Merge remote-tracking branch 'sunxi/sunxi/for-next'
[deliverable/linux.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148 return &fs_uuids;
149 }
150
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153 struct btrfs_fs_devices *fs_devs;
154
155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
162 INIT_LIST_HEAD(&fs_devs->resized_devices);
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167 }
168
169 /**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192 }
193
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
202 rcu_string_free(device->name);
203 kfree(device);
204 }
205 kfree(fs_devices);
206 }
207
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210 {
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219 }
220
221 void btrfs_cleanup_fs_uuids(void)
222 {
223 struct btrfs_fs_devices *fs_devices;
224
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
229 free_fs_devices(fs_devices);
230 }
231 }
232
233 static struct btrfs_device *__alloc_device(void)
234 {
235 struct btrfs_device *dev;
236
237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254 return dev;
255 }
256
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
259 {
260 struct btrfs_device *dev;
261
262 list_for_each_entry(dev, head, dev_list) {
263 if (dev->devid == devid &&
264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 return dev;
266 }
267 }
268 return NULL;
269 }
270
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273 struct btrfs_fs_devices *fs_devices;
274
275 list_for_each_entry(fs_devices, &fs_uuids, list) {
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280 }
281
282 static int
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286 {
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313 error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317 }
318
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321 {
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331 }
332
333 /*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346 struct bio *pending;
347 struct backing_dev_info *bdi;
348 struct btrfs_fs_info *fs_info;
349 struct btrfs_pending_bios *pending_bios;
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
353 unsigned long num_run;
354 unsigned long batch_run = 0;
355 unsigned long limit;
356 unsigned long last_waited = 0;
357 int force_reg = 0;
358 int sync_pending = 0;
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
368
369 bdi = blk_get_backing_dev_info(device->bdev);
370 fs_info = device->dev_root->fs_info;
371 limit = btrfs_async_submit_limit(fs_info);
372 limit = limit * 2 / 3;
373
374 loop:
375 spin_lock(&device->io_lock);
376
377 loop_lock:
378 num_run = 0;
379
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
384 */
385 if (!force_reg && device->pending_sync_bios.head) {
386 pending_bios = &device->pending_sync_bios;
387 force_reg = 1;
388 } else {
389 pending_bios = &device->pending_bios;
390 force_reg = 0;
391 }
392
393 pending = pending_bios->head;
394 tail = pending_bios->tail;
395 WARN_ON(pending && !tail);
396
397 /*
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
401 *
402 * device->running_pending is used to synchronize with the
403 * schedule_bio code.
404 */
405 if (device->pending_sync_bios.head == NULL &&
406 device->pending_bios.head == NULL) {
407 again = 0;
408 device->running_pending = 0;
409 } else {
410 again = 1;
411 device->running_pending = 1;
412 }
413
414 pending_bios->head = NULL;
415 pending_bios->tail = NULL;
416
417 spin_unlock(&device->io_lock);
418
419 while (pending) {
420
421 rmb();
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
424 */
425 if ((num_run > 32 &&
426 pending_bios != &device->pending_sync_bios &&
427 device->pending_sync_bios.head) ||
428 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 device->pending_bios.head)) {
430 spin_lock(&device->io_lock);
431 requeue_list(pending_bios, pending, tail);
432 goto loop_lock;
433 }
434
435 cur = pending;
436 pending = pending->bi_next;
437 cur->bi_next = NULL;
438
439 /*
440 * atomic_dec_return implies a barrier for waitqueue_active
441 */
442 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443 waitqueue_active(&fs_info->async_submit_wait))
444 wake_up(&fs_info->async_submit_wait);
445
446 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447
448 /*
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
451 *
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
454 * we add more
455 */
456 if (pending_bios == &device->pending_sync_bios) {
457 sync_pending = 1;
458 } else if (sync_pending) {
459 blk_finish_plug(&plug);
460 blk_start_plug(&plug);
461 sync_pending = 0;
462 }
463
464 btrfsic_submit_bio(cur);
465 num_run++;
466 batch_run++;
467
468 cond_resched();
469
470 /*
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
473 * run instead
474 */
475 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476 fs_info->fs_devices->open_devices > 1) {
477 struct io_context *ioc;
478
479 ioc = current->io_context;
480
481 /*
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
485 *
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
489 */
490 if (ioc && ioc->nr_batch_requests > 0 &&
491 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 (last_waited == 0 ||
493 ioc->last_waited == last_waited)) {
494 /*
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
499 */
500 last_waited = ioc->last_waited;
501 cond_resched();
502 continue;
503 }
504 spin_lock(&device->io_lock);
505 requeue_list(pending_bios, pending, tail);
506 device->running_pending = 1;
507
508 spin_unlock(&device->io_lock);
509 btrfs_queue_work(fs_info->submit_workers,
510 &device->work);
511 goto done;
512 }
513 /* unplug every 64 requests just for good measure */
514 if (batch_run % 64 == 0) {
515 blk_finish_plug(&plug);
516 blk_start_plug(&plug);
517 sync_pending = 0;
518 }
519 }
520
521 cond_resched();
522 if (again)
523 goto loop;
524
525 spin_lock(&device->io_lock);
526 if (device->pending_bios.head || device->pending_sync_bios.head)
527 goto loop_lock;
528 spin_unlock(&device->io_lock);
529
530 done:
531 blk_finish_plug(&plug);
532 }
533
534 static void pending_bios_fn(struct btrfs_work *work)
535 {
536 struct btrfs_device *device;
537
538 device = container_of(work, struct btrfs_device, work);
539 run_scheduled_bios(device);
540 }
541
542
543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544 {
545 struct btrfs_fs_devices *fs_devs;
546 struct btrfs_device *dev;
547
548 if (!cur_dev->name)
549 return;
550
551 list_for_each_entry(fs_devs, &fs_uuids, list) {
552 int del = 1;
553
554 if (fs_devs->opened)
555 continue;
556 if (fs_devs->seeding)
557 continue;
558
559 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560
561 if (dev == cur_dev)
562 continue;
563 if (!dev->name)
564 continue;
565
566 /*
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
571 */
572 rcu_read_lock();
573 del = strcmp(rcu_str_deref(dev->name),
574 rcu_str_deref(cur_dev->name));
575 rcu_read_unlock();
576 if (!del)
577 break;
578 }
579
580 if (!del) {
581 /* delete the stale device */
582 if (fs_devs->num_devices == 1) {
583 btrfs_sysfs_remove_fsid(fs_devs);
584 list_del(&fs_devs->list);
585 free_fs_devices(fs_devs);
586 } else {
587 fs_devs->num_devices--;
588 list_del(&dev->dev_list);
589 rcu_string_free(dev->name);
590 kfree(dev);
591 }
592 break;
593 }
594 }
595 }
596
597 /*
598 * Add new device to list of registered devices
599 *
600 * Returns:
601 * 1 - first time device is seen
602 * 0 - device already known
603 * < 0 - error
604 */
605 static noinline int device_list_add(const char *path,
606 struct btrfs_super_block *disk_super,
607 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608 {
609 struct btrfs_device *device;
610 struct btrfs_fs_devices *fs_devices;
611 struct rcu_string *name;
612 int ret = 0;
613 u64 found_transid = btrfs_super_generation(disk_super);
614
615 fs_devices = find_fsid(disk_super->fsid);
616 if (!fs_devices) {
617 fs_devices = alloc_fs_devices(disk_super->fsid);
618 if (IS_ERR(fs_devices))
619 return PTR_ERR(fs_devices);
620
621 list_add(&fs_devices->list, &fs_uuids);
622
623 device = NULL;
624 } else {
625 device = __find_device(&fs_devices->devices, devid,
626 disk_super->dev_item.uuid);
627 }
628
629 if (!device) {
630 if (fs_devices->opened)
631 return -EBUSY;
632
633 device = btrfs_alloc_device(NULL, &devid,
634 disk_super->dev_item.uuid);
635 if (IS_ERR(device)) {
636 /* we can safely leave the fs_devices entry around */
637 return PTR_ERR(device);
638 }
639
640 name = rcu_string_strdup(path, GFP_NOFS);
641 if (!name) {
642 kfree(device);
643 return -ENOMEM;
644 }
645 rcu_assign_pointer(device->name, name);
646
647 mutex_lock(&fs_devices->device_list_mutex);
648 list_add_rcu(&device->dev_list, &fs_devices->devices);
649 fs_devices->num_devices++;
650 mutex_unlock(&fs_devices->device_list_mutex);
651
652 ret = 1;
653 device->fs_devices = fs_devices;
654 } else if (!device->name || strcmp(device->name->str, path)) {
655 /*
656 * When FS is already mounted.
657 * 1. If you are here and if the device->name is NULL that
658 * means this device was missing at time of FS mount.
659 * 2. If you are here and if the device->name is different
660 * from 'path' that means either
661 * a. The same device disappeared and reappeared with
662 * different name. or
663 * b. The missing-disk-which-was-replaced, has
664 * reappeared now.
665 *
666 * We must allow 1 and 2a above. But 2b would be a spurious
667 * and unintentional.
668 *
669 * Further in case of 1 and 2a above, the disk at 'path'
670 * would have missed some transaction when it was away and
671 * in case of 2a the stale bdev has to be updated as well.
672 * 2b must not be allowed at all time.
673 */
674
675 /*
676 * For now, we do allow update to btrfs_fs_device through the
677 * btrfs dev scan cli after FS has been mounted. We're still
678 * tracking a problem where systems fail mount by subvolume id
679 * when we reject replacement on a mounted FS.
680 */
681 if (!fs_devices->opened && found_transid < device->generation) {
682 /*
683 * That is if the FS is _not_ mounted and if you
684 * are here, that means there is more than one
685 * disk with same uuid and devid.We keep the one
686 * with larger generation number or the last-in if
687 * generation are equal.
688 */
689 return -EEXIST;
690 }
691
692 name = rcu_string_strdup(path, GFP_NOFS);
693 if (!name)
694 return -ENOMEM;
695 rcu_string_free(device->name);
696 rcu_assign_pointer(device->name, name);
697 if (device->missing) {
698 fs_devices->missing_devices--;
699 device->missing = 0;
700 }
701 }
702
703 /*
704 * Unmount does not free the btrfs_device struct but would zero
705 * generation along with most of the other members. So just update
706 * it back. We need it to pick the disk with largest generation
707 * (as above).
708 */
709 if (!fs_devices->opened)
710 device->generation = found_transid;
711
712 /*
713 * if there is new btrfs on an already registered device,
714 * then remove the stale device entry.
715 */
716 if (ret > 0)
717 btrfs_free_stale_device(device);
718
719 *fs_devices_ret = fs_devices;
720
721 return ret;
722 }
723
724 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725 {
726 struct btrfs_fs_devices *fs_devices;
727 struct btrfs_device *device;
728 struct btrfs_device *orig_dev;
729
730 fs_devices = alloc_fs_devices(orig->fsid);
731 if (IS_ERR(fs_devices))
732 return fs_devices;
733
734 mutex_lock(&orig->device_list_mutex);
735 fs_devices->total_devices = orig->total_devices;
736
737 /* We have held the volume lock, it is safe to get the devices. */
738 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
739 struct rcu_string *name;
740
741 device = btrfs_alloc_device(NULL, &orig_dev->devid,
742 orig_dev->uuid);
743 if (IS_ERR(device))
744 goto error;
745
746 /*
747 * This is ok to do without rcu read locked because we hold the
748 * uuid mutex so nothing we touch in here is going to disappear.
749 */
750 if (orig_dev->name) {
751 name = rcu_string_strdup(orig_dev->name->str,
752 GFP_KERNEL);
753 if (!name) {
754 kfree(device);
755 goto error;
756 }
757 rcu_assign_pointer(device->name, name);
758 }
759
760 list_add(&device->dev_list, &fs_devices->devices);
761 device->fs_devices = fs_devices;
762 fs_devices->num_devices++;
763 }
764 mutex_unlock(&orig->device_list_mutex);
765 return fs_devices;
766 error:
767 mutex_unlock(&orig->device_list_mutex);
768 free_fs_devices(fs_devices);
769 return ERR_PTR(-ENOMEM);
770 }
771
772 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
773 {
774 struct btrfs_device *device, *next;
775 struct btrfs_device *latest_dev = NULL;
776
777 mutex_lock(&uuid_mutex);
778 again:
779 /* This is the initialized path, it is safe to release the devices. */
780 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
781 if (device->in_fs_metadata) {
782 if (!device->is_tgtdev_for_dev_replace &&
783 (!latest_dev ||
784 device->generation > latest_dev->generation)) {
785 latest_dev = device;
786 }
787 continue;
788 }
789
790 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791 /*
792 * In the first step, keep the device which has
793 * the correct fsid and the devid that is used
794 * for the dev_replace procedure.
795 * In the second step, the dev_replace state is
796 * read from the device tree and it is known
797 * whether the procedure is really active or
798 * not, which means whether this device is
799 * used or whether it should be removed.
800 */
801 if (step == 0 || device->is_tgtdev_for_dev_replace) {
802 continue;
803 }
804 }
805 if (device->bdev) {
806 blkdev_put(device->bdev, device->mode);
807 device->bdev = NULL;
808 fs_devices->open_devices--;
809 }
810 if (device->writeable) {
811 list_del_init(&device->dev_alloc_list);
812 device->writeable = 0;
813 if (!device->is_tgtdev_for_dev_replace)
814 fs_devices->rw_devices--;
815 }
816 list_del_init(&device->dev_list);
817 fs_devices->num_devices--;
818 rcu_string_free(device->name);
819 kfree(device);
820 }
821
822 if (fs_devices->seed) {
823 fs_devices = fs_devices->seed;
824 goto again;
825 }
826
827 fs_devices->latest_bdev = latest_dev->bdev;
828
829 mutex_unlock(&uuid_mutex);
830 }
831
832 static void __free_device(struct work_struct *work)
833 {
834 struct btrfs_device *device;
835
836 device = container_of(work, struct btrfs_device, rcu_work);
837 rcu_string_free(device->name);
838 kfree(device);
839 }
840
841 static void free_device(struct rcu_head *head)
842 {
843 struct btrfs_device *device;
844
845 device = container_of(head, struct btrfs_device, rcu);
846
847 INIT_WORK(&device->rcu_work, __free_device);
848 schedule_work(&device->rcu_work);
849 }
850
851 static void btrfs_close_bdev(struct btrfs_device *device)
852 {
853 if (device->bdev && device->writeable) {
854 sync_blockdev(device->bdev);
855 invalidate_bdev(device->bdev);
856 }
857
858 if (device->bdev)
859 blkdev_put(device->bdev, device->mode);
860 }
861
862 static void btrfs_close_one_device(struct btrfs_device *device)
863 {
864 struct btrfs_fs_devices *fs_devices = device->fs_devices;
865 struct btrfs_device *new_device;
866 struct rcu_string *name;
867
868 if (device->bdev)
869 fs_devices->open_devices--;
870
871 if (device->writeable &&
872 device->devid != BTRFS_DEV_REPLACE_DEVID) {
873 list_del_init(&device->dev_alloc_list);
874 fs_devices->rw_devices--;
875 }
876
877 if (device->missing)
878 fs_devices->missing_devices--;
879
880 btrfs_close_bdev(device);
881
882 new_device = btrfs_alloc_device(NULL, &device->devid,
883 device->uuid);
884 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
885
886 /* Safe because we are under uuid_mutex */
887 if (device->name) {
888 name = rcu_string_strdup(device->name->str, GFP_NOFS);
889 BUG_ON(!name); /* -ENOMEM */
890 rcu_assign_pointer(new_device->name, name);
891 }
892
893 list_replace_rcu(&device->dev_list, &new_device->dev_list);
894 new_device->fs_devices = device->fs_devices;
895
896 call_rcu(&device->rcu, free_device);
897 }
898
899 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
900 {
901 struct btrfs_device *device, *tmp;
902
903 if (--fs_devices->opened > 0)
904 return 0;
905
906 mutex_lock(&fs_devices->device_list_mutex);
907 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
908 btrfs_close_one_device(device);
909 }
910 mutex_unlock(&fs_devices->device_list_mutex);
911
912 WARN_ON(fs_devices->open_devices);
913 WARN_ON(fs_devices->rw_devices);
914 fs_devices->opened = 0;
915 fs_devices->seeding = 0;
916
917 return 0;
918 }
919
920 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
921 {
922 struct btrfs_fs_devices *seed_devices = NULL;
923 int ret;
924
925 mutex_lock(&uuid_mutex);
926 ret = __btrfs_close_devices(fs_devices);
927 if (!fs_devices->opened) {
928 seed_devices = fs_devices->seed;
929 fs_devices->seed = NULL;
930 }
931 mutex_unlock(&uuid_mutex);
932
933 while (seed_devices) {
934 fs_devices = seed_devices;
935 seed_devices = fs_devices->seed;
936 __btrfs_close_devices(fs_devices);
937 free_fs_devices(fs_devices);
938 }
939 /*
940 * Wait for rcu kworkers under __btrfs_close_devices
941 * to finish all blkdev_puts so device is really
942 * free when umount is done.
943 */
944 rcu_barrier();
945 return ret;
946 }
947
948 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
949 fmode_t flags, void *holder)
950 {
951 struct request_queue *q;
952 struct block_device *bdev;
953 struct list_head *head = &fs_devices->devices;
954 struct btrfs_device *device;
955 struct btrfs_device *latest_dev = NULL;
956 struct buffer_head *bh;
957 struct btrfs_super_block *disk_super;
958 u64 devid;
959 int seeding = 1;
960 int ret = 0;
961
962 flags |= FMODE_EXCL;
963
964 list_for_each_entry(device, head, dev_list) {
965 if (device->bdev)
966 continue;
967 if (!device->name)
968 continue;
969
970 /* Just open everything we can; ignore failures here */
971 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
972 &bdev, &bh))
973 continue;
974
975 disk_super = (struct btrfs_super_block *)bh->b_data;
976 devid = btrfs_stack_device_id(&disk_super->dev_item);
977 if (devid != device->devid)
978 goto error_brelse;
979
980 if (memcmp(device->uuid, disk_super->dev_item.uuid,
981 BTRFS_UUID_SIZE))
982 goto error_brelse;
983
984 device->generation = btrfs_super_generation(disk_super);
985 if (!latest_dev ||
986 device->generation > latest_dev->generation)
987 latest_dev = device;
988
989 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
990 device->writeable = 0;
991 } else {
992 device->writeable = !bdev_read_only(bdev);
993 seeding = 0;
994 }
995
996 q = bdev_get_queue(bdev);
997 if (blk_queue_discard(q))
998 device->can_discard = 1;
999
1000 device->bdev = bdev;
1001 device->in_fs_metadata = 0;
1002 device->mode = flags;
1003
1004 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1005 fs_devices->rotating = 1;
1006
1007 fs_devices->open_devices++;
1008 if (device->writeable &&
1009 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1010 fs_devices->rw_devices++;
1011 list_add(&device->dev_alloc_list,
1012 &fs_devices->alloc_list);
1013 }
1014 brelse(bh);
1015 continue;
1016
1017 error_brelse:
1018 brelse(bh);
1019 blkdev_put(bdev, flags);
1020 continue;
1021 }
1022 if (fs_devices->open_devices == 0) {
1023 ret = -EINVAL;
1024 goto out;
1025 }
1026 fs_devices->seeding = seeding;
1027 fs_devices->opened = 1;
1028 fs_devices->latest_bdev = latest_dev->bdev;
1029 fs_devices->total_rw_bytes = 0;
1030 out:
1031 return ret;
1032 }
1033
1034 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1035 fmode_t flags, void *holder)
1036 {
1037 int ret;
1038
1039 mutex_lock(&uuid_mutex);
1040 if (fs_devices->opened) {
1041 fs_devices->opened++;
1042 ret = 0;
1043 } else {
1044 ret = __btrfs_open_devices(fs_devices, flags, holder);
1045 }
1046 mutex_unlock(&uuid_mutex);
1047 return ret;
1048 }
1049
1050 void btrfs_release_disk_super(struct page *page)
1051 {
1052 kunmap(page);
1053 put_page(page);
1054 }
1055
1056 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1057 struct page **page, struct btrfs_super_block **disk_super)
1058 {
1059 void *p;
1060 pgoff_t index;
1061
1062 /* make sure our super fits in the device */
1063 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1064 return 1;
1065
1066 /* make sure our super fits in the page */
1067 if (sizeof(**disk_super) > PAGE_SIZE)
1068 return 1;
1069
1070 /* make sure our super doesn't straddle pages on disk */
1071 index = bytenr >> PAGE_SHIFT;
1072 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1073 return 1;
1074
1075 /* pull in the page with our super */
1076 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1077 index, GFP_KERNEL);
1078
1079 if (IS_ERR_OR_NULL(*page))
1080 return 1;
1081
1082 p = kmap(*page);
1083
1084 /* align our pointer to the offset of the super block */
1085 *disk_super = p + (bytenr & ~PAGE_MASK);
1086
1087 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1088 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1089 btrfs_release_disk_super(*page);
1090 return 1;
1091 }
1092
1093 if ((*disk_super)->label[0] &&
1094 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1095 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1096
1097 return 0;
1098 }
1099
1100 /*
1101 * Look for a btrfs signature on a device. This may be called out of the mount path
1102 * and we are not allowed to call set_blocksize during the scan. The superblock
1103 * is read via pagecache
1104 */
1105 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1106 struct btrfs_fs_devices **fs_devices_ret)
1107 {
1108 struct btrfs_super_block *disk_super;
1109 struct block_device *bdev;
1110 struct page *page;
1111 int ret = -EINVAL;
1112 u64 devid;
1113 u64 transid;
1114 u64 total_devices;
1115 u64 bytenr;
1116
1117 /*
1118 * we would like to check all the supers, but that would make
1119 * a btrfs mount succeed after a mkfs from a different FS.
1120 * So, we need to add a special mount option to scan for
1121 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1122 */
1123 bytenr = btrfs_sb_offset(0);
1124 flags |= FMODE_EXCL;
1125 mutex_lock(&uuid_mutex);
1126
1127 bdev = blkdev_get_by_path(path, flags, holder);
1128 if (IS_ERR(bdev)) {
1129 ret = PTR_ERR(bdev);
1130 goto error;
1131 }
1132
1133 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1134 goto error_bdev_put;
1135
1136 devid = btrfs_stack_device_id(&disk_super->dev_item);
1137 transid = btrfs_super_generation(disk_super);
1138 total_devices = btrfs_super_num_devices(disk_super);
1139
1140 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1141 if (ret > 0) {
1142 if (disk_super->label[0]) {
1143 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1144 } else {
1145 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1146 }
1147
1148 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1149 ret = 0;
1150 }
1151 if (!ret && fs_devices_ret)
1152 (*fs_devices_ret)->total_devices = total_devices;
1153
1154 btrfs_release_disk_super(page);
1155
1156 error_bdev_put:
1157 blkdev_put(bdev, flags);
1158 error:
1159 mutex_unlock(&uuid_mutex);
1160 return ret;
1161 }
1162
1163 /* helper to account the used device space in the range */
1164 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1165 u64 end, u64 *length)
1166 {
1167 struct btrfs_key key;
1168 struct btrfs_root *root = device->dev_root;
1169 struct btrfs_dev_extent *dev_extent;
1170 struct btrfs_path *path;
1171 u64 extent_end;
1172 int ret;
1173 int slot;
1174 struct extent_buffer *l;
1175
1176 *length = 0;
1177
1178 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1179 return 0;
1180
1181 path = btrfs_alloc_path();
1182 if (!path)
1183 return -ENOMEM;
1184 path->reada = READA_FORWARD;
1185
1186 key.objectid = device->devid;
1187 key.offset = start;
1188 key.type = BTRFS_DEV_EXTENT_KEY;
1189
1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191 if (ret < 0)
1192 goto out;
1193 if (ret > 0) {
1194 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1195 if (ret < 0)
1196 goto out;
1197 }
1198
1199 while (1) {
1200 l = path->nodes[0];
1201 slot = path->slots[0];
1202 if (slot >= btrfs_header_nritems(l)) {
1203 ret = btrfs_next_leaf(root, path);
1204 if (ret == 0)
1205 continue;
1206 if (ret < 0)
1207 goto out;
1208
1209 break;
1210 }
1211 btrfs_item_key_to_cpu(l, &key, slot);
1212
1213 if (key.objectid < device->devid)
1214 goto next;
1215
1216 if (key.objectid > device->devid)
1217 break;
1218
1219 if (key.type != BTRFS_DEV_EXTENT_KEY)
1220 goto next;
1221
1222 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1223 extent_end = key.offset + btrfs_dev_extent_length(l,
1224 dev_extent);
1225 if (key.offset <= start && extent_end > end) {
1226 *length = end - start + 1;
1227 break;
1228 } else if (key.offset <= start && extent_end > start)
1229 *length += extent_end - start;
1230 else if (key.offset > start && extent_end <= end)
1231 *length += extent_end - key.offset;
1232 else if (key.offset > start && key.offset <= end) {
1233 *length += end - key.offset + 1;
1234 break;
1235 } else if (key.offset > end)
1236 break;
1237
1238 next:
1239 path->slots[0]++;
1240 }
1241 ret = 0;
1242 out:
1243 btrfs_free_path(path);
1244 return ret;
1245 }
1246
1247 static int contains_pending_extent(struct btrfs_transaction *transaction,
1248 struct btrfs_device *device,
1249 u64 *start, u64 len)
1250 {
1251 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1252 struct extent_map *em;
1253 struct list_head *search_list = &fs_info->pinned_chunks;
1254 int ret = 0;
1255 u64 physical_start = *start;
1256
1257 if (transaction)
1258 search_list = &transaction->pending_chunks;
1259 again:
1260 list_for_each_entry(em, search_list, list) {
1261 struct map_lookup *map;
1262 int i;
1263
1264 map = em->map_lookup;
1265 for (i = 0; i < map->num_stripes; i++) {
1266 u64 end;
1267
1268 if (map->stripes[i].dev != device)
1269 continue;
1270 if (map->stripes[i].physical >= physical_start + len ||
1271 map->stripes[i].physical + em->orig_block_len <=
1272 physical_start)
1273 continue;
1274 /*
1275 * Make sure that while processing the pinned list we do
1276 * not override our *start with a lower value, because
1277 * we can have pinned chunks that fall within this
1278 * device hole and that have lower physical addresses
1279 * than the pending chunks we processed before. If we
1280 * do not take this special care we can end up getting
1281 * 2 pending chunks that start at the same physical
1282 * device offsets because the end offset of a pinned
1283 * chunk can be equal to the start offset of some
1284 * pending chunk.
1285 */
1286 end = map->stripes[i].physical + em->orig_block_len;
1287 if (end > *start) {
1288 *start = end;
1289 ret = 1;
1290 }
1291 }
1292 }
1293 if (search_list != &fs_info->pinned_chunks) {
1294 search_list = &fs_info->pinned_chunks;
1295 goto again;
1296 }
1297
1298 return ret;
1299 }
1300
1301
1302 /*
1303 * find_free_dev_extent_start - find free space in the specified device
1304 * @device: the device which we search the free space in
1305 * @num_bytes: the size of the free space that we need
1306 * @search_start: the position from which to begin the search
1307 * @start: store the start of the free space.
1308 * @len: the size of the free space. that we find, or the size
1309 * of the max free space if we don't find suitable free space
1310 *
1311 * this uses a pretty simple search, the expectation is that it is
1312 * called very infrequently and that a given device has a small number
1313 * of extents
1314 *
1315 * @start is used to store the start of the free space if we find. But if we
1316 * don't find suitable free space, it will be used to store the start position
1317 * of the max free space.
1318 *
1319 * @len is used to store the size of the free space that we find.
1320 * But if we don't find suitable free space, it is used to store the size of
1321 * the max free space.
1322 */
1323 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1324 struct btrfs_device *device, u64 num_bytes,
1325 u64 search_start, u64 *start, u64 *len)
1326 {
1327 struct btrfs_key key;
1328 struct btrfs_root *root = device->dev_root;
1329 struct btrfs_dev_extent *dev_extent;
1330 struct btrfs_path *path;
1331 u64 hole_size;
1332 u64 max_hole_start;
1333 u64 max_hole_size;
1334 u64 extent_end;
1335 u64 search_end = device->total_bytes;
1336 int ret;
1337 int slot;
1338 struct extent_buffer *l;
1339 u64 min_search_start;
1340
1341 /*
1342 * We don't want to overwrite the superblock on the drive nor any area
1343 * used by the boot loader (grub for example), so we make sure to start
1344 * at an offset of at least 1MB.
1345 */
1346 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1347 search_start = max(search_start, min_search_start);
1348
1349 path = btrfs_alloc_path();
1350 if (!path)
1351 return -ENOMEM;
1352
1353 max_hole_start = search_start;
1354 max_hole_size = 0;
1355
1356 again:
1357 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1358 ret = -ENOSPC;
1359 goto out;
1360 }
1361
1362 path->reada = READA_FORWARD;
1363 path->search_commit_root = 1;
1364 path->skip_locking = 1;
1365
1366 key.objectid = device->devid;
1367 key.offset = search_start;
1368 key.type = BTRFS_DEV_EXTENT_KEY;
1369
1370 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1371 if (ret < 0)
1372 goto out;
1373 if (ret > 0) {
1374 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1375 if (ret < 0)
1376 goto out;
1377 }
1378
1379 while (1) {
1380 l = path->nodes[0];
1381 slot = path->slots[0];
1382 if (slot >= btrfs_header_nritems(l)) {
1383 ret = btrfs_next_leaf(root, path);
1384 if (ret == 0)
1385 continue;
1386 if (ret < 0)
1387 goto out;
1388
1389 break;
1390 }
1391 btrfs_item_key_to_cpu(l, &key, slot);
1392
1393 if (key.objectid < device->devid)
1394 goto next;
1395
1396 if (key.objectid > device->devid)
1397 break;
1398
1399 if (key.type != BTRFS_DEV_EXTENT_KEY)
1400 goto next;
1401
1402 if (key.offset > search_start) {
1403 hole_size = key.offset - search_start;
1404
1405 /*
1406 * Have to check before we set max_hole_start, otherwise
1407 * we could end up sending back this offset anyway.
1408 */
1409 if (contains_pending_extent(transaction, device,
1410 &search_start,
1411 hole_size)) {
1412 if (key.offset >= search_start) {
1413 hole_size = key.offset - search_start;
1414 } else {
1415 WARN_ON_ONCE(1);
1416 hole_size = 0;
1417 }
1418 }
1419
1420 if (hole_size > max_hole_size) {
1421 max_hole_start = search_start;
1422 max_hole_size = hole_size;
1423 }
1424
1425 /*
1426 * If this free space is greater than which we need,
1427 * it must be the max free space that we have found
1428 * until now, so max_hole_start must point to the start
1429 * of this free space and the length of this free space
1430 * is stored in max_hole_size. Thus, we return
1431 * max_hole_start and max_hole_size and go back to the
1432 * caller.
1433 */
1434 if (hole_size >= num_bytes) {
1435 ret = 0;
1436 goto out;
1437 }
1438 }
1439
1440 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1441 extent_end = key.offset + btrfs_dev_extent_length(l,
1442 dev_extent);
1443 if (extent_end > search_start)
1444 search_start = extent_end;
1445 next:
1446 path->slots[0]++;
1447 cond_resched();
1448 }
1449
1450 /*
1451 * At this point, search_start should be the end of
1452 * allocated dev extents, and when shrinking the device,
1453 * search_end may be smaller than search_start.
1454 */
1455 if (search_end > search_start) {
1456 hole_size = search_end - search_start;
1457
1458 if (contains_pending_extent(transaction, device, &search_start,
1459 hole_size)) {
1460 btrfs_release_path(path);
1461 goto again;
1462 }
1463
1464 if (hole_size > max_hole_size) {
1465 max_hole_start = search_start;
1466 max_hole_size = hole_size;
1467 }
1468 }
1469
1470 /* See above. */
1471 if (max_hole_size < num_bytes)
1472 ret = -ENOSPC;
1473 else
1474 ret = 0;
1475
1476 out:
1477 btrfs_free_path(path);
1478 *start = max_hole_start;
1479 if (len)
1480 *len = max_hole_size;
1481 return ret;
1482 }
1483
1484 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1485 struct btrfs_device *device, u64 num_bytes,
1486 u64 *start, u64 *len)
1487 {
1488 /* FIXME use last free of some kind */
1489 return find_free_dev_extent_start(trans->transaction, device,
1490 num_bytes, 0, start, len);
1491 }
1492
1493 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1494 struct btrfs_device *device,
1495 u64 start, u64 *dev_extent_len)
1496 {
1497 int ret;
1498 struct btrfs_path *path;
1499 struct btrfs_root *root = device->dev_root;
1500 struct btrfs_key key;
1501 struct btrfs_key found_key;
1502 struct extent_buffer *leaf = NULL;
1503 struct btrfs_dev_extent *extent = NULL;
1504
1505 path = btrfs_alloc_path();
1506 if (!path)
1507 return -ENOMEM;
1508
1509 key.objectid = device->devid;
1510 key.offset = start;
1511 key.type = BTRFS_DEV_EXTENT_KEY;
1512 again:
1513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1514 if (ret > 0) {
1515 ret = btrfs_previous_item(root, path, key.objectid,
1516 BTRFS_DEV_EXTENT_KEY);
1517 if (ret)
1518 goto out;
1519 leaf = path->nodes[0];
1520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1521 extent = btrfs_item_ptr(leaf, path->slots[0],
1522 struct btrfs_dev_extent);
1523 BUG_ON(found_key.offset > start || found_key.offset +
1524 btrfs_dev_extent_length(leaf, extent) < start);
1525 key = found_key;
1526 btrfs_release_path(path);
1527 goto again;
1528 } else if (ret == 0) {
1529 leaf = path->nodes[0];
1530 extent = btrfs_item_ptr(leaf, path->slots[0],
1531 struct btrfs_dev_extent);
1532 } else {
1533 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1534 goto out;
1535 }
1536
1537 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1538
1539 ret = btrfs_del_item(trans, root, path);
1540 if (ret) {
1541 btrfs_handle_fs_error(root->fs_info, ret,
1542 "Failed to remove dev extent item");
1543 } else {
1544 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1545 }
1546 out:
1547 btrfs_free_path(path);
1548 return ret;
1549 }
1550
1551 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1552 struct btrfs_device *device,
1553 u64 chunk_tree, u64 chunk_objectid,
1554 u64 chunk_offset, u64 start, u64 num_bytes)
1555 {
1556 int ret;
1557 struct btrfs_path *path;
1558 struct btrfs_root *root = device->dev_root;
1559 struct btrfs_dev_extent *extent;
1560 struct extent_buffer *leaf;
1561 struct btrfs_key key;
1562
1563 WARN_ON(!device->in_fs_metadata);
1564 WARN_ON(device->is_tgtdev_for_dev_replace);
1565 path = btrfs_alloc_path();
1566 if (!path)
1567 return -ENOMEM;
1568
1569 key.objectid = device->devid;
1570 key.offset = start;
1571 key.type = BTRFS_DEV_EXTENT_KEY;
1572 ret = btrfs_insert_empty_item(trans, root, path, &key,
1573 sizeof(*extent));
1574 if (ret)
1575 goto out;
1576
1577 leaf = path->nodes[0];
1578 extent = btrfs_item_ptr(leaf, path->slots[0],
1579 struct btrfs_dev_extent);
1580 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1581 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1582 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1583
1584 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1585 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1586
1587 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1588 btrfs_mark_buffer_dirty(leaf);
1589 out:
1590 btrfs_free_path(path);
1591 return ret;
1592 }
1593
1594 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1595 {
1596 struct extent_map_tree *em_tree;
1597 struct extent_map *em;
1598 struct rb_node *n;
1599 u64 ret = 0;
1600
1601 em_tree = &fs_info->mapping_tree.map_tree;
1602 read_lock(&em_tree->lock);
1603 n = rb_last(&em_tree->map);
1604 if (n) {
1605 em = rb_entry(n, struct extent_map, rb_node);
1606 ret = em->start + em->len;
1607 }
1608 read_unlock(&em_tree->lock);
1609
1610 return ret;
1611 }
1612
1613 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1614 u64 *devid_ret)
1615 {
1616 int ret;
1617 struct btrfs_key key;
1618 struct btrfs_key found_key;
1619 struct btrfs_path *path;
1620
1621 path = btrfs_alloc_path();
1622 if (!path)
1623 return -ENOMEM;
1624
1625 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1626 key.type = BTRFS_DEV_ITEM_KEY;
1627 key.offset = (u64)-1;
1628
1629 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1630 if (ret < 0)
1631 goto error;
1632
1633 BUG_ON(ret == 0); /* Corruption */
1634
1635 ret = btrfs_previous_item(fs_info->chunk_root, path,
1636 BTRFS_DEV_ITEMS_OBJECTID,
1637 BTRFS_DEV_ITEM_KEY);
1638 if (ret) {
1639 *devid_ret = 1;
1640 } else {
1641 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1642 path->slots[0]);
1643 *devid_ret = found_key.offset + 1;
1644 }
1645 ret = 0;
1646 error:
1647 btrfs_free_path(path);
1648 return ret;
1649 }
1650
1651 /*
1652 * the device information is stored in the chunk root
1653 * the btrfs_device struct should be fully filled in
1654 */
1655 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_device *device)
1658 {
1659 int ret;
1660 struct btrfs_path *path;
1661 struct btrfs_dev_item *dev_item;
1662 struct extent_buffer *leaf;
1663 struct btrfs_key key;
1664 unsigned long ptr;
1665
1666 root = root->fs_info->chunk_root;
1667
1668 path = btrfs_alloc_path();
1669 if (!path)
1670 return -ENOMEM;
1671
1672 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1673 key.type = BTRFS_DEV_ITEM_KEY;
1674 key.offset = device->devid;
1675
1676 ret = btrfs_insert_empty_item(trans, root, path, &key,
1677 sizeof(*dev_item));
1678 if (ret)
1679 goto out;
1680
1681 leaf = path->nodes[0];
1682 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1683
1684 btrfs_set_device_id(leaf, dev_item, device->devid);
1685 btrfs_set_device_generation(leaf, dev_item, 0);
1686 btrfs_set_device_type(leaf, dev_item, device->type);
1687 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1688 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1689 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1690 btrfs_set_device_total_bytes(leaf, dev_item,
1691 btrfs_device_get_disk_total_bytes(device));
1692 btrfs_set_device_bytes_used(leaf, dev_item,
1693 btrfs_device_get_bytes_used(device));
1694 btrfs_set_device_group(leaf, dev_item, 0);
1695 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1696 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1697 btrfs_set_device_start_offset(leaf, dev_item, 0);
1698
1699 ptr = btrfs_device_uuid(dev_item);
1700 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1701 ptr = btrfs_device_fsid(dev_item);
1702 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1703 btrfs_mark_buffer_dirty(leaf);
1704
1705 ret = 0;
1706 out:
1707 btrfs_free_path(path);
1708 return ret;
1709 }
1710
1711 /*
1712 * Function to update ctime/mtime for a given device path.
1713 * Mainly used for ctime/mtime based probe like libblkid.
1714 */
1715 static void update_dev_time(char *path_name)
1716 {
1717 struct file *filp;
1718
1719 filp = filp_open(path_name, O_RDWR, 0);
1720 if (IS_ERR(filp))
1721 return;
1722 file_update_time(filp);
1723 filp_close(filp, NULL);
1724 }
1725
1726 static int btrfs_rm_dev_item(struct btrfs_root *root,
1727 struct btrfs_device *device)
1728 {
1729 int ret;
1730 struct btrfs_path *path;
1731 struct btrfs_key key;
1732 struct btrfs_trans_handle *trans;
1733
1734 root = root->fs_info->chunk_root;
1735
1736 path = btrfs_alloc_path();
1737 if (!path)
1738 return -ENOMEM;
1739
1740 trans = btrfs_start_transaction(root, 0);
1741 if (IS_ERR(trans)) {
1742 btrfs_free_path(path);
1743 return PTR_ERR(trans);
1744 }
1745 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1746 key.type = BTRFS_DEV_ITEM_KEY;
1747 key.offset = device->devid;
1748
1749 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1750 if (ret < 0)
1751 goto out;
1752
1753 if (ret > 0) {
1754 ret = -ENOENT;
1755 goto out;
1756 }
1757
1758 ret = btrfs_del_item(trans, root, path);
1759 if (ret)
1760 goto out;
1761 out:
1762 btrfs_free_path(path);
1763 btrfs_commit_transaction(trans, root);
1764 return ret;
1765 }
1766
1767 /*
1768 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1769 * filesystem. It's up to the caller to adjust that number regarding eg. device
1770 * replace.
1771 */
1772 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1773 u64 num_devices)
1774 {
1775 u64 all_avail;
1776 unsigned seq;
1777 int i;
1778
1779 do {
1780 seq = read_seqbegin(&fs_info->profiles_lock);
1781
1782 all_avail = fs_info->avail_data_alloc_bits |
1783 fs_info->avail_system_alloc_bits |
1784 fs_info->avail_metadata_alloc_bits;
1785 } while (read_seqretry(&fs_info->profiles_lock, seq));
1786
1787 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1788 if (!(all_avail & btrfs_raid_group[i]))
1789 continue;
1790
1791 if (num_devices < btrfs_raid_array[i].devs_min) {
1792 int ret = btrfs_raid_mindev_error[i];
1793
1794 if (ret)
1795 return ret;
1796 }
1797 }
1798
1799 return 0;
1800 }
1801
1802 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1803 struct btrfs_device *device)
1804 {
1805 struct btrfs_device *next_device;
1806
1807 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1808 if (next_device != device &&
1809 !next_device->missing && next_device->bdev)
1810 return next_device;
1811 }
1812
1813 return NULL;
1814 }
1815
1816 /*
1817 * Helper function to check if the given device is part of s_bdev / latest_bdev
1818 * and replace it with the provided or the next active device, in the context
1819 * where this function called, there should be always be another device (or
1820 * this_dev) which is active.
1821 */
1822 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1823 struct btrfs_device *device, struct btrfs_device *this_dev)
1824 {
1825 struct btrfs_device *next_device;
1826
1827 if (this_dev)
1828 next_device = this_dev;
1829 else
1830 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1831 device);
1832 ASSERT(next_device);
1833
1834 if (fs_info->sb->s_bdev &&
1835 (fs_info->sb->s_bdev == device->bdev))
1836 fs_info->sb->s_bdev = next_device->bdev;
1837
1838 if (fs_info->fs_devices->latest_bdev == device->bdev)
1839 fs_info->fs_devices->latest_bdev = next_device->bdev;
1840 }
1841
1842 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1843 {
1844 struct btrfs_device *device;
1845 struct btrfs_fs_devices *cur_devices;
1846 u64 num_devices;
1847 int ret = 0;
1848 bool clear_super = false;
1849 char *dev_name = NULL;
1850
1851 mutex_lock(&uuid_mutex);
1852
1853 num_devices = root->fs_info->fs_devices->num_devices;
1854 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1855 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1856 WARN_ON(num_devices < 1);
1857 num_devices--;
1858 }
1859 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1860
1861 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1862 if (ret)
1863 goto out;
1864
1865 ret = btrfs_find_device_by_devspec(root, devid, device_path,
1866 &device);
1867 if (ret)
1868 goto out;
1869
1870 if (device->is_tgtdev_for_dev_replace) {
1871 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1872 goto out;
1873 }
1874
1875 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1876 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1877 goto out;
1878 }
1879
1880 if (device->writeable) {
1881 lock_chunks(root);
1882 list_del_init(&device->dev_alloc_list);
1883 device->fs_devices->rw_devices--;
1884 unlock_chunks(root);
1885 dev_name = kstrdup(device->name->str, GFP_KERNEL);
1886 if (!dev_name) {
1887 ret = -ENOMEM;
1888 goto error_undo;
1889 }
1890 clear_super = true;
1891 }
1892
1893 mutex_unlock(&uuid_mutex);
1894 ret = btrfs_shrink_device(device, 0);
1895 mutex_lock(&uuid_mutex);
1896 if (ret)
1897 goto error_undo;
1898
1899 /*
1900 * TODO: the superblock still includes this device in its num_devices
1901 * counter although write_all_supers() is not locked out. This
1902 * could give a filesystem state which requires a degraded mount.
1903 */
1904 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1905 if (ret)
1906 goto error_undo;
1907
1908 device->in_fs_metadata = 0;
1909 btrfs_scrub_cancel_dev(root->fs_info, device);
1910
1911 /*
1912 * the device list mutex makes sure that we don't change
1913 * the device list while someone else is writing out all
1914 * the device supers. Whoever is writing all supers, should
1915 * lock the device list mutex before getting the number of
1916 * devices in the super block (super_copy). Conversely,
1917 * whoever updates the number of devices in the super block
1918 * (super_copy) should hold the device list mutex.
1919 */
1920
1921 cur_devices = device->fs_devices;
1922 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1923 list_del_rcu(&device->dev_list);
1924
1925 device->fs_devices->num_devices--;
1926 device->fs_devices->total_devices--;
1927
1928 if (device->missing)
1929 device->fs_devices->missing_devices--;
1930
1931 btrfs_assign_next_active_device(root->fs_info, device, NULL);
1932
1933 if (device->bdev) {
1934 device->fs_devices->open_devices--;
1935 /* remove sysfs entry */
1936 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1937 }
1938
1939 btrfs_close_bdev(device);
1940
1941 call_rcu(&device->rcu, free_device);
1942
1943 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1944 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1945 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1946
1947 if (cur_devices->open_devices == 0) {
1948 struct btrfs_fs_devices *fs_devices;
1949 fs_devices = root->fs_info->fs_devices;
1950 while (fs_devices) {
1951 if (fs_devices->seed == cur_devices) {
1952 fs_devices->seed = cur_devices->seed;
1953 break;
1954 }
1955 fs_devices = fs_devices->seed;
1956 }
1957 cur_devices->seed = NULL;
1958 __btrfs_close_devices(cur_devices);
1959 free_fs_devices(cur_devices);
1960 }
1961
1962 root->fs_info->num_tolerated_disk_barrier_failures =
1963 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1964
1965 /*
1966 * at this point, the device is zero sized. We want to
1967 * remove it from the devices list and zero out the old super
1968 */
1969 if (clear_super) {
1970 struct block_device *bdev;
1971
1972 bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1973 root->fs_info->bdev_holder);
1974 if (!IS_ERR(bdev)) {
1975 btrfs_scratch_superblocks(bdev, dev_name);
1976 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1977 }
1978 }
1979
1980 out:
1981 kfree(dev_name);
1982
1983 mutex_unlock(&uuid_mutex);
1984 return ret;
1985
1986 error_undo:
1987 if (device->writeable) {
1988 lock_chunks(root);
1989 list_add(&device->dev_alloc_list,
1990 &root->fs_info->fs_devices->alloc_list);
1991 device->fs_devices->rw_devices++;
1992 unlock_chunks(root);
1993 }
1994 goto out;
1995 }
1996
1997 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1998 struct btrfs_device *srcdev)
1999 {
2000 struct btrfs_fs_devices *fs_devices;
2001
2002 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2003
2004 /*
2005 * in case of fs with no seed, srcdev->fs_devices will point
2006 * to fs_devices of fs_info. However when the dev being replaced is
2007 * a seed dev it will point to the seed's local fs_devices. In short
2008 * srcdev will have its correct fs_devices in both the cases.
2009 */
2010 fs_devices = srcdev->fs_devices;
2011
2012 list_del_rcu(&srcdev->dev_list);
2013 list_del_rcu(&srcdev->dev_alloc_list);
2014 fs_devices->num_devices--;
2015 if (srcdev->missing)
2016 fs_devices->missing_devices--;
2017
2018 if (srcdev->writeable)
2019 fs_devices->rw_devices--;
2020
2021 if (srcdev->bdev)
2022 fs_devices->open_devices--;
2023 }
2024
2025 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2026 struct btrfs_device *srcdev)
2027 {
2028 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2029
2030 if (srcdev->writeable) {
2031 /* zero out the old super if it is writable */
2032 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2033 }
2034
2035 btrfs_close_bdev(srcdev);
2036
2037 call_rcu(&srcdev->rcu, free_device);
2038
2039 /*
2040 * unless fs_devices is seed fs, num_devices shouldn't go
2041 * zero
2042 */
2043 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2044
2045 /* if this is no devs we rather delete the fs_devices */
2046 if (!fs_devices->num_devices) {
2047 struct btrfs_fs_devices *tmp_fs_devices;
2048
2049 tmp_fs_devices = fs_info->fs_devices;
2050 while (tmp_fs_devices) {
2051 if (tmp_fs_devices->seed == fs_devices) {
2052 tmp_fs_devices->seed = fs_devices->seed;
2053 break;
2054 }
2055 tmp_fs_devices = tmp_fs_devices->seed;
2056 }
2057 fs_devices->seed = NULL;
2058 __btrfs_close_devices(fs_devices);
2059 free_fs_devices(fs_devices);
2060 }
2061 }
2062
2063 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2064 struct btrfs_device *tgtdev)
2065 {
2066 mutex_lock(&uuid_mutex);
2067 WARN_ON(!tgtdev);
2068 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2069
2070 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2071
2072 if (tgtdev->bdev)
2073 fs_info->fs_devices->open_devices--;
2074
2075 fs_info->fs_devices->num_devices--;
2076
2077 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2078
2079 list_del_rcu(&tgtdev->dev_list);
2080
2081 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2082 mutex_unlock(&uuid_mutex);
2083
2084 /*
2085 * The update_dev_time() with in btrfs_scratch_superblocks()
2086 * may lead to a call to btrfs_show_devname() which will try
2087 * to hold device_list_mutex. And here this device
2088 * is already out of device list, so we don't have to hold
2089 * the device_list_mutex lock.
2090 */
2091 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2092
2093 btrfs_close_bdev(tgtdev);
2094 call_rcu(&tgtdev->rcu, free_device);
2095 }
2096
2097 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2098 struct btrfs_device **device)
2099 {
2100 int ret = 0;
2101 struct btrfs_super_block *disk_super;
2102 u64 devid;
2103 u8 *dev_uuid;
2104 struct block_device *bdev;
2105 struct buffer_head *bh;
2106
2107 *device = NULL;
2108 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2109 root->fs_info->bdev_holder, 0, &bdev, &bh);
2110 if (ret)
2111 return ret;
2112 disk_super = (struct btrfs_super_block *)bh->b_data;
2113 devid = btrfs_stack_device_id(&disk_super->dev_item);
2114 dev_uuid = disk_super->dev_item.uuid;
2115 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2116 disk_super->fsid);
2117 brelse(bh);
2118 if (!*device)
2119 ret = -ENOENT;
2120 blkdev_put(bdev, FMODE_READ);
2121 return ret;
2122 }
2123
2124 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2125 char *device_path,
2126 struct btrfs_device **device)
2127 {
2128 *device = NULL;
2129 if (strcmp(device_path, "missing") == 0) {
2130 struct list_head *devices;
2131 struct btrfs_device *tmp;
2132
2133 devices = &root->fs_info->fs_devices->devices;
2134 /*
2135 * It is safe to read the devices since the volume_mutex
2136 * is held by the caller.
2137 */
2138 list_for_each_entry(tmp, devices, dev_list) {
2139 if (tmp->in_fs_metadata && !tmp->bdev) {
2140 *device = tmp;
2141 break;
2142 }
2143 }
2144
2145 if (!*device)
2146 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2147
2148 return 0;
2149 } else {
2150 return btrfs_find_device_by_path(root, device_path, device);
2151 }
2152 }
2153
2154 /*
2155 * Lookup a device given by device id, or the path if the id is 0.
2156 */
2157 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2158 char *devpath,
2159 struct btrfs_device **device)
2160 {
2161 int ret;
2162
2163 if (devid) {
2164 ret = 0;
2165 *device = btrfs_find_device(root->fs_info, devid, NULL,
2166 NULL);
2167 if (!*device)
2168 ret = -ENOENT;
2169 } else {
2170 if (!devpath || !devpath[0])
2171 return -EINVAL;
2172
2173 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2174 device);
2175 }
2176 return ret;
2177 }
2178
2179 /*
2180 * does all the dirty work required for changing file system's UUID.
2181 */
2182 static int btrfs_prepare_sprout(struct btrfs_root *root)
2183 {
2184 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2185 struct btrfs_fs_devices *old_devices;
2186 struct btrfs_fs_devices *seed_devices;
2187 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2188 struct btrfs_device *device;
2189 u64 super_flags;
2190
2191 BUG_ON(!mutex_is_locked(&uuid_mutex));
2192 if (!fs_devices->seeding)
2193 return -EINVAL;
2194
2195 seed_devices = __alloc_fs_devices();
2196 if (IS_ERR(seed_devices))
2197 return PTR_ERR(seed_devices);
2198
2199 old_devices = clone_fs_devices(fs_devices);
2200 if (IS_ERR(old_devices)) {
2201 kfree(seed_devices);
2202 return PTR_ERR(old_devices);
2203 }
2204
2205 list_add(&old_devices->list, &fs_uuids);
2206
2207 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2208 seed_devices->opened = 1;
2209 INIT_LIST_HEAD(&seed_devices->devices);
2210 INIT_LIST_HEAD(&seed_devices->alloc_list);
2211 mutex_init(&seed_devices->device_list_mutex);
2212
2213 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2214 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2215 synchronize_rcu);
2216 list_for_each_entry(device, &seed_devices->devices, dev_list)
2217 device->fs_devices = seed_devices;
2218
2219 lock_chunks(root);
2220 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2221 unlock_chunks(root);
2222
2223 fs_devices->seeding = 0;
2224 fs_devices->num_devices = 0;
2225 fs_devices->open_devices = 0;
2226 fs_devices->missing_devices = 0;
2227 fs_devices->rotating = 0;
2228 fs_devices->seed = seed_devices;
2229
2230 generate_random_uuid(fs_devices->fsid);
2231 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2232 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2233 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2234
2235 super_flags = btrfs_super_flags(disk_super) &
2236 ~BTRFS_SUPER_FLAG_SEEDING;
2237 btrfs_set_super_flags(disk_super, super_flags);
2238
2239 return 0;
2240 }
2241
2242 /*
2243 * Store the expected generation for seed devices in device items.
2244 */
2245 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2246 struct btrfs_root *root)
2247 {
2248 struct btrfs_path *path;
2249 struct extent_buffer *leaf;
2250 struct btrfs_dev_item *dev_item;
2251 struct btrfs_device *device;
2252 struct btrfs_key key;
2253 u8 fs_uuid[BTRFS_UUID_SIZE];
2254 u8 dev_uuid[BTRFS_UUID_SIZE];
2255 u64 devid;
2256 int ret;
2257
2258 path = btrfs_alloc_path();
2259 if (!path)
2260 return -ENOMEM;
2261
2262 root = root->fs_info->chunk_root;
2263 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2264 key.offset = 0;
2265 key.type = BTRFS_DEV_ITEM_KEY;
2266
2267 while (1) {
2268 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2269 if (ret < 0)
2270 goto error;
2271
2272 leaf = path->nodes[0];
2273 next_slot:
2274 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2275 ret = btrfs_next_leaf(root, path);
2276 if (ret > 0)
2277 break;
2278 if (ret < 0)
2279 goto error;
2280 leaf = path->nodes[0];
2281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2282 btrfs_release_path(path);
2283 continue;
2284 }
2285
2286 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2287 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2288 key.type != BTRFS_DEV_ITEM_KEY)
2289 break;
2290
2291 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2292 struct btrfs_dev_item);
2293 devid = btrfs_device_id(leaf, dev_item);
2294 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2295 BTRFS_UUID_SIZE);
2296 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2297 BTRFS_UUID_SIZE);
2298 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2299 fs_uuid);
2300 BUG_ON(!device); /* Logic error */
2301
2302 if (device->fs_devices->seeding) {
2303 btrfs_set_device_generation(leaf, dev_item,
2304 device->generation);
2305 btrfs_mark_buffer_dirty(leaf);
2306 }
2307
2308 path->slots[0]++;
2309 goto next_slot;
2310 }
2311 ret = 0;
2312 error:
2313 btrfs_free_path(path);
2314 return ret;
2315 }
2316
2317 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2318 {
2319 struct request_queue *q;
2320 struct btrfs_trans_handle *trans;
2321 struct btrfs_device *device;
2322 struct block_device *bdev;
2323 struct list_head *devices;
2324 struct super_block *sb = root->fs_info->sb;
2325 struct rcu_string *name;
2326 u64 tmp;
2327 int seeding_dev = 0;
2328 int ret = 0;
2329
2330 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2331 return -EROFS;
2332
2333 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2334 root->fs_info->bdev_holder);
2335 if (IS_ERR(bdev))
2336 return PTR_ERR(bdev);
2337
2338 if (root->fs_info->fs_devices->seeding) {
2339 seeding_dev = 1;
2340 down_write(&sb->s_umount);
2341 mutex_lock(&uuid_mutex);
2342 }
2343
2344 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2345
2346 devices = &root->fs_info->fs_devices->devices;
2347
2348 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2349 list_for_each_entry(device, devices, dev_list) {
2350 if (device->bdev == bdev) {
2351 ret = -EEXIST;
2352 mutex_unlock(
2353 &root->fs_info->fs_devices->device_list_mutex);
2354 goto error;
2355 }
2356 }
2357 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2358
2359 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2360 if (IS_ERR(device)) {
2361 /* we can safely leave the fs_devices entry around */
2362 ret = PTR_ERR(device);
2363 goto error;
2364 }
2365
2366 name = rcu_string_strdup(device_path, GFP_KERNEL);
2367 if (!name) {
2368 kfree(device);
2369 ret = -ENOMEM;
2370 goto error;
2371 }
2372 rcu_assign_pointer(device->name, name);
2373
2374 trans = btrfs_start_transaction(root, 0);
2375 if (IS_ERR(trans)) {
2376 rcu_string_free(device->name);
2377 kfree(device);
2378 ret = PTR_ERR(trans);
2379 goto error;
2380 }
2381
2382 q = bdev_get_queue(bdev);
2383 if (blk_queue_discard(q))
2384 device->can_discard = 1;
2385 device->writeable = 1;
2386 device->generation = trans->transid;
2387 device->io_width = root->sectorsize;
2388 device->io_align = root->sectorsize;
2389 device->sector_size = root->sectorsize;
2390 device->total_bytes = i_size_read(bdev->bd_inode);
2391 device->disk_total_bytes = device->total_bytes;
2392 device->commit_total_bytes = device->total_bytes;
2393 device->dev_root = root->fs_info->dev_root;
2394 device->bdev = bdev;
2395 device->in_fs_metadata = 1;
2396 device->is_tgtdev_for_dev_replace = 0;
2397 device->mode = FMODE_EXCL;
2398 device->dev_stats_valid = 1;
2399 set_blocksize(device->bdev, 4096);
2400
2401 if (seeding_dev) {
2402 sb->s_flags &= ~MS_RDONLY;
2403 ret = btrfs_prepare_sprout(root);
2404 BUG_ON(ret); /* -ENOMEM */
2405 }
2406
2407 device->fs_devices = root->fs_info->fs_devices;
2408
2409 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2410 lock_chunks(root);
2411 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2412 list_add(&device->dev_alloc_list,
2413 &root->fs_info->fs_devices->alloc_list);
2414 root->fs_info->fs_devices->num_devices++;
2415 root->fs_info->fs_devices->open_devices++;
2416 root->fs_info->fs_devices->rw_devices++;
2417 root->fs_info->fs_devices->total_devices++;
2418 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2419
2420 spin_lock(&root->fs_info->free_chunk_lock);
2421 root->fs_info->free_chunk_space += device->total_bytes;
2422 spin_unlock(&root->fs_info->free_chunk_lock);
2423
2424 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2425 root->fs_info->fs_devices->rotating = 1;
2426
2427 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2428 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2429 tmp + device->total_bytes);
2430
2431 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2432 btrfs_set_super_num_devices(root->fs_info->super_copy,
2433 tmp + 1);
2434
2435 /* add sysfs device entry */
2436 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2437
2438 /*
2439 * we've got more storage, clear any full flags on the space
2440 * infos
2441 */
2442 btrfs_clear_space_info_full(root->fs_info);
2443
2444 unlock_chunks(root);
2445 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2446
2447 if (seeding_dev) {
2448 lock_chunks(root);
2449 ret = init_first_rw_device(trans, root, device);
2450 unlock_chunks(root);
2451 if (ret) {
2452 btrfs_abort_transaction(trans, ret);
2453 goto error_trans;
2454 }
2455 }
2456
2457 ret = btrfs_add_device(trans, root, device);
2458 if (ret) {
2459 btrfs_abort_transaction(trans, ret);
2460 goto error_trans;
2461 }
2462
2463 if (seeding_dev) {
2464 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2465
2466 ret = btrfs_finish_sprout(trans, root);
2467 if (ret) {
2468 btrfs_abort_transaction(trans, ret);
2469 goto error_trans;
2470 }
2471
2472 /* Sprouting would change fsid of the mounted root,
2473 * so rename the fsid on the sysfs
2474 */
2475 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2476 root->fs_info->fsid);
2477 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2478 fsid_buf))
2479 btrfs_warn(root->fs_info,
2480 "sysfs: failed to create fsid for sprout");
2481 }
2482
2483 root->fs_info->num_tolerated_disk_barrier_failures =
2484 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2485 ret = btrfs_commit_transaction(trans, root);
2486
2487 if (seeding_dev) {
2488 mutex_unlock(&uuid_mutex);
2489 up_write(&sb->s_umount);
2490
2491 if (ret) /* transaction commit */
2492 return ret;
2493
2494 ret = btrfs_relocate_sys_chunks(root);
2495 if (ret < 0)
2496 btrfs_handle_fs_error(root->fs_info, ret,
2497 "Failed to relocate sys chunks after "
2498 "device initialization. This can be fixed "
2499 "using the \"btrfs balance\" command.");
2500 trans = btrfs_attach_transaction(root);
2501 if (IS_ERR(trans)) {
2502 if (PTR_ERR(trans) == -ENOENT)
2503 return 0;
2504 return PTR_ERR(trans);
2505 }
2506 ret = btrfs_commit_transaction(trans, root);
2507 }
2508
2509 /* Update ctime/mtime for libblkid */
2510 update_dev_time(device_path);
2511 return ret;
2512
2513 error_trans:
2514 btrfs_end_transaction(trans, root);
2515 rcu_string_free(device->name);
2516 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2517 kfree(device);
2518 error:
2519 blkdev_put(bdev, FMODE_EXCL);
2520 if (seeding_dev) {
2521 mutex_unlock(&uuid_mutex);
2522 up_write(&sb->s_umount);
2523 }
2524 return ret;
2525 }
2526
2527 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2528 struct btrfs_device *srcdev,
2529 struct btrfs_device **device_out)
2530 {
2531 struct request_queue *q;
2532 struct btrfs_device *device;
2533 struct block_device *bdev;
2534 struct btrfs_fs_info *fs_info = root->fs_info;
2535 struct list_head *devices;
2536 struct rcu_string *name;
2537 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2538 int ret = 0;
2539
2540 *device_out = NULL;
2541 if (fs_info->fs_devices->seeding) {
2542 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2543 return -EINVAL;
2544 }
2545
2546 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2547 fs_info->bdev_holder);
2548 if (IS_ERR(bdev)) {
2549 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2550 return PTR_ERR(bdev);
2551 }
2552
2553 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2554
2555 devices = &fs_info->fs_devices->devices;
2556 list_for_each_entry(device, devices, dev_list) {
2557 if (device->bdev == bdev) {
2558 btrfs_err(fs_info, "target device is in the filesystem!");
2559 ret = -EEXIST;
2560 goto error;
2561 }
2562 }
2563
2564
2565 if (i_size_read(bdev->bd_inode) <
2566 btrfs_device_get_total_bytes(srcdev)) {
2567 btrfs_err(fs_info, "target device is smaller than source device!");
2568 ret = -EINVAL;
2569 goto error;
2570 }
2571
2572
2573 device = btrfs_alloc_device(NULL, &devid, NULL);
2574 if (IS_ERR(device)) {
2575 ret = PTR_ERR(device);
2576 goto error;
2577 }
2578
2579 name = rcu_string_strdup(device_path, GFP_NOFS);
2580 if (!name) {
2581 kfree(device);
2582 ret = -ENOMEM;
2583 goto error;
2584 }
2585 rcu_assign_pointer(device->name, name);
2586
2587 q = bdev_get_queue(bdev);
2588 if (blk_queue_discard(q))
2589 device->can_discard = 1;
2590 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2591 device->writeable = 1;
2592 device->generation = 0;
2593 device->io_width = root->sectorsize;
2594 device->io_align = root->sectorsize;
2595 device->sector_size = root->sectorsize;
2596 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2597 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2598 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2599 ASSERT(list_empty(&srcdev->resized_list));
2600 device->commit_total_bytes = srcdev->commit_total_bytes;
2601 device->commit_bytes_used = device->bytes_used;
2602 device->dev_root = fs_info->dev_root;
2603 device->bdev = bdev;
2604 device->in_fs_metadata = 1;
2605 device->is_tgtdev_for_dev_replace = 1;
2606 device->mode = FMODE_EXCL;
2607 device->dev_stats_valid = 1;
2608 set_blocksize(device->bdev, 4096);
2609 device->fs_devices = fs_info->fs_devices;
2610 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2611 fs_info->fs_devices->num_devices++;
2612 fs_info->fs_devices->open_devices++;
2613 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2614
2615 *device_out = device;
2616 return ret;
2617
2618 error:
2619 blkdev_put(bdev, FMODE_EXCL);
2620 return ret;
2621 }
2622
2623 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2624 struct btrfs_device *tgtdev)
2625 {
2626 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2627 tgtdev->io_width = fs_info->dev_root->sectorsize;
2628 tgtdev->io_align = fs_info->dev_root->sectorsize;
2629 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2630 tgtdev->dev_root = fs_info->dev_root;
2631 tgtdev->in_fs_metadata = 1;
2632 }
2633
2634 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2635 struct btrfs_device *device)
2636 {
2637 int ret;
2638 struct btrfs_path *path;
2639 struct btrfs_root *root;
2640 struct btrfs_dev_item *dev_item;
2641 struct extent_buffer *leaf;
2642 struct btrfs_key key;
2643
2644 root = device->dev_root->fs_info->chunk_root;
2645
2646 path = btrfs_alloc_path();
2647 if (!path)
2648 return -ENOMEM;
2649
2650 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2651 key.type = BTRFS_DEV_ITEM_KEY;
2652 key.offset = device->devid;
2653
2654 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2655 if (ret < 0)
2656 goto out;
2657
2658 if (ret > 0) {
2659 ret = -ENOENT;
2660 goto out;
2661 }
2662
2663 leaf = path->nodes[0];
2664 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2665
2666 btrfs_set_device_id(leaf, dev_item, device->devid);
2667 btrfs_set_device_type(leaf, dev_item, device->type);
2668 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2669 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2670 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2671 btrfs_set_device_total_bytes(leaf, dev_item,
2672 btrfs_device_get_disk_total_bytes(device));
2673 btrfs_set_device_bytes_used(leaf, dev_item,
2674 btrfs_device_get_bytes_used(device));
2675 btrfs_mark_buffer_dirty(leaf);
2676
2677 out:
2678 btrfs_free_path(path);
2679 return ret;
2680 }
2681
2682 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2683 struct btrfs_device *device, u64 new_size)
2684 {
2685 struct btrfs_super_block *super_copy =
2686 device->dev_root->fs_info->super_copy;
2687 struct btrfs_fs_devices *fs_devices;
2688 u64 old_total;
2689 u64 diff;
2690
2691 if (!device->writeable)
2692 return -EACCES;
2693
2694 lock_chunks(device->dev_root);
2695 old_total = btrfs_super_total_bytes(super_copy);
2696 diff = new_size - device->total_bytes;
2697
2698 if (new_size <= device->total_bytes ||
2699 device->is_tgtdev_for_dev_replace) {
2700 unlock_chunks(device->dev_root);
2701 return -EINVAL;
2702 }
2703
2704 fs_devices = device->dev_root->fs_info->fs_devices;
2705
2706 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2707 device->fs_devices->total_rw_bytes += diff;
2708
2709 btrfs_device_set_total_bytes(device, new_size);
2710 btrfs_device_set_disk_total_bytes(device, new_size);
2711 btrfs_clear_space_info_full(device->dev_root->fs_info);
2712 if (list_empty(&device->resized_list))
2713 list_add_tail(&device->resized_list,
2714 &fs_devices->resized_devices);
2715 unlock_chunks(device->dev_root);
2716
2717 return btrfs_update_device(trans, device);
2718 }
2719
2720 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2721 struct btrfs_root *root, u64 chunk_objectid,
2722 u64 chunk_offset)
2723 {
2724 int ret;
2725 struct btrfs_path *path;
2726 struct btrfs_key key;
2727
2728 root = root->fs_info->chunk_root;
2729 path = btrfs_alloc_path();
2730 if (!path)
2731 return -ENOMEM;
2732
2733 key.objectid = chunk_objectid;
2734 key.offset = chunk_offset;
2735 key.type = BTRFS_CHUNK_ITEM_KEY;
2736
2737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2738 if (ret < 0)
2739 goto out;
2740 else if (ret > 0) { /* Logic error or corruption */
2741 btrfs_handle_fs_error(root->fs_info, -ENOENT,
2742 "Failed lookup while freeing chunk.");
2743 ret = -ENOENT;
2744 goto out;
2745 }
2746
2747 ret = btrfs_del_item(trans, root, path);
2748 if (ret < 0)
2749 btrfs_handle_fs_error(root->fs_info, ret,
2750 "Failed to delete chunk item.");
2751 out:
2752 btrfs_free_path(path);
2753 return ret;
2754 }
2755
2756 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2757 chunk_offset)
2758 {
2759 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2760 struct btrfs_disk_key *disk_key;
2761 struct btrfs_chunk *chunk;
2762 u8 *ptr;
2763 int ret = 0;
2764 u32 num_stripes;
2765 u32 array_size;
2766 u32 len = 0;
2767 u32 cur;
2768 struct btrfs_key key;
2769
2770 lock_chunks(root);
2771 array_size = btrfs_super_sys_array_size(super_copy);
2772
2773 ptr = super_copy->sys_chunk_array;
2774 cur = 0;
2775
2776 while (cur < array_size) {
2777 disk_key = (struct btrfs_disk_key *)ptr;
2778 btrfs_disk_key_to_cpu(&key, disk_key);
2779
2780 len = sizeof(*disk_key);
2781
2782 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2783 chunk = (struct btrfs_chunk *)(ptr + len);
2784 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2785 len += btrfs_chunk_item_size(num_stripes);
2786 } else {
2787 ret = -EIO;
2788 break;
2789 }
2790 if (key.objectid == chunk_objectid &&
2791 key.offset == chunk_offset) {
2792 memmove(ptr, ptr + len, array_size - (cur + len));
2793 array_size -= len;
2794 btrfs_set_super_sys_array_size(super_copy, array_size);
2795 } else {
2796 ptr += len;
2797 cur += len;
2798 }
2799 }
2800 unlock_chunks(root);
2801 return ret;
2802 }
2803
2804 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2805 struct btrfs_root *root, u64 chunk_offset)
2806 {
2807 struct extent_map_tree *em_tree;
2808 struct extent_map *em;
2809 struct btrfs_root *extent_root = root->fs_info->extent_root;
2810 struct map_lookup *map;
2811 u64 dev_extent_len = 0;
2812 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2813 int i, ret = 0;
2814 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2815
2816 /* Just in case */
2817 root = root->fs_info->chunk_root;
2818 em_tree = &root->fs_info->mapping_tree.map_tree;
2819
2820 read_lock(&em_tree->lock);
2821 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2822 read_unlock(&em_tree->lock);
2823
2824 if (!em || em->start > chunk_offset ||
2825 em->start + em->len < chunk_offset) {
2826 /*
2827 * This is a logic error, but we don't want to just rely on the
2828 * user having built with ASSERT enabled, so if ASSERT doesn't
2829 * do anything we still error out.
2830 */
2831 ASSERT(0);
2832 if (em)
2833 free_extent_map(em);
2834 return -EINVAL;
2835 }
2836 map = em->map_lookup;
2837 lock_chunks(root->fs_info->chunk_root);
2838 check_system_chunk(trans, extent_root, map->type);
2839 unlock_chunks(root->fs_info->chunk_root);
2840
2841 /*
2842 * Take the device list mutex to prevent races with the final phase of
2843 * a device replace operation that replaces the device object associated
2844 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2845 */
2846 mutex_lock(&fs_devices->device_list_mutex);
2847 for (i = 0; i < map->num_stripes; i++) {
2848 struct btrfs_device *device = map->stripes[i].dev;
2849 ret = btrfs_free_dev_extent(trans, device,
2850 map->stripes[i].physical,
2851 &dev_extent_len);
2852 if (ret) {
2853 mutex_unlock(&fs_devices->device_list_mutex);
2854 btrfs_abort_transaction(trans, ret);
2855 goto out;
2856 }
2857
2858 if (device->bytes_used > 0) {
2859 lock_chunks(root);
2860 btrfs_device_set_bytes_used(device,
2861 device->bytes_used - dev_extent_len);
2862 spin_lock(&root->fs_info->free_chunk_lock);
2863 root->fs_info->free_chunk_space += dev_extent_len;
2864 spin_unlock(&root->fs_info->free_chunk_lock);
2865 btrfs_clear_space_info_full(root->fs_info);
2866 unlock_chunks(root);
2867 }
2868
2869 if (map->stripes[i].dev) {
2870 ret = btrfs_update_device(trans, map->stripes[i].dev);
2871 if (ret) {
2872 mutex_unlock(&fs_devices->device_list_mutex);
2873 btrfs_abort_transaction(trans, ret);
2874 goto out;
2875 }
2876 }
2877 }
2878 mutex_unlock(&fs_devices->device_list_mutex);
2879
2880 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2881 if (ret) {
2882 btrfs_abort_transaction(trans, ret);
2883 goto out;
2884 }
2885
2886 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2887
2888 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2889 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2890 if (ret) {
2891 btrfs_abort_transaction(trans, ret);
2892 goto out;
2893 }
2894 }
2895
2896 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2897 if (ret) {
2898 btrfs_abort_transaction(trans, ret);
2899 goto out;
2900 }
2901
2902 out:
2903 /* once for us */
2904 free_extent_map(em);
2905 return ret;
2906 }
2907
2908 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2909 {
2910 struct btrfs_root *extent_root;
2911 int ret;
2912 struct btrfs_block_group_cache *block_group;
2913
2914 root = root->fs_info->chunk_root;
2915 extent_root = root->fs_info->extent_root;
2916
2917 /*
2918 * Prevent races with automatic removal of unused block groups.
2919 * After we relocate and before we remove the chunk with offset
2920 * chunk_offset, automatic removal of the block group can kick in,
2921 * resulting in a failure when calling btrfs_remove_chunk() below.
2922 *
2923 * Make sure to acquire this mutex before doing a tree search (dev
2924 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2925 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2926 * we release the path used to search the chunk/dev tree and before
2927 * the current task acquires this mutex and calls us.
2928 */
2929 ASSERT(rwsem_is_locked(&root->fs_info->bg_delete_sem));
2930
2931 ret = btrfs_can_relocate(extent_root, chunk_offset);
2932 if (ret)
2933 return -ENOSPC;
2934
2935 /* step one, relocate all the extents inside this chunk */
2936 btrfs_scrub_pause(root);
2937 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2938 btrfs_scrub_continue(root);
2939 if (ret)
2940 return ret;
2941
2942 /*
2943 * step two, flag the chunk as removed and let
2944 * btrfs_delete_unused_bgs() remove it.
2945 */
2946 block_group = btrfs_lookup_block_group(root->fs_info, chunk_offset);
2947 spin_lock(&block_group->lock);
2948 block_group->removed = 1;
2949 spin_unlock(&block_group->lock);
2950 btrfs_put_block_group(block_group);
2951
2952 return 0;
2953 }
2954
2955 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2956 {
2957 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2958 struct btrfs_path *path;
2959 struct extent_buffer *leaf;
2960 struct btrfs_chunk *chunk;
2961 struct btrfs_key key;
2962 struct btrfs_key found_key;
2963 u64 chunk_type;
2964 bool retried = false;
2965 int failed = 0;
2966 int ret;
2967
2968 path = btrfs_alloc_path();
2969 if (!path)
2970 return -ENOMEM;
2971
2972 again:
2973 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2974 key.offset = (u64)-1;
2975 key.type = BTRFS_CHUNK_ITEM_KEY;
2976
2977 while (1) {
2978 down_read(&root->fs_info->bg_delete_sem);
2979 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2980 if (ret < 0) {
2981 up_read(&root->fs_info->bg_delete_sem);
2982 goto error;
2983 }
2984 BUG_ON(ret == 0); /* Corruption */
2985
2986 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2987 key.type);
2988 if (ret)
2989 up_read(&root->fs_info->bg_delete_sem);
2990 if (ret < 0)
2991 goto error;
2992 if (ret > 0)
2993 break;
2994
2995 leaf = path->nodes[0];
2996 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2997
2998 chunk = btrfs_item_ptr(leaf, path->slots[0],
2999 struct btrfs_chunk);
3000 chunk_type = btrfs_chunk_type(leaf, chunk);
3001 btrfs_release_path(path);
3002
3003 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3004 ret = btrfs_relocate_chunk(chunk_root,
3005 found_key.offset);
3006 if (ret == -ENOSPC)
3007 failed++;
3008 else
3009 BUG_ON(ret);
3010 }
3011 up_read(&root->fs_info->bg_delete_sem);
3012
3013 if (found_key.offset == 0)
3014 break;
3015 key.offset = found_key.offset - 1;
3016 }
3017 ret = 0;
3018 if (failed && !retried) {
3019 failed = 0;
3020 retried = true;
3021 goto again;
3022 } else if (WARN_ON(failed && retried)) {
3023 ret = -ENOSPC;
3024 }
3025 error:
3026 btrfs_free_path(path);
3027 return ret;
3028 }
3029
3030 static int insert_balance_item(struct btrfs_root *root,
3031 struct btrfs_balance_control *bctl)
3032 {
3033 struct btrfs_trans_handle *trans;
3034 struct btrfs_balance_item *item;
3035 struct btrfs_disk_balance_args disk_bargs;
3036 struct btrfs_path *path;
3037 struct extent_buffer *leaf;
3038 struct btrfs_key key;
3039 int ret, err;
3040
3041 path = btrfs_alloc_path();
3042 if (!path)
3043 return -ENOMEM;
3044
3045 trans = btrfs_start_transaction(root, 0);
3046 if (IS_ERR(trans)) {
3047 btrfs_free_path(path);
3048 return PTR_ERR(trans);
3049 }
3050
3051 key.objectid = BTRFS_BALANCE_OBJECTID;
3052 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3053 key.offset = 0;
3054
3055 ret = btrfs_insert_empty_item(trans, root, path, &key,
3056 sizeof(*item));
3057 if (ret)
3058 goto out;
3059
3060 leaf = path->nodes[0];
3061 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3062
3063 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3064
3065 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3066 btrfs_set_balance_data(leaf, item, &disk_bargs);
3067 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3068 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3069 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3070 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3071
3072 btrfs_set_balance_flags(leaf, item, bctl->flags);
3073
3074 btrfs_mark_buffer_dirty(leaf);
3075 out:
3076 btrfs_free_path(path);
3077 err = btrfs_commit_transaction(trans, root);
3078 if (err && !ret)
3079 ret = err;
3080 return ret;
3081 }
3082
3083 static int del_balance_item(struct btrfs_root *root)
3084 {
3085 struct btrfs_trans_handle *trans;
3086 struct btrfs_path *path;
3087 struct btrfs_key key;
3088 int ret, err;
3089
3090 path = btrfs_alloc_path();
3091 if (!path)
3092 return -ENOMEM;
3093
3094 trans = btrfs_start_transaction(root, 0);
3095 if (IS_ERR(trans)) {
3096 btrfs_free_path(path);
3097 return PTR_ERR(trans);
3098 }
3099
3100 key.objectid = BTRFS_BALANCE_OBJECTID;
3101 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3102 key.offset = 0;
3103
3104 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3105 if (ret < 0)
3106 goto out;
3107 if (ret > 0) {
3108 ret = -ENOENT;
3109 goto out;
3110 }
3111
3112 ret = btrfs_del_item(trans, root, path);
3113 out:
3114 btrfs_free_path(path);
3115 err = btrfs_commit_transaction(trans, root);
3116 if (err && !ret)
3117 ret = err;
3118 return ret;
3119 }
3120
3121 /*
3122 * This is a heuristic used to reduce the number of chunks balanced on
3123 * resume after balance was interrupted.
3124 */
3125 static void update_balance_args(struct btrfs_balance_control *bctl)
3126 {
3127 /*
3128 * Turn on soft mode for chunk types that were being converted.
3129 */
3130 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3131 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3132 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3133 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3134 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136
3137 /*
3138 * Turn on usage filter if is not already used. The idea is
3139 * that chunks that we have already balanced should be
3140 * reasonably full. Don't do it for chunks that are being
3141 * converted - that will keep us from relocating unconverted
3142 * (albeit full) chunks.
3143 */
3144 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3145 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3146 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3147 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3148 bctl->data.usage = 90;
3149 }
3150 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3151 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3152 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 bctl->sys.usage = 90;
3155 }
3156 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3157 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3158 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160 bctl->meta.usage = 90;
3161 }
3162 }
3163
3164 /*
3165 * Should be called with both balance and volume mutexes held to
3166 * serialize other volume operations (add_dev/rm_dev/resize) with
3167 * restriper. Same goes for unset_balance_control.
3168 */
3169 static void set_balance_control(struct btrfs_balance_control *bctl)
3170 {
3171 struct btrfs_fs_info *fs_info = bctl->fs_info;
3172
3173 BUG_ON(fs_info->balance_ctl);
3174
3175 spin_lock(&fs_info->balance_lock);
3176 fs_info->balance_ctl = bctl;
3177 spin_unlock(&fs_info->balance_lock);
3178 }
3179
3180 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3181 {
3182 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3183
3184 BUG_ON(!fs_info->balance_ctl);
3185
3186 spin_lock(&fs_info->balance_lock);
3187 fs_info->balance_ctl = NULL;
3188 spin_unlock(&fs_info->balance_lock);
3189
3190 kfree(bctl);
3191 }
3192
3193 /*
3194 * Balance filters. Return 1 if chunk should be filtered out
3195 * (should not be balanced).
3196 */
3197 static int chunk_profiles_filter(u64 chunk_type,
3198 struct btrfs_balance_args *bargs)
3199 {
3200 chunk_type = chunk_to_extended(chunk_type) &
3201 BTRFS_EXTENDED_PROFILE_MASK;
3202
3203 if (bargs->profiles & chunk_type)
3204 return 0;
3205
3206 return 1;
3207 }
3208
3209 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3210 struct btrfs_balance_args *bargs)
3211 {
3212 struct btrfs_block_group_cache *cache;
3213 u64 chunk_used;
3214 u64 user_thresh_min;
3215 u64 user_thresh_max;
3216 int ret = 1;
3217
3218 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3219 chunk_used = btrfs_block_group_used(&cache->item);
3220
3221 if (bargs->usage_min == 0)
3222 user_thresh_min = 0;
3223 else
3224 user_thresh_min = div_factor_fine(cache->key.offset,
3225 bargs->usage_min);
3226
3227 if (bargs->usage_max == 0)
3228 user_thresh_max = 1;
3229 else if (bargs->usage_max > 100)
3230 user_thresh_max = cache->key.offset;
3231 else
3232 user_thresh_max = div_factor_fine(cache->key.offset,
3233 bargs->usage_max);
3234
3235 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3236 ret = 0;
3237
3238 btrfs_put_block_group(cache);
3239 return ret;
3240 }
3241
3242 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3243 u64 chunk_offset, struct btrfs_balance_args *bargs)
3244 {
3245 struct btrfs_block_group_cache *cache;
3246 u64 chunk_used, user_thresh;
3247 int ret = 1;
3248
3249 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3250 chunk_used = btrfs_block_group_used(&cache->item);
3251
3252 if (bargs->usage_min == 0)
3253 user_thresh = 1;
3254 else if (bargs->usage > 100)
3255 user_thresh = cache->key.offset;
3256 else
3257 user_thresh = div_factor_fine(cache->key.offset,
3258 bargs->usage);
3259
3260 if (chunk_used < user_thresh)
3261 ret = 0;
3262
3263 btrfs_put_block_group(cache);
3264 return ret;
3265 }
3266
3267 static int chunk_devid_filter(struct extent_buffer *leaf,
3268 struct btrfs_chunk *chunk,
3269 struct btrfs_balance_args *bargs)
3270 {
3271 struct btrfs_stripe *stripe;
3272 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3273 int i;
3274
3275 for (i = 0; i < num_stripes; i++) {
3276 stripe = btrfs_stripe_nr(chunk, i);
3277 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3278 return 0;
3279 }
3280
3281 return 1;
3282 }
3283
3284 /* [pstart, pend) */
3285 static int chunk_drange_filter(struct extent_buffer *leaf,
3286 struct btrfs_chunk *chunk,
3287 u64 chunk_offset,
3288 struct btrfs_balance_args *bargs)
3289 {
3290 struct btrfs_stripe *stripe;
3291 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3292 u64 stripe_offset;
3293 u64 stripe_length;
3294 int factor;
3295 int i;
3296
3297 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3298 return 0;
3299
3300 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3301 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3302 factor = num_stripes / 2;
3303 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3304 factor = num_stripes - 1;
3305 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3306 factor = num_stripes - 2;
3307 } else {
3308 factor = num_stripes;
3309 }
3310
3311 for (i = 0; i < num_stripes; i++) {
3312 stripe = btrfs_stripe_nr(chunk, i);
3313 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3314 continue;
3315
3316 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3317 stripe_length = btrfs_chunk_length(leaf, chunk);
3318 stripe_length = div_u64(stripe_length, factor);
3319
3320 if (stripe_offset < bargs->pend &&
3321 stripe_offset + stripe_length > bargs->pstart)
3322 return 0;
3323 }
3324
3325 return 1;
3326 }
3327
3328 /* [vstart, vend) */
3329 static int chunk_vrange_filter(struct extent_buffer *leaf,
3330 struct btrfs_chunk *chunk,
3331 u64 chunk_offset,
3332 struct btrfs_balance_args *bargs)
3333 {
3334 if (chunk_offset < bargs->vend &&
3335 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3336 /* at least part of the chunk is inside this vrange */
3337 return 0;
3338
3339 return 1;
3340 }
3341
3342 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3343 struct btrfs_chunk *chunk,
3344 struct btrfs_balance_args *bargs)
3345 {
3346 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3347
3348 if (bargs->stripes_min <= num_stripes
3349 && num_stripes <= bargs->stripes_max)
3350 return 0;
3351
3352 return 1;
3353 }
3354
3355 static int chunk_soft_convert_filter(u64 chunk_type,
3356 struct btrfs_balance_args *bargs)
3357 {
3358 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3359 return 0;
3360
3361 chunk_type = chunk_to_extended(chunk_type) &
3362 BTRFS_EXTENDED_PROFILE_MASK;
3363
3364 if (bargs->target == chunk_type)
3365 return 1;
3366
3367 return 0;
3368 }
3369
3370 static int should_balance_chunk(struct btrfs_root *root,
3371 struct extent_buffer *leaf,
3372 struct btrfs_chunk *chunk, u64 chunk_offset)
3373 {
3374 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3375 struct btrfs_balance_args *bargs = NULL;
3376 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3377
3378 /* type filter */
3379 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3380 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3381 return 0;
3382 }
3383
3384 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3385 bargs = &bctl->data;
3386 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3387 bargs = &bctl->sys;
3388 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3389 bargs = &bctl->meta;
3390
3391 /* profiles filter */
3392 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3393 chunk_profiles_filter(chunk_type, bargs)) {
3394 return 0;
3395 }
3396
3397 /* usage filter */
3398 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3399 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3400 return 0;
3401 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3402 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3403 return 0;
3404 }
3405
3406 /* devid filter */
3407 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3408 chunk_devid_filter(leaf, chunk, bargs)) {
3409 return 0;
3410 }
3411
3412 /* drange filter, makes sense only with devid filter */
3413 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3414 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3415 return 0;
3416 }
3417
3418 /* vrange filter */
3419 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3420 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3421 return 0;
3422 }
3423
3424 /* stripes filter */
3425 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3426 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3427 return 0;
3428 }
3429
3430 /* soft profile changing mode */
3431 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3432 chunk_soft_convert_filter(chunk_type, bargs)) {
3433 return 0;
3434 }
3435
3436 /*
3437 * limited by count, must be the last filter
3438 */
3439 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3440 if (bargs->limit == 0)
3441 return 0;
3442 else
3443 bargs->limit--;
3444 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3445 /*
3446 * Same logic as the 'limit' filter; the minimum cannot be
3447 * determined here because we do not have the global information
3448 * about the count of all chunks that satisfy the filters.
3449 */
3450 if (bargs->limit_max == 0)
3451 return 0;
3452 else
3453 bargs->limit_max--;
3454 }
3455
3456 return 1;
3457 }
3458
3459 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3460 {
3461 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3462 struct btrfs_root *chunk_root = fs_info->chunk_root;
3463 struct btrfs_root *dev_root = fs_info->dev_root;
3464 struct list_head *devices;
3465 struct btrfs_device *device;
3466 u64 old_size;
3467 u64 size_to_free;
3468 u64 chunk_type;
3469 struct btrfs_chunk *chunk;
3470 struct btrfs_path *path = NULL;
3471 struct btrfs_key key;
3472 struct btrfs_key found_key;
3473 struct btrfs_trans_handle *trans;
3474 struct extent_buffer *leaf;
3475 int slot;
3476 int ret;
3477 int enospc_errors = 0;
3478 bool counting = true;
3479 /* The single value limit and min/max limits use the same bytes in the */
3480 u64 limit_data = bctl->data.limit;
3481 u64 limit_meta = bctl->meta.limit;
3482 u64 limit_sys = bctl->sys.limit;
3483 u32 count_data = 0;
3484 u32 count_meta = 0;
3485 u32 count_sys = 0;
3486 int chunk_reserved = 0;
3487 u64 bytes_used = 0;
3488
3489 /* step one make some room on all the devices */
3490 devices = &fs_info->fs_devices->devices;
3491 list_for_each_entry(device, devices, dev_list) {
3492 old_size = btrfs_device_get_total_bytes(device);
3493 size_to_free = div_factor(old_size, 1);
3494 size_to_free = min_t(u64, size_to_free, SZ_1M);
3495 if (!device->writeable ||
3496 btrfs_device_get_total_bytes(device) -
3497 btrfs_device_get_bytes_used(device) > size_to_free ||
3498 device->is_tgtdev_for_dev_replace)
3499 continue;
3500
3501 ret = btrfs_shrink_device(device, old_size - size_to_free);
3502 if (ret == -ENOSPC)
3503 break;
3504 if (ret) {
3505 /* btrfs_shrink_device never returns ret > 0 */
3506 WARN_ON(ret > 0);
3507 goto error;
3508 }
3509
3510 trans = btrfs_start_transaction(dev_root, 0);
3511 if (IS_ERR(trans)) {
3512 ret = PTR_ERR(trans);
3513 btrfs_info_in_rcu(fs_info,
3514 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3515 rcu_str_deref(device->name), ret,
3516 old_size, old_size - size_to_free);
3517 goto error;
3518 }
3519
3520 ret = btrfs_grow_device(trans, device, old_size);
3521 if (ret) {
3522 btrfs_end_transaction(trans, dev_root);
3523 /* btrfs_grow_device never returns ret > 0 */
3524 WARN_ON(ret > 0);
3525 btrfs_info_in_rcu(fs_info,
3526 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3527 rcu_str_deref(device->name), ret,
3528 old_size, old_size - size_to_free);
3529 goto error;
3530 }
3531
3532 btrfs_end_transaction(trans, dev_root);
3533 }
3534
3535 /* step two, relocate all the chunks */
3536 path = btrfs_alloc_path();
3537 if (!path) {
3538 ret = -ENOMEM;
3539 goto error;
3540 }
3541
3542 /* zero out stat counters */
3543 spin_lock(&fs_info->balance_lock);
3544 memset(&bctl->stat, 0, sizeof(bctl->stat));
3545 spin_unlock(&fs_info->balance_lock);
3546 again:
3547 if (!counting) {
3548 /*
3549 * The single value limit and min/max limits use the same bytes
3550 * in the
3551 */
3552 bctl->data.limit = limit_data;
3553 bctl->meta.limit = limit_meta;
3554 bctl->sys.limit = limit_sys;
3555 }
3556 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3557 key.offset = (u64)-1;
3558 key.type = BTRFS_CHUNK_ITEM_KEY;
3559
3560 while (1) {
3561 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3562 atomic_read(&fs_info->balance_cancel_req)) {
3563 ret = -ECANCELED;
3564 goto error;
3565 }
3566
3567 down_read(&fs_info->bg_delete_sem);
3568 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3569 if (ret < 0) {
3570 up_read(&fs_info->bg_delete_sem);
3571 goto error;
3572 }
3573
3574 /*
3575 * this shouldn't happen, it means the last relocate
3576 * failed
3577 */
3578 if (ret == 0)
3579 BUG(); /* FIXME break ? */
3580
3581 ret = btrfs_previous_item(chunk_root, path, 0,
3582 BTRFS_CHUNK_ITEM_KEY);
3583 if (ret) {
3584 up_read(&fs_info->bg_delete_sem);
3585 ret = 0;
3586 break;
3587 }
3588
3589 leaf = path->nodes[0];
3590 slot = path->slots[0];
3591 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3592
3593 if (found_key.objectid != key.objectid) {
3594 up_read(&fs_info->bg_delete_sem);
3595 break;
3596 }
3597
3598 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3599 chunk_type = btrfs_chunk_type(leaf, chunk);
3600
3601 if (!counting) {
3602 spin_lock(&fs_info->balance_lock);
3603 bctl->stat.considered++;
3604 spin_unlock(&fs_info->balance_lock);
3605 }
3606
3607 ret = should_balance_chunk(chunk_root, leaf, chunk,
3608 found_key.offset);
3609
3610 btrfs_release_path(path);
3611 if (!ret) {
3612 up_read(&fs_info->bg_delete_sem);
3613 goto loop;
3614 }
3615
3616 if (counting) {
3617 up_read(&fs_info->bg_delete_sem);
3618 spin_lock(&fs_info->balance_lock);
3619 bctl->stat.expected++;
3620 spin_unlock(&fs_info->balance_lock);
3621
3622 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3623 count_data++;
3624 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3625 count_sys++;
3626 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3627 count_meta++;
3628
3629 goto loop;
3630 }
3631
3632 /*
3633 * Apply limit_min filter, no need to check if the LIMITS
3634 * filter is used, limit_min is 0 by default
3635 */
3636 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3637 count_data < bctl->data.limit_min)
3638 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3639 count_meta < bctl->meta.limit_min)
3640 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3641 count_sys < bctl->sys.limit_min)) {
3642 up_read(&fs_info->bg_delete_sem);
3643 goto loop;
3644 }
3645
3646 ASSERT(fs_info->data_sinfo);
3647 spin_lock(&fs_info->data_sinfo->lock);
3648 bytes_used = fs_info->data_sinfo->bytes_used;
3649 spin_unlock(&fs_info->data_sinfo->lock);
3650
3651 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3652 !chunk_reserved && !bytes_used) {
3653 trans = btrfs_start_transaction(chunk_root, 0);
3654 if (IS_ERR(trans)) {
3655 up_read(&fs_info->bg_delete_sem);
3656 ret = PTR_ERR(trans);
3657 goto error;
3658 }
3659
3660 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3661 BTRFS_BLOCK_GROUP_DATA);
3662 btrfs_end_transaction(trans, chunk_root);
3663 if (ret < 0) {
3664 up_read(&fs_info->bg_delete_sem);
3665 goto error;
3666 }
3667 chunk_reserved = 1;
3668 }
3669
3670 ret = btrfs_relocate_chunk(chunk_root,
3671 found_key.offset);
3672 up_read(&fs_info->bg_delete_sem);
3673 if (ret && ret != -ENOSPC)
3674 goto error;
3675 if (ret == -ENOSPC) {
3676 enospc_errors++;
3677 } else {
3678 spin_lock(&fs_info->balance_lock);
3679 bctl->stat.completed++;
3680 spin_unlock(&fs_info->balance_lock);
3681 }
3682 loop:
3683 if (found_key.offset == 0)
3684 break;
3685 key.offset = found_key.offset - 1;
3686 }
3687
3688 if (counting) {
3689 btrfs_release_path(path);
3690 counting = false;
3691 goto again;
3692 }
3693 error:
3694 btrfs_free_path(path);
3695 if (enospc_errors) {
3696 btrfs_info(fs_info, "%d enospc errors during balance",
3697 enospc_errors);
3698 if (!ret)
3699 ret = -ENOSPC;
3700 }
3701
3702 return ret;
3703 }
3704
3705 /**
3706 * alloc_profile_is_valid - see if a given profile is valid and reduced
3707 * @flags: profile to validate
3708 * @extended: if true @flags is treated as an extended profile
3709 */
3710 static int alloc_profile_is_valid(u64 flags, int extended)
3711 {
3712 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3713 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3714
3715 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3716
3717 /* 1) check that all other bits are zeroed */
3718 if (flags & ~mask)
3719 return 0;
3720
3721 /* 2) see if profile is reduced */
3722 if (flags == 0)
3723 return !extended; /* "0" is valid for usual profiles */
3724
3725 /* true if exactly one bit set */
3726 return (flags & (flags - 1)) == 0;
3727 }
3728
3729 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3730 {
3731 /* cancel requested || normal exit path */
3732 return atomic_read(&fs_info->balance_cancel_req) ||
3733 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3734 atomic_read(&fs_info->balance_cancel_req) == 0);
3735 }
3736
3737 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3738 {
3739 int ret;
3740
3741 unset_balance_control(fs_info);
3742 ret = del_balance_item(fs_info->tree_root);
3743 if (ret)
3744 btrfs_handle_fs_error(fs_info, ret, NULL);
3745
3746 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3747 }
3748
3749 /* Non-zero return value signifies invalidity */
3750 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3751 u64 allowed)
3752 {
3753 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3754 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3755 (bctl_arg->target & ~allowed)));
3756 }
3757
3758 /*
3759 * Should be called with both balance and volume mutexes held
3760 */
3761 int btrfs_balance(struct btrfs_balance_control *bctl,
3762 struct btrfs_ioctl_balance_args *bargs)
3763 {
3764 struct btrfs_fs_info *fs_info = bctl->fs_info;
3765 u64 allowed;
3766 int mixed = 0;
3767 int ret;
3768 u64 num_devices;
3769 unsigned seq;
3770
3771 if (btrfs_fs_closing(fs_info) ||
3772 atomic_read(&fs_info->balance_pause_req) ||
3773 atomic_read(&fs_info->balance_cancel_req)) {
3774 ret = -EINVAL;
3775 goto out;
3776 }
3777
3778 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3779 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3780 mixed = 1;
3781
3782 /*
3783 * In case of mixed groups both data and meta should be picked,
3784 * and identical options should be given for both of them.
3785 */
3786 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3787 if (mixed && (bctl->flags & allowed)) {
3788 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3789 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3790 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3791 btrfs_err(fs_info, "with mixed groups data and "
3792 "metadata balance options must be the same");
3793 ret = -EINVAL;
3794 goto out;
3795 }
3796 }
3797
3798 num_devices = fs_info->fs_devices->num_devices;
3799 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3800 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3801 BUG_ON(num_devices < 1);
3802 num_devices--;
3803 }
3804 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3805 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3806 if (num_devices > 1)
3807 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3808 if (num_devices > 2)
3809 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3810 if (num_devices > 3)
3811 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3812 BTRFS_BLOCK_GROUP_RAID6);
3813 if (validate_convert_profile(&bctl->data, allowed)) {
3814 btrfs_err(fs_info, "unable to start balance with target "
3815 "data profile %llu",
3816 bctl->data.target);
3817 ret = -EINVAL;
3818 goto out;
3819 }
3820 if (validate_convert_profile(&bctl->meta, allowed)) {
3821 btrfs_err(fs_info,
3822 "unable to start balance with target metadata profile %llu",
3823 bctl->meta.target);
3824 ret = -EINVAL;
3825 goto out;
3826 }
3827 if (validate_convert_profile(&bctl->sys, allowed)) {
3828 btrfs_err(fs_info,
3829 "unable to start balance with target system profile %llu",
3830 bctl->sys.target);
3831 ret = -EINVAL;
3832 goto out;
3833 }
3834
3835 /* allow to reduce meta or sys integrity only if force set */
3836 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3837 BTRFS_BLOCK_GROUP_RAID10 |
3838 BTRFS_BLOCK_GROUP_RAID5 |
3839 BTRFS_BLOCK_GROUP_RAID6;
3840 do {
3841 seq = read_seqbegin(&fs_info->profiles_lock);
3842
3843 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3844 (fs_info->avail_system_alloc_bits & allowed) &&
3845 !(bctl->sys.target & allowed)) ||
3846 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3847 (fs_info->avail_metadata_alloc_bits & allowed) &&
3848 !(bctl->meta.target & allowed))) {
3849 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3850 btrfs_info(fs_info, "force reducing metadata integrity");
3851 } else {
3852 btrfs_err(fs_info, "balance will reduce metadata "
3853 "integrity, use force if you want this");
3854 ret = -EINVAL;
3855 goto out;
3856 }
3857 }
3858 } while (read_seqretry(&fs_info->profiles_lock, seq));
3859
3860 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3861 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3862 btrfs_warn(fs_info,
3863 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3864 bctl->meta.target, bctl->data.target);
3865 }
3866
3867 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3868 fs_info->num_tolerated_disk_barrier_failures = min(
3869 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3870 btrfs_get_num_tolerated_disk_barrier_failures(
3871 bctl->sys.target));
3872 }
3873
3874 ret = insert_balance_item(fs_info->tree_root, bctl);
3875 if (ret && ret != -EEXIST)
3876 goto out;
3877
3878 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3879 BUG_ON(ret == -EEXIST);
3880 set_balance_control(bctl);
3881 } else {
3882 BUG_ON(ret != -EEXIST);
3883 spin_lock(&fs_info->balance_lock);
3884 update_balance_args(bctl);
3885 spin_unlock(&fs_info->balance_lock);
3886 }
3887
3888 atomic_inc(&fs_info->balance_running);
3889 mutex_unlock(&fs_info->balance_mutex);
3890
3891 ret = __btrfs_balance(fs_info);
3892
3893 mutex_lock(&fs_info->balance_mutex);
3894 atomic_dec(&fs_info->balance_running);
3895
3896 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3897 fs_info->num_tolerated_disk_barrier_failures =
3898 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3899 }
3900
3901 if (bargs) {
3902 memset(bargs, 0, sizeof(*bargs));
3903 update_ioctl_balance_args(fs_info, 0, bargs);
3904 }
3905
3906 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3907 balance_need_close(fs_info)) {
3908 __cancel_balance(fs_info);
3909 }
3910
3911 wake_up(&fs_info->balance_wait_q);
3912
3913 return ret;
3914 out:
3915 if (bctl->flags & BTRFS_BALANCE_RESUME)
3916 __cancel_balance(fs_info);
3917 else {
3918 kfree(bctl);
3919 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3920 }
3921 return ret;
3922 }
3923
3924 static int balance_kthread(void *data)
3925 {
3926 struct btrfs_fs_info *fs_info = data;
3927 int ret = 0;
3928
3929 mutex_lock(&fs_info->volume_mutex);
3930 mutex_lock(&fs_info->balance_mutex);
3931
3932 if (fs_info->balance_ctl) {
3933 btrfs_info(fs_info, "continuing balance");
3934 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3935 }
3936
3937 mutex_unlock(&fs_info->balance_mutex);
3938 mutex_unlock(&fs_info->volume_mutex);
3939
3940 return ret;
3941 }
3942
3943 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3944 {
3945 struct task_struct *tsk;
3946
3947 spin_lock(&fs_info->balance_lock);
3948 if (!fs_info->balance_ctl) {
3949 spin_unlock(&fs_info->balance_lock);
3950 return 0;
3951 }
3952 spin_unlock(&fs_info->balance_lock);
3953
3954 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3955 btrfs_info(fs_info, "force skipping balance");
3956 return 0;
3957 }
3958
3959 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3960 return PTR_ERR_OR_ZERO(tsk);
3961 }
3962
3963 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3964 {
3965 struct btrfs_balance_control *bctl;
3966 struct btrfs_balance_item *item;
3967 struct btrfs_disk_balance_args disk_bargs;
3968 struct btrfs_path *path;
3969 struct extent_buffer *leaf;
3970 struct btrfs_key key;
3971 int ret;
3972
3973 path = btrfs_alloc_path();
3974 if (!path)
3975 return -ENOMEM;
3976
3977 key.objectid = BTRFS_BALANCE_OBJECTID;
3978 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3979 key.offset = 0;
3980
3981 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3982 if (ret < 0)
3983 goto out;
3984 if (ret > 0) { /* ret = -ENOENT; */
3985 ret = 0;
3986 goto out;
3987 }
3988
3989 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3990 if (!bctl) {
3991 ret = -ENOMEM;
3992 goto out;
3993 }
3994
3995 leaf = path->nodes[0];
3996 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3997
3998 bctl->fs_info = fs_info;
3999 bctl->flags = btrfs_balance_flags(leaf, item);
4000 bctl->flags |= BTRFS_BALANCE_RESUME;
4001
4002 btrfs_balance_data(leaf, item, &disk_bargs);
4003 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4004 btrfs_balance_meta(leaf, item, &disk_bargs);
4005 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4006 btrfs_balance_sys(leaf, item, &disk_bargs);
4007 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4008
4009 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4010
4011 mutex_lock(&fs_info->volume_mutex);
4012 mutex_lock(&fs_info->balance_mutex);
4013
4014 set_balance_control(bctl);
4015
4016 mutex_unlock(&fs_info->balance_mutex);
4017 mutex_unlock(&fs_info->volume_mutex);
4018 out:
4019 btrfs_free_path(path);
4020 return ret;
4021 }
4022
4023 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4024 {
4025 int ret = 0;
4026
4027 mutex_lock(&fs_info->balance_mutex);
4028 if (!fs_info->balance_ctl) {
4029 mutex_unlock(&fs_info->balance_mutex);
4030 return -ENOTCONN;
4031 }
4032
4033 if (atomic_read(&fs_info->balance_running)) {
4034 atomic_inc(&fs_info->balance_pause_req);
4035 mutex_unlock(&fs_info->balance_mutex);
4036
4037 wait_event(fs_info->balance_wait_q,
4038 atomic_read(&fs_info->balance_running) == 0);
4039
4040 mutex_lock(&fs_info->balance_mutex);
4041 /* we are good with balance_ctl ripped off from under us */
4042 BUG_ON(atomic_read(&fs_info->balance_running));
4043 atomic_dec(&fs_info->balance_pause_req);
4044 } else {
4045 ret = -ENOTCONN;
4046 }
4047
4048 mutex_unlock(&fs_info->balance_mutex);
4049 return ret;
4050 }
4051
4052 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4053 {
4054 if (fs_info->sb->s_flags & MS_RDONLY)
4055 return -EROFS;
4056
4057 mutex_lock(&fs_info->balance_mutex);
4058 if (!fs_info->balance_ctl) {
4059 mutex_unlock(&fs_info->balance_mutex);
4060 return -ENOTCONN;
4061 }
4062
4063 atomic_inc(&fs_info->balance_cancel_req);
4064 /*
4065 * if we are running just wait and return, balance item is
4066 * deleted in btrfs_balance in this case
4067 */
4068 if (atomic_read(&fs_info->balance_running)) {
4069 mutex_unlock(&fs_info->balance_mutex);
4070 wait_event(fs_info->balance_wait_q,
4071 atomic_read(&fs_info->balance_running) == 0);
4072 mutex_lock(&fs_info->balance_mutex);
4073 } else {
4074 /* __cancel_balance needs volume_mutex */
4075 mutex_unlock(&fs_info->balance_mutex);
4076 mutex_lock(&fs_info->volume_mutex);
4077 mutex_lock(&fs_info->balance_mutex);
4078
4079 if (fs_info->balance_ctl)
4080 __cancel_balance(fs_info);
4081
4082 mutex_unlock(&fs_info->volume_mutex);
4083 }
4084
4085 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4086 atomic_dec(&fs_info->balance_cancel_req);
4087 mutex_unlock(&fs_info->balance_mutex);
4088 return 0;
4089 }
4090
4091 static int btrfs_uuid_scan_kthread(void *data)
4092 {
4093 struct btrfs_fs_info *fs_info = data;
4094 struct btrfs_root *root = fs_info->tree_root;
4095 struct btrfs_key key;
4096 struct btrfs_key max_key;
4097 struct btrfs_path *path = NULL;
4098 int ret = 0;
4099 struct extent_buffer *eb;
4100 int slot;
4101 struct btrfs_root_item root_item;
4102 u32 item_size;
4103 struct btrfs_trans_handle *trans = NULL;
4104
4105 path = btrfs_alloc_path();
4106 if (!path) {
4107 ret = -ENOMEM;
4108 goto out;
4109 }
4110
4111 key.objectid = 0;
4112 key.type = BTRFS_ROOT_ITEM_KEY;
4113 key.offset = 0;
4114
4115 max_key.objectid = (u64)-1;
4116 max_key.type = BTRFS_ROOT_ITEM_KEY;
4117 max_key.offset = (u64)-1;
4118
4119 while (1) {
4120 ret = btrfs_search_forward(root, &key, path, 0);
4121 if (ret) {
4122 if (ret > 0)
4123 ret = 0;
4124 break;
4125 }
4126
4127 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4128 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4129 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4130 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4131 goto skip;
4132
4133 eb = path->nodes[0];
4134 slot = path->slots[0];
4135 item_size = btrfs_item_size_nr(eb, slot);
4136 if (item_size < sizeof(root_item))
4137 goto skip;
4138
4139 read_extent_buffer(eb, &root_item,
4140 btrfs_item_ptr_offset(eb, slot),
4141 (int)sizeof(root_item));
4142 if (btrfs_root_refs(&root_item) == 0)
4143 goto skip;
4144
4145 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4146 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4147 if (trans)
4148 goto update_tree;
4149
4150 btrfs_release_path(path);
4151 /*
4152 * 1 - subvol uuid item
4153 * 1 - received_subvol uuid item
4154 */
4155 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4156 if (IS_ERR(trans)) {
4157 ret = PTR_ERR(trans);
4158 break;
4159 }
4160 continue;
4161 } else {
4162 goto skip;
4163 }
4164 update_tree:
4165 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4166 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4167 root_item.uuid,
4168 BTRFS_UUID_KEY_SUBVOL,
4169 key.objectid);
4170 if (ret < 0) {
4171 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4172 ret);
4173 break;
4174 }
4175 }
4176
4177 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4178 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4179 root_item.received_uuid,
4180 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4181 key.objectid);
4182 if (ret < 0) {
4183 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4184 ret);
4185 break;
4186 }
4187 }
4188
4189 skip:
4190 if (trans) {
4191 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4192 trans = NULL;
4193 if (ret)
4194 break;
4195 }
4196
4197 btrfs_release_path(path);
4198 if (key.offset < (u64)-1) {
4199 key.offset++;
4200 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4201 key.offset = 0;
4202 key.type = BTRFS_ROOT_ITEM_KEY;
4203 } else if (key.objectid < (u64)-1) {
4204 key.offset = 0;
4205 key.type = BTRFS_ROOT_ITEM_KEY;
4206 key.objectid++;
4207 } else {
4208 break;
4209 }
4210 cond_resched();
4211 }
4212
4213 out:
4214 btrfs_free_path(path);
4215 if (trans && !IS_ERR(trans))
4216 btrfs_end_transaction(trans, fs_info->uuid_root);
4217 if (ret)
4218 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4219 else
4220 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4221 up(&fs_info->uuid_tree_rescan_sem);
4222 return 0;
4223 }
4224
4225 /*
4226 * Callback for btrfs_uuid_tree_iterate().
4227 * returns:
4228 * 0 check succeeded, the entry is not outdated.
4229 * < 0 if an error occurred.
4230 * > 0 if the check failed, which means the caller shall remove the entry.
4231 */
4232 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4233 u8 *uuid, u8 type, u64 subid)
4234 {
4235 struct btrfs_key key;
4236 int ret = 0;
4237 struct btrfs_root *subvol_root;
4238
4239 if (type != BTRFS_UUID_KEY_SUBVOL &&
4240 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4241 goto out;
4242
4243 key.objectid = subid;
4244 key.type = BTRFS_ROOT_ITEM_KEY;
4245 key.offset = (u64)-1;
4246 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4247 if (IS_ERR(subvol_root)) {
4248 ret = PTR_ERR(subvol_root);
4249 if (ret == -ENOENT)
4250 ret = 1;
4251 goto out;
4252 }
4253
4254 switch (type) {
4255 case BTRFS_UUID_KEY_SUBVOL:
4256 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4257 ret = 1;
4258 break;
4259 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4260 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4261 BTRFS_UUID_SIZE))
4262 ret = 1;
4263 break;
4264 }
4265
4266 out:
4267 return ret;
4268 }
4269
4270 static int btrfs_uuid_rescan_kthread(void *data)
4271 {
4272 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4273 int ret;
4274
4275 /*
4276 * 1st step is to iterate through the existing UUID tree and
4277 * to delete all entries that contain outdated data.
4278 * 2nd step is to add all missing entries to the UUID tree.
4279 */
4280 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4281 if (ret < 0) {
4282 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4283 up(&fs_info->uuid_tree_rescan_sem);
4284 return ret;
4285 }
4286 return btrfs_uuid_scan_kthread(data);
4287 }
4288
4289 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4290 {
4291 struct btrfs_trans_handle *trans;
4292 struct btrfs_root *tree_root = fs_info->tree_root;
4293 struct btrfs_root *uuid_root;
4294 struct task_struct *task;
4295 int ret;
4296
4297 /*
4298 * 1 - root node
4299 * 1 - root item
4300 */
4301 trans = btrfs_start_transaction(tree_root, 2);
4302 if (IS_ERR(trans))
4303 return PTR_ERR(trans);
4304
4305 uuid_root = btrfs_create_tree(trans, fs_info,
4306 BTRFS_UUID_TREE_OBJECTID);
4307 if (IS_ERR(uuid_root)) {
4308 ret = PTR_ERR(uuid_root);
4309 btrfs_abort_transaction(trans, ret);
4310 btrfs_end_transaction(trans, tree_root);
4311 return ret;
4312 }
4313
4314 fs_info->uuid_root = uuid_root;
4315
4316 ret = btrfs_commit_transaction(trans, tree_root);
4317 if (ret)
4318 return ret;
4319
4320 down(&fs_info->uuid_tree_rescan_sem);
4321 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4322 if (IS_ERR(task)) {
4323 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4324 btrfs_warn(fs_info, "failed to start uuid_scan task");
4325 up(&fs_info->uuid_tree_rescan_sem);
4326 return PTR_ERR(task);
4327 }
4328
4329 return 0;
4330 }
4331
4332 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4333 {
4334 struct task_struct *task;
4335
4336 down(&fs_info->uuid_tree_rescan_sem);
4337 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4338 if (IS_ERR(task)) {
4339 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4340 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4341 up(&fs_info->uuid_tree_rescan_sem);
4342 return PTR_ERR(task);
4343 }
4344
4345 return 0;
4346 }
4347
4348 /*
4349 * shrinking a device means finding all of the device extents past
4350 * the new size, and then following the back refs to the chunks.
4351 * The chunk relocation code actually frees the device extent
4352 */
4353 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4354 {
4355 struct btrfs_trans_handle *trans;
4356 struct btrfs_root *root = device->dev_root;
4357 struct btrfs_dev_extent *dev_extent = NULL;
4358 struct btrfs_path *path;
4359 u64 length;
4360 u64 chunk_offset;
4361 int ret;
4362 int slot;
4363 int failed = 0;
4364 bool retried = false;
4365 bool checked_pending_chunks = false;
4366 struct extent_buffer *l;
4367 struct btrfs_key key;
4368 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4369 u64 old_total = btrfs_super_total_bytes(super_copy);
4370 u64 old_size = btrfs_device_get_total_bytes(device);
4371 u64 diff = old_size - new_size;
4372
4373 if (device->is_tgtdev_for_dev_replace)
4374 return -EINVAL;
4375
4376 path = btrfs_alloc_path();
4377 if (!path)
4378 return -ENOMEM;
4379
4380 path->reada = READA_FORWARD;
4381
4382 lock_chunks(root);
4383
4384 btrfs_device_set_total_bytes(device, new_size);
4385 if (device->writeable) {
4386 device->fs_devices->total_rw_bytes -= diff;
4387 spin_lock(&root->fs_info->free_chunk_lock);
4388 root->fs_info->free_chunk_space -= diff;
4389 spin_unlock(&root->fs_info->free_chunk_lock);
4390 }
4391 unlock_chunks(root);
4392
4393 again:
4394 key.objectid = device->devid;
4395 key.offset = (u64)-1;
4396 key.type = BTRFS_DEV_EXTENT_KEY;
4397
4398 do {
4399 down_read(&root->fs_info->bg_delete_sem);
4400 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4401 if (ret < 0) {
4402 up_read(&root->fs_info->bg_delete_sem);
4403 goto done;
4404 }
4405
4406 ret = btrfs_previous_item(root, path, 0, key.type);
4407 if (ret)
4408 up_read(&root->fs_info->bg_delete_sem);
4409 if (ret < 0)
4410 goto done;
4411 if (ret) {
4412 ret = 0;
4413 btrfs_release_path(path);
4414 break;
4415 }
4416
4417 l = path->nodes[0];
4418 slot = path->slots[0];
4419 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4420
4421 if (key.objectid != device->devid) {
4422 up_read(&root->fs_info->bg_delete_sem);
4423 btrfs_release_path(path);
4424 break;
4425 }
4426
4427 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4428 length = btrfs_dev_extent_length(l, dev_extent);
4429
4430 if (key.offset + length <= new_size) {
4431 up_read(&root->fs_info->bg_delete_sem);
4432 btrfs_release_path(path);
4433 break;
4434 }
4435
4436 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4437 btrfs_release_path(path);
4438
4439 ret = btrfs_relocate_chunk(root, chunk_offset);
4440 up_read(&root->fs_info->bg_delete_sem);
4441 if (ret && ret != -ENOSPC)
4442 goto done;
4443 if (ret == -ENOSPC)
4444 failed++;
4445 } while (key.offset-- > 0);
4446
4447 if (failed && !retried) {
4448 failed = 0;
4449 retried = true;
4450 goto again;
4451 } else if (failed && retried) {
4452 ret = -ENOSPC;
4453 goto done;
4454 }
4455
4456 /* Shrinking succeeded, else we would be at "done". */
4457 trans = btrfs_start_transaction(root, 0);
4458 if (IS_ERR(trans)) {
4459 ret = PTR_ERR(trans);
4460 goto done;
4461 }
4462
4463 lock_chunks(root);
4464
4465 /*
4466 * We checked in the above loop all device extents that were already in
4467 * the device tree. However before we have updated the device's
4468 * total_bytes to the new size, we might have had chunk allocations that
4469 * have not complete yet (new block groups attached to transaction
4470 * handles), and therefore their device extents were not yet in the
4471 * device tree and we missed them in the loop above. So if we have any
4472 * pending chunk using a device extent that overlaps the device range
4473 * that we can not use anymore, commit the current transaction and
4474 * repeat the search on the device tree - this way we guarantee we will
4475 * not have chunks using device extents that end beyond 'new_size'.
4476 */
4477 if (!checked_pending_chunks) {
4478 u64 start = new_size;
4479 u64 len = old_size - new_size;
4480
4481 if (contains_pending_extent(trans->transaction, device,
4482 &start, len)) {
4483 unlock_chunks(root);
4484 checked_pending_chunks = true;
4485 failed = 0;
4486 retried = false;
4487 ret = btrfs_commit_transaction(trans, root);
4488 if (ret)
4489 goto done;
4490 goto again;
4491 }
4492 }
4493
4494 btrfs_device_set_disk_total_bytes(device, new_size);
4495 if (list_empty(&device->resized_list))
4496 list_add_tail(&device->resized_list,
4497 &root->fs_info->fs_devices->resized_devices);
4498
4499 WARN_ON(diff > old_total);
4500 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4501 unlock_chunks(root);
4502
4503 /* Now btrfs_update_device() will change the on-disk size. */
4504 ret = btrfs_update_device(trans, device);
4505 btrfs_end_transaction(trans, root);
4506 done:
4507 btrfs_free_path(path);
4508 if (ret) {
4509 lock_chunks(root);
4510 btrfs_device_set_total_bytes(device, old_size);
4511 if (device->writeable)
4512 device->fs_devices->total_rw_bytes += diff;
4513 spin_lock(&root->fs_info->free_chunk_lock);
4514 root->fs_info->free_chunk_space += diff;
4515 spin_unlock(&root->fs_info->free_chunk_lock);
4516 unlock_chunks(root);
4517 }
4518 return ret;
4519 }
4520
4521 static int btrfs_add_system_chunk(struct btrfs_root *root,
4522 struct btrfs_key *key,
4523 struct btrfs_chunk *chunk, int item_size)
4524 {
4525 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4526 struct btrfs_disk_key disk_key;
4527 u32 array_size;
4528 u8 *ptr;
4529
4530 lock_chunks(root);
4531 array_size = btrfs_super_sys_array_size(super_copy);
4532 if (array_size + item_size + sizeof(disk_key)
4533 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4534 unlock_chunks(root);
4535 return -EFBIG;
4536 }
4537
4538 ptr = super_copy->sys_chunk_array + array_size;
4539 btrfs_cpu_key_to_disk(&disk_key, key);
4540 memcpy(ptr, &disk_key, sizeof(disk_key));
4541 ptr += sizeof(disk_key);
4542 memcpy(ptr, chunk, item_size);
4543 item_size += sizeof(disk_key);
4544 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4545 unlock_chunks(root);
4546
4547 return 0;
4548 }
4549
4550 /*
4551 * sort the devices in descending order by max_avail, total_avail
4552 */
4553 static int btrfs_cmp_device_info(const void *a, const void *b)
4554 {
4555 const struct btrfs_device_info *di_a = a;
4556 const struct btrfs_device_info *di_b = b;
4557
4558 if (di_a->max_avail > di_b->max_avail)
4559 return -1;
4560 if (di_a->max_avail < di_b->max_avail)
4561 return 1;
4562 if (di_a->total_avail > di_b->total_avail)
4563 return -1;
4564 if (di_a->total_avail < di_b->total_avail)
4565 return 1;
4566 return 0;
4567 }
4568
4569 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4570 {
4571 /* TODO allow them to set a preferred stripe size */
4572 return SZ_64K;
4573 }
4574
4575 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4576 {
4577 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4578 return;
4579
4580 btrfs_set_fs_incompat(info, RAID56);
4581 }
4582
4583 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r) \
4584 - sizeof(struct btrfs_chunk)) \
4585 / sizeof(struct btrfs_stripe) + 1)
4586
4587 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4588 - 2 * sizeof(struct btrfs_disk_key) \
4589 - 2 * sizeof(struct btrfs_chunk)) \
4590 / sizeof(struct btrfs_stripe) + 1)
4591
4592 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4593 struct btrfs_root *extent_root, u64 start,
4594 u64 type)
4595 {
4596 struct btrfs_fs_info *info = extent_root->fs_info;
4597 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4598 struct list_head *cur;
4599 struct map_lookup *map = NULL;
4600 struct extent_map_tree *em_tree;
4601 struct extent_map *em;
4602 struct btrfs_device_info *devices_info = NULL;
4603 u64 total_avail;
4604 int num_stripes; /* total number of stripes to allocate */
4605 int data_stripes; /* number of stripes that count for
4606 block group size */
4607 int sub_stripes; /* sub_stripes info for map */
4608 int dev_stripes; /* stripes per dev */
4609 int devs_max; /* max devs to use */
4610 int devs_min; /* min devs needed */
4611 int devs_increment; /* ndevs has to be a multiple of this */
4612 int ncopies; /* how many copies to data has */
4613 int ret;
4614 u64 max_stripe_size;
4615 u64 max_chunk_size;
4616 u64 stripe_size;
4617 u64 num_bytes;
4618 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4619 int ndevs;
4620 int i;
4621 int j;
4622 int index;
4623
4624 BUG_ON(!alloc_profile_is_valid(type, 0));
4625
4626 if (list_empty(&fs_devices->alloc_list))
4627 return -ENOSPC;
4628
4629 index = __get_raid_index(type);
4630
4631 sub_stripes = btrfs_raid_array[index].sub_stripes;
4632 dev_stripes = btrfs_raid_array[index].dev_stripes;
4633 devs_max = btrfs_raid_array[index].devs_max;
4634 devs_min = btrfs_raid_array[index].devs_min;
4635 devs_increment = btrfs_raid_array[index].devs_increment;
4636 ncopies = btrfs_raid_array[index].ncopies;
4637
4638 if (type & BTRFS_BLOCK_GROUP_DATA) {
4639 max_stripe_size = SZ_1G;
4640 max_chunk_size = 10 * max_stripe_size;
4641 if (!devs_max)
4642 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4643 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4644 /* for larger filesystems, use larger metadata chunks */
4645 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4646 max_stripe_size = SZ_1G;
4647 else
4648 max_stripe_size = SZ_256M;
4649 max_chunk_size = max_stripe_size;
4650 if (!devs_max)
4651 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4652 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4653 max_stripe_size = SZ_32M;
4654 max_chunk_size = 2 * max_stripe_size;
4655 if (!devs_max)
4656 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4657 } else {
4658 btrfs_err(info, "invalid chunk type 0x%llx requested",
4659 type);
4660 BUG_ON(1);
4661 }
4662
4663 /* we don't want a chunk larger than 10% of writeable space */
4664 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4665 max_chunk_size);
4666
4667 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4668 GFP_NOFS);
4669 if (!devices_info)
4670 return -ENOMEM;
4671
4672 cur = fs_devices->alloc_list.next;
4673
4674 /*
4675 * in the first pass through the devices list, we gather information
4676 * about the available holes on each device.
4677 */
4678 ndevs = 0;
4679 while (cur != &fs_devices->alloc_list) {
4680 struct btrfs_device *device;
4681 u64 max_avail;
4682 u64 dev_offset;
4683
4684 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4685
4686 cur = cur->next;
4687
4688 if (!device->writeable) {
4689 WARN(1, KERN_ERR
4690 "BTRFS: read-only device in alloc_list\n");
4691 continue;
4692 }
4693
4694 if (!device->in_fs_metadata ||
4695 device->is_tgtdev_for_dev_replace)
4696 continue;
4697
4698 if (device->total_bytes > device->bytes_used)
4699 total_avail = device->total_bytes - device->bytes_used;
4700 else
4701 total_avail = 0;
4702
4703 /* If there is no space on this device, skip it. */
4704 if (total_avail == 0)
4705 continue;
4706
4707 ret = find_free_dev_extent(trans, device,
4708 max_stripe_size * dev_stripes,
4709 &dev_offset, &max_avail);
4710 if (ret && ret != -ENOSPC)
4711 goto error;
4712
4713 if (ret == 0)
4714 max_avail = max_stripe_size * dev_stripes;
4715
4716 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4717 continue;
4718
4719 if (ndevs == fs_devices->rw_devices) {
4720 WARN(1, "%s: found more than %llu devices\n",
4721 __func__, fs_devices->rw_devices);
4722 break;
4723 }
4724 devices_info[ndevs].dev_offset = dev_offset;
4725 devices_info[ndevs].max_avail = max_avail;
4726 devices_info[ndevs].total_avail = total_avail;
4727 devices_info[ndevs].dev = device;
4728 ++ndevs;
4729 }
4730
4731 /*
4732 * now sort the devices by hole size / available space
4733 */
4734 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4735 btrfs_cmp_device_info, NULL);
4736
4737 /* round down to number of usable stripes */
4738 ndevs -= ndevs % devs_increment;
4739
4740 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4741 ret = -ENOSPC;
4742 goto error;
4743 }
4744
4745 if (devs_max && ndevs > devs_max)
4746 ndevs = devs_max;
4747 /*
4748 * the primary goal is to maximize the number of stripes, so use as many
4749 * devices as possible, even if the stripes are not maximum sized.
4750 */
4751 stripe_size = devices_info[ndevs-1].max_avail;
4752 num_stripes = ndevs * dev_stripes;
4753
4754 /*
4755 * this will have to be fixed for RAID1 and RAID10 over
4756 * more drives
4757 */
4758 data_stripes = num_stripes / ncopies;
4759
4760 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4761 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4762 extent_root->stripesize);
4763 data_stripes = num_stripes - 1;
4764 }
4765 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4766 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4767 extent_root->stripesize);
4768 data_stripes = num_stripes - 2;
4769 }
4770
4771 /*
4772 * Use the number of data stripes to figure out how big this chunk
4773 * is really going to be in terms of logical address space,
4774 * and compare that answer with the max chunk size
4775 */
4776 if (stripe_size * data_stripes > max_chunk_size) {
4777 u64 mask = (1ULL << 24) - 1;
4778
4779 stripe_size = div_u64(max_chunk_size, data_stripes);
4780
4781 /* bump the answer up to a 16MB boundary */
4782 stripe_size = (stripe_size + mask) & ~mask;
4783
4784 /* but don't go higher than the limits we found
4785 * while searching for free extents
4786 */
4787 if (stripe_size > devices_info[ndevs-1].max_avail)
4788 stripe_size = devices_info[ndevs-1].max_avail;
4789 }
4790
4791 stripe_size = div_u64(stripe_size, dev_stripes);
4792
4793 /* align to BTRFS_STRIPE_LEN */
4794 stripe_size = div_u64(stripe_size, raid_stripe_len);
4795 stripe_size *= raid_stripe_len;
4796
4797 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4798 if (!map) {
4799 ret = -ENOMEM;
4800 goto error;
4801 }
4802 map->num_stripes = num_stripes;
4803
4804 for (i = 0; i < ndevs; ++i) {
4805 for (j = 0; j < dev_stripes; ++j) {
4806 int s = i * dev_stripes + j;
4807 map->stripes[s].dev = devices_info[i].dev;
4808 map->stripes[s].physical = devices_info[i].dev_offset +
4809 j * stripe_size;
4810 }
4811 }
4812 map->sector_size = extent_root->sectorsize;
4813 map->stripe_len = raid_stripe_len;
4814 map->io_align = raid_stripe_len;
4815 map->io_width = raid_stripe_len;
4816 map->type = type;
4817 map->sub_stripes = sub_stripes;
4818
4819 num_bytes = stripe_size * data_stripes;
4820
4821 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4822
4823 em = alloc_extent_map();
4824 if (!em) {
4825 kfree(map);
4826 ret = -ENOMEM;
4827 goto error;
4828 }
4829 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4830 em->map_lookup = map;
4831 em->start = start;
4832 em->len = num_bytes;
4833 em->block_start = 0;
4834 em->block_len = em->len;
4835 em->orig_block_len = stripe_size;
4836
4837 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4838 write_lock(&em_tree->lock);
4839 ret = add_extent_mapping(em_tree, em, 0);
4840 if (!ret) {
4841 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4842 atomic_inc(&em->refs);
4843 }
4844 write_unlock(&em_tree->lock);
4845 if (ret) {
4846 free_extent_map(em);
4847 goto error;
4848 }
4849
4850 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4851 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4852 start, num_bytes);
4853 if (ret)
4854 goto error_del_extent;
4855
4856 for (i = 0; i < map->num_stripes; i++) {
4857 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4858 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4859 }
4860
4861 spin_lock(&extent_root->fs_info->free_chunk_lock);
4862 extent_root->fs_info->free_chunk_space -= (stripe_size *
4863 map->num_stripes);
4864 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4865
4866 free_extent_map(em);
4867 check_raid56_incompat_flag(extent_root->fs_info, type);
4868
4869 kfree(devices_info);
4870 return 0;
4871
4872 error_del_extent:
4873 write_lock(&em_tree->lock);
4874 remove_extent_mapping(em_tree, em);
4875 write_unlock(&em_tree->lock);
4876
4877 /* One for our allocation */
4878 free_extent_map(em);
4879 /* One for the tree reference */
4880 free_extent_map(em);
4881 /* One for the pending_chunks list reference */
4882 free_extent_map(em);
4883 error:
4884 kfree(devices_info);
4885 return ret;
4886 }
4887
4888 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4889 struct btrfs_root *extent_root,
4890 u64 chunk_offset, u64 chunk_size)
4891 {
4892 struct btrfs_key key;
4893 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4894 struct btrfs_device *device;
4895 struct btrfs_chunk *chunk;
4896 struct btrfs_stripe *stripe;
4897 struct extent_map_tree *em_tree;
4898 struct extent_map *em;
4899 struct map_lookup *map;
4900 size_t item_size;
4901 u64 dev_offset;
4902 u64 stripe_size;
4903 int i = 0;
4904 int ret = 0;
4905
4906 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4907 read_lock(&em_tree->lock);
4908 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4909 read_unlock(&em_tree->lock);
4910
4911 if (!em) {
4912 btrfs_crit(extent_root->fs_info, "unable to find logical "
4913 "%Lu len %Lu", chunk_offset, chunk_size);
4914 return -EINVAL;
4915 }
4916
4917 if (em->start != chunk_offset || em->len != chunk_size) {
4918 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4919 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4920 chunk_size, em->start, em->len);
4921 free_extent_map(em);
4922 return -EINVAL;
4923 }
4924
4925 map = em->map_lookup;
4926 item_size = btrfs_chunk_item_size(map->num_stripes);
4927 stripe_size = em->orig_block_len;
4928
4929 chunk = kzalloc(item_size, GFP_NOFS);
4930 if (!chunk) {
4931 ret = -ENOMEM;
4932 goto out;
4933 }
4934
4935 /*
4936 * Take the device list mutex to prevent races with the final phase of
4937 * a device replace operation that replaces the device object associated
4938 * with the map's stripes, because the device object's id can change
4939 * at any time during that final phase of the device replace operation
4940 * (dev-replace.c:btrfs_dev_replace_finishing()).
4941 */
4942 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4943 for (i = 0; i < map->num_stripes; i++) {
4944 device = map->stripes[i].dev;
4945 dev_offset = map->stripes[i].physical;
4946
4947 ret = btrfs_update_device(trans, device);
4948 if (ret)
4949 break;
4950 ret = btrfs_alloc_dev_extent(trans, device,
4951 chunk_root->root_key.objectid,
4952 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4953 chunk_offset, dev_offset,
4954 stripe_size);
4955 if (ret)
4956 break;
4957 }
4958 if (ret) {
4959 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4960 goto out;
4961 }
4962
4963 stripe = &chunk->stripe;
4964 for (i = 0; i < map->num_stripes; i++) {
4965 device = map->stripes[i].dev;
4966 dev_offset = map->stripes[i].physical;
4967
4968 btrfs_set_stack_stripe_devid(stripe, device->devid);
4969 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4970 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4971 stripe++;
4972 }
4973 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4974
4975 btrfs_set_stack_chunk_length(chunk, chunk_size);
4976 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4977 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4978 btrfs_set_stack_chunk_type(chunk, map->type);
4979 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4980 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4981 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4982 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4983 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4984
4985 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4986 key.type = BTRFS_CHUNK_ITEM_KEY;
4987 key.offset = chunk_offset;
4988
4989 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4990 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4991 /*
4992 * TODO: Cleanup of inserted chunk root in case of
4993 * failure.
4994 */
4995 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4996 item_size);
4997 }
4998
4999 out:
5000 kfree(chunk);
5001 free_extent_map(em);
5002 return ret;
5003 }
5004
5005 /*
5006 * Chunk allocation falls into two parts. The first part does works
5007 * that make the new allocated chunk useable, but not do any operation
5008 * that modifies the chunk tree. The second part does the works that
5009 * require modifying the chunk tree. This division is important for the
5010 * bootstrap process of adding storage to a seed btrfs.
5011 */
5012 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5013 struct btrfs_root *extent_root, u64 type)
5014 {
5015 u64 chunk_offset;
5016
5017 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5018 chunk_offset = find_next_chunk(extent_root->fs_info);
5019 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5020 }
5021
5022 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5023 struct btrfs_root *root,
5024 struct btrfs_device *device)
5025 {
5026 u64 chunk_offset;
5027 u64 sys_chunk_offset;
5028 u64 alloc_profile;
5029 struct btrfs_fs_info *fs_info = root->fs_info;
5030 struct btrfs_root *extent_root = fs_info->extent_root;
5031 int ret;
5032
5033 chunk_offset = find_next_chunk(fs_info);
5034 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5035 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5036 alloc_profile);
5037 if (ret)
5038 return ret;
5039
5040 sys_chunk_offset = find_next_chunk(root->fs_info);
5041 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5042 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5043 alloc_profile);
5044 return ret;
5045 }
5046
5047 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5048 {
5049 int max_errors;
5050
5051 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5052 BTRFS_BLOCK_GROUP_RAID10 |
5053 BTRFS_BLOCK_GROUP_RAID5 |
5054 BTRFS_BLOCK_GROUP_DUP)) {
5055 max_errors = 1;
5056 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5057 max_errors = 2;
5058 } else {
5059 max_errors = 0;
5060 }
5061
5062 return max_errors;
5063 }
5064
5065 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5066 {
5067 struct extent_map *em;
5068 struct map_lookup *map;
5069 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5070 int readonly = 0;
5071 int miss_ndevs = 0;
5072 int i;
5073
5074 read_lock(&map_tree->map_tree.lock);
5075 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5076 read_unlock(&map_tree->map_tree.lock);
5077 if (!em)
5078 return 1;
5079
5080 map = em->map_lookup;
5081 for (i = 0; i < map->num_stripes; i++) {
5082 if (map->stripes[i].dev->missing) {
5083 miss_ndevs++;
5084 continue;
5085 }
5086
5087 if (!map->stripes[i].dev->writeable) {
5088 readonly = 1;
5089 goto end;
5090 }
5091 }
5092
5093 /*
5094 * If the number of missing devices is larger than max errors,
5095 * we can not write the data into that chunk successfully, so
5096 * set it readonly.
5097 */
5098 if (miss_ndevs > btrfs_chunk_max_errors(map))
5099 readonly = 1;
5100 end:
5101 free_extent_map(em);
5102 return readonly;
5103 }
5104
5105 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5106 {
5107 extent_map_tree_init(&tree->map_tree);
5108 }
5109
5110 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5111 {
5112 struct extent_map *em;
5113
5114 while (1) {
5115 write_lock(&tree->map_tree.lock);
5116 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5117 if (em)
5118 remove_extent_mapping(&tree->map_tree, em);
5119 write_unlock(&tree->map_tree.lock);
5120 if (!em)
5121 break;
5122 /* once for us */
5123 free_extent_map(em);
5124 /* once for the tree */
5125 free_extent_map(em);
5126 }
5127 }
5128
5129 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5130 {
5131 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5132 struct extent_map *em;
5133 struct map_lookup *map;
5134 struct extent_map_tree *em_tree = &map_tree->map_tree;
5135 int ret;
5136
5137 read_lock(&em_tree->lock);
5138 em = lookup_extent_mapping(em_tree, logical, len);
5139 read_unlock(&em_tree->lock);
5140
5141 /*
5142 * We could return errors for these cases, but that could get ugly and
5143 * we'd probably do the same thing which is just not do anything else
5144 * and exit, so return 1 so the callers don't try to use other copies.
5145 */
5146 if (!em) {
5147 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5148 logical+len);
5149 return 1;
5150 }
5151
5152 if (em->start > logical || em->start + em->len < logical) {
5153 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5154 "%Lu-%Lu", logical, logical+len, em->start,
5155 em->start + em->len);
5156 free_extent_map(em);
5157 return 1;
5158 }
5159
5160 map = em->map_lookup;
5161 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5162 ret = map->num_stripes;
5163 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5164 ret = map->sub_stripes;
5165 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5166 ret = 2;
5167 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5168 ret = 3;
5169 else
5170 ret = 1;
5171 free_extent_map(em);
5172
5173 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5174 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5175 ret++;
5176 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5177
5178 return ret;
5179 }
5180
5181 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5182 struct btrfs_mapping_tree *map_tree,
5183 u64 logical)
5184 {
5185 struct extent_map *em;
5186 struct map_lookup *map;
5187 struct extent_map_tree *em_tree = &map_tree->map_tree;
5188 unsigned long len = root->sectorsize;
5189
5190 read_lock(&em_tree->lock);
5191 em = lookup_extent_mapping(em_tree, logical, len);
5192 read_unlock(&em_tree->lock);
5193 BUG_ON(!em);
5194
5195 BUG_ON(em->start > logical || em->start + em->len < logical);
5196 map = em->map_lookup;
5197 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5198 len = map->stripe_len * nr_data_stripes(map);
5199 free_extent_map(em);
5200 return len;
5201 }
5202
5203 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5204 u64 logical, u64 len, int mirror_num)
5205 {
5206 struct extent_map *em;
5207 struct map_lookup *map;
5208 struct extent_map_tree *em_tree = &map_tree->map_tree;
5209 int ret = 0;
5210
5211 read_lock(&em_tree->lock);
5212 em = lookup_extent_mapping(em_tree, logical, len);
5213 read_unlock(&em_tree->lock);
5214 BUG_ON(!em);
5215
5216 BUG_ON(em->start > logical || em->start + em->len < logical);
5217 map = em->map_lookup;
5218 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5219 ret = 1;
5220 free_extent_map(em);
5221 return ret;
5222 }
5223
5224 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5225 struct map_lookup *map, int first, int num,
5226 int optimal, int dev_replace_is_ongoing)
5227 {
5228 int i;
5229 int tolerance;
5230 struct btrfs_device *srcdev;
5231
5232 if (dev_replace_is_ongoing &&
5233 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5234 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5235 srcdev = fs_info->dev_replace.srcdev;
5236 else
5237 srcdev = NULL;
5238
5239 /*
5240 * try to avoid the drive that is the source drive for a
5241 * dev-replace procedure, only choose it if no other non-missing
5242 * mirror is available
5243 */
5244 for (tolerance = 0; tolerance < 2; tolerance++) {
5245 if (map->stripes[optimal].dev->bdev &&
5246 (tolerance || map->stripes[optimal].dev != srcdev))
5247 return optimal;
5248 for (i = first; i < first + num; i++) {
5249 if (map->stripes[i].dev->bdev &&
5250 (tolerance || map->stripes[i].dev != srcdev))
5251 return i;
5252 }
5253 }
5254
5255 /* we couldn't find one that doesn't fail. Just return something
5256 * and the io error handling code will clean up eventually
5257 */
5258 return optimal;
5259 }
5260
5261 static inline int parity_smaller(u64 a, u64 b)
5262 {
5263 return a > b;
5264 }
5265
5266 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5267 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5268 {
5269 struct btrfs_bio_stripe s;
5270 int i;
5271 u64 l;
5272 int again = 1;
5273
5274 while (again) {
5275 again = 0;
5276 for (i = 0; i < num_stripes - 1; i++) {
5277 if (parity_smaller(bbio->raid_map[i],
5278 bbio->raid_map[i+1])) {
5279 s = bbio->stripes[i];
5280 l = bbio->raid_map[i];
5281 bbio->stripes[i] = bbio->stripes[i+1];
5282 bbio->raid_map[i] = bbio->raid_map[i+1];
5283 bbio->stripes[i+1] = s;
5284 bbio->raid_map[i+1] = l;
5285
5286 again = 1;
5287 }
5288 }
5289 }
5290 }
5291
5292 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5293 {
5294 struct btrfs_bio *bbio = kzalloc(
5295 /* the size of the btrfs_bio */
5296 sizeof(struct btrfs_bio) +
5297 /* plus the variable array for the stripes */
5298 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5299 /* plus the variable array for the tgt dev */
5300 sizeof(int) * (real_stripes) +
5301 /*
5302 * plus the raid_map, which includes both the tgt dev
5303 * and the stripes
5304 */
5305 sizeof(u64) * (total_stripes),
5306 GFP_NOFS|__GFP_NOFAIL);
5307
5308 atomic_set(&bbio->error, 0);
5309 atomic_set(&bbio->refs, 1);
5310
5311 return bbio;
5312 }
5313
5314 void btrfs_get_bbio(struct btrfs_bio *bbio)
5315 {
5316 WARN_ON(!atomic_read(&bbio->refs));
5317 atomic_inc(&bbio->refs);
5318 }
5319
5320 void btrfs_put_bbio(struct btrfs_bio *bbio)
5321 {
5322 if (!bbio)
5323 return;
5324 if (atomic_dec_and_test(&bbio->refs))
5325 kfree(bbio);
5326 }
5327
5328 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5329 u64 logical, u64 *length,
5330 struct btrfs_bio **bbio_ret,
5331 int mirror_num, int need_raid_map)
5332 {
5333 struct extent_map *em;
5334 struct map_lookup *map;
5335 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5336 struct extent_map_tree *em_tree = &map_tree->map_tree;
5337 u64 offset;
5338 u64 stripe_offset;
5339 u64 stripe_end_offset;
5340 u64 stripe_nr;
5341 u64 stripe_nr_orig;
5342 u64 stripe_nr_end;
5343 u64 stripe_len;
5344 u32 stripe_index;
5345 int i;
5346 int ret = 0;
5347 int num_stripes;
5348 int max_errors = 0;
5349 int tgtdev_indexes = 0;
5350 struct btrfs_bio *bbio = NULL;
5351 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5352 int dev_replace_is_ongoing = 0;
5353 int num_alloc_stripes;
5354 int patch_the_first_stripe_for_dev_replace = 0;
5355 u64 physical_to_patch_in_first_stripe = 0;
5356 u64 raid56_full_stripe_start = (u64)-1;
5357
5358 read_lock(&em_tree->lock);
5359 em = lookup_extent_mapping(em_tree, logical, *length);
5360 read_unlock(&em_tree->lock);
5361
5362 if (!em) {
5363 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5364 logical, *length);
5365 return -EINVAL;
5366 }
5367
5368 if (em->start > logical || em->start + em->len < logical) {
5369 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5370 "found %Lu-%Lu", logical, em->start,
5371 em->start + em->len);
5372 free_extent_map(em);
5373 return -EINVAL;
5374 }
5375
5376 map = em->map_lookup;
5377 offset = logical - em->start;
5378
5379 stripe_len = map->stripe_len;
5380 stripe_nr = offset;
5381 /*
5382 * stripe_nr counts the total number of stripes we have to stride
5383 * to get to this block
5384 */
5385 stripe_nr = div64_u64(stripe_nr, stripe_len);
5386
5387 stripe_offset = stripe_nr * stripe_len;
5388 if (offset < stripe_offset) {
5389 btrfs_crit(fs_info, "stripe math has gone wrong, "
5390 "stripe_offset=%llu, offset=%llu, start=%llu, "
5391 "logical=%llu, stripe_len=%llu",
5392 stripe_offset, offset, em->start, logical,
5393 stripe_len);
5394 free_extent_map(em);
5395 return -EINVAL;
5396 }
5397
5398 /* stripe_offset is the offset of this block in its stripe*/
5399 stripe_offset = offset - stripe_offset;
5400
5401 /* if we're here for raid56, we need to know the stripe aligned start */
5402 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5403 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5404 raid56_full_stripe_start = offset;
5405
5406 /* allow a write of a full stripe, but make sure we don't
5407 * allow straddling of stripes
5408 */
5409 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5410 full_stripe_len);
5411 raid56_full_stripe_start *= full_stripe_len;
5412 }
5413
5414 if (op == REQ_OP_DISCARD) {
5415 /* we don't discard raid56 yet */
5416 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5417 ret = -EOPNOTSUPP;
5418 goto out;
5419 }
5420 *length = min_t(u64, em->len - offset, *length);
5421 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5422 u64 max_len;
5423 /* For writes to RAID[56], allow a full stripeset across all disks.
5424 For other RAID types and for RAID[56] reads, just allow a single
5425 stripe (on a single disk). */
5426 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5427 (op == REQ_OP_WRITE)) {
5428 max_len = stripe_len * nr_data_stripes(map) -
5429 (offset - raid56_full_stripe_start);
5430 } else {
5431 /* we limit the length of each bio to what fits in a stripe */
5432 max_len = stripe_len - stripe_offset;
5433 }
5434 *length = min_t(u64, em->len - offset, max_len);
5435 } else {
5436 *length = em->len - offset;
5437 }
5438
5439 /* This is for when we're called from btrfs_merge_bio_hook() and all
5440 it cares about is the length */
5441 if (!bbio_ret)
5442 goto out;
5443
5444 btrfs_dev_replace_lock(dev_replace, 0);
5445 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5446 if (!dev_replace_is_ongoing)
5447 btrfs_dev_replace_unlock(dev_replace, 0);
5448 else
5449 btrfs_dev_replace_set_lock_blocking(dev_replace);
5450
5451 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5452 op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5453 op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5454 /*
5455 * in dev-replace case, for repair case (that's the only
5456 * case where the mirror is selected explicitly when
5457 * calling btrfs_map_block), blocks left of the left cursor
5458 * can also be read from the target drive.
5459 * For REQ_GET_READ_MIRRORS, the target drive is added as
5460 * the last one to the array of stripes. For READ, it also
5461 * needs to be supported using the same mirror number.
5462 * If the requested block is not left of the left cursor,
5463 * EIO is returned. This can happen because btrfs_num_copies()
5464 * returns one more in the dev-replace case.
5465 */
5466 u64 tmp_length = *length;
5467 struct btrfs_bio *tmp_bbio = NULL;
5468 int tmp_num_stripes;
5469 u64 srcdev_devid = dev_replace->srcdev->devid;
5470 int index_srcdev = 0;
5471 int found = 0;
5472 u64 physical_of_found = 0;
5473
5474 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5475 logical, &tmp_length, &tmp_bbio, 0, 0);
5476 if (ret) {
5477 WARN_ON(tmp_bbio != NULL);
5478 goto out;
5479 }
5480
5481 tmp_num_stripes = tmp_bbio->num_stripes;
5482 if (mirror_num > tmp_num_stripes) {
5483 /*
5484 * REQ_GET_READ_MIRRORS does not contain this
5485 * mirror, that means that the requested area
5486 * is not left of the left cursor
5487 */
5488 ret = -EIO;
5489 btrfs_put_bbio(tmp_bbio);
5490 goto out;
5491 }
5492
5493 /*
5494 * process the rest of the function using the mirror_num
5495 * of the source drive. Therefore look it up first.
5496 * At the end, patch the device pointer to the one of the
5497 * target drive.
5498 */
5499 for (i = 0; i < tmp_num_stripes; i++) {
5500 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5501 continue;
5502
5503 /*
5504 * In case of DUP, in order to keep it simple, only add
5505 * the mirror with the lowest physical address
5506 */
5507 if (found &&
5508 physical_of_found <= tmp_bbio->stripes[i].physical)
5509 continue;
5510
5511 index_srcdev = i;
5512 found = 1;
5513 physical_of_found = tmp_bbio->stripes[i].physical;
5514 }
5515
5516 btrfs_put_bbio(tmp_bbio);
5517
5518 if (!found) {
5519 WARN_ON(1);
5520 ret = -EIO;
5521 goto out;
5522 }
5523
5524 mirror_num = index_srcdev + 1;
5525 patch_the_first_stripe_for_dev_replace = 1;
5526 physical_to_patch_in_first_stripe = physical_of_found;
5527 } else if (mirror_num > map->num_stripes) {
5528 mirror_num = 0;
5529 }
5530
5531 num_stripes = 1;
5532 stripe_index = 0;
5533 stripe_nr_orig = stripe_nr;
5534 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5535 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5536 stripe_end_offset = stripe_nr_end * map->stripe_len -
5537 (offset + *length);
5538
5539 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5540 if (op == REQ_OP_DISCARD)
5541 num_stripes = min_t(u64, map->num_stripes,
5542 stripe_nr_end - stripe_nr_orig);
5543 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5544 &stripe_index);
5545 if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5546 op != REQ_GET_READ_MIRRORS)
5547 mirror_num = 1;
5548 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5549 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5550 op == REQ_GET_READ_MIRRORS)
5551 num_stripes = map->num_stripes;
5552 else if (mirror_num)
5553 stripe_index = mirror_num - 1;
5554 else {
5555 stripe_index = find_live_mirror(fs_info, map, 0,
5556 map->num_stripes,
5557 current->pid % map->num_stripes,
5558 dev_replace_is_ongoing);
5559 mirror_num = stripe_index + 1;
5560 }
5561
5562 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5563 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5564 op == REQ_GET_READ_MIRRORS) {
5565 num_stripes = map->num_stripes;
5566 } else if (mirror_num) {
5567 stripe_index = mirror_num - 1;
5568 } else {
5569 mirror_num = 1;
5570 }
5571
5572 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5573 u32 factor = map->num_stripes / map->sub_stripes;
5574
5575 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5576 stripe_index *= map->sub_stripes;
5577
5578 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5579 num_stripes = map->sub_stripes;
5580 else if (op == REQ_OP_DISCARD)
5581 num_stripes = min_t(u64, map->sub_stripes *
5582 (stripe_nr_end - stripe_nr_orig),
5583 map->num_stripes);
5584 else if (mirror_num)
5585 stripe_index += mirror_num - 1;
5586 else {
5587 int old_stripe_index = stripe_index;
5588 stripe_index = find_live_mirror(fs_info, map,
5589 stripe_index,
5590 map->sub_stripes, stripe_index +
5591 current->pid % map->sub_stripes,
5592 dev_replace_is_ongoing);
5593 mirror_num = stripe_index - old_stripe_index + 1;
5594 }
5595
5596 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5597 if (need_raid_map &&
5598 (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5599 mirror_num > 1)) {
5600 /* push stripe_nr back to the start of the full stripe */
5601 stripe_nr = div_u64(raid56_full_stripe_start,
5602 stripe_len * nr_data_stripes(map));
5603
5604 /* RAID[56] write or recovery. Return all stripes */
5605 num_stripes = map->num_stripes;
5606 max_errors = nr_parity_stripes(map);
5607
5608 *length = map->stripe_len;
5609 stripe_index = 0;
5610 stripe_offset = 0;
5611 } else {
5612 /*
5613 * Mirror #0 or #1 means the original data block.
5614 * Mirror #2 is RAID5 parity block.
5615 * Mirror #3 is RAID6 Q block.
5616 */
5617 stripe_nr = div_u64_rem(stripe_nr,
5618 nr_data_stripes(map), &stripe_index);
5619 if (mirror_num > 1)
5620 stripe_index = nr_data_stripes(map) +
5621 mirror_num - 2;
5622
5623 /* We distribute the parity blocks across stripes */
5624 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5625 &stripe_index);
5626 if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5627 op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5628 mirror_num = 1;
5629 }
5630 } else {
5631 /*
5632 * after this, stripe_nr is the number of stripes on this
5633 * device we have to walk to find the data, and stripe_index is
5634 * the number of our device in the stripe array
5635 */
5636 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5637 &stripe_index);
5638 mirror_num = stripe_index + 1;
5639 }
5640 if (stripe_index >= map->num_stripes) {
5641 btrfs_crit(fs_info, "stripe index math went horribly wrong, "
5642 "got stripe_index=%u, num_stripes=%u",
5643 stripe_index, map->num_stripes);
5644 ret = -EINVAL;
5645 goto out;
5646 }
5647
5648 num_alloc_stripes = num_stripes;
5649 if (dev_replace_is_ongoing) {
5650 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5651 num_alloc_stripes <<= 1;
5652 if (op == REQ_GET_READ_MIRRORS)
5653 num_alloc_stripes++;
5654 tgtdev_indexes = num_stripes;
5655 }
5656
5657 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5658 if (!bbio) {
5659 ret = -ENOMEM;
5660 goto out;
5661 }
5662 if (dev_replace_is_ongoing)
5663 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5664
5665 /* build raid_map */
5666 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5667 need_raid_map &&
5668 ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5669 mirror_num > 1)) {
5670 u64 tmp;
5671 unsigned rot;
5672
5673 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5674 sizeof(struct btrfs_bio_stripe) *
5675 num_alloc_stripes +
5676 sizeof(int) * tgtdev_indexes);
5677
5678 /* Work out the disk rotation on this stripe-set */
5679 div_u64_rem(stripe_nr, num_stripes, &rot);
5680
5681 /* Fill in the logical address of each stripe */
5682 tmp = stripe_nr * nr_data_stripes(map);
5683 for (i = 0; i < nr_data_stripes(map); i++)
5684 bbio->raid_map[(i+rot) % num_stripes] =
5685 em->start + (tmp + i) * map->stripe_len;
5686
5687 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5688 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5689 bbio->raid_map[(i+rot+1) % num_stripes] =
5690 RAID6_Q_STRIPE;
5691 }
5692
5693 if (op == REQ_OP_DISCARD) {
5694 u32 factor = 0;
5695 u32 sub_stripes = 0;
5696 u64 stripes_per_dev = 0;
5697 u32 remaining_stripes = 0;
5698 u32 last_stripe = 0;
5699
5700 if (map->type &
5701 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5702 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5703 sub_stripes = 1;
5704 else
5705 sub_stripes = map->sub_stripes;
5706
5707 factor = map->num_stripes / sub_stripes;
5708 stripes_per_dev = div_u64_rem(stripe_nr_end -
5709 stripe_nr_orig,
5710 factor,
5711 &remaining_stripes);
5712 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5713 last_stripe *= sub_stripes;
5714 }
5715
5716 for (i = 0; i < num_stripes; i++) {
5717 bbio->stripes[i].physical =
5718 map->stripes[stripe_index].physical +
5719 stripe_offset + stripe_nr * map->stripe_len;
5720 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5721
5722 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5723 BTRFS_BLOCK_GROUP_RAID10)) {
5724 bbio->stripes[i].length = stripes_per_dev *
5725 map->stripe_len;
5726
5727 if (i / sub_stripes < remaining_stripes)
5728 bbio->stripes[i].length +=
5729 map->stripe_len;
5730
5731 /*
5732 * Special for the first stripe and
5733 * the last stripe:
5734 *
5735 * |-------|...|-------|
5736 * |----------|
5737 * off end_off
5738 */
5739 if (i < sub_stripes)
5740 bbio->stripes[i].length -=
5741 stripe_offset;
5742
5743 if (stripe_index >= last_stripe &&
5744 stripe_index <= (last_stripe +
5745 sub_stripes - 1))
5746 bbio->stripes[i].length -=
5747 stripe_end_offset;
5748
5749 if (i == sub_stripes - 1)
5750 stripe_offset = 0;
5751 } else
5752 bbio->stripes[i].length = *length;
5753
5754 stripe_index++;
5755 if (stripe_index == map->num_stripes) {
5756 /* This could only happen for RAID0/10 */
5757 stripe_index = 0;
5758 stripe_nr++;
5759 }
5760 }
5761 } else {
5762 for (i = 0; i < num_stripes; i++) {
5763 bbio->stripes[i].physical =
5764 map->stripes[stripe_index].physical +
5765 stripe_offset +
5766 stripe_nr * map->stripe_len;
5767 bbio->stripes[i].dev =
5768 map->stripes[stripe_index].dev;
5769 stripe_index++;
5770 }
5771 }
5772
5773 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5774 max_errors = btrfs_chunk_max_errors(map);
5775
5776 if (bbio->raid_map)
5777 sort_parity_stripes(bbio, num_stripes);
5778
5779 tgtdev_indexes = 0;
5780 if (dev_replace_is_ongoing &&
5781 (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5782 dev_replace->tgtdev != NULL) {
5783 int index_where_to_add;
5784 u64 srcdev_devid = dev_replace->srcdev->devid;
5785
5786 /*
5787 * duplicate the write operations while the dev replace
5788 * procedure is running. Since the copying of the old disk
5789 * to the new disk takes place at run time while the
5790 * filesystem is mounted writable, the regular write
5791 * operations to the old disk have to be duplicated to go
5792 * to the new disk as well.
5793 * Note that device->missing is handled by the caller, and
5794 * that the write to the old disk is already set up in the
5795 * stripes array.
5796 */
5797 index_where_to_add = num_stripes;
5798 for (i = 0; i < num_stripes; i++) {
5799 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5800 /* write to new disk, too */
5801 struct btrfs_bio_stripe *new =
5802 bbio->stripes + index_where_to_add;
5803 struct btrfs_bio_stripe *old =
5804 bbio->stripes + i;
5805
5806 new->physical = old->physical;
5807 new->length = old->length;
5808 new->dev = dev_replace->tgtdev;
5809 bbio->tgtdev_map[i] = index_where_to_add;
5810 index_where_to_add++;
5811 max_errors++;
5812 tgtdev_indexes++;
5813 }
5814 }
5815 num_stripes = index_where_to_add;
5816 } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5817 dev_replace->tgtdev != NULL) {
5818 u64 srcdev_devid = dev_replace->srcdev->devid;
5819 int index_srcdev = 0;
5820 int found = 0;
5821 u64 physical_of_found = 0;
5822
5823 /*
5824 * During the dev-replace procedure, the target drive can
5825 * also be used to read data in case it is needed to repair
5826 * a corrupt block elsewhere. This is possible if the
5827 * requested area is left of the left cursor. In this area,
5828 * the target drive is a full copy of the source drive.
5829 */
5830 for (i = 0; i < num_stripes; i++) {
5831 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5832 /*
5833 * In case of DUP, in order to keep it
5834 * simple, only add the mirror with the
5835 * lowest physical address
5836 */
5837 if (found &&
5838 physical_of_found <=
5839 bbio->stripes[i].physical)
5840 continue;
5841 index_srcdev = i;
5842 found = 1;
5843 physical_of_found = bbio->stripes[i].physical;
5844 }
5845 }
5846 if (found) {
5847 struct btrfs_bio_stripe *tgtdev_stripe =
5848 bbio->stripes + num_stripes;
5849
5850 tgtdev_stripe->physical = physical_of_found;
5851 tgtdev_stripe->length =
5852 bbio->stripes[index_srcdev].length;
5853 tgtdev_stripe->dev = dev_replace->tgtdev;
5854 bbio->tgtdev_map[index_srcdev] = num_stripes;
5855
5856 tgtdev_indexes++;
5857 num_stripes++;
5858 }
5859 }
5860
5861 *bbio_ret = bbio;
5862 bbio->map_type = map->type;
5863 bbio->num_stripes = num_stripes;
5864 bbio->max_errors = max_errors;
5865 bbio->mirror_num = mirror_num;
5866 bbio->num_tgtdevs = tgtdev_indexes;
5867
5868 /*
5869 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5870 * mirror_num == num_stripes + 1 && dev_replace target drive is
5871 * available as a mirror
5872 */
5873 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5874 WARN_ON(num_stripes > 1);
5875 bbio->stripes[0].dev = dev_replace->tgtdev;
5876 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5877 bbio->mirror_num = map->num_stripes + 1;
5878 }
5879 out:
5880 if (dev_replace_is_ongoing) {
5881 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5882 btrfs_dev_replace_unlock(dev_replace, 0);
5883 }
5884 free_extent_map(em);
5885 return ret;
5886 }
5887
5888 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5889 u64 logical, u64 *length,
5890 struct btrfs_bio **bbio_ret, int mirror_num)
5891 {
5892 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5893 mirror_num, 0);
5894 }
5895
5896 /* For Scrub/replace */
5897 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5898 u64 logical, u64 *length,
5899 struct btrfs_bio **bbio_ret, int mirror_num,
5900 int need_raid_map)
5901 {
5902 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5903 mirror_num, need_raid_map);
5904 }
5905
5906 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5907 u64 chunk_start, u64 physical, u64 devid,
5908 u64 **logical, int *naddrs, int *stripe_len)
5909 {
5910 struct extent_map_tree *em_tree = &map_tree->map_tree;
5911 struct extent_map *em;
5912 struct map_lookup *map;
5913 u64 *buf;
5914 u64 bytenr;
5915 u64 length;
5916 u64 stripe_nr;
5917 u64 rmap_len;
5918 int i, j, nr = 0;
5919
5920 read_lock(&em_tree->lock);
5921 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5922 read_unlock(&em_tree->lock);
5923
5924 if (!em) {
5925 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5926 chunk_start);
5927 return -EIO;
5928 }
5929
5930 if (em->start != chunk_start) {
5931 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5932 em->start, chunk_start);
5933 free_extent_map(em);
5934 return -EIO;
5935 }
5936 map = em->map_lookup;
5937
5938 length = em->len;
5939 rmap_len = map->stripe_len;
5940
5941 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5942 length = div_u64(length, map->num_stripes / map->sub_stripes);
5943 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5944 length = div_u64(length, map->num_stripes);
5945 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5946 length = div_u64(length, nr_data_stripes(map));
5947 rmap_len = map->stripe_len * nr_data_stripes(map);
5948 }
5949
5950 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5951 BUG_ON(!buf); /* -ENOMEM */
5952
5953 for (i = 0; i < map->num_stripes; i++) {
5954 if (devid && map->stripes[i].dev->devid != devid)
5955 continue;
5956 if (map->stripes[i].physical > physical ||
5957 map->stripes[i].physical + length <= physical)
5958 continue;
5959
5960 stripe_nr = physical - map->stripes[i].physical;
5961 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5962
5963 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5964 stripe_nr = stripe_nr * map->num_stripes + i;
5965 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5966 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5967 stripe_nr = stripe_nr * map->num_stripes + i;
5968 } /* else if RAID[56], multiply by nr_data_stripes().
5969 * Alternatively, just use rmap_len below instead of
5970 * map->stripe_len */
5971
5972 bytenr = chunk_start + stripe_nr * rmap_len;
5973 WARN_ON(nr >= map->num_stripes);
5974 for (j = 0; j < nr; j++) {
5975 if (buf[j] == bytenr)
5976 break;
5977 }
5978 if (j == nr) {
5979 WARN_ON(nr >= map->num_stripes);
5980 buf[nr++] = bytenr;
5981 }
5982 }
5983
5984 *logical = buf;
5985 *naddrs = nr;
5986 *stripe_len = rmap_len;
5987
5988 free_extent_map(em);
5989 return 0;
5990 }
5991
5992 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5993 {
5994 bio->bi_private = bbio->private;
5995 bio->bi_end_io = bbio->end_io;
5996 bio_endio(bio);
5997
5998 btrfs_put_bbio(bbio);
5999 }
6000
6001 static void btrfs_end_bio(struct bio *bio)
6002 {
6003 struct btrfs_bio *bbio = bio->bi_private;
6004 int is_orig_bio = 0;
6005
6006 if (bio->bi_error) {
6007 atomic_inc(&bbio->error);
6008 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6009 unsigned int stripe_index =
6010 btrfs_io_bio(bio)->stripe_index;
6011 struct btrfs_device *dev;
6012
6013 BUG_ON(stripe_index >= bbio->num_stripes);
6014 dev = bbio->stripes[stripe_index].dev;
6015 if (dev->bdev) {
6016 if (bio_op(bio) == REQ_OP_WRITE)
6017 btrfs_dev_stat_inc(dev,
6018 BTRFS_DEV_STAT_WRITE_ERRS);
6019 else
6020 btrfs_dev_stat_inc(dev,
6021 BTRFS_DEV_STAT_READ_ERRS);
6022 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6023 btrfs_dev_stat_inc(dev,
6024 BTRFS_DEV_STAT_FLUSH_ERRS);
6025 btrfs_dev_stat_print_on_error(dev);
6026 }
6027 }
6028 }
6029
6030 if (bio == bbio->orig_bio)
6031 is_orig_bio = 1;
6032
6033 btrfs_bio_counter_dec(bbio->fs_info);
6034
6035 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6036 if (!is_orig_bio) {
6037 bio_put(bio);
6038 bio = bbio->orig_bio;
6039 }
6040
6041 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6042 /* only send an error to the higher layers if it is
6043 * beyond the tolerance of the btrfs bio
6044 */
6045 if (atomic_read(&bbio->error) > bbio->max_errors) {
6046 bio->bi_error = -EIO;
6047 } else {
6048 /*
6049 * this bio is actually up to date, we didn't
6050 * go over the max number of errors
6051 */
6052 bio->bi_error = 0;
6053 }
6054
6055 btrfs_end_bbio(bbio, bio);
6056 } else if (!is_orig_bio) {
6057 bio_put(bio);
6058 }
6059 }
6060
6061 /*
6062 * see run_scheduled_bios for a description of why bios are collected for
6063 * async submit.
6064 *
6065 * This will add one bio to the pending list for a device and make sure
6066 * the work struct is scheduled.
6067 */
6068 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6069 struct btrfs_device *device,
6070 struct bio *bio)
6071 {
6072 int should_queue = 1;
6073 struct btrfs_pending_bios *pending_bios;
6074
6075 if (device->missing || !device->bdev) {
6076 bio_io_error(bio);
6077 return;
6078 }
6079
6080 /* don't bother with additional async steps for reads, right now */
6081 if (bio_op(bio) == REQ_OP_READ) {
6082 bio_get(bio);
6083 btrfsic_submit_bio(bio);
6084 bio_put(bio);
6085 return;
6086 }
6087
6088 /*
6089 * nr_async_bios allows us to reliably return congestion to the
6090 * higher layers. Otherwise, the async bio makes it appear we have
6091 * made progress against dirty pages when we've really just put it
6092 * on a queue for later
6093 */
6094 atomic_inc(&root->fs_info->nr_async_bios);
6095 WARN_ON(bio->bi_next);
6096 bio->bi_next = NULL;
6097
6098 spin_lock(&device->io_lock);
6099 if (bio->bi_opf & REQ_SYNC)
6100 pending_bios = &device->pending_sync_bios;
6101 else
6102 pending_bios = &device->pending_bios;
6103
6104 if (pending_bios->tail)
6105 pending_bios->tail->bi_next = bio;
6106
6107 pending_bios->tail = bio;
6108 if (!pending_bios->head)
6109 pending_bios->head = bio;
6110 if (device->running_pending)
6111 should_queue = 0;
6112
6113 spin_unlock(&device->io_lock);
6114
6115 if (should_queue)
6116 btrfs_queue_work(root->fs_info->submit_workers,
6117 &device->work);
6118 }
6119
6120 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6121 struct bio *bio, u64 physical, int dev_nr,
6122 int async)
6123 {
6124 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6125
6126 bio->bi_private = bbio;
6127 btrfs_io_bio(bio)->stripe_index = dev_nr;
6128 bio->bi_end_io = btrfs_end_bio;
6129 bio->bi_iter.bi_sector = physical >> 9;
6130 #ifdef DEBUG
6131 {
6132 struct rcu_string *name;
6133
6134 rcu_read_lock();
6135 name = rcu_dereference(dev->name);
6136 pr_debug("btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu "
6137 "(%s id %llu), size=%u\n", bio_op(bio), bio->bi_opf,
6138 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6139 name->str, dev->devid, bio->bi_iter.bi_size);
6140 rcu_read_unlock();
6141 }
6142 #endif
6143 bio->bi_bdev = dev->bdev;
6144
6145 btrfs_bio_counter_inc_noblocked(root->fs_info);
6146
6147 if (async)
6148 btrfs_schedule_bio(root, dev, bio);
6149 else
6150 btrfsic_submit_bio(bio);
6151 }
6152
6153 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6154 {
6155 atomic_inc(&bbio->error);
6156 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6157 /* Should be the original bio. */
6158 WARN_ON(bio != bbio->orig_bio);
6159
6160 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6161 bio->bi_iter.bi_sector = logical >> 9;
6162 bio->bi_error = -EIO;
6163 btrfs_end_bbio(bbio, bio);
6164 }
6165 }
6166
6167 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6168 int mirror_num, int async_submit)
6169 {
6170 struct btrfs_device *dev;
6171 struct bio *first_bio = bio;
6172 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6173 u64 length = 0;
6174 u64 map_length;
6175 int ret;
6176 int dev_nr;
6177 int total_devs;
6178 struct btrfs_bio *bbio = NULL;
6179
6180 length = bio->bi_iter.bi_size;
6181 map_length = length;
6182
6183 btrfs_bio_counter_inc_blocked(root->fs_info);
6184 ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6185 &map_length, &bbio, mirror_num, 1);
6186 if (ret) {
6187 btrfs_bio_counter_dec(root->fs_info);
6188 return ret;
6189 }
6190
6191 total_devs = bbio->num_stripes;
6192 bbio->orig_bio = first_bio;
6193 bbio->private = first_bio->bi_private;
6194 bbio->end_io = first_bio->bi_end_io;
6195 bbio->fs_info = root->fs_info;
6196 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6197
6198 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6199 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6200 /* In this case, map_length has been set to the length of
6201 a single stripe; not the whole write */
6202 if (bio_op(bio) == REQ_OP_WRITE) {
6203 ret = raid56_parity_write(root, bio, bbio, map_length);
6204 } else {
6205 ret = raid56_parity_recover(root, bio, bbio, map_length,
6206 mirror_num, 1);
6207 }
6208
6209 btrfs_bio_counter_dec(root->fs_info);
6210 return ret;
6211 }
6212
6213 if (map_length < length) {
6214 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6215 logical, length, map_length);
6216 BUG();
6217 }
6218
6219 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6220 dev = bbio->stripes[dev_nr].dev;
6221 if (!dev || !dev->bdev ||
6222 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6223 bbio_error(bbio, first_bio, logical);
6224 continue;
6225 }
6226
6227 if (dev_nr < total_devs - 1) {
6228 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6229 BUG_ON(!bio); /* -ENOMEM */
6230 } else
6231 bio = first_bio;
6232
6233 submit_stripe_bio(root, bbio, bio,
6234 bbio->stripes[dev_nr].physical, dev_nr,
6235 async_submit);
6236 }
6237 btrfs_bio_counter_dec(root->fs_info);
6238 return 0;
6239 }
6240
6241 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6242 u8 *uuid, u8 *fsid)
6243 {
6244 struct btrfs_device *device;
6245 struct btrfs_fs_devices *cur_devices;
6246
6247 cur_devices = fs_info->fs_devices;
6248 while (cur_devices) {
6249 if (!fsid ||
6250 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6251 device = __find_device(&cur_devices->devices,
6252 devid, uuid);
6253 if (device)
6254 return device;
6255 }
6256 cur_devices = cur_devices->seed;
6257 }
6258 return NULL;
6259 }
6260
6261 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6262 struct btrfs_fs_devices *fs_devices,
6263 u64 devid, u8 *dev_uuid)
6264 {
6265 struct btrfs_device *device;
6266
6267 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6268 if (IS_ERR(device))
6269 return NULL;
6270
6271 list_add(&device->dev_list, &fs_devices->devices);
6272 device->fs_devices = fs_devices;
6273 fs_devices->num_devices++;
6274
6275 device->missing = 1;
6276 fs_devices->missing_devices++;
6277
6278 return device;
6279 }
6280
6281 /**
6282 * btrfs_alloc_device - allocate struct btrfs_device
6283 * @fs_info: used only for generating a new devid, can be NULL if
6284 * devid is provided (i.e. @devid != NULL).
6285 * @devid: a pointer to devid for this device. If NULL a new devid
6286 * is generated.
6287 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6288 * is generated.
6289 *
6290 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6291 * on error. Returned struct is not linked onto any lists and can be
6292 * destroyed with kfree() right away.
6293 */
6294 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6295 const u64 *devid,
6296 const u8 *uuid)
6297 {
6298 struct btrfs_device *dev;
6299 u64 tmp;
6300
6301 if (WARN_ON(!devid && !fs_info))
6302 return ERR_PTR(-EINVAL);
6303
6304 dev = __alloc_device();
6305 if (IS_ERR(dev))
6306 return dev;
6307
6308 if (devid)
6309 tmp = *devid;
6310 else {
6311 int ret;
6312
6313 ret = find_next_devid(fs_info, &tmp);
6314 if (ret) {
6315 kfree(dev);
6316 return ERR_PTR(ret);
6317 }
6318 }
6319 dev->devid = tmp;
6320
6321 if (uuid)
6322 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6323 else
6324 generate_random_uuid(dev->uuid);
6325
6326 btrfs_init_work(&dev->work, btrfs_submit_helper,
6327 pending_bios_fn, NULL, NULL);
6328
6329 return dev;
6330 }
6331
6332 /* Return -EIO if any error, otherwise return 0. */
6333 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6334 struct extent_buffer *leaf,
6335 struct btrfs_chunk *chunk, u64 logical)
6336 {
6337 u64 length;
6338 u64 stripe_len;
6339 u16 num_stripes;
6340 u16 sub_stripes;
6341 u64 type;
6342
6343 length = btrfs_chunk_length(leaf, chunk);
6344 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6345 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6346 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6347 type = btrfs_chunk_type(leaf, chunk);
6348
6349 if (!num_stripes) {
6350 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6351 num_stripes);
6352 return -EIO;
6353 }
6354 if (!IS_ALIGNED(logical, root->sectorsize)) {
6355 btrfs_err(root->fs_info,
6356 "invalid chunk logical %llu", logical);
6357 return -EIO;
6358 }
6359 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6360 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6361 btrfs_chunk_sector_size(leaf, chunk));
6362 return -EIO;
6363 }
6364 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6365 btrfs_err(root->fs_info,
6366 "invalid chunk length %llu", length);
6367 return -EIO;
6368 }
6369 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6370 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6371 stripe_len);
6372 return -EIO;
6373 }
6374 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6375 type) {
6376 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6377 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6378 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6379 btrfs_chunk_type(leaf, chunk));
6380 return -EIO;
6381 }
6382 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6383 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6384 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6385 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6386 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6387 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6388 num_stripes != 1)) {
6389 btrfs_err(root->fs_info,
6390 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6391 num_stripes, sub_stripes,
6392 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6393 return -EIO;
6394 }
6395
6396 return 0;
6397 }
6398
6399 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6400 struct extent_buffer *leaf,
6401 struct btrfs_chunk *chunk)
6402 {
6403 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6404 struct map_lookup *map;
6405 struct extent_map *em;
6406 u64 logical;
6407 u64 length;
6408 u64 stripe_len;
6409 u64 devid;
6410 u8 uuid[BTRFS_UUID_SIZE];
6411 int num_stripes;
6412 int ret;
6413 int i;
6414
6415 logical = key->offset;
6416 length = btrfs_chunk_length(leaf, chunk);
6417 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6418 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6419
6420 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6421 if (ret)
6422 return ret;
6423
6424 read_lock(&map_tree->map_tree.lock);
6425 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6426 read_unlock(&map_tree->map_tree.lock);
6427
6428 /* already mapped? */
6429 if (em && em->start <= logical && em->start + em->len > logical) {
6430 free_extent_map(em);
6431 return 0;
6432 } else if (em) {
6433 free_extent_map(em);
6434 }
6435
6436 em = alloc_extent_map();
6437 if (!em)
6438 return -ENOMEM;
6439 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6440 if (!map) {
6441 free_extent_map(em);
6442 return -ENOMEM;
6443 }
6444
6445 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6446 em->map_lookup = map;
6447 em->start = logical;
6448 em->len = length;
6449 em->orig_start = 0;
6450 em->block_start = 0;
6451 em->block_len = em->len;
6452
6453 map->num_stripes = num_stripes;
6454 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6455 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6456 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6457 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6458 map->type = btrfs_chunk_type(leaf, chunk);
6459 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6460 for (i = 0; i < num_stripes; i++) {
6461 map->stripes[i].physical =
6462 btrfs_stripe_offset_nr(leaf, chunk, i);
6463 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6464 read_extent_buffer(leaf, uuid, (unsigned long)
6465 btrfs_stripe_dev_uuid_nr(chunk, i),
6466 BTRFS_UUID_SIZE);
6467 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6468 uuid, NULL);
6469 if (!map->stripes[i].dev &&
6470 !btrfs_test_opt(root->fs_info, DEGRADED)) {
6471 free_extent_map(em);
6472 return -EIO;
6473 }
6474 if (!map->stripes[i].dev) {
6475 map->stripes[i].dev =
6476 add_missing_dev(root, root->fs_info->fs_devices,
6477 devid, uuid);
6478 if (!map->stripes[i].dev) {
6479 free_extent_map(em);
6480 return -EIO;
6481 }
6482 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6483 devid, uuid);
6484 }
6485 map->stripes[i].dev->in_fs_metadata = 1;
6486 }
6487
6488 write_lock(&map_tree->map_tree.lock);
6489 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6490 write_unlock(&map_tree->map_tree.lock);
6491 BUG_ON(ret); /* Tree corruption */
6492 free_extent_map(em);
6493
6494 return 0;
6495 }
6496
6497 static void fill_device_from_item(struct extent_buffer *leaf,
6498 struct btrfs_dev_item *dev_item,
6499 struct btrfs_device *device)
6500 {
6501 unsigned long ptr;
6502
6503 device->devid = btrfs_device_id(leaf, dev_item);
6504 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6505 device->total_bytes = device->disk_total_bytes;
6506 device->commit_total_bytes = device->disk_total_bytes;
6507 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6508 device->commit_bytes_used = device->bytes_used;
6509 device->type = btrfs_device_type(leaf, dev_item);
6510 device->io_align = btrfs_device_io_align(leaf, dev_item);
6511 device->io_width = btrfs_device_io_width(leaf, dev_item);
6512 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6513 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6514 device->is_tgtdev_for_dev_replace = 0;
6515
6516 ptr = btrfs_device_uuid(dev_item);
6517 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6518 }
6519
6520 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6521 u8 *fsid)
6522 {
6523 struct btrfs_fs_devices *fs_devices;
6524 int ret;
6525
6526 BUG_ON(!mutex_is_locked(&uuid_mutex));
6527
6528 fs_devices = root->fs_info->fs_devices->seed;
6529 while (fs_devices) {
6530 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6531 return fs_devices;
6532
6533 fs_devices = fs_devices->seed;
6534 }
6535
6536 fs_devices = find_fsid(fsid);
6537 if (!fs_devices) {
6538 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6539 return ERR_PTR(-ENOENT);
6540
6541 fs_devices = alloc_fs_devices(fsid);
6542 if (IS_ERR(fs_devices))
6543 return fs_devices;
6544
6545 fs_devices->seeding = 1;
6546 fs_devices->opened = 1;
6547 return fs_devices;
6548 }
6549
6550 fs_devices = clone_fs_devices(fs_devices);
6551 if (IS_ERR(fs_devices))
6552 return fs_devices;
6553
6554 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6555 root->fs_info->bdev_holder);
6556 if (ret) {
6557 free_fs_devices(fs_devices);
6558 fs_devices = ERR_PTR(ret);
6559 goto out;
6560 }
6561
6562 if (!fs_devices->seeding) {
6563 __btrfs_close_devices(fs_devices);
6564 free_fs_devices(fs_devices);
6565 fs_devices = ERR_PTR(-EINVAL);
6566 goto out;
6567 }
6568
6569 fs_devices->seed = root->fs_info->fs_devices->seed;
6570 root->fs_info->fs_devices->seed = fs_devices;
6571 out:
6572 return fs_devices;
6573 }
6574
6575 static int read_one_dev(struct btrfs_root *root,
6576 struct extent_buffer *leaf,
6577 struct btrfs_dev_item *dev_item)
6578 {
6579 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6580 struct btrfs_device *device;
6581 u64 devid;
6582 int ret;
6583 u8 fs_uuid[BTRFS_UUID_SIZE];
6584 u8 dev_uuid[BTRFS_UUID_SIZE];
6585
6586 devid = btrfs_device_id(leaf, dev_item);
6587 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6588 BTRFS_UUID_SIZE);
6589 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6590 BTRFS_UUID_SIZE);
6591
6592 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6593 fs_devices = open_seed_devices(root, fs_uuid);
6594 if (IS_ERR(fs_devices))
6595 return PTR_ERR(fs_devices);
6596 }
6597
6598 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6599 if (!device) {
6600 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6601 return -EIO;
6602
6603 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6604 if (!device)
6605 return -ENOMEM;
6606 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6607 devid, dev_uuid);
6608 } else {
6609 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6610 return -EIO;
6611
6612 if(!device->bdev && !device->missing) {
6613 /*
6614 * this happens when a device that was properly setup
6615 * in the device info lists suddenly goes bad.
6616 * device->bdev is NULL, and so we have to set
6617 * device->missing to one here
6618 */
6619 device->fs_devices->missing_devices++;
6620 device->missing = 1;
6621 }
6622
6623 /* Move the device to its own fs_devices */
6624 if (device->fs_devices != fs_devices) {
6625 ASSERT(device->missing);
6626
6627 list_move(&device->dev_list, &fs_devices->devices);
6628 device->fs_devices->num_devices--;
6629 fs_devices->num_devices++;
6630
6631 device->fs_devices->missing_devices--;
6632 fs_devices->missing_devices++;
6633
6634 device->fs_devices = fs_devices;
6635 }
6636 }
6637
6638 if (device->fs_devices != root->fs_info->fs_devices) {
6639 BUG_ON(device->writeable);
6640 if (device->generation !=
6641 btrfs_device_generation(leaf, dev_item))
6642 return -EINVAL;
6643 }
6644
6645 fill_device_from_item(leaf, dev_item, device);
6646 device->in_fs_metadata = 1;
6647 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6648 device->fs_devices->total_rw_bytes += device->total_bytes;
6649 spin_lock(&root->fs_info->free_chunk_lock);
6650 root->fs_info->free_chunk_space += device->total_bytes -
6651 device->bytes_used;
6652 spin_unlock(&root->fs_info->free_chunk_lock);
6653 }
6654 ret = 0;
6655 return ret;
6656 }
6657
6658 int btrfs_read_sys_array(struct btrfs_root *root)
6659 {
6660 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6661 struct extent_buffer *sb;
6662 struct btrfs_disk_key *disk_key;
6663 struct btrfs_chunk *chunk;
6664 u8 *array_ptr;
6665 unsigned long sb_array_offset;
6666 int ret = 0;
6667 u32 num_stripes;
6668 u32 array_size;
6669 u32 len = 0;
6670 u32 cur_offset;
6671 u64 type;
6672 struct btrfs_key key;
6673
6674 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6675 /*
6676 * This will create extent buffer of nodesize, superblock size is
6677 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6678 * overallocate but we can keep it as-is, only the first page is used.
6679 */
6680 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6681 if (IS_ERR(sb))
6682 return PTR_ERR(sb);
6683 set_extent_buffer_uptodate(sb);
6684 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6685 /*
6686 * The sb extent buffer is artificial and just used to read the system array.
6687 * set_extent_buffer_uptodate() call does not properly mark all it's
6688 * pages up-to-date when the page is larger: extent does not cover the
6689 * whole page and consequently check_page_uptodate does not find all
6690 * the page's extents up-to-date (the hole beyond sb),
6691 * write_extent_buffer then triggers a WARN_ON.
6692 *
6693 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6694 * but sb spans only this function. Add an explicit SetPageUptodate call
6695 * to silence the warning eg. on PowerPC 64.
6696 */
6697 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6698 SetPageUptodate(sb->pages[0]);
6699
6700 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6701 array_size = btrfs_super_sys_array_size(super_copy);
6702
6703 array_ptr = super_copy->sys_chunk_array;
6704 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6705 cur_offset = 0;
6706
6707 while (cur_offset < array_size) {
6708 disk_key = (struct btrfs_disk_key *)array_ptr;
6709 len = sizeof(*disk_key);
6710 if (cur_offset + len > array_size)
6711 goto out_short_read;
6712
6713 btrfs_disk_key_to_cpu(&key, disk_key);
6714
6715 array_ptr += len;
6716 sb_array_offset += len;
6717 cur_offset += len;
6718
6719 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6720 chunk = (struct btrfs_chunk *)sb_array_offset;
6721 /*
6722 * At least one btrfs_chunk with one stripe must be
6723 * present, exact stripe count check comes afterwards
6724 */
6725 len = btrfs_chunk_item_size(1);
6726 if (cur_offset + len > array_size)
6727 goto out_short_read;
6728
6729 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6730 if (!num_stripes) {
6731 printk(KERN_ERR
6732 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6733 num_stripes, cur_offset);
6734 ret = -EIO;
6735 break;
6736 }
6737
6738 type = btrfs_chunk_type(sb, chunk);
6739 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6740 btrfs_err(root->fs_info,
6741 "invalid chunk type %llu in sys_array at offset %u",
6742 type, cur_offset);
6743 ret = -EIO;
6744 break;
6745 }
6746
6747 len = btrfs_chunk_item_size(num_stripes);
6748 if (cur_offset + len > array_size)
6749 goto out_short_read;
6750
6751 ret = read_one_chunk(root, &key, sb, chunk);
6752 if (ret)
6753 break;
6754 } else {
6755 printk(KERN_ERR
6756 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6757 (u32)key.type, cur_offset);
6758 ret = -EIO;
6759 break;
6760 }
6761 array_ptr += len;
6762 sb_array_offset += len;
6763 cur_offset += len;
6764 }
6765 clear_extent_buffer_uptodate(sb);
6766 free_extent_buffer_stale(sb);
6767 return ret;
6768
6769 out_short_read:
6770 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6771 len, cur_offset);
6772 clear_extent_buffer_uptodate(sb);
6773 free_extent_buffer_stale(sb);
6774 return -EIO;
6775 }
6776
6777 int btrfs_read_chunk_tree(struct btrfs_root *root)
6778 {
6779 struct btrfs_path *path;
6780 struct extent_buffer *leaf;
6781 struct btrfs_key key;
6782 struct btrfs_key found_key;
6783 int ret;
6784 int slot;
6785 u64 total_dev = 0;
6786
6787 root = root->fs_info->chunk_root;
6788
6789 path = btrfs_alloc_path();
6790 if (!path)
6791 return -ENOMEM;
6792
6793 mutex_lock(&uuid_mutex);
6794 lock_chunks(root);
6795
6796 /*
6797 * Read all device items, and then all the chunk items. All
6798 * device items are found before any chunk item (their object id
6799 * is smaller than the lowest possible object id for a chunk
6800 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6801 */
6802 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6803 key.offset = 0;
6804 key.type = 0;
6805 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6806 if (ret < 0)
6807 goto error;
6808 while (1) {
6809 leaf = path->nodes[0];
6810 slot = path->slots[0];
6811 if (slot >= btrfs_header_nritems(leaf)) {
6812 ret = btrfs_next_leaf(root, path);
6813 if (ret == 0)
6814 continue;
6815 if (ret < 0)
6816 goto error;
6817 break;
6818 }
6819 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6820 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6821 struct btrfs_dev_item *dev_item;
6822 dev_item = btrfs_item_ptr(leaf, slot,
6823 struct btrfs_dev_item);
6824 ret = read_one_dev(root, leaf, dev_item);
6825 if (ret)
6826 goto error;
6827 total_dev++;
6828 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6829 struct btrfs_chunk *chunk;
6830 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6831 ret = read_one_chunk(root, &found_key, leaf, chunk);
6832 if (ret)
6833 goto error;
6834 }
6835 path->slots[0]++;
6836 }
6837
6838 /*
6839 * After loading chunk tree, we've got all device information,
6840 * do another round of validation checks.
6841 */
6842 if (total_dev != root->fs_info->fs_devices->total_devices) {
6843 btrfs_err(root->fs_info,
6844 "super_num_devices %llu mismatch with num_devices %llu found here",
6845 btrfs_super_num_devices(root->fs_info->super_copy),
6846 total_dev);
6847 ret = -EINVAL;
6848 goto error;
6849 }
6850 if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6851 root->fs_info->fs_devices->total_rw_bytes) {
6852 btrfs_err(root->fs_info,
6853 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6854 btrfs_super_total_bytes(root->fs_info->super_copy),
6855 root->fs_info->fs_devices->total_rw_bytes);
6856 ret = -EINVAL;
6857 goto error;
6858 }
6859 ret = 0;
6860 error:
6861 unlock_chunks(root);
6862 mutex_unlock(&uuid_mutex);
6863
6864 btrfs_free_path(path);
6865 return ret;
6866 }
6867
6868 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6869 {
6870 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6871 struct btrfs_device *device;
6872
6873 while (fs_devices) {
6874 mutex_lock(&fs_devices->device_list_mutex);
6875 list_for_each_entry(device, &fs_devices->devices, dev_list)
6876 device->dev_root = fs_info->dev_root;
6877 mutex_unlock(&fs_devices->device_list_mutex);
6878
6879 fs_devices = fs_devices->seed;
6880 }
6881 }
6882
6883 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6884 {
6885 int i;
6886
6887 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6888 btrfs_dev_stat_reset(dev, i);
6889 }
6890
6891 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6892 {
6893 struct btrfs_key key;
6894 struct btrfs_key found_key;
6895 struct btrfs_root *dev_root = fs_info->dev_root;
6896 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6897 struct extent_buffer *eb;
6898 int slot;
6899 int ret = 0;
6900 struct btrfs_device *device;
6901 struct btrfs_path *path = NULL;
6902 int i;
6903
6904 path = btrfs_alloc_path();
6905 if (!path) {
6906 ret = -ENOMEM;
6907 goto out;
6908 }
6909
6910 mutex_lock(&fs_devices->device_list_mutex);
6911 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6912 int item_size;
6913 struct btrfs_dev_stats_item *ptr;
6914
6915 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6916 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6917 key.offset = device->devid;
6918 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6919 if (ret) {
6920 __btrfs_reset_dev_stats(device);
6921 device->dev_stats_valid = 1;
6922 btrfs_release_path(path);
6923 continue;
6924 }
6925 slot = path->slots[0];
6926 eb = path->nodes[0];
6927 btrfs_item_key_to_cpu(eb, &found_key, slot);
6928 item_size = btrfs_item_size_nr(eb, slot);
6929
6930 ptr = btrfs_item_ptr(eb, slot,
6931 struct btrfs_dev_stats_item);
6932
6933 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6934 if (item_size >= (1 + i) * sizeof(__le64))
6935 btrfs_dev_stat_set(device, i,
6936 btrfs_dev_stats_value(eb, ptr, i));
6937 else
6938 btrfs_dev_stat_reset(device, i);
6939 }
6940
6941 device->dev_stats_valid = 1;
6942 btrfs_dev_stat_print_on_load(device);
6943 btrfs_release_path(path);
6944 }
6945 mutex_unlock(&fs_devices->device_list_mutex);
6946
6947 out:
6948 btrfs_free_path(path);
6949 return ret < 0 ? ret : 0;
6950 }
6951
6952 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6953 struct btrfs_root *dev_root,
6954 struct btrfs_device *device)
6955 {
6956 struct btrfs_path *path;
6957 struct btrfs_key key;
6958 struct extent_buffer *eb;
6959 struct btrfs_dev_stats_item *ptr;
6960 int ret;
6961 int i;
6962
6963 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6964 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6965 key.offset = device->devid;
6966
6967 path = btrfs_alloc_path();
6968 BUG_ON(!path);
6969 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6970 if (ret < 0) {
6971 btrfs_warn_in_rcu(dev_root->fs_info,
6972 "error %d while searching for dev_stats item for device %s",
6973 ret, rcu_str_deref(device->name));
6974 goto out;
6975 }
6976
6977 if (ret == 0 &&
6978 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6979 /* need to delete old one and insert a new one */
6980 ret = btrfs_del_item(trans, dev_root, path);
6981 if (ret != 0) {
6982 btrfs_warn_in_rcu(dev_root->fs_info,
6983 "delete too small dev_stats item for device %s failed %d",
6984 rcu_str_deref(device->name), ret);
6985 goto out;
6986 }
6987 ret = 1;
6988 }
6989
6990 if (ret == 1) {
6991 /* need to insert a new item */
6992 btrfs_release_path(path);
6993 ret = btrfs_insert_empty_item(trans, dev_root, path,
6994 &key, sizeof(*ptr));
6995 if (ret < 0) {
6996 btrfs_warn_in_rcu(dev_root->fs_info,
6997 "insert dev_stats item for device %s failed %d",
6998 rcu_str_deref(device->name), ret);
6999 goto out;
7000 }
7001 }
7002
7003 eb = path->nodes[0];
7004 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7005 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7006 btrfs_set_dev_stats_value(eb, ptr, i,
7007 btrfs_dev_stat_read(device, i));
7008 btrfs_mark_buffer_dirty(eb);
7009
7010 out:
7011 btrfs_free_path(path);
7012 return ret;
7013 }
7014
7015 /*
7016 * called from commit_transaction. Writes all changed device stats to disk.
7017 */
7018 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7019 struct btrfs_fs_info *fs_info)
7020 {
7021 struct btrfs_root *dev_root = fs_info->dev_root;
7022 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7023 struct btrfs_device *device;
7024 int stats_cnt;
7025 int ret = 0;
7026
7027 mutex_lock(&fs_devices->device_list_mutex);
7028 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7029 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7030 continue;
7031
7032 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7033 ret = update_dev_stat_item(trans, dev_root, device);
7034 if (!ret)
7035 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7036 }
7037 mutex_unlock(&fs_devices->device_list_mutex);
7038
7039 return ret;
7040 }
7041
7042 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7043 {
7044 btrfs_dev_stat_inc(dev, index);
7045 btrfs_dev_stat_print_on_error(dev);
7046 }
7047
7048 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7049 {
7050 if (!dev->dev_stats_valid)
7051 return;
7052 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7053 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7054 rcu_str_deref(dev->name),
7055 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7056 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7057 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7058 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7059 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7060 }
7061
7062 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7063 {
7064 int i;
7065
7066 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7067 if (btrfs_dev_stat_read(dev, i) != 0)
7068 break;
7069 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7070 return; /* all values == 0, suppress message */
7071
7072 btrfs_info_in_rcu(dev->dev_root->fs_info,
7073 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7074 rcu_str_deref(dev->name),
7075 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7076 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7077 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7078 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7079 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7080 }
7081
7082 int btrfs_get_dev_stats(struct btrfs_root *root,
7083 struct btrfs_ioctl_get_dev_stats *stats)
7084 {
7085 struct btrfs_device *dev;
7086 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7087 int i;
7088
7089 mutex_lock(&fs_devices->device_list_mutex);
7090 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7091 mutex_unlock(&fs_devices->device_list_mutex);
7092
7093 if (!dev) {
7094 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
7095 return -ENODEV;
7096 } else if (!dev->dev_stats_valid) {
7097 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
7098 return -ENODEV;
7099 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7100 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7101 if (stats->nr_items > i)
7102 stats->values[i] =
7103 btrfs_dev_stat_read_and_reset(dev, i);
7104 else
7105 btrfs_dev_stat_reset(dev, i);
7106 }
7107 } else {
7108 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7109 if (stats->nr_items > i)
7110 stats->values[i] = btrfs_dev_stat_read(dev, i);
7111 }
7112 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7113 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7114 return 0;
7115 }
7116
7117 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7118 {
7119 struct buffer_head *bh;
7120 struct btrfs_super_block *disk_super;
7121 int copy_num;
7122
7123 if (!bdev)
7124 return;
7125
7126 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7127 copy_num++) {
7128
7129 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7130 continue;
7131
7132 disk_super = (struct btrfs_super_block *)bh->b_data;
7133
7134 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7135 set_buffer_dirty(bh);
7136 sync_dirty_buffer(bh);
7137 brelse(bh);
7138 }
7139
7140 /* Notify udev that device has changed */
7141 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7142
7143 /* Update ctime/mtime for device path for libblkid */
7144 update_dev_time(device_path);
7145 }
7146
7147 /*
7148 * Update the size of all devices, which is used for writing out the
7149 * super blocks.
7150 */
7151 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7152 {
7153 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7154 struct btrfs_device *curr, *next;
7155
7156 if (list_empty(&fs_devices->resized_devices))
7157 return;
7158
7159 mutex_lock(&fs_devices->device_list_mutex);
7160 lock_chunks(fs_info->dev_root);
7161 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7162 resized_list) {
7163 list_del_init(&curr->resized_list);
7164 curr->commit_total_bytes = curr->disk_total_bytes;
7165 }
7166 unlock_chunks(fs_info->dev_root);
7167 mutex_unlock(&fs_devices->device_list_mutex);
7168 }
7169
7170 /* Must be invoked during the transaction commit */
7171 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7172 struct btrfs_transaction *transaction)
7173 {
7174 struct extent_map *em;
7175 struct map_lookup *map;
7176 struct btrfs_device *dev;
7177 int i;
7178
7179 if (list_empty(&transaction->pending_chunks))
7180 return;
7181
7182 /* In order to kick the device replace finish process */
7183 lock_chunks(root);
7184 list_for_each_entry(em, &transaction->pending_chunks, list) {
7185 map = em->map_lookup;
7186
7187 for (i = 0; i < map->num_stripes; i++) {
7188 dev = map->stripes[i].dev;
7189 dev->commit_bytes_used = dev->bytes_used;
7190 }
7191 }
7192 unlock_chunks(root);
7193 }
7194
7195 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7196 {
7197 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7198 while (fs_devices) {
7199 fs_devices->fs_info = fs_info;
7200 fs_devices = fs_devices->seed;
7201 }
7202 }
7203
7204 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7205 {
7206 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7207 while (fs_devices) {
7208 fs_devices->fs_info = NULL;
7209 fs_devices = fs_devices->seed;
7210 }
7211 }
This page took 0.381301 seconds and 5 git commands to generate.