btrfs: return void in functions without error conditions
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28
29 /* magic values for the inode_only field in btrfs_log_inode:
30 *
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
34 */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37
38 /*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
81 /*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
105
106 /*
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 *
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
113 *
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
119 *
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
123 *
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
127 */
128
129 /*
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
133 */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
136 {
137 int ret;
138 int err = 0;
139
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
147 }
148
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
153 }
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 if (ret)
160 err = ret;
161 }
162 if (err == 0 && !root->log_root) {
163 ret = btrfs_add_log_tree(trans, root);
164 if (ret)
165 err = ret;
166 }
167 mutex_unlock(&root->fs_info->tree_log_mutex);
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
171 return err;
172 }
173
174 /*
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
178 */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 int ret = -ENOENT;
182
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
186
187 mutex_lock(&root->log_mutex);
188 if (root->log_root) {
189 ret = 0;
190 atomic_inc(&root->log_writers);
191 }
192 mutex_unlock(&root->log_mutex);
193 return ret;
194 }
195
196 /*
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
200 */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 int ret = -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
209 }
210
211 /*
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
214 */
215 void btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
221 }
222 }
223
224
225 /*
226 * the walk control struct is used to pass state down the chain when
227 * processing the log tree. The stage field tells us which part
228 * of the log tree processing we are currently doing. The others
229 * are state fields used for that specific part
230 */
231 struct walk_control {
232 /* should we free the extent on disk when done? This is used
233 * at transaction commit time while freeing a log tree
234 */
235 int free;
236
237 /* should we write out the extent buffer? This is used
238 * while flushing the log tree to disk during a sync
239 */
240 int write;
241
242 /* should we wait for the extent buffer io to finish? Also used
243 * while flushing the log tree to disk for a sync
244 */
245 int wait;
246
247 /* pin only walk, we record which extents on disk belong to the
248 * log trees
249 */
250 int pin;
251
252 /* what stage of the replay code we're currently in */
253 int stage;
254
255 /* the root we are currently replaying */
256 struct btrfs_root *replay_dest;
257
258 /* the trans handle for the current replay */
259 struct btrfs_trans_handle *trans;
260
261 /* the function that gets used to process blocks we find in the
262 * tree. Note the extent_buffer might not be up to date when it is
263 * passed in, and it must be checked or read if you need the data
264 * inside it
265 */
266 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
267 struct walk_control *wc, u64 gen);
268 };
269
270 /*
271 * process_func used to pin down extents, write them or wait on them
272 */
273 static int process_one_buffer(struct btrfs_root *log,
274 struct extent_buffer *eb,
275 struct walk_control *wc, u64 gen)
276 {
277 if (wc->pin)
278 btrfs_pin_extent_for_log_replay(wc->trans,
279 log->fs_info->extent_root,
280 eb->start, eb->len);
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289 }
290
291 /*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310 {
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
346 }
347
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
349
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
354
355 kfree(dst_copy);
356 kfree(src_copy);
357 /*
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
362 */
363 if (ret == 0) {
364 btrfs_release_path(path);
365 return 0;
366 }
367
368 }
369 insert:
370 btrfs_release_path(path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
374
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size)
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 else if (found_size < item_size)
383 btrfs_extend_item(trans, root, path,
384 item_size - found_size);
385 } else if (ret) {
386 return ret;
387 }
388 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
389 path->slots[0]);
390
391 /* don't overwrite an existing inode if the generation number
392 * was logged as zero. This is done when the tree logging code
393 * is just logging an inode to make sure it exists after recovery.
394 *
395 * Also, don't overwrite i_size on directories during replay.
396 * log replay inserts and removes directory items based on the
397 * state of the tree found in the subvolume, and i_size is modified
398 * as it goes
399 */
400 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
401 struct btrfs_inode_item *src_item;
402 struct btrfs_inode_item *dst_item;
403
404 src_item = (struct btrfs_inode_item *)src_ptr;
405 dst_item = (struct btrfs_inode_item *)dst_ptr;
406
407 if (btrfs_inode_generation(eb, src_item) == 0)
408 goto no_copy;
409
410 if (overwrite_root &&
411 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
412 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
413 save_old_i_size = 1;
414 saved_i_size = btrfs_inode_size(path->nodes[0],
415 dst_item);
416 }
417 }
418
419 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
420 src_ptr, item_size);
421
422 if (save_old_i_size) {
423 struct btrfs_inode_item *dst_item;
424 dst_item = (struct btrfs_inode_item *)dst_ptr;
425 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
426 }
427
428 /* make sure the generation is filled in */
429 if (key->type == BTRFS_INODE_ITEM_KEY) {
430 struct btrfs_inode_item *dst_item;
431 dst_item = (struct btrfs_inode_item *)dst_ptr;
432 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
433 btrfs_set_inode_generation(path->nodes[0], dst_item,
434 trans->transid);
435 }
436 }
437 no_copy:
438 btrfs_mark_buffer_dirty(path->nodes[0]);
439 btrfs_release_path(path);
440 return 0;
441 }
442
443 /*
444 * simple helper to read an inode off the disk from a given root
445 * This can only be called for subvolume roots and not for the log
446 */
447 static noinline struct inode *read_one_inode(struct btrfs_root *root,
448 u64 objectid)
449 {
450 struct btrfs_key key;
451 struct inode *inode;
452
453 key.objectid = objectid;
454 key.type = BTRFS_INODE_ITEM_KEY;
455 key.offset = 0;
456 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
457 if (IS_ERR(inode)) {
458 inode = NULL;
459 } else if (is_bad_inode(inode)) {
460 iput(inode);
461 inode = NULL;
462 }
463 return inode;
464 }
465
466 /* replays a single extent in 'eb' at 'slot' with 'key' into the
467 * subvolume 'root'. path is released on entry and should be released
468 * on exit.
469 *
470 * extents in the log tree have not been allocated out of the extent
471 * tree yet. So, this completes the allocation, taking a reference
472 * as required if the extent already exists or creating a new extent
473 * if it isn't in the extent allocation tree yet.
474 *
475 * The extent is inserted into the file, dropping any existing extents
476 * from the file that overlap the new one.
477 */
478 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root,
480 struct btrfs_path *path,
481 struct extent_buffer *eb, int slot,
482 struct btrfs_key *key)
483 {
484 int found_type;
485 u64 mask = root->sectorsize - 1;
486 u64 extent_end;
487 u64 alloc_hint;
488 u64 start = key->offset;
489 u64 saved_nbytes;
490 struct btrfs_file_extent_item *item;
491 struct inode *inode = NULL;
492 unsigned long size;
493 int ret = 0;
494
495 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
496 found_type = btrfs_file_extent_type(eb, item);
497
498 if (found_type == BTRFS_FILE_EXTENT_REG ||
499 found_type == BTRFS_FILE_EXTENT_PREALLOC)
500 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
501 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
502 size = btrfs_file_extent_inline_len(eb, item);
503 extent_end = (start + size + mask) & ~mask;
504 } else {
505 ret = 0;
506 goto out;
507 }
508
509 inode = read_one_inode(root, key->objectid);
510 if (!inode) {
511 ret = -EIO;
512 goto out;
513 }
514
515 /*
516 * first check to see if we already have this extent in the
517 * file. This must be done before the btrfs_drop_extents run
518 * so we don't try to drop this extent.
519 */
520 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
521 start, 0);
522
523 if (ret == 0 &&
524 (found_type == BTRFS_FILE_EXTENT_REG ||
525 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
526 struct btrfs_file_extent_item cmp1;
527 struct btrfs_file_extent_item cmp2;
528 struct btrfs_file_extent_item *existing;
529 struct extent_buffer *leaf;
530
531 leaf = path->nodes[0];
532 existing = btrfs_item_ptr(leaf, path->slots[0],
533 struct btrfs_file_extent_item);
534
535 read_extent_buffer(eb, &cmp1, (unsigned long)item,
536 sizeof(cmp1));
537 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
538 sizeof(cmp2));
539
540 /*
541 * we already have a pointer to this exact extent,
542 * we don't have to do anything
543 */
544 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
545 btrfs_release_path(path);
546 goto out;
547 }
548 }
549 btrfs_release_path(path);
550
551 saved_nbytes = inode_get_bytes(inode);
552 /* drop any overlapping extents */
553 ret = btrfs_drop_extents(trans, inode, start, extent_end,
554 &alloc_hint, 1);
555 BUG_ON(ret);
556
557 if (found_type == BTRFS_FILE_EXTENT_REG ||
558 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
559 u64 offset;
560 unsigned long dest_offset;
561 struct btrfs_key ins;
562
563 ret = btrfs_insert_empty_item(trans, root, path, key,
564 sizeof(*item));
565 BUG_ON(ret);
566 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
567 path->slots[0]);
568 copy_extent_buffer(path->nodes[0], eb, dest_offset,
569 (unsigned long)item, sizeof(*item));
570
571 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
572 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
573 ins.type = BTRFS_EXTENT_ITEM_KEY;
574 offset = key->offset - btrfs_file_extent_offset(eb, item);
575
576 if (ins.objectid > 0) {
577 u64 csum_start;
578 u64 csum_end;
579 LIST_HEAD(ordered_sums);
580 /*
581 * is this extent already allocated in the extent
582 * allocation tree? If so, just add a reference
583 */
584 ret = btrfs_lookup_extent(root, ins.objectid,
585 ins.offset);
586 if (ret == 0) {
587 ret = btrfs_inc_extent_ref(trans, root,
588 ins.objectid, ins.offset,
589 0, root->root_key.objectid,
590 key->objectid, offset, 0);
591 BUG_ON(ret);
592 } else {
593 /*
594 * insert the extent pointer in the extent
595 * allocation tree
596 */
597 ret = btrfs_alloc_logged_file_extent(trans,
598 root, root->root_key.objectid,
599 key->objectid, offset, &ins);
600 BUG_ON(ret);
601 }
602 btrfs_release_path(path);
603
604 if (btrfs_file_extent_compression(eb, item)) {
605 csum_start = ins.objectid;
606 csum_end = csum_start + ins.offset;
607 } else {
608 csum_start = ins.objectid +
609 btrfs_file_extent_offset(eb, item);
610 csum_end = csum_start +
611 btrfs_file_extent_num_bytes(eb, item);
612 }
613
614 ret = btrfs_lookup_csums_range(root->log_root,
615 csum_start, csum_end - 1,
616 &ordered_sums, 0);
617 BUG_ON(ret);
618 while (!list_empty(&ordered_sums)) {
619 struct btrfs_ordered_sum *sums;
620 sums = list_entry(ordered_sums.next,
621 struct btrfs_ordered_sum,
622 list);
623 ret = btrfs_csum_file_blocks(trans,
624 root->fs_info->csum_root,
625 sums);
626 BUG_ON(ret);
627 list_del(&sums->list);
628 kfree(sums);
629 }
630 } else {
631 btrfs_release_path(path);
632 }
633 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
634 /* inline extents are easy, we just overwrite them */
635 ret = overwrite_item(trans, root, path, eb, slot, key);
636 BUG_ON(ret);
637 }
638
639 inode_set_bytes(inode, saved_nbytes);
640 btrfs_update_inode(trans, root, inode);
641 out:
642 if (inode)
643 iput(inode);
644 return ret;
645 }
646
647 /*
648 * when cleaning up conflicts between the directory names in the
649 * subvolume, directory names in the log and directory names in the
650 * inode back references, we may have to unlink inodes from directories.
651 *
652 * This is a helper function to do the unlink of a specific directory
653 * item
654 */
655 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
656 struct btrfs_root *root,
657 struct btrfs_path *path,
658 struct inode *dir,
659 struct btrfs_dir_item *di)
660 {
661 struct inode *inode;
662 char *name;
663 int name_len;
664 struct extent_buffer *leaf;
665 struct btrfs_key location;
666 int ret;
667
668 leaf = path->nodes[0];
669
670 btrfs_dir_item_key_to_cpu(leaf, di, &location);
671 name_len = btrfs_dir_name_len(leaf, di);
672 name = kmalloc(name_len, GFP_NOFS);
673 if (!name)
674 return -ENOMEM;
675
676 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
677 btrfs_release_path(path);
678
679 inode = read_one_inode(root, location.objectid);
680 if (!inode) {
681 kfree(name);
682 return -EIO;
683 }
684
685 ret = link_to_fixup_dir(trans, root, path, location.objectid);
686 BUG_ON(ret);
687
688 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
689 BUG_ON(ret);
690 kfree(name);
691
692 iput(inode);
693 return ret;
694 }
695
696 /*
697 * helper function to see if a given name and sequence number found
698 * in an inode back reference are already in a directory and correctly
699 * point to this inode
700 */
701 static noinline int inode_in_dir(struct btrfs_root *root,
702 struct btrfs_path *path,
703 u64 dirid, u64 objectid, u64 index,
704 const char *name, int name_len)
705 {
706 struct btrfs_dir_item *di;
707 struct btrfs_key location;
708 int match = 0;
709
710 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
711 index, name, name_len, 0);
712 if (di && !IS_ERR(di)) {
713 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
714 if (location.objectid != objectid)
715 goto out;
716 } else
717 goto out;
718 btrfs_release_path(path);
719
720 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
721 if (di && !IS_ERR(di)) {
722 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
723 if (location.objectid != objectid)
724 goto out;
725 } else
726 goto out;
727 match = 1;
728 out:
729 btrfs_release_path(path);
730 return match;
731 }
732
733 /*
734 * helper function to check a log tree for a named back reference in
735 * an inode. This is used to decide if a back reference that is
736 * found in the subvolume conflicts with what we find in the log.
737 *
738 * inode backreferences may have multiple refs in a single item,
739 * during replay we process one reference at a time, and we don't
740 * want to delete valid links to a file from the subvolume if that
741 * link is also in the log.
742 */
743 static noinline int backref_in_log(struct btrfs_root *log,
744 struct btrfs_key *key,
745 char *name, int namelen)
746 {
747 struct btrfs_path *path;
748 struct btrfs_inode_ref *ref;
749 unsigned long ptr;
750 unsigned long ptr_end;
751 unsigned long name_ptr;
752 int found_name_len;
753 int item_size;
754 int ret;
755 int match = 0;
756
757 path = btrfs_alloc_path();
758 if (!path)
759 return -ENOMEM;
760
761 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
762 if (ret != 0)
763 goto out;
764
765 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
766 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
767 ptr_end = ptr + item_size;
768 while (ptr < ptr_end) {
769 ref = (struct btrfs_inode_ref *)ptr;
770 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
771 if (found_name_len == namelen) {
772 name_ptr = (unsigned long)(ref + 1);
773 ret = memcmp_extent_buffer(path->nodes[0], name,
774 name_ptr, namelen);
775 if (ret == 0) {
776 match = 1;
777 goto out;
778 }
779 }
780 ptr = (unsigned long)(ref + 1) + found_name_len;
781 }
782 out:
783 btrfs_free_path(path);
784 return match;
785 }
786
787
788 /*
789 * replay one inode back reference item found in the log tree.
790 * eb, slot and key refer to the buffer and key found in the log tree.
791 * root is the destination we are replaying into, and path is for temp
792 * use by this function. (it should be released on return).
793 */
794 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
795 struct btrfs_root *root,
796 struct btrfs_root *log,
797 struct btrfs_path *path,
798 struct extent_buffer *eb, int slot,
799 struct btrfs_key *key)
800 {
801 struct btrfs_inode_ref *ref;
802 struct btrfs_dir_item *di;
803 struct inode *dir;
804 struct inode *inode;
805 unsigned long ref_ptr;
806 unsigned long ref_end;
807 char *name;
808 int namelen;
809 int ret;
810 int search_done = 0;
811
812 /*
813 * it is possible that we didn't log all the parent directories
814 * for a given inode. If we don't find the dir, just don't
815 * copy the back ref in. The link count fixup code will take
816 * care of the rest
817 */
818 dir = read_one_inode(root, key->offset);
819 if (!dir)
820 return -ENOENT;
821
822 inode = read_one_inode(root, key->objectid);
823 if (!inode) {
824 iput(dir);
825 return -EIO;
826 }
827
828 ref_ptr = btrfs_item_ptr_offset(eb, slot);
829 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
830
831 again:
832 ref = (struct btrfs_inode_ref *)ref_ptr;
833
834 namelen = btrfs_inode_ref_name_len(eb, ref);
835 name = kmalloc(namelen, GFP_NOFS);
836 BUG_ON(!name);
837
838 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
839
840 /* if we already have a perfect match, we're done */
841 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
842 btrfs_inode_ref_index(eb, ref),
843 name, namelen)) {
844 goto out;
845 }
846
847 /*
848 * look for a conflicting back reference in the metadata.
849 * if we find one we have to unlink that name of the file
850 * before we add our new link. Later on, we overwrite any
851 * existing back reference, and we don't want to create
852 * dangling pointers in the directory.
853 */
854
855 if (search_done)
856 goto insert;
857
858 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
859 if (ret == 0) {
860 char *victim_name;
861 int victim_name_len;
862 struct btrfs_inode_ref *victim_ref;
863 unsigned long ptr;
864 unsigned long ptr_end;
865 struct extent_buffer *leaf = path->nodes[0];
866
867 /* are we trying to overwrite a back ref for the root directory
868 * if so, just jump out, we're done
869 */
870 if (key->objectid == key->offset)
871 goto out_nowrite;
872
873 /* check all the names in this back reference to see
874 * if they are in the log. if so, we allow them to stay
875 * otherwise they must be unlinked as a conflict
876 */
877 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
878 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
879 while (ptr < ptr_end) {
880 victim_ref = (struct btrfs_inode_ref *)ptr;
881 victim_name_len = btrfs_inode_ref_name_len(leaf,
882 victim_ref);
883 victim_name = kmalloc(victim_name_len, GFP_NOFS);
884 BUG_ON(!victim_name);
885
886 read_extent_buffer(leaf, victim_name,
887 (unsigned long)(victim_ref + 1),
888 victim_name_len);
889
890 if (!backref_in_log(log, key, victim_name,
891 victim_name_len)) {
892 btrfs_inc_nlink(inode);
893 btrfs_release_path(path);
894
895 ret = btrfs_unlink_inode(trans, root, dir,
896 inode, victim_name,
897 victim_name_len);
898 }
899 kfree(victim_name);
900 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
901 }
902 BUG_ON(ret);
903
904 /*
905 * NOTE: we have searched root tree and checked the
906 * coresponding ref, it does not need to check again.
907 */
908 search_done = 1;
909 }
910 btrfs_release_path(path);
911
912 /* look for a conflicting sequence number */
913 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
914 btrfs_inode_ref_index(eb, ref),
915 name, namelen, 0);
916 if (di && !IS_ERR(di)) {
917 ret = drop_one_dir_item(trans, root, path, dir, di);
918 BUG_ON(ret);
919 }
920 btrfs_release_path(path);
921
922 /* look for a conflicing name */
923 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
924 name, namelen, 0);
925 if (di && !IS_ERR(di)) {
926 ret = drop_one_dir_item(trans, root, path, dir, di);
927 BUG_ON(ret);
928 }
929 btrfs_release_path(path);
930
931 insert:
932 /* insert our name */
933 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
934 btrfs_inode_ref_index(eb, ref));
935 BUG_ON(ret);
936
937 btrfs_update_inode(trans, root, inode);
938
939 out:
940 ref_ptr = (unsigned long)(ref + 1) + namelen;
941 kfree(name);
942 if (ref_ptr < ref_end)
943 goto again;
944
945 /* finally write the back reference in the inode */
946 ret = overwrite_item(trans, root, path, eb, slot, key);
947 BUG_ON(ret);
948
949 out_nowrite:
950 btrfs_release_path(path);
951 iput(dir);
952 iput(inode);
953 return 0;
954 }
955
956 static int insert_orphan_item(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root, u64 offset)
958 {
959 int ret;
960 ret = btrfs_find_orphan_item(root, offset);
961 if (ret > 0)
962 ret = btrfs_insert_orphan_item(trans, root, offset);
963 return ret;
964 }
965
966
967 /*
968 * There are a few corners where the link count of the file can't
969 * be properly maintained during replay. So, instead of adding
970 * lots of complexity to the log code, we just scan the backrefs
971 * for any file that has been through replay.
972 *
973 * The scan will update the link count on the inode to reflect the
974 * number of back refs found. If it goes down to zero, the iput
975 * will free the inode.
976 */
977 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct inode *inode)
980 {
981 struct btrfs_path *path;
982 int ret;
983 struct btrfs_key key;
984 u64 nlink = 0;
985 unsigned long ptr;
986 unsigned long ptr_end;
987 int name_len;
988 u64 ino = btrfs_ino(inode);
989
990 key.objectid = ino;
991 key.type = BTRFS_INODE_REF_KEY;
992 key.offset = (u64)-1;
993
994 path = btrfs_alloc_path();
995 if (!path)
996 return -ENOMEM;
997
998 while (1) {
999 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1000 if (ret < 0)
1001 break;
1002 if (ret > 0) {
1003 if (path->slots[0] == 0)
1004 break;
1005 path->slots[0]--;
1006 }
1007 btrfs_item_key_to_cpu(path->nodes[0], &key,
1008 path->slots[0]);
1009 if (key.objectid != ino ||
1010 key.type != BTRFS_INODE_REF_KEY)
1011 break;
1012 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1013 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1014 path->slots[0]);
1015 while (ptr < ptr_end) {
1016 struct btrfs_inode_ref *ref;
1017
1018 ref = (struct btrfs_inode_ref *)ptr;
1019 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1020 ref);
1021 ptr = (unsigned long)(ref + 1) + name_len;
1022 nlink++;
1023 }
1024
1025 if (key.offset == 0)
1026 break;
1027 key.offset--;
1028 btrfs_release_path(path);
1029 }
1030 btrfs_release_path(path);
1031 if (nlink != inode->i_nlink) {
1032 set_nlink(inode, nlink);
1033 btrfs_update_inode(trans, root, inode);
1034 }
1035 BTRFS_I(inode)->index_cnt = (u64)-1;
1036
1037 if (inode->i_nlink == 0) {
1038 if (S_ISDIR(inode->i_mode)) {
1039 ret = replay_dir_deletes(trans, root, NULL, path,
1040 ino, 1);
1041 BUG_ON(ret);
1042 }
1043 ret = insert_orphan_item(trans, root, ino);
1044 BUG_ON(ret);
1045 }
1046 btrfs_free_path(path);
1047
1048 return 0;
1049 }
1050
1051 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1052 struct btrfs_root *root,
1053 struct btrfs_path *path)
1054 {
1055 int ret;
1056 struct btrfs_key key;
1057 struct inode *inode;
1058
1059 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1060 key.type = BTRFS_ORPHAN_ITEM_KEY;
1061 key.offset = (u64)-1;
1062 while (1) {
1063 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1064 if (ret < 0)
1065 break;
1066
1067 if (ret == 1) {
1068 if (path->slots[0] == 0)
1069 break;
1070 path->slots[0]--;
1071 }
1072
1073 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1074 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1075 key.type != BTRFS_ORPHAN_ITEM_KEY)
1076 break;
1077
1078 ret = btrfs_del_item(trans, root, path);
1079 if (ret)
1080 goto out;
1081
1082 btrfs_release_path(path);
1083 inode = read_one_inode(root, key.offset);
1084 if (!inode)
1085 return -EIO;
1086
1087 ret = fixup_inode_link_count(trans, root, inode);
1088 BUG_ON(ret);
1089
1090 iput(inode);
1091
1092 /*
1093 * fixup on a directory may create new entries,
1094 * make sure we always look for the highset possible
1095 * offset
1096 */
1097 key.offset = (u64)-1;
1098 }
1099 ret = 0;
1100 out:
1101 btrfs_release_path(path);
1102 return ret;
1103 }
1104
1105
1106 /*
1107 * record a given inode in the fixup dir so we can check its link
1108 * count when replay is done. The link count is incremented here
1109 * so the inode won't go away until we check it
1110 */
1111 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1112 struct btrfs_root *root,
1113 struct btrfs_path *path,
1114 u64 objectid)
1115 {
1116 struct btrfs_key key;
1117 int ret = 0;
1118 struct inode *inode;
1119
1120 inode = read_one_inode(root, objectid);
1121 if (!inode)
1122 return -EIO;
1123
1124 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1125 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1126 key.offset = objectid;
1127
1128 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1129
1130 btrfs_release_path(path);
1131 if (ret == 0) {
1132 btrfs_inc_nlink(inode);
1133 btrfs_update_inode(trans, root, inode);
1134 } else if (ret == -EEXIST) {
1135 ret = 0;
1136 } else {
1137 BUG();
1138 }
1139 iput(inode);
1140
1141 return ret;
1142 }
1143
1144 /*
1145 * when replaying the log for a directory, we only insert names
1146 * for inodes that actually exist. This means an fsync on a directory
1147 * does not implicitly fsync all the new files in it
1148 */
1149 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1150 struct btrfs_root *root,
1151 struct btrfs_path *path,
1152 u64 dirid, u64 index,
1153 char *name, int name_len, u8 type,
1154 struct btrfs_key *location)
1155 {
1156 struct inode *inode;
1157 struct inode *dir;
1158 int ret;
1159
1160 inode = read_one_inode(root, location->objectid);
1161 if (!inode)
1162 return -ENOENT;
1163
1164 dir = read_one_inode(root, dirid);
1165 if (!dir) {
1166 iput(inode);
1167 return -EIO;
1168 }
1169 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1170
1171 /* FIXME, put inode into FIXUP list */
1172
1173 iput(inode);
1174 iput(dir);
1175 return ret;
1176 }
1177
1178 /*
1179 * take a single entry in a log directory item and replay it into
1180 * the subvolume.
1181 *
1182 * if a conflicting item exists in the subdirectory already,
1183 * the inode it points to is unlinked and put into the link count
1184 * fix up tree.
1185 *
1186 * If a name from the log points to a file or directory that does
1187 * not exist in the FS, it is skipped. fsyncs on directories
1188 * do not force down inodes inside that directory, just changes to the
1189 * names or unlinks in a directory.
1190 */
1191 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1192 struct btrfs_root *root,
1193 struct btrfs_path *path,
1194 struct extent_buffer *eb,
1195 struct btrfs_dir_item *di,
1196 struct btrfs_key *key)
1197 {
1198 char *name;
1199 int name_len;
1200 struct btrfs_dir_item *dst_di;
1201 struct btrfs_key found_key;
1202 struct btrfs_key log_key;
1203 struct inode *dir;
1204 u8 log_type;
1205 int exists;
1206 int ret;
1207
1208 dir = read_one_inode(root, key->objectid);
1209 if (!dir)
1210 return -EIO;
1211
1212 name_len = btrfs_dir_name_len(eb, di);
1213 name = kmalloc(name_len, GFP_NOFS);
1214 if (!name)
1215 return -ENOMEM;
1216
1217 log_type = btrfs_dir_type(eb, di);
1218 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1219 name_len);
1220
1221 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1222 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1223 if (exists == 0)
1224 exists = 1;
1225 else
1226 exists = 0;
1227 btrfs_release_path(path);
1228
1229 if (key->type == BTRFS_DIR_ITEM_KEY) {
1230 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1231 name, name_len, 1);
1232 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1233 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1234 key->objectid,
1235 key->offset, name,
1236 name_len, 1);
1237 } else {
1238 BUG();
1239 }
1240 if (IS_ERR_OR_NULL(dst_di)) {
1241 /* we need a sequence number to insert, so we only
1242 * do inserts for the BTRFS_DIR_INDEX_KEY types
1243 */
1244 if (key->type != BTRFS_DIR_INDEX_KEY)
1245 goto out;
1246 goto insert;
1247 }
1248
1249 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1250 /* the existing item matches the logged item */
1251 if (found_key.objectid == log_key.objectid &&
1252 found_key.type == log_key.type &&
1253 found_key.offset == log_key.offset &&
1254 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1255 goto out;
1256 }
1257
1258 /*
1259 * don't drop the conflicting directory entry if the inode
1260 * for the new entry doesn't exist
1261 */
1262 if (!exists)
1263 goto out;
1264
1265 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1266 BUG_ON(ret);
1267
1268 if (key->type == BTRFS_DIR_INDEX_KEY)
1269 goto insert;
1270 out:
1271 btrfs_release_path(path);
1272 kfree(name);
1273 iput(dir);
1274 return 0;
1275
1276 insert:
1277 btrfs_release_path(path);
1278 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1279 name, name_len, log_type, &log_key);
1280
1281 BUG_ON(ret && ret != -ENOENT);
1282 goto out;
1283 }
1284
1285 /*
1286 * find all the names in a directory item and reconcile them into
1287 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1288 * one name in a directory item, but the same code gets used for
1289 * both directory index types
1290 */
1291 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1292 struct btrfs_root *root,
1293 struct btrfs_path *path,
1294 struct extent_buffer *eb, int slot,
1295 struct btrfs_key *key)
1296 {
1297 int ret;
1298 u32 item_size = btrfs_item_size_nr(eb, slot);
1299 struct btrfs_dir_item *di;
1300 int name_len;
1301 unsigned long ptr;
1302 unsigned long ptr_end;
1303
1304 ptr = btrfs_item_ptr_offset(eb, slot);
1305 ptr_end = ptr + item_size;
1306 while (ptr < ptr_end) {
1307 di = (struct btrfs_dir_item *)ptr;
1308 if (verify_dir_item(root, eb, di))
1309 return -EIO;
1310 name_len = btrfs_dir_name_len(eb, di);
1311 ret = replay_one_name(trans, root, path, eb, di, key);
1312 BUG_ON(ret);
1313 ptr = (unsigned long)(di + 1);
1314 ptr += name_len;
1315 }
1316 return 0;
1317 }
1318
1319 /*
1320 * directory replay has two parts. There are the standard directory
1321 * items in the log copied from the subvolume, and range items
1322 * created in the log while the subvolume was logged.
1323 *
1324 * The range items tell us which parts of the key space the log
1325 * is authoritative for. During replay, if a key in the subvolume
1326 * directory is in a logged range item, but not actually in the log
1327 * that means it was deleted from the directory before the fsync
1328 * and should be removed.
1329 */
1330 static noinline int find_dir_range(struct btrfs_root *root,
1331 struct btrfs_path *path,
1332 u64 dirid, int key_type,
1333 u64 *start_ret, u64 *end_ret)
1334 {
1335 struct btrfs_key key;
1336 u64 found_end;
1337 struct btrfs_dir_log_item *item;
1338 int ret;
1339 int nritems;
1340
1341 if (*start_ret == (u64)-1)
1342 return 1;
1343
1344 key.objectid = dirid;
1345 key.type = key_type;
1346 key.offset = *start_ret;
1347
1348 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1349 if (ret < 0)
1350 goto out;
1351 if (ret > 0) {
1352 if (path->slots[0] == 0)
1353 goto out;
1354 path->slots[0]--;
1355 }
1356 if (ret != 0)
1357 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1358
1359 if (key.type != key_type || key.objectid != dirid) {
1360 ret = 1;
1361 goto next;
1362 }
1363 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1364 struct btrfs_dir_log_item);
1365 found_end = btrfs_dir_log_end(path->nodes[0], item);
1366
1367 if (*start_ret >= key.offset && *start_ret <= found_end) {
1368 ret = 0;
1369 *start_ret = key.offset;
1370 *end_ret = found_end;
1371 goto out;
1372 }
1373 ret = 1;
1374 next:
1375 /* check the next slot in the tree to see if it is a valid item */
1376 nritems = btrfs_header_nritems(path->nodes[0]);
1377 if (path->slots[0] >= nritems) {
1378 ret = btrfs_next_leaf(root, path);
1379 if (ret)
1380 goto out;
1381 } else {
1382 path->slots[0]++;
1383 }
1384
1385 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1386
1387 if (key.type != key_type || key.objectid != dirid) {
1388 ret = 1;
1389 goto out;
1390 }
1391 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1392 struct btrfs_dir_log_item);
1393 found_end = btrfs_dir_log_end(path->nodes[0], item);
1394 *start_ret = key.offset;
1395 *end_ret = found_end;
1396 ret = 0;
1397 out:
1398 btrfs_release_path(path);
1399 return ret;
1400 }
1401
1402 /*
1403 * this looks for a given directory item in the log. If the directory
1404 * item is not in the log, the item is removed and the inode it points
1405 * to is unlinked
1406 */
1407 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1408 struct btrfs_root *root,
1409 struct btrfs_root *log,
1410 struct btrfs_path *path,
1411 struct btrfs_path *log_path,
1412 struct inode *dir,
1413 struct btrfs_key *dir_key)
1414 {
1415 int ret;
1416 struct extent_buffer *eb;
1417 int slot;
1418 u32 item_size;
1419 struct btrfs_dir_item *di;
1420 struct btrfs_dir_item *log_di;
1421 int name_len;
1422 unsigned long ptr;
1423 unsigned long ptr_end;
1424 char *name;
1425 struct inode *inode;
1426 struct btrfs_key location;
1427
1428 again:
1429 eb = path->nodes[0];
1430 slot = path->slots[0];
1431 item_size = btrfs_item_size_nr(eb, slot);
1432 ptr = btrfs_item_ptr_offset(eb, slot);
1433 ptr_end = ptr + item_size;
1434 while (ptr < ptr_end) {
1435 di = (struct btrfs_dir_item *)ptr;
1436 if (verify_dir_item(root, eb, di)) {
1437 ret = -EIO;
1438 goto out;
1439 }
1440
1441 name_len = btrfs_dir_name_len(eb, di);
1442 name = kmalloc(name_len, GFP_NOFS);
1443 if (!name) {
1444 ret = -ENOMEM;
1445 goto out;
1446 }
1447 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1448 name_len);
1449 log_di = NULL;
1450 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1451 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1452 dir_key->objectid,
1453 name, name_len, 0);
1454 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1455 log_di = btrfs_lookup_dir_index_item(trans, log,
1456 log_path,
1457 dir_key->objectid,
1458 dir_key->offset,
1459 name, name_len, 0);
1460 }
1461 if (IS_ERR_OR_NULL(log_di)) {
1462 btrfs_dir_item_key_to_cpu(eb, di, &location);
1463 btrfs_release_path(path);
1464 btrfs_release_path(log_path);
1465 inode = read_one_inode(root, location.objectid);
1466 if (!inode) {
1467 kfree(name);
1468 return -EIO;
1469 }
1470
1471 ret = link_to_fixup_dir(trans, root,
1472 path, location.objectid);
1473 BUG_ON(ret);
1474 btrfs_inc_nlink(inode);
1475 ret = btrfs_unlink_inode(trans, root, dir, inode,
1476 name, name_len);
1477 BUG_ON(ret);
1478 kfree(name);
1479 iput(inode);
1480
1481 /* there might still be more names under this key
1482 * check and repeat if required
1483 */
1484 ret = btrfs_search_slot(NULL, root, dir_key, path,
1485 0, 0);
1486 if (ret == 0)
1487 goto again;
1488 ret = 0;
1489 goto out;
1490 }
1491 btrfs_release_path(log_path);
1492 kfree(name);
1493
1494 ptr = (unsigned long)(di + 1);
1495 ptr += name_len;
1496 }
1497 ret = 0;
1498 out:
1499 btrfs_release_path(path);
1500 btrfs_release_path(log_path);
1501 return ret;
1502 }
1503
1504 /*
1505 * deletion replay happens before we copy any new directory items
1506 * out of the log or out of backreferences from inodes. It
1507 * scans the log to find ranges of keys that log is authoritative for,
1508 * and then scans the directory to find items in those ranges that are
1509 * not present in the log.
1510 *
1511 * Anything we don't find in the log is unlinked and removed from the
1512 * directory.
1513 */
1514 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1515 struct btrfs_root *root,
1516 struct btrfs_root *log,
1517 struct btrfs_path *path,
1518 u64 dirid, int del_all)
1519 {
1520 u64 range_start;
1521 u64 range_end;
1522 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1523 int ret = 0;
1524 struct btrfs_key dir_key;
1525 struct btrfs_key found_key;
1526 struct btrfs_path *log_path;
1527 struct inode *dir;
1528
1529 dir_key.objectid = dirid;
1530 dir_key.type = BTRFS_DIR_ITEM_KEY;
1531 log_path = btrfs_alloc_path();
1532 if (!log_path)
1533 return -ENOMEM;
1534
1535 dir = read_one_inode(root, dirid);
1536 /* it isn't an error if the inode isn't there, that can happen
1537 * because we replay the deletes before we copy in the inode item
1538 * from the log
1539 */
1540 if (!dir) {
1541 btrfs_free_path(log_path);
1542 return 0;
1543 }
1544 again:
1545 range_start = 0;
1546 range_end = 0;
1547 while (1) {
1548 if (del_all)
1549 range_end = (u64)-1;
1550 else {
1551 ret = find_dir_range(log, path, dirid, key_type,
1552 &range_start, &range_end);
1553 if (ret != 0)
1554 break;
1555 }
1556
1557 dir_key.offset = range_start;
1558 while (1) {
1559 int nritems;
1560 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1561 0, 0);
1562 if (ret < 0)
1563 goto out;
1564
1565 nritems = btrfs_header_nritems(path->nodes[0]);
1566 if (path->slots[0] >= nritems) {
1567 ret = btrfs_next_leaf(root, path);
1568 if (ret)
1569 break;
1570 }
1571 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1572 path->slots[0]);
1573 if (found_key.objectid != dirid ||
1574 found_key.type != dir_key.type)
1575 goto next_type;
1576
1577 if (found_key.offset > range_end)
1578 break;
1579
1580 ret = check_item_in_log(trans, root, log, path,
1581 log_path, dir,
1582 &found_key);
1583 BUG_ON(ret);
1584 if (found_key.offset == (u64)-1)
1585 break;
1586 dir_key.offset = found_key.offset + 1;
1587 }
1588 btrfs_release_path(path);
1589 if (range_end == (u64)-1)
1590 break;
1591 range_start = range_end + 1;
1592 }
1593
1594 next_type:
1595 ret = 0;
1596 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1597 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1598 dir_key.type = BTRFS_DIR_INDEX_KEY;
1599 btrfs_release_path(path);
1600 goto again;
1601 }
1602 out:
1603 btrfs_release_path(path);
1604 btrfs_free_path(log_path);
1605 iput(dir);
1606 return ret;
1607 }
1608
1609 /*
1610 * the process_func used to replay items from the log tree. This
1611 * gets called in two different stages. The first stage just looks
1612 * for inodes and makes sure they are all copied into the subvolume.
1613 *
1614 * The second stage copies all the other item types from the log into
1615 * the subvolume. The two stage approach is slower, but gets rid of
1616 * lots of complexity around inodes referencing other inodes that exist
1617 * only in the log (references come from either directory items or inode
1618 * back refs).
1619 */
1620 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1621 struct walk_control *wc, u64 gen)
1622 {
1623 int nritems;
1624 struct btrfs_path *path;
1625 struct btrfs_root *root = wc->replay_dest;
1626 struct btrfs_key key;
1627 int level;
1628 int i;
1629 int ret;
1630
1631 btrfs_read_buffer(eb, gen);
1632
1633 level = btrfs_header_level(eb);
1634
1635 if (level != 0)
1636 return 0;
1637
1638 path = btrfs_alloc_path();
1639 if (!path)
1640 return -ENOMEM;
1641
1642 nritems = btrfs_header_nritems(eb);
1643 for (i = 0; i < nritems; i++) {
1644 btrfs_item_key_to_cpu(eb, &key, i);
1645
1646 /* inode keys are done during the first stage */
1647 if (key.type == BTRFS_INODE_ITEM_KEY &&
1648 wc->stage == LOG_WALK_REPLAY_INODES) {
1649 struct btrfs_inode_item *inode_item;
1650 u32 mode;
1651
1652 inode_item = btrfs_item_ptr(eb, i,
1653 struct btrfs_inode_item);
1654 mode = btrfs_inode_mode(eb, inode_item);
1655 if (S_ISDIR(mode)) {
1656 ret = replay_dir_deletes(wc->trans,
1657 root, log, path, key.objectid, 0);
1658 BUG_ON(ret);
1659 }
1660 ret = overwrite_item(wc->trans, root, path,
1661 eb, i, &key);
1662 BUG_ON(ret);
1663
1664 /* for regular files, make sure corresponding
1665 * orhpan item exist. extents past the new EOF
1666 * will be truncated later by orphan cleanup.
1667 */
1668 if (S_ISREG(mode)) {
1669 ret = insert_orphan_item(wc->trans, root,
1670 key.objectid);
1671 BUG_ON(ret);
1672 }
1673
1674 ret = link_to_fixup_dir(wc->trans, root,
1675 path, key.objectid);
1676 BUG_ON(ret);
1677 }
1678 if (wc->stage < LOG_WALK_REPLAY_ALL)
1679 continue;
1680
1681 /* these keys are simply copied */
1682 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1683 ret = overwrite_item(wc->trans, root, path,
1684 eb, i, &key);
1685 BUG_ON(ret);
1686 } else if (key.type == BTRFS_INODE_REF_KEY) {
1687 ret = add_inode_ref(wc->trans, root, log, path,
1688 eb, i, &key);
1689 BUG_ON(ret && ret != -ENOENT);
1690 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1691 ret = replay_one_extent(wc->trans, root, path,
1692 eb, i, &key);
1693 BUG_ON(ret);
1694 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1695 key.type == BTRFS_DIR_INDEX_KEY) {
1696 ret = replay_one_dir_item(wc->trans, root, path,
1697 eb, i, &key);
1698 BUG_ON(ret);
1699 }
1700 }
1701 btrfs_free_path(path);
1702 return 0;
1703 }
1704
1705 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1706 struct btrfs_root *root,
1707 struct btrfs_path *path, int *level,
1708 struct walk_control *wc)
1709 {
1710 u64 root_owner;
1711 u64 bytenr;
1712 u64 ptr_gen;
1713 struct extent_buffer *next;
1714 struct extent_buffer *cur;
1715 struct extent_buffer *parent;
1716 u32 blocksize;
1717 int ret = 0;
1718
1719 WARN_ON(*level < 0);
1720 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1721
1722 while (*level > 0) {
1723 WARN_ON(*level < 0);
1724 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1725 cur = path->nodes[*level];
1726
1727 if (btrfs_header_level(cur) != *level)
1728 WARN_ON(1);
1729
1730 if (path->slots[*level] >=
1731 btrfs_header_nritems(cur))
1732 break;
1733
1734 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1735 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1736 blocksize = btrfs_level_size(root, *level - 1);
1737
1738 parent = path->nodes[*level];
1739 root_owner = btrfs_header_owner(parent);
1740
1741 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1742 if (!next)
1743 return -ENOMEM;
1744
1745 if (*level == 1) {
1746 ret = wc->process_func(root, next, wc, ptr_gen);
1747 if (ret)
1748 return ret;
1749
1750 path->slots[*level]++;
1751 if (wc->free) {
1752 btrfs_read_buffer(next, ptr_gen);
1753
1754 btrfs_tree_lock(next);
1755 btrfs_set_lock_blocking(next);
1756 clean_tree_block(trans, root, next);
1757 btrfs_wait_tree_block_writeback(next);
1758 btrfs_tree_unlock(next);
1759
1760 WARN_ON(root_owner !=
1761 BTRFS_TREE_LOG_OBJECTID);
1762 ret = btrfs_free_and_pin_reserved_extent(root,
1763 bytenr, blocksize);
1764 BUG_ON(ret);
1765 }
1766 free_extent_buffer(next);
1767 continue;
1768 }
1769 btrfs_read_buffer(next, ptr_gen);
1770
1771 WARN_ON(*level <= 0);
1772 if (path->nodes[*level-1])
1773 free_extent_buffer(path->nodes[*level-1]);
1774 path->nodes[*level-1] = next;
1775 *level = btrfs_header_level(next);
1776 path->slots[*level] = 0;
1777 cond_resched();
1778 }
1779 WARN_ON(*level < 0);
1780 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1781
1782 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1783
1784 cond_resched();
1785 return 0;
1786 }
1787
1788 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1789 struct btrfs_root *root,
1790 struct btrfs_path *path, int *level,
1791 struct walk_control *wc)
1792 {
1793 u64 root_owner;
1794 int i;
1795 int slot;
1796 int ret;
1797
1798 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1799 slot = path->slots[i];
1800 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1801 path->slots[i]++;
1802 *level = i;
1803 WARN_ON(*level == 0);
1804 return 0;
1805 } else {
1806 struct extent_buffer *parent;
1807 if (path->nodes[*level] == root->node)
1808 parent = path->nodes[*level];
1809 else
1810 parent = path->nodes[*level + 1];
1811
1812 root_owner = btrfs_header_owner(parent);
1813 ret = wc->process_func(root, path->nodes[*level], wc,
1814 btrfs_header_generation(path->nodes[*level]));
1815 if (ret)
1816 return ret;
1817
1818 if (wc->free) {
1819 struct extent_buffer *next;
1820
1821 next = path->nodes[*level];
1822
1823 btrfs_tree_lock(next);
1824 btrfs_set_lock_blocking(next);
1825 clean_tree_block(trans, root, next);
1826 btrfs_wait_tree_block_writeback(next);
1827 btrfs_tree_unlock(next);
1828
1829 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1830 ret = btrfs_free_and_pin_reserved_extent(root,
1831 path->nodes[*level]->start,
1832 path->nodes[*level]->len);
1833 BUG_ON(ret);
1834 }
1835 free_extent_buffer(path->nodes[*level]);
1836 path->nodes[*level] = NULL;
1837 *level = i + 1;
1838 }
1839 }
1840 return 1;
1841 }
1842
1843 /*
1844 * drop the reference count on the tree rooted at 'snap'. This traverses
1845 * the tree freeing any blocks that have a ref count of zero after being
1846 * decremented.
1847 */
1848 static int walk_log_tree(struct btrfs_trans_handle *trans,
1849 struct btrfs_root *log, struct walk_control *wc)
1850 {
1851 int ret = 0;
1852 int wret;
1853 int level;
1854 struct btrfs_path *path;
1855 int i;
1856 int orig_level;
1857
1858 path = btrfs_alloc_path();
1859 if (!path)
1860 return -ENOMEM;
1861
1862 level = btrfs_header_level(log->node);
1863 orig_level = level;
1864 path->nodes[level] = log->node;
1865 extent_buffer_get(log->node);
1866 path->slots[level] = 0;
1867
1868 while (1) {
1869 wret = walk_down_log_tree(trans, log, path, &level, wc);
1870 if (wret > 0)
1871 break;
1872 if (wret < 0)
1873 ret = wret;
1874
1875 wret = walk_up_log_tree(trans, log, path, &level, wc);
1876 if (wret > 0)
1877 break;
1878 if (wret < 0)
1879 ret = wret;
1880 }
1881
1882 /* was the root node processed? if not, catch it here */
1883 if (path->nodes[orig_level]) {
1884 wc->process_func(log, path->nodes[orig_level], wc,
1885 btrfs_header_generation(path->nodes[orig_level]));
1886 if (wc->free) {
1887 struct extent_buffer *next;
1888
1889 next = path->nodes[orig_level];
1890
1891 btrfs_tree_lock(next);
1892 btrfs_set_lock_blocking(next);
1893 clean_tree_block(trans, log, next);
1894 btrfs_wait_tree_block_writeback(next);
1895 btrfs_tree_unlock(next);
1896
1897 WARN_ON(log->root_key.objectid !=
1898 BTRFS_TREE_LOG_OBJECTID);
1899 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
1900 next->len);
1901 BUG_ON(ret);
1902 }
1903 }
1904
1905 for (i = 0; i <= orig_level; i++) {
1906 if (path->nodes[i]) {
1907 free_extent_buffer(path->nodes[i]);
1908 path->nodes[i] = NULL;
1909 }
1910 }
1911 btrfs_free_path(path);
1912 return ret;
1913 }
1914
1915 /*
1916 * helper function to update the item for a given subvolumes log root
1917 * in the tree of log roots
1918 */
1919 static int update_log_root(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *log)
1921 {
1922 int ret;
1923
1924 if (log->log_transid == 1) {
1925 /* insert root item on the first sync */
1926 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1927 &log->root_key, &log->root_item);
1928 } else {
1929 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1930 &log->root_key, &log->root_item);
1931 }
1932 return ret;
1933 }
1934
1935 static int wait_log_commit(struct btrfs_trans_handle *trans,
1936 struct btrfs_root *root, unsigned long transid)
1937 {
1938 DEFINE_WAIT(wait);
1939 int index = transid % 2;
1940
1941 /*
1942 * we only allow two pending log transactions at a time,
1943 * so we know that if ours is more than 2 older than the
1944 * current transaction, we're done
1945 */
1946 do {
1947 prepare_to_wait(&root->log_commit_wait[index],
1948 &wait, TASK_UNINTERRUPTIBLE);
1949 mutex_unlock(&root->log_mutex);
1950
1951 if (root->fs_info->last_trans_log_full_commit !=
1952 trans->transid && root->log_transid < transid + 2 &&
1953 atomic_read(&root->log_commit[index]))
1954 schedule();
1955
1956 finish_wait(&root->log_commit_wait[index], &wait);
1957 mutex_lock(&root->log_mutex);
1958 } while (root->fs_info->last_trans_log_full_commit !=
1959 trans->transid && root->log_transid < transid + 2 &&
1960 atomic_read(&root->log_commit[index]));
1961 return 0;
1962 }
1963
1964 static void wait_for_writer(struct btrfs_trans_handle *trans,
1965 struct btrfs_root *root)
1966 {
1967 DEFINE_WAIT(wait);
1968 while (root->fs_info->last_trans_log_full_commit !=
1969 trans->transid && atomic_read(&root->log_writers)) {
1970 prepare_to_wait(&root->log_writer_wait,
1971 &wait, TASK_UNINTERRUPTIBLE);
1972 mutex_unlock(&root->log_mutex);
1973 if (root->fs_info->last_trans_log_full_commit !=
1974 trans->transid && atomic_read(&root->log_writers))
1975 schedule();
1976 mutex_lock(&root->log_mutex);
1977 finish_wait(&root->log_writer_wait, &wait);
1978 }
1979 }
1980
1981 /*
1982 * btrfs_sync_log does sends a given tree log down to the disk and
1983 * updates the super blocks to record it. When this call is done,
1984 * you know that any inodes previously logged are safely on disk only
1985 * if it returns 0.
1986 *
1987 * Any other return value means you need to call btrfs_commit_transaction.
1988 * Some of the edge cases for fsyncing directories that have had unlinks
1989 * or renames done in the past mean that sometimes the only safe
1990 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1991 * that has happened.
1992 */
1993 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1994 struct btrfs_root *root)
1995 {
1996 int index1;
1997 int index2;
1998 int mark;
1999 int ret;
2000 struct btrfs_root *log = root->log_root;
2001 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2002 unsigned long log_transid = 0;
2003
2004 mutex_lock(&root->log_mutex);
2005 index1 = root->log_transid % 2;
2006 if (atomic_read(&root->log_commit[index1])) {
2007 wait_log_commit(trans, root, root->log_transid);
2008 mutex_unlock(&root->log_mutex);
2009 return 0;
2010 }
2011 atomic_set(&root->log_commit[index1], 1);
2012
2013 /* wait for previous tree log sync to complete */
2014 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2015 wait_log_commit(trans, root, root->log_transid - 1);
2016 while (1) {
2017 unsigned long batch = root->log_batch;
2018 /* when we're on an ssd, just kick the log commit out */
2019 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2020 mutex_unlock(&root->log_mutex);
2021 schedule_timeout_uninterruptible(1);
2022 mutex_lock(&root->log_mutex);
2023 }
2024 wait_for_writer(trans, root);
2025 if (batch == root->log_batch)
2026 break;
2027 }
2028
2029 /* bail out if we need to do a full commit */
2030 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2031 ret = -EAGAIN;
2032 mutex_unlock(&root->log_mutex);
2033 goto out;
2034 }
2035
2036 log_transid = root->log_transid;
2037 if (log_transid % 2 == 0)
2038 mark = EXTENT_DIRTY;
2039 else
2040 mark = EXTENT_NEW;
2041
2042 /* we start IO on all the marked extents here, but we don't actually
2043 * wait for them until later.
2044 */
2045 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2046 BUG_ON(ret);
2047
2048 btrfs_set_root_node(&log->root_item, log->node);
2049
2050 root->log_batch = 0;
2051 root->log_transid++;
2052 log->log_transid = root->log_transid;
2053 root->log_start_pid = 0;
2054 smp_mb();
2055 /*
2056 * IO has been started, blocks of the log tree have WRITTEN flag set
2057 * in their headers. new modifications of the log will be written to
2058 * new positions. so it's safe to allow log writers to go in.
2059 */
2060 mutex_unlock(&root->log_mutex);
2061
2062 mutex_lock(&log_root_tree->log_mutex);
2063 log_root_tree->log_batch++;
2064 atomic_inc(&log_root_tree->log_writers);
2065 mutex_unlock(&log_root_tree->log_mutex);
2066
2067 ret = update_log_root(trans, log);
2068
2069 mutex_lock(&log_root_tree->log_mutex);
2070 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2071 smp_mb();
2072 if (waitqueue_active(&log_root_tree->log_writer_wait))
2073 wake_up(&log_root_tree->log_writer_wait);
2074 }
2075
2076 if (ret) {
2077 BUG_ON(ret != -ENOSPC);
2078 root->fs_info->last_trans_log_full_commit = trans->transid;
2079 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2080 mutex_unlock(&log_root_tree->log_mutex);
2081 ret = -EAGAIN;
2082 goto out;
2083 }
2084
2085 index2 = log_root_tree->log_transid % 2;
2086 if (atomic_read(&log_root_tree->log_commit[index2])) {
2087 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2088 wait_log_commit(trans, log_root_tree,
2089 log_root_tree->log_transid);
2090 mutex_unlock(&log_root_tree->log_mutex);
2091 ret = 0;
2092 goto out;
2093 }
2094 atomic_set(&log_root_tree->log_commit[index2], 1);
2095
2096 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2097 wait_log_commit(trans, log_root_tree,
2098 log_root_tree->log_transid - 1);
2099 }
2100
2101 wait_for_writer(trans, log_root_tree);
2102
2103 /*
2104 * now that we've moved on to the tree of log tree roots,
2105 * check the full commit flag again
2106 */
2107 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2108 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2109 mutex_unlock(&log_root_tree->log_mutex);
2110 ret = -EAGAIN;
2111 goto out_wake_log_root;
2112 }
2113
2114 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2115 &log_root_tree->dirty_log_pages,
2116 EXTENT_DIRTY | EXTENT_NEW);
2117 BUG_ON(ret);
2118 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2119
2120 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2121 log_root_tree->node->start);
2122 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2123 btrfs_header_level(log_root_tree->node));
2124
2125 log_root_tree->log_batch = 0;
2126 log_root_tree->log_transid++;
2127 smp_mb();
2128
2129 mutex_unlock(&log_root_tree->log_mutex);
2130
2131 /*
2132 * nobody else is going to jump in and write the the ctree
2133 * super here because the log_commit atomic below is protecting
2134 * us. We must be called with a transaction handle pinning
2135 * the running transaction open, so a full commit can't hop
2136 * in and cause problems either.
2137 */
2138 btrfs_scrub_pause_super(root);
2139 write_ctree_super(trans, root->fs_info->tree_root, 1);
2140 btrfs_scrub_continue_super(root);
2141 ret = 0;
2142
2143 mutex_lock(&root->log_mutex);
2144 if (root->last_log_commit < log_transid)
2145 root->last_log_commit = log_transid;
2146 mutex_unlock(&root->log_mutex);
2147
2148 out_wake_log_root:
2149 atomic_set(&log_root_tree->log_commit[index2], 0);
2150 smp_mb();
2151 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2152 wake_up(&log_root_tree->log_commit_wait[index2]);
2153 out:
2154 atomic_set(&root->log_commit[index1], 0);
2155 smp_mb();
2156 if (waitqueue_active(&root->log_commit_wait[index1]))
2157 wake_up(&root->log_commit_wait[index1]);
2158 return ret;
2159 }
2160
2161 static void free_log_tree(struct btrfs_trans_handle *trans,
2162 struct btrfs_root *log)
2163 {
2164 int ret;
2165 u64 start;
2166 u64 end;
2167 struct walk_control wc = {
2168 .free = 1,
2169 .process_func = process_one_buffer
2170 };
2171
2172 ret = walk_log_tree(trans, log, &wc);
2173 BUG_ON(ret);
2174
2175 while (1) {
2176 ret = find_first_extent_bit(&log->dirty_log_pages,
2177 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2178 if (ret)
2179 break;
2180
2181 clear_extent_bits(&log->dirty_log_pages, start, end,
2182 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2183 }
2184
2185 free_extent_buffer(log->node);
2186 kfree(log);
2187 }
2188
2189 /*
2190 * free all the extents used by the tree log. This should be called
2191 * at commit time of the full transaction
2192 */
2193 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2194 {
2195 if (root->log_root) {
2196 free_log_tree(trans, root->log_root);
2197 root->log_root = NULL;
2198 }
2199 return 0;
2200 }
2201
2202 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2203 struct btrfs_fs_info *fs_info)
2204 {
2205 if (fs_info->log_root_tree) {
2206 free_log_tree(trans, fs_info->log_root_tree);
2207 fs_info->log_root_tree = NULL;
2208 }
2209 return 0;
2210 }
2211
2212 /*
2213 * If both a file and directory are logged, and unlinks or renames are
2214 * mixed in, we have a few interesting corners:
2215 *
2216 * create file X in dir Y
2217 * link file X to X.link in dir Y
2218 * fsync file X
2219 * unlink file X but leave X.link
2220 * fsync dir Y
2221 *
2222 * After a crash we would expect only X.link to exist. But file X
2223 * didn't get fsync'd again so the log has back refs for X and X.link.
2224 *
2225 * We solve this by removing directory entries and inode backrefs from the
2226 * log when a file that was logged in the current transaction is
2227 * unlinked. Any later fsync will include the updated log entries, and
2228 * we'll be able to reconstruct the proper directory items from backrefs.
2229 *
2230 * This optimizations allows us to avoid relogging the entire inode
2231 * or the entire directory.
2232 */
2233 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2234 struct btrfs_root *root,
2235 const char *name, int name_len,
2236 struct inode *dir, u64 index)
2237 {
2238 struct btrfs_root *log;
2239 struct btrfs_dir_item *di;
2240 struct btrfs_path *path;
2241 int ret;
2242 int err = 0;
2243 int bytes_del = 0;
2244 u64 dir_ino = btrfs_ino(dir);
2245
2246 if (BTRFS_I(dir)->logged_trans < trans->transid)
2247 return 0;
2248
2249 ret = join_running_log_trans(root);
2250 if (ret)
2251 return 0;
2252
2253 mutex_lock(&BTRFS_I(dir)->log_mutex);
2254
2255 log = root->log_root;
2256 path = btrfs_alloc_path();
2257 if (!path) {
2258 err = -ENOMEM;
2259 goto out_unlock;
2260 }
2261
2262 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2263 name, name_len, -1);
2264 if (IS_ERR(di)) {
2265 err = PTR_ERR(di);
2266 goto fail;
2267 }
2268 if (di) {
2269 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2270 bytes_del += name_len;
2271 BUG_ON(ret);
2272 }
2273 btrfs_release_path(path);
2274 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2275 index, name, name_len, -1);
2276 if (IS_ERR(di)) {
2277 err = PTR_ERR(di);
2278 goto fail;
2279 }
2280 if (di) {
2281 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2282 bytes_del += name_len;
2283 BUG_ON(ret);
2284 }
2285
2286 /* update the directory size in the log to reflect the names
2287 * we have removed
2288 */
2289 if (bytes_del) {
2290 struct btrfs_key key;
2291
2292 key.objectid = dir_ino;
2293 key.offset = 0;
2294 key.type = BTRFS_INODE_ITEM_KEY;
2295 btrfs_release_path(path);
2296
2297 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2298 if (ret < 0) {
2299 err = ret;
2300 goto fail;
2301 }
2302 if (ret == 0) {
2303 struct btrfs_inode_item *item;
2304 u64 i_size;
2305
2306 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2307 struct btrfs_inode_item);
2308 i_size = btrfs_inode_size(path->nodes[0], item);
2309 if (i_size > bytes_del)
2310 i_size -= bytes_del;
2311 else
2312 i_size = 0;
2313 btrfs_set_inode_size(path->nodes[0], item, i_size);
2314 btrfs_mark_buffer_dirty(path->nodes[0]);
2315 } else
2316 ret = 0;
2317 btrfs_release_path(path);
2318 }
2319 fail:
2320 btrfs_free_path(path);
2321 out_unlock:
2322 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2323 if (ret == -ENOSPC) {
2324 root->fs_info->last_trans_log_full_commit = trans->transid;
2325 ret = 0;
2326 }
2327 btrfs_end_log_trans(root);
2328
2329 return err;
2330 }
2331
2332 /* see comments for btrfs_del_dir_entries_in_log */
2333 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2334 struct btrfs_root *root,
2335 const char *name, int name_len,
2336 struct inode *inode, u64 dirid)
2337 {
2338 struct btrfs_root *log;
2339 u64 index;
2340 int ret;
2341
2342 if (BTRFS_I(inode)->logged_trans < trans->transid)
2343 return 0;
2344
2345 ret = join_running_log_trans(root);
2346 if (ret)
2347 return 0;
2348 log = root->log_root;
2349 mutex_lock(&BTRFS_I(inode)->log_mutex);
2350
2351 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2352 dirid, &index);
2353 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2354 if (ret == -ENOSPC) {
2355 root->fs_info->last_trans_log_full_commit = trans->transid;
2356 ret = 0;
2357 }
2358 btrfs_end_log_trans(root);
2359
2360 return ret;
2361 }
2362
2363 /*
2364 * creates a range item in the log for 'dirid'. first_offset and
2365 * last_offset tell us which parts of the key space the log should
2366 * be considered authoritative for.
2367 */
2368 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2369 struct btrfs_root *log,
2370 struct btrfs_path *path,
2371 int key_type, u64 dirid,
2372 u64 first_offset, u64 last_offset)
2373 {
2374 int ret;
2375 struct btrfs_key key;
2376 struct btrfs_dir_log_item *item;
2377
2378 key.objectid = dirid;
2379 key.offset = first_offset;
2380 if (key_type == BTRFS_DIR_ITEM_KEY)
2381 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2382 else
2383 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2384 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2385 if (ret)
2386 return ret;
2387
2388 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2389 struct btrfs_dir_log_item);
2390 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2391 btrfs_mark_buffer_dirty(path->nodes[0]);
2392 btrfs_release_path(path);
2393 return 0;
2394 }
2395
2396 /*
2397 * log all the items included in the current transaction for a given
2398 * directory. This also creates the range items in the log tree required
2399 * to replay anything deleted before the fsync
2400 */
2401 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2402 struct btrfs_root *root, struct inode *inode,
2403 struct btrfs_path *path,
2404 struct btrfs_path *dst_path, int key_type,
2405 u64 min_offset, u64 *last_offset_ret)
2406 {
2407 struct btrfs_key min_key;
2408 struct btrfs_key max_key;
2409 struct btrfs_root *log = root->log_root;
2410 struct extent_buffer *src;
2411 int err = 0;
2412 int ret;
2413 int i;
2414 int nritems;
2415 u64 first_offset = min_offset;
2416 u64 last_offset = (u64)-1;
2417 u64 ino = btrfs_ino(inode);
2418
2419 log = root->log_root;
2420 max_key.objectid = ino;
2421 max_key.offset = (u64)-1;
2422 max_key.type = key_type;
2423
2424 min_key.objectid = ino;
2425 min_key.type = key_type;
2426 min_key.offset = min_offset;
2427
2428 path->keep_locks = 1;
2429
2430 ret = btrfs_search_forward(root, &min_key, &max_key,
2431 path, 0, trans->transid);
2432
2433 /*
2434 * we didn't find anything from this transaction, see if there
2435 * is anything at all
2436 */
2437 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2438 min_key.objectid = ino;
2439 min_key.type = key_type;
2440 min_key.offset = (u64)-1;
2441 btrfs_release_path(path);
2442 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2443 if (ret < 0) {
2444 btrfs_release_path(path);
2445 return ret;
2446 }
2447 ret = btrfs_previous_item(root, path, ino, key_type);
2448
2449 /* if ret == 0 there are items for this type,
2450 * create a range to tell us the last key of this type.
2451 * otherwise, there are no items in this directory after
2452 * *min_offset, and we create a range to indicate that.
2453 */
2454 if (ret == 0) {
2455 struct btrfs_key tmp;
2456 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2457 path->slots[0]);
2458 if (key_type == tmp.type)
2459 first_offset = max(min_offset, tmp.offset) + 1;
2460 }
2461 goto done;
2462 }
2463
2464 /* go backward to find any previous key */
2465 ret = btrfs_previous_item(root, path, ino, key_type);
2466 if (ret == 0) {
2467 struct btrfs_key tmp;
2468 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2469 if (key_type == tmp.type) {
2470 first_offset = tmp.offset;
2471 ret = overwrite_item(trans, log, dst_path,
2472 path->nodes[0], path->slots[0],
2473 &tmp);
2474 if (ret) {
2475 err = ret;
2476 goto done;
2477 }
2478 }
2479 }
2480 btrfs_release_path(path);
2481
2482 /* find the first key from this transaction again */
2483 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2484 if (ret != 0) {
2485 WARN_ON(1);
2486 goto done;
2487 }
2488
2489 /*
2490 * we have a block from this transaction, log every item in it
2491 * from our directory
2492 */
2493 while (1) {
2494 struct btrfs_key tmp;
2495 src = path->nodes[0];
2496 nritems = btrfs_header_nritems(src);
2497 for (i = path->slots[0]; i < nritems; i++) {
2498 btrfs_item_key_to_cpu(src, &min_key, i);
2499
2500 if (min_key.objectid != ino || min_key.type != key_type)
2501 goto done;
2502 ret = overwrite_item(trans, log, dst_path, src, i,
2503 &min_key);
2504 if (ret) {
2505 err = ret;
2506 goto done;
2507 }
2508 }
2509 path->slots[0] = nritems;
2510
2511 /*
2512 * look ahead to the next item and see if it is also
2513 * from this directory and from this transaction
2514 */
2515 ret = btrfs_next_leaf(root, path);
2516 if (ret == 1) {
2517 last_offset = (u64)-1;
2518 goto done;
2519 }
2520 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2521 if (tmp.objectid != ino || tmp.type != key_type) {
2522 last_offset = (u64)-1;
2523 goto done;
2524 }
2525 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2526 ret = overwrite_item(trans, log, dst_path,
2527 path->nodes[0], path->slots[0],
2528 &tmp);
2529 if (ret)
2530 err = ret;
2531 else
2532 last_offset = tmp.offset;
2533 goto done;
2534 }
2535 }
2536 done:
2537 btrfs_release_path(path);
2538 btrfs_release_path(dst_path);
2539
2540 if (err == 0) {
2541 *last_offset_ret = last_offset;
2542 /*
2543 * insert the log range keys to indicate where the log
2544 * is valid
2545 */
2546 ret = insert_dir_log_key(trans, log, path, key_type,
2547 ino, first_offset, last_offset);
2548 if (ret)
2549 err = ret;
2550 }
2551 return err;
2552 }
2553
2554 /*
2555 * logging directories is very similar to logging inodes, We find all the items
2556 * from the current transaction and write them to the log.
2557 *
2558 * The recovery code scans the directory in the subvolume, and if it finds a
2559 * key in the range logged that is not present in the log tree, then it means
2560 * that dir entry was unlinked during the transaction.
2561 *
2562 * In order for that scan to work, we must include one key smaller than
2563 * the smallest logged by this transaction and one key larger than the largest
2564 * key logged by this transaction.
2565 */
2566 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2567 struct btrfs_root *root, struct inode *inode,
2568 struct btrfs_path *path,
2569 struct btrfs_path *dst_path)
2570 {
2571 u64 min_key;
2572 u64 max_key;
2573 int ret;
2574 int key_type = BTRFS_DIR_ITEM_KEY;
2575
2576 again:
2577 min_key = 0;
2578 max_key = 0;
2579 while (1) {
2580 ret = log_dir_items(trans, root, inode, path,
2581 dst_path, key_type, min_key,
2582 &max_key);
2583 if (ret)
2584 return ret;
2585 if (max_key == (u64)-1)
2586 break;
2587 min_key = max_key + 1;
2588 }
2589
2590 if (key_type == BTRFS_DIR_ITEM_KEY) {
2591 key_type = BTRFS_DIR_INDEX_KEY;
2592 goto again;
2593 }
2594 return 0;
2595 }
2596
2597 /*
2598 * a helper function to drop items from the log before we relog an
2599 * inode. max_key_type indicates the highest item type to remove.
2600 * This cannot be run for file data extents because it does not
2601 * free the extents they point to.
2602 */
2603 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2604 struct btrfs_root *log,
2605 struct btrfs_path *path,
2606 u64 objectid, int max_key_type)
2607 {
2608 int ret;
2609 struct btrfs_key key;
2610 struct btrfs_key found_key;
2611
2612 key.objectid = objectid;
2613 key.type = max_key_type;
2614 key.offset = (u64)-1;
2615
2616 while (1) {
2617 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2618 BUG_ON(ret == 0);
2619 if (ret < 0)
2620 break;
2621
2622 if (path->slots[0] == 0)
2623 break;
2624
2625 path->slots[0]--;
2626 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2627 path->slots[0]);
2628
2629 if (found_key.objectid != objectid)
2630 break;
2631
2632 ret = btrfs_del_item(trans, log, path);
2633 if (ret)
2634 break;
2635 btrfs_release_path(path);
2636 }
2637 btrfs_release_path(path);
2638 return ret;
2639 }
2640
2641 static noinline int copy_items(struct btrfs_trans_handle *trans,
2642 struct btrfs_root *log,
2643 struct btrfs_path *dst_path,
2644 struct extent_buffer *src,
2645 int start_slot, int nr, int inode_only)
2646 {
2647 unsigned long src_offset;
2648 unsigned long dst_offset;
2649 struct btrfs_file_extent_item *extent;
2650 struct btrfs_inode_item *inode_item;
2651 int ret;
2652 struct btrfs_key *ins_keys;
2653 u32 *ins_sizes;
2654 char *ins_data;
2655 int i;
2656 struct list_head ordered_sums;
2657
2658 INIT_LIST_HEAD(&ordered_sums);
2659
2660 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2661 nr * sizeof(u32), GFP_NOFS);
2662 if (!ins_data)
2663 return -ENOMEM;
2664
2665 ins_sizes = (u32 *)ins_data;
2666 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2667
2668 for (i = 0; i < nr; i++) {
2669 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2670 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2671 }
2672 ret = btrfs_insert_empty_items(trans, log, dst_path,
2673 ins_keys, ins_sizes, nr);
2674 if (ret) {
2675 kfree(ins_data);
2676 return ret;
2677 }
2678
2679 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2680 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2681 dst_path->slots[0]);
2682
2683 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2684
2685 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2686 src_offset, ins_sizes[i]);
2687
2688 if (inode_only == LOG_INODE_EXISTS &&
2689 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2690 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2691 dst_path->slots[0],
2692 struct btrfs_inode_item);
2693 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2694
2695 /* set the generation to zero so the recover code
2696 * can tell the difference between an logging
2697 * just to say 'this inode exists' and a logging
2698 * to say 'update this inode with these values'
2699 */
2700 btrfs_set_inode_generation(dst_path->nodes[0],
2701 inode_item, 0);
2702 }
2703 /* take a reference on file data extents so that truncates
2704 * or deletes of this inode don't have to relog the inode
2705 * again
2706 */
2707 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2708 int found_type;
2709 extent = btrfs_item_ptr(src, start_slot + i,
2710 struct btrfs_file_extent_item);
2711
2712 if (btrfs_file_extent_generation(src, extent) < trans->transid)
2713 continue;
2714
2715 found_type = btrfs_file_extent_type(src, extent);
2716 if (found_type == BTRFS_FILE_EXTENT_REG ||
2717 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2718 u64 ds, dl, cs, cl;
2719 ds = btrfs_file_extent_disk_bytenr(src,
2720 extent);
2721 /* ds == 0 is a hole */
2722 if (ds == 0)
2723 continue;
2724
2725 dl = btrfs_file_extent_disk_num_bytes(src,
2726 extent);
2727 cs = btrfs_file_extent_offset(src, extent);
2728 cl = btrfs_file_extent_num_bytes(src,
2729 extent);
2730 if (btrfs_file_extent_compression(src,
2731 extent)) {
2732 cs = 0;
2733 cl = dl;
2734 }
2735
2736 ret = btrfs_lookup_csums_range(
2737 log->fs_info->csum_root,
2738 ds + cs, ds + cs + cl - 1,
2739 &ordered_sums, 0);
2740 BUG_ON(ret);
2741 }
2742 }
2743 }
2744
2745 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2746 btrfs_release_path(dst_path);
2747 kfree(ins_data);
2748
2749 /*
2750 * we have to do this after the loop above to avoid changing the
2751 * log tree while trying to change the log tree.
2752 */
2753 ret = 0;
2754 while (!list_empty(&ordered_sums)) {
2755 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2756 struct btrfs_ordered_sum,
2757 list);
2758 if (!ret)
2759 ret = btrfs_csum_file_blocks(trans, log, sums);
2760 list_del(&sums->list);
2761 kfree(sums);
2762 }
2763 return ret;
2764 }
2765
2766 /* log a single inode in the tree log.
2767 * At least one parent directory for this inode must exist in the tree
2768 * or be logged already.
2769 *
2770 * Any items from this inode changed by the current transaction are copied
2771 * to the log tree. An extra reference is taken on any extents in this
2772 * file, allowing us to avoid a whole pile of corner cases around logging
2773 * blocks that have been removed from the tree.
2774 *
2775 * See LOG_INODE_ALL and related defines for a description of what inode_only
2776 * does.
2777 *
2778 * This handles both files and directories.
2779 */
2780 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2781 struct btrfs_root *root, struct inode *inode,
2782 int inode_only)
2783 {
2784 struct btrfs_path *path;
2785 struct btrfs_path *dst_path;
2786 struct btrfs_key min_key;
2787 struct btrfs_key max_key;
2788 struct btrfs_root *log = root->log_root;
2789 struct extent_buffer *src = NULL;
2790 int err = 0;
2791 int ret;
2792 int nritems;
2793 int ins_start_slot = 0;
2794 int ins_nr;
2795 u64 ino = btrfs_ino(inode);
2796
2797 log = root->log_root;
2798
2799 path = btrfs_alloc_path();
2800 if (!path)
2801 return -ENOMEM;
2802 dst_path = btrfs_alloc_path();
2803 if (!dst_path) {
2804 btrfs_free_path(path);
2805 return -ENOMEM;
2806 }
2807
2808 min_key.objectid = ino;
2809 min_key.type = BTRFS_INODE_ITEM_KEY;
2810 min_key.offset = 0;
2811
2812 max_key.objectid = ino;
2813
2814 /* today the code can only do partial logging of directories */
2815 if (!S_ISDIR(inode->i_mode))
2816 inode_only = LOG_INODE_ALL;
2817
2818 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2819 max_key.type = BTRFS_XATTR_ITEM_KEY;
2820 else
2821 max_key.type = (u8)-1;
2822 max_key.offset = (u64)-1;
2823
2824 ret = btrfs_commit_inode_delayed_items(trans, inode);
2825 if (ret) {
2826 btrfs_free_path(path);
2827 btrfs_free_path(dst_path);
2828 return ret;
2829 }
2830
2831 mutex_lock(&BTRFS_I(inode)->log_mutex);
2832
2833 /*
2834 * a brute force approach to making sure we get the most uptodate
2835 * copies of everything.
2836 */
2837 if (S_ISDIR(inode->i_mode)) {
2838 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2839
2840 if (inode_only == LOG_INODE_EXISTS)
2841 max_key_type = BTRFS_XATTR_ITEM_KEY;
2842 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2843 } else {
2844 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2845 }
2846 if (ret) {
2847 err = ret;
2848 goto out_unlock;
2849 }
2850 path->keep_locks = 1;
2851
2852 while (1) {
2853 ins_nr = 0;
2854 ret = btrfs_search_forward(root, &min_key, &max_key,
2855 path, 0, trans->transid);
2856 if (ret != 0)
2857 break;
2858 again:
2859 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2860 if (min_key.objectid != ino)
2861 break;
2862 if (min_key.type > max_key.type)
2863 break;
2864
2865 src = path->nodes[0];
2866 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2867 ins_nr++;
2868 goto next_slot;
2869 } else if (!ins_nr) {
2870 ins_start_slot = path->slots[0];
2871 ins_nr = 1;
2872 goto next_slot;
2873 }
2874
2875 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2876 ins_nr, inode_only);
2877 if (ret) {
2878 err = ret;
2879 goto out_unlock;
2880 }
2881 ins_nr = 1;
2882 ins_start_slot = path->slots[0];
2883 next_slot:
2884
2885 nritems = btrfs_header_nritems(path->nodes[0]);
2886 path->slots[0]++;
2887 if (path->slots[0] < nritems) {
2888 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2889 path->slots[0]);
2890 goto again;
2891 }
2892 if (ins_nr) {
2893 ret = copy_items(trans, log, dst_path, src,
2894 ins_start_slot,
2895 ins_nr, inode_only);
2896 if (ret) {
2897 err = ret;
2898 goto out_unlock;
2899 }
2900 ins_nr = 0;
2901 }
2902 btrfs_release_path(path);
2903
2904 if (min_key.offset < (u64)-1)
2905 min_key.offset++;
2906 else if (min_key.type < (u8)-1)
2907 min_key.type++;
2908 else if (min_key.objectid < (u64)-1)
2909 min_key.objectid++;
2910 else
2911 break;
2912 }
2913 if (ins_nr) {
2914 ret = copy_items(trans, log, dst_path, src,
2915 ins_start_slot,
2916 ins_nr, inode_only);
2917 if (ret) {
2918 err = ret;
2919 goto out_unlock;
2920 }
2921 ins_nr = 0;
2922 }
2923 WARN_ON(ins_nr);
2924 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2925 btrfs_release_path(path);
2926 btrfs_release_path(dst_path);
2927 ret = log_directory_changes(trans, root, inode, path, dst_path);
2928 if (ret) {
2929 err = ret;
2930 goto out_unlock;
2931 }
2932 }
2933 BTRFS_I(inode)->logged_trans = trans->transid;
2934 out_unlock:
2935 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2936
2937 btrfs_free_path(path);
2938 btrfs_free_path(dst_path);
2939 return err;
2940 }
2941
2942 /*
2943 * follow the dentry parent pointers up the chain and see if any
2944 * of the directories in it require a full commit before they can
2945 * be logged. Returns zero if nothing special needs to be done or 1 if
2946 * a full commit is required.
2947 */
2948 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2949 struct inode *inode,
2950 struct dentry *parent,
2951 struct super_block *sb,
2952 u64 last_committed)
2953 {
2954 int ret = 0;
2955 struct btrfs_root *root;
2956 struct dentry *old_parent = NULL;
2957
2958 /*
2959 * for regular files, if its inode is already on disk, we don't
2960 * have to worry about the parents at all. This is because
2961 * we can use the last_unlink_trans field to record renames
2962 * and other fun in this file.
2963 */
2964 if (S_ISREG(inode->i_mode) &&
2965 BTRFS_I(inode)->generation <= last_committed &&
2966 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2967 goto out;
2968
2969 if (!S_ISDIR(inode->i_mode)) {
2970 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2971 goto out;
2972 inode = parent->d_inode;
2973 }
2974
2975 while (1) {
2976 BTRFS_I(inode)->logged_trans = trans->transid;
2977 smp_mb();
2978
2979 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2980 root = BTRFS_I(inode)->root;
2981
2982 /*
2983 * make sure any commits to the log are forced
2984 * to be full commits
2985 */
2986 root->fs_info->last_trans_log_full_commit =
2987 trans->transid;
2988 ret = 1;
2989 break;
2990 }
2991
2992 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2993 break;
2994
2995 if (IS_ROOT(parent))
2996 break;
2997
2998 parent = dget_parent(parent);
2999 dput(old_parent);
3000 old_parent = parent;
3001 inode = parent->d_inode;
3002
3003 }
3004 dput(old_parent);
3005 out:
3006 return ret;
3007 }
3008
3009 static int inode_in_log(struct btrfs_trans_handle *trans,
3010 struct inode *inode)
3011 {
3012 struct btrfs_root *root = BTRFS_I(inode)->root;
3013 int ret = 0;
3014
3015 mutex_lock(&root->log_mutex);
3016 if (BTRFS_I(inode)->logged_trans == trans->transid &&
3017 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
3018 ret = 1;
3019 mutex_unlock(&root->log_mutex);
3020 return ret;
3021 }
3022
3023
3024 /*
3025 * helper function around btrfs_log_inode to make sure newly created
3026 * parent directories also end up in the log. A minimal inode and backref
3027 * only logging is done of any parent directories that are older than
3028 * the last committed transaction
3029 */
3030 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3031 struct btrfs_root *root, struct inode *inode,
3032 struct dentry *parent, int exists_only)
3033 {
3034 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3035 struct super_block *sb;
3036 struct dentry *old_parent = NULL;
3037 int ret = 0;
3038 u64 last_committed = root->fs_info->last_trans_committed;
3039
3040 sb = inode->i_sb;
3041
3042 if (btrfs_test_opt(root, NOTREELOG)) {
3043 ret = 1;
3044 goto end_no_trans;
3045 }
3046
3047 if (root->fs_info->last_trans_log_full_commit >
3048 root->fs_info->last_trans_committed) {
3049 ret = 1;
3050 goto end_no_trans;
3051 }
3052
3053 if (root != BTRFS_I(inode)->root ||
3054 btrfs_root_refs(&root->root_item) == 0) {
3055 ret = 1;
3056 goto end_no_trans;
3057 }
3058
3059 ret = check_parent_dirs_for_sync(trans, inode, parent,
3060 sb, last_committed);
3061 if (ret)
3062 goto end_no_trans;
3063
3064 if (inode_in_log(trans, inode)) {
3065 ret = BTRFS_NO_LOG_SYNC;
3066 goto end_no_trans;
3067 }
3068
3069 ret = start_log_trans(trans, root);
3070 if (ret)
3071 goto end_trans;
3072
3073 ret = btrfs_log_inode(trans, root, inode, inode_only);
3074 if (ret)
3075 goto end_trans;
3076
3077 /*
3078 * for regular files, if its inode is already on disk, we don't
3079 * have to worry about the parents at all. This is because
3080 * we can use the last_unlink_trans field to record renames
3081 * and other fun in this file.
3082 */
3083 if (S_ISREG(inode->i_mode) &&
3084 BTRFS_I(inode)->generation <= last_committed &&
3085 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3086 ret = 0;
3087 goto end_trans;
3088 }
3089
3090 inode_only = LOG_INODE_EXISTS;
3091 while (1) {
3092 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3093 break;
3094
3095 inode = parent->d_inode;
3096 if (root != BTRFS_I(inode)->root)
3097 break;
3098
3099 if (BTRFS_I(inode)->generation >
3100 root->fs_info->last_trans_committed) {
3101 ret = btrfs_log_inode(trans, root, inode, inode_only);
3102 if (ret)
3103 goto end_trans;
3104 }
3105 if (IS_ROOT(parent))
3106 break;
3107
3108 parent = dget_parent(parent);
3109 dput(old_parent);
3110 old_parent = parent;
3111 }
3112 ret = 0;
3113 end_trans:
3114 dput(old_parent);
3115 if (ret < 0) {
3116 BUG_ON(ret != -ENOSPC);
3117 root->fs_info->last_trans_log_full_commit = trans->transid;
3118 ret = 1;
3119 }
3120 btrfs_end_log_trans(root);
3121 end_no_trans:
3122 return ret;
3123 }
3124
3125 /*
3126 * it is not safe to log dentry if the chunk root has added new
3127 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3128 * If this returns 1, you must commit the transaction to safely get your
3129 * data on disk.
3130 */
3131 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3132 struct btrfs_root *root, struct dentry *dentry)
3133 {
3134 struct dentry *parent = dget_parent(dentry);
3135 int ret;
3136
3137 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3138 dput(parent);
3139
3140 return ret;
3141 }
3142
3143 /*
3144 * should be called during mount to recover any replay any log trees
3145 * from the FS
3146 */
3147 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3148 {
3149 int ret;
3150 struct btrfs_path *path;
3151 struct btrfs_trans_handle *trans;
3152 struct btrfs_key key;
3153 struct btrfs_key found_key;
3154 struct btrfs_key tmp_key;
3155 struct btrfs_root *log;
3156 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3157 struct walk_control wc = {
3158 .process_func = process_one_buffer,
3159 .stage = 0,
3160 };
3161
3162 path = btrfs_alloc_path();
3163 if (!path)
3164 return -ENOMEM;
3165
3166 fs_info->log_root_recovering = 1;
3167
3168 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3169 BUG_ON(IS_ERR(trans));
3170
3171 wc.trans = trans;
3172 wc.pin = 1;
3173
3174 ret = walk_log_tree(trans, log_root_tree, &wc);
3175 BUG_ON(ret);
3176
3177 again:
3178 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3179 key.offset = (u64)-1;
3180 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3181
3182 while (1) {
3183 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3184 if (ret < 0)
3185 break;
3186 if (ret > 0) {
3187 if (path->slots[0] == 0)
3188 break;
3189 path->slots[0]--;
3190 }
3191 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3192 path->slots[0]);
3193 btrfs_release_path(path);
3194 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3195 break;
3196
3197 log = btrfs_read_fs_root_no_radix(log_root_tree,
3198 &found_key);
3199 BUG_ON(IS_ERR(log));
3200
3201 tmp_key.objectid = found_key.offset;
3202 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3203 tmp_key.offset = (u64)-1;
3204
3205 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3206 BUG_ON(IS_ERR_OR_NULL(wc.replay_dest));
3207
3208 wc.replay_dest->log_root = log;
3209 btrfs_record_root_in_trans(trans, wc.replay_dest);
3210 ret = walk_log_tree(trans, log, &wc);
3211 BUG_ON(ret);
3212
3213 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3214 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3215 path);
3216 BUG_ON(ret);
3217 }
3218
3219 key.offset = found_key.offset - 1;
3220 wc.replay_dest->log_root = NULL;
3221 free_extent_buffer(log->node);
3222 free_extent_buffer(log->commit_root);
3223 kfree(log);
3224
3225 if (found_key.offset == 0)
3226 break;
3227 }
3228 btrfs_release_path(path);
3229
3230 /* step one is to pin it all, step two is to replay just inodes */
3231 if (wc.pin) {
3232 wc.pin = 0;
3233 wc.process_func = replay_one_buffer;
3234 wc.stage = LOG_WALK_REPLAY_INODES;
3235 goto again;
3236 }
3237 /* step three is to replay everything */
3238 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3239 wc.stage++;
3240 goto again;
3241 }
3242
3243 btrfs_free_path(path);
3244
3245 free_extent_buffer(log_root_tree->node);
3246 log_root_tree->log_root = NULL;
3247 fs_info->log_root_recovering = 0;
3248
3249 /* step 4: commit the transaction, which also unpins the blocks */
3250 btrfs_commit_transaction(trans, fs_info->tree_root);
3251
3252 kfree(log_root_tree);
3253 return 0;
3254 }
3255
3256 /*
3257 * there are some corner cases where we want to force a full
3258 * commit instead of allowing a directory to be logged.
3259 *
3260 * They revolve around files there were unlinked from the directory, and
3261 * this function updates the parent directory so that a full commit is
3262 * properly done if it is fsync'd later after the unlinks are done.
3263 */
3264 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3265 struct inode *dir, struct inode *inode,
3266 int for_rename)
3267 {
3268 /*
3269 * when we're logging a file, if it hasn't been renamed
3270 * or unlinked, and its inode is fully committed on disk,
3271 * we don't have to worry about walking up the directory chain
3272 * to log its parents.
3273 *
3274 * So, we use the last_unlink_trans field to put this transid
3275 * into the file. When the file is logged we check it and
3276 * don't log the parents if the file is fully on disk.
3277 */
3278 if (S_ISREG(inode->i_mode))
3279 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3280
3281 /*
3282 * if this directory was already logged any new
3283 * names for this file/dir will get recorded
3284 */
3285 smp_mb();
3286 if (BTRFS_I(dir)->logged_trans == trans->transid)
3287 return;
3288
3289 /*
3290 * if the inode we're about to unlink was logged,
3291 * the log will be properly updated for any new names
3292 */
3293 if (BTRFS_I(inode)->logged_trans == trans->transid)
3294 return;
3295
3296 /*
3297 * when renaming files across directories, if the directory
3298 * there we're unlinking from gets fsync'd later on, there's
3299 * no way to find the destination directory later and fsync it
3300 * properly. So, we have to be conservative and force commits
3301 * so the new name gets discovered.
3302 */
3303 if (for_rename)
3304 goto record;
3305
3306 /* we can safely do the unlink without any special recording */
3307 return;
3308
3309 record:
3310 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3311 }
3312
3313 /*
3314 * Call this after adding a new name for a file and it will properly
3315 * update the log to reflect the new name.
3316 *
3317 * It will return zero if all goes well, and it will return 1 if a
3318 * full transaction commit is required.
3319 */
3320 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3321 struct inode *inode, struct inode *old_dir,
3322 struct dentry *parent)
3323 {
3324 struct btrfs_root * root = BTRFS_I(inode)->root;
3325
3326 /*
3327 * this will force the logging code to walk the dentry chain
3328 * up for the file
3329 */
3330 if (S_ISREG(inode->i_mode))
3331 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3332
3333 /*
3334 * if this inode hasn't been logged and directory we're renaming it
3335 * from hasn't been logged, we don't need to log it
3336 */
3337 if (BTRFS_I(inode)->logged_trans <=
3338 root->fs_info->last_trans_committed &&
3339 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3340 root->fs_info->last_trans_committed))
3341 return 0;
3342
3343 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3344 }
3345
This page took 0.107585 seconds and 5 git commands to generate.