btrfs: Don't BUG_ON alloc_path errors in replay_one_buffer()
[deliverable/linux.git] / fs / btrfs / tree-log.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28
29 /* magic values for the inode_only field in btrfs_log_inode:
30 *
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
34 */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37
38 /*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
81 /*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
105
106 /*
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 *
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
113 *
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
119 *
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
123 *
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
127 */
128
129 /*
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
133 */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
136 {
137 int ret;
138 int err = 0;
139
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
147 }
148
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
153 }
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 if (ret)
160 err = ret;
161 }
162 if (err == 0 && !root->log_root) {
163 ret = btrfs_add_log_tree(trans, root);
164 if (ret)
165 err = ret;
166 }
167 mutex_unlock(&root->fs_info->tree_log_mutex);
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
171 return err;
172 }
173
174 /*
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
178 */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 int ret = -ENOENT;
182
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
186
187 mutex_lock(&root->log_mutex);
188 if (root->log_root) {
189 ret = 0;
190 atomic_inc(&root->log_writers);
191 }
192 mutex_unlock(&root->log_mutex);
193 return ret;
194 }
195
196 /*
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
200 */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 int ret = -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
209 }
210
211 /*
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
214 */
215 int btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
221 }
222 return 0;
223 }
224
225
226 /*
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
231 */
232 struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
235 */
236 int free;
237
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
240 */
241 int write;
242
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
245 */
246 int wait;
247
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
250 */
251 int pin;
252
253 /* what stage of the replay code we're currently in */
254 int stage;
255
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
258
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
261
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
266 */
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
269 };
270
271 /*
272 * process_func used to pin down extents, write them or wait on them
273 */
274 static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
277 {
278 if (wc->pin)
279 btrfs_pin_extent(log->fs_info->extent_root,
280 eb->start, eb->len, 0);
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289 }
290
291 /*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310 {
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
346 }
347
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
349
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
354
355 kfree(dst_copy);
356 kfree(src_copy);
357 /*
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
362 */
363 if (ret == 0) {
364 btrfs_release_path(path);
365 return 0;
366 }
367
368 }
369 insert:
370 btrfs_release_path(path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
374
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size) {
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 } else if (found_size < item_size) {
383 ret = btrfs_extend_item(trans, root, path,
384 item_size - found_size);
385 }
386 } else if (ret) {
387 return ret;
388 }
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
390 path->slots[0]);
391
392 /* don't overwrite an existing inode if the generation number
393 * was logged as zero. This is done when the tree logging code
394 * is just logging an inode to make sure it exists after recovery.
395 *
396 * Also, don't overwrite i_size on directories during replay.
397 * log replay inserts and removes directory items based on the
398 * state of the tree found in the subvolume, and i_size is modified
399 * as it goes
400 */
401 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
402 struct btrfs_inode_item *src_item;
403 struct btrfs_inode_item *dst_item;
404
405 src_item = (struct btrfs_inode_item *)src_ptr;
406 dst_item = (struct btrfs_inode_item *)dst_ptr;
407
408 if (btrfs_inode_generation(eb, src_item) == 0)
409 goto no_copy;
410
411 if (overwrite_root &&
412 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
413 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
414 save_old_i_size = 1;
415 saved_i_size = btrfs_inode_size(path->nodes[0],
416 dst_item);
417 }
418 }
419
420 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
421 src_ptr, item_size);
422
423 if (save_old_i_size) {
424 struct btrfs_inode_item *dst_item;
425 dst_item = (struct btrfs_inode_item *)dst_ptr;
426 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
427 }
428
429 /* make sure the generation is filled in */
430 if (key->type == BTRFS_INODE_ITEM_KEY) {
431 struct btrfs_inode_item *dst_item;
432 dst_item = (struct btrfs_inode_item *)dst_ptr;
433 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
434 btrfs_set_inode_generation(path->nodes[0], dst_item,
435 trans->transid);
436 }
437 }
438 no_copy:
439 btrfs_mark_buffer_dirty(path->nodes[0]);
440 btrfs_release_path(path);
441 return 0;
442 }
443
444 /*
445 * simple helper to read an inode off the disk from a given root
446 * This can only be called for subvolume roots and not for the log
447 */
448 static noinline struct inode *read_one_inode(struct btrfs_root *root,
449 u64 objectid)
450 {
451 struct btrfs_key key;
452 struct inode *inode;
453
454 key.objectid = objectid;
455 key.type = BTRFS_INODE_ITEM_KEY;
456 key.offset = 0;
457 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
458 if (IS_ERR(inode)) {
459 inode = NULL;
460 } else if (is_bad_inode(inode)) {
461 iput(inode);
462 inode = NULL;
463 }
464 return inode;
465 }
466
467 /* replays a single extent in 'eb' at 'slot' with 'key' into the
468 * subvolume 'root'. path is released on entry and should be released
469 * on exit.
470 *
471 * extents in the log tree have not been allocated out of the extent
472 * tree yet. So, this completes the allocation, taking a reference
473 * as required if the extent already exists or creating a new extent
474 * if it isn't in the extent allocation tree yet.
475 *
476 * The extent is inserted into the file, dropping any existing extents
477 * from the file that overlap the new one.
478 */
479 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root,
481 struct btrfs_path *path,
482 struct extent_buffer *eb, int slot,
483 struct btrfs_key *key)
484 {
485 int found_type;
486 u64 mask = root->sectorsize - 1;
487 u64 extent_end;
488 u64 alloc_hint;
489 u64 start = key->offset;
490 u64 saved_nbytes;
491 struct btrfs_file_extent_item *item;
492 struct inode *inode = NULL;
493 unsigned long size;
494 int ret = 0;
495
496 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
497 found_type = btrfs_file_extent_type(eb, item);
498
499 if (found_type == BTRFS_FILE_EXTENT_REG ||
500 found_type == BTRFS_FILE_EXTENT_PREALLOC)
501 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
502 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
503 size = btrfs_file_extent_inline_len(eb, item);
504 extent_end = (start + size + mask) & ~mask;
505 } else {
506 ret = 0;
507 goto out;
508 }
509
510 inode = read_one_inode(root, key->objectid);
511 if (!inode) {
512 ret = -EIO;
513 goto out;
514 }
515
516 /*
517 * first check to see if we already have this extent in the
518 * file. This must be done before the btrfs_drop_extents run
519 * so we don't try to drop this extent.
520 */
521 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
522 start, 0);
523
524 if (ret == 0 &&
525 (found_type == BTRFS_FILE_EXTENT_REG ||
526 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
527 struct btrfs_file_extent_item cmp1;
528 struct btrfs_file_extent_item cmp2;
529 struct btrfs_file_extent_item *existing;
530 struct extent_buffer *leaf;
531
532 leaf = path->nodes[0];
533 existing = btrfs_item_ptr(leaf, path->slots[0],
534 struct btrfs_file_extent_item);
535
536 read_extent_buffer(eb, &cmp1, (unsigned long)item,
537 sizeof(cmp1));
538 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
539 sizeof(cmp2));
540
541 /*
542 * we already have a pointer to this exact extent,
543 * we don't have to do anything
544 */
545 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
546 btrfs_release_path(path);
547 goto out;
548 }
549 }
550 btrfs_release_path(path);
551
552 saved_nbytes = inode_get_bytes(inode);
553 /* drop any overlapping extents */
554 ret = btrfs_drop_extents(trans, inode, start, extent_end,
555 &alloc_hint, 1);
556 BUG_ON(ret);
557
558 if (found_type == BTRFS_FILE_EXTENT_REG ||
559 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
560 u64 offset;
561 unsigned long dest_offset;
562 struct btrfs_key ins;
563
564 ret = btrfs_insert_empty_item(trans, root, path, key,
565 sizeof(*item));
566 BUG_ON(ret);
567 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
568 path->slots[0]);
569 copy_extent_buffer(path->nodes[0], eb, dest_offset,
570 (unsigned long)item, sizeof(*item));
571
572 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
573 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
574 ins.type = BTRFS_EXTENT_ITEM_KEY;
575 offset = key->offset - btrfs_file_extent_offset(eb, item);
576
577 if (ins.objectid > 0) {
578 u64 csum_start;
579 u64 csum_end;
580 LIST_HEAD(ordered_sums);
581 /*
582 * is this extent already allocated in the extent
583 * allocation tree? If so, just add a reference
584 */
585 ret = btrfs_lookup_extent(root, ins.objectid,
586 ins.offset);
587 if (ret == 0) {
588 ret = btrfs_inc_extent_ref(trans, root,
589 ins.objectid, ins.offset,
590 0, root->root_key.objectid,
591 key->objectid, offset);
592 BUG_ON(ret);
593 } else {
594 /*
595 * insert the extent pointer in the extent
596 * allocation tree
597 */
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
601 BUG_ON(ret);
602 }
603 btrfs_release_path(path);
604
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
613 }
614
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
617 &ordered_sums, 0);
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
630 }
631 } else {
632 btrfs_release_path(path);
633 }
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
638 }
639
640 inode_set_bytes(inode, saved_nbytes);
641 btrfs_update_inode(trans, root, inode);
642 out:
643 if (inode)
644 iput(inode);
645 return ret;
646 }
647
648 /*
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
652 *
653 * This is a helper function to do the unlink of a specific directory
654 * item
655 */
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
661 {
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
668
669 leaf = path->nodes[0];
670
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
674 if (!name)
675 return -ENOMEM;
676
677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 btrfs_release_path(path);
679
680 inode = read_one_inode(root, location.objectid);
681 if (!inode) {
682 kfree(name);
683 return -EIO;
684 }
685
686 ret = link_to_fixup_dir(trans, root, path, location.objectid);
687 BUG_ON(ret);
688
689 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
690 BUG_ON(ret);
691 kfree(name);
692
693 iput(inode);
694 return ret;
695 }
696
697 /*
698 * helper function to see if a given name and sequence number found
699 * in an inode back reference are already in a directory and correctly
700 * point to this inode
701 */
702 static noinline int inode_in_dir(struct btrfs_root *root,
703 struct btrfs_path *path,
704 u64 dirid, u64 objectid, u64 index,
705 const char *name, int name_len)
706 {
707 struct btrfs_dir_item *di;
708 struct btrfs_key location;
709 int match = 0;
710
711 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
712 index, name, name_len, 0);
713 if (di && !IS_ERR(di)) {
714 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
715 if (location.objectid != objectid)
716 goto out;
717 } else
718 goto out;
719 btrfs_release_path(path);
720
721 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
722 if (di && !IS_ERR(di)) {
723 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
724 if (location.objectid != objectid)
725 goto out;
726 } else
727 goto out;
728 match = 1;
729 out:
730 btrfs_release_path(path);
731 return match;
732 }
733
734 /*
735 * helper function to check a log tree for a named back reference in
736 * an inode. This is used to decide if a back reference that is
737 * found in the subvolume conflicts with what we find in the log.
738 *
739 * inode backreferences may have multiple refs in a single item,
740 * during replay we process one reference at a time, and we don't
741 * want to delete valid links to a file from the subvolume if that
742 * link is also in the log.
743 */
744 static noinline int backref_in_log(struct btrfs_root *log,
745 struct btrfs_key *key,
746 char *name, int namelen)
747 {
748 struct btrfs_path *path;
749 struct btrfs_inode_ref *ref;
750 unsigned long ptr;
751 unsigned long ptr_end;
752 unsigned long name_ptr;
753 int found_name_len;
754 int item_size;
755 int ret;
756 int match = 0;
757
758 path = btrfs_alloc_path();
759 if (!path)
760 return -ENOMEM;
761
762 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
763 if (ret != 0)
764 goto out;
765
766 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
767 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
768 ptr_end = ptr + item_size;
769 while (ptr < ptr_end) {
770 ref = (struct btrfs_inode_ref *)ptr;
771 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
772 if (found_name_len == namelen) {
773 name_ptr = (unsigned long)(ref + 1);
774 ret = memcmp_extent_buffer(path->nodes[0], name,
775 name_ptr, namelen);
776 if (ret == 0) {
777 match = 1;
778 goto out;
779 }
780 }
781 ptr = (unsigned long)(ref + 1) + found_name_len;
782 }
783 out:
784 btrfs_free_path(path);
785 return match;
786 }
787
788
789 /*
790 * replay one inode back reference item found in the log tree.
791 * eb, slot and key refer to the buffer and key found in the log tree.
792 * root is the destination we are replaying into, and path is for temp
793 * use by this function. (it should be released on return).
794 */
795 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
796 struct btrfs_root *root,
797 struct btrfs_root *log,
798 struct btrfs_path *path,
799 struct extent_buffer *eb, int slot,
800 struct btrfs_key *key)
801 {
802 struct inode *dir;
803 int ret;
804 struct btrfs_inode_ref *ref;
805 struct inode *inode;
806 char *name;
807 int namelen;
808 unsigned long ref_ptr;
809 unsigned long ref_end;
810 int search_done = 0;
811
812 /*
813 * it is possible that we didn't log all the parent directories
814 * for a given inode. If we don't find the dir, just don't
815 * copy the back ref in. The link count fixup code will take
816 * care of the rest
817 */
818 dir = read_one_inode(root, key->offset);
819 if (!dir)
820 return -ENOENT;
821
822 inode = read_one_inode(root, key->objectid);
823 if (!inode) {
824 iput(dir);
825 return -EIO;
826 }
827
828 ref_ptr = btrfs_item_ptr_offset(eb, slot);
829 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
830
831 again:
832 ref = (struct btrfs_inode_ref *)ref_ptr;
833
834 namelen = btrfs_inode_ref_name_len(eb, ref);
835 name = kmalloc(namelen, GFP_NOFS);
836 BUG_ON(!name);
837
838 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
839
840 /* if we already have a perfect match, we're done */
841 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
842 btrfs_inode_ref_index(eb, ref),
843 name, namelen)) {
844 goto out;
845 }
846
847 /*
848 * look for a conflicting back reference in the metadata.
849 * if we find one we have to unlink that name of the file
850 * before we add our new link. Later on, we overwrite any
851 * existing back reference, and we don't want to create
852 * dangling pointers in the directory.
853 */
854
855 if (search_done)
856 goto insert;
857
858 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
859 if (ret == 0) {
860 char *victim_name;
861 int victim_name_len;
862 struct btrfs_inode_ref *victim_ref;
863 unsigned long ptr;
864 unsigned long ptr_end;
865 struct extent_buffer *leaf = path->nodes[0];
866
867 /* are we trying to overwrite a back ref for the root directory
868 * if so, just jump out, we're done
869 */
870 if (key->objectid == key->offset)
871 goto out_nowrite;
872
873 /* check all the names in this back reference to see
874 * if they are in the log. if so, we allow them to stay
875 * otherwise they must be unlinked as a conflict
876 */
877 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
878 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
879 while (ptr < ptr_end) {
880 victim_ref = (struct btrfs_inode_ref *)ptr;
881 victim_name_len = btrfs_inode_ref_name_len(leaf,
882 victim_ref);
883 victim_name = kmalloc(victim_name_len, GFP_NOFS);
884 BUG_ON(!victim_name);
885
886 read_extent_buffer(leaf, victim_name,
887 (unsigned long)(victim_ref + 1),
888 victim_name_len);
889
890 if (!backref_in_log(log, key, victim_name,
891 victim_name_len)) {
892 btrfs_inc_nlink(inode);
893 btrfs_release_path(path);
894
895 ret = btrfs_unlink_inode(trans, root, dir,
896 inode, victim_name,
897 victim_name_len);
898 }
899 kfree(victim_name);
900 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
901 }
902 BUG_ON(ret);
903
904 /*
905 * NOTE: we have searched root tree and checked the
906 * coresponding ref, it does not need to check again.
907 */
908 search_done = 1;
909 }
910 btrfs_release_path(path);
911
912 insert:
913 /* insert our name */
914 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
915 btrfs_inode_ref_index(eb, ref));
916 BUG_ON(ret);
917
918 btrfs_update_inode(trans, root, inode);
919
920 out:
921 ref_ptr = (unsigned long)(ref + 1) + namelen;
922 kfree(name);
923 if (ref_ptr < ref_end)
924 goto again;
925
926 /* finally write the back reference in the inode */
927 ret = overwrite_item(trans, root, path, eb, slot, key);
928 BUG_ON(ret);
929
930 out_nowrite:
931 btrfs_release_path(path);
932 iput(dir);
933 iput(inode);
934 return 0;
935 }
936
937 static int insert_orphan_item(struct btrfs_trans_handle *trans,
938 struct btrfs_root *root, u64 offset)
939 {
940 int ret;
941 ret = btrfs_find_orphan_item(root, offset);
942 if (ret > 0)
943 ret = btrfs_insert_orphan_item(trans, root, offset);
944 return ret;
945 }
946
947
948 /*
949 * There are a few corners where the link count of the file can't
950 * be properly maintained during replay. So, instead of adding
951 * lots of complexity to the log code, we just scan the backrefs
952 * for any file that has been through replay.
953 *
954 * The scan will update the link count on the inode to reflect the
955 * number of back refs found. If it goes down to zero, the iput
956 * will free the inode.
957 */
958 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
959 struct btrfs_root *root,
960 struct inode *inode)
961 {
962 struct btrfs_path *path;
963 int ret;
964 struct btrfs_key key;
965 u64 nlink = 0;
966 unsigned long ptr;
967 unsigned long ptr_end;
968 int name_len;
969 u64 ino = btrfs_ino(inode);
970
971 key.objectid = ino;
972 key.type = BTRFS_INODE_REF_KEY;
973 key.offset = (u64)-1;
974
975 path = btrfs_alloc_path();
976 if (!path)
977 return -ENOMEM;
978
979 while (1) {
980 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
981 if (ret < 0)
982 break;
983 if (ret > 0) {
984 if (path->slots[0] == 0)
985 break;
986 path->slots[0]--;
987 }
988 btrfs_item_key_to_cpu(path->nodes[0], &key,
989 path->slots[0]);
990 if (key.objectid != ino ||
991 key.type != BTRFS_INODE_REF_KEY)
992 break;
993 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
994 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
995 path->slots[0]);
996 while (ptr < ptr_end) {
997 struct btrfs_inode_ref *ref;
998
999 ref = (struct btrfs_inode_ref *)ptr;
1000 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1001 ref);
1002 ptr = (unsigned long)(ref + 1) + name_len;
1003 nlink++;
1004 }
1005
1006 if (key.offset == 0)
1007 break;
1008 key.offset--;
1009 btrfs_release_path(path);
1010 }
1011 btrfs_release_path(path);
1012 if (nlink != inode->i_nlink) {
1013 inode->i_nlink = nlink;
1014 btrfs_update_inode(trans, root, inode);
1015 }
1016 BTRFS_I(inode)->index_cnt = (u64)-1;
1017
1018 if (inode->i_nlink == 0) {
1019 if (S_ISDIR(inode->i_mode)) {
1020 ret = replay_dir_deletes(trans, root, NULL, path,
1021 ino, 1);
1022 BUG_ON(ret);
1023 }
1024 ret = insert_orphan_item(trans, root, ino);
1025 BUG_ON(ret);
1026 }
1027 btrfs_free_path(path);
1028
1029 return 0;
1030 }
1031
1032 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1033 struct btrfs_root *root,
1034 struct btrfs_path *path)
1035 {
1036 int ret;
1037 struct btrfs_key key;
1038 struct inode *inode;
1039
1040 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1041 key.type = BTRFS_ORPHAN_ITEM_KEY;
1042 key.offset = (u64)-1;
1043 while (1) {
1044 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1045 if (ret < 0)
1046 break;
1047
1048 if (ret == 1) {
1049 if (path->slots[0] == 0)
1050 break;
1051 path->slots[0]--;
1052 }
1053
1054 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1055 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1056 key.type != BTRFS_ORPHAN_ITEM_KEY)
1057 break;
1058
1059 ret = btrfs_del_item(trans, root, path);
1060 if (ret)
1061 goto out;
1062
1063 btrfs_release_path(path);
1064 inode = read_one_inode(root, key.offset);
1065 if (!inode)
1066 return -EIO;
1067
1068 ret = fixup_inode_link_count(trans, root, inode);
1069 BUG_ON(ret);
1070
1071 iput(inode);
1072
1073 /*
1074 * fixup on a directory may create new entries,
1075 * make sure we always look for the highset possible
1076 * offset
1077 */
1078 key.offset = (u64)-1;
1079 }
1080 ret = 0;
1081 out:
1082 btrfs_release_path(path);
1083 return ret;
1084 }
1085
1086
1087 /*
1088 * record a given inode in the fixup dir so we can check its link
1089 * count when replay is done. The link count is incremented here
1090 * so the inode won't go away until we check it
1091 */
1092 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1093 struct btrfs_root *root,
1094 struct btrfs_path *path,
1095 u64 objectid)
1096 {
1097 struct btrfs_key key;
1098 int ret = 0;
1099 struct inode *inode;
1100
1101 inode = read_one_inode(root, objectid);
1102 if (!inode)
1103 return -EIO;
1104
1105 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1106 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1107 key.offset = objectid;
1108
1109 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1110
1111 btrfs_release_path(path);
1112 if (ret == 0) {
1113 btrfs_inc_nlink(inode);
1114 btrfs_update_inode(trans, root, inode);
1115 } else if (ret == -EEXIST) {
1116 ret = 0;
1117 } else {
1118 BUG();
1119 }
1120 iput(inode);
1121
1122 return ret;
1123 }
1124
1125 /*
1126 * when replaying the log for a directory, we only insert names
1127 * for inodes that actually exist. This means an fsync on a directory
1128 * does not implicitly fsync all the new files in it
1129 */
1130 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1131 struct btrfs_root *root,
1132 struct btrfs_path *path,
1133 u64 dirid, u64 index,
1134 char *name, int name_len, u8 type,
1135 struct btrfs_key *location)
1136 {
1137 struct inode *inode;
1138 struct inode *dir;
1139 int ret;
1140
1141 inode = read_one_inode(root, location->objectid);
1142 if (!inode)
1143 return -ENOENT;
1144
1145 dir = read_one_inode(root, dirid);
1146 if (!dir) {
1147 iput(inode);
1148 return -EIO;
1149 }
1150 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1151
1152 /* FIXME, put inode into FIXUP list */
1153
1154 iput(inode);
1155 iput(dir);
1156 return ret;
1157 }
1158
1159 /*
1160 * take a single entry in a log directory item and replay it into
1161 * the subvolume.
1162 *
1163 * if a conflicting item exists in the subdirectory already,
1164 * the inode it points to is unlinked and put into the link count
1165 * fix up tree.
1166 *
1167 * If a name from the log points to a file or directory that does
1168 * not exist in the FS, it is skipped. fsyncs on directories
1169 * do not force down inodes inside that directory, just changes to the
1170 * names or unlinks in a directory.
1171 */
1172 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1173 struct btrfs_root *root,
1174 struct btrfs_path *path,
1175 struct extent_buffer *eb,
1176 struct btrfs_dir_item *di,
1177 struct btrfs_key *key)
1178 {
1179 char *name;
1180 int name_len;
1181 struct btrfs_dir_item *dst_di;
1182 struct btrfs_key found_key;
1183 struct btrfs_key log_key;
1184 struct inode *dir;
1185 u8 log_type;
1186 int exists;
1187 int ret;
1188
1189 dir = read_one_inode(root, key->objectid);
1190 if (!dir)
1191 return -EIO;
1192
1193 name_len = btrfs_dir_name_len(eb, di);
1194 name = kmalloc(name_len, GFP_NOFS);
1195 if (!name)
1196 return -ENOMEM;
1197
1198 log_type = btrfs_dir_type(eb, di);
1199 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1200 name_len);
1201
1202 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1203 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1204 if (exists == 0)
1205 exists = 1;
1206 else
1207 exists = 0;
1208 btrfs_release_path(path);
1209
1210 if (key->type == BTRFS_DIR_ITEM_KEY) {
1211 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1212 name, name_len, 1);
1213 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1214 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1215 key->objectid,
1216 key->offset, name,
1217 name_len, 1);
1218 } else {
1219 BUG();
1220 }
1221 if (IS_ERR_OR_NULL(dst_di)) {
1222 /* we need a sequence number to insert, so we only
1223 * do inserts for the BTRFS_DIR_INDEX_KEY types
1224 */
1225 if (key->type != BTRFS_DIR_INDEX_KEY)
1226 goto out;
1227 goto insert;
1228 }
1229
1230 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1231 /* the existing item matches the logged item */
1232 if (found_key.objectid == log_key.objectid &&
1233 found_key.type == log_key.type &&
1234 found_key.offset == log_key.offset &&
1235 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1236 goto out;
1237 }
1238
1239 /*
1240 * don't drop the conflicting directory entry if the inode
1241 * for the new entry doesn't exist
1242 */
1243 if (!exists)
1244 goto out;
1245
1246 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1247 BUG_ON(ret);
1248
1249 if (key->type == BTRFS_DIR_INDEX_KEY)
1250 goto insert;
1251 out:
1252 btrfs_release_path(path);
1253 kfree(name);
1254 iput(dir);
1255 return 0;
1256
1257 insert:
1258 btrfs_release_path(path);
1259 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1260 name, name_len, log_type, &log_key);
1261
1262 BUG_ON(ret && ret != -ENOENT);
1263 goto out;
1264 }
1265
1266 /*
1267 * find all the names in a directory item and reconcile them into
1268 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1269 * one name in a directory item, but the same code gets used for
1270 * both directory index types
1271 */
1272 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1273 struct btrfs_root *root,
1274 struct btrfs_path *path,
1275 struct extent_buffer *eb, int slot,
1276 struct btrfs_key *key)
1277 {
1278 int ret;
1279 u32 item_size = btrfs_item_size_nr(eb, slot);
1280 struct btrfs_dir_item *di;
1281 int name_len;
1282 unsigned long ptr;
1283 unsigned long ptr_end;
1284
1285 ptr = btrfs_item_ptr_offset(eb, slot);
1286 ptr_end = ptr + item_size;
1287 while (ptr < ptr_end) {
1288 di = (struct btrfs_dir_item *)ptr;
1289 if (verify_dir_item(root, eb, di))
1290 return -EIO;
1291 name_len = btrfs_dir_name_len(eb, di);
1292 ret = replay_one_name(trans, root, path, eb, di, key);
1293 BUG_ON(ret);
1294 ptr = (unsigned long)(di + 1);
1295 ptr += name_len;
1296 }
1297 return 0;
1298 }
1299
1300 /*
1301 * directory replay has two parts. There are the standard directory
1302 * items in the log copied from the subvolume, and range items
1303 * created in the log while the subvolume was logged.
1304 *
1305 * The range items tell us which parts of the key space the log
1306 * is authoritative for. During replay, if a key in the subvolume
1307 * directory is in a logged range item, but not actually in the log
1308 * that means it was deleted from the directory before the fsync
1309 * and should be removed.
1310 */
1311 static noinline int find_dir_range(struct btrfs_root *root,
1312 struct btrfs_path *path,
1313 u64 dirid, int key_type,
1314 u64 *start_ret, u64 *end_ret)
1315 {
1316 struct btrfs_key key;
1317 u64 found_end;
1318 struct btrfs_dir_log_item *item;
1319 int ret;
1320 int nritems;
1321
1322 if (*start_ret == (u64)-1)
1323 return 1;
1324
1325 key.objectid = dirid;
1326 key.type = key_type;
1327 key.offset = *start_ret;
1328
1329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1330 if (ret < 0)
1331 goto out;
1332 if (ret > 0) {
1333 if (path->slots[0] == 0)
1334 goto out;
1335 path->slots[0]--;
1336 }
1337 if (ret != 0)
1338 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1339
1340 if (key.type != key_type || key.objectid != dirid) {
1341 ret = 1;
1342 goto next;
1343 }
1344 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1345 struct btrfs_dir_log_item);
1346 found_end = btrfs_dir_log_end(path->nodes[0], item);
1347
1348 if (*start_ret >= key.offset && *start_ret <= found_end) {
1349 ret = 0;
1350 *start_ret = key.offset;
1351 *end_ret = found_end;
1352 goto out;
1353 }
1354 ret = 1;
1355 next:
1356 /* check the next slot in the tree to see if it is a valid item */
1357 nritems = btrfs_header_nritems(path->nodes[0]);
1358 if (path->slots[0] >= nritems) {
1359 ret = btrfs_next_leaf(root, path);
1360 if (ret)
1361 goto out;
1362 } else {
1363 path->slots[0]++;
1364 }
1365
1366 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1367
1368 if (key.type != key_type || key.objectid != dirid) {
1369 ret = 1;
1370 goto out;
1371 }
1372 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1373 struct btrfs_dir_log_item);
1374 found_end = btrfs_dir_log_end(path->nodes[0], item);
1375 *start_ret = key.offset;
1376 *end_ret = found_end;
1377 ret = 0;
1378 out:
1379 btrfs_release_path(path);
1380 return ret;
1381 }
1382
1383 /*
1384 * this looks for a given directory item in the log. If the directory
1385 * item is not in the log, the item is removed and the inode it points
1386 * to is unlinked
1387 */
1388 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1389 struct btrfs_root *root,
1390 struct btrfs_root *log,
1391 struct btrfs_path *path,
1392 struct btrfs_path *log_path,
1393 struct inode *dir,
1394 struct btrfs_key *dir_key)
1395 {
1396 int ret;
1397 struct extent_buffer *eb;
1398 int slot;
1399 u32 item_size;
1400 struct btrfs_dir_item *di;
1401 struct btrfs_dir_item *log_di;
1402 int name_len;
1403 unsigned long ptr;
1404 unsigned long ptr_end;
1405 char *name;
1406 struct inode *inode;
1407 struct btrfs_key location;
1408
1409 again:
1410 eb = path->nodes[0];
1411 slot = path->slots[0];
1412 item_size = btrfs_item_size_nr(eb, slot);
1413 ptr = btrfs_item_ptr_offset(eb, slot);
1414 ptr_end = ptr + item_size;
1415 while (ptr < ptr_end) {
1416 di = (struct btrfs_dir_item *)ptr;
1417 if (verify_dir_item(root, eb, di)) {
1418 ret = -EIO;
1419 goto out;
1420 }
1421
1422 name_len = btrfs_dir_name_len(eb, di);
1423 name = kmalloc(name_len, GFP_NOFS);
1424 if (!name) {
1425 ret = -ENOMEM;
1426 goto out;
1427 }
1428 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1429 name_len);
1430 log_di = NULL;
1431 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1432 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1433 dir_key->objectid,
1434 name, name_len, 0);
1435 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1436 log_di = btrfs_lookup_dir_index_item(trans, log,
1437 log_path,
1438 dir_key->objectid,
1439 dir_key->offset,
1440 name, name_len, 0);
1441 }
1442 if (IS_ERR_OR_NULL(log_di)) {
1443 btrfs_dir_item_key_to_cpu(eb, di, &location);
1444 btrfs_release_path(path);
1445 btrfs_release_path(log_path);
1446 inode = read_one_inode(root, location.objectid);
1447 if (!inode) {
1448 kfree(name);
1449 return -EIO;
1450 }
1451
1452 ret = link_to_fixup_dir(trans, root,
1453 path, location.objectid);
1454 BUG_ON(ret);
1455 btrfs_inc_nlink(inode);
1456 ret = btrfs_unlink_inode(trans, root, dir, inode,
1457 name, name_len);
1458 BUG_ON(ret);
1459 kfree(name);
1460 iput(inode);
1461
1462 /* there might still be more names under this key
1463 * check and repeat if required
1464 */
1465 ret = btrfs_search_slot(NULL, root, dir_key, path,
1466 0, 0);
1467 if (ret == 0)
1468 goto again;
1469 ret = 0;
1470 goto out;
1471 }
1472 btrfs_release_path(log_path);
1473 kfree(name);
1474
1475 ptr = (unsigned long)(di + 1);
1476 ptr += name_len;
1477 }
1478 ret = 0;
1479 out:
1480 btrfs_release_path(path);
1481 btrfs_release_path(log_path);
1482 return ret;
1483 }
1484
1485 /*
1486 * deletion replay happens before we copy any new directory items
1487 * out of the log or out of backreferences from inodes. It
1488 * scans the log to find ranges of keys that log is authoritative for,
1489 * and then scans the directory to find items in those ranges that are
1490 * not present in the log.
1491 *
1492 * Anything we don't find in the log is unlinked and removed from the
1493 * directory.
1494 */
1495 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1496 struct btrfs_root *root,
1497 struct btrfs_root *log,
1498 struct btrfs_path *path,
1499 u64 dirid, int del_all)
1500 {
1501 u64 range_start;
1502 u64 range_end;
1503 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1504 int ret = 0;
1505 struct btrfs_key dir_key;
1506 struct btrfs_key found_key;
1507 struct btrfs_path *log_path;
1508 struct inode *dir;
1509
1510 dir_key.objectid = dirid;
1511 dir_key.type = BTRFS_DIR_ITEM_KEY;
1512 log_path = btrfs_alloc_path();
1513 if (!log_path)
1514 return -ENOMEM;
1515
1516 dir = read_one_inode(root, dirid);
1517 /* it isn't an error if the inode isn't there, that can happen
1518 * because we replay the deletes before we copy in the inode item
1519 * from the log
1520 */
1521 if (!dir) {
1522 btrfs_free_path(log_path);
1523 return 0;
1524 }
1525 again:
1526 range_start = 0;
1527 range_end = 0;
1528 while (1) {
1529 if (del_all)
1530 range_end = (u64)-1;
1531 else {
1532 ret = find_dir_range(log, path, dirid, key_type,
1533 &range_start, &range_end);
1534 if (ret != 0)
1535 break;
1536 }
1537
1538 dir_key.offset = range_start;
1539 while (1) {
1540 int nritems;
1541 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1542 0, 0);
1543 if (ret < 0)
1544 goto out;
1545
1546 nritems = btrfs_header_nritems(path->nodes[0]);
1547 if (path->slots[0] >= nritems) {
1548 ret = btrfs_next_leaf(root, path);
1549 if (ret)
1550 break;
1551 }
1552 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1553 path->slots[0]);
1554 if (found_key.objectid != dirid ||
1555 found_key.type != dir_key.type)
1556 goto next_type;
1557
1558 if (found_key.offset > range_end)
1559 break;
1560
1561 ret = check_item_in_log(trans, root, log, path,
1562 log_path, dir,
1563 &found_key);
1564 BUG_ON(ret);
1565 if (found_key.offset == (u64)-1)
1566 break;
1567 dir_key.offset = found_key.offset + 1;
1568 }
1569 btrfs_release_path(path);
1570 if (range_end == (u64)-1)
1571 break;
1572 range_start = range_end + 1;
1573 }
1574
1575 next_type:
1576 ret = 0;
1577 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1578 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1579 dir_key.type = BTRFS_DIR_INDEX_KEY;
1580 btrfs_release_path(path);
1581 goto again;
1582 }
1583 out:
1584 btrfs_release_path(path);
1585 btrfs_free_path(log_path);
1586 iput(dir);
1587 return ret;
1588 }
1589
1590 /*
1591 * the process_func used to replay items from the log tree. This
1592 * gets called in two different stages. The first stage just looks
1593 * for inodes and makes sure they are all copied into the subvolume.
1594 *
1595 * The second stage copies all the other item types from the log into
1596 * the subvolume. The two stage approach is slower, but gets rid of
1597 * lots of complexity around inodes referencing other inodes that exist
1598 * only in the log (references come from either directory items or inode
1599 * back refs).
1600 */
1601 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1602 struct walk_control *wc, u64 gen)
1603 {
1604 int nritems;
1605 struct btrfs_path *path;
1606 struct btrfs_root *root = wc->replay_dest;
1607 struct btrfs_key key;
1608 int level;
1609 int i;
1610 int ret;
1611
1612 btrfs_read_buffer(eb, gen);
1613
1614 level = btrfs_header_level(eb);
1615
1616 if (level != 0)
1617 return 0;
1618
1619 path = btrfs_alloc_path();
1620 if (!path)
1621 return -ENOMEM;
1622
1623 nritems = btrfs_header_nritems(eb);
1624 for (i = 0; i < nritems; i++) {
1625 btrfs_item_key_to_cpu(eb, &key, i);
1626
1627 /* inode keys are done during the first stage */
1628 if (key.type == BTRFS_INODE_ITEM_KEY &&
1629 wc->stage == LOG_WALK_REPLAY_INODES) {
1630 struct btrfs_inode_item *inode_item;
1631 u32 mode;
1632
1633 inode_item = btrfs_item_ptr(eb, i,
1634 struct btrfs_inode_item);
1635 mode = btrfs_inode_mode(eb, inode_item);
1636 if (S_ISDIR(mode)) {
1637 ret = replay_dir_deletes(wc->trans,
1638 root, log, path, key.objectid, 0);
1639 BUG_ON(ret);
1640 }
1641 ret = overwrite_item(wc->trans, root, path,
1642 eb, i, &key);
1643 BUG_ON(ret);
1644
1645 /* for regular files, make sure corresponding
1646 * orhpan item exist. extents past the new EOF
1647 * will be truncated later by orphan cleanup.
1648 */
1649 if (S_ISREG(mode)) {
1650 ret = insert_orphan_item(wc->trans, root,
1651 key.objectid);
1652 BUG_ON(ret);
1653 }
1654
1655 ret = link_to_fixup_dir(wc->trans, root,
1656 path, key.objectid);
1657 BUG_ON(ret);
1658 }
1659 if (wc->stage < LOG_WALK_REPLAY_ALL)
1660 continue;
1661
1662 /* these keys are simply copied */
1663 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1664 ret = overwrite_item(wc->trans, root, path,
1665 eb, i, &key);
1666 BUG_ON(ret);
1667 } else if (key.type == BTRFS_INODE_REF_KEY) {
1668 ret = add_inode_ref(wc->trans, root, log, path,
1669 eb, i, &key);
1670 BUG_ON(ret && ret != -ENOENT);
1671 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1672 ret = replay_one_extent(wc->trans, root, path,
1673 eb, i, &key);
1674 BUG_ON(ret);
1675 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1676 key.type == BTRFS_DIR_INDEX_KEY) {
1677 ret = replay_one_dir_item(wc->trans, root, path,
1678 eb, i, &key);
1679 BUG_ON(ret);
1680 }
1681 }
1682 btrfs_free_path(path);
1683 return 0;
1684 }
1685
1686 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1687 struct btrfs_root *root,
1688 struct btrfs_path *path, int *level,
1689 struct walk_control *wc)
1690 {
1691 u64 root_owner;
1692 u64 bytenr;
1693 u64 ptr_gen;
1694 struct extent_buffer *next;
1695 struct extent_buffer *cur;
1696 struct extent_buffer *parent;
1697 u32 blocksize;
1698 int ret = 0;
1699
1700 WARN_ON(*level < 0);
1701 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1702
1703 while (*level > 0) {
1704 WARN_ON(*level < 0);
1705 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1706 cur = path->nodes[*level];
1707
1708 if (btrfs_header_level(cur) != *level)
1709 WARN_ON(1);
1710
1711 if (path->slots[*level] >=
1712 btrfs_header_nritems(cur))
1713 break;
1714
1715 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1716 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1717 blocksize = btrfs_level_size(root, *level - 1);
1718
1719 parent = path->nodes[*level];
1720 root_owner = btrfs_header_owner(parent);
1721
1722 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1723 if (!next)
1724 return -ENOMEM;
1725
1726 if (*level == 1) {
1727 ret = wc->process_func(root, next, wc, ptr_gen);
1728 if (ret)
1729 return ret;
1730
1731 path->slots[*level]++;
1732 if (wc->free) {
1733 btrfs_read_buffer(next, ptr_gen);
1734
1735 btrfs_tree_lock(next);
1736 clean_tree_block(trans, root, next);
1737 btrfs_set_lock_blocking(next);
1738 btrfs_wait_tree_block_writeback(next);
1739 btrfs_tree_unlock(next);
1740
1741 WARN_ON(root_owner !=
1742 BTRFS_TREE_LOG_OBJECTID);
1743 ret = btrfs_free_reserved_extent(root,
1744 bytenr, blocksize);
1745 BUG_ON(ret);
1746 }
1747 free_extent_buffer(next);
1748 continue;
1749 }
1750 btrfs_read_buffer(next, ptr_gen);
1751
1752 WARN_ON(*level <= 0);
1753 if (path->nodes[*level-1])
1754 free_extent_buffer(path->nodes[*level-1]);
1755 path->nodes[*level-1] = next;
1756 *level = btrfs_header_level(next);
1757 path->slots[*level] = 0;
1758 cond_resched();
1759 }
1760 WARN_ON(*level < 0);
1761 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1762
1763 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1764
1765 cond_resched();
1766 return 0;
1767 }
1768
1769 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1770 struct btrfs_root *root,
1771 struct btrfs_path *path, int *level,
1772 struct walk_control *wc)
1773 {
1774 u64 root_owner;
1775 int i;
1776 int slot;
1777 int ret;
1778
1779 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1780 slot = path->slots[i];
1781 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1782 path->slots[i]++;
1783 *level = i;
1784 WARN_ON(*level == 0);
1785 return 0;
1786 } else {
1787 struct extent_buffer *parent;
1788 if (path->nodes[*level] == root->node)
1789 parent = path->nodes[*level];
1790 else
1791 parent = path->nodes[*level + 1];
1792
1793 root_owner = btrfs_header_owner(parent);
1794 ret = wc->process_func(root, path->nodes[*level], wc,
1795 btrfs_header_generation(path->nodes[*level]));
1796 if (ret)
1797 return ret;
1798
1799 if (wc->free) {
1800 struct extent_buffer *next;
1801
1802 next = path->nodes[*level];
1803
1804 btrfs_tree_lock(next);
1805 clean_tree_block(trans, root, next);
1806 btrfs_set_lock_blocking(next);
1807 btrfs_wait_tree_block_writeback(next);
1808 btrfs_tree_unlock(next);
1809
1810 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1811 ret = btrfs_free_reserved_extent(root,
1812 path->nodes[*level]->start,
1813 path->nodes[*level]->len);
1814 BUG_ON(ret);
1815 }
1816 free_extent_buffer(path->nodes[*level]);
1817 path->nodes[*level] = NULL;
1818 *level = i + 1;
1819 }
1820 }
1821 return 1;
1822 }
1823
1824 /*
1825 * drop the reference count on the tree rooted at 'snap'. This traverses
1826 * the tree freeing any blocks that have a ref count of zero after being
1827 * decremented.
1828 */
1829 static int walk_log_tree(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *log, struct walk_control *wc)
1831 {
1832 int ret = 0;
1833 int wret;
1834 int level;
1835 struct btrfs_path *path;
1836 int i;
1837 int orig_level;
1838
1839 path = btrfs_alloc_path();
1840 if (!path)
1841 return -ENOMEM;
1842
1843 level = btrfs_header_level(log->node);
1844 orig_level = level;
1845 path->nodes[level] = log->node;
1846 extent_buffer_get(log->node);
1847 path->slots[level] = 0;
1848
1849 while (1) {
1850 wret = walk_down_log_tree(trans, log, path, &level, wc);
1851 if (wret > 0)
1852 break;
1853 if (wret < 0)
1854 ret = wret;
1855
1856 wret = walk_up_log_tree(trans, log, path, &level, wc);
1857 if (wret > 0)
1858 break;
1859 if (wret < 0)
1860 ret = wret;
1861 }
1862
1863 /* was the root node processed? if not, catch it here */
1864 if (path->nodes[orig_level]) {
1865 wc->process_func(log, path->nodes[orig_level], wc,
1866 btrfs_header_generation(path->nodes[orig_level]));
1867 if (wc->free) {
1868 struct extent_buffer *next;
1869
1870 next = path->nodes[orig_level];
1871
1872 btrfs_tree_lock(next);
1873 clean_tree_block(trans, log, next);
1874 btrfs_set_lock_blocking(next);
1875 btrfs_wait_tree_block_writeback(next);
1876 btrfs_tree_unlock(next);
1877
1878 WARN_ON(log->root_key.objectid !=
1879 BTRFS_TREE_LOG_OBJECTID);
1880 ret = btrfs_free_reserved_extent(log, next->start,
1881 next->len);
1882 BUG_ON(ret);
1883 }
1884 }
1885
1886 for (i = 0; i <= orig_level; i++) {
1887 if (path->nodes[i]) {
1888 free_extent_buffer(path->nodes[i]);
1889 path->nodes[i] = NULL;
1890 }
1891 }
1892 btrfs_free_path(path);
1893 return ret;
1894 }
1895
1896 /*
1897 * helper function to update the item for a given subvolumes log root
1898 * in the tree of log roots
1899 */
1900 static int update_log_root(struct btrfs_trans_handle *trans,
1901 struct btrfs_root *log)
1902 {
1903 int ret;
1904
1905 if (log->log_transid == 1) {
1906 /* insert root item on the first sync */
1907 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1908 &log->root_key, &log->root_item);
1909 } else {
1910 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1911 &log->root_key, &log->root_item);
1912 }
1913 return ret;
1914 }
1915
1916 static int wait_log_commit(struct btrfs_trans_handle *trans,
1917 struct btrfs_root *root, unsigned long transid)
1918 {
1919 DEFINE_WAIT(wait);
1920 int index = transid % 2;
1921
1922 /*
1923 * we only allow two pending log transactions at a time,
1924 * so we know that if ours is more than 2 older than the
1925 * current transaction, we're done
1926 */
1927 do {
1928 prepare_to_wait(&root->log_commit_wait[index],
1929 &wait, TASK_UNINTERRUPTIBLE);
1930 mutex_unlock(&root->log_mutex);
1931
1932 if (root->fs_info->last_trans_log_full_commit !=
1933 trans->transid && root->log_transid < transid + 2 &&
1934 atomic_read(&root->log_commit[index]))
1935 schedule();
1936
1937 finish_wait(&root->log_commit_wait[index], &wait);
1938 mutex_lock(&root->log_mutex);
1939 } while (root->log_transid < transid + 2 &&
1940 atomic_read(&root->log_commit[index]));
1941 return 0;
1942 }
1943
1944 static int wait_for_writer(struct btrfs_trans_handle *trans,
1945 struct btrfs_root *root)
1946 {
1947 DEFINE_WAIT(wait);
1948 while (atomic_read(&root->log_writers)) {
1949 prepare_to_wait(&root->log_writer_wait,
1950 &wait, TASK_UNINTERRUPTIBLE);
1951 mutex_unlock(&root->log_mutex);
1952 if (root->fs_info->last_trans_log_full_commit !=
1953 trans->transid && atomic_read(&root->log_writers))
1954 schedule();
1955 mutex_lock(&root->log_mutex);
1956 finish_wait(&root->log_writer_wait, &wait);
1957 }
1958 return 0;
1959 }
1960
1961 /*
1962 * btrfs_sync_log does sends a given tree log down to the disk and
1963 * updates the super blocks to record it. When this call is done,
1964 * you know that any inodes previously logged are safely on disk only
1965 * if it returns 0.
1966 *
1967 * Any other return value means you need to call btrfs_commit_transaction.
1968 * Some of the edge cases for fsyncing directories that have had unlinks
1969 * or renames done in the past mean that sometimes the only safe
1970 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1971 * that has happened.
1972 */
1973 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1974 struct btrfs_root *root)
1975 {
1976 int index1;
1977 int index2;
1978 int mark;
1979 int ret;
1980 struct btrfs_root *log = root->log_root;
1981 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1982 unsigned long log_transid = 0;
1983
1984 mutex_lock(&root->log_mutex);
1985 index1 = root->log_transid % 2;
1986 if (atomic_read(&root->log_commit[index1])) {
1987 wait_log_commit(trans, root, root->log_transid);
1988 mutex_unlock(&root->log_mutex);
1989 return 0;
1990 }
1991 atomic_set(&root->log_commit[index1], 1);
1992
1993 /* wait for previous tree log sync to complete */
1994 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1995 wait_log_commit(trans, root, root->log_transid - 1);
1996
1997 while (1) {
1998 unsigned long batch = root->log_batch;
1999 if (root->log_multiple_pids) {
2000 mutex_unlock(&root->log_mutex);
2001 schedule_timeout_uninterruptible(1);
2002 mutex_lock(&root->log_mutex);
2003 }
2004 wait_for_writer(trans, root);
2005 if (batch == root->log_batch)
2006 break;
2007 }
2008
2009 /* bail out if we need to do a full commit */
2010 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2011 ret = -EAGAIN;
2012 mutex_unlock(&root->log_mutex);
2013 goto out;
2014 }
2015
2016 log_transid = root->log_transid;
2017 if (log_transid % 2 == 0)
2018 mark = EXTENT_DIRTY;
2019 else
2020 mark = EXTENT_NEW;
2021
2022 /* we start IO on all the marked extents here, but we don't actually
2023 * wait for them until later.
2024 */
2025 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2026 BUG_ON(ret);
2027
2028 btrfs_set_root_node(&log->root_item, log->node);
2029
2030 root->log_batch = 0;
2031 root->log_transid++;
2032 log->log_transid = root->log_transid;
2033 root->log_start_pid = 0;
2034 smp_mb();
2035 /*
2036 * IO has been started, blocks of the log tree have WRITTEN flag set
2037 * in their headers. new modifications of the log will be written to
2038 * new positions. so it's safe to allow log writers to go in.
2039 */
2040 mutex_unlock(&root->log_mutex);
2041
2042 mutex_lock(&log_root_tree->log_mutex);
2043 log_root_tree->log_batch++;
2044 atomic_inc(&log_root_tree->log_writers);
2045 mutex_unlock(&log_root_tree->log_mutex);
2046
2047 ret = update_log_root(trans, log);
2048
2049 mutex_lock(&log_root_tree->log_mutex);
2050 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2051 smp_mb();
2052 if (waitqueue_active(&log_root_tree->log_writer_wait))
2053 wake_up(&log_root_tree->log_writer_wait);
2054 }
2055
2056 if (ret) {
2057 BUG_ON(ret != -ENOSPC);
2058 root->fs_info->last_trans_log_full_commit = trans->transid;
2059 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2060 mutex_unlock(&log_root_tree->log_mutex);
2061 ret = -EAGAIN;
2062 goto out;
2063 }
2064
2065 index2 = log_root_tree->log_transid % 2;
2066 if (atomic_read(&log_root_tree->log_commit[index2])) {
2067 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2068 wait_log_commit(trans, log_root_tree,
2069 log_root_tree->log_transid);
2070 mutex_unlock(&log_root_tree->log_mutex);
2071 ret = 0;
2072 goto out;
2073 }
2074 atomic_set(&log_root_tree->log_commit[index2], 1);
2075
2076 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2077 wait_log_commit(trans, log_root_tree,
2078 log_root_tree->log_transid - 1);
2079 }
2080
2081 wait_for_writer(trans, log_root_tree);
2082
2083 /*
2084 * now that we've moved on to the tree of log tree roots,
2085 * check the full commit flag again
2086 */
2087 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2088 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2089 mutex_unlock(&log_root_tree->log_mutex);
2090 ret = -EAGAIN;
2091 goto out_wake_log_root;
2092 }
2093
2094 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2095 &log_root_tree->dirty_log_pages,
2096 EXTENT_DIRTY | EXTENT_NEW);
2097 BUG_ON(ret);
2098 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2099
2100 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2101 log_root_tree->node->start);
2102 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2103 btrfs_header_level(log_root_tree->node));
2104
2105 log_root_tree->log_batch = 0;
2106 log_root_tree->log_transid++;
2107 smp_mb();
2108
2109 mutex_unlock(&log_root_tree->log_mutex);
2110
2111 /*
2112 * nobody else is going to jump in and write the the ctree
2113 * super here because the log_commit atomic below is protecting
2114 * us. We must be called with a transaction handle pinning
2115 * the running transaction open, so a full commit can't hop
2116 * in and cause problems either.
2117 */
2118 btrfs_scrub_pause_super(root);
2119 write_ctree_super(trans, root->fs_info->tree_root, 1);
2120 btrfs_scrub_continue_super(root);
2121 ret = 0;
2122
2123 mutex_lock(&root->log_mutex);
2124 if (root->last_log_commit < log_transid)
2125 root->last_log_commit = log_transid;
2126 mutex_unlock(&root->log_mutex);
2127
2128 out_wake_log_root:
2129 atomic_set(&log_root_tree->log_commit[index2], 0);
2130 smp_mb();
2131 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2132 wake_up(&log_root_tree->log_commit_wait[index2]);
2133 out:
2134 atomic_set(&root->log_commit[index1], 0);
2135 smp_mb();
2136 if (waitqueue_active(&root->log_commit_wait[index1]))
2137 wake_up(&root->log_commit_wait[index1]);
2138 return ret;
2139 }
2140
2141 static void free_log_tree(struct btrfs_trans_handle *trans,
2142 struct btrfs_root *log)
2143 {
2144 int ret;
2145 u64 start;
2146 u64 end;
2147 struct walk_control wc = {
2148 .free = 1,
2149 .process_func = process_one_buffer
2150 };
2151
2152 ret = walk_log_tree(trans, log, &wc);
2153 BUG_ON(ret);
2154
2155 while (1) {
2156 ret = find_first_extent_bit(&log->dirty_log_pages,
2157 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2158 if (ret)
2159 break;
2160
2161 clear_extent_bits(&log->dirty_log_pages, start, end,
2162 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2163 }
2164
2165 free_extent_buffer(log->node);
2166 kfree(log);
2167 }
2168
2169 /*
2170 * free all the extents used by the tree log. This should be called
2171 * at commit time of the full transaction
2172 */
2173 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2174 {
2175 if (root->log_root) {
2176 free_log_tree(trans, root->log_root);
2177 root->log_root = NULL;
2178 }
2179 return 0;
2180 }
2181
2182 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2183 struct btrfs_fs_info *fs_info)
2184 {
2185 if (fs_info->log_root_tree) {
2186 free_log_tree(trans, fs_info->log_root_tree);
2187 fs_info->log_root_tree = NULL;
2188 }
2189 return 0;
2190 }
2191
2192 /*
2193 * If both a file and directory are logged, and unlinks or renames are
2194 * mixed in, we have a few interesting corners:
2195 *
2196 * create file X in dir Y
2197 * link file X to X.link in dir Y
2198 * fsync file X
2199 * unlink file X but leave X.link
2200 * fsync dir Y
2201 *
2202 * After a crash we would expect only X.link to exist. But file X
2203 * didn't get fsync'd again so the log has back refs for X and X.link.
2204 *
2205 * We solve this by removing directory entries and inode backrefs from the
2206 * log when a file that was logged in the current transaction is
2207 * unlinked. Any later fsync will include the updated log entries, and
2208 * we'll be able to reconstruct the proper directory items from backrefs.
2209 *
2210 * This optimizations allows us to avoid relogging the entire inode
2211 * or the entire directory.
2212 */
2213 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2214 struct btrfs_root *root,
2215 const char *name, int name_len,
2216 struct inode *dir, u64 index)
2217 {
2218 struct btrfs_root *log;
2219 struct btrfs_dir_item *di;
2220 struct btrfs_path *path;
2221 int ret;
2222 int err = 0;
2223 int bytes_del = 0;
2224 u64 dir_ino = btrfs_ino(dir);
2225
2226 if (BTRFS_I(dir)->logged_trans < trans->transid)
2227 return 0;
2228
2229 ret = join_running_log_trans(root);
2230 if (ret)
2231 return 0;
2232
2233 mutex_lock(&BTRFS_I(dir)->log_mutex);
2234
2235 log = root->log_root;
2236 path = btrfs_alloc_path();
2237 if (!path) {
2238 err = -ENOMEM;
2239 goto out_unlock;
2240 }
2241
2242 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2243 name, name_len, -1);
2244 if (IS_ERR(di)) {
2245 err = PTR_ERR(di);
2246 goto fail;
2247 }
2248 if (di) {
2249 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2250 bytes_del += name_len;
2251 BUG_ON(ret);
2252 }
2253 btrfs_release_path(path);
2254 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2255 index, name, name_len, -1);
2256 if (IS_ERR(di)) {
2257 err = PTR_ERR(di);
2258 goto fail;
2259 }
2260 if (di) {
2261 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2262 bytes_del += name_len;
2263 BUG_ON(ret);
2264 }
2265
2266 /* update the directory size in the log to reflect the names
2267 * we have removed
2268 */
2269 if (bytes_del) {
2270 struct btrfs_key key;
2271
2272 key.objectid = dir_ino;
2273 key.offset = 0;
2274 key.type = BTRFS_INODE_ITEM_KEY;
2275 btrfs_release_path(path);
2276
2277 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2278 if (ret < 0) {
2279 err = ret;
2280 goto fail;
2281 }
2282 if (ret == 0) {
2283 struct btrfs_inode_item *item;
2284 u64 i_size;
2285
2286 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2287 struct btrfs_inode_item);
2288 i_size = btrfs_inode_size(path->nodes[0], item);
2289 if (i_size > bytes_del)
2290 i_size -= bytes_del;
2291 else
2292 i_size = 0;
2293 btrfs_set_inode_size(path->nodes[0], item, i_size);
2294 btrfs_mark_buffer_dirty(path->nodes[0]);
2295 } else
2296 ret = 0;
2297 btrfs_release_path(path);
2298 }
2299 fail:
2300 btrfs_free_path(path);
2301 out_unlock:
2302 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2303 if (ret == -ENOSPC) {
2304 root->fs_info->last_trans_log_full_commit = trans->transid;
2305 ret = 0;
2306 }
2307 btrfs_end_log_trans(root);
2308
2309 return err;
2310 }
2311
2312 /* see comments for btrfs_del_dir_entries_in_log */
2313 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2314 struct btrfs_root *root,
2315 const char *name, int name_len,
2316 struct inode *inode, u64 dirid)
2317 {
2318 struct btrfs_root *log;
2319 u64 index;
2320 int ret;
2321
2322 if (BTRFS_I(inode)->logged_trans < trans->transid)
2323 return 0;
2324
2325 ret = join_running_log_trans(root);
2326 if (ret)
2327 return 0;
2328 log = root->log_root;
2329 mutex_lock(&BTRFS_I(inode)->log_mutex);
2330
2331 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2332 dirid, &index);
2333 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2334 if (ret == -ENOSPC) {
2335 root->fs_info->last_trans_log_full_commit = trans->transid;
2336 ret = 0;
2337 }
2338 btrfs_end_log_trans(root);
2339
2340 return ret;
2341 }
2342
2343 /*
2344 * creates a range item in the log for 'dirid'. first_offset and
2345 * last_offset tell us which parts of the key space the log should
2346 * be considered authoritative for.
2347 */
2348 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2349 struct btrfs_root *log,
2350 struct btrfs_path *path,
2351 int key_type, u64 dirid,
2352 u64 first_offset, u64 last_offset)
2353 {
2354 int ret;
2355 struct btrfs_key key;
2356 struct btrfs_dir_log_item *item;
2357
2358 key.objectid = dirid;
2359 key.offset = first_offset;
2360 if (key_type == BTRFS_DIR_ITEM_KEY)
2361 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2362 else
2363 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2364 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2365 if (ret)
2366 return ret;
2367
2368 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2369 struct btrfs_dir_log_item);
2370 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2371 btrfs_mark_buffer_dirty(path->nodes[0]);
2372 btrfs_release_path(path);
2373 return 0;
2374 }
2375
2376 /*
2377 * log all the items included in the current transaction for a given
2378 * directory. This also creates the range items in the log tree required
2379 * to replay anything deleted before the fsync
2380 */
2381 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2382 struct btrfs_root *root, struct inode *inode,
2383 struct btrfs_path *path,
2384 struct btrfs_path *dst_path, int key_type,
2385 u64 min_offset, u64 *last_offset_ret)
2386 {
2387 struct btrfs_key min_key;
2388 struct btrfs_key max_key;
2389 struct btrfs_root *log = root->log_root;
2390 struct extent_buffer *src;
2391 int err = 0;
2392 int ret;
2393 int i;
2394 int nritems;
2395 u64 first_offset = min_offset;
2396 u64 last_offset = (u64)-1;
2397 u64 ino = btrfs_ino(inode);
2398
2399 log = root->log_root;
2400 max_key.objectid = ino;
2401 max_key.offset = (u64)-1;
2402 max_key.type = key_type;
2403
2404 min_key.objectid = ino;
2405 min_key.type = key_type;
2406 min_key.offset = min_offset;
2407
2408 path->keep_locks = 1;
2409
2410 ret = btrfs_search_forward(root, &min_key, &max_key,
2411 path, 0, trans->transid);
2412
2413 /*
2414 * we didn't find anything from this transaction, see if there
2415 * is anything at all
2416 */
2417 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2418 min_key.objectid = ino;
2419 min_key.type = key_type;
2420 min_key.offset = (u64)-1;
2421 btrfs_release_path(path);
2422 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2423 if (ret < 0) {
2424 btrfs_release_path(path);
2425 return ret;
2426 }
2427 ret = btrfs_previous_item(root, path, ino, key_type);
2428
2429 /* if ret == 0 there are items for this type,
2430 * create a range to tell us the last key of this type.
2431 * otherwise, there are no items in this directory after
2432 * *min_offset, and we create a range to indicate that.
2433 */
2434 if (ret == 0) {
2435 struct btrfs_key tmp;
2436 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2437 path->slots[0]);
2438 if (key_type == tmp.type)
2439 first_offset = max(min_offset, tmp.offset) + 1;
2440 }
2441 goto done;
2442 }
2443
2444 /* go backward to find any previous key */
2445 ret = btrfs_previous_item(root, path, ino, key_type);
2446 if (ret == 0) {
2447 struct btrfs_key tmp;
2448 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2449 if (key_type == tmp.type) {
2450 first_offset = tmp.offset;
2451 ret = overwrite_item(trans, log, dst_path,
2452 path->nodes[0], path->slots[0],
2453 &tmp);
2454 if (ret) {
2455 err = ret;
2456 goto done;
2457 }
2458 }
2459 }
2460 btrfs_release_path(path);
2461
2462 /* find the first key from this transaction again */
2463 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2464 if (ret != 0) {
2465 WARN_ON(1);
2466 goto done;
2467 }
2468
2469 /*
2470 * we have a block from this transaction, log every item in it
2471 * from our directory
2472 */
2473 while (1) {
2474 struct btrfs_key tmp;
2475 src = path->nodes[0];
2476 nritems = btrfs_header_nritems(src);
2477 for (i = path->slots[0]; i < nritems; i++) {
2478 btrfs_item_key_to_cpu(src, &min_key, i);
2479
2480 if (min_key.objectid != ino || min_key.type != key_type)
2481 goto done;
2482 ret = overwrite_item(trans, log, dst_path, src, i,
2483 &min_key);
2484 if (ret) {
2485 err = ret;
2486 goto done;
2487 }
2488 }
2489 path->slots[0] = nritems;
2490
2491 /*
2492 * look ahead to the next item and see if it is also
2493 * from this directory and from this transaction
2494 */
2495 ret = btrfs_next_leaf(root, path);
2496 if (ret == 1) {
2497 last_offset = (u64)-1;
2498 goto done;
2499 }
2500 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2501 if (tmp.objectid != ino || tmp.type != key_type) {
2502 last_offset = (u64)-1;
2503 goto done;
2504 }
2505 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2506 ret = overwrite_item(trans, log, dst_path,
2507 path->nodes[0], path->slots[0],
2508 &tmp);
2509 if (ret)
2510 err = ret;
2511 else
2512 last_offset = tmp.offset;
2513 goto done;
2514 }
2515 }
2516 done:
2517 btrfs_release_path(path);
2518 btrfs_release_path(dst_path);
2519
2520 if (err == 0) {
2521 *last_offset_ret = last_offset;
2522 /*
2523 * insert the log range keys to indicate where the log
2524 * is valid
2525 */
2526 ret = insert_dir_log_key(trans, log, path, key_type,
2527 ino, first_offset, last_offset);
2528 if (ret)
2529 err = ret;
2530 }
2531 return err;
2532 }
2533
2534 /*
2535 * logging directories is very similar to logging inodes, We find all the items
2536 * from the current transaction and write them to the log.
2537 *
2538 * The recovery code scans the directory in the subvolume, and if it finds a
2539 * key in the range logged that is not present in the log tree, then it means
2540 * that dir entry was unlinked during the transaction.
2541 *
2542 * In order for that scan to work, we must include one key smaller than
2543 * the smallest logged by this transaction and one key larger than the largest
2544 * key logged by this transaction.
2545 */
2546 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2547 struct btrfs_root *root, struct inode *inode,
2548 struct btrfs_path *path,
2549 struct btrfs_path *dst_path)
2550 {
2551 u64 min_key;
2552 u64 max_key;
2553 int ret;
2554 int key_type = BTRFS_DIR_ITEM_KEY;
2555
2556 again:
2557 min_key = 0;
2558 max_key = 0;
2559 while (1) {
2560 ret = log_dir_items(trans, root, inode, path,
2561 dst_path, key_type, min_key,
2562 &max_key);
2563 if (ret)
2564 return ret;
2565 if (max_key == (u64)-1)
2566 break;
2567 min_key = max_key + 1;
2568 }
2569
2570 if (key_type == BTRFS_DIR_ITEM_KEY) {
2571 key_type = BTRFS_DIR_INDEX_KEY;
2572 goto again;
2573 }
2574 return 0;
2575 }
2576
2577 /*
2578 * a helper function to drop items from the log before we relog an
2579 * inode. max_key_type indicates the highest item type to remove.
2580 * This cannot be run for file data extents because it does not
2581 * free the extents they point to.
2582 */
2583 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2584 struct btrfs_root *log,
2585 struct btrfs_path *path,
2586 u64 objectid, int max_key_type)
2587 {
2588 int ret;
2589 struct btrfs_key key;
2590 struct btrfs_key found_key;
2591
2592 key.objectid = objectid;
2593 key.type = max_key_type;
2594 key.offset = (u64)-1;
2595
2596 while (1) {
2597 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2598 BUG_ON(ret == 0);
2599 if (ret < 0)
2600 break;
2601
2602 if (path->slots[0] == 0)
2603 break;
2604
2605 path->slots[0]--;
2606 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2607 path->slots[0]);
2608
2609 if (found_key.objectid != objectid)
2610 break;
2611
2612 ret = btrfs_del_item(trans, log, path);
2613 if (ret)
2614 break;
2615 btrfs_release_path(path);
2616 }
2617 btrfs_release_path(path);
2618 return ret;
2619 }
2620
2621 static noinline int copy_items(struct btrfs_trans_handle *trans,
2622 struct btrfs_root *log,
2623 struct btrfs_path *dst_path,
2624 struct extent_buffer *src,
2625 int start_slot, int nr, int inode_only)
2626 {
2627 unsigned long src_offset;
2628 unsigned long dst_offset;
2629 struct btrfs_file_extent_item *extent;
2630 struct btrfs_inode_item *inode_item;
2631 int ret;
2632 struct btrfs_key *ins_keys;
2633 u32 *ins_sizes;
2634 char *ins_data;
2635 int i;
2636 struct list_head ordered_sums;
2637
2638 INIT_LIST_HEAD(&ordered_sums);
2639
2640 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2641 nr * sizeof(u32), GFP_NOFS);
2642 if (!ins_data)
2643 return -ENOMEM;
2644
2645 ins_sizes = (u32 *)ins_data;
2646 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2647
2648 for (i = 0; i < nr; i++) {
2649 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2650 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2651 }
2652 ret = btrfs_insert_empty_items(trans, log, dst_path,
2653 ins_keys, ins_sizes, nr);
2654 if (ret) {
2655 kfree(ins_data);
2656 return ret;
2657 }
2658
2659 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2660 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2661 dst_path->slots[0]);
2662
2663 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2664
2665 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2666 src_offset, ins_sizes[i]);
2667
2668 if (inode_only == LOG_INODE_EXISTS &&
2669 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2670 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2671 dst_path->slots[0],
2672 struct btrfs_inode_item);
2673 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2674
2675 /* set the generation to zero so the recover code
2676 * can tell the difference between an logging
2677 * just to say 'this inode exists' and a logging
2678 * to say 'update this inode with these values'
2679 */
2680 btrfs_set_inode_generation(dst_path->nodes[0],
2681 inode_item, 0);
2682 }
2683 /* take a reference on file data extents so that truncates
2684 * or deletes of this inode don't have to relog the inode
2685 * again
2686 */
2687 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2688 int found_type;
2689 extent = btrfs_item_ptr(src, start_slot + i,
2690 struct btrfs_file_extent_item);
2691
2692 if (btrfs_file_extent_generation(src, extent) < trans->transid)
2693 continue;
2694
2695 found_type = btrfs_file_extent_type(src, extent);
2696 if (found_type == BTRFS_FILE_EXTENT_REG ||
2697 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2698 u64 ds, dl, cs, cl;
2699 ds = btrfs_file_extent_disk_bytenr(src,
2700 extent);
2701 /* ds == 0 is a hole */
2702 if (ds == 0)
2703 continue;
2704
2705 dl = btrfs_file_extent_disk_num_bytes(src,
2706 extent);
2707 cs = btrfs_file_extent_offset(src, extent);
2708 cl = btrfs_file_extent_num_bytes(src,
2709 extent);
2710 if (btrfs_file_extent_compression(src,
2711 extent)) {
2712 cs = 0;
2713 cl = dl;
2714 }
2715
2716 ret = btrfs_lookup_csums_range(
2717 log->fs_info->csum_root,
2718 ds + cs, ds + cs + cl - 1,
2719 &ordered_sums, 0);
2720 BUG_ON(ret);
2721 }
2722 }
2723 }
2724
2725 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2726 btrfs_release_path(dst_path);
2727 kfree(ins_data);
2728
2729 /*
2730 * we have to do this after the loop above to avoid changing the
2731 * log tree while trying to change the log tree.
2732 */
2733 ret = 0;
2734 while (!list_empty(&ordered_sums)) {
2735 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2736 struct btrfs_ordered_sum,
2737 list);
2738 if (!ret)
2739 ret = btrfs_csum_file_blocks(trans, log, sums);
2740 list_del(&sums->list);
2741 kfree(sums);
2742 }
2743 return ret;
2744 }
2745
2746 /* log a single inode in the tree log.
2747 * At least one parent directory for this inode must exist in the tree
2748 * or be logged already.
2749 *
2750 * Any items from this inode changed by the current transaction are copied
2751 * to the log tree. An extra reference is taken on any extents in this
2752 * file, allowing us to avoid a whole pile of corner cases around logging
2753 * blocks that have been removed from the tree.
2754 *
2755 * See LOG_INODE_ALL and related defines for a description of what inode_only
2756 * does.
2757 *
2758 * This handles both files and directories.
2759 */
2760 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2761 struct btrfs_root *root, struct inode *inode,
2762 int inode_only)
2763 {
2764 struct btrfs_path *path;
2765 struct btrfs_path *dst_path;
2766 struct btrfs_key min_key;
2767 struct btrfs_key max_key;
2768 struct btrfs_root *log = root->log_root;
2769 struct extent_buffer *src = NULL;
2770 int err = 0;
2771 int ret;
2772 int nritems;
2773 int ins_start_slot = 0;
2774 int ins_nr;
2775 u64 ino = btrfs_ino(inode);
2776
2777 log = root->log_root;
2778
2779 path = btrfs_alloc_path();
2780 if (!path)
2781 return -ENOMEM;
2782 dst_path = btrfs_alloc_path();
2783 if (!dst_path) {
2784 btrfs_free_path(path);
2785 return -ENOMEM;
2786 }
2787
2788 min_key.objectid = ino;
2789 min_key.type = BTRFS_INODE_ITEM_KEY;
2790 min_key.offset = 0;
2791
2792 max_key.objectid = ino;
2793
2794 /* today the code can only do partial logging of directories */
2795 if (!S_ISDIR(inode->i_mode))
2796 inode_only = LOG_INODE_ALL;
2797
2798 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2799 max_key.type = BTRFS_XATTR_ITEM_KEY;
2800 else
2801 max_key.type = (u8)-1;
2802 max_key.offset = (u64)-1;
2803
2804 ret = btrfs_commit_inode_delayed_items(trans, inode);
2805 if (ret) {
2806 btrfs_free_path(path);
2807 btrfs_free_path(dst_path);
2808 return ret;
2809 }
2810
2811 mutex_lock(&BTRFS_I(inode)->log_mutex);
2812
2813 /*
2814 * a brute force approach to making sure we get the most uptodate
2815 * copies of everything.
2816 */
2817 if (S_ISDIR(inode->i_mode)) {
2818 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2819
2820 if (inode_only == LOG_INODE_EXISTS)
2821 max_key_type = BTRFS_XATTR_ITEM_KEY;
2822 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2823 } else {
2824 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2825 }
2826 if (ret) {
2827 err = ret;
2828 goto out_unlock;
2829 }
2830 path->keep_locks = 1;
2831
2832 while (1) {
2833 ins_nr = 0;
2834 ret = btrfs_search_forward(root, &min_key, &max_key,
2835 path, 0, trans->transid);
2836 if (ret != 0)
2837 break;
2838 again:
2839 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2840 if (min_key.objectid != ino)
2841 break;
2842 if (min_key.type > max_key.type)
2843 break;
2844
2845 src = path->nodes[0];
2846 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2847 ins_nr++;
2848 goto next_slot;
2849 } else if (!ins_nr) {
2850 ins_start_slot = path->slots[0];
2851 ins_nr = 1;
2852 goto next_slot;
2853 }
2854
2855 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2856 ins_nr, inode_only);
2857 if (ret) {
2858 err = ret;
2859 goto out_unlock;
2860 }
2861 ins_nr = 1;
2862 ins_start_slot = path->slots[0];
2863 next_slot:
2864
2865 nritems = btrfs_header_nritems(path->nodes[0]);
2866 path->slots[0]++;
2867 if (path->slots[0] < nritems) {
2868 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2869 path->slots[0]);
2870 goto again;
2871 }
2872 if (ins_nr) {
2873 ret = copy_items(trans, log, dst_path, src,
2874 ins_start_slot,
2875 ins_nr, inode_only);
2876 if (ret) {
2877 err = ret;
2878 goto out_unlock;
2879 }
2880 ins_nr = 0;
2881 }
2882 btrfs_release_path(path);
2883
2884 if (min_key.offset < (u64)-1)
2885 min_key.offset++;
2886 else if (min_key.type < (u8)-1)
2887 min_key.type++;
2888 else if (min_key.objectid < (u64)-1)
2889 min_key.objectid++;
2890 else
2891 break;
2892 }
2893 if (ins_nr) {
2894 ret = copy_items(trans, log, dst_path, src,
2895 ins_start_slot,
2896 ins_nr, inode_only);
2897 if (ret) {
2898 err = ret;
2899 goto out_unlock;
2900 }
2901 ins_nr = 0;
2902 }
2903 WARN_ON(ins_nr);
2904 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2905 btrfs_release_path(path);
2906 btrfs_release_path(dst_path);
2907 ret = log_directory_changes(trans, root, inode, path, dst_path);
2908 if (ret) {
2909 err = ret;
2910 goto out_unlock;
2911 }
2912 }
2913 BTRFS_I(inode)->logged_trans = trans->transid;
2914 out_unlock:
2915 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2916
2917 btrfs_free_path(path);
2918 btrfs_free_path(dst_path);
2919 return err;
2920 }
2921
2922 /*
2923 * follow the dentry parent pointers up the chain and see if any
2924 * of the directories in it require a full commit before they can
2925 * be logged. Returns zero if nothing special needs to be done or 1 if
2926 * a full commit is required.
2927 */
2928 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2929 struct inode *inode,
2930 struct dentry *parent,
2931 struct super_block *sb,
2932 u64 last_committed)
2933 {
2934 int ret = 0;
2935 struct btrfs_root *root;
2936 struct dentry *old_parent = NULL;
2937
2938 /*
2939 * for regular files, if its inode is already on disk, we don't
2940 * have to worry about the parents at all. This is because
2941 * we can use the last_unlink_trans field to record renames
2942 * and other fun in this file.
2943 */
2944 if (S_ISREG(inode->i_mode) &&
2945 BTRFS_I(inode)->generation <= last_committed &&
2946 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2947 goto out;
2948
2949 if (!S_ISDIR(inode->i_mode)) {
2950 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2951 goto out;
2952 inode = parent->d_inode;
2953 }
2954
2955 while (1) {
2956 BTRFS_I(inode)->logged_trans = trans->transid;
2957 smp_mb();
2958
2959 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2960 root = BTRFS_I(inode)->root;
2961
2962 /*
2963 * make sure any commits to the log are forced
2964 * to be full commits
2965 */
2966 root->fs_info->last_trans_log_full_commit =
2967 trans->transid;
2968 ret = 1;
2969 break;
2970 }
2971
2972 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2973 break;
2974
2975 if (IS_ROOT(parent))
2976 break;
2977
2978 parent = dget_parent(parent);
2979 dput(old_parent);
2980 old_parent = parent;
2981 inode = parent->d_inode;
2982
2983 }
2984 dput(old_parent);
2985 out:
2986 return ret;
2987 }
2988
2989 static int inode_in_log(struct btrfs_trans_handle *trans,
2990 struct inode *inode)
2991 {
2992 struct btrfs_root *root = BTRFS_I(inode)->root;
2993 int ret = 0;
2994
2995 mutex_lock(&root->log_mutex);
2996 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2997 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2998 ret = 1;
2999 mutex_unlock(&root->log_mutex);
3000 return ret;
3001 }
3002
3003
3004 /*
3005 * helper function around btrfs_log_inode to make sure newly created
3006 * parent directories also end up in the log. A minimal inode and backref
3007 * only logging is done of any parent directories that are older than
3008 * the last committed transaction
3009 */
3010 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3011 struct btrfs_root *root, struct inode *inode,
3012 struct dentry *parent, int exists_only)
3013 {
3014 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3015 struct super_block *sb;
3016 struct dentry *old_parent = NULL;
3017 int ret = 0;
3018 u64 last_committed = root->fs_info->last_trans_committed;
3019
3020 sb = inode->i_sb;
3021
3022 if (btrfs_test_opt(root, NOTREELOG)) {
3023 ret = 1;
3024 goto end_no_trans;
3025 }
3026
3027 if (root->fs_info->last_trans_log_full_commit >
3028 root->fs_info->last_trans_committed) {
3029 ret = 1;
3030 goto end_no_trans;
3031 }
3032
3033 if (root != BTRFS_I(inode)->root ||
3034 btrfs_root_refs(&root->root_item) == 0) {
3035 ret = 1;
3036 goto end_no_trans;
3037 }
3038
3039 ret = check_parent_dirs_for_sync(trans, inode, parent,
3040 sb, last_committed);
3041 if (ret)
3042 goto end_no_trans;
3043
3044 if (inode_in_log(trans, inode)) {
3045 ret = BTRFS_NO_LOG_SYNC;
3046 goto end_no_trans;
3047 }
3048
3049 ret = start_log_trans(trans, root);
3050 if (ret)
3051 goto end_trans;
3052
3053 ret = btrfs_log_inode(trans, root, inode, inode_only);
3054 if (ret)
3055 goto end_trans;
3056
3057 /*
3058 * for regular files, if its inode is already on disk, we don't
3059 * have to worry about the parents at all. This is because
3060 * we can use the last_unlink_trans field to record renames
3061 * and other fun in this file.
3062 */
3063 if (S_ISREG(inode->i_mode) &&
3064 BTRFS_I(inode)->generation <= last_committed &&
3065 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3066 ret = 0;
3067 goto end_trans;
3068 }
3069
3070 inode_only = LOG_INODE_EXISTS;
3071 while (1) {
3072 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3073 break;
3074
3075 inode = parent->d_inode;
3076 if (root != BTRFS_I(inode)->root)
3077 break;
3078
3079 if (BTRFS_I(inode)->generation >
3080 root->fs_info->last_trans_committed) {
3081 ret = btrfs_log_inode(trans, root, inode, inode_only);
3082 if (ret)
3083 goto end_trans;
3084 }
3085 if (IS_ROOT(parent))
3086 break;
3087
3088 parent = dget_parent(parent);
3089 dput(old_parent);
3090 old_parent = parent;
3091 }
3092 ret = 0;
3093 end_trans:
3094 dput(old_parent);
3095 if (ret < 0) {
3096 BUG_ON(ret != -ENOSPC);
3097 root->fs_info->last_trans_log_full_commit = trans->transid;
3098 ret = 1;
3099 }
3100 btrfs_end_log_trans(root);
3101 end_no_trans:
3102 return ret;
3103 }
3104
3105 /*
3106 * it is not safe to log dentry if the chunk root has added new
3107 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3108 * If this returns 1, you must commit the transaction to safely get your
3109 * data on disk.
3110 */
3111 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3112 struct btrfs_root *root, struct dentry *dentry)
3113 {
3114 struct dentry *parent = dget_parent(dentry);
3115 int ret;
3116
3117 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3118 dput(parent);
3119
3120 return ret;
3121 }
3122
3123 /*
3124 * should be called during mount to recover any replay any log trees
3125 * from the FS
3126 */
3127 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3128 {
3129 int ret;
3130 struct btrfs_path *path;
3131 struct btrfs_trans_handle *trans;
3132 struct btrfs_key key;
3133 struct btrfs_key found_key;
3134 struct btrfs_key tmp_key;
3135 struct btrfs_root *log;
3136 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3137 struct walk_control wc = {
3138 .process_func = process_one_buffer,
3139 .stage = 0,
3140 };
3141
3142 path = btrfs_alloc_path();
3143 if (!path)
3144 return -ENOMEM;
3145
3146 fs_info->log_root_recovering = 1;
3147
3148 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3149 BUG_ON(IS_ERR(trans));
3150
3151 wc.trans = trans;
3152 wc.pin = 1;
3153
3154 ret = walk_log_tree(trans, log_root_tree, &wc);
3155 BUG_ON(ret);
3156
3157 again:
3158 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3159 key.offset = (u64)-1;
3160 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3161
3162 while (1) {
3163 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3164 if (ret < 0)
3165 break;
3166 if (ret > 0) {
3167 if (path->slots[0] == 0)
3168 break;
3169 path->slots[0]--;
3170 }
3171 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3172 path->slots[0]);
3173 btrfs_release_path(path);
3174 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3175 break;
3176
3177 log = btrfs_read_fs_root_no_radix(log_root_tree,
3178 &found_key);
3179 BUG_ON(IS_ERR(log));
3180
3181 tmp_key.objectid = found_key.offset;
3182 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3183 tmp_key.offset = (u64)-1;
3184
3185 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3186 BUG_ON(IS_ERR_OR_NULL(wc.replay_dest));
3187
3188 wc.replay_dest->log_root = log;
3189 btrfs_record_root_in_trans(trans, wc.replay_dest);
3190 ret = walk_log_tree(trans, log, &wc);
3191 BUG_ON(ret);
3192
3193 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3194 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3195 path);
3196 BUG_ON(ret);
3197 }
3198
3199 key.offset = found_key.offset - 1;
3200 wc.replay_dest->log_root = NULL;
3201 free_extent_buffer(log->node);
3202 free_extent_buffer(log->commit_root);
3203 kfree(log);
3204
3205 if (found_key.offset == 0)
3206 break;
3207 }
3208 btrfs_release_path(path);
3209
3210 /* step one is to pin it all, step two is to replay just inodes */
3211 if (wc.pin) {
3212 wc.pin = 0;
3213 wc.process_func = replay_one_buffer;
3214 wc.stage = LOG_WALK_REPLAY_INODES;
3215 goto again;
3216 }
3217 /* step three is to replay everything */
3218 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3219 wc.stage++;
3220 goto again;
3221 }
3222
3223 btrfs_free_path(path);
3224
3225 free_extent_buffer(log_root_tree->node);
3226 log_root_tree->log_root = NULL;
3227 fs_info->log_root_recovering = 0;
3228
3229 /* step 4: commit the transaction, which also unpins the blocks */
3230 btrfs_commit_transaction(trans, fs_info->tree_root);
3231
3232 kfree(log_root_tree);
3233 return 0;
3234 }
3235
3236 /*
3237 * there are some corner cases where we want to force a full
3238 * commit instead of allowing a directory to be logged.
3239 *
3240 * They revolve around files there were unlinked from the directory, and
3241 * this function updates the parent directory so that a full commit is
3242 * properly done if it is fsync'd later after the unlinks are done.
3243 */
3244 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3245 struct inode *dir, struct inode *inode,
3246 int for_rename)
3247 {
3248 /*
3249 * when we're logging a file, if it hasn't been renamed
3250 * or unlinked, and its inode is fully committed on disk,
3251 * we don't have to worry about walking up the directory chain
3252 * to log its parents.
3253 *
3254 * So, we use the last_unlink_trans field to put this transid
3255 * into the file. When the file is logged we check it and
3256 * don't log the parents if the file is fully on disk.
3257 */
3258 if (S_ISREG(inode->i_mode))
3259 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3260
3261 /*
3262 * if this directory was already logged any new
3263 * names for this file/dir will get recorded
3264 */
3265 smp_mb();
3266 if (BTRFS_I(dir)->logged_trans == trans->transid)
3267 return;
3268
3269 /*
3270 * if the inode we're about to unlink was logged,
3271 * the log will be properly updated for any new names
3272 */
3273 if (BTRFS_I(inode)->logged_trans == trans->transid)
3274 return;
3275
3276 /*
3277 * when renaming files across directories, if the directory
3278 * there we're unlinking from gets fsync'd later on, there's
3279 * no way to find the destination directory later and fsync it
3280 * properly. So, we have to be conservative and force commits
3281 * so the new name gets discovered.
3282 */
3283 if (for_rename)
3284 goto record;
3285
3286 /* we can safely do the unlink without any special recording */
3287 return;
3288
3289 record:
3290 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3291 }
3292
3293 /*
3294 * Call this after adding a new name for a file and it will properly
3295 * update the log to reflect the new name.
3296 *
3297 * It will return zero if all goes well, and it will return 1 if a
3298 * full transaction commit is required.
3299 */
3300 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3301 struct inode *inode, struct inode *old_dir,
3302 struct dentry *parent)
3303 {
3304 struct btrfs_root * root = BTRFS_I(inode)->root;
3305
3306 /*
3307 * this will force the logging code to walk the dentry chain
3308 * up for the file
3309 */
3310 if (S_ISREG(inode->i_mode))
3311 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3312
3313 /*
3314 * if this inode hasn't been logged and directory we're renaming it
3315 * from hasn't been logged, we don't need to log it
3316 */
3317 if (BTRFS_I(inode)->logged_trans <=
3318 root->fs_info->last_trans_committed &&
3319 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3320 root->fs_info->last_trans_committed))
3321 return 0;
3322
3323 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3324 }
3325
This page took 0.09432 seconds and 6 git commands to generate.