Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming...
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 while (!list_empty(&transaction->pending_chunks)) {
68 struct extent_map *em;
69
70 em = list_first_entry(&transaction->pending_chunks,
71 struct extent_map, list);
72 list_del_init(&em->list);
73 free_extent_map(em);
74 }
75 kmem_cache_free(btrfs_transaction_cachep, transaction);
76 }
77 }
78
79 static void clear_btree_io_tree(struct extent_io_tree *tree)
80 {
81 spin_lock(&tree->lock);
82 while (!RB_EMPTY_ROOT(&tree->state)) {
83 struct rb_node *node;
84 struct extent_state *state;
85
86 node = rb_first(&tree->state);
87 state = rb_entry(node, struct extent_state, rb_node);
88 rb_erase(&state->rb_node, &tree->state);
89 RB_CLEAR_NODE(&state->rb_node);
90 /*
91 * btree io trees aren't supposed to have tasks waiting for
92 * changes in the flags of extent states ever.
93 */
94 ASSERT(!waitqueue_active(&state->wq));
95 free_extent_state(state);
96 if (need_resched()) {
97 spin_unlock(&tree->lock);
98 cond_resched();
99 spin_lock(&tree->lock);
100 }
101 }
102 spin_unlock(&tree->lock);
103 }
104
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 struct btrfs_fs_info *fs_info)
107 {
108 struct btrfs_root *root, *tmp;
109
110 down_write(&fs_info->commit_root_sem);
111 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 dirty_list) {
113 list_del_init(&root->dirty_list);
114 free_extent_buffer(root->commit_root);
115 root->commit_root = btrfs_root_node(root);
116 if (is_fstree(root->objectid))
117 btrfs_unpin_free_ino(root);
118 clear_btree_io_tree(&root->dirty_log_pages);
119 }
120 up_write(&fs_info->commit_root_sem);
121 }
122
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 unsigned int type)
125 {
126 if (type & TRANS_EXTWRITERS)
127 atomic_inc(&trans->num_extwriters);
128 }
129
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 unsigned int type)
132 {
133 if (type & TRANS_EXTWRITERS)
134 atomic_dec(&trans->num_extwriters);
135 }
136
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 unsigned int type)
139 {
140 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 return atomic_read(&trans->num_extwriters);
146 }
147
148 /*
149 * either allocate a new transaction or hop into the existing one
150 */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 struct btrfs_transaction *cur_trans;
154 struct btrfs_fs_info *fs_info = root->fs_info;
155
156 spin_lock(&fs_info->trans_lock);
157 loop:
158 /* The file system has been taken offline. No new transactions. */
159 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 spin_unlock(&fs_info->trans_lock);
161 return -EROFS;
162 }
163
164 cur_trans = fs_info->running_transaction;
165 if (cur_trans) {
166 if (cur_trans->aborted) {
167 spin_unlock(&fs_info->trans_lock);
168 return cur_trans->aborted;
169 }
170 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 spin_unlock(&fs_info->trans_lock);
172 return -EBUSY;
173 }
174 atomic_inc(&cur_trans->use_count);
175 atomic_inc(&cur_trans->num_writers);
176 extwriter_counter_inc(cur_trans, type);
177 spin_unlock(&fs_info->trans_lock);
178 return 0;
179 }
180 spin_unlock(&fs_info->trans_lock);
181
182 /*
183 * If we are ATTACH, we just want to catch the current transaction,
184 * and commit it. If there is no transaction, just return ENOENT.
185 */
186 if (type == TRANS_ATTACH)
187 return -ENOENT;
188
189 /*
190 * JOIN_NOLOCK only happens during the transaction commit, so
191 * it is impossible that ->running_transaction is NULL
192 */
193 BUG_ON(type == TRANS_JOIN_NOLOCK);
194
195 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 if (!cur_trans)
197 return -ENOMEM;
198
199 spin_lock(&fs_info->trans_lock);
200 if (fs_info->running_transaction) {
201 /*
202 * someone started a transaction after we unlocked. Make sure
203 * to redo the checks above
204 */
205 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 goto loop;
207 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 spin_unlock(&fs_info->trans_lock);
209 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 return -EROFS;
211 }
212
213 atomic_set(&cur_trans->num_writers, 1);
214 extwriter_counter_init(cur_trans, type);
215 init_waitqueue_head(&cur_trans->writer_wait);
216 init_waitqueue_head(&cur_trans->commit_wait);
217 cur_trans->state = TRANS_STATE_RUNNING;
218 /*
219 * One for this trans handle, one so it will live on until we
220 * commit the transaction.
221 */
222 atomic_set(&cur_trans->use_count, 2);
223 cur_trans->have_free_bgs = 0;
224 cur_trans->start_time = get_seconds();
225
226 cur_trans->delayed_refs.href_root = RB_ROOT;
227 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
228 cur_trans->delayed_refs.num_heads_ready = 0;
229 cur_trans->delayed_refs.num_heads = 0;
230 cur_trans->delayed_refs.flushing = 0;
231 cur_trans->delayed_refs.run_delayed_start = 0;
232
233 /*
234 * although the tree mod log is per file system and not per transaction,
235 * the log must never go across transaction boundaries.
236 */
237 smp_mb();
238 if (!list_empty(&fs_info->tree_mod_seq_list))
239 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
240 "creating a fresh transaction\n");
241 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
242 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
243 "creating a fresh transaction\n");
244 atomic64_set(&fs_info->tree_mod_seq, 0);
245
246 spin_lock_init(&cur_trans->delayed_refs.lock);
247
248 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
249 INIT_LIST_HEAD(&cur_trans->pending_chunks);
250 INIT_LIST_HEAD(&cur_trans->switch_commits);
251 INIT_LIST_HEAD(&cur_trans->pending_ordered);
252 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
253 spin_lock_init(&cur_trans->dirty_bgs_lock);
254 list_add_tail(&cur_trans->list, &fs_info->trans_list);
255 extent_io_tree_init(&cur_trans->dirty_pages,
256 fs_info->btree_inode->i_mapping);
257 fs_info->generation++;
258 cur_trans->transid = fs_info->generation;
259 fs_info->running_transaction = cur_trans;
260 cur_trans->aborted = 0;
261 spin_unlock(&fs_info->trans_lock);
262
263 return 0;
264 }
265
266 /*
267 * this does all the record keeping required to make sure that a reference
268 * counted root is properly recorded in a given transaction. This is required
269 * to make sure the old root from before we joined the transaction is deleted
270 * when the transaction commits
271 */
272 static int record_root_in_trans(struct btrfs_trans_handle *trans,
273 struct btrfs_root *root)
274 {
275 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
276 root->last_trans < trans->transid) {
277 WARN_ON(root == root->fs_info->extent_root);
278 WARN_ON(root->commit_root != root->node);
279
280 /*
281 * see below for IN_TRANS_SETUP usage rules
282 * we have the reloc mutex held now, so there
283 * is only one writer in this function
284 */
285 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
286
287 /* make sure readers find IN_TRANS_SETUP before
288 * they find our root->last_trans update
289 */
290 smp_wmb();
291
292 spin_lock(&root->fs_info->fs_roots_radix_lock);
293 if (root->last_trans == trans->transid) {
294 spin_unlock(&root->fs_info->fs_roots_radix_lock);
295 return 0;
296 }
297 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
298 (unsigned long)root->root_key.objectid,
299 BTRFS_ROOT_TRANS_TAG);
300 spin_unlock(&root->fs_info->fs_roots_radix_lock);
301 root->last_trans = trans->transid;
302
303 /* this is pretty tricky. We don't want to
304 * take the relocation lock in btrfs_record_root_in_trans
305 * unless we're really doing the first setup for this root in
306 * this transaction.
307 *
308 * Normally we'd use root->last_trans as a flag to decide
309 * if we want to take the expensive mutex.
310 *
311 * But, we have to set root->last_trans before we
312 * init the relocation root, otherwise, we trip over warnings
313 * in ctree.c. The solution used here is to flag ourselves
314 * with root IN_TRANS_SETUP. When this is 1, we're still
315 * fixing up the reloc trees and everyone must wait.
316 *
317 * When this is zero, they can trust root->last_trans and fly
318 * through btrfs_record_root_in_trans without having to take the
319 * lock. smp_wmb() makes sure that all the writes above are
320 * done before we pop in the zero below
321 */
322 btrfs_init_reloc_root(trans, root);
323 smp_mb__before_atomic();
324 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
325 }
326 return 0;
327 }
328
329
330 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
331 struct btrfs_root *root)
332 {
333 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
334 return 0;
335
336 /*
337 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
338 * and barriers
339 */
340 smp_rmb();
341 if (root->last_trans == trans->transid &&
342 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
343 return 0;
344
345 mutex_lock(&root->fs_info->reloc_mutex);
346 record_root_in_trans(trans, root);
347 mutex_unlock(&root->fs_info->reloc_mutex);
348
349 return 0;
350 }
351
352 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
353 {
354 return (trans->state >= TRANS_STATE_BLOCKED &&
355 trans->state < TRANS_STATE_UNBLOCKED &&
356 !trans->aborted);
357 }
358
359 /* wait for commit against the current transaction to become unblocked
360 * when this is done, it is safe to start a new transaction, but the current
361 * transaction might not be fully on disk.
362 */
363 static void wait_current_trans(struct btrfs_root *root)
364 {
365 struct btrfs_transaction *cur_trans;
366
367 spin_lock(&root->fs_info->trans_lock);
368 cur_trans = root->fs_info->running_transaction;
369 if (cur_trans && is_transaction_blocked(cur_trans)) {
370 atomic_inc(&cur_trans->use_count);
371 spin_unlock(&root->fs_info->trans_lock);
372
373 wait_event(root->fs_info->transaction_wait,
374 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
375 cur_trans->aborted);
376 btrfs_put_transaction(cur_trans);
377 } else {
378 spin_unlock(&root->fs_info->trans_lock);
379 }
380 }
381
382 static int may_wait_transaction(struct btrfs_root *root, int type)
383 {
384 if (root->fs_info->log_root_recovering)
385 return 0;
386
387 if (type == TRANS_USERSPACE)
388 return 1;
389
390 if (type == TRANS_START &&
391 !atomic_read(&root->fs_info->open_ioctl_trans))
392 return 1;
393
394 return 0;
395 }
396
397 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
398 {
399 if (!root->fs_info->reloc_ctl ||
400 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
401 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
402 root->reloc_root)
403 return false;
404
405 return true;
406 }
407
408 static struct btrfs_trans_handle *
409 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
410 enum btrfs_reserve_flush_enum flush)
411 {
412 struct btrfs_trans_handle *h;
413 struct btrfs_transaction *cur_trans;
414 u64 num_bytes = 0;
415 u64 qgroup_reserved = 0;
416 bool reloc_reserved = false;
417 int ret;
418
419 /* Send isn't supposed to start transactions. */
420 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
421
422 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
423 return ERR_PTR(-EROFS);
424
425 if (current->journal_info) {
426 WARN_ON(type & TRANS_EXTWRITERS);
427 h = current->journal_info;
428 h->use_count++;
429 WARN_ON(h->use_count > 2);
430 h->orig_rsv = h->block_rsv;
431 h->block_rsv = NULL;
432 goto got_it;
433 }
434
435 /*
436 * Do the reservation before we join the transaction so we can do all
437 * the appropriate flushing if need be.
438 */
439 if (num_items > 0 && root != root->fs_info->chunk_root) {
440 if (root->fs_info->quota_enabled &&
441 is_fstree(root->root_key.objectid)) {
442 qgroup_reserved = num_items * root->nodesize;
443 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
444 if (ret)
445 return ERR_PTR(ret);
446 }
447
448 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
449 /*
450 * Do the reservation for the relocation root creation
451 */
452 if (need_reserve_reloc_root(root)) {
453 num_bytes += root->nodesize;
454 reloc_reserved = true;
455 }
456
457 ret = btrfs_block_rsv_add(root,
458 &root->fs_info->trans_block_rsv,
459 num_bytes, flush);
460 if (ret)
461 goto reserve_fail;
462 }
463 again:
464 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
465 if (!h) {
466 ret = -ENOMEM;
467 goto alloc_fail;
468 }
469
470 /*
471 * If we are JOIN_NOLOCK we're already committing a transaction and
472 * waiting on this guy, so we don't need to do the sb_start_intwrite
473 * because we're already holding a ref. We need this because we could
474 * have raced in and did an fsync() on a file which can kick a commit
475 * and then we deadlock with somebody doing a freeze.
476 *
477 * If we are ATTACH, it means we just want to catch the current
478 * transaction and commit it, so we needn't do sb_start_intwrite().
479 */
480 if (type & __TRANS_FREEZABLE)
481 sb_start_intwrite(root->fs_info->sb);
482
483 if (may_wait_transaction(root, type))
484 wait_current_trans(root);
485
486 do {
487 ret = join_transaction(root, type);
488 if (ret == -EBUSY) {
489 wait_current_trans(root);
490 if (unlikely(type == TRANS_ATTACH))
491 ret = -ENOENT;
492 }
493 } while (ret == -EBUSY);
494
495 if (ret < 0) {
496 /* We must get the transaction if we are JOIN_NOLOCK. */
497 BUG_ON(type == TRANS_JOIN_NOLOCK);
498 goto join_fail;
499 }
500
501 cur_trans = root->fs_info->running_transaction;
502
503 h->transid = cur_trans->transid;
504 h->transaction = cur_trans;
505 h->blocks_used = 0;
506 h->bytes_reserved = 0;
507 h->root = root;
508 h->delayed_ref_updates = 0;
509 h->use_count = 1;
510 h->adding_csums = 0;
511 h->block_rsv = NULL;
512 h->orig_rsv = NULL;
513 h->aborted = 0;
514 h->qgroup_reserved = 0;
515 h->delayed_ref_elem.seq = 0;
516 h->type = type;
517 h->allocating_chunk = false;
518 h->reloc_reserved = false;
519 h->sync = false;
520 INIT_LIST_HEAD(&h->qgroup_ref_list);
521 INIT_LIST_HEAD(&h->new_bgs);
522 INIT_LIST_HEAD(&h->ordered);
523
524 smp_mb();
525 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
526 may_wait_transaction(root, type)) {
527 current->journal_info = h;
528 btrfs_commit_transaction(h, root);
529 goto again;
530 }
531
532 if (num_bytes) {
533 trace_btrfs_space_reservation(root->fs_info, "transaction",
534 h->transid, num_bytes, 1);
535 h->block_rsv = &root->fs_info->trans_block_rsv;
536 h->bytes_reserved = num_bytes;
537 h->reloc_reserved = reloc_reserved;
538 }
539 h->qgroup_reserved = qgroup_reserved;
540
541 got_it:
542 btrfs_record_root_in_trans(h, root);
543
544 if (!current->journal_info && type != TRANS_USERSPACE)
545 current->journal_info = h;
546 return h;
547
548 join_fail:
549 if (type & __TRANS_FREEZABLE)
550 sb_end_intwrite(root->fs_info->sb);
551 kmem_cache_free(btrfs_trans_handle_cachep, h);
552 alloc_fail:
553 if (num_bytes)
554 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
555 num_bytes);
556 reserve_fail:
557 if (qgroup_reserved)
558 btrfs_qgroup_free(root, qgroup_reserved);
559 return ERR_PTR(ret);
560 }
561
562 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
563 int num_items)
564 {
565 return start_transaction(root, num_items, TRANS_START,
566 BTRFS_RESERVE_FLUSH_ALL);
567 }
568
569 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
570 struct btrfs_root *root, int num_items)
571 {
572 return start_transaction(root, num_items, TRANS_START,
573 BTRFS_RESERVE_FLUSH_LIMIT);
574 }
575
576 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
577 {
578 return start_transaction(root, 0, TRANS_JOIN, 0);
579 }
580
581 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
582 {
583 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
584 }
585
586 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
587 {
588 return start_transaction(root, 0, TRANS_USERSPACE, 0);
589 }
590
591 /*
592 * btrfs_attach_transaction() - catch the running transaction
593 *
594 * It is used when we want to commit the current the transaction, but
595 * don't want to start a new one.
596 *
597 * Note: If this function return -ENOENT, it just means there is no
598 * running transaction. But it is possible that the inactive transaction
599 * is still in the memory, not fully on disk. If you hope there is no
600 * inactive transaction in the fs when -ENOENT is returned, you should
601 * invoke
602 * btrfs_attach_transaction_barrier()
603 */
604 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
605 {
606 return start_transaction(root, 0, TRANS_ATTACH, 0);
607 }
608
609 /*
610 * btrfs_attach_transaction_barrier() - catch the running transaction
611 *
612 * It is similar to the above function, the differentia is this one
613 * will wait for all the inactive transactions until they fully
614 * complete.
615 */
616 struct btrfs_trans_handle *
617 btrfs_attach_transaction_barrier(struct btrfs_root *root)
618 {
619 struct btrfs_trans_handle *trans;
620
621 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
622 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
623 btrfs_wait_for_commit(root, 0);
624
625 return trans;
626 }
627
628 /* wait for a transaction commit to be fully complete */
629 static noinline void wait_for_commit(struct btrfs_root *root,
630 struct btrfs_transaction *commit)
631 {
632 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
633 }
634
635 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
636 {
637 struct btrfs_transaction *cur_trans = NULL, *t;
638 int ret = 0;
639
640 if (transid) {
641 if (transid <= root->fs_info->last_trans_committed)
642 goto out;
643
644 /* find specified transaction */
645 spin_lock(&root->fs_info->trans_lock);
646 list_for_each_entry(t, &root->fs_info->trans_list, list) {
647 if (t->transid == transid) {
648 cur_trans = t;
649 atomic_inc(&cur_trans->use_count);
650 ret = 0;
651 break;
652 }
653 if (t->transid > transid) {
654 ret = 0;
655 break;
656 }
657 }
658 spin_unlock(&root->fs_info->trans_lock);
659
660 /*
661 * The specified transaction doesn't exist, or we
662 * raced with btrfs_commit_transaction
663 */
664 if (!cur_trans) {
665 if (transid > root->fs_info->last_trans_committed)
666 ret = -EINVAL;
667 goto out;
668 }
669 } else {
670 /* find newest transaction that is committing | committed */
671 spin_lock(&root->fs_info->trans_lock);
672 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
673 list) {
674 if (t->state >= TRANS_STATE_COMMIT_START) {
675 if (t->state == TRANS_STATE_COMPLETED)
676 break;
677 cur_trans = t;
678 atomic_inc(&cur_trans->use_count);
679 break;
680 }
681 }
682 spin_unlock(&root->fs_info->trans_lock);
683 if (!cur_trans)
684 goto out; /* nothing committing|committed */
685 }
686
687 wait_for_commit(root, cur_trans);
688 btrfs_put_transaction(cur_trans);
689 out:
690 return ret;
691 }
692
693 void btrfs_throttle(struct btrfs_root *root)
694 {
695 if (!atomic_read(&root->fs_info->open_ioctl_trans))
696 wait_current_trans(root);
697 }
698
699 static int should_end_transaction(struct btrfs_trans_handle *trans,
700 struct btrfs_root *root)
701 {
702 if (root->fs_info->global_block_rsv.space_info->full &&
703 btrfs_check_space_for_delayed_refs(trans, root))
704 return 1;
705
706 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
707 }
708
709 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
710 struct btrfs_root *root)
711 {
712 struct btrfs_transaction *cur_trans = trans->transaction;
713 int updates;
714 int err;
715
716 smp_mb();
717 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
718 cur_trans->delayed_refs.flushing)
719 return 1;
720
721 updates = trans->delayed_ref_updates;
722 trans->delayed_ref_updates = 0;
723 if (updates) {
724 err = btrfs_run_delayed_refs(trans, root, updates);
725 if (err) /* Error code will also eval true */
726 return err;
727 }
728
729 return should_end_transaction(trans, root);
730 }
731
732 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
733 struct btrfs_root *root, int throttle)
734 {
735 struct btrfs_transaction *cur_trans = trans->transaction;
736 struct btrfs_fs_info *info = root->fs_info;
737 unsigned long cur = trans->delayed_ref_updates;
738 int lock = (trans->type != TRANS_JOIN_NOLOCK);
739 int err = 0;
740 int must_run_delayed_refs = 0;
741
742 if (trans->use_count > 1) {
743 trans->use_count--;
744 trans->block_rsv = trans->orig_rsv;
745 return 0;
746 }
747
748 btrfs_trans_release_metadata(trans, root);
749 trans->block_rsv = NULL;
750
751 if (!list_empty(&trans->new_bgs))
752 btrfs_create_pending_block_groups(trans, root);
753
754 if (!list_empty(&trans->ordered)) {
755 spin_lock(&info->trans_lock);
756 list_splice(&trans->ordered, &cur_trans->pending_ordered);
757 spin_unlock(&info->trans_lock);
758 }
759
760 trans->delayed_ref_updates = 0;
761 if (!trans->sync) {
762 must_run_delayed_refs =
763 btrfs_should_throttle_delayed_refs(trans, root);
764 cur = max_t(unsigned long, cur, 32);
765
766 /*
767 * don't make the caller wait if they are from a NOLOCK
768 * or ATTACH transaction, it will deadlock with commit
769 */
770 if (must_run_delayed_refs == 1 &&
771 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
772 must_run_delayed_refs = 2;
773 }
774
775 if (trans->qgroup_reserved) {
776 /*
777 * the same root has to be passed here between start_transaction
778 * and end_transaction. Subvolume quota depends on this.
779 */
780 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
781 trans->qgroup_reserved = 0;
782 }
783
784 btrfs_trans_release_metadata(trans, root);
785 trans->block_rsv = NULL;
786
787 if (!list_empty(&trans->new_bgs))
788 btrfs_create_pending_block_groups(trans, root);
789
790 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
791 should_end_transaction(trans, root) &&
792 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
793 spin_lock(&info->trans_lock);
794 if (cur_trans->state == TRANS_STATE_RUNNING)
795 cur_trans->state = TRANS_STATE_BLOCKED;
796 spin_unlock(&info->trans_lock);
797 }
798
799 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
800 if (throttle)
801 return btrfs_commit_transaction(trans, root);
802 else
803 wake_up_process(info->transaction_kthread);
804 }
805
806 if (trans->type & __TRANS_FREEZABLE)
807 sb_end_intwrite(root->fs_info->sb);
808
809 WARN_ON(cur_trans != info->running_transaction);
810 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
811 atomic_dec(&cur_trans->num_writers);
812 extwriter_counter_dec(cur_trans, trans->type);
813
814 smp_mb();
815 if (waitqueue_active(&cur_trans->writer_wait))
816 wake_up(&cur_trans->writer_wait);
817 btrfs_put_transaction(cur_trans);
818
819 if (current->journal_info == trans)
820 current->journal_info = NULL;
821
822 if (throttle)
823 btrfs_run_delayed_iputs(root);
824
825 if (trans->aborted ||
826 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
827 wake_up_process(info->transaction_kthread);
828 err = -EIO;
829 }
830 assert_qgroups_uptodate(trans);
831
832 kmem_cache_free(btrfs_trans_handle_cachep, trans);
833 if (must_run_delayed_refs) {
834 btrfs_async_run_delayed_refs(root, cur,
835 must_run_delayed_refs == 1);
836 }
837 return err;
838 }
839
840 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root)
842 {
843 return __btrfs_end_transaction(trans, root, 0);
844 }
845
846 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
847 struct btrfs_root *root)
848 {
849 return __btrfs_end_transaction(trans, root, 1);
850 }
851
852 /*
853 * when btree blocks are allocated, they have some corresponding bits set for
854 * them in one of two extent_io trees. This is used to make sure all of
855 * those extents are sent to disk but does not wait on them
856 */
857 int btrfs_write_marked_extents(struct btrfs_root *root,
858 struct extent_io_tree *dirty_pages, int mark)
859 {
860 int err = 0;
861 int werr = 0;
862 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
863 struct extent_state *cached_state = NULL;
864 u64 start = 0;
865 u64 end;
866
867 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
868 mark, &cached_state)) {
869 bool wait_writeback = false;
870
871 err = convert_extent_bit(dirty_pages, start, end,
872 EXTENT_NEED_WAIT,
873 mark, &cached_state, GFP_NOFS);
874 /*
875 * convert_extent_bit can return -ENOMEM, which is most of the
876 * time a temporary error. So when it happens, ignore the error
877 * and wait for writeback of this range to finish - because we
878 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
879 * to btrfs_wait_marked_extents() would not know that writeback
880 * for this range started and therefore wouldn't wait for it to
881 * finish - we don't want to commit a superblock that points to
882 * btree nodes/leafs for which writeback hasn't finished yet
883 * (and without errors).
884 * We cleanup any entries left in the io tree when committing
885 * the transaction (through clear_btree_io_tree()).
886 */
887 if (err == -ENOMEM) {
888 err = 0;
889 wait_writeback = true;
890 }
891 if (!err)
892 err = filemap_fdatawrite_range(mapping, start, end);
893 if (err)
894 werr = err;
895 else if (wait_writeback)
896 werr = filemap_fdatawait_range(mapping, start, end);
897 free_extent_state(cached_state);
898 cached_state = NULL;
899 cond_resched();
900 start = end + 1;
901 }
902 return werr;
903 }
904
905 /*
906 * when btree blocks are allocated, they have some corresponding bits set for
907 * them in one of two extent_io trees. This is used to make sure all of
908 * those extents are on disk for transaction or log commit. We wait
909 * on all the pages and clear them from the dirty pages state tree
910 */
911 int btrfs_wait_marked_extents(struct btrfs_root *root,
912 struct extent_io_tree *dirty_pages, int mark)
913 {
914 int err = 0;
915 int werr = 0;
916 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
917 struct extent_state *cached_state = NULL;
918 u64 start = 0;
919 u64 end;
920 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
921 bool errors = false;
922
923 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
924 EXTENT_NEED_WAIT, &cached_state)) {
925 /*
926 * Ignore -ENOMEM errors returned by clear_extent_bit().
927 * When committing the transaction, we'll remove any entries
928 * left in the io tree. For a log commit, we don't remove them
929 * after committing the log because the tree can be accessed
930 * concurrently - we do it only at transaction commit time when
931 * it's safe to do it (through clear_btree_io_tree()).
932 */
933 err = clear_extent_bit(dirty_pages, start, end,
934 EXTENT_NEED_WAIT,
935 0, 0, &cached_state, GFP_NOFS);
936 if (err == -ENOMEM)
937 err = 0;
938 if (!err)
939 err = filemap_fdatawait_range(mapping, start, end);
940 if (err)
941 werr = err;
942 free_extent_state(cached_state);
943 cached_state = NULL;
944 cond_resched();
945 start = end + 1;
946 }
947 if (err)
948 werr = err;
949
950 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
951 if ((mark & EXTENT_DIRTY) &&
952 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
953 &btree_ino->runtime_flags))
954 errors = true;
955
956 if ((mark & EXTENT_NEW) &&
957 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
958 &btree_ino->runtime_flags))
959 errors = true;
960 } else {
961 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
962 &btree_ino->runtime_flags))
963 errors = true;
964 }
965
966 if (errors && !werr)
967 werr = -EIO;
968
969 return werr;
970 }
971
972 /*
973 * when btree blocks are allocated, they have some corresponding bits set for
974 * them in one of two extent_io trees. This is used to make sure all of
975 * those extents are on disk for transaction or log commit
976 */
977 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
978 struct extent_io_tree *dirty_pages, int mark)
979 {
980 int ret;
981 int ret2;
982 struct blk_plug plug;
983
984 blk_start_plug(&plug);
985 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
986 blk_finish_plug(&plug);
987 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
988
989 if (ret)
990 return ret;
991 if (ret2)
992 return ret2;
993 return 0;
994 }
995
996 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
997 struct btrfs_root *root)
998 {
999 int ret;
1000
1001 ret = btrfs_write_and_wait_marked_extents(root,
1002 &trans->transaction->dirty_pages,
1003 EXTENT_DIRTY);
1004 clear_btree_io_tree(&trans->transaction->dirty_pages);
1005
1006 return ret;
1007 }
1008
1009 /*
1010 * this is used to update the root pointer in the tree of tree roots.
1011 *
1012 * But, in the case of the extent allocation tree, updating the root
1013 * pointer may allocate blocks which may change the root of the extent
1014 * allocation tree.
1015 *
1016 * So, this loops and repeats and makes sure the cowonly root didn't
1017 * change while the root pointer was being updated in the metadata.
1018 */
1019 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1020 struct btrfs_root *root)
1021 {
1022 int ret;
1023 u64 old_root_bytenr;
1024 u64 old_root_used;
1025 struct btrfs_root *tree_root = root->fs_info->tree_root;
1026 bool extent_root = (root->objectid == BTRFS_EXTENT_TREE_OBJECTID);
1027
1028 old_root_used = btrfs_root_used(&root->root_item);
1029 btrfs_write_dirty_block_groups(trans, root);
1030
1031 while (1) {
1032 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1033 if (old_root_bytenr == root->node->start &&
1034 old_root_used == btrfs_root_used(&root->root_item) &&
1035 (!extent_root ||
1036 list_empty(&trans->transaction->dirty_bgs)))
1037 break;
1038
1039 btrfs_set_root_node(&root->root_item, root->node);
1040 ret = btrfs_update_root(trans, tree_root,
1041 &root->root_key,
1042 &root->root_item);
1043 if (ret)
1044 return ret;
1045
1046 old_root_used = btrfs_root_used(&root->root_item);
1047 if (extent_root) {
1048 ret = btrfs_write_dirty_block_groups(trans, root);
1049 if (ret)
1050 return ret;
1051 }
1052 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1053 if (ret)
1054 return ret;
1055 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1056 if (ret)
1057 return ret;
1058 }
1059
1060 return 0;
1061 }
1062
1063 /*
1064 * update all the cowonly tree roots on disk
1065 *
1066 * The error handling in this function may not be obvious. Any of the
1067 * failures will cause the file system to go offline. We still need
1068 * to clean up the delayed refs.
1069 */
1070 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root)
1072 {
1073 struct btrfs_fs_info *fs_info = root->fs_info;
1074 struct list_head *next;
1075 struct extent_buffer *eb;
1076 int ret;
1077
1078 eb = btrfs_lock_root_node(fs_info->tree_root);
1079 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1080 0, &eb);
1081 btrfs_tree_unlock(eb);
1082 free_extent_buffer(eb);
1083
1084 if (ret)
1085 return ret;
1086
1087 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1088 if (ret)
1089 return ret;
1090
1091 ret = btrfs_run_dev_stats(trans, root->fs_info);
1092 if (ret)
1093 return ret;
1094 ret = btrfs_run_dev_replace(trans, root->fs_info);
1095 if (ret)
1096 return ret;
1097 ret = btrfs_run_qgroups(trans, root->fs_info);
1098 if (ret)
1099 return ret;
1100
1101 /* run_qgroups might have added some more refs */
1102 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1103 if (ret)
1104 return ret;
1105
1106 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1107 next = fs_info->dirty_cowonly_roots.next;
1108 list_del_init(next);
1109 root = list_entry(next, struct btrfs_root, dirty_list);
1110 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1111
1112 if (root != fs_info->extent_root)
1113 list_add_tail(&root->dirty_list,
1114 &trans->transaction->switch_commits);
1115 ret = update_cowonly_root(trans, root);
1116 if (ret)
1117 return ret;
1118 }
1119
1120 list_add_tail(&fs_info->extent_root->dirty_list,
1121 &trans->transaction->switch_commits);
1122 btrfs_after_dev_replace_commit(fs_info);
1123
1124 return 0;
1125 }
1126
1127 /*
1128 * dead roots are old snapshots that need to be deleted. This allocates
1129 * a dirty root struct and adds it into the list of dead roots that need to
1130 * be deleted
1131 */
1132 void btrfs_add_dead_root(struct btrfs_root *root)
1133 {
1134 spin_lock(&root->fs_info->trans_lock);
1135 if (list_empty(&root->root_list))
1136 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1137 spin_unlock(&root->fs_info->trans_lock);
1138 }
1139
1140 /*
1141 * update all the cowonly tree roots on disk
1142 */
1143 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1144 struct btrfs_root *root)
1145 {
1146 struct btrfs_root *gang[8];
1147 struct btrfs_fs_info *fs_info = root->fs_info;
1148 int i;
1149 int ret;
1150 int err = 0;
1151
1152 spin_lock(&fs_info->fs_roots_radix_lock);
1153 while (1) {
1154 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1155 (void **)gang, 0,
1156 ARRAY_SIZE(gang),
1157 BTRFS_ROOT_TRANS_TAG);
1158 if (ret == 0)
1159 break;
1160 for (i = 0; i < ret; i++) {
1161 root = gang[i];
1162 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1163 (unsigned long)root->root_key.objectid,
1164 BTRFS_ROOT_TRANS_TAG);
1165 spin_unlock(&fs_info->fs_roots_radix_lock);
1166
1167 btrfs_free_log(trans, root);
1168 btrfs_update_reloc_root(trans, root);
1169 btrfs_orphan_commit_root(trans, root);
1170
1171 btrfs_save_ino_cache(root, trans);
1172
1173 /* see comments in should_cow_block() */
1174 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1175 smp_mb__after_atomic();
1176
1177 if (root->commit_root != root->node) {
1178 list_add_tail(&root->dirty_list,
1179 &trans->transaction->switch_commits);
1180 btrfs_set_root_node(&root->root_item,
1181 root->node);
1182 }
1183
1184 err = btrfs_update_root(trans, fs_info->tree_root,
1185 &root->root_key,
1186 &root->root_item);
1187 spin_lock(&fs_info->fs_roots_radix_lock);
1188 if (err)
1189 break;
1190 }
1191 }
1192 spin_unlock(&fs_info->fs_roots_radix_lock);
1193 return err;
1194 }
1195
1196 /*
1197 * defrag a given btree.
1198 * Every leaf in the btree is read and defragged.
1199 */
1200 int btrfs_defrag_root(struct btrfs_root *root)
1201 {
1202 struct btrfs_fs_info *info = root->fs_info;
1203 struct btrfs_trans_handle *trans;
1204 int ret;
1205
1206 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1207 return 0;
1208
1209 while (1) {
1210 trans = btrfs_start_transaction(root, 0);
1211 if (IS_ERR(trans))
1212 return PTR_ERR(trans);
1213
1214 ret = btrfs_defrag_leaves(trans, root);
1215
1216 btrfs_end_transaction(trans, root);
1217 btrfs_btree_balance_dirty(info->tree_root);
1218 cond_resched();
1219
1220 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1221 break;
1222
1223 if (btrfs_defrag_cancelled(root->fs_info)) {
1224 pr_debug("BTRFS: defrag_root cancelled\n");
1225 ret = -EAGAIN;
1226 break;
1227 }
1228 }
1229 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1230 return ret;
1231 }
1232
1233 /*
1234 * new snapshots need to be created at a very specific time in the
1235 * transaction commit. This does the actual creation.
1236 *
1237 * Note:
1238 * If the error which may affect the commitment of the current transaction
1239 * happens, we should return the error number. If the error which just affect
1240 * the creation of the pending snapshots, just return 0.
1241 */
1242 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1243 struct btrfs_fs_info *fs_info,
1244 struct btrfs_pending_snapshot *pending)
1245 {
1246 struct btrfs_key key;
1247 struct btrfs_root_item *new_root_item;
1248 struct btrfs_root *tree_root = fs_info->tree_root;
1249 struct btrfs_root *root = pending->root;
1250 struct btrfs_root *parent_root;
1251 struct btrfs_block_rsv *rsv;
1252 struct inode *parent_inode;
1253 struct btrfs_path *path;
1254 struct btrfs_dir_item *dir_item;
1255 struct dentry *dentry;
1256 struct extent_buffer *tmp;
1257 struct extent_buffer *old;
1258 struct timespec cur_time = CURRENT_TIME;
1259 int ret = 0;
1260 u64 to_reserve = 0;
1261 u64 index = 0;
1262 u64 objectid;
1263 u64 root_flags;
1264 uuid_le new_uuid;
1265
1266 path = btrfs_alloc_path();
1267 if (!path) {
1268 pending->error = -ENOMEM;
1269 return 0;
1270 }
1271
1272 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1273 if (!new_root_item) {
1274 pending->error = -ENOMEM;
1275 goto root_item_alloc_fail;
1276 }
1277
1278 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1279 if (pending->error)
1280 goto no_free_objectid;
1281
1282 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1283
1284 if (to_reserve > 0) {
1285 pending->error = btrfs_block_rsv_add(root,
1286 &pending->block_rsv,
1287 to_reserve,
1288 BTRFS_RESERVE_NO_FLUSH);
1289 if (pending->error)
1290 goto no_free_objectid;
1291 }
1292
1293 key.objectid = objectid;
1294 key.offset = (u64)-1;
1295 key.type = BTRFS_ROOT_ITEM_KEY;
1296
1297 rsv = trans->block_rsv;
1298 trans->block_rsv = &pending->block_rsv;
1299 trans->bytes_reserved = trans->block_rsv->reserved;
1300
1301 dentry = pending->dentry;
1302 parent_inode = pending->dir;
1303 parent_root = BTRFS_I(parent_inode)->root;
1304 record_root_in_trans(trans, parent_root);
1305
1306 /*
1307 * insert the directory item
1308 */
1309 ret = btrfs_set_inode_index(parent_inode, &index);
1310 BUG_ON(ret); /* -ENOMEM */
1311
1312 /* check if there is a file/dir which has the same name. */
1313 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1314 btrfs_ino(parent_inode),
1315 dentry->d_name.name,
1316 dentry->d_name.len, 0);
1317 if (dir_item != NULL && !IS_ERR(dir_item)) {
1318 pending->error = -EEXIST;
1319 goto dir_item_existed;
1320 } else if (IS_ERR(dir_item)) {
1321 ret = PTR_ERR(dir_item);
1322 btrfs_abort_transaction(trans, root, ret);
1323 goto fail;
1324 }
1325 btrfs_release_path(path);
1326
1327 /*
1328 * pull in the delayed directory update
1329 * and the delayed inode item
1330 * otherwise we corrupt the FS during
1331 * snapshot
1332 */
1333 ret = btrfs_run_delayed_items(trans, root);
1334 if (ret) { /* Transaction aborted */
1335 btrfs_abort_transaction(trans, root, ret);
1336 goto fail;
1337 }
1338
1339 record_root_in_trans(trans, root);
1340 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1341 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1342 btrfs_check_and_init_root_item(new_root_item);
1343
1344 root_flags = btrfs_root_flags(new_root_item);
1345 if (pending->readonly)
1346 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1347 else
1348 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1349 btrfs_set_root_flags(new_root_item, root_flags);
1350
1351 btrfs_set_root_generation_v2(new_root_item,
1352 trans->transid);
1353 uuid_le_gen(&new_uuid);
1354 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1355 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1356 BTRFS_UUID_SIZE);
1357 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1358 memset(new_root_item->received_uuid, 0,
1359 sizeof(new_root_item->received_uuid));
1360 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1361 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1362 btrfs_set_root_stransid(new_root_item, 0);
1363 btrfs_set_root_rtransid(new_root_item, 0);
1364 }
1365 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1366 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1367 btrfs_set_root_otransid(new_root_item, trans->transid);
1368
1369 old = btrfs_lock_root_node(root);
1370 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1371 if (ret) {
1372 btrfs_tree_unlock(old);
1373 free_extent_buffer(old);
1374 btrfs_abort_transaction(trans, root, ret);
1375 goto fail;
1376 }
1377
1378 btrfs_set_lock_blocking(old);
1379
1380 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1381 /* clean up in any case */
1382 btrfs_tree_unlock(old);
1383 free_extent_buffer(old);
1384 if (ret) {
1385 btrfs_abort_transaction(trans, root, ret);
1386 goto fail;
1387 }
1388
1389 /*
1390 * We need to flush delayed refs in order to make sure all of our quota
1391 * operations have been done before we call btrfs_qgroup_inherit.
1392 */
1393 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1394 if (ret) {
1395 btrfs_abort_transaction(trans, root, ret);
1396 goto fail;
1397 }
1398
1399 ret = btrfs_qgroup_inherit(trans, fs_info,
1400 root->root_key.objectid,
1401 objectid, pending->inherit);
1402 if (ret) {
1403 btrfs_abort_transaction(trans, root, ret);
1404 goto fail;
1405 }
1406
1407 /* see comments in should_cow_block() */
1408 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1409 smp_wmb();
1410
1411 btrfs_set_root_node(new_root_item, tmp);
1412 /* record when the snapshot was created in key.offset */
1413 key.offset = trans->transid;
1414 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1415 btrfs_tree_unlock(tmp);
1416 free_extent_buffer(tmp);
1417 if (ret) {
1418 btrfs_abort_transaction(trans, root, ret);
1419 goto fail;
1420 }
1421
1422 /*
1423 * insert root back/forward references
1424 */
1425 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1426 parent_root->root_key.objectid,
1427 btrfs_ino(parent_inode), index,
1428 dentry->d_name.name, dentry->d_name.len);
1429 if (ret) {
1430 btrfs_abort_transaction(trans, root, ret);
1431 goto fail;
1432 }
1433
1434 key.offset = (u64)-1;
1435 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1436 if (IS_ERR(pending->snap)) {
1437 ret = PTR_ERR(pending->snap);
1438 btrfs_abort_transaction(trans, root, ret);
1439 goto fail;
1440 }
1441
1442 ret = btrfs_reloc_post_snapshot(trans, pending);
1443 if (ret) {
1444 btrfs_abort_transaction(trans, root, ret);
1445 goto fail;
1446 }
1447
1448 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1449 if (ret) {
1450 btrfs_abort_transaction(trans, root, ret);
1451 goto fail;
1452 }
1453
1454 ret = btrfs_insert_dir_item(trans, parent_root,
1455 dentry->d_name.name, dentry->d_name.len,
1456 parent_inode, &key,
1457 BTRFS_FT_DIR, index);
1458 /* We have check then name at the beginning, so it is impossible. */
1459 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1460 if (ret) {
1461 btrfs_abort_transaction(trans, root, ret);
1462 goto fail;
1463 }
1464
1465 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1466 dentry->d_name.len * 2);
1467 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1468 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1469 if (ret) {
1470 btrfs_abort_transaction(trans, root, ret);
1471 goto fail;
1472 }
1473 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1474 BTRFS_UUID_KEY_SUBVOL, objectid);
1475 if (ret) {
1476 btrfs_abort_transaction(trans, root, ret);
1477 goto fail;
1478 }
1479 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1480 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1481 new_root_item->received_uuid,
1482 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1483 objectid);
1484 if (ret && ret != -EEXIST) {
1485 btrfs_abort_transaction(trans, root, ret);
1486 goto fail;
1487 }
1488 }
1489 fail:
1490 pending->error = ret;
1491 dir_item_existed:
1492 trans->block_rsv = rsv;
1493 trans->bytes_reserved = 0;
1494 no_free_objectid:
1495 kfree(new_root_item);
1496 root_item_alloc_fail:
1497 btrfs_free_path(path);
1498 return ret;
1499 }
1500
1501 /*
1502 * create all the snapshots we've scheduled for creation
1503 */
1504 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1505 struct btrfs_fs_info *fs_info)
1506 {
1507 struct btrfs_pending_snapshot *pending, *next;
1508 struct list_head *head = &trans->transaction->pending_snapshots;
1509 int ret = 0;
1510
1511 list_for_each_entry_safe(pending, next, head, list) {
1512 list_del(&pending->list);
1513 ret = create_pending_snapshot(trans, fs_info, pending);
1514 if (ret)
1515 break;
1516 }
1517 return ret;
1518 }
1519
1520 static void update_super_roots(struct btrfs_root *root)
1521 {
1522 struct btrfs_root_item *root_item;
1523 struct btrfs_super_block *super;
1524
1525 super = root->fs_info->super_copy;
1526
1527 root_item = &root->fs_info->chunk_root->root_item;
1528 super->chunk_root = root_item->bytenr;
1529 super->chunk_root_generation = root_item->generation;
1530 super->chunk_root_level = root_item->level;
1531
1532 root_item = &root->fs_info->tree_root->root_item;
1533 super->root = root_item->bytenr;
1534 super->generation = root_item->generation;
1535 super->root_level = root_item->level;
1536 if (btrfs_test_opt(root, SPACE_CACHE))
1537 super->cache_generation = root_item->generation;
1538 if (root->fs_info->update_uuid_tree_gen)
1539 super->uuid_tree_generation = root_item->generation;
1540 }
1541
1542 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1543 {
1544 struct btrfs_transaction *trans;
1545 int ret = 0;
1546
1547 spin_lock(&info->trans_lock);
1548 trans = info->running_transaction;
1549 if (trans)
1550 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1551 spin_unlock(&info->trans_lock);
1552 return ret;
1553 }
1554
1555 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1556 {
1557 struct btrfs_transaction *trans;
1558 int ret = 0;
1559
1560 spin_lock(&info->trans_lock);
1561 trans = info->running_transaction;
1562 if (trans)
1563 ret = is_transaction_blocked(trans);
1564 spin_unlock(&info->trans_lock);
1565 return ret;
1566 }
1567
1568 /*
1569 * wait for the current transaction commit to start and block subsequent
1570 * transaction joins
1571 */
1572 static void wait_current_trans_commit_start(struct btrfs_root *root,
1573 struct btrfs_transaction *trans)
1574 {
1575 wait_event(root->fs_info->transaction_blocked_wait,
1576 trans->state >= TRANS_STATE_COMMIT_START ||
1577 trans->aborted);
1578 }
1579
1580 /*
1581 * wait for the current transaction to start and then become unblocked.
1582 * caller holds ref.
1583 */
1584 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1585 struct btrfs_transaction *trans)
1586 {
1587 wait_event(root->fs_info->transaction_wait,
1588 trans->state >= TRANS_STATE_UNBLOCKED ||
1589 trans->aborted);
1590 }
1591
1592 /*
1593 * commit transactions asynchronously. once btrfs_commit_transaction_async
1594 * returns, any subsequent transaction will not be allowed to join.
1595 */
1596 struct btrfs_async_commit {
1597 struct btrfs_trans_handle *newtrans;
1598 struct btrfs_root *root;
1599 struct work_struct work;
1600 };
1601
1602 static void do_async_commit(struct work_struct *work)
1603 {
1604 struct btrfs_async_commit *ac =
1605 container_of(work, struct btrfs_async_commit, work);
1606
1607 /*
1608 * We've got freeze protection passed with the transaction.
1609 * Tell lockdep about it.
1610 */
1611 if (ac->newtrans->type & __TRANS_FREEZABLE)
1612 rwsem_acquire_read(
1613 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1614 0, 1, _THIS_IP_);
1615
1616 current->journal_info = ac->newtrans;
1617
1618 btrfs_commit_transaction(ac->newtrans, ac->root);
1619 kfree(ac);
1620 }
1621
1622 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1623 struct btrfs_root *root,
1624 int wait_for_unblock)
1625 {
1626 struct btrfs_async_commit *ac;
1627 struct btrfs_transaction *cur_trans;
1628
1629 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1630 if (!ac)
1631 return -ENOMEM;
1632
1633 INIT_WORK(&ac->work, do_async_commit);
1634 ac->root = root;
1635 ac->newtrans = btrfs_join_transaction(root);
1636 if (IS_ERR(ac->newtrans)) {
1637 int err = PTR_ERR(ac->newtrans);
1638 kfree(ac);
1639 return err;
1640 }
1641
1642 /* take transaction reference */
1643 cur_trans = trans->transaction;
1644 atomic_inc(&cur_trans->use_count);
1645
1646 btrfs_end_transaction(trans, root);
1647
1648 /*
1649 * Tell lockdep we've released the freeze rwsem, since the
1650 * async commit thread will be the one to unlock it.
1651 */
1652 if (ac->newtrans->type & __TRANS_FREEZABLE)
1653 rwsem_release(
1654 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1655 1, _THIS_IP_);
1656
1657 schedule_work(&ac->work);
1658
1659 /* wait for transaction to start and unblock */
1660 if (wait_for_unblock)
1661 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1662 else
1663 wait_current_trans_commit_start(root, cur_trans);
1664
1665 if (current->journal_info == trans)
1666 current->journal_info = NULL;
1667
1668 btrfs_put_transaction(cur_trans);
1669 return 0;
1670 }
1671
1672
1673 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1674 struct btrfs_root *root, int err)
1675 {
1676 struct btrfs_transaction *cur_trans = trans->transaction;
1677 DEFINE_WAIT(wait);
1678
1679 WARN_ON(trans->use_count > 1);
1680
1681 btrfs_abort_transaction(trans, root, err);
1682
1683 spin_lock(&root->fs_info->trans_lock);
1684
1685 /*
1686 * If the transaction is removed from the list, it means this
1687 * transaction has been committed successfully, so it is impossible
1688 * to call the cleanup function.
1689 */
1690 BUG_ON(list_empty(&cur_trans->list));
1691
1692 list_del_init(&cur_trans->list);
1693 if (cur_trans == root->fs_info->running_transaction) {
1694 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1695 spin_unlock(&root->fs_info->trans_lock);
1696 wait_event(cur_trans->writer_wait,
1697 atomic_read(&cur_trans->num_writers) == 1);
1698
1699 spin_lock(&root->fs_info->trans_lock);
1700 }
1701 spin_unlock(&root->fs_info->trans_lock);
1702
1703 btrfs_cleanup_one_transaction(trans->transaction, root);
1704
1705 spin_lock(&root->fs_info->trans_lock);
1706 if (cur_trans == root->fs_info->running_transaction)
1707 root->fs_info->running_transaction = NULL;
1708 spin_unlock(&root->fs_info->trans_lock);
1709
1710 if (trans->type & __TRANS_FREEZABLE)
1711 sb_end_intwrite(root->fs_info->sb);
1712 btrfs_put_transaction(cur_trans);
1713 btrfs_put_transaction(cur_trans);
1714
1715 trace_btrfs_transaction_commit(root);
1716
1717 if (current->journal_info == trans)
1718 current->journal_info = NULL;
1719 btrfs_scrub_cancel(root->fs_info);
1720
1721 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1722 }
1723
1724 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1725 {
1726 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1727 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1728 return 0;
1729 }
1730
1731 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1732 {
1733 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1734 btrfs_wait_ordered_roots(fs_info, -1);
1735 }
1736
1737 static inline void
1738 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1739 struct btrfs_fs_info *fs_info)
1740 {
1741 struct btrfs_ordered_extent *ordered;
1742
1743 spin_lock(&fs_info->trans_lock);
1744 while (!list_empty(&cur_trans->pending_ordered)) {
1745 ordered = list_first_entry(&cur_trans->pending_ordered,
1746 struct btrfs_ordered_extent,
1747 trans_list);
1748 list_del_init(&ordered->trans_list);
1749 spin_unlock(&fs_info->trans_lock);
1750
1751 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1752 &ordered->flags));
1753 btrfs_put_ordered_extent(ordered);
1754 spin_lock(&fs_info->trans_lock);
1755 }
1756 spin_unlock(&fs_info->trans_lock);
1757 }
1758
1759 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1760 struct btrfs_root *root)
1761 {
1762 struct btrfs_transaction *cur_trans = trans->transaction;
1763 struct btrfs_transaction *prev_trans = NULL;
1764 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1765 int ret;
1766
1767 /* Stop the commit early if ->aborted is set */
1768 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1769 ret = cur_trans->aborted;
1770 btrfs_end_transaction(trans, root);
1771 return ret;
1772 }
1773
1774 /* make a pass through all the delayed refs we have so far
1775 * any runnings procs may add more while we are here
1776 */
1777 ret = btrfs_run_delayed_refs(trans, root, 0);
1778 if (ret) {
1779 btrfs_end_transaction(trans, root);
1780 return ret;
1781 }
1782
1783 btrfs_trans_release_metadata(trans, root);
1784 trans->block_rsv = NULL;
1785 if (trans->qgroup_reserved) {
1786 btrfs_qgroup_free(root, trans->qgroup_reserved);
1787 trans->qgroup_reserved = 0;
1788 }
1789
1790 cur_trans = trans->transaction;
1791
1792 /*
1793 * set the flushing flag so procs in this transaction have to
1794 * start sending their work down.
1795 */
1796 cur_trans->delayed_refs.flushing = 1;
1797 smp_wmb();
1798
1799 if (!list_empty(&trans->new_bgs))
1800 btrfs_create_pending_block_groups(trans, root);
1801
1802 ret = btrfs_run_delayed_refs(trans, root, 0);
1803 if (ret) {
1804 btrfs_end_transaction(trans, root);
1805 return ret;
1806 }
1807
1808 spin_lock(&root->fs_info->trans_lock);
1809 list_splice(&trans->ordered, &cur_trans->pending_ordered);
1810 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1811 spin_unlock(&root->fs_info->trans_lock);
1812 atomic_inc(&cur_trans->use_count);
1813 ret = btrfs_end_transaction(trans, root);
1814
1815 wait_for_commit(root, cur_trans);
1816
1817 btrfs_put_transaction(cur_trans);
1818
1819 return ret;
1820 }
1821
1822 cur_trans->state = TRANS_STATE_COMMIT_START;
1823 wake_up(&root->fs_info->transaction_blocked_wait);
1824
1825 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1826 prev_trans = list_entry(cur_trans->list.prev,
1827 struct btrfs_transaction, list);
1828 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1829 atomic_inc(&prev_trans->use_count);
1830 spin_unlock(&root->fs_info->trans_lock);
1831
1832 wait_for_commit(root, prev_trans);
1833
1834 btrfs_put_transaction(prev_trans);
1835 } else {
1836 spin_unlock(&root->fs_info->trans_lock);
1837 }
1838 } else {
1839 spin_unlock(&root->fs_info->trans_lock);
1840 }
1841
1842 extwriter_counter_dec(cur_trans, trans->type);
1843
1844 ret = btrfs_start_delalloc_flush(root->fs_info);
1845 if (ret)
1846 goto cleanup_transaction;
1847
1848 ret = btrfs_run_delayed_items(trans, root);
1849 if (ret)
1850 goto cleanup_transaction;
1851
1852 wait_event(cur_trans->writer_wait,
1853 extwriter_counter_read(cur_trans) == 0);
1854
1855 /* some pending stuffs might be added after the previous flush. */
1856 ret = btrfs_run_delayed_items(trans, root);
1857 if (ret)
1858 goto cleanup_transaction;
1859
1860 btrfs_wait_delalloc_flush(root->fs_info);
1861
1862 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1863
1864 btrfs_scrub_pause(root);
1865 /*
1866 * Ok now we need to make sure to block out any other joins while we
1867 * commit the transaction. We could have started a join before setting
1868 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1869 */
1870 spin_lock(&root->fs_info->trans_lock);
1871 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1872 spin_unlock(&root->fs_info->trans_lock);
1873 wait_event(cur_trans->writer_wait,
1874 atomic_read(&cur_trans->num_writers) == 1);
1875
1876 /* ->aborted might be set after the previous check, so check it */
1877 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1878 ret = cur_trans->aborted;
1879 goto scrub_continue;
1880 }
1881 /*
1882 * the reloc mutex makes sure that we stop
1883 * the balancing code from coming in and moving
1884 * extents around in the middle of the commit
1885 */
1886 mutex_lock(&root->fs_info->reloc_mutex);
1887
1888 /*
1889 * We needn't worry about the delayed items because we will
1890 * deal with them in create_pending_snapshot(), which is the
1891 * core function of the snapshot creation.
1892 */
1893 ret = create_pending_snapshots(trans, root->fs_info);
1894 if (ret) {
1895 mutex_unlock(&root->fs_info->reloc_mutex);
1896 goto scrub_continue;
1897 }
1898
1899 /*
1900 * We insert the dir indexes of the snapshots and update the inode
1901 * of the snapshots' parents after the snapshot creation, so there
1902 * are some delayed items which are not dealt with. Now deal with
1903 * them.
1904 *
1905 * We needn't worry that this operation will corrupt the snapshots,
1906 * because all the tree which are snapshoted will be forced to COW
1907 * the nodes and leaves.
1908 */
1909 ret = btrfs_run_delayed_items(trans, root);
1910 if (ret) {
1911 mutex_unlock(&root->fs_info->reloc_mutex);
1912 goto scrub_continue;
1913 }
1914
1915 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1916 if (ret) {
1917 mutex_unlock(&root->fs_info->reloc_mutex);
1918 goto scrub_continue;
1919 }
1920
1921 /*
1922 * make sure none of the code above managed to slip in a
1923 * delayed item
1924 */
1925 btrfs_assert_delayed_root_empty(root);
1926
1927 WARN_ON(cur_trans != trans->transaction);
1928
1929 /* btrfs_commit_tree_roots is responsible for getting the
1930 * various roots consistent with each other. Every pointer
1931 * in the tree of tree roots has to point to the most up to date
1932 * root for every subvolume and other tree. So, we have to keep
1933 * the tree logging code from jumping in and changing any
1934 * of the trees.
1935 *
1936 * At this point in the commit, there can't be any tree-log
1937 * writers, but a little lower down we drop the trans mutex
1938 * and let new people in. By holding the tree_log_mutex
1939 * from now until after the super is written, we avoid races
1940 * with the tree-log code.
1941 */
1942 mutex_lock(&root->fs_info->tree_log_mutex);
1943
1944 ret = commit_fs_roots(trans, root);
1945 if (ret) {
1946 mutex_unlock(&root->fs_info->tree_log_mutex);
1947 mutex_unlock(&root->fs_info->reloc_mutex);
1948 goto scrub_continue;
1949 }
1950
1951 /*
1952 * Since the transaction is done, we can apply the pending changes
1953 * before the next transaction.
1954 */
1955 btrfs_apply_pending_changes(root->fs_info);
1956
1957 /* commit_fs_roots gets rid of all the tree log roots, it is now
1958 * safe to free the root of tree log roots
1959 */
1960 btrfs_free_log_root_tree(trans, root->fs_info);
1961
1962 ret = commit_cowonly_roots(trans, root);
1963 if (ret) {
1964 mutex_unlock(&root->fs_info->tree_log_mutex);
1965 mutex_unlock(&root->fs_info->reloc_mutex);
1966 goto scrub_continue;
1967 }
1968
1969 /*
1970 * The tasks which save the space cache and inode cache may also
1971 * update ->aborted, check it.
1972 */
1973 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1974 ret = cur_trans->aborted;
1975 mutex_unlock(&root->fs_info->tree_log_mutex);
1976 mutex_unlock(&root->fs_info->reloc_mutex);
1977 goto scrub_continue;
1978 }
1979
1980 btrfs_prepare_extent_commit(trans, root);
1981
1982 cur_trans = root->fs_info->running_transaction;
1983
1984 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1985 root->fs_info->tree_root->node);
1986 list_add_tail(&root->fs_info->tree_root->dirty_list,
1987 &cur_trans->switch_commits);
1988
1989 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1990 root->fs_info->chunk_root->node);
1991 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1992 &cur_trans->switch_commits);
1993
1994 switch_commit_roots(cur_trans, root->fs_info);
1995
1996 assert_qgroups_uptodate(trans);
1997 ASSERT(list_empty(&cur_trans->dirty_bgs));
1998 update_super_roots(root);
1999
2000 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2001 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2002 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2003 sizeof(*root->fs_info->super_copy));
2004
2005 btrfs_update_commit_device_size(root->fs_info);
2006 btrfs_update_commit_device_bytes_used(root, cur_trans);
2007
2008 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2009 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2010
2011 spin_lock(&root->fs_info->trans_lock);
2012 cur_trans->state = TRANS_STATE_UNBLOCKED;
2013 root->fs_info->running_transaction = NULL;
2014 spin_unlock(&root->fs_info->trans_lock);
2015 mutex_unlock(&root->fs_info->reloc_mutex);
2016
2017 wake_up(&root->fs_info->transaction_wait);
2018
2019 ret = btrfs_write_and_wait_transaction(trans, root);
2020 if (ret) {
2021 btrfs_error(root->fs_info, ret,
2022 "Error while writing out transaction");
2023 mutex_unlock(&root->fs_info->tree_log_mutex);
2024 goto scrub_continue;
2025 }
2026
2027 ret = write_ctree_super(trans, root, 0);
2028 if (ret) {
2029 mutex_unlock(&root->fs_info->tree_log_mutex);
2030 goto scrub_continue;
2031 }
2032
2033 /*
2034 * the super is written, we can safely allow the tree-loggers
2035 * to go about their business
2036 */
2037 mutex_unlock(&root->fs_info->tree_log_mutex);
2038
2039 btrfs_finish_extent_commit(trans, root);
2040
2041 if (cur_trans->have_free_bgs)
2042 btrfs_clear_space_info_full(root->fs_info);
2043
2044 root->fs_info->last_trans_committed = cur_trans->transid;
2045 /*
2046 * We needn't acquire the lock here because there is no other task
2047 * which can change it.
2048 */
2049 cur_trans->state = TRANS_STATE_COMPLETED;
2050 wake_up(&cur_trans->commit_wait);
2051
2052 spin_lock(&root->fs_info->trans_lock);
2053 list_del_init(&cur_trans->list);
2054 spin_unlock(&root->fs_info->trans_lock);
2055
2056 btrfs_put_transaction(cur_trans);
2057 btrfs_put_transaction(cur_trans);
2058
2059 if (trans->type & __TRANS_FREEZABLE)
2060 sb_end_intwrite(root->fs_info->sb);
2061
2062 trace_btrfs_transaction_commit(root);
2063
2064 btrfs_scrub_continue(root);
2065
2066 if (current->journal_info == trans)
2067 current->journal_info = NULL;
2068
2069 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2070
2071 if (current != root->fs_info->transaction_kthread)
2072 btrfs_run_delayed_iputs(root);
2073
2074 return ret;
2075
2076 scrub_continue:
2077 btrfs_scrub_continue(root);
2078 cleanup_transaction:
2079 btrfs_trans_release_metadata(trans, root);
2080 trans->block_rsv = NULL;
2081 if (trans->qgroup_reserved) {
2082 btrfs_qgroup_free(root, trans->qgroup_reserved);
2083 trans->qgroup_reserved = 0;
2084 }
2085 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2086 if (current->journal_info == trans)
2087 current->journal_info = NULL;
2088 cleanup_transaction(trans, root, ret);
2089
2090 return ret;
2091 }
2092
2093 /*
2094 * return < 0 if error
2095 * 0 if there are no more dead_roots at the time of call
2096 * 1 there are more to be processed, call me again
2097 *
2098 * The return value indicates there are certainly more snapshots to delete, but
2099 * if there comes a new one during processing, it may return 0. We don't mind,
2100 * because btrfs_commit_super will poke cleaner thread and it will process it a
2101 * few seconds later.
2102 */
2103 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2104 {
2105 int ret;
2106 struct btrfs_fs_info *fs_info = root->fs_info;
2107
2108 spin_lock(&fs_info->trans_lock);
2109 if (list_empty(&fs_info->dead_roots)) {
2110 spin_unlock(&fs_info->trans_lock);
2111 return 0;
2112 }
2113 root = list_first_entry(&fs_info->dead_roots,
2114 struct btrfs_root, root_list);
2115 list_del_init(&root->root_list);
2116 spin_unlock(&fs_info->trans_lock);
2117
2118 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2119
2120 btrfs_kill_all_delayed_nodes(root);
2121
2122 if (btrfs_header_backref_rev(root->node) <
2123 BTRFS_MIXED_BACKREF_REV)
2124 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2125 else
2126 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2127
2128 return (ret < 0) ? 0 : 1;
2129 }
2130
2131 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2132 {
2133 unsigned long prev;
2134 unsigned long bit;
2135
2136 prev = xchg(&fs_info->pending_changes, 0);
2137 if (!prev)
2138 return;
2139
2140 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2141 if (prev & bit)
2142 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2143 prev &= ~bit;
2144
2145 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2146 if (prev & bit)
2147 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2148 prev &= ~bit;
2149
2150 bit = 1 << BTRFS_PENDING_COMMIT;
2151 if (prev & bit)
2152 btrfs_debug(fs_info, "pending commit done");
2153 prev &= ~bit;
2154
2155 if (prev)
2156 btrfs_warn(fs_info,
2157 "unknown pending changes left 0x%lx, ignoring", prev);
2158 }
This page took 0.071927 seconds and 6 git commands to generate.