
483 ret = btrfs_end_transaction(trans, tree_root);
484 BUG_ON(ret);
485
486 free_extent_buffer(dirty->root->node);
487 kfree(dirty->root);
488 kfree(dirty);
489 mutex_unlock(&tree_root->fs_info->fs_mutex);
490
491 btrfs_btree_balance_dirty(tree_root, nr);
492 cond_resched();
493 }
494 return ret;
495 }
496
497 int btrfs_write_ordered_inodes(struct btrfs_trans_handle *trans,
498 struct btrfs_root *root)
499 {
500 struct btrfs_transaction *cur_trans = trans->transaction;
501 struct inode *inode;
502 u64 root_objectid = 0;
503 u64 objectid = 0;
504 int ret;
505
506 root->fs_info->throttles++;
507 while(1) {
508 ret = btrfs_find_first_ordered_inode(
509 &cur_trans->ordered_inode_tree,
510 &root_objectid, &objectid, &inode);
511 if (!ret)
512 break;
513
514 mutex_unlock(&root->fs_info->trans_mutex);
515 mutex_unlock(&root->fs_info->fs_mutex);
516
517 if (S_ISREG(inode->i_mode)) {
518 atomic_inc(&BTRFS_I(inode)->ordered_writeback);
519 filemap_fdatawrite(inode->i_mapping);
520 atomic_dec(&BTRFS_I(inode)->ordered_writeback);
521 }
522 iput(inode);
523
524 mutex_lock(&root->fs_info->fs_mutex);
525 mutex_lock(&root->fs_info->trans_mutex);
526 }
527 while(1) {
528 root_objectid = 0;
529 objectid = 0;
530 ret = btrfs_find_del_first_ordered_inode(
531 &cur_trans->ordered_inode_tree,
532 &root_objectid, &objectid, &inode);
533 if (!ret)
534 break;
535 mutex_unlock(&root->fs_info->trans_mutex);
536 mutex_unlock(&root->fs_info->fs_mutex);
537
538 if (S_ISREG(inode->i_mode)) {
539 atomic_inc(&BTRFS_I(inode)->ordered_writeback);
540 filemap_write_and_wait(inode->i_mapping);
541 atomic_dec(&BTRFS_I(inode)->ordered_writeback);
542 }
543 atomic_dec(&inode->i_count);
544 iput(inode);
545
546 mutex_lock(&root->fs_info->fs_mutex);
547 mutex_lock(&root->fs_info->trans_mutex);
548 }
549 root->fs_info->throttles--;
550 return 0;
551 }
552
553 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
554 struct btrfs_fs_info *fs_info,
555 struct btrfs_pending_snapshot *pending)
556 {
557 struct btrfs_key key;
558 struct btrfs_root_item *new_root_item;
559 struct btrfs_root *tree_root = fs_info->tree_root;
560 struct btrfs_root *root = pending->root;
561 struct extent_buffer *tmp;
562 int ret;
563 u64 objectid;
564
565 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
566 if (!new_root_item) {
567 ret = -ENOMEM;
568 goto fail;
569 }
570 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
571 if (ret)
572 goto fail;
573
574 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
575
576 key.objectid = objectid;
577 key.offset = 1;
578 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
579
580 extent_buffer_get(root->node);
581 btrfs_cow_block(trans, root, root->node, NULL, 0, &tmp);
582 free_extent_buffer(tmp);
583
584 btrfs_copy_root(trans, root, root->node, &tmp, objectid);
585
586 btrfs_set_root_bytenr(new_root_item, tmp->start);
587 btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
588 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
589 new_root_item);
590 free_extent_buffer(tmp);
591 if (ret)
592 goto fail;
593
594 /*
595 * insert the directory item
596 */
597 key.offset = (u64)-1;
598 ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
599 pending->name, strlen(pending->name),
600 root->fs_info->sb->s_root->d_inode->i_ino,
601 &key, BTRFS_FT_DIR);
602
603 if (ret)
604 goto fail;
605
606 ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
607 pending->name, strlen(pending->name), objectid,
608 root->fs_info->sb->s_root->d_inode->i_ino);
609 fail:
610 kfree(new_root_item);
611 return ret;
612 }
613
614 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
615 struct btrfs_fs_info *fs_info)
616 {
617 struct btrfs_pending_snapshot *pending;
618 struct list_head *head = &trans->transaction->pending_snapshots;
619 int ret;
620
621 while(!list_empty(head)) {
622 pending = list_entry(head->next,
623 struct btrfs_pending_snapshot, list);
624 ret = create_pending_snapshot(trans, fs_info, pending);
625 BUG_ON(ret);
626 list_del(&pending->list);
627 kfree(pending->name);
628 kfree(pending);
629 }
630 return 0;
631 }
632
633 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
634 struct btrfs_root *root)
635 {
636 unsigned long joined = 0;
637 unsigned long timeout = 1;
638 struct btrfs_transaction *cur_trans;
639 struct btrfs_transaction *prev_trans = NULL;
640 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
641 struct list_head dirty_fs_roots;
642 struct extent_io_tree *pinned_copy;
643 DEFINE_WAIT(wait);
644 int ret;
645
646 INIT_LIST_HEAD(&dirty_fs_roots);
647
648 mutex_lock(&root->fs_info->trans_mutex);
649 if (trans->transaction->in_commit) {
650 cur_trans = trans->transaction;
651 trans->transaction->use_count++;
652 mutex_unlock(&root->fs_info->trans_mutex);
653 btrfs_end_transaction(trans, root);
654
655 mutex_unlock(&root->fs_info->fs_mutex);
656 ret = wait_for_commit(root, cur_trans);
657 BUG_ON(ret);
658
659 mutex_lock(&root->fs_info->trans_mutex);
660 put_transaction(cur_trans);
661 mutex_unlock(&root->fs_info->trans_mutex);
662
663 mutex_lock(&root->fs_info->fs_mutex);
664 return 0;
665 }
666
667 pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
668 if (!pinned_copy)
669 return -ENOMEM;
670
671 extent_io_tree_init(pinned_copy,
672 root->fs_info->btree_inode->i_mapping, GFP_NOFS);
673
674 trans->transaction->in_commit = 1;
675 cur_trans = trans->transaction;
676 if (cur_trans->list.prev != &root->fs_info->trans_list) {
677 prev_trans = list_entry(cur_trans->list.prev,
678 struct btrfs_transaction, list);
679 if (!prev_trans->commit_done) {
680 prev_trans->use_count++;
681 mutex_unlock(&root->fs_info->fs_mutex);
682 mutex_unlock(&root->fs_info->trans_mutex);
683
684 wait_for_commit(root, prev_trans);
685
686 mutex_lock(&root->fs_info->fs_mutex);
687 mutex_lock(&root->fs_info->trans_mutex);
688 put_transaction(prev_trans);
689 }
690 }
691
692 do {
693 joined = cur_trans->num_joined;
694 WARN_ON(cur_trans != trans->transaction);
695 prepare_to_wait(&cur_trans->writer_wait, &wait,
696 TASK_UNINTERRUPTIBLE);
697
698 if (cur_trans->num_writers > 1)
699 timeout = MAX_SCHEDULE_TIMEOUT;
700 else
701 timeout = 1;
702
703 mutex_unlock(&root->fs_info->fs_mutex);
704 mutex_unlock(&root->fs_info->trans_mutex);
705
706 schedule_timeout(timeout);
707
708 mutex_lock(&root->fs_info->fs_mutex);
709 mutex_lock(&root->fs_info->trans_mutex);
710 finish_wait(&cur_trans->writer_wait, &wait);
711 ret = btrfs_write_ordered_inodes(trans, root);
712
713 } while (cur_trans->num_writers > 1 ||
714 (cur_trans->num_joined != joined));
715
716 ret = create_pending_snapshots(trans, root->fs_info);
717 BUG_ON(ret);
718
719 WARN_ON(cur_trans != trans->transaction);
720
721 ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
722 &dirty_fs_roots);
723 BUG_ON(ret);
724
725 ret = btrfs_commit_tree_roots(trans, root);
726 BUG_ON(ret);
727
728 cur_trans = root->fs_info->running_transaction;
729 spin_lock(&root->fs_info->new_trans_lock);
730 root->fs_info->running_transaction = NULL;
731 spin_unlock(&root->fs_info->new_trans_lock);
732 btrfs_set_super_generation(&root->fs_info->super_copy,
733 cur_trans->transid);
734 btrfs_set_super_root(&root->fs_info->super_copy,
735 root->fs_info->tree_root->node->start);
736 btrfs_set_super_root_level(&root->fs_info->super_copy,
737 btrfs_header_level(root->fs_info->tree_root->node));
738
739 btrfs_set_super_chunk_root(&root->fs_info->super_copy,
740 chunk_root->node->start);
741 btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
742 btrfs_header_level(chunk_root->node));
743 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
744 sizeof(root->fs_info->super_copy));
745
746 btrfs_copy_pinned(root, pinned_copy);
747
748 mutex_unlock(&root->fs_info->trans_mutex);
749 mutex_unlock(&root->fs_info->fs_mutex);
750 ret = btrfs_write_and_wait_transaction(trans, root);
751 BUG_ON(ret);
752 write_ctree_super(trans, root);
753
754 mutex_lock(&root->fs_info->fs_mutex);
755 btrfs_finish_extent_commit(trans, root, pinned_copy);
756 mutex_lock(&root->fs_info->trans_mutex);
757
758 kfree(pinned_copy);
759
760 cur_trans->commit_done = 1;
761 root->fs_info->last_trans_committed = cur_trans->transid;
762 wake_up(&cur_trans->commit_wait);
763 put_transaction(cur_trans);
764 put_transaction(cur_trans);
765
766 if (root->fs_info->closing)
767 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
768 else
769 list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
770
771 mutex_unlock(&root->fs_info->trans_mutex);
772 kmem_cache_free(btrfs_trans_handle_cachep, trans);
773
774 if (root->fs_info->closing) {
775 mutex_unlock(&root->fs_info->fs_mutex);
776 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
777 mutex_lock(&root->fs_info->fs_mutex);
778 }
779 return ret;
780 }
781
782 int btrfs_clean_old_snapshots(struct btrfs_root *root)
783 {
784 struct list_head dirty_roots;
785 INIT_LIST_HEAD(&dirty_roots);
786
787 mutex_lock(&root->fs_info->trans_mutex);
788 list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
789 mutex_unlock(&root->fs_info->trans_mutex);
790
791 if (!list_empty(&dirty_roots)) {
792 drop_dirty_roots(root, &dirty_roots);
793 }
794 return 0;
795 }
796 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
797 void btrfs_transaction_cleaner(void *p)
798 #else
799 void btrfs_transaction_cleaner(struct work_struct *work)
800 #endif
801 {
802 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
803 struct btrfs_fs_info *fs_info = p;
804 #else
805 struct btrfs_fs_info *fs_info = container_of(work,
806 struct btrfs_fs_info,
807 trans_work.work);
808
809 #endif
810 struct btrfs_root *root = fs_info->tree_root;
811 struct btrfs_transaction *cur;
812 struct btrfs_trans_handle *trans;
813 unsigned long now;
814 unsigned long delay = HZ * 30;
815 int ret;
816
817 mutex_lock(&root->fs_info->fs_mutex);
818 if (root->fs_info->closing)
819 goto out;
820
821 mutex_lock(&root->fs_info->trans_mutex);
822 cur = root->fs_info->running_transaction;
823 if (!cur) {
824 mutex_unlock(&root->fs_info->trans_mutex);
825 goto out;
826 }
827 now = get_seconds();
828 if (now < cur->start_time || now - cur->start_time < 30) {
829 mutex_unlock(&root->fs_info->trans_mutex);
830 delay = HZ * 5;
831 goto out;
832 }
833 mutex_unlock(&root->fs_info->trans_mutex);
834 btrfs_defrag_dirty_roots(root->fs_info);
835 trans = btrfs_start_transaction(root, 1);
836 ret = btrfs_commit_transaction(trans, root);
837 out:
838 mutex_unlock(&root->fs_info->fs_mutex);
839 btrfs_clean_old_snapshots(root);
840 btrfs_transaction_queue_work(root, delay);
841 }
842
843 void btrfs_transaction_queue_work(struct btrfs_root *root, int delay)
844 {
845 if (!root->fs_info->closing)
846 queue_delayed_work(trans_wq, &root->fs_info->trans_work, delay);
847 }
848
849 void btrfs_transaction_flush_work(struct btrfs_root *root)
850 {
851 cancel_delayed_work(&root->fs_info->trans_work);
852 flush_workqueue(trans_wq);
853 }
854
855 void __init btrfs_init_transaction_sys(void)
856 {
857 trans_wq = create_workqueue("btrfs-transaction");
858 }
859
860 void btrfs_exit_transaction_sys(void)
861 {
862 destroy_workqueue(trans_wq);
863 }
864
This page took 0.055106 seconds and 6 git commands to generate.