Merge tag 'arm64-stable' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas...
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "compat.h"
30 #include "tree-log.h"
31 #include "hash.h"
32
33 /* magic values for the inode_only field in btrfs_log_inode:
34 *
35 * LOG_INODE_ALL means to log everything
36 * LOG_INODE_EXISTS means to log just enough to recreate the inode
37 * during log replay
38 */
39 #define LOG_INODE_ALL 0
40 #define LOG_INODE_EXISTS 1
41
42 /*
43 * directory trouble cases
44 *
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
49 *
50 * mkdir foo/some_dir
51 * normal commit
52 * rename foo/some_dir foo2/some_dir
53 * mkdir foo/some_dir
54 * fsync foo/some_dir/some_file
55 *
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
59 *
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
62 *
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
66 *
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
69 *
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
72 *
73 * mkdir f1/foo
74 * normal commit
75 * rm -rf f1/foo
76 * fsync(f1)
77 *
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
82 * ugly details.
83 */
84
85 /*
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
90 *
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
93 */
94 #define LOG_WALK_PIN_ONLY 0
95 #define LOG_WALK_REPLAY_INODES 1
96 #define LOG_WALK_REPLAY_DIR_INDEX 2
97 #define LOG_WALK_REPLAY_ALL 3
98
99 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root, struct inode *inode,
101 int inode_only);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
110
111 /*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
134 /*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root)
141 {
142 int ret;
143 int err = 0;
144
145 mutex_lock(&root->log_mutex);
146 if (root->log_root) {
147 if (!root->log_start_pid) {
148 root->log_start_pid = current->pid;
149 root->log_multiple_pids = false;
150 } else if (root->log_start_pid != current->pid) {
151 root->log_multiple_pids = true;
152 }
153
154 atomic_inc(&root->log_batch);
155 atomic_inc(&root->log_writers);
156 mutex_unlock(&root->log_mutex);
157 return 0;
158 }
159 root->log_multiple_pids = false;
160 root->log_start_pid = current->pid;
161 mutex_lock(&root->fs_info->tree_log_mutex);
162 if (!root->fs_info->log_root_tree) {
163 ret = btrfs_init_log_root_tree(trans, root->fs_info);
164 if (ret)
165 err = ret;
166 }
167 if (err == 0 && !root->log_root) {
168 ret = btrfs_add_log_tree(trans, root);
169 if (ret)
170 err = ret;
171 }
172 mutex_unlock(&root->fs_info->tree_log_mutex);
173 atomic_inc(&root->log_batch);
174 atomic_inc(&root->log_writers);
175 mutex_unlock(&root->log_mutex);
176 return err;
177 }
178
179 /*
180 * returns 0 if there was a log transaction running and we were able
181 * to join, or returns -ENOENT if there were not transactions
182 * in progress
183 */
184 static int join_running_log_trans(struct btrfs_root *root)
185 {
186 int ret = -ENOENT;
187
188 smp_mb();
189 if (!root->log_root)
190 return -ENOENT;
191
192 mutex_lock(&root->log_mutex);
193 if (root->log_root) {
194 ret = 0;
195 atomic_inc(&root->log_writers);
196 }
197 mutex_unlock(&root->log_mutex);
198 return ret;
199 }
200
201 /*
202 * This either makes the current running log transaction wait
203 * until you call btrfs_end_log_trans() or it makes any future
204 * log transactions wait until you call btrfs_end_log_trans()
205 */
206 int btrfs_pin_log_trans(struct btrfs_root *root)
207 {
208 int ret = -ENOENT;
209
210 mutex_lock(&root->log_mutex);
211 atomic_inc(&root->log_writers);
212 mutex_unlock(&root->log_mutex);
213 return ret;
214 }
215
216 /*
217 * indicate we're done making changes to the log tree
218 * and wake up anyone waiting to do a sync
219 */
220 void btrfs_end_log_trans(struct btrfs_root *root)
221 {
222 if (atomic_dec_and_test(&root->log_writers)) {
223 smp_mb();
224 if (waitqueue_active(&root->log_writer_wait))
225 wake_up(&root->log_writer_wait);
226 }
227 }
228
229
230 /*
231 * the walk control struct is used to pass state down the chain when
232 * processing the log tree. The stage field tells us which part
233 * of the log tree processing we are currently doing. The others
234 * are state fields used for that specific part
235 */
236 struct walk_control {
237 /* should we free the extent on disk when done? This is used
238 * at transaction commit time while freeing a log tree
239 */
240 int free;
241
242 /* should we write out the extent buffer? This is used
243 * while flushing the log tree to disk during a sync
244 */
245 int write;
246
247 /* should we wait for the extent buffer io to finish? Also used
248 * while flushing the log tree to disk for a sync
249 */
250 int wait;
251
252 /* pin only walk, we record which extents on disk belong to the
253 * log trees
254 */
255 int pin;
256
257 /* what stage of the replay code we're currently in */
258 int stage;
259
260 /* the root we are currently replaying */
261 struct btrfs_root *replay_dest;
262
263 /* the trans handle for the current replay */
264 struct btrfs_trans_handle *trans;
265
266 /* the function that gets used to process blocks we find in the
267 * tree. Note the extent_buffer might not be up to date when it is
268 * passed in, and it must be checked or read if you need the data
269 * inside it
270 */
271 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
272 struct walk_control *wc, u64 gen);
273 };
274
275 /*
276 * process_func used to pin down extents, write them or wait on them
277 */
278 static int process_one_buffer(struct btrfs_root *log,
279 struct extent_buffer *eb,
280 struct walk_control *wc, u64 gen)
281 {
282 int ret = 0;
283
284 /*
285 * If this fs is mixed then we need to be able to process the leaves to
286 * pin down any logged extents, so we have to read the block.
287 */
288 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
289 ret = btrfs_read_buffer(eb, gen);
290 if (ret)
291 return ret;
292 }
293
294 if (wc->pin)
295 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
296 eb->start, eb->len);
297
298 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
299 if (wc->pin && btrfs_header_level(eb) == 0)
300 ret = btrfs_exclude_logged_extents(log, eb);
301 if (wc->write)
302 btrfs_write_tree_block(eb);
303 if (wc->wait)
304 btrfs_wait_tree_block_writeback(eb);
305 }
306 return ret;
307 }
308
309 /*
310 * Item overwrite used by replay and tree logging. eb, slot and key all refer
311 * to the src data we are copying out.
312 *
313 * root is the tree we are copying into, and path is a scratch
314 * path for use in this function (it should be released on entry and
315 * will be released on exit).
316 *
317 * If the key is already in the destination tree the existing item is
318 * overwritten. If the existing item isn't big enough, it is extended.
319 * If it is too large, it is truncated.
320 *
321 * If the key isn't in the destination yet, a new item is inserted.
322 */
323 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
324 struct btrfs_root *root,
325 struct btrfs_path *path,
326 struct extent_buffer *eb, int slot,
327 struct btrfs_key *key)
328 {
329 int ret;
330 u32 item_size;
331 u64 saved_i_size = 0;
332 int save_old_i_size = 0;
333 unsigned long src_ptr;
334 unsigned long dst_ptr;
335 int overwrite_root = 0;
336 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
337
338 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
339 overwrite_root = 1;
340
341 item_size = btrfs_item_size_nr(eb, slot);
342 src_ptr = btrfs_item_ptr_offset(eb, slot);
343
344 /* look for the key in the destination tree */
345 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
346 if (ret < 0)
347 return ret;
348
349 if (ret == 0) {
350 char *src_copy;
351 char *dst_copy;
352 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
353 path->slots[0]);
354 if (dst_size != item_size)
355 goto insert;
356
357 if (item_size == 0) {
358 btrfs_release_path(path);
359 return 0;
360 }
361 dst_copy = kmalloc(item_size, GFP_NOFS);
362 src_copy = kmalloc(item_size, GFP_NOFS);
363 if (!dst_copy || !src_copy) {
364 btrfs_release_path(path);
365 kfree(dst_copy);
366 kfree(src_copy);
367 return -ENOMEM;
368 }
369
370 read_extent_buffer(eb, src_copy, src_ptr, item_size);
371
372 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
373 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
374 item_size);
375 ret = memcmp(dst_copy, src_copy, item_size);
376
377 kfree(dst_copy);
378 kfree(src_copy);
379 /*
380 * they have the same contents, just return, this saves
381 * us from cowing blocks in the destination tree and doing
382 * extra writes that may not have been done by a previous
383 * sync
384 */
385 if (ret == 0) {
386 btrfs_release_path(path);
387 return 0;
388 }
389
390 /*
391 * We need to load the old nbytes into the inode so when we
392 * replay the extents we've logged we get the right nbytes.
393 */
394 if (inode_item) {
395 struct btrfs_inode_item *item;
396 u64 nbytes;
397 u32 mode;
398
399 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
400 struct btrfs_inode_item);
401 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
402 item = btrfs_item_ptr(eb, slot,
403 struct btrfs_inode_item);
404 btrfs_set_inode_nbytes(eb, item, nbytes);
405
406 /*
407 * If this is a directory we need to reset the i_size to
408 * 0 so that we can set it up properly when replaying
409 * the rest of the items in this log.
410 */
411 mode = btrfs_inode_mode(eb, item);
412 if (S_ISDIR(mode))
413 btrfs_set_inode_size(eb, item, 0);
414 }
415 } else if (inode_item) {
416 struct btrfs_inode_item *item;
417 u32 mode;
418
419 /*
420 * New inode, set nbytes to 0 so that the nbytes comes out
421 * properly when we replay the extents.
422 */
423 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
424 btrfs_set_inode_nbytes(eb, item, 0);
425
426 /*
427 * If this is a directory we need to reset the i_size to 0 so
428 * that we can set it up properly when replaying the rest of
429 * the items in this log.
430 */
431 mode = btrfs_inode_mode(eb, item);
432 if (S_ISDIR(mode))
433 btrfs_set_inode_size(eb, item, 0);
434 }
435 insert:
436 btrfs_release_path(path);
437 /* try to insert the key into the destination tree */
438 ret = btrfs_insert_empty_item(trans, root, path,
439 key, item_size);
440
441 /* make sure any existing item is the correct size */
442 if (ret == -EEXIST) {
443 u32 found_size;
444 found_size = btrfs_item_size_nr(path->nodes[0],
445 path->slots[0]);
446 if (found_size > item_size)
447 btrfs_truncate_item(root, path, item_size, 1);
448 else if (found_size < item_size)
449 btrfs_extend_item(root, path,
450 item_size - found_size);
451 } else if (ret) {
452 return ret;
453 }
454 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
455 path->slots[0]);
456
457 /* don't overwrite an existing inode if the generation number
458 * was logged as zero. This is done when the tree logging code
459 * is just logging an inode to make sure it exists after recovery.
460 *
461 * Also, don't overwrite i_size on directories during replay.
462 * log replay inserts and removes directory items based on the
463 * state of the tree found in the subvolume, and i_size is modified
464 * as it goes
465 */
466 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
467 struct btrfs_inode_item *src_item;
468 struct btrfs_inode_item *dst_item;
469
470 src_item = (struct btrfs_inode_item *)src_ptr;
471 dst_item = (struct btrfs_inode_item *)dst_ptr;
472
473 if (btrfs_inode_generation(eb, src_item) == 0)
474 goto no_copy;
475
476 if (overwrite_root &&
477 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
478 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
479 save_old_i_size = 1;
480 saved_i_size = btrfs_inode_size(path->nodes[0],
481 dst_item);
482 }
483 }
484
485 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
486 src_ptr, item_size);
487
488 if (save_old_i_size) {
489 struct btrfs_inode_item *dst_item;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
492 }
493
494 /* make sure the generation is filled in */
495 if (key->type == BTRFS_INODE_ITEM_KEY) {
496 struct btrfs_inode_item *dst_item;
497 dst_item = (struct btrfs_inode_item *)dst_ptr;
498 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
499 btrfs_set_inode_generation(path->nodes[0], dst_item,
500 trans->transid);
501 }
502 }
503 no_copy:
504 btrfs_mark_buffer_dirty(path->nodes[0]);
505 btrfs_release_path(path);
506 return 0;
507 }
508
509 /*
510 * simple helper to read an inode off the disk from a given root
511 * This can only be called for subvolume roots and not for the log
512 */
513 static noinline struct inode *read_one_inode(struct btrfs_root *root,
514 u64 objectid)
515 {
516 struct btrfs_key key;
517 struct inode *inode;
518
519 key.objectid = objectid;
520 key.type = BTRFS_INODE_ITEM_KEY;
521 key.offset = 0;
522 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
523 if (IS_ERR(inode)) {
524 inode = NULL;
525 } else if (is_bad_inode(inode)) {
526 iput(inode);
527 inode = NULL;
528 }
529 return inode;
530 }
531
532 /* replays a single extent in 'eb' at 'slot' with 'key' into the
533 * subvolume 'root'. path is released on entry and should be released
534 * on exit.
535 *
536 * extents in the log tree have not been allocated out of the extent
537 * tree yet. So, this completes the allocation, taking a reference
538 * as required if the extent already exists or creating a new extent
539 * if it isn't in the extent allocation tree yet.
540 *
541 * The extent is inserted into the file, dropping any existing extents
542 * from the file that overlap the new one.
543 */
544 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
545 struct btrfs_root *root,
546 struct btrfs_path *path,
547 struct extent_buffer *eb, int slot,
548 struct btrfs_key *key)
549 {
550 int found_type;
551 u64 extent_end;
552 u64 start = key->offset;
553 u64 nbytes = 0;
554 struct btrfs_file_extent_item *item;
555 struct inode *inode = NULL;
556 unsigned long size;
557 int ret = 0;
558
559 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
560 found_type = btrfs_file_extent_type(eb, item);
561
562 if (found_type == BTRFS_FILE_EXTENT_REG ||
563 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
564 nbytes = btrfs_file_extent_num_bytes(eb, item);
565 extent_end = start + nbytes;
566
567 /*
568 * We don't add to the inodes nbytes if we are prealloc or a
569 * hole.
570 */
571 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
572 nbytes = 0;
573 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
574 size = btrfs_file_extent_inline_len(eb, item);
575 nbytes = btrfs_file_extent_ram_bytes(eb, item);
576 extent_end = ALIGN(start + size, root->sectorsize);
577 } else {
578 ret = 0;
579 goto out;
580 }
581
582 inode = read_one_inode(root, key->objectid);
583 if (!inode) {
584 ret = -EIO;
585 goto out;
586 }
587
588 /*
589 * first check to see if we already have this extent in the
590 * file. This must be done before the btrfs_drop_extents run
591 * so we don't try to drop this extent.
592 */
593 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
594 start, 0);
595
596 if (ret == 0 &&
597 (found_type == BTRFS_FILE_EXTENT_REG ||
598 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
599 struct btrfs_file_extent_item cmp1;
600 struct btrfs_file_extent_item cmp2;
601 struct btrfs_file_extent_item *existing;
602 struct extent_buffer *leaf;
603
604 leaf = path->nodes[0];
605 existing = btrfs_item_ptr(leaf, path->slots[0],
606 struct btrfs_file_extent_item);
607
608 read_extent_buffer(eb, &cmp1, (unsigned long)item,
609 sizeof(cmp1));
610 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
611 sizeof(cmp2));
612
613 /*
614 * we already have a pointer to this exact extent,
615 * we don't have to do anything
616 */
617 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
618 btrfs_release_path(path);
619 goto out;
620 }
621 }
622 btrfs_release_path(path);
623
624 /* drop any overlapping extents */
625 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
626 if (ret)
627 goto out;
628
629 if (found_type == BTRFS_FILE_EXTENT_REG ||
630 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
631 u64 offset;
632 unsigned long dest_offset;
633 struct btrfs_key ins;
634
635 ret = btrfs_insert_empty_item(trans, root, path, key,
636 sizeof(*item));
637 if (ret)
638 goto out;
639 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
640 path->slots[0]);
641 copy_extent_buffer(path->nodes[0], eb, dest_offset,
642 (unsigned long)item, sizeof(*item));
643
644 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
645 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
646 ins.type = BTRFS_EXTENT_ITEM_KEY;
647 offset = key->offset - btrfs_file_extent_offset(eb, item);
648
649 if (ins.objectid > 0) {
650 u64 csum_start;
651 u64 csum_end;
652 LIST_HEAD(ordered_sums);
653 /*
654 * is this extent already allocated in the extent
655 * allocation tree? If so, just add a reference
656 */
657 ret = btrfs_lookup_extent(root, ins.objectid,
658 ins.offset);
659 if (ret == 0) {
660 ret = btrfs_inc_extent_ref(trans, root,
661 ins.objectid, ins.offset,
662 0, root->root_key.objectid,
663 key->objectid, offset, 0);
664 if (ret)
665 goto out;
666 } else {
667 /*
668 * insert the extent pointer in the extent
669 * allocation tree
670 */
671 ret = btrfs_alloc_logged_file_extent(trans,
672 root, root->root_key.objectid,
673 key->objectid, offset, &ins);
674 if (ret)
675 goto out;
676 }
677 btrfs_release_path(path);
678
679 if (btrfs_file_extent_compression(eb, item)) {
680 csum_start = ins.objectid;
681 csum_end = csum_start + ins.offset;
682 } else {
683 csum_start = ins.objectid +
684 btrfs_file_extent_offset(eb, item);
685 csum_end = csum_start +
686 btrfs_file_extent_num_bytes(eb, item);
687 }
688
689 ret = btrfs_lookup_csums_range(root->log_root,
690 csum_start, csum_end - 1,
691 &ordered_sums, 0);
692 if (ret)
693 goto out;
694 while (!list_empty(&ordered_sums)) {
695 struct btrfs_ordered_sum *sums;
696 sums = list_entry(ordered_sums.next,
697 struct btrfs_ordered_sum,
698 list);
699 if (!ret)
700 ret = btrfs_csum_file_blocks(trans,
701 root->fs_info->csum_root,
702 sums);
703 list_del(&sums->list);
704 kfree(sums);
705 }
706 if (ret)
707 goto out;
708 } else {
709 btrfs_release_path(path);
710 }
711 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
712 /* inline extents are easy, we just overwrite them */
713 ret = overwrite_item(trans, root, path, eb, slot, key);
714 if (ret)
715 goto out;
716 }
717
718 inode_add_bytes(inode, nbytes);
719 ret = btrfs_update_inode(trans, root, inode);
720 out:
721 if (inode)
722 iput(inode);
723 return ret;
724 }
725
726 /*
727 * when cleaning up conflicts between the directory names in the
728 * subvolume, directory names in the log and directory names in the
729 * inode back references, we may have to unlink inodes from directories.
730 *
731 * This is a helper function to do the unlink of a specific directory
732 * item
733 */
734 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
735 struct btrfs_root *root,
736 struct btrfs_path *path,
737 struct inode *dir,
738 struct btrfs_dir_item *di)
739 {
740 struct inode *inode;
741 char *name;
742 int name_len;
743 struct extent_buffer *leaf;
744 struct btrfs_key location;
745 int ret;
746
747 leaf = path->nodes[0];
748
749 btrfs_dir_item_key_to_cpu(leaf, di, &location);
750 name_len = btrfs_dir_name_len(leaf, di);
751 name = kmalloc(name_len, GFP_NOFS);
752 if (!name)
753 return -ENOMEM;
754
755 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
756 btrfs_release_path(path);
757
758 inode = read_one_inode(root, location.objectid);
759 if (!inode) {
760 ret = -EIO;
761 goto out;
762 }
763
764 ret = link_to_fixup_dir(trans, root, path, location.objectid);
765 if (ret)
766 goto out;
767
768 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
769 if (ret)
770 goto out;
771 else
772 ret = btrfs_run_delayed_items(trans, root);
773 out:
774 kfree(name);
775 iput(inode);
776 return ret;
777 }
778
779 /*
780 * helper function to see if a given name and sequence number found
781 * in an inode back reference are already in a directory and correctly
782 * point to this inode
783 */
784 static noinline int inode_in_dir(struct btrfs_root *root,
785 struct btrfs_path *path,
786 u64 dirid, u64 objectid, u64 index,
787 const char *name, int name_len)
788 {
789 struct btrfs_dir_item *di;
790 struct btrfs_key location;
791 int match = 0;
792
793 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
794 index, name, name_len, 0);
795 if (di && !IS_ERR(di)) {
796 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
797 if (location.objectid != objectid)
798 goto out;
799 } else
800 goto out;
801 btrfs_release_path(path);
802
803 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
804 if (di && !IS_ERR(di)) {
805 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
806 if (location.objectid != objectid)
807 goto out;
808 } else
809 goto out;
810 match = 1;
811 out:
812 btrfs_release_path(path);
813 return match;
814 }
815
816 /*
817 * helper function to check a log tree for a named back reference in
818 * an inode. This is used to decide if a back reference that is
819 * found in the subvolume conflicts with what we find in the log.
820 *
821 * inode backreferences may have multiple refs in a single item,
822 * during replay we process one reference at a time, and we don't
823 * want to delete valid links to a file from the subvolume if that
824 * link is also in the log.
825 */
826 static noinline int backref_in_log(struct btrfs_root *log,
827 struct btrfs_key *key,
828 u64 ref_objectid,
829 char *name, int namelen)
830 {
831 struct btrfs_path *path;
832 struct btrfs_inode_ref *ref;
833 unsigned long ptr;
834 unsigned long ptr_end;
835 unsigned long name_ptr;
836 int found_name_len;
837 int item_size;
838 int ret;
839 int match = 0;
840
841 path = btrfs_alloc_path();
842 if (!path)
843 return -ENOMEM;
844
845 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
846 if (ret != 0)
847 goto out;
848
849 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
850
851 if (key->type == BTRFS_INODE_EXTREF_KEY) {
852 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
853 name, namelen, NULL))
854 match = 1;
855
856 goto out;
857 }
858
859 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
860 ptr_end = ptr + item_size;
861 while (ptr < ptr_end) {
862 ref = (struct btrfs_inode_ref *)ptr;
863 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
864 if (found_name_len == namelen) {
865 name_ptr = (unsigned long)(ref + 1);
866 ret = memcmp_extent_buffer(path->nodes[0], name,
867 name_ptr, namelen);
868 if (ret == 0) {
869 match = 1;
870 goto out;
871 }
872 }
873 ptr = (unsigned long)(ref + 1) + found_name_len;
874 }
875 out:
876 btrfs_free_path(path);
877 return match;
878 }
879
880 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root,
882 struct btrfs_path *path,
883 struct btrfs_root *log_root,
884 struct inode *dir, struct inode *inode,
885 struct extent_buffer *eb,
886 u64 inode_objectid, u64 parent_objectid,
887 u64 ref_index, char *name, int namelen,
888 int *search_done)
889 {
890 int ret;
891 char *victim_name;
892 int victim_name_len;
893 struct extent_buffer *leaf;
894 struct btrfs_dir_item *di;
895 struct btrfs_key search_key;
896 struct btrfs_inode_extref *extref;
897
898 again:
899 /* Search old style refs */
900 search_key.objectid = inode_objectid;
901 search_key.type = BTRFS_INODE_REF_KEY;
902 search_key.offset = parent_objectid;
903 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
904 if (ret == 0) {
905 struct btrfs_inode_ref *victim_ref;
906 unsigned long ptr;
907 unsigned long ptr_end;
908
909 leaf = path->nodes[0];
910
911 /* are we trying to overwrite a back ref for the root directory
912 * if so, just jump out, we're done
913 */
914 if (search_key.objectid == search_key.offset)
915 return 1;
916
917 /* check all the names in this back reference to see
918 * if they are in the log. if so, we allow them to stay
919 * otherwise they must be unlinked as a conflict
920 */
921 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
922 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
923 while (ptr < ptr_end) {
924 victim_ref = (struct btrfs_inode_ref *)ptr;
925 victim_name_len = btrfs_inode_ref_name_len(leaf,
926 victim_ref);
927 victim_name = kmalloc(victim_name_len, GFP_NOFS);
928 if (!victim_name)
929 return -ENOMEM;
930
931 read_extent_buffer(leaf, victim_name,
932 (unsigned long)(victim_ref + 1),
933 victim_name_len);
934
935 if (!backref_in_log(log_root, &search_key,
936 parent_objectid,
937 victim_name,
938 victim_name_len)) {
939 btrfs_inc_nlink(inode);
940 btrfs_release_path(path);
941
942 ret = btrfs_unlink_inode(trans, root, dir,
943 inode, victim_name,
944 victim_name_len);
945 kfree(victim_name);
946 if (ret)
947 return ret;
948 ret = btrfs_run_delayed_items(trans, root);
949 if (ret)
950 return ret;
951 *search_done = 1;
952 goto again;
953 }
954 kfree(victim_name);
955
956 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
957 }
958
959 /*
960 * NOTE: we have searched root tree and checked the
961 * coresponding ref, it does not need to check again.
962 */
963 *search_done = 1;
964 }
965 btrfs_release_path(path);
966
967 /* Same search but for extended refs */
968 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
969 inode_objectid, parent_objectid, 0,
970 0);
971 if (!IS_ERR_OR_NULL(extref)) {
972 u32 item_size;
973 u32 cur_offset = 0;
974 unsigned long base;
975 struct inode *victim_parent;
976
977 leaf = path->nodes[0];
978
979 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
980 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
981
982 while (cur_offset < item_size) {
983 extref = (struct btrfs_inode_extref *)base + cur_offset;
984
985 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
986
987 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
988 goto next;
989
990 victim_name = kmalloc(victim_name_len, GFP_NOFS);
991 if (!victim_name)
992 return -ENOMEM;
993 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
994 victim_name_len);
995
996 search_key.objectid = inode_objectid;
997 search_key.type = BTRFS_INODE_EXTREF_KEY;
998 search_key.offset = btrfs_extref_hash(parent_objectid,
999 victim_name,
1000 victim_name_len);
1001 ret = 0;
1002 if (!backref_in_log(log_root, &search_key,
1003 parent_objectid, victim_name,
1004 victim_name_len)) {
1005 ret = -ENOENT;
1006 victim_parent = read_one_inode(root,
1007 parent_objectid);
1008 if (victim_parent) {
1009 btrfs_inc_nlink(inode);
1010 btrfs_release_path(path);
1011
1012 ret = btrfs_unlink_inode(trans, root,
1013 victim_parent,
1014 inode,
1015 victim_name,
1016 victim_name_len);
1017 if (!ret)
1018 ret = btrfs_run_delayed_items(
1019 trans, root);
1020 }
1021 iput(victim_parent);
1022 kfree(victim_name);
1023 if (ret)
1024 return ret;
1025 *search_done = 1;
1026 goto again;
1027 }
1028 kfree(victim_name);
1029 if (ret)
1030 return ret;
1031 next:
1032 cur_offset += victim_name_len + sizeof(*extref);
1033 }
1034 *search_done = 1;
1035 }
1036 btrfs_release_path(path);
1037
1038 /* look for a conflicting sequence number */
1039 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1040 ref_index, name, namelen, 0);
1041 if (di && !IS_ERR(di)) {
1042 ret = drop_one_dir_item(trans, root, path, dir, di);
1043 if (ret)
1044 return ret;
1045 }
1046 btrfs_release_path(path);
1047
1048 /* look for a conflicing name */
1049 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1050 name, namelen, 0);
1051 if (di && !IS_ERR(di)) {
1052 ret = drop_one_dir_item(trans, root, path, dir, di);
1053 if (ret)
1054 return ret;
1055 }
1056 btrfs_release_path(path);
1057
1058 return 0;
1059 }
1060
1061 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1062 u32 *namelen, char **name, u64 *index,
1063 u64 *parent_objectid)
1064 {
1065 struct btrfs_inode_extref *extref;
1066
1067 extref = (struct btrfs_inode_extref *)ref_ptr;
1068
1069 *namelen = btrfs_inode_extref_name_len(eb, extref);
1070 *name = kmalloc(*namelen, GFP_NOFS);
1071 if (*name == NULL)
1072 return -ENOMEM;
1073
1074 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1075 *namelen);
1076
1077 *index = btrfs_inode_extref_index(eb, extref);
1078 if (parent_objectid)
1079 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1080
1081 return 0;
1082 }
1083
1084 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1085 u32 *namelen, char **name, u64 *index)
1086 {
1087 struct btrfs_inode_ref *ref;
1088
1089 ref = (struct btrfs_inode_ref *)ref_ptr;
1090
1091 *namelen = btrfs_inode_ref_name_len(eb, ref);
1092 *name = kmalloc(*namelen, GFP_NOFS);
1093 if (*name == NULL)
1094 return -ENOMEM;
1095
1096 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1097
1098 *index = btrfs_inode_ref_index(eb, ref);
1099
1100 return 0;
1101 }
1102
1103 /*
1104 * replay one inode back reference item found in the log tree.
1105 * eb, slot and key refer to the buffer and key found in the log tree.
1106 * root is the destination we are replaying into, and path is for temp
1107 * use by this function. (it should be released on return).
1108 */
1109 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1110 struct btrfs_root *root,
1111 struct btrfs_root *log,
1112 struct btrfs_path *path,
1113 struct extent_buffer *eb, int slot,
1114 struct btrfs_key *key)
1115 {
1116 struct inode *dir;
1117 struct inode *inode;
1118 unsigned long ref_ptr;
1119 unsigned long ref_end;
1120 char *name;
1121 int namelen;
1122 int ret;
1123 int search_done = 0;
1124 int log_ref_ver = 0;
1125 u64 parent_objectid;
1126 u64 inode_objectid;
1127 u64 ref_index = 0;
1128 int ref_struct_size;
1129
1130 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1131 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1132
1133 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1134 struct btrfs_inode_extref *r;
1135
1136 ref_struct_size = sizeof(struct btrfs_inode_extref);
1137 log_ref_ver = 1;
1138 r = (struct btrfs_inode_extref *)ref_ptr;
1139 parent_objectid = btrfs_inode_extref_parent(eb, r);
1140 } else {
1141 ref_struct_size = sizeof(struct btrfs_inode_ref);
1142 parent_objectid = key->offset;
1143 }
1144 inode_objectid = key->objectid;
1145
1146 /*
1147 * it is possible that we didn't log all the parent directories
1148 * for a given inode. If we don't find the dir, just don't
1149 * copy the back ref in. The link count fixup code will take
1150 * care of the rest
1151 */
1152 dir = read_one_inode(root, parent_objectid);
1153 if (!dir)
1154 return -ENOENT;
1155
1156 inode = read_one_inode(root, inode_objectid);
1157 if (!inode) {
1158 iput(dir);
1159 return -EIO;
1160 }
1161
1162 while (ref_ptr < ref_end) {
1163 if (log_ref_ver) {
1164 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1165 &ref_index, &parent_objectid);
1166 /*
1167 * parent object can change from one array
1168 * item to another.
1169 */
1170 if (!dir)
1171 dir = read_one_inode(root, parent_objectid);
1172 if (!dir)
1173 return -ENOENT;
1174 } else {
1175 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1176 &ref_index);
1177 }
1178 if (ret)
1179 return ret;
1180
1181 /* if we already have a perfect match, we're done */
1182 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1183 ref_index, name, namelen)) {
1184 /*
1185 * look for a conflicting back reference in the
1186 * metadata. if we find one we have to unlink that name
1187 * of the file before we add our new link. Later on, we
1188 * overwrite any existing back reference, and we don't
1189 * want to create dangling pointers in the directory.
1190 */
1191
1192 if (!search_done) {
1193 ret = __add_inode_ref(trans, root, path, log,
1194 dir, inode, eb,
1195 inode_objectid,
1196 parent_objectid,
1197 ref_index, name, namelen,
1198 &search_done);
1199 if (ret == 1) {
1200 ret = 0;
1201 goto out;
1202 }
1203 if (ret)
1204 goto out;
1205 }
1206
1207 /* insert our name */
1208 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1209 0, ref_index);
1210 if (ret)
1211 goto out;
1212
1213 btrfs_update_inode(trans, root, inode);
1214 }
1215
1216 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1217 kfree(name);
1218 if (log_ref_ver) {
1219 iput(dir);
1220 dir = NULL;
1221 }
1222 }
1223
1224 /* finally write the back reference in the inode */
1225 ret = overwrite_item(trans, root, path, eb, slot, key);
1226 out:
1227 btrfs_release_path(path);
1228 iput(dir);
1229 iput(inode);
1230 return ret;
1231 }
1232
1233 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1234 struct btrfs_root *root, u64 offset)
1235 {
1236 int ret;
1237 ret = btrfs_find_orphan_item(root, offset);
1238 if (ret > 0)
1239 ret = btrfs_insert_orphan_item(trans, root, offset);
1240 return ret;
1241 }
1242
1243 static int count_inode_extrefs(struct btrfs_root *root,
1244 struct inode *inode, struct btrfs_path *path)
1245 {
1246 int ret = 0;
1247 int name_len;
1248 unsigned int nlink = 0;
1249 u32 item_size;
1250 u32 cur_offset = 0;
1251 u64 inode_objectid = btrfs_ino(inode);
1252 u64 offset = 0;
1253 unsigned long ptr;
1254 struct btrfs_inode_extref *extref;
1255 struct extent_buffer *leaf;
1256
1257 while (1) {
1258 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1259 &extref, &offset);
1260 if (ret)
1261 break;
1262
1263 leaf = path->nodes[0];
1264 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1265 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1266
1267 while (cur_offset < item_size) {
1268 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1269 name_len = btrfs_inode_extref_name_len(leaf, extref);
1270
1271 nlink++;
1272
1273 cur_offset += name_len + sizeof(*extref);
1274 }
1275
1276 offset++;
1277 btrfs_release_path(path);
1278 }
1279 btrfs_release_path(path);
1280
1281 if (ret < 0)
1282 return ret;
1283 return nlink;
1284 }
1285
1286 static int count_inode_refs(struct btrfs_root *root,
1287 struct inode *inode, struct btrfs_path *path)
1288 {
1289 int ret;
1290 struct btrfs_key key;
1291 unsigned int nlink = 0;
1292 unsigned long ptr;
1293 unsigned long ptr_end;
1294 int name_len;
1295 u64 ino = btrfs_ino(inode);
1296
1297 key.objectid = ino;
1298 key.type = BTRFS_INODE_REF_KEY;
1299 key.offset = (u64)-1;
1300
1301 while (1) {
1302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1303 if (ret < 0)
1304 break;
1305 if (ret > 0) {
1306 if (path->slots[0] == 0)
1307 break;
1308 path->slots[0]--;
1309 }
1310 btrfs_item_key_to_cpu(path->nodes[0], &key,
1311 path->slots[0]);
1312 if (key.objectid != ino ||
1313 key.type != BTRFS_INODE_REF_KEY)
1314 break;
1315 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1316 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1317 path->slots[0]);
1318 while (ptr < ptr_end) {
1319 struct btrfs_inode_ref *ref;
1320
1321 ref = (struct btrfs_inode_ref *)ptr;
1322 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1323 ref);
1324 ptr = (unsigned long)(ref + 1) + name_len;
1325 nlink++;
1326 }
1327
1328 if (key.offset == 0)
1329 break;
1330 key.offset--;
1331 btrfs_release_path(path);
1332 }
1333 btrfs_release_path(path);
1334
1335 return nlink;
1336 }
1337
1338 /*
1339 * There are a few corners where the link count of the file can't
1340 * be properly maintained during replay. So, instead of adding
1341 * lots of complexity to the log code, we just scan the backrefs
1342 * for any file that has been through replay.
1343 *
1344 * The scan will update the link count on the inode to reflect the
1345 * number of back refs found. If it goes down to zero, the iput
1346 * will free the inode.
1347 */
1348 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1349 struct btrfs_root *root,
1350 struct inode *inode)
1351 {
1352 struct btrfs_path *path;
1353 int ret;
1354 u64 nlink = 0;
1355 u64 ino = btrfs_ino(inode);
1356
1357 path = btrfs_alloc_path();
1358 if (!path)
1359 return -ENOMEM;
1360
1361 ret = count_inode_refs(root, inode, path);
1362 if (ret < 0)
1363 goto out;
1364
1365 nlink = ret;
1366
1367 ret = count_inode_extrefs(root, inode, path);
1368 if (ret == -ENOENT)
1369 ret = 0;
1370
1371 if (ret < 0)
1372 goto out;
1373
1374 nlink += ret;
1375
1376 ret = 0;
1377
1378 if (nlink != inode->i_nlink) {
1379 set_nlink(inode, nlink);
1380 btrfs_update_inode(trans, root, inode);
1381 }
1382 BTRFS_I(inode)->index_cnt = (u64)-1;
1383
1384 if (inode->i_nlink == 0) {
1385 if (S_ISDIR(inode->i_mode)) {
1386 ret = replay_dir_deletes(trans, root, NULL, path,
1387 ino, 1);
1388 if (ret)
1389 goto out;
1390 }
1391 ret = insert_orphan_item(trans, root, ino);
1392 }
1393
1394 out:
1395 btrfs_free_path(path);
1396 return ret;
1397 }
1398
1399 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1400 struct btrfs_root *root,
1401 struct btrfs_path *path)
1402 {
1403 int ret;
1404 struct btrfs_key key;
1405 struct inode *inode;
1406
1407 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1408 key.type = BTRFS_ORPHAN_ITEM_KEY;
1409 key.offset = (u64)-1;
1410 while (1) {
1411 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1412 if (ret < 0)
1413 break;
1414
1415 if (ret == 1) {
1416 if (path->slots[0] == 0)
1417 break;
1418 path->slots[0]--;
1419 }
1420
1421 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1422 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1423 key.type != BTRFS_ORPHAN_ITEM_KEY)
1424 break;
1425
1426 ret = btrfs_del_item(trans, root, path);
1427 if (ret)
1428 goto out;
1429
1430 btrfs_release_path(path);
1431 inode = read_one_inode(root, key.offset);
1432 if (!inode)
1433 return -EIO;
1434
1435 ret = fixup_inode_link_count(trans, root, inode);
1436 iput(inode);
1437 if (ret)
1438 goto out;
1439
1440 /*
1441 * fixup on a directory may create new entries,
1442 * make sure we always look for the highset possible
1443 * offset
1444 */
1445 key.offset = (u64)-1;
1446 }
1447 ret = 0;
1448 out:
1449 btrfs_release_path(path);
1450 return ret;
1451 }
1452
1453
1454 /*
1455 * record a given inode in the fixup dir so we can check its link
1456 * count when replay is done. The link count is incremented here
1457 * so the inode won't go away until we check it
1458 */
1459 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1460 struct btrfs_root *root,
1461 struct btrfs_path *path,
1462 u64 objectid)
1463 {
1464 struct btrfs_key key;
1465 int ret = 0;
1466 struct inode *inode;
1467
1468 inode = read_one_inode(root, objectid);
1469 if (!inode)
1470 return -EIO;
1471
1472 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1473 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1474 key.offset = objectid;
1475
1476 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1477
1478 btrfs_release_path(path);
1479 if (ret == 0) {
1480 if (!inode->i_nlink)
1481 set_nlink(inode, 1);
1482 else
1483 btrfs_inc_nlink(inode);
1484 ret = btrfs_update_inode(trans, root, inode);
1485 } else if (ret == -EEXIST) {
1486 ret = 0;
1487 } else {
1488 BUG(); /* Logic Error */
1489 }
1490 iput(inode);
1491
1492 return ret;
1493 }
1494
1495 /*
1496 * when replaying the log for a directory, we only insert names
1497 * for inodes that actually exist. This means an fsync on a directory
1498 * does not implicitly fsync all the new files in it
1499 */
1500 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1501 struct btrfs_root *root,
1502 struct btrfs_path *path,
1503 u64 dirid, u64 index,
1504 char *name, int name_len, u8 type,
1505 struct btrfs_key *location)
1506 {
1507 struct inode *inode;
1508 struct inode *dir;
1509 int ret;
1510
1511 inode = read_one_inode(root, location->objectid);
1512 if (!inode)
1513 return -ENOENT;
1514
1515 dir = read_one_inode(root, dirid);
1516 if (!dir) {
1517 iput(inode);
1518 return -EIO;
1519 }
1520
1521 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1522
1523 /* FIXME, put inode into FIXUP list */
1524
1525 iput(inode);
1526 iput(dir);
1527 return ret;
1528 }
1529
1530 /*
1531 * take a single entry in a log directory item and replay it into
1532 * the subvolume.
1533 *
1534 * if a conflicting item exists in the subdirectory already,
1535 * the inode it points to is unlinked and put into the link count
1536 * fix up tree.
1537 *
1538 * If a name from the log points to a file or directory that does
1539 * not exist in the FS, it is skipped. fsyncs on directories
1540 * do not force down inodes inside that directory, just changes to the
1541 * names or unlinks in a directory.
1542 */
1543 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root,
1545 struct btrfs_path *path,
1546 struct extent_buffer *eb,
1547 struct btrfs_dir_item *di,
1548 struct btrfs_key *key)
1549 {
1550 char *name;
1551 int name_len;
1552 struct btrfs_dir_item *dst_di;
1553 struct btrfs_key found_key;
1554 struct btrfs_key log_key;
1555 struct inode *dir;
1556 u8 log_type;
1557 int exists;
1558 int ret = 0;
1559 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1560
1561 dir = read_one_inode(root, key->objectid);
1562 if (!dir)
1563 return -EIO;
1564
1565 name_len = btrfs_dir_name_len(eb, di);
1566 name = kmalloc(name_len, GFP_NOFS);
1567 if (!name) {
1568 ret = -ENOMEM;
1569 goto out;
1570 }
1571
1572 log_type = btrfs_dir_type(eb, di);
1573 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1574 name_len);
1575
1576 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1577 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1578 if (exists == 0)
1579 exists = 1;
1580 else
1581 exists = 0;
1582 btrfs_release_path(path);
1583
1584 if (key->type == BTRFS_DIR_ITEM_KEY) {
1585 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1586 name, name_len, 1);
1587 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1588 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1589 key->objectid,
1590 key->offset, name,
1591 name_len, 1);
1592 } else {
1593 /* Corruption */
1594 ret = -EINVAL;
1595 goto out;
1596 }
1597 if (IS_ERR_OR_NULL(dst_di)) {
1598 /* we need a sequence number to insert, so we only
1599 * do inserts for the BTRFS_DIR_INDEX_KEY types
1600 */
1601 if (key->type != BTRFS_DIR_INDEX_KEY)
1602 goto out;
1603 goto insert;
1604 }
1605
1606 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1607 /* the existing item matches the logged item */
1608 if (found_key.objectid == log_key.objectid &&
1609 found_key.type == log_key.type &&
1610 found_key.offset == log_key.offset &&
1611 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1612 goto out;
1613 }
1614
1615 /*
1616 * don't drop the conflicting directory entry if the inode
1617 * for the new entry doesn't exist
1618 */
1619 if (!exists)
1620 goto out;
1621
1622 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1623 if (ret)
1624 goto out;
1625
1626 if (key->type == BTRFS_DIR_INDEX_KEY)
1627 goto insert;
1628 out:
1629 btrfs_release_path(path);
1630 if (!ret && update_size) {
1631 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1632 ret = btrfs_update_inode(trans, root, dir);
1633 }
1634 kfree(name);
1635 iput(dir);
1636 return ret;
1637
1638 insert:
1639 btrfs_release_path(path);
1640 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1641 name, name_len, log_type, &log_key);
1642 if (ret && ret != -ENOENT)
1643 goto out;
1644 update_size = false;
1645 ret = 0;
1646 goto out;
1647 }
1648
1649 /*
1650 * find all the names in a directory item and reconcile them into
1651 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1652 * one name in a directory item, but the same code gets used for
1653 * both directory index types
1654 */
1655 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_path *path,
1658 struct extent_buffer *eb, int slot,
1659 struct btrfs_key *key)
1660 {
1661 int ret;
1662 u32 item_size = btrfs_item_size_nr(eb, slot);
1663 struct btrfs_dir_item *di;
1664 int name_len;
1665 unsigned long ptr;
1666 unsigned long ptr_end;
1667
1668 ptr = btrfs_item_ptr_offset(eb, slot);
1669 ptr_end = ptr + item_size;
1670 while (ptr < ptr_end) {
1671 di = (struct btrfs_dir_item *)ptr;
1672 if (verify_dir_item(root, eb, di))
1673 return -EIO;
1674 name_len = btrfs_dir_name_len(eb, di);
1675 ret = replay_one_name(trans, root, path, eb, di, key);
1676 if (ret)
1677 return ret;
1678 ptr = (unsigned long)(di + 1);
1679 ptr += name_len;
1680 }
1681 return 0;
1682 }
1683
1684 /*
1685 * directory replay has two parts. There are the standard directory
1686 * items in the log copied from the subvolume, and range items
1687 * created in the log while the subvolume was logged.
1688 *
1689 * The range items tell us which parts of the key space the log
1690 * is authoritative for. During replay, if a key in the subvolume
1691 * directory is in a logged range item, but not actually in the log
1692 * that means it was deleted from the directory before the fsync
1693 * and should be removed.
1694 */
1695 static noinline int find_dir_range(struct btrfs_root *root,
1696 struct btrfs_path *path,
1697 u64 dirid, int key_type,
1698 u64 *start_ret, u64 *end_ret)
1699 {
1700 struct btrfs_key key;
1701 u64 found_end;
1702 struct btrfs_dir_log_item *item;
1703 int ret;
1704 int nritems;
1705
1706 if (*start_ret == (u64)-1)
1707 return 1;
1708
1709 key.objectid = dirid;
1710 key.type = key_type;
1711 key.offset = *start_ret;
1712
1713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1714 if (ret < 0)
1715 goto out;
1716 if (ret > 0) {
1717 if (path->slots[0] == 0)
1718 goto out;
1719 path->slots[0]--;
1720 }
1721 if (ret != 0)
1722 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1723
1724 if (key.type != key_type || key.objectid != dirid) {
1725 ret = 1;
1726 goto next;
1727 }
1728 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1729 struct btrfs_dir_log_item);
1730 found_end = btrfs_dir_log_end(path->nodes[0], item);
1731
1732 if (*start_ret >= key.offset && *start_ret <= found_end) {
1733 ret = 0;
1734 *start_ret = key.offset;
1735 *end_ret = found_end;
1736 goto out;
1737 }
1738 ret = 1;
1739 next:
1740 /* check the next slot in the tree to see if it is a valid item */
1741 nritems = btrfs_header_nritems(path->nodes[0]);
1742 if (path->slots[0] >= nritems) {
1743 ret = btrfs_next_leaf(root, path);
1744 if (ret)
1745 goto out;
1746 } else {
1747 path->slots[0]++;
1748 }
1749
1750 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1751
1752 if (key.type != key_type || key.objectid != dirid) {
1753 ret = 1;
1754 goto out;
1755 }
1756 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1757 struct btrfs_dir_log_item);
1758 found_end = btrfs_dir_log_end(path->nodes[0], item);
1759 *start_ret = key.offset;
1760 *end_ret = found_end;
1761 ret = 0;
1762 out:
1763 btrfs_release_path(path);
1764 return ret;
1765 }
1766
1767 /*
1768 * this looks for a given directory item in the log. If the directory
1769 * item is not in the log, the item is removed and the inode it points
1770 * to is unlinked
1771 */
1772 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1773 struct btrfs_root *root,
1774 struct btrfs_root *log,
1775 struct btrfs_path *path,
1776 struct btrfs_path *log_path,
1777 struct inode *dir,
1778 struct btrfs_key *dir_key)
1779 {
1780 int ret;
1781 struct extent_buffer *eb;
1782 int slot;
1783 u32 item_size;
1784 struct btrfs_dir_item *di;
1785 struct btrfs_dir_item *log_di;
1786 int name_len;
1787 unsigned long ptr;
1788 unsigned long ptr_end;
1789 char *name;
1790 struct inode *inode;
1791 struct btrfs_key location;
1792
1793 again:
1794 eb = path->nodes[0];
1795 slot = path->slots[0];
1796 item_size = btrfs_item_size_nr(eb, slot);
1797 ptr = btrfs_item_ptr_offset(eb, slot);
1798 ptr_end = ptr + item_size;
1799 while (ptr < ptr_end) {
1800 di = (struct btrfs_dir_item *)ptr;
1801 if (verify_dir_item(root, eb, di)) {
1802 ret = -EIO;
1803 goto out;
1804 }
1805
1806 name_len = btrfs_dir_name_len(eb, di);
1807 name = kmalloc(name_len, GFP_NOFS);
1808 if (!name) {
1809 ret = -ENOMEM;
1810 goto out;
1811 }
1812 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1813 name_len);
1814 log_di = NULL;
1815 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1816 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1817 dir_key->objectid,
1818 name, name_len, 0);
1819 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1820 log_di = btrfs_lookup_dir_index_item(trans, log,
1821 log_path,
1822 dir_key->objectid,
1823 dir_key->offset,
1824 name, name_len, 0);
1825 }
1826 if (IS_ERR_OR_NULL(log_di)) {
1827 btrfs_dir_item_key_to_cpu(eb, di, &location);
1828 btrfs_release_path(path);
1829 btrfs_release_path(log_path);
1830 inode = read_one_inode(root, location.objectid);
1831 if (!inode) {
1832 kfree(name);
1833 return -EIO;
1834 }
1835
1836 ret = link_to_fixup_dir(trans, root,
1837 path, location.objectid);
1838 if (ret) {
1839 kfree(name);
1840 iput(inode);
1841 goto out;
1842 }
1843
1844 btrfs_inc_nlink(inode);
1845 ret = btrfs_unlink_inode(trans, root, dir, inode,
1846 name, name_len);
1847 if (!ret)
1848 ret = btrfs_run_delayed_items(trans, root);
1849 kfree(name);
1850 iput(inode);
1851 if (ret)
1852 goto out;
1853
1854 /* there might still be more names under this key
1855 * check and repeat if required
1856 */
1857 ret = btrfs_search_slot(NULL, root, dir_key, path,
1858 0, 0);
1859 if (ret == 0)
1860 goto again;
1861 ret = 0;
1862 goto out;
1863 }
1864 btrfs_release_path(log_path);
1865 kfree(name);
1866
1867 ptr = (unsigned long)(di + 1);
1868 ptr += name_len;
1869 }
1870 ret = 0;
1871 out:
1872 btrfs_release_path(path);
1873 btrfs_release_path(log_path);
1874 return ret;
1875 }
1876
1877 /*
1878 * deletion replay happens before we copy any new directory items
1879 * out of the log or out of backreferences from inodes. It
1880 * scans the log to find ranges of keys that log is authoritative for,
1881 * and then scans the directory to find items in those ranges that are
1882 * not present in the log.
1883 *
1884 * Anything we don't find in the log is unlinked and removed from the
1885 * directory.
1886 */
1887 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1888 struct btrfs_root *root,
1889 struct btrfs_root *log,
1890 struct btrfs_path *path,
1891 u64 dirid, int del_all)
1892 {
1893 u64 range_start;
1894 u64 range_end;
1895 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1896 int ret = 0;
1897 struct btrfs_key dir_key;
1898 struct btrfs_key found_key;
1899 struct btrfs_path *log_path;
1900 struct inode *dir;
1901
1902 dir_key.objectid = dirid;
1903 dir_key.type = BTRFS_DIR_ITEM_KEY;
1904 log_path = btrfs_alloc_path();
1905 if (!log_path)
1906 return -ENOMEM;
1907
1908 dir = read_one_inode(root, dirid);
1909 /* it isn't an error if the inode isn't there, that can happen
1910 * because we replay the deletes before we copy in the inode item
1911 * from the log
1912 */
1913 if (!dir) {
1914 btrfs_free_path(log_path);
1915 return 0;
1916 }
1917 again:
1918 range_start = 0;
1919 range_end = 0;
1920 while (1) {
1921 if (del_all)
1922 range_end = (u64)-1;
1923 else {
1924 ret = find_dir_range(log, path, dirid, key_type,
1925 &range_start, &range_end);
1926 if (ret != 0)
1927 break;
1928 }
1929
1930 dir_key.offset = range_start;
1931 while (1) {
1932 int nritems;
1933 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1934 0, 0);
1935 if (ret < 0)
1936 goto out;
1937
1938 nritems = btrfs_header_nritems(path->nodes[0]);
1939 if (path->slots[0] >= nritems) {
1940 ret = btrfs_next_leaf(root, path);
1941 if (ret)
1942 break;
1943 }
1944 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1945 path->slots[0]);
1946 if (found_key.objectid != dirid ||
1947 found_key.type != dir_key.type)
1948 goto next_type;
1949
1950 if (found_key.offset > range_end)
1951 break;
1952
1953 ret = check_item_in_log(trans, root, log, path,
1954 log_path, dir,
1955 &found_key);
1956 if (ret)
1957 goto out;
1958 if (found_key.offset == (u64)-1)
1959 break;
1960 dir_key.offset = found_key.offset + 1;
1961 }
1962 btrfs_release_path(path);
1963 if (range_end == (u64)-1)
1964 break;
1965 range_start = range_end + 1;
1966 }
1967
1968 next_type:
1969 ret = 0;
1970 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1971 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1972 dir_key.type = BTRFS_DIR_INDEX_KEY;
1973 btrfs_release_path(path);
1974 goto again;
1975 }
1976 out:
1977 btrfs_release_path(path);
1978 btrfs_free_path(log_path);
1979 iput(dir);
1980 return ret;
1981 }
1982
1983 /*
1984 * the process_func used to replay items from the log tree. This
1985 * gets called in two different stages. The first stage just looks
1986 * for inodes and makes sure they are all copied into the subvolume.
1987 *
1988 * The second stage copies all the other item types from the log into
1989 * the subvolume. The two stage approach is slower, but gets rid of
1990 * lots of complexity around inodes referencing other inodes that exist
1991 * only in the log (references come from either directory items or inode
1992 * back refs).
1993 */
1994 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1995 struct walk_control *wc, u64 gen)
1996 {
1997 int nritems;
1998 struct btrfs_path *path;
1999 struct btrfs_root *root = wc->replay_dest;
2000 struct btrfs_key key;
2001 int level;
2002 int i;
2003 int ret;
2004
2005 ret = btrfs_read_buffer(eb, gen);
2006 if (ret)
2007 return ret;
2008
2009 level = btrfs_header_level(eb);
2010
2011 if (level != 0)
2012 return 0;
2013
2014 path = btrfs_alloc_path();
2015 if (!path)
2016 return -ENOMEM;
2017
2018 nritems = btrfs_header_nritems(eb);
2019 for (i = 0; i < nritems; i++) {
2020 btrfs_item_key_to_cpu(eb, &key, i);
2021
2022 /* inode keys are done during the first stage */
2023 if (key.type == BTRFS_INODE_ITEM_KEY &&
2024 wc->stage == LOG_WALK_REPLAY_INODES) {
2025 struct btrfs_inode_item *inode_item;
2026 u32 mode;
2027
2028 inode_item = btrfs_item_ptr(eb, i,
2029 struct btrfs_inode_item);
2030 mode = btrfs_inode_mode(eb, inode_item);
2031 if (S_ISDIR(mode)) {
2032 ret = replay_dir_deletes(wc->trans,
2033 root, log, path, key.objectid, 0);
2034 if (ret)
2035 break;
2036 }
2037 ret = overwrite_item(wc->trans, root, path,
2038 eb, i, &key);
2039 if (ret)
2040 break;
2041
2042 /* for regular files, make sure corresponding
2043 * orhpan item exist. extents past the new EOF
2044 * will be truncated later by orphan cleanup.
2045 */
2046 if (S_ISREG(mode)) {
2047 ret = insert_orphan_item(wc->trans, root,
2048 key.objectid);
2049 if (ret)
2050 break;
2051 }
2052
2053 ret = link_to_fixup_dir(wc->trans, root,
2054 path, key.objectid);
2055 if (ret)
2056 break;
2057 }
2058
2059 if (key.type == BTRFS_DIR_INDEX_KEY &&
2060 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2061 ret = replay_one_dir_item(wc->trans, root, path,
2062 eb, i, &key);
2063 if (ret)
2064 break;
2065 }
2066
2067 if (wc->stage < LOG_WALK_REPLAY_ALL)
2068 continue;
2069
2070 /* these keys are simply copied */
2071 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2072 ret = overwrite_item(wc->trans, root, path,
2073 eb, i, &key);
2074 if (ret)
2075 break;
2076 } else if (key.type == BTRFS_INODE_REF_KEY ||
2077 key.type == BTRFS_INODE_EXTREF_KEY) {
2078 ret = add_inode_ref(wc->trans, root, log, path,
2079 eb, i, &key);
2080 if (ret && ret != -ENOENT)
2081 break;
2082 ret = 0;
2083 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2084 ret = replay_one_extent(wc->trans, root, path,
2085 eb, i, &key);
2086 if (ret)
2087 break;
2088 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2089 ret = replay_one_dir_item(wc->trans, root, path,
2090 eb, i, &key);
2091 if (ret)
2092 break;
2093 }
2094 }
2095 btrfs_free_path(path);
2096 return ret;
2097 }
2098
2099 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_path *path, int *level,
2102 struct walk_control *wc)
2103 {
2104 u64 root_owner;
2105 u64 bytenr;
2106 u64 ptr_gen;
2107 struct extent_buffer *next;
2108 struct extent_buffer *cur;
2109 struct extent_buffer *parent;
2110 u32 blocksize;
2111 int ret = 0;
2112
2113 WARN_ON(*level < 0);
2114 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2115
2116 while (*level > 0) {
2117 WARN_ON(*level < 0);
2118 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2119 cur = path->nodes[*level];
2120
2121 if (btrfs_header_level(cur) != *level)
2122 WARN_ON(1);
2123
2124 if (path->slots[*level] >=
2125 btrfs_header_nritems(cur))
2126 break;
2127
2128 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2129 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2130 blocksize = btrfs_level_size(root, *level - 1);
2131
2132 parent = path->nodes[*level];
2133 root_owner = btrfs_header_owner(parent);
2134
2135 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2136 if (!next)
2137 return -ENOMEM;
2138
2139 if (*level == 1) {
2140 ret = wc->process_func(root, next, wc, ptr_gen);
2141 if (ret) {
2142 free_extent_buffer(next);
2143 return ret;
2144 }
2145
2146 path->slots[*level]++;
2147 if (wc->free) {
2148 ret = btrfs_read_buffer(next, ptr_gen);
2149 if (ret) {
2150 free_extent_buffer(next);
2151 return ret;
2152 }
2153
2154 btrfs_tree_lock(next);
2155 btrfs_set_lock_blocking(next);
2156 clean_tree_block(trans, root, next);
2157 btrfs_wait_tree_block_writeback(next);
2158 btrfs_tree_unlock(next);
2159
2160 WARN_ON(root_owner !=
2161 BTRFS_TREE_LOG_OBJECTID);
2162 ret = btrfs_free_and_pin_reserved_extent(root,
2163 bytenr, blocksize);
2164 if (ret) {
2165 free_extent_buffer(next);
2166 return ret;
2167 }
2168 }
2169 free_extent_buffer(next);
2170 continue;
2171 }
2172 ret = btrfs_read_buffer(next, ptr_gen);
2173 if (ret) {
2174 free_extent_buffer(next);
2175 return ret;
2176 }
2177
2178 WARN_ON(*level <= 0);
2179 if (path->nodes[*level-1])
2180 free_extent_buffer(path->nodes[*level-1]);
2181 path->nodes[*level-1] = next;
2182 *level = btrfs_header_level(next);
2183 path->slots[*level] = 0;
2184 cond_resched();
2185 }
2186 WARN_ON(*level < 0);
2187 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2188
2189 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2190
2191 cond_resched();
2192 return 0;
2193 }
2194
2195 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2196 struct btrfs_root *root,
2197 struct btrfs_path *path, int *level,
2198 struct walk_control *wc)
2199 {
2200 u64 root_owner;
2201 int i;
2202 int slot;
2203 int ret;
2204
2205 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2206 slot = path->slots[i];
2207 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2208 path->slots[i]++;
2209 *level = i;
2210 WARN_ON(*level == 0);
2211 return 0;
2212 } else {
2213 struct extent_buffer *parent;
2214 if (path->nodes[*level] == root->node)
2215 parent = path->nodes[*level];
2216 else
2217 parent = path->nodes[*level + 1];
2218
2219 root_owner = btrfs_header_owner(parent);
2220 ret = wc->process_func(root, path->nodes[*level], wc,
2221 btrfs_header_generation(path->nodes[*level]));
2222 if (ret)
2223 return ret;
2224
2225 if (wc->free) {
2226 struct extent_buffer *next;
2227
2228 next = path->nodes[*level];
2229
2230 btrfs_tree_lock(next);
2231 btrfs_set_lock_blocking(next);
2232 clean_tree_block(trans, root, next);
2233 btrfs_wait_tree_block_writeback(next);
2234 btrfs_tree_unlock(next);
2235
2236 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2237 ret = btrfs_free_and_pin_reserved_extent(root,
2238 path->nodes[*level]->start,
2239 path->nodes[*level]->len);
2240 if (ret)
2241 return ret;
2242 }
2243 free_extent_buffer(path->nodes[*level]);
2244 path->nodes[*level] = NULL;
2245 *level = i + 1;
2246 }
2247 }
2248 return 1;
2249 }
2250
2251 /*
2252 * drop the reference count on the tree rooted at 'snap'. This traverses
2253 * the tree freeing any blocks that have a ref count of zero after being
2254 * decremented.
2255 */
2256 static int walk_log_tree(struct btrfs_trans_handle *trans,
2257 struct btrfs_root *log, struct walk_control *wc)
2258 {
2259 int ret = 0;
2260 int wret;
2261 int level;
2262 struct btrfs_path *path;
2263 int orig_level;
2264
2265 path = btrfs_alloc_path();
2266 if (!path)
2267 return -ENOMEM;
2268
2269 level = btrfs_header_level(log->node);
2270 orig_level = level;
2271 path->nodes[level] = log->node;
2272 extent_buffer_get(log->node);
2273 path->slots[level] = 0;
2274
2275 while (1) {
2276 wret = walk_down_log_tree(trans, log, path, &level, wc);
2277 if (wret > 0)
2278 break;
2279 if (wret < 0) {
2280 ret = wret;
2281 goto out;
2282 }
2283
2284 wret = walk_up_log_tree(trans, log, path, &level, wc);
2285 if (wret > 0)
2286 break;
2287 if (wret < 0) {
2288 ret = wret;
2289 goto out;
2290 }
2291 }
2292
2293 /* was the root node processed? if not, catch it here */
2294 if (path->nodes[orig_level]) {
2295 ret = wc->process_func(log, path->nodes[orig_level], wc,
2296 btrfs_header_generation(path->nodes[orig_level]));
2297 if (ret)
2298 goto out;
2299 if (wc->free) {
2300 struct extent_buffer *next;
2301
2302 next = path->nodes[orig_level];
2303
2304 btrfs_tree_lock(next);
2305 btrfs_set_lock_blocking(next);
2306 clean_tree_block(trans, log, next);
2307 btrfs_wait_tree_block_writeback(next);
2308 btrfs_tree_unlock(next);
2309
2310 WARN_ON(log->root_key.objectid !=
2311 BTRFS_TREE_LOG_OBJECTID);
2312 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2313 next->len);
2314 if (ret)
2315 goto out;
2316 }
2317 }
2318
2319 out:
2320 btrfs_free_path(path);
2321 return ret;
2322 }
2323
2324 /*
2325 * helper function to update the item for a given subvolumes log root
2326 * in the tree of log roots
2327 */
2328 static int update_log_root(struct btrfs_trans_handle *trans,
2329 struct btrfs_root *log)
2330 {
2331 int ret;
2332
2333 if (log->log_transid == 1) {
2334 /* insert root item on the first sync */
2335 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2336 &log->root_key, &log->root_item);
2337 } else {
2338 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2339 &log->root_key, &log->root_item);
2340 }
2341 return ret;
2342 }
2343
2344 static int wait_log_commit(struct btrfs_trans_handle *trans,
2345 struct btrfs_root *root, unsigned long transid)
2346 {
2347 DEFINE_WAIT(wait);
2348 int index = transid % 2;
2349
2350 /*
2351 * we only allow two pending log transactions at a time,
2352 * so we know that if ours is more than 2 older than the
2353 * current transaction, we're done
2354 */
2355 do {
2356 prepare_to_wait(&root->log_commit_wait[index],
2357 &wait, TASK_UNINTERRUPTIBLE);
2358 mutex_unlock(&root->log_mutex);
2359
2360 if (root->fs_info->last_trans_log_full_commit !=
2361 trans->transid && root->log_transid < transid + 2 &&
2362 atomic_read(&root->log_commit[index]))
2363 schedule();
2364
2365 finish_wait(&root->log_commit_wait[index], &wait);
2366 mutex_lock(&root->log_mutex);
2367 } while (root->fs_info->last_trans_log_full_commit !=
2368 trans->transid && root->log_transid < transid + 2 &&
2369 atomic_read(&root->log_commit[index]));
2370 return 0;
2371 }
2372
2373 static void wait_for_writer(struct btrfs_trans_handle *trans,
2374 struct btrfs_root *root)
2375 {
2376 DEFINE_WAIT(wait);
2377 while (root->fs_info->last_trans_log_full_commit !=
2378 trans->transid && atomic_read(&root->log_writers)) {
2379 prepare_to_wait(&root->log_writer_wait,
2380 &wait, TASK_UNINTERRUPTIBLE);
2381 mutex_unlock(&root->log_mutex);
2382 if (root->fs_info->last_trans_log_full_commit !=
2383 trans->transid && atomic_read(&root->log_writers))
2384 schedule();
2385 mutex_lock(&root->log_mutex);
2386 finish_wait(&root->log_writer_wait, &wait);
2387 }
2388 }
2389
2390 /*
2391 * btrfs_sync_log does sends a given tree log down to the disk and
2392 * updates the super blocks to record it. When this call is done,
2393 * you know that any inodes previously logged are safely on disk only
2394 * if it returns 0.
2395 *
2396 * Any other return value means you need to call btrfs_commit_transaction.
2397 * Some of the edge cases for fsyncing directories that have had unlinks
2398 * or renames done in the past mean that sometimes the only safe
2399 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2400 * that has happened.
2401 */
2402 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2403 struct btrfs_root *root)
2404 {
2405 int index1;
2406 int index2;
2407 int mark;
2408 int ret;
2409 struct btrfs_root *log = root->log_root;
2410 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2411 unsigned long log_transid = 0;
2412 struct blk_plug plug;
2413
2414 mutex_lock(&root->log_mutex);
2415 log_transid = root->log_transid;
2416 index1 = root->log_transid % 2;
2417 if (atomic_read(&root->log_commit[index1])) {
2418 wait_log_commit(trans, root, root->log_transid);
2419 mutex_unlock(&root->log_mutex);
2420 return 0;
2421 }
2422 atomic_set(&root->log_commit[index1], 1);
2423
2424 /* wait for previous tree log sync to complete */
2425 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2426 wait_log_commit(trans, root, root->log_transid - 1);
2427 while (1) {
2428 int batch = atomic_read(&root->log_batch);
2429 /* when we're on an ssd, just kick the log commit out */
2430 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2431 mutex_unlock(&root->log_mutex);
2432 schedule_timeout_uninterruptible(1);
2433 mutex_lock(&root->log_mutex);
2434 }
2435 wait_for_writer(trans, root);
2436 if (batch == atomic_read(&root->log_batch))
2437 break;
2438 }
2439
2440 /* bail out if we need to do a full commit */
2441 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2442 ret = -EAGAIN;
2443 btrfs_free_logged_extents(log, log_transid);
2444 mutex_unlock(&root->log_mutex);
2445 goto out;
2446 }
2447
2448 if (log_transid % 2 == 0)
2449 mark = EXTENT_DIRTY;
2450 else
2451 mark = EXTENT_NEW;
2452
2453 /* we start IO on all the marked extents here, but we don't actually
2454 * wait for them until later.
2455 */
2456 blk_start_plug(&plug);
2457 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2458 if (ret) {
2459 blk_finish_plug(&plug);
2460 btrfs_abort_transaction(trans, root, ret);
2461 btrfs_free_logged_extents(log, log_transid);
2462 mutex_unlock(&root->log_mutex);
2463 goto out;
2464 }
2465
2466 btrfs_set_root_node(&log->root_item, log->node);
2467
2468 root->log_transid++;
2469 log->log_transid = root->log_transid;
2470 root->log_start_pid = 0;
2471 smp_mb();
2472 /*
2473 * IO has been started, blocks of the log tree have WRITTEN flag set
2474 * in their headers. new modifications of the log will be written to
2475 * new positions. so it's safe to allow log writers to go in.
2476 */
2477 mutex_unlock(&root->log_mutex);
2478
2479 mutex_lock(&log_root_tree->log_mutex);
2480 atomic_inc(&log_root_tree->log_batch);
2481 atomic_inc(&log_root_tree->log_writers);
2482 mutex_unlock(&log_root_tree->log_mutex);
2483
2484 ret = update_log_root(trans, log);
2485
2486 mutex_lock(&log_root_tree->log_mutex);
2487 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2488 smp_mb();
2489 if (waitqueue_active(&log_root_tree->log_writer_wait))
2490 wake_up(&log_root_tree->log_writer_wait);
2491 }
2492
2493 if (ret) {
2494 blk_finish_plug(&plug);
2495 if (ret != -ENOSPC) {
2496 btrfs_abort_transaction(trans, root, ret);
2497 mutex_unlock(&log_root_tree->log_mutex);
2498 goto out;
2499 }
2500 root->fs_info->last_trans_log_full_commit = trans->transid;
2501 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2502 btrfs_free_logged_extents(log, log_transid);
2503 mutex_unlock(&log_root_tree->log_mutex);
2504 ret = -EAGAIN;
2505 goto out;
2506 }
2507
2508 index2 = log_root_tree->log_transid % 2;
2509 if (atomic_read(&log_root_tree->log_commit[index2])) {
2510 blk_finish_plug(&plug);
2511 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2512 wait_log_commit(trans, log_root_tree,
2513 log_root_tree->log_transid);
2514 btrfs_free_logged_extents(log, log_transid);
2515 mutex_unlock(&log_root_tree->log_mutex);
2516 ret = 0;
2517 goto out;
2518 }
2519 atomic_set(&log_root_tree->log_commit[index2], 1);
2520
2521 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2522 wait_log_commit(trans, log_root_tree,
2523 log_root_tree->log_transid - 1);
2524 }
2525
2526 wait_for_writer(trans, log_root_tree);
2527
2528 /*
2529 * now that we've moved on to the tree of log tree roots,
2530 * check the full commit flag again
2531 */
2532 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2533 blk_finish_plug(&plug);
2534 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2535 btrfs_free_logged_extents(log, log_transid);
2536 mutex_unlock(&log_root_tree->log_mutex);
2537 ret = -EAGAIN;
2538 goto out_wake_log_root;
2539 }
2540
2541 ret = btrfs_write_marked_extents(log_root_tree,
2542 &log_root_tree->dirty_log_pages,
2543 EXTENT_DIRTY | EXTENT_NEW);
2544 blk_finish_plug(&plug);
2545 if (ret) {
2546 btrfs_abort_transaction(trans, root, ret);
2547 btrfs_free_logged_extents(log, log_transid);
2548 mutex_unlock(&log_root_tree->log_mutex);
2549 goto out_wake_log_root;
2550 }
2551 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2552 btrfs_wait_marked_extents(log_root_tree,
2553 &log_root_tree->dirty_log_pages,
2554 EXTENT_NEW | EXTENT_DIRTY);
2555 btrfs_wait_logged_extents(log, log_transid);
2556
2557 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2558 log_root_tree->node->start);
2559 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2560 btrfs_header_level(log_root_tree->node));
2561
2562 log_root_tree->log_transid++;
2563 smp_mb();
2564
2565 mutex_unlock(&log_root_tree->log_mutex);
2566
2567 /*
2568 * nobody else is going to jump in and write the the ctree
2569 * super here because the log_commit atomic below is protecting
2570 * us. We must be called with a transaction handle pinning
2571 * the running transaction open, so a full commit can't hop
2572 * in and cause problems either.
2573 */
2574 btrfs_scrub_pause_super(root);
2575 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2576 btrfs_scrub_continue_super(root);
2577 if (ret) {
2578 btrfs_abort_transaction(trans, root, ret);
2579 goto out_wake_log_root;
2580 }
2581
2582 mutex_lock(&root->log_mutex);
2583 if (root->last_log_commit < log_transid)
2584 root->last_log_commit = log_transid;
2585 mutex_unlock(&root->log_mutex);
2586
2587 out_wake_log_root:
2588 atomic_set(&log_root_tree->log_commit[index2], 0);
2589 smp_mb();
2590 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2591 wake_up(&log_root_tree->log_commit_wait[index2]);
2592 out:
2593 atomic_set(&root->log_commit[index1], 0);
2594 smp_mb();
2595 if (waitqueue_active(&root->log_commit_wait[index1]))
2596 wake_up(&root->log_commit_wait[index1]);
2597 return ret;
2598 }
2599
2600 static void free_log_tree(struct btrfs_trans_handle *trans,
2601 struct btrfs_root *log)
2602 {
2603 int ret;
2604 u64 start;
2605 u64 end;
2606 struct walk_control wc = {
2607 .free = 1,
2608 .process_func = process_one_buffer
2609 };
2610
2611 if (trans) {
2612 ret = walk_log_tree(trans, log, &wc);
2613
2614 /* I don't think this can happen but just in case */
2615 if (ret)
2616 btrfs_abort_transaction(trans, log, ret);
2617 }
2618
2619 while (1) {
2620 ret = find_first_extent_bit(&log->dirty_log_pages,
2621 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2622 NULL);
2623 if (ret)
2624 break;
2625
2626 clear_extent_bits(&log->dirty_log_pages, start, end,
2627 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2628 }
2629
2630 /*
2631 * We may have short-circuited the log tree with the full commit logic
2632 * and left ordered extents on our list, so clear these out to keep us
2633 * from leaking inodes and memory.
2634 */
2635 btrfs_free_logged_extents(log, 0);
2636 btrfs_free_logged_extents(log, 1);
2637
2638 free_extent_buffer(log->node);
2639 kfree(log);
2640 }
2641
2642 /*
2643 * free all the extents used by the tree log. This should be called
2644 * at commit time of the full transaction
2645 */
2646 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2647 {
2648 if (root->log_root) {
2649 free_log_tree(trans, root->log_root);
2650 root->log_root = NULL;
2651 }
2652 return 0;
2653 }
2654
2655 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2656 struct btrfs_fs_info *fs_info)
2657 {
2658 if (fs_info->log_root_tree) {
2659 free_log_tree(trans, fs_info->log_root_tree);
2660 fs_info->log_root_tree = NULL;
2661 }
2662 return 0;
2663 }
2664
2665 /*
2666 * If both a file and directory are logged, and unlinks or renames are
2667 * mixed in, we have a few interesting corners:
2668 *
2669 * create file X in dir Y
2670 * link file X to X.link in dir Y
2671 * fsync file X
2672 * unlink file X but leave X.link
2673 * fsync dir Y
2674 *
2675 * After a crash we would expect only X.link to exist. But file X
2676 * didn't get fsync'd again so the log has back refs for X and X.link.
2677 *
2678 * We solve this by removing directory entries and inode backrefs from the
2679 * log when a file that was logged in the current transaction is
2680 * unlinked. Any later fsync will include the updated log entries, and
2681 * we'll be able to reconstruct the proper directory items from backrefs.
2682 *
2683 * This optimizations allows us to avoid relogging the entire inode
2684 * or the entire directory.
2685 */
2686 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2687 struct btrfs_root *root,
2688 const char *name, int name_len,
2689 struct inode *dir, u64 index)
2690 {
2691 struct btrfs_root *log;
2692 struct btrfs_dir_item *di;
2693 struct btrfs_path *path;
2694 int ret;
2695 int err = 0;
2696 int bytes_del = 0;
2697 u64 dir_ino = btrfs_ino(dir);
2698
2699 if (BTRFS_I(dir)->logged_trans < trans->transid)
2700 return 0;
2701
2702 ret = join_running_log_trans(root);
2703 if (ret)
2704 return 0;
2705
2706 mutex_lock(&BTRFS_I(dir)->log_mutex);
2707
2708 log = root->log_root;
2709 path = btrfs_alloc_path();
2710 if (!path) {
2711 err = -ENOMEM;
2712 goto out_unlock;
2713 }
2714
2715 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2716 name, name_len, -1);
2717 if (IS_ERR(di)) {
2718 err = PTR_ERR(di);
2719 goto fail;
2720 }
2721 if (di) {
2722 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2723 bytes_del += name_len;
2724 if (ret) {
2725 err = ret;
2726 goto fail;
2727 }
2728 }
2729 btrfs_release_path(path);
2730 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2731 index, name, name_len, -1);
2732 if (IS_ERR(di)) {
2733 err = PTR_ERR(di);
2734 goto fail;
2735 }
2736 if (di) {
2737 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2738 bytes_del += name_len;
2739 if (ret) {
2740 err = ret;
2741 goto fail;
2742 }
2743 }
2744
2745 /* update the directory size in the log to reflect the names
2746 * we have removed
2747 */
2748 if (bytes_del) {
2749 struct btrfs_key key;
2750
2751 key.objectid = dir_ino;
2752 key.offset = 0;
2753 key.type = BTRFS_INODE_ITEM_KEY;
2754 btrfs_release_path(path);
2755
2756 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2757 if (ret < 0) {
2758 err = ret;
2759 goto fail;
2760 }
2761 if (ret == 0) {
2762 struct btrfs_inode_item *item;
2763 u64 i_size;
2764
2765 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2766 struct btrfs_inode_item);
2767 i_size = btrfs_inode_size(path->nodes[0], item);
2768 if (i_size > bytes_del)
2769 i_size -= bytes_del;
2770 else
2771 i_size = 0;
2772 btrfs_set_inode_size(path->nodes[0], item, i_size);
2773 btrfs_mark_buffer_dirty(path->nodes[0]);
2774 } else
2775 ret = 0;
2776 btrfs_release_path(path);
2777 }
2778 fail:
2779 btrfs_free_path(path);
2780 out_unlock:
2781 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2782 if (ret == -ENOSPC) {
2783 root->fs_info->last_trans_log_full_commit = trans->transid;
2784 ret = 0;
2785 } else if (ret < 0)
2786 btrfs_abort_transaction(trans, root, ret);
2787
2788 btrfs_end_log_trans(root);
2789
2790 return err;
2791 }
2792
2793 /* see comments for btrfs_del_dir_entries_in_log */
2794 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2795 struct btrfs_root *root,
2796 const char *name, int name_len,
2797 struct inode *inode, u64 dirid)
2798 {
2799 struct btrfs_root *log;
2800 u64 index;
2801 int ret;
2802
2803 if (BTRFS_I(inode)->logged_trans < trans->transid)
2804 return 0;
2805
2806 ret = join_running_log_trans(root);
2807 if (ret)
2808 return 0;
2809 log = root->log_root;
2810 mutex_lock(&BTRFS_I(inode)->log_mutex);
2811
2812 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2813 dirid, &index);
2814 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2815 if (ret == -ENOSPC) {
2816 root->fs_info->last_trans_log_full_commit = trans->transid;
2817 ret = 0;
2818 } else if (ret < 0 && ret != -ENOENT)
2819 btrfs_abort_transaction(trans, root, ret);
2820 btrfs_end_log_trans(root);
2821
2822 return ret;
2823 }
2824
2825 /*
2826 * creates a range item in the log for 'dirid'. first_offset and
2827 * last_offset tell us which parts of the key space the log should
2828 * be considered authoritative for.
2829 */
2830 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2831 struct btrfs_root *log,
2832 struct btrfs_path *path,
2833 int key_type, u64 dirid,
2834 u64 first_offset, u64 last_offset)
2835 {
2836 int ret;
2837 struct btrfs_key key;
2838 struct btrfs_dir_log_item *item;
2839
2840 key.objectid = dirid;
2841 key.offset = first_offset;
2842 if (key_type == BTRFS_DIR_ITEM_KEY)
2843 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2844 else
2845 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2846 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2847 if (ret)
2848 return ret;
2849
2850 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2851 struct btrfs_dir_log_item);
2852 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2853 btrfs_mark_buffer_dirty(path->nodes[0]);
2854 btrfs_release_path(path);
2855 return 0;
2856 }
2857
2858 /*
2859 * log all the items included in the current transaction for a given
2860 * directory. This also creates the range items in the log tree required
2861 * to replay anything deleted before the fsync
2862 */
2863 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2864 struct btrfs_root *root, struct inode *inode,
2865 struct btrfs_path *path,
2866 struct btrfs_path *dst_path, int key_type,
2867 u64 min_offset, u64 *last_offset_ret)
2868 {
2869 struct btrfs_key min_key;
2870 struct btrfs_key max_key;
2871 struct btrfs_root *log = root->log_root;
2872 struct extent_buffer *src;
2873 int err = 0;
2874 int ret;
2875 int i;
2876 int nritems;
2877 u64 first_offset = min_offset;
2878 u64 last_offset = (u64)-1;
2879 u64 ino = btrfs_ino(inode);
2880
2881 log = root->log_root;
2882 max_key.objectid = ino;
2883 max_key.offset = (u64)-1;
2884 max_key.type = key_type;
2885
2886 min_key.objectid = ino;
2887 min_key.type = key_type;
2888 min_key.offset = min_offset;
2889
2890 path->keep_locks = 1;
2891
2892 ret = btrfs_search_forward(root, &min_key, &max_key,
2893 path, trans->transid);
2894
2895 /*
2896 * we didn't find anything from this transaction, see if there
2897 * is anything at all
2898 */
2899 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2900 min_key.objectid = ino;
2901 min_key.type = key_type;
2902 min_key.offset = (u64)-1;
2903 btrfs_release_path(path);
2904 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2905 if (ret < 0) {
2906 btrfs_release_path(path);
2907 return ret;
2908 }
2909 ret = btrfs_previous_item(root, path, ino, key_type);
2910
2911 /* if ret == 0 there are items for this type,
2912 * create a range to tell us the last key of this type.
2913 * otherwise, there are no items in this directory after
2914 * *min_offset, and we create a range to indicate that.
2915 */
2916 if (ret == 0) {
2917 struct btrfs_key tmp;
2918 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2919 path->slots[0]);
2920 if (key_type == tmp.type)
2921 first_offset = max(min_offset, tmp.offset) + 1;
2922 }
2923 goto done;
2924 }
2925
2926 /* go backward to find any previous key */
2927 ret = btrfs_previous_item(root, path, ino, key_type);
2928 if (ret == 0) {
2929 struct btrfs_key tmp;
2930 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2931 if (key_type == tmp.type) {
2932 first_offset = tmp.offset;
2933 ret = overwrite_item(trans, log, dst_path,
2934 path->nodes[0], path->slots[0],
2935 &tmp);
2936 if (ret) {
2937 err = ret;
2938 goto done;
2939 }
2940 }
2941 }
2942 btrfs_release_path(path);
2943
2944 /* find the first key from this transaction again */
2945 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2946 if (ret != 0) {
2947 WARN_ON(1);
2948 goto done;
2949 }
2950
2951 /*
2952 * we have a block from this transaction, log every item in it
2953 * from our directory
2954 */
2955 while (1) {
2956 struct btrfs_key tmp;
2957 src = path->nodes[0];
2958 nritems = btrfs_header_nritems(src);
2959 for (i = path->slots[0]; i < nritems; i++) {
2960 btrfs_item_key_to_cpu(src, &min_key, i);
2961
2962 if (min_key.objectid != ino || min_key.type != key_type)
2963 goto done;
2964 ret = overwrite_item(trans, log, dst_path, src, i,
2965 &min_key);
2966 if (ret) {
2967 err = ret;
2968 goto done;
2969 }
2970 }
2971 path->slots[0] = nritems;
2972
2973 /*
2974 * look ahead to the next item and see if it is also
2975 * from this directory and from this transaction
2976 */
2977 ret = btrfs_next_leaf(root, path);
2978 if (ret == 1) {
2979 last_offset = (u64)-1;
2980 goto done;
2981 }
2982 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2983 if (tmp.objectid != ino || tmp.type != key_type) {
2984 last_offset = (u64)-1;
2985 goto done;
2986 }
2987 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2988 ret = overwrite_item(trans, log, dst_path,
2989 path->nodes[0], path->slots[0],
2990 &tmp);
2991 if (ret)
2992 err = ret;
2993 else
2994 last_offset = tmp.offset;
2995 goto done;
2996 }
2997 }
2998 done:
2999 btrfs_release_path(path);
3000 btrfs_release_path(dst_path);
3001
3002 if (err == 0) {
3003 *last_offset_ret = last_offset;
3004 /*
3005 * insert the log range keys to indicate where the log
3006 * is valid
3007 */
3008 ret = insert_dir_log_key(trans, log, path, key_type,
3009 ino, first_offset, last_offset);
3010 if (ret)
3011 err = ret;
3012 }
3013 return err;
3014 }
3015
3016 /*
3017 * logging directories is very similar to logging inodes, We find all the items
3018 * from the current transaction and write them to the log.
3019 *
3020 * The recovery code scans the directory in the subvolume, and if it finds a
3021 * key in the range logged that is not present in the log tree, then it means
3022 * that dir entry was unlinked during the transaction.
3023 *
3024 * In order for that scan to work, we must include one key smaller than
3025 * the smallest logged by this transaction and one key larger than the largest
3026 * key logged by this transaction.
3027 */
3028 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3029 struct btrfs_root *root, struct inode *inode,
3030 struct btrfs_path *path,
3031 struct btrfs_path *dst_path)
3032 {
3033 u64 min_key;
3034 u64 max_key;
3035 int ret;
3036 int key_type = BTRFS_DIR_ITEM_KEY;
3037
3038 again:
3039 min_key = 0;
3040 max_key = 0;
3041 while (1) {
3042 ret = log_dir_items(trans, root, inode, path,
3043 dst_path, key_type, min_key,
3044 &max_key);
3045 if (ret)
3046 return ret;
3047 if (max_key == (u64)-1)
3048 break;
3049 min_key = max_key + 1;
3050 }
3051
3052 if (key_type == BTRFS_DIR_ITEM_KEY) {
3053 key_type = BTRFS_DIR_INDEX_KEY;
3054 goto again;
3055 }
3056 return 0;
3057 }
3058
3059 /*
3060 * a helper function to drop items from the log before we relog an
3061 * inode. max_key_type indicates the highest item type to remove.
3062 * This cannot be run for file data extents because it does not
3063 * free the extents they point to.
3064 */
3065 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *log,
3067 struct btrfs_path *path,
3068 u64 objectid, int max_key_type)
3069 {
3070 int ret;
3071 struct btrfs_key key;
3072 struct btrfs_key found_key;
3073 int start_slot;
3074
3075 key.objectid = objectid;
3076 key.type = max_key_type;
3077 key.offset = (u64)-1;
3078
3079 while (1) {
3080 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3081 BUG_ON(ret == 0); /* Logic error */
3082 if (ret < 0)
3083 break;
3084
3085 if (path->slots[0] == 0)
3086 break;
3087
3088 path->slots[0]--;
3089 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3090 path->slots[0]);
3091
3092 if (found_key.objectid != objectid)
3093 break;
3094
3095 found_key.offset = 0;
3096 found_key.type = 0;
3097 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3098 &start_slot);
3099
3100 ret = btrfs_del_items(trans, log, path, start_slot,
3101 path->slots[0] - start_slot + 1);
3102 /*
3103 * If start slot isn't 0 then we don't need to re-search, we've
3104 * found the last guy with the objectid in this tree.
3105 */
3106 if (ret || start_slot != 0)
3107 break;
3108 btrfs_release_path(path);
3109 }
3110 btrfs_release_path(path);
3111 if (ret > 0)
3112 ret = 0;
3113 return ret;
3114 }
3115
3116 static void fill_inode_item(struct btrfs_trans_handle *trans,
3117 struct extent_buffer *leaf,
3118 struct btrfs_inode_item *item,
3119 struct inode *inode, int log_inode_only)
3120 {
3121 struct btrfs_map_token token;
3122
3123 btrfs_init_map_token(&token);
3124
3125 if (log_inode_only) {
3126 /* set the generation to zero so the recover code
3127 * can tell the difference between an logging
3128 * just to say 'this inode exists' and a logging
3129 * to say 'update this inode with these values'
3130 */
3131 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3132 btrfs_set_token_inode_size(leaf, item, 0, &token);
3133 } else {
3134 btrfs_set_token_inode_generation(leaf, item,
3135 BTRFS_I(inode)->generation,
3136 &token);
3137 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3138 }
3139
3140 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3141 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3142 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3143 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3144
3145 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3146 inode->i_atime.tv_sec, &token);
3147 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3148 inode->i_atime.tv_nsec, &token);
3149
3150 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3151 inode->i_mtime.tv_sec, &token);
3152 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3153 inode->i_mtime.tv_nsec, &token);
3154
3155 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3156 inode->i_ctime.tv_sec, &token);
3157 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3158 inode->i_ctime.tv_nsec, &token);
3159
3160 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3161 &token);
3162
3163 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3164 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3165 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3166 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3167 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3168 }
3169
3170 static int log_inode_item(struct btrfs_trans_handle *trans,
3171 struct btrfs_root *log, struct btrfs_path *path,
3172 struct inode *inode)
3173 {
3174 struct btrfs_inode_item *inode_item;
3175 struct btrfs_key key;
3176 int ret;
3177
3178 memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3179 ret = btrfs_insert_empty_item(trans, log, path, &key,
3180 sizeof(*inode_item));
3181 if (ret && ret != -EEXIST)
3182 return ret;
3183 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3184 struct btrfs_inode_item);
3185 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3186 btrfs_release_path(path);
3187 return 0;
3188 }
3189
3190 static noinline int copy_items(struct btrfs_trans_handle *trans,
3191 struct inode *inode,
3192 struct btrfs_path *dst_path,
3193 struct extent_buffer *src,
3194 int start_slot, int nr, int inode_only)
3195 {
3196 unsigned long src_offset;
3197 unsigned long dst_offset;
3198 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3199 struct btrfs_file_extent_item *extent;
3200 struct btrfs_inode_item *inode_item;
3201 int ret;
3202 struct btrfs_key *ins_keys;
3203 u32 *ins_sizes;
3204 char *ins_data;
3205 int i;
3206 struct list_head ordered_sums;
3207 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3208
3209 INIT_LIST_HEAD(&ordered_sums);
3210
3211 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3212 nr * sizeof(u32), GFP_NOFS);
3213 if (!ins_data)
3214 return -ENOMEM;
3215
3216 ins_sizes = (u32 *)ins_data;
3217 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3218
3219 for (i = 0; i < nr; i++) {
3220 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3221 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3222 }
3223 ret = btrfs_insert_empty_items(trans, log, dst_path,
3224 ins_keys, ins_sizes, nr);
3225 if (ret) {
3226 kfree(ins_data);
3227 return ret;
3228 }
3229
3230 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3231 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3232 dst_path->slots[0]);
3233
3234 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3235
3236 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3237 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3238 dst_path->slots[0],
3239 struct btrfs_inode_item);
3240 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3241 inode, inode_only == LOG_INODE_EXISTS);
3242 } else {
3243 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3244 src_offset, ins_sizes[i]);
3245 }
3246
3247 /* take a reference on file data extents so that truncates
3248 * or deletes of this inode don't have to relog the inode
3249 * again
3250 */
3251 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3252 !skip_csum) {
3253 int found_type;
3254 extent = btrfs_item_ptr(src, start_slot + i,
3255 struct btrfs_file_extent_item);
3256
3257 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3258 continue;
3259
3260 found_type = btrfs_file_extent_type(src, extent);
3261 if (found_type == BTRFS_FILE_EXTENT_REG) {
3262 u64 ds, dl, cs, cl;
3263 ds = btrfs_file_extent_disk_bytenr(src,
3264 extent);
3265 /* ds == 0 is a hole */
3266 if (ds == 0)
3267 continue;
3268
3269 dl = btrfs_file_extent_disk_num_bytes(src,
3270 extent);
3271 cs = btrfs_file_extent_offset(src, extent);
3272 cl = btrfs_file_extent_num_bytes(src,
3273 extent);
3274 if (btrfs_file_extent_compression(src,
3275 extent)) {
3276 cs = 0;
3277 cl = dl;
3278 }
3279
3280 ret = btrfs_lookup_csums_range(
3281 log->fs_info->csum_root,
3282 ds + cs, ds + cs + cl - 1,
3283 &ordered_sums, 0);
3284 if (ret) {
3285 btrfs_release_path(dst_path);
3286 kfree(ins_data);
3287 return ret;
3288 }
3289 }
3290 }
3291 }
3292
3293 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3294 btrfs_release_path(dst_path);
3295 kfree(ins_data);
3296
3297 /*
3298 * we have to do this after the loop above to avoid changing the
3299 * log tree while trying to change the log tree.
3300 */
3301 ret = 0;
3302 while (!list_empty(&ordered_sums)) {
3303 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3304 struct btrfs_ordered_sum,
3305 list);
3306 if (!ret)
3307 ret = btrfs_csum_file_blocks(trans, log, sums);
3308 list_del(&sums->list);
3309 kfree(sums);
3310 }
3311 return ret;
3312 }
3313
3314 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3315 {
3316 struct extent_map *em1, *em2;
3317
3318 em1 = list_entry(a, struct extent_map, list);
3319 em2 = list_entry(b, struct extent_map, list);
3320
3321 if (em1->start < em2->start)
3322 return -1;
3323 else if (em1->start > em2->start)
3324 return 1;
3325 return 0;
3326 }
3327
3328 static int log_one_extent(struct btrfs_trans_handle *trans,
3329 struct inode *inode, struct btrfs_root *root,
3330 struct extent_map *em, struct btrfs_path *path)
3331 {
3332 struct btrfs_root *log = root->log_root;
3333 struct btrfs_file_extent_item *fi;
3334 struct extent_buffer *leaf;
3335 struct btrfs_ordered_extent *ordered;
3336 struct list_head ordered_sums;
3337 struct btrfs_map_token token;
3338 struct btrfs_key key;
3339 u64 mod_start = em->mod_start;
3340 u64 mod_len = em->mod_len;
3341 u64 csum_offset;
3342 u64 csum_len;
3343 u64 extent_offset = em->start - em->orig_start;
3344 u64 block_len;
3345 int ret;
3346 int index = log->log_transid % 2;
3347 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3348
3349 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3350 em->start + em->len, NULL, 0);
3351 if (ret)
3352 return ret;
3353
3354 INIT_LIST_HEAD(&ordered_sums);
3355 btrfs_init_map_token(&token);
3356 key.objectid = btrfs_ino(inode);
3357 key.type = BTRFS_EXTENT_DATA_KEY;
3358 key.offset = em->start;
3359
3360 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3361 if (ret)
3362 return ret;
3363 leaf = path->nodes[0];
3364 fi = btrfs_item_ptr(leaf, path->slots[0],
3365 struct btrfs_file_extent_item);
3366
3367 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3368 &token);
3369 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3370 skip_csum = true;
3371 btrfs_set_token_file_extent_type(leaf, fi,
3372 BTRFS_FILE_EXTENT_PREALLOC,
3373 &token);
3374 } else {
3375 btrfs_set_token_file_extent_type(leaf, fi,
3376 BTRFS_FILE_EXTENT_REG,
3377 &token);
3378 if (em->block_start == 0)
3379 skip_csum = true;
3380 }
3381
3382 block_len = max(em->block_len, em->orig_block_len);
3383 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3384 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3385 em->block_start,
3386 &token);
3387 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3388 &token);
3389 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3390 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3391 em->block_start -
3392 extent_offset, &token);
3393 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3394 &token);
3395 } else {
3396 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3397 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3398 &token);
3399 }
3400
3401 btrfs_set_token_file_extent_offset(leaf, fi,
3402 em->start - em->orig_start,
3403 &token);
3404 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3405 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3406 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3407 &token);
3408 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3409 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3410 btrfs_mark_buffer_dirty(leaf);
3411
3412 btrfs_release_path(path);
3413 if (ret) {
3414 return ret;
3415 }
3416
3417 if (skip_csum)
3418 return 0;
3419
3420 if (em->compress_type) {
3421 csum_offset = 0;
3422 csum_len = block_len;
3423 }
3424
3425 /*
3426 * First check and see if our csums are on our outstanding ordered
3427 * extents.
3428 */
3429 again:
3430 spin_lock_irq(&log->log_extents_lock[index]);
3431 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3432 struct btrfs_ordered_sum *sum;
3433
3434 if (!mod_len)
3435 break;
3436
3437 if (ordered->inode != inode)
3438 continue;
3439
3440 if (ordered->file_offset + ordered->len <= mod_start ||
3441 mod_start + mod_len <= ordered->file_offset)
3442 continue;
3443
3444 /*
3445 * We are going to copy all the csums on this ordered extent, so
3446 * go ahead and adjust mod_start and mod_len in case this
3447 * ordered extent has already been logged.
3448 */
3449 if (ordered->file_offset > mod_start) {
3450 if (ordered->file_offset + ordered->len >=
3451 mod_start + mod_len)
3452 mod_len = ordered->file_offset - mod_start;
3453 /*
3454 * If we have this case
3455 *
3456 * |--------- logged extent ---------|
3457 * |----- ordered extent ----|
3458 *
3459 * Just don't mess with mod_start and mod_len, we'll
3460 * just end up logging more csums than we need and it
3461 * will be ok.
3462 */
3463 } else {
3464 if (ordered->file_offset + ordered->len <
3465 mod_start + mod_len) {
3466 mod_len = (mod_start + mod_len) -
3467 (ordered->file_offset + ordered->len);
3468 mod_start = ordered->file_offset +
3469 ordered->len;
3470 } else {
3471 mod_len = 0;
3472 }
3473 }
3474
3475 /*
3476 * To keep us from looping for the above case of an ordered
3477 * extent that falls inside of the logged extent.
3478 */
3479 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3480 &ordered->flags))
3481 continue;
3482 atomic_inc(&ordered->refs);
3483 spin_unlock_irq(&log->log_extents_lock[index]);
3484 /*
3485 * we've dropped the lock, we must either break or
3486 * start over after this.
3487 */
3488
3489 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3490
3491 list_for_each_entry(sum, &ordered->list, list) {
3492 ret = btrfs_csum_file_blocks(trans, log, sum);
3493 if (ret) {
3494 btrfs_put_ordered_extent(ordered);
3495 goto unlocked;
3496 }
3497 }
3498 btrfs_put_ordered_extent(ordered);
3499 goto again;
3500
3501 }
3502 spin_unlock_irq(&log->log_extents_lock[index]);
3503 unlocked:
3504
3505 if (!mod_len || ret)
3506 return ret;
3507
3508 csum_offset = mod_start - em->start;
3509 csum_len = mod_len;
3510
3511 /* block start is already adjusted for the file extent offset. */
3512 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3513 em->block_start + csum_offset,
3514 em->block_start + csum_offset +
3515 csum_len - 1, &ordered_sums, 0);
3516 if (ret)
3517 return ret;
3518
3519 while (!list_empty(&ordered_sums)) {
3520 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3521 struct btrfs_ordered_sum,
3522 list);
3523 if (!ret)
3524 ret = btrfs_csum_file_blocks(trans, log, sums);
3525 list_del(&sums->list);
3526 kfree(sums);
3527 }
3528
3529 return ret;
3530 }
3531
3532 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3533 struct btrfs_root *root,
3534 struct inode *inode,
3535 struct btrfs_path *path)
3536 {
3537 struct extent_map *em, *n;
3538 struct list_head extents;
3539 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3540 u64 test_gen;
3541 int ret = 0;
3542 int num = 0;
3543
3544 INIT_LIST_HEAD(&extents);
3545
3546 write_lock(&tree->lock);
3547 test_gen = root->fs_info->last_trans_committed;
3548
3549 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3550 list_del_init(&em->list);
3551
3552 /*
3553 * Just an arbitrary number, this can be really CPU intensive
3554 * once we start getting a lot of extents, and really once we
3555 * have a bunch of extents we just want to commit since it will
3556 * be faster.
3557 */
3558 if (++num > 32768) {
3559 list_del_init(&tree->modified_extents);
3560 ret = -EFBIG;
3561 goto process;
3562 }
3563
3564 if (em->generation <= test_gen)
3565 continue;
3566 /* Need a ref to keep it from getting evicted from cache */
3567 atomic_inc(&em->refs);
3568 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3569 list_add_tail(&em->list, &extents);
3570 num++;
3571 }
3572
3573 list_sort(NULL, &extents, extent_cmp);
3574
3575 process:
3576 while (!list_empty(&extents)) {
3577 em = list_entry(extents.next, struct extent_map, list);
3578
3579 list_del_init(&em->list);
3580
3581 /*
3582 * If we had an error we just need to delete everybody from our
3583 * private list.
3584 */
3585 if (ret) {
3586 clear_em_logging(tree, em);
3587 free_extent_map(em);
3588 continue;
3589 }
3590
3591 write_unlock(&tree->lock);
3592
3593 ret = log_one_extent(trans, inode, root, em, path);
3594 write_lock(&tree->lock);
3595 clear_em_logging(tree, em);
3596 free_extent_map(em);
3597 }
3598 WARN_ON(!list_empty(&extents));
3599 write_unlock(&tree->lock);
3600
3601 btrfs_release_path(path);
3602 return ret;
3603 }
3604
3605 /* log a single inode in the tree log.
3606 * At least one parent directory for this inode must exist in the tree
3607 * or be logged already.
3608 *
3609 * Any items from this inode changed by the current transaction are copied
3610 * to the log tree. An extra reference is taken on any extents in this
3611 * file, allowing us to avoid a whole pile of corner cases around logging
3612 * blocks that have been removed from the tree.
3613 *
3614 * See LOG_INODE_ALL and related defines for a description of what inode_only
3615 * does.
3616 *
3617 * This handles both files and directories.
3618 */
3619 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3620 struct btrfs_root *root, struct inode *inode,
3621 int inode_only)
3622 {
3623 struct btrfs_path *path;
3624 struct btrfs_path *dst_path;
3625 struct btrfs_key min_key;
3626 struct btrfs_key max_key;
3627 struct btrfs_root *log = root->log_root;
3628 struct extent_buffer *src = NULL;
3629 int err = 0;
3630 int ret;
3631 int nritems;
3632 int ins_start_slot = 0;
3633 int ins_nr;
3634 bool fast_search = false;
3635 u64 ino = btrfs_ino(inode);
3636
3637 path = btrfs_alloc_path();
3638 if (!path)
3639 return -ENOMEM;
3640 dst_path = btrfs_alloc_path();
3641 if (!dst_path) {
3642 btrfs_free_path(path);
3643 return -ENOMEM;
3644 }
3645
3646 min_key.objectid = ino;
3647 min_key.type = BTRFS_INODE_ITEM_KEY;
3648 min_key.offset = 0;
3649
3650 max_key.objectid = ino;
3651
3652
3653 /* today the code can only do partial logging of directories */
3654 if (S_ISDIR(inode->i_mode) ||
3655 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3656 &BTRFS_I(inode)->runtime_flags) &&
3657 inode_only == LOG_INODE_EXISTS))
3658 max_key.type = BTRFS_XATTR_ITEM_KEY;
3659 else
3660 max_key.type = (u8)-1;
3661 max_key.offset = (u64)-1;
3662
3663 /* Only run delayed items if we are a dir or a new file */
3664 if (S_ISDIR(inode->i_mode) ||
3665 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3666 ret = btrfs_commit_inode_delayed_items(trans, inode);
3667 if (ret) {
3668 btrfs_free_path(path);
3669 btrfs_free_path(dst_path);
3670 return ret;
3671 }
3672 }
3673
3674 mutex_lock(&BTRFS_I(inode)->log_mutex);
3675
3676 btrfs_get_logged_extents(log, inode);
3677
3678 /*
3679 * a brute force approach to making sure we get the most uptodate
3680 * copies of everything.
3681 */
3682 if (S_ISDIR(inode->i_mode)) {
3683 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3684
3685 if (inode_only == LOG_INODE_EXISTS)
3686 max_key_type = BTRFS_XATTR_ITEM_KEY;
3687 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3688 } else {
3689 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3690 &BTRFS_I(inode)->runtime_flags)) {
3691 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3692 &BTRFS_I(inode)->runtime_flags);
3693 ret = btrfs_truncate_inode_items(trans, log,
3694 inode, 0, 0);
3695 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3696 &BTRFS_I(inode)->runtime_flags)) {
3697 if (inode_only == LOG_INODE_ALL)
3698 fast_search = true;
3699 max_key.type = BTRFS_XATTR_ITEM_KEY;
3700 ret = drop_objectid_items(trans, log, path, ino,
3701 max_key.type);
3702 } else {
3703 if (inode_only == LOG_INODE_ALL)
3704 fast_search = true;
3705 ret = log_inode_item(trans, log, dst_path, inode);
3706 if (ret) {
3707 err = ret;
3708 goto out_unlock;
3709 }
3710 goto log_extents;
3711 }
3712
3713 }
3714 if (ret) {
3715 err = ret;
3716 goto out_unlock;
3717 }
3718 path->keep_locks = 1;
3719
3720 while (1) {
3721 ins_nr = 0;
3722 ret = btrfs_search_forward(root, &min_key, &max_key,
3723 path, trans->transid);
3724 if (ret != 0)
3725 break;
3726 again:
3727 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3728 if (min_key.objectid != ino)
3729 break;
3730 if (min_key.type > max_key.type)
3731 break;
3732
3733 src = path->nodes[0];
3734 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3735 ins_nr++;
3736 goto next_slot;
3737 } else if (!ins_nr) {
3738 ins_start_slot = path->slots[0];
3739 ins_nr = 1;
3740 goto next_slot;
3741 }
3742
3743 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3744 ins_nr, inode_only);
3745 if (ret) {
3746 err = ret;
3747 goto out_unlock;
3748 }
3749 ins_nr = 1;
3750 ins_start_slot = path->slots[0];
3751 next_slot:
3752
3753 nritems = btrfs_header_nritems(path->nodes[0]);
3754 path->slots[0]++;
3755 if (path->slots[0] < nritems) {
3756 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3757 path->slots[0]);
3758 goto again;
3759 }
3760 if (ins_nr) {
3761 ret = copy_items(trans, inode, dst_path, src,
3762 ins_start_slot,
3763 ins_nr, inode_only);
3764 if (ret) {
3765 err = ret;
3766 goto out_unlock;
3767 }
3768 ins_nr = 0;
3769 }
3770 btrfs_release_path(path);
3771
3772 if (min_key.offset < (u64)-1)
3773 min_key.offset++;
3774 else if (min_key.type < (u8)-1)
3775 min_key.type++;
3776 else if (min_key.objectid < (u64)-1)
3777 min_key.objectid++;
3778 else
3779 break;
3780 }
3781 if (ins_nr) {
3782 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3783 ins_nr, inode_only);
3784 if (ret) {
3785 err = ret;
3786 goto out_unlock;
3787 }
3788 ins_nr = 0;
3789 }
3790
3791 log_extents:
3792 btrfs_release_path(path);
3793 btrfs_release_path(dst_path);
3794 if (fast_search) {
3795 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3796 if (ret) {
3797 err = ret;
3798 goto out_unlock;
3799 }
3800 } else {
3801 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3802 struct extent_map *em, *n;
3803
3804 write_lock(&tree->lock);
3805 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3806 list_del_init(&em->list);
3807 write_unlock(&tree->lock);
3808 }
3809
3810 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3811 ret = log_directory_changes(trans, root, inode, path, dst_path);
3812 if (ret) {
3813 err = ret;
3814 goto out_unlock;
3815 }
3816 }
3817 BTRFS_I(inode)->logged_trans = trans->transid;
3818 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3819 out_unlock:
3820 if (err)
3821 btrfs_free_logged_extents(log, log->log_transid);
3822 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3823
3824 btrfs_free_path(path);
3825 btrfs_free_path(dst_path);
3826 return err;
3827 }
3828
3829 /*
3830 * follow the dentry parent pointers up the chain and see if any
3831 * of the directories in it require a full commit before they can
3832 * be logged. Returns zero if nothing special needs to be done or 1 if
3833 * a full commit is required.
3834 */
3835 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3836 struct inode *inode,
3837 struct dentry *parent,
3838 struct super_block *sb,
3839 u64 last_committed)
3840 {
3841 int ret = 0;
3842 struct btrfs_root *root;
3843 struct dentry *old_parent = NULL;
3844 struct inode *orig_inode = inode;
3845
3846 /*
3847 * for regular files, if its inode is already on disk, we don't
3848 * have to worry about the parents at all. This is because
3849 * we can use the last_unlink_trans field to record renames
3850 * and other fun in this file.
3851 */
3852 if (S_ISREG(inode->i_mode) &&
3853 BTRFS_I(inode)->generation <= last_committed &&
3854 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3855 goto out;
3856
3857 if (!S_ISDIR(inode->i_mode)) {
3858 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3859 goto out;
3860 inode = parent->d_inode;
3861 }
3862
3863 while (1) {
3864 /*
3865 * If we are logging a directory then we start with our inode,
3866 * not our parents inode, so we need to skipp setting the
3867 * logged_trans so that further down in the log code we don't
3868 * think this inode has already been logged.
3869 */
3870 if (inode != orig_inode)
3871 BTRFS_I(inode)->logged_trans = trans->transid;
3872 smp_mb();
3873
3874 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3875 root = BTRFS_I(inode)->root;
3876
3877 /*
3878 * make sure any commits to the log are forced
3879 * to be full commits
3880 */
3881 root->fs_info->last_trans_log_full_commit =
3882 trans->transid;
3883 ret = 1;
3884 break;
3885 }
3886
3887 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3888 break;
3889
3890 if (IS_ROOT(parent))
3891 break;
3892
3893 parent = dget_parent(parent);
3894 dput(old_parent);
3895 old_parent = parent;
3896 inode = parent->d_inode;
3897
3898 }
3899 dput(old_parent);
3900 out:
3901 return ret;
3902 }
3903
3904 /*
3905 * helper function around btrfs_log_inode to make sure newly created
3906 * parent directories also end up in the log. A minimal inode and backref
3907 * only logging is done of any parent directories that are older than
3908 * the last committed transaction
3909 */
3910 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3911 struct btrfs_root *root, struct inode *inode,
3912 struct dentry *parent, int exists_only)
3913 {
3914 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3915 struct super_block *sb;
3916 struct dentry *old_parent = NULL;
3917 int ret = 0;
3918 u64 last_committed = root->fs_info->last_trans_committed;
3919
3920 sb = inode->i_sb;
3921
3922 if (btrfs_test_opt(root, NOTREELOG)) {
3923 ret = 1;
3924 goto end_no_trans;
3925 }
3926
3927 if (root->fs_info->last_trans_log_full_commit >
3928 root->fs_info->last_trans_committed) {
3929 ret = 1;
3930 goto end_no_trans;
3931 }
3932
3933 if (root != BTRFS_I(inode)->root ||
3934 btrfs_root_refs(&root->root_item) == 0) {
3935 ret = 1;
3936 goto end_no_trans;
3937 }
3938
3939 ret = check_parent_dirs_for_sync(trans, inode, parent,
3940 sb, last_committed);
3941 if (ret)
3942 goto end_no_trans;
3943
3944 if (btrfs_inode_in_log(inode, trans->transid)) {
3945 ret = BTRFS_NO_LOG_SYNC;
3946 goto end_no_trans;
3947 }
3948
3949 ret = start_log_trans(trans, root);
3950 if (ret)
3951 goto end_trans;
3952
3953 ret = btrfs_log_inode(trans, root, inode, inode_only);
3954 if (ret)
3955 goto end_trans;
3956
3957 /*
3958 * for regular files, if its inode is already on disk, we don't
3959 * have to worry about the parents at all. This is because
3960 * we can use the last_unlink_trans field to record renames
3961 * and other fun in this file.
3962 */
3963 if (S_ISREG(inode->i_mode) &&
3964 BTRFS_I(inode)->generation <= last_committed &&
3965 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3966 ret = 0;
3967 goto end_trans;
3968 }
3969
3970 inode_only = LOG_INODE_EXISTS;
3971 while (1) {
3972 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3973 break;
3974
3975 inode = parent->d_inode;
3976 if (root != BTRFS_I(inode)->root)
3977 break;
3978
3979 if (BTRFS_I(inode)->generation >
3980 root->fs_info->last_trans_committed) {
3981 ret = btrfs_log_inode(trans, root, inode, inode_only);
3982 if (ret)
3983 goto end_trans;
3984 }
3985 if (IS_ROOT(parent))
3986 break;
3987
3988 parent = dget_parent(parent);
3989 dput(old_parent);
3990 old_parent = parent;
3991 }
3992 ret = 0;
3993 end_trans:
3994 dput(old_parent);
3995 if (ret < 0) {
3996 root->fs_info->last_trans_log_full_commit = trans->transid;
3997 ret = 1;
3998 }
3999 btrfs_end_log_trans(root);
4000 end_no_trans:
4001 return ret;
4002 }
4003
4004 /*
4005 * it is not safe to log dentry if the chunk root has added new
4006 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4007 * If this returns 1, you must commit the transaction to safely get your
4008 * data on disk.
4009 */
4010 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4011 struct btrfs_root *root, struct dentry *dentry)
4012 {
4013 struct dentry *parent = dget_parent(dentry);
4014 int ret;
4015
4016 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4017 dput(parent);
4018
4019 return ret;
4020 }
4021
4022 /*
4023 * should be called during mount to recover any replay any log trees
4024 * from the FS
4025 */
4026 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4027 {
4028 int ret;
4029 struct btrfs_path *path;
4030 struct btrfs_trans_handle *trans;
4031 struct btrfs_key key;
4032 struct btrfs_key found_key;
4033 struct btrfs_key tmp_key;
4034 struct btrfs_root *log;
4035 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4036 struct walk_control wc = {
4037 .process_func = process_one_buffer,
4038 .stage = 0,
4039 };
4040
4041 path = btrfs_alloc_path();
4042 if (!path)
4043 return -ENOMEM;
4044
4045 fs_info->log_root_recovering = 1;
4046
4047 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4048 if (IS_ERR(trans)) {
4049 ret = PTR_ERR(trans);
4050 goto error;
4051 }
4052
4053 wc.trans = trans;
4054 wc.pin = 1;
4055
4056 ret = walk_log_tree(trans, log_root_tree, &wc);
4057 if (ret) {
4058 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4059 "recovering log root tree.");
4060 goto error;
4061 }
4062
4063 again:
4064 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4065 key.offset = (u64)-1;
4066 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4067
4068 while (1) {
4069 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4070
4071 if (ret < 0) {
4072 btrfs_error(fs_info, ret,
4073 "Couldn't find tree log root.");
4074 goto error;
4075 }
4076 if (ret > 0) {
4077 if (path->slots[0] == 0)
4078 break;
4079 path->slots[0]--;
4080 }
4081 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4082 path->slots[0]);
4083 btrfs_release_path(path);
4084 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4085 break;
4086
4087 log = btrfs_read_fs_root(log_root_tree, &found_key);
4088 if (IS_ERR(log)) {
4089 ret = PTR_ERR(log);
4090 btrfs_error(fs_info, ret,
4091 "Couldn't read tree log root.");
4092 goto error;
4093 }
4094
4095 tmp_key.objectid = found_key.offset;
4096 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4097 tmp_key.offset = (u64)-1;
4098
4099 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4100 if (IS_ERR(wc.replay_dest)) {
4101 ret = PTR_ERR(wc.replay_dest);
4102 free_extent_buffer(log->node);
4103 free_extent_buffer(log->commit_root);
4104 kfree(log);
4105 btrfs_error(fs_info, ret, "Couldn't read target root "
4106 "for tree log recovery.");
4107 goto error;
4108 }
4109
4110 wc.replay_dest->log_root = log;
4111 btrfs_record_root_in_trans(trans, wc.replay_dest);
4112 ret = walk_log_tree(trans, log, &wc);
4113
4114 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4115 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4116 path);
4117 }
4118
4119 key.offset = found_key.offset - 1;
4120 wc.replay_dest->log_root = NULL;
4121 free_extent_buffer(log->node);
4122 free_extent_buffer(log->commit_root);
4123 kfree(log);
4124
4125 if (ret)
4126 goto error;
4127
4128 if (found_key.offset == 0)
4129 break;
4130 }
4131 btrfs_release_path(path);
4132
4133 /* step one is to pin it all, step two is to replay just inodes */
4134 if (wc.pin) {
4135 wc.pin = 0;
4136 wc.process_func = replay_one_buffer;
4137 wc.stage = LOG_WALK_REPLAY_INODES;
4138 goto again;
4139 }
4140 /* step three is to replay everything */
4141 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4142 wc.stage++;
4143 goto again;
4144 }
4145
4146 btrfs_free_path(path);
4147
4148 /* step 4: commit the transaction, which also unpins the blocks */
4149 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4150 if (ret)
4151 return ret;
4152
4153 free_extent_buffer(log_root_tree->node);
4154 log_root_tree->log_root = NULL;
4155 fs_info->log_root_recovering = 0;
4156 kfree(log_root_tree);
4157
4158 return 0;
4159 error:
4160 if (wc.trans)
4161 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4162 btrfs_free_path(path);
4163 return ret;
4164 }
4165
4166 /*
4167 * there are some corner cases where we want to force a full
4168 * commit instead of allowing a directory to be logged.
4169 *
4170 * They revolve around files there were unlinked from the directory, and
4171 * this function updates the parent directory so that a full commit is
4172 * properly done if it is fsync'd later after the unlinks are done.
4173 */
4174 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4175 struct inode *dir, struct inode *inode,
4176 int for_rename)
4177 {
4178 /*
4179 * when we're logging a file, if it hasn't been renamed
4180 * or unlinked, and its inode is fully committed on disk,
4181 * we don't have to worry about walking up the directory chain
4182 * to log its parents.
4183 *
4184 * So, we use the last_unlink_trans field to put this transid
4185 * into the file. When the file is logged we check it and
4186 * don't log the parents if the file is fully on disk.
4187 */
4188 if (S_ISREG(inode->i_mode))
4189 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4190
4191 /*
4192 * if this directory was already logged any new
4193 * names for this file/dir will get recorded
4194 */
4195 smp_mb();
4196 if (BTRFS_I(dir)->logged_trans == trans->transid)
4197 return;
4198
4199 /*
4200 * if the inode we're about to unlink was logged,
4201 * the log will be properly updated for any new names
4202 */
4203 if (BTRFS_I(inode)->logged_trans == trans->transid)
4204 return;
4205
4206 /*
4207 * when renaming files across directories, if the directory
4208 * there we're unlinking from gets fsync'd later on, there's
4209 * no way to find the destination directory later and fsync it
4210 * properly. So, we have to be conservative and force commits
4211 * so the new name gets discovered.
4212 */
4213 if (for_rename)
4214 goto record;
4215
4216 /* we can safely do the unlink without any special recording */
4217 return;
4218
4219 record:
4220 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4221 }
4222
4223 /*
4224 * Call this after adding a new name for a file and it will properly
4225 * update the log to reflect the new name.
4226 *
4227 * It will return zero if all goes well, and it will return 1 if a
4228 * full transaction commit is required.
4229 */
4230 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4231 struct inode *inode, struct inode *old_dir,
4232 struct dentry *parent)
4233 {
4234 struct btrfs_root * root = BTRFS_I(inode)->root;
4235
4236 /*
4237 * this will force the logging code to walk the dentry chain
4238 * up for the file
4239 */
4240 if (S_ISREG(inode->i_mode))
4241 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4242
4243 /*
4244 * if this inode hasn't been logged and directory we're renaming it
4245 * from hasn't been logged, we don't need to log it
4246 */
4247 if (BTRFS_I(inode)->logged_trans <=
4248 root->fs_info->last_trans_committed &&
4249 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4250 root->fs_info->last_trans_committed))
4251 return 0;
4252
4253 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4254 }
4255
This page took 0.117627 seconds and 6 git commands to generate.