Merge branch 'akpm' (Andrew's patchbomb)
[deliverable/linux.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 static int sleep_on_buffer(void *word)
58 {
59 io_schedule();
60 return 0;
61 }
62
63 void __lock_buffer(struct buffer_head *bh)
64 {
65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66 TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_clear_bit();
74 wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79 * Block until a buffer comes unlocked. This doesn't stop it
80 * from becoming locked again - you have to lock it yourself
81 * if you want to preserve its state.
82 */
83 void __wait_on_buffer(struct buffer_head * bh)
84 {
85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
86 }
87 EXPORT_SYMBOL(__wait_on_buffer);
88
89 static void
90 __clear_page_buffers(struct page *page)
91 {
92 ClearPagePrivate(page);
93 set_page_private(page, 0);
94 page_cache_release(page);
95 }
96
97
98 static int quiet_error(struct buffer_head *bh)
99 {
100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101 return 0;
102 return 1;
103 }
104
105
106 static void buffer_io_error(struct buffer_head *bh)
107 {
108 char b[BDEVNAME_SIZE];
109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 bdevname(bh->b_bdev, b),
111 (unsigned long long)bh->b_blocknr);
112 }
113
114 /*
115 * End-of-IO handler helper function which does not touch the bh after
116 * unlocking it.
117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118 * a race there is benign: unlock_buffer() only use the bh's address for
119 * hashing after unlocking the buffer, so it doesn't actually touch the bh
120 * itself.
121 */
122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 {
124 if (uptodate) {
125 set_buffer_uptodate(bh);
126 } else {
127 /* This happens, due to failed READA attempts. */
128 clear_buffer_uptodate(bh);
129 }
130 unlock_buffer(bh);
131 }
132
133 /*
134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
135 * unlock the buffer. This is what ll_rw_block uses too.
136 */
137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138 {
139 __end_buffer_read_notouch(bh, uptodate);
140 put_bh(bh);
141 }
142 EXPORT_SYMBOL(end_buffer_read_sync);
143
144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145 {
146 char b[BDEVNAME_SIZE];
147
148 if (uptodate) {
149 set_buffer_uptodate(bh);
150 } else {
151 if (!quiet_error(bh)) {
152 buffer_io_error(bh);
153 printk(KERN_WARNING "lost page write due to "
154 "I/O error on %s\n",
155 bdevname(bh->b_bdev, b));
156 }
157 set_buffer_write_io_error(bh);
158 clear_buffer_uptodate(bh);
159 }
160 unlock_buffer(bh);
161 put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_write_sync);
164
165 /*
166 * Various filesystems appear to want __find_get_block to be non-blocking.
167 * But it's the page lock which protects the buffers. To get around this,
168 * we get exclusion from try_to_free_buffers with the blockdev mapping's
169 * private_lock.
170 *
171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172 * may be quite high. This code could TryLock the page, and if that
173 * succeeds, there is no need to take private_lock. (But if
174 * private_lock is contended then so is mapping->tree_lock).
175 */
176 static struct buffer_head *
177 __find_get_block_slow(struct block_device *bdev, sector_t block)
178 {
179 struct inode *bd_inode = bdev->bd_inode;
180 struct address_space *bd_mapping = bd_inode->i_mapping;
181 struct buffer_head *ret = NULL;
182 pgoff_t index;
183 struct buffer_head *bh;
184 struct buffer_head *head;
185 struct page *page;
186 int all_mapped = 1;
187
188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189 page = find_get_page(bd_mapping, index);
190 if (!page)
191 goto out;
192
193 spin_lock(&bd_mapping->private_lock);
194 if (!page_has_buffers(page))
195 goto out_unlock;
196 head = page_buffers(page);
197 bh = head;
198 do {
199 if (!buffer_mapped(bh))
200 all_mapped = 0;
201 else if (bh->b_blocknr == block) {
202 ret = bh;
203 get_bh(bh);
204 goto out_unlock;
205 }
206 bh = bh->b_this_page;
207 } while (bh != head);
208
209 /* we might be here because some of the buffers on this page are
210 * not mapped. This is due to various races between
211 * file io on the block device and getblk. It gets dealt with
212 * elsewhere, don't buffer_error if we had some unmapped buffers
213 */
214 if (all_mapped) {
215 char b[BDEVNAME_SIZE];
216
217 printk("__find_get_block_slow() failed. "
218 "block=%llu, b_blocknr=%llu\n",
219 (unsigned long long)block,
220 (unsigned long long)bh->b_blocknr);
221 printk("b_state=0x%08lx, b_size=%zu\n",
222 bh->b_state, bh->b_size);
223 printk("device %s blocksize: %d\n", bdevname(bdev, b),
224 1 << bd_inode->i_blkbits);
225 }
226 out_unlock:
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
229 out:
230 return ret;
231 }
232
233 /*
234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
235 */
236 static void free_more_memory(void)
237 {
238 struct zone *zone;
239 int nid;
240
241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
242 yield();
243
244 for_each_online_node(nid) {
245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
246 gfp_zone(GFP_NOFS), NULL,
247 &zone);
248 if (zone)
249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
250 GFP_NOFS, NULL);
251 }
252 }
253
254 /*
255 * I/O completion handler for block_read_full_page() - pages
256 * which come unlocked at the end of I/O.
257 */
258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
259 {
260 unsigned long flags;
261 struct buffer_head *first;
262 struct buffer_head *tmp;
263 struct page *page;
264 int page_uptodate = 1;
265
266 BUG_ON(!buffer_async_read(bh));
267
268 page = bh->b_page;
269 if (uptodate) {
270 set_buffer_uptodate(bh);
271 } else {
272 clear_buffer_uptodate(bh);
273 if (!quiet_error(bh))
274 buffer_io_error(bh);
275 SetPageError(page);
276 }
277
278 /*
279 * Be _very_ careful from here on. Bad things can happen if
280 * two buffer heads end IO at almost the same time and both
281 * decide that the page is now completely done.
282 */
283 first = page_buffers(page);
284 local_irq_save(flags);
285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
286 clear_buffer_async_read(bh);
287 unlock_buffer(bh);
288 tmp = bh;
289 do {
290 if (!buffer_uptodate(tmp))
291 page_uptodate = 0;
292 if (buffer_async_read(tmp)) {
293 BUG_ON(!buffer_locked(tmp));
294 goto still_busy;
295 }
296 tmp = tmp->b_this_page;
297 } while (tmp != bh);
298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 local_irq_restore(flags);
300
301 /*
302 * If none of the buffers had errors and they are all
303 * uptodate then we can set the page uptodate.
304 */
305 if (page_uptodate && !PageError(page))
306 SetPageUptodate(page);
307 unlock_page(page);
308 return;
309
310 still_busy:
311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 local_irq_restore(flags);
313 return;
314 }
315
316 /*
317 * Completion handler for block_write_full_page() - pages which are unlocked
318 * during I/O, and which have PageWriteback cleared upon I/O completion.
319 */
320 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
321 {
322 char b[BDEVNAME_SIZE];
323 unsigned long flags;
324 struct buffer_head *first;
325 struct buffer_head *tmp;
326 struct page *page;
327
328 BUG_ON(!buffer_async_write(bh));
329
330 page = bh->b_page;
331 if (uptodate) {
332 set_buffer_uptodate(bh);
333 } else {
334 if (!quiet_error(bh)) {
335 buffer_io_error(bh);
336 printk(KERN_WARNING "lost page write due to "
337 "I/O error on %s\n",
338 bdevname(bh->b_bdev, b));
339 }
340 set_bit(AS_EIO, &page->mapping->flags);
341 set_buffer_write_io_error(bh);
342 clear_buffer_uptodate(bh);
343 SetPageError(page);
344 }
345
346 first = page_buffers(page);
347 local_irq_save(flags);
348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
349
350 clear_buffer_async_write(bh);
351 unlock_buffer(bh);
352 tmp = bh->b_this_page;
353 while (tmp != bh) {
354 if (buffer_async_write(tmp)) {
355 BUG_ON(!buffer_locked(tmp));
356 goto still_busy;
357 }
358 tmp = tmp->b_this_page;
359 }
360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 local_irq_restore(flags);
362 end_page_writeback(page);
363 return;
364
365 still_busy:
366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
367 local_irq_restore(flags);
368 return;
369 }
370 EXPORT_SYMBOL(end_buffer_async_write);
371
372 /*
373 * If a page's buffers are under async readin (end_buffer_async_read
374 * completion) then there is a possibility that another thread of
375 * control could lock one of the buffers after it has completed
376 * but while some of the other buffers have not completed. This
377 * locked buffer would confuse end_buffer_async_read() into not unlocking
378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
379 * that this buffer is not under async I/O.
380 *
381 * The page comes unlocked when it has no locked buffer_async buffers
382 * left.
383 *
384 * PageLocked prevents anyone starting new async I/O reads any of
385 * the buffers.
386 *
387 * PageWriteback is used to prevent simultaneous writeout of the same
388 * page.
389 *
390 * PageLocked prevents anyone from starting writeback of a page which is
391 * under read I/O (PageWriteback is only ever set against a locked page).
392 */
393 static void mark_buffer_async_read(struct buffer_head *bh)
394 {
395 bh->b_end_io = end_buffer_async_read;
396 set_buffer_async_read(bh);
397 }
398
399 static void mark_buffer_async_write_endio(struct buffer_head *bh,
400 bh_end_io_t *handler)
401 {
402 bh->b_end_io = handler;
403 set_buffer_async_write(bh);
404 }
405
406 void mark_buffer_async_write(struct buffer_head *bh)
407 {
408 mark_buffer_async_write_endio(bh, end_buffer_async_write);
409 }
410 EXPORT_SYMBOL(mark_buffer_async_write);
411
412
413 /*
414 * fs/buffer.c contains helper functions for buffer-backed address space's
415 * fsync functions. A common requirement for buffer-based filesystems is
416 * that certain data from the backing blockdev needs to be written out for
417 * a successful fsync(). For example, ext2 indirect blocks need to be
418 * written back and waited upon before fsync() returns.
419 *
420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
422 * management of a list of dependent buffers at ->i_mapping->private_list.
423 *
424 * Locking is a little subtle: try_to_free_buffers() will remove buffers
425 * from their controlling inode's queue when they are being freed. But
426 * try_to_free_buffers() will be operating against the *blockdev* mapping
427 * at the time, not against the S_ISREG file which depends on those buffers.
428 * So the locking for private_list is via the private_lock in the address_space
429 * which backs the buffers. Which is different from the address_space
430 * against which the buffers are listed. So for a particular address_space,
431 * mapping->private_lock does *not* protect mapping->private_list! In fact,
432 * mapping->private_list will always be protected by the backing blockdev's
433 * ->private_lock.
434 *
435 * Which introduces a requirement: all buffers on an address_space's
436 * ->private_list must be from the same address_space: the blockdev's.
437 *
438 * address_spaces which do not place buffers at ->private_list via these
439 * utility functions are free to use private_lock and private_list for
440 * whatever they want. The only requirement is that list_empty(private_list)
441 * be true at clear_inode() time.
442 *
443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
444 * filesystems should do that. invalidate_inode_buffers() should just go
445 * BUG_ON(!list_empty).
446 *
447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
448 * take an address_space, not an inode. And it should be called
449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
450 * queued up.
451 *
452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
453 * list if it is already on a list. Because if the buffer is on a list,
454 * it *must* already be on the right one. If not, the filesystem is being
455 * silly. This will save a ton of locking. But first we have to ensure
456 * that buffers are taken *off* the old inode's list when they are freed
457 * (presumably in truncate). That requires careful auditing of all
458 * filesystems (do it inside bforget()). It could also be done by bringing
459 * b_inode back.
460 */
461
462 /*
463 * The buffer's backing address_space's private_lock must be held
464 */
465 static void __remove_assoc_queue(struct buffer_head *bh)
466 {
467 list_del_init(&bh->b_assoc_buffers);
468 WARN_ON(!bh->b_assoc_map);
469 if (buffer_write_io_error(bh))
470 set_bit(AS_EIO, &bh->b_assoc_map->flags);
471 bh->b_assoc_map = NULL;
472 }
473
474 int inode_has_buffers(struct inode *inode)
475 {
476 return !list_empty(&inode->i_data.private_list);
477 }
478
479 /*
480 * osync is designed to support O_SYNC io. It waits synchronously for
481 * all already-submitted IO to complete, but does not queue any new
482 * writes to the disk.
483 *
484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
485 * you dirty the buffers, and then use osync_inode_buffers to wait for
486 * completion. Any other dirty buffers which are not yet queued for
487 * write will not be flushed to disk by the osync.
488 */
489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
490 {
491 struct buffer_head *bh;
492 struct list_head *p;
493 int err = 0;
494
495 spin_lock(lock);
496 repeat:
497 list_for_each_prev(p, list) {
498 bh = BH_ENTRY(p);
499 if (buffer_locked(bh)) {
500 get_bh(bh);
501 spin_unlock(lock);
502 wait_on_buffer(bh);
503 if (!buffer_uptodate(bh))
504 err = -EIO;
505 brelse(bh);
506 spin_lock(lock);
507 goto repeat;
508 }
509 }
510 spin_unlock(lock);
511 return err;
512 }
513
514 static void do_thaw_one(struct super_block *sb, void *unused)
515 {
516 char b[BDEVNAME_SIZE];
517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
518 printk(KERN_WARNING "Emergency Thaw on %s\n",
519 bdevname(sb->s_bdev, b));
520 }
521
522 static void do_thaw_all(struct work_struct *work)
523 {
524 iterate_supers(do_thaw_one, NULL);
525 kfree(work);
526 printk(KERN_WARNING "Emergency Thaw complete\n");
527 }
528
529 /**
530 * emergency_thaw_all -- forcibly thaw every frozen filesystem
531 *
532 * Used for emergency unfreeze of all filesystems via SysRq
533 */
534 void emergency_thaw_all(void)
535 {
536 struct work_struct *work;
537
538 work = kmalloc(sizeof(*work), GFP_ATOMIC);
539 if (work) {
540 INIT_WORK(work, do_thaw_all);
541 schedule_work(work);
542 }
543 }
544
545 /**
546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547 * @mapping: the mapping which wants those buffers written
548 *
549 * Starts I/O against the buffers at mapping->private_list, and waits upon
550 * that I/O.
551 *
552 * Basically, this is a convenience function for fsync().
553 * @mapping is a file or directory which needs those buffers to be written for
554 * a successful fsync().
555 */
556 int sync_mapping_buffers(struct address_space *mapping)
557 {
558 struct address_space *buffer_mapping = mapping->private_data;
559
560 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 return 0;
562
563 return fsync_buffers_list(&buffer_mapping->private_lock,
564 &mapping->private_list);
565 }
566 EXPORT_SYMBOL(sync_mapping_buffers);
567
568 /*
569 * Called when we've recently written block `bblock', and it is known that
570 * `bblock' was for a buffer_boundary() buffer. This means that the block at
571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
572 * dirty, schedule it for IO. So that indirects merge nicely with their data.
573 */
574 void write_boundary_block(struct block_device *bdev,
575 sector_t bblock, unsigned blocksize)
576 {
577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 if (bh) {
579 if (buffer_dirty(bh))
580 ll_rw_block(WRITE, 1, &bh);
581 put_bh(bh);
582 }
583 }
584
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 {
587 struct address_space *mapping = inode->i_mapping;
588 struct address_space *buffer_mapping = bh->b_page->mapping;
589
590 mark_buffer_dirty(bh);
591 if (!mapping->private_data) {
592 mapping->private_data = buffer_mapping;
593 } else {
594 BUG_ON(mapping->private_data != buffer_mapping);
595 }
596 if (!bh->b_assoc_map) {
597 spin_lock(&buffer_mapping->private_lock);
598 list_move_tail(&bh->b_assoc_buffers,
599 &mapping->private_list);
600 bh->b_assoc_map = mapping;
601 spin_unlock(&buffer_mapping->private_lock);
602 }
603 }
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
605
606 /*
607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
608 * dirty.
609 *
610 * If warn is true, then emit a warning if the page is not uptodate and has
611 * not been truncated.
612 */
613 static void __set_page_dirty(struct page *page,
614 struct address_space *mapping, int warn)
615 {
616 spin_lock_irq(&mapping->tree_lock);
617 if (page->mapping) { /* Race with truncate? */
618 WARN_ON_ONCE(warn && !PageUptodate(page));
619 account_page_dirtied(page, mapping);
620 radix_tree_tag_set(&mapping->page_tree,
621 page_index(page), PAGECACHE_TAG_DIRTY);
622 }
623 spin_unlock_irq(&mapping->tree_lock);
624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
625 }
626
627 /*
628 * Add a page to the dirty page list.
629 *
630 * It is a sad fact of life that this function is called from several places
631 * deeply under spinlocking. It may not sleep.
632 *
633 * If the page has buffers, the uptodate buffers are set dirty, to preserve
634 * dirty-state coherency between the page and the buffers. It the page does
635 * not have buffers then when they are later attached they will all be set
636 * dirty.
637 *
638 * The buffers are dirtied before the page is dirtied. There's a small race
639 * window in which a writepage caller may see the page cleanness but not the
640 * buffer dirtiness. That's fine. If this code were to set the page dirty
641 * before the buffers, a concurrent writepage caller could clear the page dirty
642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
643 * page on the dirty page list.
644 *
645 * We use private_lock to lock against try_to_free_buffers while using the
646 * page's buffer list. Also use this to protect against clean buffers being
647 * added to the page after it was set dirty.
648 *
649 * FIXME: may need to call ->reservepage here as well. That's rather up to the
650 * address_space though.
651 */
652 int __set_page_dirty_buffers(struct page *page)
653 {
654 int newly_dirty;
655 struct address_space *mapping = page_mapping(page);
656
657 if (unlikely(!mapping))
658 return !TestSetPageDirty(page);
659
660 spin_lock(&mapping->private_lock);
661 if (page_has_buffers(page)) {
662 struct buffer_head *head = page_buffers(page);
663 struct buffer_head *bh = head;
664
665 do {
666 set_buffer_dirty(bh);
667 bh = bh->b_this_page;
668 } while (bh != head);
669 }
670 newly_dirty = !TestSetPageDirty(page);
671 spin_unlock(&mapping->private_lock);
672
673 if (newly_dirty)
674 __set_page_dirty(page, mapping, 1);
675 return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679 /*
680 * Write out and wait upon a list of buffers.
681 *
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
686 *
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
690 *
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
697 */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 struct buffer_head *bh;
701 struct list_head tmp;
702 struct address_space *mapping;
703 int err = 0, err2;
704 struct blk_plug plug;
705
706 INIT_LIST_HEAD(&tmp);
707 blk_start_plug(&plug);
708
709 spin_lock(lock);
710 while (!list_empty(list)) {
711 bh = BH_ENTRY(list->next);
712 mapping = bh->b_assoc_map;
713 __remove_assoc_queue(bh);
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
716 smp_mb();
717 if (buffer_dirty(bh) || buffer_locked(bh)) {
718 list_add(&bh->b_assoc_buffers, &tmp);
719 bh->b_assoc_map = mapping;
720 if (buffer_dirty(bh)) {
721 get_bh(bh);
722 spin_unlock(lock);
723 /*
724 * Ensure any pending I/O completes so that
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
728 * contents.
729 */
730 write_dirty_buffer(bh, WRITE_SYNC);
731
732 /*
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
737 */
738 brelse(bh);
739 spin_lock(lock);
740 }
741 }
742 }
743
744 spin_unlock(lock);
745 blk_finish_plug(&plug);
746 spin_lock(lock);
747
748 while (!list_empty(&tmp)) {
749 bh = BH_ENTRY(tmp.prev);
750 get_bh(bh);
751 mapping = bh->b_assoc_map;
752 __remove_assoc_queue(bh);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
755 smp_mb();
756 if (buffer_dirty(bh)) {
757 list_add(&bh->b_assoc_buffers,
758 &mapping->private_list);
759 bh->b_assoc_map = mapping;
760 }
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
767 }
768
769 spin_unlock(lock);
770 err2 = osync_buffers_list(lock, list);
771 if (err)
772 return err;
773 else
774 return err2;
775 }
776
777 /*
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
781 *
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
784 * for reiserfs.
785 */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 if (inode_has_buffers(inode)) {
789 struct address_space *mapping = &inode->i_data;
790 struct list_head *list = &mapping->private_list;
791 struct address_space *buffer_mapping = mapping->private_data;
792
793 spin_lock(&buffer_mapping->private_lock);
794 while (!list_empty(list))
795 __remove_assoc_queue(BH_ENTRY(list->next));
796 spin_unlock(&buffer_mapping->private_lock);
797 }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
804 *
805 * Returns true if all buffers were removed.
806 */
807 int remove_inode_buffers(struct inode *inode)
808 {
809 int ret = 1;
810
811 if (inode_has_buffers(inode)) {
812 struct address_space *mapping = &inode->i_data;
813 struct list_head *list = &mapping->private_list;
814 struct address_space *buffer_mapping = mapping->private_data;
815
816 spin_lock(&buffer_mapping->private_lock);
817 while (!list_empty(list)) {
818 struct buffer_head *bh = BH_ENTRY(list->next);
819 if (buffer_dirty(bh)) {
820 ret = 0;
821 break;
822 }
823 __remove_assoc_queue(bh);
824 }
825 spin_unlock(&buffer_mapping->private_lock);
826 }
827 return ret;
828 }
829
830 /*
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
834 * buffers.
835 *
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
838 */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 int retry)
841 {
842 struct buffer_head *bh, *head;
843 long offset;
844
845 try_again:
846 head = NULL;
847 offset = PAGE_SIZE;
848 while ((offset -= size) >= 0) {
849 bh = alloc_buffer_head(GFP_NOFS);
850 if (!bh)
851 goto no_grow;
852
853 bh->b_bdev = NULL;
854 bh->b_this_page = head;
855 bh->b_blocknr = -1;
856 head = bh;
857
858 bh->b_state = 0;
859 atomic_set(&bh->b_count, 0);
860 bh->b_size = size;
861
862 /* Link the buffer to its page */
863 set_bh_page(bh, page, offset);
864
865 init_buffer(bh, NULL, NULL);
866 }
867 return head;
868 /*
869 * In case anything failed, we just free everything we got.
870 */
871 no_grow:
872 if (head) {
873 do {
874 bh = head;
875 head = head->b_this_page;
876 free_buffer_head(bh);
877 } while (head);
878 }
879
880 /*
881 * Return failure for non-async IO requests. Async IO requests
882 * are not allowed to fail, so we have to wait until buffer heads
883 * become available. But we don't want tasks sleeping with
884 * partially complete buffers, so all were released above.
885 */
886 if (!retry)
887 return NULL;
888
889 /* We're _really_ low on memory. Now we just
890 * wait for old buffer heads to become free due to
891 * finishing IO. Since this is an async request and
892 * the reserve list is empty, we're sure there are
893 * async buffer heads in use.
894 */
895 free_more_memory();
896 goto try_again;
897 }
898 EXPORT_SYMBOL_GPL(alloc_page_buffers);
899
900 static inline void
901 link_dev_buffers(struct page *page, struct buffer_head *head)
902 {
903 struct buffer_head *bh, *tail;
904
905 bh = head;
906 do {
907 tail = bh;
908 bh = bh->b_this_page;
909 } while (bh);
910 tail->b_this_page = head;
911 attach_page_buffers(page, head);
912 }
913
914 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
915 {
916 sector_t retval = ~((sector_t)0);
917 loff_t sz = i_size_read(bdev->bd_inode);
918
919 if (sz) {
920 unsigned int sizebits = blksize_bits(size);
921 retval = (sz >> sizebits);
922 }
923 return retval;
924 }
925
926 /*
927 * Initialise the state of a blockdev page's buffers.
928 */
929 static sector_t
930 init_page_buffers(struct page *page, struct block_device *bdev,
931 sector_t block, int size)
932 {
933 struct buffer_head *head = page_buffers(page);
934 struct buffer_head *bh = head;
935 int uptodate = PageUptodate(page);
936 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
937
938 do {
939 if (!buffer_mapped(bh)) {
940 init_buffer(bh, NULL, NULL);
941 bh->b_bdev = bdev;
942 bh->b_blocknr = block;
943 if (uptodate)
944 set_buffer_uptodate(bh);
945 if (block < end_block)
946 set_buffer_mapped(bh);
947 }
948 block++;
949 bh = bh->b_this_page;
950 } while (bh != head);
951
952 /*
953 * Caller needs to validate requested block against end of device.
954 */
955 return end_block;
956 }
957
958 /*
959 * Create the page-cache page that contains the requested block.
960 *
961 * This is used purely for blockdev mappings.
962 */
963 static int
964 grow_dev_page(struct block_device *bdev, sector_t block,
965 pgoff_t index, int size, int sizebits)
966 {
967 struct inode *inode = bdev->bd_inode;
968 struct page *page;
969 struct buffer_head *bh;
970 sector_t end_block;
971 int ret = 0; /* Will call free_more_memory() */
972
973 page = find_or_create_page(inode->i_mapping, index,
974 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
975 if (!page)
976 return ret;
977
978 BUG_ON(!PageLocked(page));
979
980 if (page_has_buffers(page)) {
981 bh = page_buffers(page);
982 if (bh->b_size == size) {
983 end_block = init_page_buffers(page, bdev,
984 index << sizebits, size);
985 goto done;
986 }
987 if (!try_to_free_buffers(page))
988 goto failed;
989 }
990
991 /*
992 * Allocate some buffers for this page
993 */
994 bh = alloc_page_buffers(page, size, 0);
995 if (!bh)
996 goto failed;
997
998 /*
999 * Link the page to the buffers and initialise them. Take the
1000 * lock to be atomic wrt __find_get_block(), which does not
1001 * run under the page lock.
1002 */
1003 spin_lock(&inode->i_mapping->private_lock);
1004 link_dev_buffers(page, bh);
1005 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1006 spin_unlock(&inode->i_mapping->private_lock);
1007 done:
1008 ret = (block < end_block) ? 1 : -ENXIO;
1009 failed:
1010 unlock_page(page);
1011 page_cache_release(page);
1012 return ret;
1013 }
1014
1015 /*
1016 * Create buffers for the specified block device block's page. If
1017 * that page was dirty, the buffers are set dirty also.
1018 */
1019 static int
1020 grow_buffers(struct block_device *bdev, sector_t block, int size)
1021 {
1022 pgoff_t index;
1023 int sizebits;
1024
1025 sizebits = -1;
1026 do {
1027 sizebits++;
1028 } while ((size << sizebits) < PAGE_SIZE);
1029
1030 index = block >> sizebits;
1031
1032 /*
1033 * Check for a block which wants to lie outside our maximum possible
1034 * pagecache index. (this comparison is done using sector_t types).
1035 */
1036 if (unlikely(index != block >> sizebits)) {
1037 char b[BDEVNAME_SIZE];
1038
1039 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1040 "device %s\n",
1041 __func__, (unsigned long long)block,
1042 bdevname(bdev, b));
1043 return -EIO;
1044 }
1045
1046 /* Create a page with the proper size buffers.. */
1047 return grow_dev_page(bdev, block, index, size, sizebits);
1048 }
1049
1050 static struct buffer_head *
1051 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1052 {
1053 /* Size must be multiple of hard sectorsize */
1054 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1055 (size < 512 || size > PAGE_SIZE))) {
1056 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1057 size);
1058 printk(KERN_ERR "logical block size: %d\n",
1059 bdev_logical_block_size(bdev));
1060
1061 dump_stack();
1062 return NULL;
1063 }
1064
1065 for (;;) {
1066 struct buffer_head *bh;
1067 int ret;
1068
1069 bh = __find_get_block(bdev, block, size);
1070 if (bh)
1071 return bh;
1072
1073 ret = grow_buffers(bdev, block, size);
1074 if (ret < 0)
1075 return NULL;
1076 if (ret == 0)
1077 free_more_memory();
1078 }
1079 }
1080
1081 /*
1082 * The relationship between dirty buffers and dirty pages:
1083 *
1084 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1085 * the page is tagged dirty in its radix tree.
1086 *
1087 * At all times, the dirtiness of the buffers represents the dirtiness of
1088 * subsections of the page. If the page has buffers, the page dirty bit is
1089 * merely a hint about the true dirty state.
1090 *
1091 * When a page is set dirty in its entirety, all its buffers are marked dirty
1092 * (if the page has buffers).
1093 *
1094 * When a buffer is marked dirty, its page is dirtied, but the page's other
1095 * buffers are not.
1096 *
1097 * Also. When blockdev buffers are explicitly read with bread(), they
1098 * individually become uptodate. But their backing page remains not
1099 * uptodate - even if all of its buffers are uptodate. A subsequent
1100 * block_read_full_page() against that page will discover all the uptodate
1101 * buffers, will set the page uptodate and will perform no I/O.
1102 */
1103
1104 /**
1105 * mark_buffer_dirty - mark a buffer_head as needing writeout
1106 * @bh: the buffer_head to mark dirty
1107 *
1108 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1109 * backing page dirty, then tag the page as dirty in its address_space's radix
1110 * tree and then attach the address_space's inode to its superblock's dirty
1111 * inode list.
1112 *
1113 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1114 * mapping->tree_lock and mapping->host->i_lock.
1115 */
1116 void mark_buffer_dirty(struct buffer_head *bh)
1117 {
1118 WARN_ON_ONCE(!buffer_uptodate(bh));
1119
1120 /*
1121 * Very *carefully* optimize the it-is-already-dirty case.
1122 *
1123 * Don't let the final "is it dirty" escape to before we
1124 * perhaps modified the buffer.
1125 */
1126 if (buffer_dirty(bh)) {
1127 smp_mb();
1128 if (buffer_dirty(bh))
1129 return;
1130 }
1131
1132 if (!test_set_buffer_dirty(bh)) {
1133 struct page *page = bh->b_page;
1134 if (!TestSetPageDirty(page)) {
1135 struct address_space *mapping = page_mapping(page);
1136 if (mapping)
1137 __set_page_dirty(page, mapping, 0);
1138 }
1139 }
1140 }
1141 EXPORT_SYMBOL(mark_buffer_dirty);
1142
1143 /*
1144 * Decrement a buffer_head's reference count. If all buffers against a page
1145 * have zero reference count, are clean and unlocked, and if the page is clean
1146 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1147 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1148 * a page but it ends up not being freed, and buffers may later be reattached).
1149 */
1150 void __brelse(struct buffer_head * buf)
1151 {
1152 if (atomic_read(&buf->b_count)) {
1153 put_bh(buf);
1154 return;
1155 }
1156 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1157 }
1158 EXPORT_SYMBOL(__brelse);
1159
1160 /*
1161 * bforget() is like brelse(), except it discards any
1162 * potentially dirty data.
1163 */
1164 void __bforget(struct buffer_head *bh)
1165 {
1166 clear_buffer_dirty(bh);
1167 if (bh->b_assoc_map) {
1168 struct address_space *buffer_mapping = bh->b_page->mapping;
1169
1170 spin_lock(&buffer_mapping->private_lock);
1171 list_del_init(&bh->b_assoc_buffers);
1172 bh->b_assoc_map = NULL;
1173 spin_unlock(&buffer_mapping->private_lock);
1174 }
1175 __brelse(bh);
1176 }
1177 EXPORT_SYMBOL(__bforget);
1178
1179 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1180 {
1181 lock_buffer(bh);
1182 if (buffer_uptodate(bh)) {
1183 unlock_buffer(bh);
1184 return bh;
1185 } else {
1186 get_bh(bh);
1187 bh->b_end_io = end_buffer_read_sync;
1188 submit_bh(READ, bh);
1189 wait_on_buffer(bh);
1190 if (buffer_uptodate(bh))
1191 return bh;
1192 }
1193 brelse(bh);
1194 return NULL;
1195 }
1196
1197 /*
1198 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1199 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1200 * refcount elevated by one when they're in an LRU. A buffer can only appear
1201 * once in a particular CPU's LRU. A single buffer can be present in multiple
1202 * CPU's LRUs at the same time.
1203 *
1204 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1205 * sb_find_get_block().
1206 *
1207 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1208 * a local interrupt disable for that.
1209 */
1210
1211 #define BH_LRU_SIZE 8
1212
1213 struct bh_lru {
1214 struct buffer_head *bhs[BH_LRU_SIZE];
1215 };
1216
1217 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1218
1219 #ifdef CONFIG_SMP
1220 #define bh_lru_lock() local_irq_disable()
1221 #define bh_lru_unlock() local_irq_enable()
1222 #else
1223 #define bh_lru_lock() preempt_disable()
1224 #define bh_lru_unlock() preempt_enable()
1225 #endif
1226
1227 static inline void check_irqs_on(void)
1228 {
1229 #ifdef irqs_disabled
1230 BUG_ON(irqs_disabled());
1231 #endif
1232 }
1233
1234 /*
1235 * The LRU management algorithm is dopey-but-simple. Sorry.
1236 */
1237 static void bh_lru_install(struct buffer_head *bh)
1238 {
1239 struct buffer_head *evictee = NULL;
1240
1241 check_irqs_on();
1242 bh_lru_lock();
1243 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1244 struct buffer_head *bhs[BH_LRU_SIZE];
1245 int in;
1246 int out = 0;
1247
1248 get_bh(bh);
1249 bhs[out++] = bh;
1250 for (in = 0; in < BH_LRU_SIZE; in++) {
1251 struct buffer_head *bh2 =
1252 __this_cpu_read(bh_lrus.bhs[in]);
1253
1254 if (bh2 == bh) {
1255 __brelse(bh2);
1256 } else {
1257 if (out >= BH_LRU_SIZE) {
1258 BUG_ON(evictee != NULL);
1259 evictee = bh2;
1260 } else {
1261 bhs[out++] = bh2;
1262 }
1263 }
1264 }
1265 while (out < BH_LRU_SIZE)
1266 bhs[out++] = NULL;
1267 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1268 }
1269 bh_lru_unlock();
1270
1271 if (evictee)
1272 __brelse(evictee);
1273 }
1274
1275 /*
1276 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1277 */
1278 static struct buffer_head *
1279 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1280 {
1281 struct buffer_head *ret = NULL;
1282 unsigned int i;
1283
1284 check_irqs_on();
1285 bh_lru_lock();
1286 for (i = 0; i < BH_LRU_SIZE; i++) {
1287 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1288
1289 if (bh && bh->b_bdev == bdev &&
1290 bh->b_blocknr == block && bh->b_size == size) {
1291 if (i) {
1292 while (i) {
1293 __this_cpu_write(bh_lrus.bhs[i],
1294 __this_cpu_read(bh_lrus.bhs[i - 1]));
1295 i--;
1296 }
1297 __this_cpu_write(bh_lrus.bhs[0], bh);
1298 }
1299 get_bh(bh);
1300 ret = bh;
1301 break;
1302 }
1303 }
1304 bh_lru_unlock();
1305 return ret;
1306 }
1307
1308 /*
1309 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1310 * it in the LRU and mark it as accessed. If it is not present then return
1311 * NULL
1312 */
1313 struct buffer_head *
1314 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1315 {
1316 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1317
1318 if (bh == NULL) {
1319 bh = __find_get_block_slow(bdev, block);
1320 if (bh)
1321 bh_lru_install(bh);
1322 }
1323 if (bh)
1324 touch_buffer(bh);
1325 return bh;
1326 }
1327 EXPORT_SYMBOL(__find_get_block);
1328
1329 /*
1330 * __getblk will locate (and, if necessary, create) the buffer_head
1331 * which corresponds to the passed block_device, block and size. The
1332 * returned buffer has its reference count incremented.
1333 *
1334 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1335 * attempt is failing. FIXME, perhaps?
1336 */
1337 struct buffer_head *
1338 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1339 {
1340 struct buffer_head *bh = __find_get_block(bdev, block, size);
1341
1342 might_sleep();
1343 if (bh == NULL)
1344 bh = __getblk_slow(bdev, block, size);
1345 return bh;
1346 }
1347 EXPORT_SYMBOL(__getblk);
1348
1349 /*
1350 * Do async read-ahead on a buffer..
1351 */
1352 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1353 {
1354 struct buffer_head *bh = __getblk(bdev, block, size);
1355 if (likely(bh)) {
1356 ll_rw_block(READA, 1, &bh);
1357 brelse(bh);
1358 }
1359 }
1360 EXPORT_SYMBOL(__breadahead);
1361
1362 /**
1363 * __bread() - reads a specified block and returns the bh
1364 * @bdev: the block_device to read from
1365 * @block: number of block
1366 * @size: size (in bytes) to read
1367 *
1368 * Reads a specified block, and returns buffer head that contains it.
1369 * It returns NULL if the block was unreadable.
1370 */
1371 struct buffer_head *
1372 __bread(struct block_device *bdev, sector_t block, unsigned size)
1373 {
1374 struct buffer_head *bh = __getblk(bdev, block, size);
1375
1376 if (likely(bh) && !buffer_uptodate(bh))
1377 bh = __bread_slow(bh);
1378 return bh;
1379 }
1380 EXPORT_SYMBOL(__bread);
1381
1382 /*
1383 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1384 * This doesn't race because it runs in each cpu either in irq
1385 * or with preempt disabled.
1386 */
1387 static void invalidate_bh_lru(void *arg)
1388 {
1389 struct bh_lru *b = &get_cpu_var(bh_lrus);
1390 int i;
1391
1392 for (i = 0; i < BH_LRU_SIZE; i++) {
1393 brelse(b->bhs[i]);
1394 b->bhs[i] = NULL;
1395 }
1396 put_cpu_var(bh_lrus);
1397 }
1398
1399 static bool has_bh_in_lru(int cpu, void *dummy)
1400 {
1401 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1402 int i;
1403
1404 for (i = 0; i < BH_LRU_SIZE; i++) {
1405 if (b->bhs[i])
1406 return 1;
1407 }
1408
1409 return 0;
1410 }
1411
1412 void invalidate_bh_lrus(void)
1413 {
1414 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1415 }
1416 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1417
1418 void set_bh_page(struct buffer_head *bh,
1419 struct page *page, unsigned long offset)
1420 {
1421 bh->b_page = page;
1422 BUG_ON(offset >= PAGE_SIZE);
1423 if (PageHighMem(page))
1424 /*
1425 * This catches illegal uses and preserves the offset:
1426 */
1427 bh->b_data = (char *)(0 + offset);
1428 else
1429 bh->b_data = page_address(page) + offset;
1430 }
1431 EXPORT_SYMBOL(set_bh_page);
1432
1433 /*
1434 * Called when truncating a buffer on a page completely.
1435 */
1436 static void discard_buffer(struct buffer_head * bh)
1437 {
1438 lock_buffer(bh);
1439 clear_buffer_dirty(bh);
1440 bh->b_bdev = NULL;
1441 clear_buffer_mapped(bh);
1442 clear_buffer_req(bh);
1443 clear_buffer_new(bh);
1444 clear_buffer_delay(bh);
1445 clear_buffer_unwritten(bh);
1446 unlock_buffer(bh);
1447 }
1448
1449 /**
1450 * block_invalidatepage - invalidate part or all of a buffer-backed page
1451 *
1452 * @page: the page which is affected
1453 * @offset: the index of the truncation point
1454 *
1455 * block_invalidatepage() is called when all or part of the page has become
1456 * invalidated by a truncate operation.
1457 *
1458 * block_invalidatepage() does not have to release all buffers, but it must
1459 * ensure that no dirty buffer is left outside @offset and that no I/O
1460 * is underway against any of the blocks which are outside the truncation
1461 * point. Because the caller is about to free (and possibly reuse) those
1462 * blocks on-disk.
1463 */
1464 void block_invalidatepage(struct page *page, unsigned long offset)
1465 {
1466 struct buffer_head *head, *bh, *next;
1467 unsigned int curr_off = 0;
1468
1469 BUG_ON(!PageLocked(page));
1470 if (!page_has_buffers(page))
1471 goto out;
1472
1473 head = page_buffers(page);
1474 bh = head;
1475 do {
1476 unsigned int next_off = curr_off + bh->b_size;
1477 next = bh->b_this_page;
1478
1479 /*
1480 * is this block fully invalidated?
1481 */
1482 if (offset <= curr_off)
1483 discard_buffer(bh);
1484 curr_off = next_off;
1485 bh = next;
1486 } while (bh != head);
1487
1488 /*
1489 * We release buffers only if the entire page is being invalidated.
1490 * The get_block cached value has been unconditionally invalidated,
1491 * so real IO is not possible anymore.
1492 */
1493 if (offset == 0)
1494 try_to_release_page(page, 0);
1495 out:
1496 return;
1497 }
1498 EXPORT_SYMBOL(block_invalidatepage);
1499
1500 /*
1501 * We attach and possibly dirty the buffers atomically wrt
1502 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1503 * is already excluded via the page lock.
1504 */
1505 void create_empty_buffers(struct page *page,
1506 unsigned long blocksize, unsigned long b_state)
1507 {
1508 struct buffer_head *bh, *head, *tail;
1509
1510 head = alloc_page_buffers(page, blocksize, 1);
1511 bh = head;
1512 do {
1513 bh->b_state |= b_state;
1514 tail = bh;
1515 bh = bh->b_this_page;
1516 } while (bh);
1517 tail->b_this_page = head;
1518
1519 spin_lock(&page->mapping->private_lock);
1520 if (PageUptodate(page) || PageDirty(page)) {
1521 bh = head;
1522 do {
1523 if (PageDirty(page))
1524 set_buffer_dirty(bh);
1525 if (PageUptodate(page))
1526 set_buffer_uptodate(bh);
1527 bh = bh->b_this_page;
1528 } while (bh != head);
1529 }
1530 attach_page_buffers(page, head);
1531 spin_unlock(&page->mapping->private_lock);
1532 }
1533 EXPORT_SYMBOL(create_empty_buffers);
1534
1535 /*
1536 * We are taking a block for data and we don't want any output from any
1537 * buffer-cache aliases starting from return from that function and
1538 * until the moment when something will explicitly mark the buffer
1539 * dirty (hopefully that will not happen until we will free that block ;-)
1540 * We don't even need to mark it not-uptodate - nobody can expect
1541 * anything from a newly allocated buffer anyway. We used to used
1542 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1543 * don't want to mark the alias unmapped, for example - it would confuse
1544 * anyone who might pick it with bread() afterwards...
1545 *
1546 * Also.. Note that bforget() doesn't lock the buffer. So there can
1547 * be writeout I/O going on against recently-freed buffers. We don't
1548 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1549 * only if we really need to. That happens here.
1550 */
1551 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1552 {
1553 struct buffer_head *old_bh;
1554
1555 might_sleep();
1556
1557 old_bh = __find_get_block_slow(bdev, block);
1558 if (old_bh) {
1559 clear_buffer_dirty(old_bh);
1560 wait_on_buffer(old_bh);
1561 clear_buffer_req(old_bh);
1562 __brelse(old_bh);
1563 }
1564 }
1565 EXPORT_SYMBOL(unmap_underlying_metadata);
1566
1567 /*
1568 * Size is a power-of-two in the range 512..PAGE_SIZE,
1569 * and the case we care about most is PAGE_SIZE.
1570 *
1571 * So this *could* possibly be written with those
1572 * constraints in mind (relevant mostly if some
1573 * architecture has a slow bit-scan instruction)
1574 */
1575 static inline int block_size_bits(unsigned int blocksize)
1576 {
1577 return ilog2(blocksize);
1578 }
1579
1580 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1581 {
1582 BUG_ON(!PageLocked(page));
1583
1584 if (!page_has_buffers(page))
1585 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1586 return page_buffers(page);
1587 }
1588
1589 /*
1590 * NOTE! All mapped/uptodate combinations are valid:
1591 *
1592 * Mapped Uptodate Meaning
1593 *
1594 * No No "unknown" - must do get_block()
1595 * No Yes "hole" - zero-filled
1596 * Yes No "allocated" - allocated on disk, not read in
1597 * Yes Yes "valid" - allocated and up-to-date in memory.
1598 *
1599 * "Dirty" is valid only with the last case (mapped+uptodate).
1600 */
1601
1602 /*
1603 * While block_write_full_page is writing back the dirty buffers under
1604 * the page lock, whoever dirtied the buffers may decide to clean them
1605 * again at any time. We handle that by only looking at the buffer
1606 * state inside lock_buffer().
1607 *
1608 * If block_write_full_page() is called for regular writeback
1609 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1610 * locked buffer. This only can happen if someone has written the buffer
1611 * directly, with submit_bh(). At the address_space level PageWriteback
1612 * prevents this contention from occurring.
1613 *
1614 * If block_write_full_page() is called with wbc->sync_mode ==
1615 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1616 * causes the writes to be flagged as synchronous writes.
1617 */
1618 static int __block_write_full_page(struct inode *inode, struct page *page,
1619 get_block_t *get_block, struct writeback_control *wbc,
1620 bh_end_io_t *handler)
1621 {
1622 int err;
1623 sector_t block;
1624 sector_t last_block;
1625 struct buffer_head *bh, *head;
1626 unsigned int blocksize, bbits;
1627 int nr_underway = 0;
1628 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1629 WRITE_SYNC : WRITE);
1630
1631 head = create_page_buffers(page, inode,
1632 (1 << BH_Dirty)|(1 << BH_Uptodate));
1633
1634 /*
1635 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1636 * here, and the (potentially unmapped) buffers may become dirty at
1637 * any time. If a buffer becomes dirty here after we've inspected it
1638 * then we just miss that fact, and the page stays dirty.
1639 *
1640 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1641 * handle that here by just cleaning them.
1642 */
1643
1644 bh = head;
1645 blocksize = bh->b_size;
1646 bbits = block_size_bits(blocksize);
1647
1648 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1649 last_block = (i_size_read(inode) - 1) >> bbits;
1650
1651 /*
1652 * Get all the dirty buffers mapped to disk addresses and
1653 * handle any aliases from the underlying blockdev's mapping.
1654 */
1655 do {
1656 if (block > last_block) {
1657 /*
1658 * mapped buffers outside i_size will occur, because
1659 * this page can be outside i_size when there is a
1660 * truncate in progress.
1661 */
1662 /*
1663 * The buffer was zeroed by block_write_full_page()
1664 */
1665 clear_buffer_dirty(bh);
1666 set_buffer_uptodate(bh);
1667 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1668 buffer_dirty(bh)) {
1669 WARN_ON(bh->b_size != blocksize);
1670 err = get_block(inode, block, bh, 1);
1671 if (err)
1672 goto recover;
1673 clear_buffer_delay(bh);
1674 if (buffer_new(bh)) {
1675 /* blockdev mappings never come here */
1676 clear_buffer_new(bh);
1677 unmap_underlying_metadata(bh->b_bdev,
1678 bh->b_blocknr);
1679 }
1680 }
1681 bh = bh->b_this_page;
1682 block++;
1683 } while (bh != head);
1684
1685 do {
1686 if (!buffer_mapped(bh))
1687 continue;
1688 /*
1689 * If it's a fully non-blocking write attempt and we cannot
1690 * lock the buffer then redirty the page. Note that this can
1691 * potentially cause a busy-wait loop from writeback threads
1692 * and kswapd activity, but those code paths have their own
1693 * higher-level throttling.
1694 */
1695 if (wbc->sync_mode != WB_SYNC_NONE) {
1696 lock_buffer(bh);
1697 } else if (!trylock_buffer(bh)) {
1698 redirty_page_for_writepage(wbc, page);
1699 continue;
1700 }
1701 if (test_clear_buffer_dirty(bh)) {
1702 mark_buffer_async_write_endio(bh, handler);
1703 } else {
1704 unlock_buffer(bh);
1705 }
1706 } while ((bh = bh->b_this_page) != head);
1707
1708 /*
1709 * The page and its buffers are protected by PageWriteback(), so we can
1710 * drop the bh refcounts early.
1711 */
1712 BUG_ON(PageWriteback(page));
1713 set_page_writeback(page);
1714
1715 do {
1716 struct buffer_head *next = bh->b_this_page;
1717 if (buffer_async_write(bh)) {
1718 submit_bh(write_op, bh);
1719 nr_underway++;
1720 }
1721 bh = next;
1722 } while (bh != head);
1723 unlock_page(page);
1724
1725 err = 0;
1726 done:
1727 if (nr_underway == 0) {
1728 /*
1729 * The page was marked dirty, but the buffers were
1730 * clean. Someone wrote them back by hand with
1731 * ll_rw_block/submit_bh. A rare case.
1732 */
1733 end_page_writeback(page);
1734
1735 /*
1736 * The page and buffer_heads can be released at any time from
1737 * here on.
1738 */
1739 }
1740 return err;
1741
1742 recover:
1743 /*
1744 * ENOSPC, or some other error. We may already have added some
1745 * blocks to the file, so we need to write these out to avoid
1746 * exposing stale data.
1747 * The page is currently locked and not marked for writeback
1748 */
1749 bh = head;
1750 /* Recovery: lock and submit the mapped buffers */
1751 do {
1752 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1753 !buffer_delay(bh)) {
1754 lock_buffer(bh);
1755 mark_buffer_async_write_endio(bh, handler);
1756 } else {
1757 /*
1758 * The buffer may have been set dirty during
1759 * attachment to a dirty page.
1760 */
1761 clear_buffer_dirty(bh);
1762 }
1763 } while ((bh = bh->b_this_page) != head);
1764 SetPageError(page);
1765 BUG_ON(PageWriteback(page));
1766 mapping_set_error(page->mapping, err);
1767 set_page_writeback(page);
1768 do {
1769 struct buffer_head *next = bh->b_this_page;
1770 if (buffer_async_write(bh)) {
1771 clear_buffer_dirty(bh);
1772 submit_bh(write_op, bh);
1773 nr_underway++;
1774 }
1775 bh = next;
1776 } while (bh != head);
1777 unlock_page(page);
1778 goto done;
1779 }
1780
1781 /*
1782 * If a page has any new buffers, zero them out here, and mark them uptodate
1783 * and dirty so they'll be written out (in order to prevent uninitialised
1784 * block data from leaking). And clear the new bit.
1785 */
1786 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1787 {
1788 unsigned int block_start, block_end;
1789 struct buffer_head *head, *bh;
1790
1791 BUG_ON(!PageLocked(page));
1792 if (!page_has_buffers(page))
1793 return;
1794
1795 bh = head = page_buffers(page);
1796 block_start = 0;
1797 do {
1798 block_end = block_start + bh->b_size;
1799
1800 if (buffer_new(bh)) {
1801 if (block_end > from && block_start < to) {
1802 if (!PageUptodate(page)) {
1803 unsigned start, size;
1804
1805 start = max(from, block_start);
1806 size = min(to, block_end) - start;
1807
1808 zero_user(page, start, size);
1809 set_buffer_uptodate(bh);
1810 }
1811
1812 clear_buffer_new(bh);
1813 mark_buffer_dirty(bh);
1814 }
1815 }
1816
1817 block_start = block_end;
1818 bh = bh->b_this_page;
1819 } while (bh != head);
1820 }
1821 EXPORT_SYMBOL(page_zero_new_buffers);
1822
1823 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1824 get_block_t *get_block)
1825 {
1826 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1827 unsigned to = from + len;
1828 struct inode *inode = page->mapping->host;
1829 unsigned block_start, block_end;
1830 sector_t block;
1831 int err = 0;
1832 unsigned blocksize, bbits;
1833 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1834
1835 BUG_ON(!PageLocked(page));
1836 BUG_ON(from > PAGE_CACHE_SIZE);
1837 BUG_ON(to > PAGE_CACHE_SIZE);
1838 BUG_ON(from > to);
1839
1840 head = create_page_buffers(page, inode, 0);
1841 blocksize = head->b_size;
1842 bbits = block_size_bits(blocksize);
1843
1844 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1845
1846 for(bh = head, block_start = 0; bh != head || !block_start;
1847 block++, block_start=block_end, bh = bh->b_this_page) {
1848 block_end = block_start + blocksize;
1849 if (block_end <= from || block_start >= to) {
1850 if (PageUptodate(page)) {
1851 if (!buffer_uptodate(bh))
1852 set_buffer_uptodate(bh);
1853 }
1854 continue;
1855 }
1856 if (buffer_new(bh))
1857 clear_buffer_new(bh);
1858 if (!buffer_mapped(bh)) {
1859 WARN_ON(bh->b_size != blocksize);
1860 err = get_block(inode, block, bh, 1);
1861 if (err)
1862 break;
1863 if (buffer_new(bh)) {
1864 unmap_underlying_metadata(bh->b_bdev,
1865 bh->b_blocknr);
1866 if (PageUptodate(page)) {
1867 clear_buffer_new(bh);
1868 set_buffer_uptodate(bh);
1869 mark_buffer_dirty(bh);
1870 continue;
1871 }
1872 if (block_end > to || block_start < from)
1873 zero_user_segments(page,
1874 to, block_end,
1875 block_start, from);
1876 continue;
1877 }
1878 }
1879 if (PageUptodate(page)) {
1880 if (!buffer_uptodate(bh))
1881 set_buffer_uptodate(bh);
1882 continue;
1883 }
1884 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1885 !buffer_unwritten(bh) &&
1886 (block_start < from || block_end > to)) {
1887 ll_rw_block(READ, 1, &bh);
1888 *wait_bh++=bh;
1889 }
1890 }
1891 /*
1892 * If we issued read requests - let them complete.
1893 */
1894 while(wait_bh > wait) {
1895 wait_on_buffer(*--wait_bh);
1896 if (!buffer_uptodate(*wait_bh))
1897 err = -EIO;
1898 }
1899 if (unlikely(err))
1900 page_zero_new_buffers(page, from, to);
1901 return err;
1902 }
1903 EXPORT_SYMBOL(__block_write_begin);
1904
1905 static int __block_commit_write(struct inode *inode, struct page *page,
1906 unsigned from, unsigned to)
1907 {
1908 unsigned block_start, block_end;
1909 int partial = 0;
1910 unsigned blocksize;
1911 struct buffer_head *bh, *head;
1912
1913 bh = head = page_buffers(page);
1914 blocksize = bh->b_size;
1915
1916 block_start = 0;
1917 do {
1918 block_end = block_start + blocksize;
1919 if (block_end <= from || block_start >= to) {
1920 if (!buffer_uptodate(bh))
1921 partial = 1;
1922 } else {
1923 set_buffer_uptodate(bh);
1924 mark_buffer_dirty(bh);
1925 }
1926 clear_buffer_new(bh);
1927
1928 block_start = block_end;
1929 bh = bh->b_this_page;
1930 } while (bh != head);
1931
1932 /*
1933 * If this is a partial write which happened to make all buffers
1934 * uptodate then we can optimize away a bogus readpage() for
1935 * the next read(). Here we 'discover' whether the page went
1936 * uptodate as a result of this (potentially partial) write.
1937 */
1938 if (!partial)
1939 SetPageUptodate(page);
1940 return 0;
1941 }
1942
1943 /*
1944 * block_write_begin takes care of the basic task of block allocation and
1945 * bringing partial write blocks uptodate first.
1946 *
1947 * The filesystem needs to handle block truncation upon failure.
1948 */
1949 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1950 unsigned flags, struct page **pagep, get_block_t *get_block)
1951 {
1952 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1953 struct page *page;
1954 int status;
1955
1956 page = grab_cache_page_write_begin(mapping, index, flags);
1957 if (!page)
1958 return -ENOMEM;
1959
1960 status = __block_write_begin(page, pos, len, get_block);
1961 if (unlikely(status)) {
1962 unlock_page(page);
1963 page_cache_release(page);
1964 page = NULL;
1965 }
1966
1967 *pagep = page;
1968 return status;
1969 }
1970 EXPORT_SYMBOL(block_write_begin);
1971
1972 int block_write_end(struct file *file, struct address_space *mapping,
1973 loff_t pos, unsigned len, unsigned copied,
1974 struct page *page, void *fsdata)
1975 {
1976 struct inode *inode = mapping->host;
1977 unsigned start;
1978
1979 start = pos & (PAGE_CACHE_SIZE - 1);
1980
1981 if (unlikely(copied < len)) {
1982 /*
1983 * The buffers that were written will now be uptodate, so we
1984 * don't have to worry about a readpage reading them and
1985 * overwriting a partial write. However if we have encountered
1986 * a short write and only partially written into a buffer, it
1987 * will not be marked uptodate, so a readpage might come in and
1988 * destroy our partial write.
1989 *
1990 * Do the simplest thing, and just treat any short write to a
1991 * non uptodate page as a zero-length write, and force the
1992 * caller to redo the whole thing.
1993 */
1994 if (!PageUptodate(page))
1995 copied = 0;
1996
1997 page_zero_new_buffers(page, start+copied, start+len);
1998 }
1999 flush_dcache_page(page);
2000
2001 /* This could be a short (even 0-length) commit */
2002 __block_commit_write(inode, page, start, start+copied);
2003
2004 return copied;
2005 }
2006 EXPORT_SYMBOL(block_write_end);
2007
2008 int generic_write_end(struct file *file, struct address_space *mapping,
2009 loff_t pos, unsigned len, unsigned copied,
2010 struct page *page, void *fsdata)
2011 {
2012 struct inode *inode = mapping->host;
2013 int i_size_changed = 0;
2014
2015 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2016
2017 /*
2018 * No need to use i_size_read() here, the i_size
2019 * cannot change under us because we hold i_mutex.
2020 *
2021 * But it's important to update i_size while still holding page lock:
2022 * page writeout could otherwise come in and zero beyond i_size.
2023 */
2024 if (pos+copied > inode->i_size) {
2025 i_size_write(inode, pos+copied);
2026 i_size_changed = 1;
2027 }
2028
2029 unlock_page(page);
2030 page_cache_release(page);
2031
2032 /*
2033 * Don't mark the inode dirty under page lock. First, it unnecessarily
2034 * makes the holding time of page lock longer. Second, it forces lock
2035 * ordering of page lock and transaction start for journaling
2036 * filesystems.
2037 */
2038 if (i_size_changed)
2039 mark_inode_dirty(inode);
2040
2041 return copied;
2042 }
2043 EXPORT_SYMBOL(generic_write_end);
2044
2045 /*
2046 * block_is_partially_uptodate checks whether buffers within a page are
2047 * uptodate or not.
2048 *
2049 * Returns true if all buffers which correspond to a file portion
2050 * we want to read are uptodate.
2051 */
2052 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2053 unsigned long from)
2054 {
2055 unsigned block_start, block_end, blocksize;
2056 unsigned to;
2057 struct buffer_head *bh, *head;
2058 int ret = 1;
2059
2060 if (!page_has_buffers(page))
2061 return 0;
2062
2063 head = page_buffers(page);
2064 blocksize = head->b_size;
2065 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2066 to = from + to;
2067 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2068 return 0;
2069
2070 bh = head;
2071 block_start = 0;
2072 do {
2073 block_end = block_start + blocksize;
2074 if (block_end > from && block_start < to) {
2075 if (!buffer_uptodate(bh)) {
2076 ret = 0;
2077 break;
2078 }
2079 if (block_end >= to)
2080 break;
2081 }
2082 block_start = block_end;
2083 bh = bh->b_this_page;
2084 } while (bh != head);
2085
2086 return ret;
2087 }
2088 EXPORT_SYMBOL(block_is_partially_uptodate);
2089
2090 /*
2091 * Generic "read page" function for block devices that have the normal
2092 * get_block functionality. This is most of the block device filesystems.
2093 * Reads the page asynchronously --- the unlock_buffer() and
2094 * set/clear_buffer_uptodate() functions propagate buffer state into the
2095 * page struct once IO has completed.
2096 */
2097 int block_read_full_page(struct page *page, get_block_t *get_block)
2098 {
2099 struct inode *inode = page->mapping->host;
2100 sector_t iblock, lblock;
2101 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2102 unsigned int blocksize, bbits;
2103 int nr, i;
2104 int fully_mapped = 1;
2105
2106 head = create_page_buffers(page, inode, 0);
2107 blocksize = head->b_size;
2108 bbits = block_size_bits(blocksize);
2109
2110 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2111 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2112 bh = head;
2113 nr = 0;
2114 i = 0;
2115
2116 do {
2117 if (buffer_uptodate(bh))
2118 continue;
2119
2120 if (!buffer_mapped(bh)) {
2121 int err = 0;
2122
2123 fully_mapped = 0;
2124 if (iblock < lblock) {
2125 WARN_ON(bh->b_size != blocksize);
2126 err = get_block(inode, iblock, bh, 0);
2127 if (err)
2128 SetPageError(page);
2129 }
2130 if (!buffer_mapped(bh)) {
2131 zero_user(page, i * blocksize, blocksize);
2132 if (!err)
2133 set_buffer_uptodate(bh);
2134 continue;
2135 }
2136 /*
2137 * get_block() might have updated the buffer
2138 * synchronously
2139 */
2140 if (buffer_uptodate(bh))
2141 continue;
2142 }
2143 arr[nr++] = bh;
2144 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2145
2146 if (fully_mapped)
2147 SetPageMappedToDisk(page);
2148
2149 if (!nr) {
2150 /*
2151 * All buffers are uptodate - we can set the page uptodate
2152 * as well. But not if get_block() returned an error.
2153 */
2154 if (!PageError(page))
2155 SetPageUptodate(page);
2156 unlock_page(page);
2157 return 0;
2158 }
2159
2160 /* Stage two: lock the buffers */
2161 for (i = 0; i < nr; i++) {
2162 bh = arr[i];
2163 lock_buffer(bh);
2164 mark_buffer_async_read(bh);
2165 }
2166
2167 /*
2168 * Stage 3: start the IO. Check for uptodateness
2169 * inside the buffer lock in case another process reading
2170 * the underlying blockdev brought it uptodate (the sct fix).
2171 */
2172 for (i = 0; i < nr; i++) {
2173 bh = arr[i];
2174 if (buffer_uptodate(bh))
2175 end_buffer_async_read(bh, 1);
2176 else
2177 submit_bh(READ, bh);
2178 }
2179 return 0;
2180 }
2181 EXPORT_SYMBOL(block_read_full_page);
2182
2183 /* utility function for filesystems that need to do work on expanding
2184 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2185 * deal with the hole.
2186 */
2187 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2188 {
2189 struct address_space *mapping = inode->i_mapping;
2190 struct page *page;
2191 void *fsdata;
2192 int err;
2193
2194 err = inode_newsize_ok(inode, size);
2195 if (err)
2196 goto out;
2197
2198 err = pagecache_write_begin(NULL, mapping, size, 0,
2199 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2200 &page, &fsdata);
2201 if (err)
2202 goto out;
2203
2204 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2205 BUG_ON(err > 0);
2206
2207 out:
2208 return err;
2209 }
2210 EXPORT_SYMBOL(generic_cont_expand_simple);
2211
2212 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2213 loff_t pos, loff_t *bytes)
2214 {
2215 struct inode *inode = mapping->host;
2216 unsigned blocksize = 1 << inode->i_blkbits;
2217 struct page *page;
2218 void *fsdata;
2219 pgoff_t index, curidx;
2220 loff_t curpos;
2221 unsigned zerofrom, offset, len;
2222 int err = 0;
2223
2224 index = pos >> PAGE_CACHE_SHIFT;
2225 offset = pos & ~PAGE_CACHE_MASK;
2226
2227 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2228 zerofrom = curpos & ~PAGE_CACHE_MASK;
2229 if (zerofrom & (blocksize-1)) {
2230 *bytes |= (blocksize-1);
2231 (*bytes)++;
2232 }
2233 len = PAGE_CACHE_SIZE - zerofrom;
2234
2235 err = pagecache_write_begin(file, mapping, curpos, len,
2236 AOP_FLAG_UNINTERRUPTIBLE,
2237 &page, &fsdata);
2238 if (err)
2239 goto out;
2240 zero_user(page, zerofrom, len);
2241 err = pagecache_write_end(file, mapping, curpos, len, len,
2242 page, fsdata);
2243 if (err < 0)
2244 goto out;
2245 BUG_ON(err != len);
2246 err = 0;
2247
2248 balance_dirty_pages_ratelimited(mapping);
2249 }
2250
2251 /* page covers the boundary, find the boundary offset */
2252 if (index == curidx) {
2253 zerofrom = curpos & ~PAGE_CACHE_MASK;
2254 /* if we will expand the thing last block will be filled */
2255 if (offset <= zerofrom) {
2256 goto out;
2257 }
2258 if (zerofrom & (blocksize-1)) {
2259 *bytes |= (blocksize-1);
2260 (*bytes)++;
2261 }
2262 len = offset - zerofrom;
2263
2264 err = pagecache_write_begin(file, mapping, curpos, len,
2265 AOP_FLAG_UNINTERRUPTIBLE,
2266 &page, &fsdata);
2267 if (err)
2268 goto out;
2269 zero_user(page, zerofrom, len);
2270 err = pagecache_write_end(file, mapping, curpos, len, len,
2271 page, fsdata);
2272 if (err < 0)
2273 goto out;
2274 BUG_ON(err != len);
2275 err = 0;
2276 }
2277 out:
2278 return err;
2279 }
2280
2281 /*
2282 * For moronic filesystems that do not allow holes in file.
2283 * We may have to extend the file.
2284 */
2285 int cont_write_begin(struct file *file, struct address_space *mapping,
2286 loff_t pos, unsigned len, unsigned flags,
2287 struct page **pagep, void **fsdata,
2288 get_block_t *get_block, loff_t *bytes)
2289 {
2290 struct inode *inode = mapping->host;
2291 unsigned blocksize = 1 << inode->i_blkbits;
2292 unsigned zerofrom;
2293 int err;
2294
2295 err = cont_expand_zero(file, mapping, pos, bytes);
2296 if (err)
2297 return err;
2298
2299 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2300 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2301 *bytes |= (blocksize-1);
2302 (*bytes)++;
2303 }
2304
2305 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2306 }
2307 EXPORT_SYMBOL(cont_write_begin);
2308
2309 int block_commit_write(struct page *page, unsigned from, unsigned to)
2310 {
2311 struct inode *inode = page->mapping->host;
2312 __block_commit_write(inode,page,from,to);
2313 return 0;
2314 }
2315 EXPORT_SYMBOL(block_commit_write);
2316
2317 /*
2318 * block_page_mkwrite() is not allowed to change the file size as it gets
2319 * called from a page fault handler when a page is first dirtied. Hence we must
2320 * be careful to check for EOF conditions here. We set the page up correctly
2321 * for a written page which means we get ENOSPC checking when writing into
2322 * holes and correct delalloc and unwritten extent mapping on filesystems that
2323 * support these features.
2324 *
2325 * We are not allowed to take the i_mutex here so we have to play games to
2326 * protect against truncate races as the page could now be beyond EOF. Because
2327 * truncate writes the inode size before removing pages, once we have the
2328 * page lock we can determine safely if the page is beyond EOF. If it is not
2329 * beyond EOF, then the page is guaranteed safe against truncation until we
2330 * unlock the page.
2331 *
2332 * Direct callers of this function should protect against filesystem freezing
2333 * using sb_start_write() - sb_end_write() functions.
2334 */
2335 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2336 get_block_t get_block)
2337 {
2338 struct page *page = vmf->page;
2339 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2340 unsigned long end;
2341 loff_t size;
2342 int ret;
2343
2344 lock_page(page);
2345 size = i_size_read(inode);
2346 if ((page->mapping != inode->i_mapping) ||
2347 (page_offset(page) > size)) {
2348 /* We overload EFAULT to mean page got truncated */
2349 ret = -EFAULT;
2350 goto out_unlock;
2351 }
2352
2353 /* page is wholly or partially inside EOF */
2354 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2355 end = size & ~PAGE_CACHE_MASK;
2356 else
2357 end = PAGE_CACHE_SIZE;
2358
2359 ret = __block_write_begin(page, 0, end, get_block);
2360 if (!ret)
2361 ret = block_commit_write(page, 0, end);
2362
2363 if (unlikely(ret < 0))
2364 goto out_unlock;
2365 set_page_dirty(page);
2366 wait_on_page_writeback(page);
2367 return 0;
2368 out_unlock:
2369 unlock_page(page);
2370 return ret;
2371 }
2372 EXPORT_SYMBOL(__block_page_mkwrite);
2373
2374 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2375 get_block_t get_block)
2376 {
2377 int ret;
2378 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2379
2380 sb_start_pagefault(sb);
2381
2382 /*
2383 * Update file times before taking page lock. We may end up failing the
2384 * fault so this update may be superfluous but who really cares...
2385 */
2386 file_update_time(vma->vm_file);
2387
2388 ret = __block_page_mkwrite(vma, vmf, get_block);
2389 sb_end_pagefault(sb);
2390 return block_page_mkwrite_return(ret);
2391 }
2392 EXPORT_SYMBOL(block_page_mkwrite);
2393
2394 /*
2395 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2396 * immediately, while under the page lock. So it needs a special end_io
2397 * handler which does not touch the bh after unlocking it.
2398 */
2399 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2400 {
2401 __end_buffer_read_notouch(bh, uptodate);
2402 }
2403
2404 /*
2405 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2406 * the page (converting it to circular linked list and taking care of page
2407 * dirty races).
2408 */
2409 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2410 {
2411 struct buffer_head *bh;
2412
2413 BUG_ON(!PageLocked(page));
2414
2415 spin_lock(&page->mapping->private_lock);
2416 bh = head;
2417 do {
2418 if (PageDirty(page))
2419 set_buffer_dirty(bh);
2420 if (!bh->b_this_page)
2421 bh->b_this_page = head;
2422 bh = bh->b_this_page;
2423 } while (bh != head);
2424 attach_page_buffers(page, head);
2425 spin_unlock(&page->mapping->private_lock);
2426 }
2427
2428 /*
2429 * On entry, the page is fully not uptodate.
2430 * On exit the page is fully uptodate in the areas outside (from,to)
2431 * The filesystem needs to handle block truncation upon failure.
2432 */
2433 int nobh_write_begin(struct address_space *mapping,
2434 loff_t pos, unsigned len, unsigned flags,
2435 struct page **pagep, void **fsdata,
2436 get_block_t *get_block)
2437 {
2438 struct inode *inode = mapping->host;
2439 const unsigned blkbits = inode->i_blkbits;
2440 const unsigned blocksize = 1 << blkbits;
2441 struct buffer_head *head, *bh;
2442 struct page *page;
2443 pgoff_t index;
2444 unsigned from, to;
2445 unsigned block_in_page;
2446 unsigned block_start, block_end;
2447 sector_t block_in_file;
2448 int nr_reads = 0;
2449 int ret = 0;
2450 int is_mapped_to_disk = 1;
2451
2452 index = pos >> PAGE_CACHE_SHIFT;
2453 from = pos & (PAGE_CACHE_SIZE - 1);
2454 to = from + len;
2455
2456 page = grab_cache_page_write_begin(mapping, index, flags);
2457 if (!page)
2458 return -ENOMEM;
2459 *pagep = page;
2460 *fsdata = NULL;
2461
2462 if (page_has_buffers(page)) {
2463 ret = __block_write_begin(page, pos, len, get_block);
2464 if (unlikely(ret))
2465 goto out_release;
2466 return ret;
2467 }
2468
2469 if (PageMappedToDisk(page))
2470 return 0;
2471
2472 /*
2473 * Allocate buffers so that we can keep track of state, and potentially
2474 * attach them to the page if an error occurs. In the common case of
2475 * no error, they will just be freed again without ever being attached
2476 * to the page (which is all OK, because we're under the page lock).
2477 *
2478 * Be careful: the buffer linked list is a NULL terminated one, rather
2479 * than the circular one we're used to.
2480 */
2481 head = alloc_page_buffers(page, blocksize, 0);
2482 if (!head) {
2483 ret = -ENOMEM;
2484 goto out_release;
2485 }
2486
2487 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2488
2489 /*
2490 * We loop across all blocks in the page, whether or not they are
2491 * part of the affected region. This is so we can discover if the
2492 * page is fully mapped-to-disk.
2493 */
2494 for (block_start = 0, block_in_page = 0, bh = head;
2495 block_start < PAGE_CACHE_SIZE;
2496 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2497 int create;
2498
2499 block_end = block_start + blocksize;
2500 bh->b_state = 0;
2501 create = 1;
2502 if (block_start >= to)
2503 create = 0;
2504 ret = get_block(inode, block_in_file + block_in_page,
2505 bh, create);
2506 if (ret)
2507 goto failed;
2508 if (!buffer_mapped(bh))
2509 is_mapped_to_disk = 0;
2510 if (buffer_new(bh))
2511 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2512 if (PageUptodate(page)) {
2513 set_buffer_uptodate(bh);
2514 continue;
2515 }
2516 if (buffer_new(bh) || !buffer_mapped(bh)) {
2517 zero_user_segments(page, block_start, from,
2518 to, block_end);
2519 continue;
2520 }
2521 if (buffer_uptodate(bh))
2522 continue; /* reiserfs does this */
2523 if (block_start < from || block_end > to) {
2524 lock_buffer(bh);
2525 bh->b_end_io = end_buffer_read_nobh;
2526 submit_bh(READ, bh);
2527 nr_reads++;
2528 }
2529 }
2530
2531 if (nr_reads) {
2532 /*
2533 * The page is locked, so these buffers are protected from
2534 * any VM or truncate activity. Hence we don't need to care
2535 * for the buffer_head refcounts.
2536 */
2537 for (bh = head; bh; bh = bh->b_this_page) {
2538 wait_on_buffer(bh);
2539 if (!buffer_uptodate(bh))
2540 ret = -EIO;
2541 }
2542 if (ret)
2543 goto failed;
2544 }
2545
2546 if (is_mapped_to_disk)
2547 SetPageMappedToDisk(page);
2548
2549 *fsdata = head; /* to be released by nobh_write_end */
2550
2551 return 0;
2552
2553 failed:
2554 BUG_ON(!ret);
2555 /*
2556 * Error recovery is a bit difficult. We need to zero out blocks that
2557 * were newly allocated, and dirty them to ensure they get written out.
2558 * Buffers need to be attached to the page at this point, otherwise
2559 * the handling of potential IO errors during writeout would be hard
2560 * (could try doing synchronous writeout, but what if that fails too?)
2561 */
2562 attach_nobh_buffers(page, head);
2563 page_zero_new_buffers(page, from, to);
2564
2565 out_release:
2566 unlock_page(page);
2567 page_cache_release(page);
2568 *pagep = NULL;
2569
2570 return ret;
2571 }
2572 EXPORT_SYMBOL(nobh_write_begin);
2573
2574 int nobh_write_end(struct file *file, struct address_space *mapping,
2575 loff_t pos, unsigned len, unsigned copied,
2576 struct page *page, void *fsdata)
2577 {
2578 struct inode *inode = page->mapping->host;
2579 struct buffer_head *head = fsdata;
2580 struct buffer_head *bh;
2581 BUG_ON(fsdata != NULL && page_has_buffers(page));
2582
2583 if (unlikely(copied < len) && head)
2584 attach_nobh_buffers(page, head);
2585 if (page_has_buffers(page))
2586 return generic_write_end(file, mapping, pos, len,
2587 copied, page, fsdata);
2588
2589 SetPageUptodate(page);
2590 set_page_dirty(page);
2591 if (pos+copied > inode->i_size) {
2592 i_size_write(inode, pos+copied);
2593 mark_inode_dirty(inode);
2594 }
2595
2596 unlock_page(page);
2597 page_cache_release(page);
2598
2599 while (head) {
2600 bh = head;
2601 head = head->b_this_page;
2602 free_buffer_head(bh);
2603 }
2604
2605 return copied;
2606 }
2607 EXPORT_SYMBOL(nobh_write_end);
2608
2609 /*
2610 * nobh_writepage() - based on block_full_write_page() except
2611 * that it tries to operate without attaching bufferheads to
2612 * the page.
2613 */
2614 int nobh_writepage(struct page *page, get_block_t *get_block,
2615 struct writeback_control *wbc)
2616 {
2617 struct inode * const inode = page->mapping->host;
2618 loff_t i_size = i_size_read(inode);
2619 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2620 unsigned offset;
2621 int ret;
2622
2623 /* Is the page fully inside i_size? */
2624 if (page->index < end_index)
2625 goto out;
2626
2627 /* Is the page fully outside i_size? (truncate in progress) */
2628 offset = i_size & (PAGE_CACHE_SIZE-1);
2629 if (page->index >= end_index+1 || !offset) {
2630 /*
2631 * The page may have dirty, unmapped buffers. For example,
2632 * they may have been added in ext3_writepage(). Make them
2633 * freeable here, so the page does not leak.
2634 */
2635 #if 0
2636 /* Not really sure about this - do we need this ? */
2637 if (page->mapping->a_ops->invalidatepage)
2638 page->mapping->a_ops->invalidatepage(page, offset);
2639 #endif
2640 unlock_page(page);
2641 return 0; /* don't care */
2642 }
2643
2644 /*
2645 * The page straddles i_size. It must be zeroed out on each and every
2646 * writepage invocation because it may be mmapped. "A file is mapped
2647 * in multiples of the page size. For a file that is not a multiple of
2648 * the page size, the remaining memory is zeroed when mapped, and
2649 * writes to that region are not written out to the file."
2650 */
2651 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2652 out:
2653 ret = mpage_writepage(page, get_block, wbc);
2654 if (ret == -EAGAIN)
2655 ret = __block_write_full_page(inode, page, get_block, wbc,
2656 end_buffer_async_write);
2657 return ret;
2658 }
2659 EXPORT_SYMBOL(nobh_writepage);
2660
2661 int nobh_truncate_page(struct address_space *mapping,
2662 loff_t from, get_block_t *get_block)
2663 {
2664 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2665 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2666 unsigned blocksize;
2667 sector_t iblock;
2668 unsigned length, pos;
2669 struct inode *inode = mapping->host;
2670 struct page *page;
2671 struct buffer_head map_bh;
2672 int err;
2673
2674 blocksize = 1 << inode->i_blkbits;
2675 length = offset & (blocksize - 1);
2676
2677 /* Block boundary? Nothing to do */
2678 if (!length)
2679 return 0;
2680
2681 length = blocksize - length;
2682 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2683
2684 page = grab_cache_page(mapping, index);
2685 err = -ENOMEM;
2686 if (!page)
2687 goto out;
2688
2689 if (page_has_buffers(page)) {
2690 has_buffers:
2691 unlock_page(page);
2692 page_cache_release(page);
2693 return block_truncate_page(mapping, from, get_block);
2694 }
2695
2696 /* Find the buffer that contains "offset" */
2697 pos = blocksize;
2698 while (offset >= pos) {
2699 iblock++;
2700 pos += blocksize;
2701 }
2702
2703 map_bh.b_size = blocksize;
2704 map_bh.b_state = 0;
2705 err = get_block(inode, iblock, &map_bh, 0);
2706 if (err)
2707 goto unlock;
2708 /* unmapped? It's a hole - nothing to do */
2709 if (!buffer_mapped(&map_bh))
2710 goto unlock;
2711
2712 /* Ok, it's mapped. Make sure it's up-to-date */
2713 if (!PageUptodate(page)) {
2714 err = mapping->a_ops->readpage(NULL, page);
2715 if (err) {
2716 page_cache_release(page);
2717 goto out;
2718 }
2719 lock_page(page);
2720 if (!PageUptodate(page)) {
2721 err = -EIO;
2722 goto unlock;
2723 }
2724 if (page_has_buffers(page))
2725 goto has_buffers;
2726 }
2727 zero_user(page, offset, length);
2728 set_page_dirty(page);
2729 err = 0;
2730
2731 unlock:
2732 unlock_page(page);
2733 page_cache_release(page);
2734 out:
2735 return err;
2736 }
2737 EXPORT_SYMBOL(nobh_truncate_page);
2738
2739 int block_truncate_page(struct address_space *mapping,
2740 loff_t from, get_block_t *get_block)
2741 {
2742 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2743 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2744 unsigned blocksize;
2745 sector_t iblock;
2746 unsigned length, pos;
2747 struct inode *inode = mapping->host;
2748 struct page *page;
2749 struct buffer_head *bh;
2750 int err;
2751
2752 blocksize = 1 << inode->i_blkbits;
2753 length = offset & (blocksize - 1);
2754
2755 /* Block boundary? Nothing to do */
2756 if (!length)
2757 return 0;
2758
2759 length = blocksize - length;
2760 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2761
2762 page = grab_cache_page(mapping, index);
2763 err = -ENOMEM;
2764 if (!page)
2765 goto out;
2766
2767 if (!page_has_buffers(page))
2768 create_empty_buffers(page, blocksize, 0);
2769
2770 /* Find the buffer that contains "offset" */
2771 bh = page_buffers(page);
2772 pos = blocksize;
2773 while (offset >= pos) {
2774 bh = bh->b_this_page;
2775 iblock++;
2776 pos += blocksize;
2777 }
2778
2779 err = 0;
2780 if (!buffer_mapped(bh)) {
2781 WARN_ON(bh->b_size != blocksize);
2782 err = get_block(inode, iblock, bh, 0);
2783 if (err)
2784 goto unlock;
2785 /* unmapped? It's a hole - nothing to do */
2786 if (!buffer_mapped(bh))
2787 goto unlock;
2788 }
2789
2790 /* Ok, it's mapped. Make sure it's up-to-date */
2791 if (PageUptodate(page))
2792 set_buffer_uptodate(bh);
2793
2794 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2795 err = -EIO;
2796 ll_rw_block(READ, 1, &bh);
2797 wait_on_buffer(bh);
2798 /* Uhhuh. Read error. Complain and punt. */
2799 if (!buffer_uptodate(bh))
2800 goto unlock;
2801 }
2802
2803 zero_user(page, offset, length);
2804 mark_buffer_dirty(bh);
2805 err = 0;
2806
2807 unlock:
2808 unlock_page(page);
2809 page_cache_release(page);
2810 out:
2811 return err;
2812 }
2813 EXPORT_SYMBOL(block_truncate_page);
2814
2815 /*
2816 * The generic ->writepage function for buffer-backed address_spaces
2817 * this form passes in the end_io handler used to finish the IO.
2818 */
2819 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2820 struct writeback_control *wbc, bh_end_io_t *handler)
2821 {
2822 struct inode * const inode = page->mapping->host;
2823 loff_t i_size = i_size_read(inode);
2824 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2825 unsigned offset;
2826
2827 /* Is the page fully inside i_size? */
2828 if (page->index < end_index)
2829 return __block_write_full_page(inode, page, get_block, wbc,
2830 handler);
2831
2832 /* Is the page fully outside i_size? (truncate in progress) */
2833 offset = i_size & (PAGE_CACHE_SIZE-1);
2834 if (page->index >= end_index+1 || !offset) {
2835 /*
2836 * The page may have dirty, unmapped buffers. For example,
2837 * they may have been added in ext3_writepage(). Make them
2838 * freeable here, so the page does not leak.
2839 */
2840 do_invalidatepage(page, 0);
2841 unlock_page(page);
2842 return 0; /* don't care */
2843 }
2844
2845 /*
2846 * The page straddles i_size. It must be zeroed out on each and every
2847 * writepage invocation because it may be mmapped. "A file is mapped
2848 * in multiples of the page size. For a file that is not a multiple of
2849 * the page size, the remaining memory is zeroed when mapped, and
2850 * writes to that region are not written out to the file."
2851 */
2852 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2853 return __block_write_full_page(inode, page, get_block, wbc, handler);
2854 }
2855 EXPORT_SYMBOL(block_write_full_page_endio);
2856
2857 /*
2858 * The generic ->writepage function for buffer-backed address_spaces
2859 */
2860 int block_write_full_page(struct page *page, get_block_t *get_block,
2861 struct writeback_control *wbc)
2862 {
2863 return block_write_full_page_endio(page, get_block, wbc,
2864 end_buffer_async_write);
2865 }
2866 EXPORT_SYMBOL(block_write_full_page);
2867
2868 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2869 get_block_t *get_block)
2870 {
2871 struct buffer_head tmp;
2872 struct inode *inode = mapping->host;
2873 tmp.b_state = 0;
2874 tmp.b_blocknr = 0;
2875 tmp.b_size = 1 << inode->i_blkbits;
2876 get_block(inode, block, &tmp, 0);
2877 return tmp.b_blocknr;
2878 }
2879 EXPORT_SYMBOL(generic_block_bmap);
2880
2881 static void end_bio_bh_io_sync(struct bio *bio, int err)
2882 {
2883 struct buffer_head *bh = bio->bi_private;
2884
2885 if (err == -EOPNOTSUPP) {
2886 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2887 }
2888
2889 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2890 set_bit(BH_Quiet, &bh->b_state);
2891
2892 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2893 bio_put(bio);
2894 }
2895
2896 /*
2897 * This allows us to do IO even on the odd last sectors
2898 * of a device, even if the bh block size is some multiple
2899 * of the physical sector size.
2900 *
2901 * We'll just truncate the bio to the size of the device,
2902 * and clear the end of the buffer head manually.
2903 *
2904 * Truly out-of-range accesses will turn into actual IO
2905 * errors, this only handles the "we need to be able to
2906 * do IO at the final sector" case.
2907 */
2908 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2909 {
2910 sector_t maxsector;
2911 unsigned bytes;
2912
2913 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2914 if (!maxsector)
2915 return;
2916
2917 /*
2918 * If the *whole* IO is past the end of the device,
2919 * let it through, and the IO layer will turn it into
2920 * an EIO.
2921 */
2922 if (unlikely(bio->bi_sector >= maxsector))
2923 return;
2924
2925 maxsector -= bio->bi_sector;
2926 bytes = bio->bi_size;
2927 if (likely((bytes >> 9) <= maxsector))
2928 return;
2929
2930 /* Uhhuh. We've got a bh that straddles the device size! */
2931 bytes = maxsector << 9;
2932
2933 /* Truncate the bio.. */
2934 bio->bi_size = bytes;
2935 bio->bi_io_vec[0].bv_len = bytes;
2936
2937 /* ..and clear the end of the buffer for reads */
2938 if ((rw & RW_MASK) == READ) {
2939 void *kaddr = kmap_atomic(bh->b_page);
2940 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2941 kunmap_atomic(kaddr);
2942 }
2943 }
2944
2945 int submit_bh(int rw, struct buffer_head * bh)
2946 {
2947 struct bio *bio;
2948 int ret = 0;
2949
2950 BUG_ON(!buffer_locked(bh));
2951 BUG_ON(!buffer_mapped(bh));
2952 BUG_ON(!bh->b_end_io);
2953 BUG_ON(buffer_delay(bh));
2954 BUG_ON(buffer_unwritten(bh));
2955
2956 /*
2957 * Only clear out a write error when rewriting
2958 */
2959 if (test_set_buffer_req(bh) && (rw & WRITE))
2960 clear_buffer_write_io_error(bh);
2961
2962 /*
2963 * from here on down, it's all bio -- do the initial mapping,
2964 * submit_bio -> generic_make_request may further map this bio around
2965 */
2966 bio = bio_alloc(GFP_NOIO, 1);
2967
2968 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2969 bio->bi_bdev = bh->b_bdev;
2970 bio->bi_io_vec[0].bv_page = bh->b_page;
2971 bio->bi_io_vec[0].bv_len = bh->b_size;
2972 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2973
2974 bio->bi_vcnt = 1;
2975 bio->bi_idx = 0;
2976 bio->bi_size = bh->b_size;
2977
2978 bio->bi_end_io = end_bio_bh_io_sync;
2979 bio->bi_private = bh;
2980
2981 /* Take care of bh's that straddle the end of the device */
2982 guard_bh_eod(rw, bio, bh);
2983
2984 bio_get(bio);
2985 submit_bio(rw, bio);
2986
2987 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2988 ret = -EOPNOTSUPP;
2989
2990 bio_put(bio);
2991 return ret;
2992 }
2993 EXPORT_SYMBOL(submit_bh);
2994
2995 /**
2996 * ll_rw_block: low-level access to block devices (DEPRECATED)
2997 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2998 * @nr: number of &struct buffer_heads in the array
2999 * @bhs: array of pointers to &struct buffer_head
3000 *
3001 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3002 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3003 * %READA option is described in the documentation for generic_make_request()
3004 * which ll_rw_block() calls.
3005 *
3006 * This function drops any buffer that it cannot get a lock on (with the
3007 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3008 * request, and any buffer that appears to be up-to-date when doing read
3009 * request. Further it marks as clean buffers that are processed for
3010 * writing (the buffer cache won't assume that they are actually clean
3011 * until the buffer gets unlocked).
3012 *
3013 * ll_rw_block sets b_end_io to simple completion handler that marks
3014 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3015 * any waiters.
3016 *
3017 * All of the buffers must be for the same device, and must also be a
3018 * multiple of the current approved size for the device.
3019 */
3020 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3021 {
3022 int i;
3023
3024 for (i = 0; i < nr; i++) {
3025 struct buffer_head *bh = bhs[i];
3026
3027 if (!trylock_buffer(bh))
3028 continue;
3029 if (rw == WRITE) {
3030 if (test_clear_buffer_dirty(bh)) {
3031 bh->b_end_io = end_buffer_write_sync;
3032 get_bh(bh);
3033 submit_bh(WRITE, bh);
3034 continue;
3035 }
3036 } else {
3037 if (!buffer_uptodate(bh)) {
3038 bh->b_end_io = end_buffer_read_sync;
3039 get_bh(bh);
3040 submit_bh(rw, bh);
3041 continue;
3042 }
3043 }
3044 unlock_buffer(bh);
3045 }
3046 }
3047 EXPORT_SYMBOL(ll_rw_block);
3048
3049 void write_dirty_buffer(struct buffer_head *bh, int rw)
3050 {
3051 lock_buffer(bh);
3052 if (!test_clear_buffer_dirty(bh)) {
3053 unlock_buffer(bh);
3054 return;
3055 }
3056 bh->b_end_io = end_buffer_write_sync;
3057 get_bh(bh);
3058 submit_bh(rw, bh);
3059 }
3060 EXPORT_SYMBOL(write_dirty_buffer);
3061
3062 /*
3063 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3064 * and then start new I/O and then wait upon it. The caller must have a ref on
3065 * the buffer_head.
3066 */
3067 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3068 {
3069 int ret = 0;
3070
3071 WARN_ON(atomic_read(&bh->b_count) < 1);
3072 lock_buffer(bh);
3073 if (test_clear_buffer_dirty(bh)) {
3074 get_bh(bh);
3075 bh->b_end_io = end_buffer_write_sync;
3076 ret = submit_bh(rw, bh);
3077 wait_on_buffer(bh);
3078 if (!ret && !buffer_uptodate(bh))
3079 ret = -EIO;
3080 } else {
3081 unlock_buffer(bh);
3082 }
3083 return ret;
3084 }
3085 EXPORT_SYMBOL(__sync_dirty_buffer);
3086
3087 int sync_dirty_buffer(struct buffer_head *bh)
3088 {
3089 return __sync_dirty_buffer(bh, WRITE_SYNC);
3090 }
3091 EXPORT_SYMBOL(sync_dirty_buffer);
3092
3093 /*
3094 * try_to_free_buffers() checks if all the buffers on this particular page
3095 * are unused, and releases them if so.
3096 *
3097 * Exclusion against try_to_free_buffers may be obtained by either
3098 * locking the page or by holding its mapping's private_lock.
3099 *
3100 * If the page is dirty but all the buffers are clean then we need to
3101 * be sure to mark the page clean as well. This is because the page
3102 * may be against a block device, and a later reattachment of buffers
3103 * to a dirty page will set *all* buffers dirty. Which would corrupt
3104 * filesystem data on the same device.
3105 *
3106 * The same applies to regular filesystem pages: if all the buffers are
3107 * clean then we set the page clean and proceed. To do that, we require
3108 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3109 * private_lock.
3110 *
3111 * try_to_free_buffers() is non-blocking.
3112 */
3113 static inline int buffer_busy(struct buffer_head *bh)
3114 {
3115 return atomic_read(&bh->b_count) |
3116 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3117 }
3118
3119 static int
3120 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3121 {
3122 struct buffer_head *head = page_buffers(page);
3123 struct buffer_head *bh;
3124
3125 bh = head;
3126 do {
3127 if (buffer_write_io_error(bh) && page->mapping)
3128 set_bit(AS_EIO, &page->mapping->flags);
3129 if (buffer_busy(bh))
3130 goto failed;
3131 bh = bh->b_this_page;
3132 } while (bh != head);
3133
3134 do {
3135 struct buffer_head *next = bh->b_this_page;
3136
3137 if (bh->b_assoc_map)
3138 __remove_assoc_queue(bh);
3139 bh = next;
3140 } while (bh != head);
3141 *buffers_to_free = head;
3142 __clear_page_buffers(page);
3143 return 1;
3144 failed:
3145 return 0;
3146 }
3147
3148 int try_to_free_buffers(struct page *page)
3149 {
3150 struct address_space * const mapping = page->mapping;
3151 struct buffer_head *buffers_to_free = NULL;
3152 int ret = 0;
3153
3154 BUG_ON(!PageLocked(page));
3155 if (PageWriteback(page))
3156 return 0;
3157
3158 if (mapping == NULL) { /* can this still happen? */
3159 ret = drop_buffers(page, &buffers_to_free);
3160 goto out;
3161 }
3162
3163 spin_lock(&mapping->private_lock);
3164 ret = drop_buffers(page, &buffers_to_free);
3165
3166 /*
3167 * If the filesystem writes its buffers by hand (eg ext3)
3168 * then we can have clean buffers against a dirty page. We
3169 * clean the page here; otherwise the VM will never notice
3170 * that the filesystem did any IO at all.
3171 *
3172 * Also, during truncate, discard_buffer will have marked all
3173 * the page's buffers clean. We discover that here and clean
3174 * the page also.
3175 *
3176 * private_lock must be held over this entire operation in order
3177 * to synchronise against __set_page_dirty_buffers and prevent the
3178 * dirty bit from being lost.
3179 */
3180 if (ret)
3181 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3182 spin_unlock(&mapping->private_lock);
3183 out:
3184 if (buffers_to_free) {
3185 struct buffer_head *bh = buffers_to_free;
3186
3187 do {
3188 struct buffer_head *next = bh->b_this_page;
3189 free_buffer_head(bh);
3190 bh = next;
3191 } while (bh != buffers_to_free);
3192 }
3193 return ret;
3194 }
3195 EXPORT_SYMBOL(try_to_free_buffers);
3196
3197 /*
3198 * There are no bdflush tunables left. But distributions are
3199 * still running obsolete flush daemons, so we terminate them here.
3200 *
3201 * Use of bdflush() is deprecated and will be removed in a future kernel.
3202 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3203 */
3204 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3205 {
3206 static int msg_count;
3207
3208 if (!capable(CAP_SYS_ADMIN))
3209 return -EPERM;
3210
3211 if (msg_count < 5) {
3212 msg_count++;
3213 printk(KERN_INFO
3214 "warning: process `%s' used the obsolete bdflush"
3215 " system call\n", current->comm);
3216 printk(KERN_INFO "Fix your initscripts?\n");
3217 }
3218
3219 if (func == 1)
3220 do_exit(0);
3221 return 0;
3222 }
3223
3224 /*
3225 * Buffer-head allocation
3226 */
3227 static struct kmem_cache *bh_cachep __read_mostly;
3228
3229 /*
3230 * Once the number of bh's in the machine exceeds this level, we start
3231 * stripping them in writeback.
3232 */
3233 static int max_buffer_heads;
3234
3235 int buffer_heads_over_limit;
3236
3237 struct bh_accounting {
3238 int nr; /* Number of live bh's */
3239 int ratelimit; /* Limit cacheline bouncing */
3240 };
3241
3242 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3243
3244 static void recalc_bh_state(void)
3245 {
3246 int i;
3247 int tot = 0;
3248
3249 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3250 return;
3251 __this_cpu_write(bh_accounting.ratelimit, 0);
3252 for_each_online_cpu(i)
3253 tot += per_cpu(bh_accounting, i).nr;
3254 buffer_heads_over_limit = (tot > max_buffer_heads);
3255 }
3256
3257 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3258 {
3259 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3260 if (ret) {
3261 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3262 preempt_disable();
3263 __this_cpu_inc(bh_accounting.nr);
3264 recalc_bh_state();
3265 preempt_enable();
3266 }
3267 return ret;
3268 }
3269 EXPORT_SYMBOL(alloc_buffer_head);
3270
3271 void free_buffer_head(struct buffer_head *bh)
3272 {
3273 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3274 kmem_cache_free(bh_cachep, bh);
3275 preempt_disable();
3276 __this_cpu_dec(bh_accounting.nr);
3277 recalc_bh_state();
3278 preempt_enable();
3279 }
3280 EXPORT_SYMBOL(free_buffer_head);
3281
3282 static void buffer_exit_cpu(int cpu)
3283 {
3284 int i;
3285 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3286
3287 for (i = 0; i < BH_LRU_SIZE; i++) {
3288 brelse(b->bhs[i]);
3289 b->bhs[i] = NULL;
3290 }
3291 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3292 per_cpu(bh_accounting, cpu).nr = 0;
3293 }
3294
3295 static int buffer_cpu_notify(struct notifier_block *self,
3296 unsigned long action, void *hcpu)
3297 {
3298 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3299 buffer_exit_cpu((unsigned long)hcpu);
3300 return NOTIFY_OK;
3301 }
3302
3303 /**
3304 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3305 * @bh: struct buffer_head
3306 *
3307 * Return true if the buffer is up-to-date and false,
3308 * with the buffer locked, if not.
3309 */
3310 int bh_uptodate_or_lock(struct buffer_head *bh)
3311 {
3312 if (!buffer_uptodate(bh)) {
3313 lock_buffer(bh);
3314 if (!buffer_uptodate(bh))
3315 return 0;
3316 unlock_buffer(bh);
3317 }
3318 return 1;
3319 }
3320 EXPORT_SYMBOL(bh_uptodate_or_lock);
3321
3322 /**
3323 * bh_submit_read - Submit a locked buffer for reading
3324 * @bh: struct buffer_head
3325 *
3326 * Returns zero on success and -EIO on error.
3327 */
3328 int bh_submit_read(struct buffer_head *bh)
3329 {
3330 BUG_ON(!buffer_locked(bh));
3331
3332 if (buffer_uptodate(bh)) {
3333 unlock_buffer(bh);
3334 return 0;
3335 }
3336
3337 get_bh(bh);
3338 bh->b_end_io = end_buffer_read_sync;
3339 submit_bh(READ, bh);
3340 wait_on_buffer(bh);
3341 if (buffer_uptodate(bh))
3342 return 0;
3343 return -EIO;
3344 }
3345 EXPORT_SYMBOL(bh_submit_read);
3346
3347 void __init buffer_init(void)
3348 {
3349 int nrpages;
3350
3351 bh_cachep = kmem_cache_create("buffer_head",
3352 sizeof(struct buffer_head), 0,
3353 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3354 SLAB_MEM_SPREAD),
3355 NULL);
3356
3357 /*
3358 * Limit the bh occupancy to 10% of ZONE_NORMAL
3359 */
3360 nrpages = (nr_free_buffer_pages() * 10) / 100;
3361 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3362 hotcpu_notifier(buffer_cpu_notify, 0);
3363 }
This page took 0.224745 seconds and 6 git commands to generate.