ceph: fix directory fsync
[deliverable/linux.git] / fs / ceph / caps.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
10
11 #include "super.h"
12 #include "mds_client.h"
13 #include "cache.h"
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/messenger.h>
16
17 /*
18 * Capability management
19 *
20 * The Ceph metadata servers control client access to inode metadata
21 * and file data by issuing capabilities, granting clients permission
22 * to read and/or write both inode field and file data to OSDs
23 * (storage nodes). Each capability consists of a set of bits
24 * indicating which operations are allowed.
25 *
26 * If the client holds a *_SHARED cap, the client has a coherent value
27 * that can be safely read from the cached inode.
28 *
29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
30 * client is allowed to change inode attributes (e.g., file size,
31 * mtime), note its dirty state in the ceph_cap, and asynchronously
32 * flush that metadata change to the MDS.
33 *
34 * In the event of a conflicting operation (perhaps by another
35 * client), the MDS will revoke the conflicting client capabilities.
36 *
37 * In order for a client to cache an inode, it must hold a capability
38 * with at least one MDS server. When inodes are released, release
39 * notifications are batched and periodically sent en masse to the MDS
40 * cluster to release server state.
41 */
42
43
44 /*
45 * Generate readable cap strings for debugging output.
46 */
47 #define MAX_CAP_STR 20
48 static char cap_str[MAX_CAP_STR][40];
49 static DEFINE_SPINLOCK(cap_str_lock);
50 static int last_cap_str;
51
52 static char *gcap_string(char *s, int c)
53 {
54 if (c & CEPH_CAP_GSHARED)
55 *s++ = 's';
56 if (c & CEPH_CAP_GEXCL)
57 *s++ = 'x';
58 if (c & CEPH_CAP_GCACHE)
59 *s++ = 'c';
60 if (c & CEPH_CAP_GRD)
61 *s++ = 'r';
62 if (c & CEPH_CAP_GWR)
63 *s++ = 'w';
64 if (c & CEPH_CAP_GBUFFER)
65 *s++ = 'b';
66 if (c & CEPH_CAP_GLAZYIO)
67 *s++ = 'l';
68 return s;
69 }
70
71 const char *ceph_cap_string(int caps)
72 {
73 int i;
74 char *s;
75 int c;
76
77 spin_lock(&cap_str_lock);
78 i = last_cap_str++;
79 if (last_cap_str == MAX_CAP_STR)
80 last_cap_str = 0;
81 spin_unlock(&cap_str_lock);
82
83 s = cap_str[i];
84
85 if (caps & CEPH_CAP_PIN)
86 *s++ = 'p';
87
88 c = (caps >> CEPH_CAP_SAUTH) & 3;
89 if (c) {
90 *s++ = 'A';
91 s = gcap_string(s, c);
92 }
93
94 c = (caps >> CEPH_CAP_SLINK) & 3;
95 if (c) {
96 *s++ = 'L';
97 s = gcap_string(s, c);
98 }
99
100 c = (caps >> CEPH_CAP_SXATTR) & 3;
101 if (c) {
102 *s++ = 'X';
103 s = gcap_string(s, c);
104 }
105
106 c = caps >> CEPH_CAP_SFILE;
107 if (c) {
108 *s++ = 'F';
109 s = gcap_string(s, c);
110 }
111
112 if (s == cap_str[i])
113 *s++ = '-';
114 *s = 0;
115 return cap_str[i];
116 }
117
118 void ceph_caps_init(struct ceph_mds_client *mdsc)
119 {
120 INIT_LIST_HEAD(&mdsc->caps_list);
121 spin_lock_init(&mdsc->caps_list_lock);
122 }
123
124 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
125 {
126 struct ceph_cap *cap;
127
128 spin_lock(&mdsc->caps_list_lock);
129 while (!list_empty(&mdsc->caps_list)) {
130 cap = list_first_entry(&mdsc->caps_list,
131 struct ceph_cap, caps_item);
132 list_del(&cap->caps_item);
133 kmem_cache_free(ceph_cap_cachep, cap);
134 }
135 mdsc->caps_total_count = 0;
136 mdsc->caps_avail_count = 0;
137 mdsc->caps_use_count = 0;
138 mdsc->caps_reserve_count = 0;
139 mdsc->caps_min_count = 0;
140 spin_unlock(&mdsc->caps_list_lock);
141 }
142
143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
144 {
145 spin_lock(&mdsc->caps_list_lock);
146 mdsc->caps_min_count += delta;
147 BUG_ON(mdsc->caps_min_count < 0);
148 spin_unlock(&mdsc->caps_list_lock);
149 }
150
151 void ceph_reserve_caps(struct ceph_mds_client *mdsc,
152 struct ceph_cap_reservation *ctx, int need)
153 {
154 int i;
155 struct ceph_cap *cap;
156 int have;
157 int alloc = 0;
158 LIST_HEAD(newcaps);
159
160 dout("reserve caps ctx=%p need=%d\n", ctx, need);
161
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc->caps_list_lock);
164 if (mdsc->caps_avail_count >= need)
165 have = need;
166 else
167 have = mdsc->caps_avail_count;
168 mdsc->caps_avail_count -= have;
169 mdsc->caps_reserve_count += have;
170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 mdsc->caps_reserve_count +
172 mdsc->caps_avail_count);
173 spin_unlock(&mdsc->caps_list_lock);
174
175 for (i = have; i < need; i++) {
176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 if (!cap)
178 break;
179 list_add(&cap->caps_item, &newcaps);
180 alloc++;
181 }
182 /* we didn't manage to reserve as much as we needed */
183 if (have + alloc != need)
184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
185 ctx, need, have + alloc);
186
187 spin_lock(&mdsc->caps_list_lock);
188 mdsc->caps_total_count += alloc;
189 mdsc->caps_reserve_count += alloc;
190 list_splice(&newcaps, &mdsc->caps_list);
191
192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
193 mdsc->caps_reserve_count +
194 mdsc->caps_avail_count);
195 spin_unlock(&mdsc->caps_list_lock);
196
197 ctx->count = need;
198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
199 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
200 mdsc->caps_reserve_count, mdsc->caps_avail_count);
201 }
202
203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
204 struct ceph_cap_reservation *ctx)
205 {
206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
207 if (ctx->count) {
208 spin_lock(&mdsc->caps_list_lock);
209 BUG_ON(mdsc->caps_reserve_count < ctx->count);
210 mdsc->caps_reserve_count -= ctx->count;
211 mdsc->caps_avail_count += ctx->count;
212 ctx->count = 0;
213 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
214 mdsc->caps_total_count, mdsc->caps_use_count,
215 mdsc->caps_reserve_count, mdsc->caps_avail_count);
216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
217 mdsc->caps_reserve_count +
218 mdsc->caps_avail_count);
219 spin_unlock(&mdsc->caps_list_lock);
220 }
221 return 0;
222 }
223
224 struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
225 struct ceph_cap_reservation *ctx)
226 {
227 struct ceph_cap *cap = NULL;
228
229 /* temporary, until we do something about cap import/export */
230 if (!ctx) {
231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
232 if (cap) {
233 spin_lock(&mdsc->caps_list_lock);
234 mdsc->caps_use_count++;
235 mdsc->caps_total_count++;
236 spin_unlock(&mdsc->caps_list_lock);
237 }
238 return cap;
239 }
240
241 spin_lock(&mdsc->caps_list_lock);
242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
244 mdsc->caps_reserve_count, mdsc->caps_avail_count);
245 BUG_ON(!ctx->count);
246 BUG_ON(ctx->count > mdsc->caps_reserve_count);
247 BUG_ON(list_empty(&mdsc->caps_list));
248
249 ctx->count--;
250 mdsc->caps_reserve_count--;
251 mdsc->caps_use_count++;
252
253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
254 list_del(&cap->caps_item);
255
256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
257 mdsc->caps_reserve_count + mdsc->caps_avail_count);
258 spin_unlock(&mdsc->caps_list_lock);
259 return cap;
260 }
261
262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
263 {
264 spin_lock(&mdsc->caps_list_lock);
265 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
266 cap, mdsc->caps_total_count, mdsc->caps_use_count,
267 mdsc->caps_reserve_count, mdsc->caps_avail_count);
268 mdsc->caps_use_count--;
269 /*
270 * Keep some preallocated caps around (ceph_min_count), to
271 * avoid lots of free/alloc churn.
272 */
273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
274 mdsc->caps_min_count) {
275 mdsc->caps_total_count--;
276 kmem_cache_free(ceph_cap_cachep, cap);
277 } else {
278 mdsc->caps_avail_count++;
279 list_add(&cap->caps_item, &mdsc->caps_list);
280 }
281
282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
283 mdsc->caps_reserve_count + mdsc->caps_avail_count);
284 spin_unlock(&mdsc->caps_list_lock);
285 }
286
287 void ceph_reservation_status(struct ceph_fs_client *fsc,
288 int *total, int *avail, int *used, int *reserved,
289 int *min)
290 {
291 struct ceph_mds_client *mdsc = fsc->mdsc;
292
293 if (total)
294 *total = mdsc->caps_total_count;
295 if (avail)
296 *avail = mdsc->caps_avail_count;
297 if (used)
298 *used = mdsc->caps_use_count;
299 if (reserved)
300 *reserved = mdsc->caps_reserve_count;
301 if (min)
302 *min = mdsc->caps_min_count;
303 }
304
305 /*
306 * Find ceph_cap for given mds, if any.
307 *
308 * Called with i_ceph_lock held.
309 */
310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
311 {
312 struct ceph_cap *cap;
313 struct rb_node *n = ci->i_caps.rb_node;
314
315 while (n) {
316 cap = rb_entry(n, struct ceph_cap, ci_node);
317 if (mds < cap->mds)
318 n = n->rb_left;
319 else if (mds > cap->mds)
320 n = n->rb_right;
321 else
322 return cap;
323 }
324 return NULL;
325 }
326
327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
328 {
329 struct ceph_cap *cap;
330
331 spin_lock(&ci->i_ceph_lock);
332 cap = __get_cap_for_mds(ci, mds);
333 spin_unlock(&ci->i_ceph_lock);
334 return cap;
335 }
336
337 /*
338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
339 */
340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
341 {
342 struct ceph_cap *cap;
343 int mds = -1;
344 struct rb_node *p;
345
346 /* prefer mds with WR|BUFFER|EXCL caps */
347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
348 cap = rb_entry(p, struct ceph_cap, ci_node);
349 mds = cap->mds;
350 if (cap->issued & (CEPH_CAP_FILE_WR |
351 CEPH_CAP_FILE_BUFFER |
352 CEPH_CAP_FILE_EXCL))
353 break;
354 }
355 return mds;
356 }
357
358 int ceph_get_cap_mds(struct inode *inode)
359 {
360 struct ceph_inode_info *ci = ceph_inode(inode);
361 int mds;
362 spin_lock(&ci->i_ceph_lock);
363 mds = __ceph_get_cap_mds(ceph_inode(inode));
364 spin_unlock(&ci->i_ceph_lock);
365 return mds;
366 }
367
368 /*
369 * Called under i_ceph_lock.
370 */
371 static void __insert_cap_node(struct ceph_inode_info *ci,
372 struct ceph_cap *new)
373 {
374 struct rb_node **p = &ci->i_caps.rb_node;
375 struct rb_node *parent = NULL;
376 struct ceph_cap *cap = NULL;
377
378 while (*p) {
379 parent = *p;
380 cap = rb_entry(parent, struct ceph_cap, ci_node);
381 if (new->mds < cap->mds)
382 p = &(*p)->rb_left;
383 else if (new->mds > cap->mds)
384 p = &(*p)->rb_right;
385 else
386 BUG();
387 }
388
389 rb_link_node(&new->ci_node, parent, p);
390 rb_insert_color(&new->ci_node, &ci->i_caps);
391 }
392
393 /*
394 * (re)set cap hold timeouts, which control the delayed release
395 * of unused caps back to the MDS. Should be called on cap use.
396 */
397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
398 struct ceph_inode_info *ci)
399 {
400 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
401
402 ci->i_hold_caps_min = round_jiffies(jiffies +
403 ma->caps_wanted_delay_min * HZ);
404 ci->i_hold_caps_max = round_jiffies(jiffies +
405 ma->caps_wanted_delay_max * HZ);
406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
408 }
409
410 /*
411 * (Re)queue cap at the end of the delayed cap release list.
412 *
413 * If I_FLUSH is set, leave the inode at the front of the list.
414 *
415 * Caller holds i_ceph_lock
416 * -> we take mdsc->cap_delay_lock
417 */
418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
419 struct ceph_inode_info *ci)
420 {
421 __cap_set_timeouts(mdsc, ci);
422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
423 ci->i_ceph_flags, ci->i_hold_caps_max);
424 if (!mdsc->stopping) {
425 spin_lock(&mdsc->cap_delay_lock);
426 if (!list_empty(&ci->i_cap_delay_list)) {
427 if (ci->i_ceph_flags & CEPH_I_FLUSH)
428 goto no_change;
429 list_del_init(&ci->i_cap_delay_list);
430 }
431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
432 no_change:
433 spin_unlock(&mdsc->cap_delay_lock);
434 }
435 }
436
437 /*
438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
439 * indicating we should send a cap message to flush dirty metadata
440 * asap, and move to the front of the delayed cap list.
441 */
442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
443 struct ceph_inode_info *ci)
444 {
445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
446 spin_lock(&mdsc->cap_delay_lock);
447 ci->i_ceph_flags |= CEPH_I_FLUSH;
448 if (!list_empty(&ci->i_cap_delay_list))
449 list_del_init(&ci->i_cap_delay_list);
450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
451 spin_unlock(&mdsc->cap_delay_lock);
452 }
453
454 /*
455 * Cancel delayed work on cap.
456 *
457 * Caller must hold i_ceph_lock.
458 */
459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
460 struct ceph_inode_info *ci)
461 {
462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
463 if (list_empty(&ci->i_cap_delay_list))
464 return;
465 spin_lock(&mdsc->cap_delay_lock);
466 list_del_init(&ci->i_cap_delay_list);
467 spin_unlock(&mdsc->cap_delay_lock);
468 }
469
470 /*
471 * Common issue checks for add_cap, handle_cap_grant.
472 */
473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
474 unsigned issued)
475 {
476 unsigned had = __ceph_caps_issued(ci, NULL);
477
478 /*
479 * Each time we receive FILE_CACHE anew, we increment
480 * i_rdcache_gen.
481 */
482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
484 ci->i_rdcache_gen++;
485 }
486
487 /*
488 * if we are newly issued FILE_SHARED, mark dir not complete; we
489 * don't know what happened to this directory while we didn't
490 * have the cap.
491 */
492 if ((issued & CEPH_CAP_FILE_SHARED) &&
493 (had & CEPH_CAP_FILE_SHARED) == 0) {
494 ci->i_shared_gen++;
495 if (S_ISDIR(ci->vfs_inode.i_mode)) {
496 dout(" marking %p NOT complete\n", &ci->vfs_inode);
497 __ceph_dir_clear_complete(ci);
498 }
499 }
500 }
501
502 /*
503 * Add a capability under the given MDS session.
504 *
505 * Caller should hold session snap_rwsem (read) and s_mutex.
506 *
507 * @fmode is the open file mode, if we are opening a file, otherwise
508 * it is < 0. (This is so we can atomically add the cap and add an
509 * open file reference to it.)
510 */
511 void ceph_add_cap(struct inode *inode,
512 struct ceph_mds_session *session, u64 cap_id,
513 int fmode, unsigned issued, unsigned wanted,
514 unsigned seq, unsigned mseq, u64 realmino, int flags,
515 struct ceph_cap **new_cap)
516 {
517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
518 struct ceph_inode_info *ci = ceph_inode(inode);
519 struct ceph_cap *cap;
520 int mds = session->s_mds;
521 int actual_wanted;
522
523 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
524 session->s_mds, cap_id, ceph_cap_string(issued), seq);
525
526 /*
527 * If we are opening the file, include file mode wanted bits
528 * in wanted.
529 */
530 if (fmode >= 0)
531 wanted |= ceph_caps_for_mode(fmode);
532
533 cap = __get_cap_for_mds(ci, mds);
534 if (!cap) {
535 cap = *new_cap;
536 *new_cap = NULL;
537
538 cap->issued = 0;
539 cap->implemented = 0;
540 cap->mds = mds;
541 cap->mds_wanted = 0;
542 cap->mseq = 0;
543
544 cap->ci = ci;
545 __insert_cap_node(ci, cap);
546
547 /* add to session cap list */
548 cap->session = session;
549 spin_lock(&session->s_cap_lock);
550 list_add_tail(&cap->session_caps, &session->s_caps);
551 session->s_nr_caps++;
552 spin_unlock(&session->s_cap_lock);
553 } else {
554 /*
555 * auth mds of the inode changed. we received the cap export
556 * message, but still haven't received the cap import message.
557 * handle_cap_export() updated the new auth MDS' cap.
558 *
559 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing
560 * a message that was send before the cap import message. So
561 * don't remove caps.
562 */
563 if (ceph_seq_cmp(seq, cap->seq) <= 0) {
564 WARN_ON(cap != ci->i_auth_cap);
565 WARN_ON(cap->cap_id != cap_id);
566 seq = cap->seq;
567 mseq = cap->mseq;
568 issued |= cap->issued;
569 flags |= CEPH_CAP_FLAG_AUTH;
570 }
571 }
572
573 if (!ci->i_snap_realm) {
574 /*
575 * add this inode to the appropriate snap realm
576 */
577 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
578 realmino);
579 if (realm) {
580 spin_lock(&realm->inodes_with_caps_lock);
581 ci->i_snap_realm = realm;
582 list_add(&ci->i_snap_realm_item,
583 &realm->inodes_with_caps);
584 spin_unlock(&realm->inodes_with_caps_lock);
585 } else {
586 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
587 realmino);
588 WARN_ON(!realm);
589 }
590 }
591
592 __check_cap_issue(ci, cap, issued);
593
594 /*
595 * If we are issued caps we don't want, or the mds' wanted
596 * value appears to be off, queue a check so we'll release
597 * later and/or update the mds wanted value.
598 */
599 actual_wanted = __ceph_caps_wanted(ci);
600 if ((wanted & ~actual_wanted) ||
601 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
602 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
603 ceph_cap_string(issued), ceph_cap_string(wanted),
604 ceph_cap_string(actual_wanted));
605 __cap_delay_requeue(mdsc, ci);
606 }
607
608 if (flags & CEPH_CAP_FLAG_AUTH) {
609 if (ci->i_auth_cap == NULL ||
610 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) {
611 ci->i_auth_cap = cap;
612 cap->mds_wanted = wanted;
613 }
614 } else {
615 WARN_ON(ci->i_auth_cap == cap);
616 }
617
618 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
619 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
620 ceph_cap_string(issued|cap->issued), seq, mds);
621 cap->cap_id = cap_id;
622 cap->issued = issued;
623 cap->implemented |= issued;
624 if (ceph_seq_cmp(mseq, cap->mseq) > 0)
625 cap->mds_wanted = wanted;
626 else
627 cap->mds_wanted |= wanted;
628 cap->seq = seq;
629 cap->issue_seq = seq;
630 cap->mseq = mseq;
631 cap->cap_gen = session->s_cap_gen;
632
633 if (fmode >= 0)
634 __ceph_get_fmode(ci, fmode);
635 }
636
637 /*
638 * Return true if cap has not timed out and belongs to the current
639 * generation of the MDS session (i.e. has not gone 'stale' due to
640 * us losing touch with the mds).
641 */
642 static int __cap_is_valid(struct ceph_cap *cap)
643 {
644 unsigned long ttl;
645 u32 gen;
646
647 spin_lock(&cap->session->s_gen_ttl_lock);
648 gen = cap->session->s_cap_gen;
649 ttl = cap->session->s_cap_ttl;
650 spin_unlock(&cap->session->s_gen_ttl_lock);
651
652 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
653 dout("__cap_is_valid %p cap %p issued %s "
654 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
655 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
656 return 0;
657 }
658
659 return 1;
660 }
661
662 /*
663 * Return set of valid cap bits issued to us. Note that caps time
664 * out, and may be invalidated in bulk if the client session times out
665 * and session->s_cap_gen is bumped.
666 */
667 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
668 {
669 int have = ci->i_snap_caps;
670 struct ceph_cap *cap;
671 struct rb_node *p;
672
673 if (implemented)
674 *implemented = 0;
675 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
676 cap = rb_entry(p, struct ceph_cap, ci_node);
677 if (!__cap_is_valid(cap))
678 continue;
679 dout("__ceph_caps_issued %p cap %p issued %s\n",
680 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
681 have |= cap->issued;
682 if (implemented)
683 *implemented |= cap->implemented;
684 }
685 /*
686 * exclude caps issued by non-auth MDS, but are been revoking
687 * by the auth MDS. The non-auth MDS should be revoking/exporting
688 * these caps, but the message is delayed.
689 */
690 if (ci->i_auth_cap) {
691 cap = ci->i_auth_cap;
692 have &= ~cap->implemented | cap->issued;
693 }
694 return have;
695 }
696
697 /*
698 * Get cap bits issued by caps other than @ocap
699 */
700 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
701 {
702 int have = ci->i_snap_caps;
703 struct ceph_cap *cap;
704 struct rb_node *p;
705
706 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
707 cap = rb_entry(p, struct ceph_cap, ci_node);
708 if (cap == ocap)
709 continue;
710 if (!__cap_is_valid(cap))
711 continue;
712 have |= cap->issued;
713 }
714 return have;
715 }
716
717 /*
718 * Move a cap to the end of the LRU (oldest caps at list head, newest
719 * at list tail).
720 */
721 static void __touch_cap(struct ceph_cap *cap)
722 {
723 struct ceph_mds_session *s = cap->session;
724
725 spin_lock(&s->s_cap_lock);
726 if (s->s_cap_iterator == NULL) {
727 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
728 s->s_mds);
729 list_move_tail(&cap->session_caps, &s->s_caps);
730 } else {
731 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
732 &cap->ci->vfs_inode, cap, s->s_mds);
733 }
734 spin_unlock(&s->s_cap_lock);
735 }
736
737 /*
738 * Check if we hold the given mask. If so, move the cap(s) to the
739 * front of their respective LRUs. (This is the preferred way for
740 * callers to check for caps they want.)
741 */
742 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
743 {
744 struct ceph_cap *cap;
745 struct rb_node *p;
746 int have = ci->i_snap_caps;
747
748 if ((have & mask) == mask) {
749 dout("__ceph_caps_issued_mask %p snap issued %s"
750 " (mask %s)\n", &ci->vfs_inode,
751 ceph_cap_string(have),
752 ceph_cap_string(mask));
753 return 1;
754 }
755
756 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
757 cap = rb_entry(p, struct ceph_cap, ci_node);
758 if (!__cap_is_valid(cap))
759 continue;
760 if ((cap->issued & mask) == mask) {
761 dout("__ceph_caps_issued_mask %p cap %p issued %s"
762 " (mask %s)\n", &ci->vfs_inode, cap,
763 ceph_cap_string(cap->issued),
764 ceph_cap_string(mask));
765 if (touch)
766 __touch_cap(cap);
767 return 1;
768 }
769
770 /* does a combination of caps satisfy mask? */
771 have |= cap->issued;
772 if ((have & mask) == mask) {
773 dout("__ceph_caps_issued_mask %p combo issued %s"
774 " (mask %s)\n", &ci->vfs_inode,
775 ceph_cap_string(cap->issued),
776 ceph_cap_string(mask));
777 if (touch) {
778 struct rb_node *q;
779
780 /* touch this + preceding caps */
781 __touch_cap(cap);
782 for (q = rb_first(&ci->i_caps); q != p;
783 q = rb_next(q)) {
784 cap = rb_entry(q, struct ceph_cap,
785 ci_node);
786 if (!__cap_is_valid(cap))
787 continue;
788 __touch_cap(cap);
789 }
790 }
791 return 1;
792 }
793 }
794
795 return 0;
796 }
797
798 /*
799 * Return true if mask caps are currently being revoked by an MDS.
800 */
801 int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
802 struct ceph_cap *ocap, int mask)
803 {
804 struct ceph_cap *cap;
805 struct rb_node *p;
806
807 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
808 cap = rb_entry(p, struct ceph_cap, ci_node);
809 if (cap != ocap &&
810 (cap->implemented & ~cap->issued & mask))
811 return 1;
812 }
813 return 0;
814 }
815
816 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
817 {
818 struct inode *inode = &ci->vfs_inode;
819 int ret;
820
821 spin_lock(&ci->i_ceph_lock);
822 ret = __ceph_caps_revoking_other(ci, NULL, mask);
823 spin_unlock(&ci->i_ceph_lock);
824 dout("ceph_caps_revoking %p %s = %d\n", inode,
825 ceph_cap_string(mask), ret);
826 return ret;
827 }
828
829 int __ceph_caps_used(struct ceph_inode_info *ci)
830 {
831 int used = 0;
832 if (ci->i_pin_ref)
833 used |= CEPH_CAP_PIN;
834 if (ci->i_rd_ref)
835 used |= CEPH_CAP_FILE_RD;
836 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
837 used |= CEPH_CAP_FILE_CACHE;
838 if (ci->i_wr_ref)
839 used |= CEPH_CAP_FILE_WR;
840 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
841 used |= CEPH_CAP_FILE_BUFFER;
842 return used;
843 }
844
845 /*
846 * wanted, by virtue of open file modes
847 */
848 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
849 {
850 int want = 0;
851 int mode;
852 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
853 if (ci->i_nr_by_mode[mode])
854 want |= ceph_caps_for_mode(mode);
855 return want;
856 }
857
858 /*
859 * Return caps we have registered with the MDS(s) as 'wanted'.
860 */
861 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
862 {
863 struct ceph_cap *cap;
864 struct rb_node *p;
865 int mds_wanted = 0;
866
867 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
868 cap = rb_entry(p, struct ceph_cap, ci_node);
869 if (!__cap_is_valid(cap))
870 continue;
871 if (cap == ci->i_auth_cap)
872 mds_wanted |= cap->mds_wanted;
873 else
874 mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR);
875 }
876 return mds_wanted;
877 }
878
879 /*
880 * called under i_ceph_lock
881 */
882 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
883 {
884 return !RB_EMPTY_ROOT(&ci->i_caps);
885 }
886
887 int ceph_is_any_caps(struct inode *inode)
888 {
889 struct ceph_inode_info *ci = ceph_inode(inode);
890 int ret;
891
892 spin_lock(&ci->i_ceph_lock);
893 ret = __ceph_is_any_caps(ci);
894 spin_unlock(&ci->i_ceph_lock);
895
896 return ret;
897 }
898
899 static void drop_inode_snap_realm(struct ceph_inode_info *ci)
900 {
901 struct ceph_snap_realm *realm = ci->i_snap_realm;
902 spin_lock(&realm->inodes_with_caps_lock);
903 list_del_init(&ci->i_snap_realm_item);
904 ci->i_snap_realm_counter++;
905 ci->i_snap_realm = NULL;
906 spin_unlock(&realm->inodes_with_caps_lock);
907 ceph_put_snap_realm(ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc,
908 realm);
909 }
910
911 /*
912 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
913 *
914 * caller should hold i_ceph_lock.
915 * caller will not hold session s_mutex if called from destroy_inode.
916 */
917 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
918 {
919 struct ceph_mds_session *session = cap->session;
920 struct ceph_inode_info *ci = cap->ci;
921 struct ceph_mds_client *mdsc =
922 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
923 int removed = 0;
924
925 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
926
927 /* remove from session list */
928 spin_lock(&session->s_cap_lock);
929 if (session->s_cap_iterator == cap) {
930 /* not yet, we are iterating over this very cap */
931 dout("__ceph_remove_cap delaying %p removal from session %p\n",
932 cap, cap->session);
933 } else {
934 list_del_init(&cap->session_caps);
935 session->s_nr_caps--;
936 cap->session = NULL;
937 removed = 1;
938 }
939 /* protect backpointer with s_cap_lock: see iterate_session_caps */
940 cap->ci = NULL;
941
942 /*
943 * s_cap_reconnect is protected by s_cap_lock. no one changes
944 * s_cap_gen while session is in the reconnect state.
945 */
946 if (queue_release &&
947 (!session->s_cap_reconnect || cap->cap_gen == session->s_cap_gen)) {
948 cap->queue_release = 1;
949 if (removed) {
950 list_add_tail(&cap->session_caps,
951 &session->s_cap_releases);
952 session->s_num_cap_releases++;
953 removed = 0;
954 }
955 } else {
956 cap->queue_release = 0;
957 }
958 cap->cap_ino = ci->i_vino.ino;
959
960 spin_unlock(&session->s_cap_lock);
961
962 /* remove from inode list */
963 rb_erase(&cap->ci_node, &ci->i_caps);
964 if (ci->i_auth_cap == cap)
965 ci->i_auth_cap = NULL;
966
967 if (removed)
968 ceph_put_cap(mdsc, cap);
969
970 /* when reconnect denied, we remove session caps forcibly,
971 * i_wr_ref can be non-zero. If there are ongoing write,
972 * keep i_snap_realm.
973 */
974 if (!__ceph_is_any_caps(ci) && ci->i_wr_ref == 0 && ci->i_snap_realm)
975 drop_inode_snap_realm(ci);
976
977 if (!__ceph_is_any_real_caps(ci))
978 __cap_delay_cancel(mdsc, ci);
979 }
980
981 /*
982 * Build and send a cap message to the given MDS.
983 *
984 * Caller should be holding s_mutex.
985 */
986 static int send_cap_msg(struct ceph_mds_session *session,
987 u64 ino, u64 cid, int op,
988 int caps, int wanted, int dirty,
989 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
990 u64 size, u64 max_size,
991 struct timespec *mtime, struct timespec *atime,
992 u64 time_warp_seq,
993 kuid_t uid, kgid_t gid, umode_t mode,
994 u64 xattr_version,
995 struct ceph_buffer *xattrs_buf,
996 u64 follows, bool inline_data)
997 {
998 struct ceph_mds_caps *fc;
999 struct ceph_msg *msg;
1000 void *p;
1001 size_t extra_len;
1002
1003 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
1004 " seq %u/%u mseq %u follows %lld size %llu/%llu"
1005 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
1006 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
1007 ceph_cap_string(dirty),
1008 seq, issue_seq, mseq, follows, size, max_size,
1009 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
1010
1011 /* flock buffer size + inline version + inline data size */
1012 extra_len = 4 + 8 + 4;
1013 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc) + extra_len,
1014 GFP_NOFS, false);
1015 if (!msg)
1016 return -ENOMEM;
1017
1018 msg->hdr.tid = cpu_to_le64(flush_tid);
1019
1020 fc = msg->front.iov_base;
1021 memset(fc, 0, sizeof(*fc));
1022
1023 fc->cap_id = cpu_to_le64(cid);
1024 fc->op = cpu_to_le32(op);
1025 fc->seq = cpu_to_le32(seq);
1026 fc->issue_seq = cpu_to_le32(issue_seq);
1027 fc->migrate_seq = cpu_to_le32(mseq);
1028 fc->caps = cpu_to_le32(caps);
1029 fc->wanted = cpu_to_le32(wanted);
1030 fc->dirty = cpu_to_le32(dirty);
1031 fc->ino = cpu_to_le64(ino);
1032 fc->snap_follows = cpu_to_le64(follows);
1033
1034 fc->size = cpu_to_le64(size);
1035 fc->max_size = cpu_to_le64(max_size);
1036 if (mtime)
1037 ceph_encode_timespec(&fc->mtime, mtime);
1038 if (atime)
1039 ceph_encode_timespec(&fc->atime, atime);
1040 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
1041
1042 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
1043 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
1044 fc->mode = cpu_to_le32(mode);
1045
1046 p = fc + 1;
1047 /* flock buffer size */
1048 ceph_encode_32(&p, 0);
1049 /* inline version */
1050 ceph_encode_64(&p, inline_data ? 0 : CEPH_INLINE_NONE);
1051 /* inline data size */
1052 ceph_encode_32(&p, 0);
1053
1054 fc->xattr_version = cpu_to_le64(xattr_version);
1055 if (xattrs_buf) {
1056 msg->middle = ceph_buffer_get(xattrs_buf);
1057 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1058 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1059 }
1060
1061 ceph_con_send(&session->s_con, msg);
1062 return 0;
1063 }
1064
1065 /*
1066 * Queue cap releases when an inode is dropped from our cache. Since
1067 * inode is about to be destroyed, there is no need for i_ceph_lock.
1068 */
1069 void ceph_queue_caps_release(struct inode *inode)
1070 {
1071 struct ceph_inode_info *ci = ceph_inode(inode);
1072 struct rb_node *p;
1073
1074 p = rb_first(&ci->i_caps);
1075 while (p) {
1076 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1077 p = rb_next(p);
1078 __ceph_remove_cap(cap, true);
1079 }
1080 }
1081
1082 /*
1083 * Send a cap msg on the given inode. Update our caps state, then
1084 * drop i_ceph_lock and send the message.
1085 *
1086 * Make note of max_size reported/requested from mds, revoked caps
1087 * that have now been implemented.
1088 *
1089 * Make half-hearted attempt ot to invalidate page cache if we are
1090 * dropping RDCACHE. Note that this will leave behind locked pages
1091 * that we'll then need to deal with elsewhere.
1092 *
1093 * Return non-zero if delayed release, or we experienced an error
1094 * such that the caller should requeue + retry later.
1095 *
1096 * called with i_ceph_lock, then drops it.
1097 * caller should hold snap_rwsem (read), s_mutex.
1098 */
1099 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1100 int op, int used, int want, int retain, int flushing)
1101 __releases(cap->ci->i_ceph_lock)
1102 {
1103 struct ceph_inode_info *ci = cap->ci;
1104 struct inode *inode = &ci->vfs_inode;
1105 u64 cap_id = cap->cap_id;
1106 int held, revoking, dropping, keep;
1107 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1108 u64 size, max_size;
1109 struct timespec mtime, atime;
1110 int wake = 0;
1111 umode_t mode;
1112 kuid_t uid;
1113 kgid_t gid;
1114 struct ceph_mds_session *session;
1115 u64 xattr_version = 0;
1116 struct ceph_buffer *xattr_blob = NULL;
1117 int delayed = 0;
1118 u64 flush_tid = 0;
1119 int i;
1120 int ret;
1121 bool inline_data;
1122
1123 held = cap->issued | cap->implemented;
1124 revoking = cap->implemented & ~cap->issued;
1125 retain &= ~revoking;
1126 dropping = cap->issued & ~retain;
1127
1128 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1129 inode, cap, cap->session,
1130 ceph_cap_string(held), ceph_cap_string(held & retain),
1131 ceph_cap_string(revoking));
1132 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1133
1134 session = cap->session;
1135
1136 /* don't release wanted unless we've waited a bit. */
1137 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1138 time_before(jiffies, ci->i_hold_caps_min)) {
1139 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1140 ceph_cap_string(cap->issued),
1141 ceph_cap_string(cap->issued & retain),
1142 ceph_cap_string(cap->mds_wanted),
1143 ceph_cap_string(want));
1144 want |= cap->mds_wanted;
1145 retain |= cap->issued;
1146 delayed = 1;
1147 }
1148 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1149
1150 cap->issued &= retain; /* drop bits we don't want */
1151 if (cap->implemented & ~cap->issued) {
1152 /*
1153 * Wake up any waiters on wanted -> needed transition.
1154 * This is due to the weird transition from buffered
1155 * to sync IO... we need to flush dirty pages _before_
1156 * allowing sync writes to avoid reordering.
1157 */
1158 wake = 1;
1159 }
1160 cap->implemented &= cap->issued | used;
1161 cap->mds_wanted = want;
1162
1163 if (flushing) {
1164 /*
1165 * assign a tid for flush operations so we can avoid
1166 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1167 * clean type races. track latest tid for every bit
1168 * so we can handle flush AxFw, flush Fw, and have the
1169 * first ack clean Ax.
1170 */
1171 flush_tid = ++ci->i_cap_flush_last_tid;
1172 dout(" cap_flush_tid %d\n", (int)flush_tid);
1173 for (i = 0; i < CEPH_CAP_BITS; i++)
1174 if (flushing & (1 << i))
1175 ci->i_cap_flush_tid[i] = flush_tid;
1176
1177 follows = ci->i_head_snapc->seq;
1178 } else {
1179 follows = 0;
1180 }
1181
1182 keep = cap->implemented;
1183 seq = cap->seq;
1184 issue_seq = cap->issue_seq;
1185 mseq = cap->mseq;
1186 size = inode->i_size;
1187 ci->i_reported_size = size;
1188 max_size = ci->i_wanted_max_size;
1189 ci->i_requested_max_size = max_size;
1190 mtime = inode->i_mtime;
1191 atime = inode->i_atime;
1192 time_warp_seq = ci->i_time_warp_seq;
1193 uid = inode->i_uid;
1194 gid = inode->i_gid;
1195 mode = inode->i_mode;
1196
1197 if (flushing & CEPH_CAP_XATTR_EXCL) {
1198 __ceph_build_xattrs_blob(ci);
1199 xattr_blob = ci->i_xattrs.blob;
1200 xattr_version = ci->i_xattrs.version;
1201 }
1202
1203 inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
1204
1205 spin_unlock(&ci->i_ceph_lock);
1206
1207 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1208 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1209 size, max_size, &mtime, &atime, time_warp_seq,
1210 uid, gid, mode, xattr_version, xattr_blob,
1211 follows, inline_data);
1212 if (ret < 0) {
1213 dout("error sending cap msg, must requeue %p\n", inode);
1214 delayed = 1;
1215 }
1216
1217 if (wake)
1218 wake_up_all(&ci->i_cap_wq);
1219
1220 return delayed;
1221 }
1222
1223 /*
1224 * When a snapshot is taken, clients accumulate dirty metadata on
1225 * inodes with capabilities in ceph_cap_snaps to describe the file
1226 * state at the time the snapshot was taken. This must be flushed
1227 * asynchronously back to the MDS once sync writes complete and dirty
1228 * data is written out.
1229 *
1230 * Unless @kick is true, skip cap_snaps that were already sent to
1231 * the MDS (i.e., during this session).
1232 *
1233 * Called under i_ceph_lock. Takes s_mutex as needed.
1234 */
1235 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1236 struct ceph_mds_session **psession,
1237 int kick)
1238 __releases(ci->i_ceph_lock)
1239 __acquires(ci->i_ceph_lock)
1240 {
1241 struct inode *inode = &ci->vfs_inode;
1242 int mds;
1243 struct ceph_cap_snap *capsnap;
1244 u32 mseq;
1245 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1246 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1247 session->s_mutex */
1248 u64 next_follows = 0; /* keep track of how far we've gotten through the
1249 i_cap_snaps list, and skip these entries next time
1250 around to avoid an infinite loop */
1251
1252 if (psession)
1253 session = *psession;
1254
1255 dout("__flush_snaps %p\n", inode);
1256 retry:
1257 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1258 /* avoid an infiniute loop after retry */
1259 if (capsnap->follows < next_follows)
1260 continue;
1261 /*
1262 * we need to wait for sync writes to complete and for dirty
1263 * pages to be written out.
1264 */
1265 if (capsnap->dirty_pages || capsnap->writing)
1266 break;
1267
1268 /* should be removed by ceph_try_drop_cap_snap() */
1269 BUG_ON(!capsnap->need_flush);
1270
1271 /* pick mds, take s_mutex */
1272 if (ci->i_auth_cap == NULL) {
1273 dout("no auth cap (migrating?), doing nothing\n");
1274 goto out;
1275 }
1276
1277 /* only flush each capsnap once */
1278 if (!kick && !list_empty(&capsnap->flushing_item)) {
1279 dout("already flushed %p, skipping\n", capsnap);
1280 continue;
1281 }
1282
1283 mds = ci->i_auth_cap->session->s_mds;
1284 mseq = ci->i_auth_cap->mseq;
1285
1286 if (session && session->s_mds != mds) {
1287 dout("oops, wrong session %p mutex\n", session);
1288 if (kick)
1289 goto out;
1290
1291 mutex_unlock(&session->s_mutex);
1292 ceph_put_mds_session(session);
1293 session = NULL;
1294 }
1295 if (!session) {
1296 spin_unlock(&ci->i_ceph_lock);
1297 mutex_lock(&mdsc->mutex);
1298 session = __ceph_lookup_mds_session(mdsc, mds);
1299 mutex_unlock(&mdsc->mutex);
1300 if (session) {
1301 dout("inverting session/ino locks on %p\n",
1302 session);
1303 mutex_lock(&session->s_mutex);
1304 }
1305 /*
1306 * if session == NULL, we raced against a cap
1307 * deletion or migration. retry, and we'll
1308 * get a better @mds value next time.
1309 */
1310 spin_lock(&ci->i_ceph_lock);
1311 goto retry;
1312 }
1313
1314 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1315 atomic_inc(&capsnap->nref);
1316 if (list_empty(&capsnap->flushing_item))
1317 list_add_tail(&capsnap->flushing_item,
1318 &session->s_cap_snaps_flushing);
1319 spin_unlock(&ci->i_ceph_lock);
1320
1321 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1322 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1323 send_cap_msg(session, ceph_vino(inode).ino, 0,
1324 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1325 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1326 capsnap->size, 0,
1327 &capsnap->mtime, &capsnap->atime,
1328 capsnap->time_warp_seq,
1329 capsnap->uid, capsnap->gid, capsnap->mode,
1330 capsnap->xattr_version, capsnap->xattr_blob,
1331 capsnap->follows, capsnap->inline_data);
1332
1333 next_follows = capsnap->follows + 1;
1334 ceph_put_cap_snap(capsnap);
1335
1336 spin_lock(&ci->i_ceph_lock);
1337 goto retry;
1338 }
1339
1340 /* we flushed them all; remove this inode from the queue */
1341 spin_lock(&mdsc->snap_flush_lock);
1342 list_del_init(&ci->i_snap_flush_item);
1343 spin_unlock(&mdsc->snap_flush_lock);
1344
1345 out:
1346 if (psession)
1347 *psession = session;
1348 else if (session) {
1349 mutex_unlock(&session->s_mutex);
1350 ceph_put_mds_session(session);
1351 }
1352 }
1353
1354 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1355 {
1356 spin_lock(&ci->i_ceph_lock);
1357 __ceph_flush_snaps(ci, NULL, 0);
1358 spin_unlock(&ci->i_ceph_lock);
1359 }
1360
1361 /*
1362 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1363 * Caller is then responsible for calling __mark_inode_dirty with the
1364 * returned flags value.
1365 */
1366 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1367 {
1368 struct ceph_mds_client *mdsc =
1369 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1370 struct inode *inode = &ci->vfs_inode;
1371 int was = ci->i_dirty_caps;
1372 int dirty = 0;
1373
1374 if (!ci->i_auth_cap) {
1375 pr_warn("__mark_dirty_caps %p %llx mask %s, "
1376 "but no auth cap (session was closed?)\n",
1377 inode, ceph_ino(inode), ceph_cap_string(mask));
1378 return 0;
1379 }
1380
1381 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1382 ceph_cap_string(mask), ceph_cap_string(was),
1383 ceph_cap_string(was | mask));
1384 ci->i_dirty_caps |= mask;
1385 if (was == 0) {
1386 if (!ci->i_head_snapc) {
1387 WARN_ON_ONCE(!rwsem_is_locked(&mdsc->snap_rwsem));
1388 ci->i_head_snapc = ceph_get_snap_context(
1389 ci->i_snap_realm->cached_context);
1390 }
1391 dout(" inode %p now dirty snapc %p auth cap %p\n",
1392 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1393 BUG_ON(!list_empty(&ci->i_dirty_item));
1394 spin_lock(&mdsc->cap_dirty_lock);
1395 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1396 spin_unlock(&mdsc->cap_dirty_lock);
1397 if (ci->i_flushing_caps == 0) {
1398 ihold(inode);
1399 dirty |= I_DIRTY_SYNC;
1400 }
1401 }
1402 BUG_ON(list_empty(&ci->i_dirty_item));
1403 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1404 (mask & CEPH_CAP_FILE_BUFFER))
1405 dirty |= I_DIRTY_DATASYNC;
1406 __cap_delay_requeue(mdsc, ci);
1407 return dirty;
1408 }
1409
1410 /*
1411 * Add dirty inode to the flushing list. Assigned a seq number so we
1412 * can wait for caps to flush without starving.
1413 *
1414 * Called under i_ceph_lock.
1415 */
1416 static int __mark_caps_flushing(struct inode *inode,
1417 struct ceph_mds_session *session)
1418 {
1419 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1420 struct ceph_inode_info *ci = ceph_inode(inode);
1421 int flushing;
1422
1423 BUG_ON(ci->i_dirty_caps == 0);
1424 BUG_ON(list_empty(&ci->i_dirty_item));
1425
1426 flushing = ci->i_dirty_caps;
1427 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1428 ceph_cap_string(flushing),
1429 ceph_cap_string(ci->i_flushing_caps),
1430 ceph_cap_string(ci->i_flushing_caps | flushing));
1431 ci->i_flushing_caps |= flushing;
1432 ci->i_dirty_caps = 0;
1433 dout(" inode %p now !dirty\n", inode);
1434
1435 spin_lock(&mdsc->cap_dirty_lock);
1436 list_del_init(&ci->i_dirty_item);
1437
1438 if (list_empty(&ci->i_flushing_item)) {
1439 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1440 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1441 mdsc->num_cap_flushing++;
1442 dout(" inode %p now flushing seq %lld\n", inode,
1443 ci->i_cap_flush_seq);
1444 } else {
1445 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1446 dout(" inode %p now flushing (more) seq %lld\n", inode,
1447 ci->i_cap_flush_seq);
1448 }
1449 spin_unlock(&mdsc->cap_dirty_lock);
1450
1451 return flushing;
1452 }
1453
1454 /*
1455 * try to invalidate mapping pages without blocking.
1456 */
1457 static int try_nonblocking_invalidate(struct inode *inode)
1458 {
1459 struct ceph_inode_info *ci = ceph_inode(inode);
1460 u32 invalidating_gen = ci->i_rdcache_gen;
1461
1462 spin_unlock(&ci->i_ceph_lock);
1463 invalidate_mapping_pages(&inode->i_data, 0, -1);
1464 spin_lock(&ci->i_ceph_lock);
1465
1466 if (inode->i_data.nrpages == 0 &&
1467 invalidating_gen == ci->i_rdcache_gen) {
1468 /* success. */
1469 dout("try_nonblocking_invalidate %p success\n", inode);
1470 /* save any racing async invalidate some trouble */
1471 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1472 return 0;
1473 }
1474 dout("try_nonblocking_invalidate %p failed\n", inode);
1475 return -1;
1476 }
1477
1478 /*
1479 * Swiss army knife function to examine currently used and wanted
1480 * versus held caps. Release, flush, ack revoked caps to mds as
1481 * appropriate.
1482 *
1483 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1484 * cap release further.
1485 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1486 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1487 * further delay.
1488 */
1489 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1490 struct ceph_mds_session *session)
1491 {
1492 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1493 struct ceph_mds_client *mdsc = fsc->mdsc;
1494 struct inode *inode = &ci->vfs_inode;
1495 struct ceph_cap *cap;
1496 int file_wanted, used, cap_used;
1497 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1498 int issued, implemented, want, retain, revoking, flushing = 0;
1499 int mds = -1; /* keep track of how far we've gone through i_caps list
1500 to avoid an infinite loop on retry */
1501 struct rb_node *p;
1502 int tried_invalidate = 0;
1503 int delayed = 0, sent = 0, force_requeue = 0, num;
1504 int queue_invalidate = 0;
1505 int is_delayed = flags & CHECK_CAPS_NODELAY;
1506
1507 /* if we are unmounting, flush any unused caps immediately. */
1508 if (mdsc->stopping)
1509 is_delayed = 1;
1510
1511 spin_lock(&ci->i_ceph_lock);
1512
1513 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1514 flags |= CHECK_CAPS_FLUSH;
1515
1516 /* flush snaps first time around only */
1517 if (!list_empty(&ci->i_cap_snaps))
1518 __ceph_flush_snaps(ci, &session, 0);
1519 goto retry_locked;
1520 retry:
1521 spin_lock(&ci->i_ceph_lock);
1522 retry_locked:
1523 file_wanted = __ceph_caps_file_wanted(ci);
1524 used = __ceph_caps_used(ci);
1525 issued = __ceph_caps_issued(ci, &implemented);
1526 revoking = implemented & ~issued;
1527
1528 want = file_wanted;
1529 retain = file_wanted | used | CEPH_CAP_PIN;
1530 if (!mdsc->stopping && inode->i_nlink > 0) {
1531 if (file_wanted) {
1532 retain |= CEPH_CAP_ANY; /* be greedy */
1533 } else if (S_ISDIR(inode->i_mode) &&
1534 (issued & CEPH_CAP_FILE_SHARED) &&
1535 __ceph_dir_is_complete(ci)) {
1536 /*
1537 * If a directory is complete, we want to keep
1538 * the exclusive cap. So that MDS does not end up
1539 * revoking the shared cap on every create/unlink
1540 * operation.
1541 */
1542 want = CEPH_CAP_ANY_SHARED | CEPH_CAP_FILE_EXCL;
1543 retain |= want;
1544 } else {
1545
1546 retain |= CEPH_CAP_ANY_SHARED;
1547 /*
1548 * keep RD only if we didn't have the file open RW,
1549 * because then the mds would revoke it anyway to
1550 * journal max_size=0.
1551 */
1552 if (ci->i_max_size == 0)
1553 retain |= CEPH_CAP_ANY_RD;
1554 }
1555 }
1556
1557 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1558 " issued %s revoking %s retain %s %s%s%s\n", inode,
1559 ceph_cap_string(file_wanted),
1560 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1561 ceph_cap_string(ci->i_flushing_caps),
1562 ceph_cap_string(issued), ceph_cap_string(revoking),
1563 ceph_cap_string(retain),
1564 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1565 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1566 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1567
1568 /*
1569 * If we no longer need to hold onto old our caps, and we may
1570 * have cached pages, but don't want them, then try to invalidate.
1571 * If we fail, it's because pages are locked.... try again later.
1572 */
1573 if ((!is_delayed || mdsc->stopping) &&
1574 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1575 inode->i_data.nrpages && /* have cached pages */
1576 (file_wanted == 0 || /* no open files */
1577 (revoking & (CEPH_CAP_FILE_CACHE|
1578 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1579 !tried_invalidate) {
1580 dout("check_caps trying to invalidate on %p\n", inode);
1581 if (try_nonblocking_invalidate(inode) < 0) {
1582 if (revoking & (CEPH_CAP_FILE_CACHE|
1583 CEPH_CAP_FILE_LAZYIO)) {
1584 dout("check_caps queuing invalidate\n");
1585 queue_invalidate = 1;
1586 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1587 } else {
1588 dout("check_caps failed to invalidate pages\n");
1589 /* we failed to invalidate pages. check these
1590 caps again later. */
1591 force_requeue = 1;
1592 __cap_set_timeouts(mdsc, ci);
1593 }
1594 }
1595 tried_invalidate = 1;
1596 goto retry_locked;
1597 }
1598
1599 num = 0;
1600 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1601 cap = rb_entry(p, struct ceph_cap, ci_node);
1602 num++;
1603
1604 /* avoid looping forever */
1605 if (mds >= cap->mds ||
1606 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1607 continue;
1608
1609 /* NOTE: no side-effects allowed, until we take s_mutex */
1610
1611 cap_used = used;
1612 if (ci->i_auth_cap && cap != ci->i_auth_cap)
1613 cap_used &= ~ci->i_auth_cap->issued;
1614
1615 revoking = cap->implemented & ~cap->issued;
1616 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1617 cap->mds, cap, ceph_cap_string(cap->issued),
1618 ceph_cap_string(cap_used),
1619 ceph_cap_string(cap->implemented),
1620 ceph_cap_string(revoking));
1621
1622 if (cap == ci->i_auth_cap &&
1623 (cap->issued & CEPH_CAP_FILE_WR)) {
1624 /* request larger max_size from MDS? */
1625 if (ci->i_wanted_max_size > ci->i_max_size &&
1626 ci->i_wanted_max_size > ci->i_requested_max_size) {
1627 dout("requesting new max_size\n");
1628 goto ack;
1629 }
1630
1631 /* approaching file_max? */
1632 if ((inode->i_size << 1) >= ci->i_max_size &&
1633 (ci->i_reported_size << 1) < ci->i_max_size) {
1634 dout("i_size approaching max_size\n");
1635 goto ack;
1636 }
1637 }
1638 /* flush anything dirty? */
1639 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1640 ci->i_dirty_caps) {
1641 dout("flushing dirty caps\n");
1642 goto ack;
1643 }
1644
1645 /* completed revocation? going down and there are no caps? */
1646 if (revoking && (revoking & cap_used) == 0) {
1647 dout("completed revocation of %s\n",
1648 ceph_cap_string(cap->implemented & ~cap->issued));
1649 goto ack;
1650 }
1651
1652 /* want more caps from mds? */
1653 if (want & ~(cap->mds_wanted | cap->issued))
1654 goto ack;
1655
1656 /* things we might delay */
1657 if ((cap->issued & ~retain) == 0 &&
1658 cap->mds_wanted == want)
1659 continue; /* nope, all good */
1660
1661 if (is_delayed)
1662 goto ack;
1663
1664 /* delay? */
1665 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1666 time_before(jiffies, ci->i_hold_caps_max)) {
1667 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1668 ceph_cap_string(cap->issued),
1669 ceph_cap_string(cap->issued & retain),
1670 ceph_cap_string(cap->mds_wanted),
1671 ceph_cap_string(want));
1672 delayed++;
1673 continue;
1674 }
1675
1676 ack:
1677 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1678 dout(" skipping %p I_NOFLUSH set\n", inode);
1679 continue;
1680 }
1681
1682 if (session && session != cap->session) {
1683 dout("oops, wrong session %p mutex\n", session);
1684 mutex_unlock(&session->s_mutex);
1685 session = NULL;
1686 }
1687 if (!session) {
1688 session = cap->session;
1689 if (mutex_trylock(&session->s_mutex) == 0) {
1690 dout("inverting session/ino locks on %p\n",
1691 session);
1692 spin_unlock(&ci->i_ceph_lock);
1693 if (took_snap_rwsem) {
1694 up_read(&mdsc->snap_rwsem);
1695 took_snap_rwsem = 0;
1696 }
1697 mutex_lock(&session->s_mutex);
1698 goto retry;
1699 }
1700 }
1701 /* take snap_rwsem after session mutex */
1702 if (!took_snap_rwsem) {
1703 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1704 dout("inverting snap/in locks on %p\n",
1705 inode);
1706 spin_unlock(&ci->i_ceph_lock);
1707 down_read(&mdsc->snap_rwsem);
1708 took_snap_rwsem = 1;
1709 goto retry;
1710 }
1711 took_snap_rwsem = 1;
1712 }
1713
1714 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1715 flushing = __mark_caps_flushing(inode, session);
1716 else
1717 flushing = 0;
1718
1719 mds = cap->mds; /* remember mds, so we don't repeat */
1720 sent++;
1721
1722 /* __send_cap drops i_ceph_lock */
1723 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1724 want, retain, flushing);
1725 goto retry; /* retake i_ceph_lock and restart our cap scan. */
1726 }
1727
1728 /*
1729 * Reschedule delayed caps release if we delayed anything,
1730 * otherwise cancel.
1731 */
1732 if (delayed && is_delayed)
1733 force_requeue = 1; /* __send_cap delayed release; requeue */
1734 if (!delayed && !is_delayed)
1735 __cap_delay_cancel(mdsc, ci);
1736 else if (!is_delayed || force_requeue)
1737 __cap_delay_requeue(mdsc, ci);
1738
1739 spin_unlock(&ci->i_ceph_lock);
1740
1741 if (queue_invalidate)
1742 ceph_queue_invalidate(inode);
1743
1744 if (session)
1745 mutex_unlock(&session->s_mutex);
1746 if (took_snap_rwsem)
1747 up_read(&mdsc->snap_rwsem);
1748 }
1749
1750 /*
1751 * Try to flush dirty caps back to the auth mds.
1752 */
1753 static int try_flush_caps(struct inode *inode, u16 flush_tid[])
1754 {
1755 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1756 struct ceph_inode_info *ci = ceph_inode(inode);
1757 struct ceph_mds_session *session = NULL;
1758 int flushing = 0;
1759
1760 retry:
1761 spin_lock(&ci->i_ceph_lock);
1762 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1763 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1764 goto out;
1765 }
1766 if (ci->i_dirty_caps && ci->i_auth_cap) {
1767 struct ceph_cap *cap = ci->i_auth_cap;
1768 int used = __ceph_caps_used(ci);
1769 int want = __ceph_caps_wanted(ci);
1770 int delayed;
1771
1772 if (!session || session != cap->session) {
1773 spin_unlock(&ci->i_ceph_lock);
1774 if (session)
1775 mutex_unlock(&session->s_mutex);
1776 session = cap->session;
1777 mutex_lock(&session->s_mutex);
1778 goto retry;
1779 }
1780 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1781 goto out;
1782
1783 flushing = __mark_caps_flushing(inode, session);
1784
1785 /* __send_cap drops i_ceph_lock */
1786 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1787 cap->issued | cap->implemented, flushing);
1788
1789 spin_lock(&ci->i_ceph_lock);
1790 if (delayed)
1791 __cap_delay_requeue(mdsc, ci);
1792 }
1793
1794 flushing = ci->i_flushing_caps;
1795 if (flushing)
1796 memcpy(flush_tid, ci->i_cap_flush_tid,
1797 sizeof(ci->i_cap_flush_tid));
1798 out:
1799 spin_unlock(&ci->i_ceph_lock);
1800 if (session)
1801 mutex_unlock(&session->s_mutex);
1802 return flushing;
1803 }
1804
1805 /*
1806 * Return true if we've flushed caps through the given flush_tid.
1807 */
1808 static int caps_are_flushed(struct inode *inode, u16 flush_tid[])
1809 {
1810 struct ceph_inode_info *ci = ceph_inode(inode);
1811 int i, ret = 1;
1812
1813 spin_lock(&ci->i_ceph_lock);
1814 for (i = 0; i < CEPH_CAP_BITS; i++) {
1815 if (!(ci->i_flushing_caps & (1 << i)))
1816 continue;
1817 // tid only has 16 bits. we need to handle wrapping
1818 if ((s16)(ci->i_cap_flush_tid[i] - flush_tid[i]) <= 0) {
1819 /* still flushing this bit */
1820 ret = 0;
1821 break;
1822 }
1823 }
1824 spin_unlock(&ci->i_ceph_lock);
1825 return ret;
1826 }
1827
1828 /*
1829 * Wait on any unsafe replies for the given inode. First wait on the
1830 * newest request, and make that the upper bound. Then, if there are
1831 * more requests, keep waiting on the oldest as long as it is still older
1832 * than the original request.
1833 */
1834 static void sync_write_wait(struct inode *inode)
1835 {
1836 struct ceph_inode_info *ci = ceph_inode(inode);
1837 struct list_head *head = &ci->i_unsafe_writes;
1838 struct ceph_osd_request *req;
1839 u64 last_tid;
1840
1841 if (!S_ISREG(inode->i_mode))
1842 return;
1843
1844 spin_lock(&ci->i_unsafe_lock);
1845 if (list_empty(head))
1846 goto out;
1847
1848 /* set upper bound as _last_ entry in chain */
1849 req = list_last_entry(head, struct ceph_osd_request,
1850 r_unsafe_item);
1851 last_tid = req->r_tid;
1852
1853 do {
1854 ceph_osdc_get_request(req);
1855 spin_unlock(&ci->i_unsafe_lock);
1856 dout("sync_write_wait on tid %llu (until %llu)\n",
1857 req->r_tid, last_tid);
1858 wait_for_completion(&req->r_safe_completion);
1859 spin_lock(&ci->i_unsafe_lock);
1860 ceph_osdc_put_request(req);
1861
1862 /*
1863 * from here on look at first entry in chain, since we
1864 * only want to wait for anything older than last_tid
1865 */
1866 if (list_empty(head))
1867 break;
1868 req = list_first_entry(head, struct ceph_osd_request,
1869 r_unsafe_item);
1870 } while (req->r_tid < last_tid);
1871 out:
1872 spin_unlock(&ci->i_unsafe_lock);
1873 }
1874
1875 /*
1876 * wait for any uncommitted directory operations to commit.
1877 */
1878 static int unsafe_dirop_wait(struct inode *inode)
1879 {
1880 struct ceph_inode_info *ci = ceph_inode(inode);
1881 struct list_head *head = &ci->i_unsafe_dirops;
1882 struct ceph_mds_request *req;
1883 u64 last_tid;
1884 int ret = 0;
1885
1886 if (!S_ISDIR(inode->i_mode))
1887 return 0;
1888
1889 spin_lock(&ci->i_unsafe_lock);
1890 if (list_empty(head))
1891 goto out;
1892
1893 req = list_last_entry(head, struct ceph_mds_request,
1894 r_unsafe_dir_item);
1895 last_tid = req->r_tid;
1896
1897 do {
1898 ceph_mdsc_get_request(req);
1899 spin_unlock(&ci->i_unsafe_lock);
1900
1901 dout("unsafe_dirop_wait %p wait on tid %llu (until %llu)\n",
1902 inode, req->r_tid, last_tid);
1903 ret = !wait_for_completion_timeout(&req->r_safe_completion,
1904 ceph_timeout_jiffies(req->r_timeout));
1905 if (ret)
1906 ret = -EIO; /* timed out */
1907
1908 ceph_mdsc_put_request(req);
1909
1910 spin_lock(&ci->i_unsafe_lock);
1911 if (ret || list_empty(head))
1912 break;
1913 req = list_first_entry(head, struct ceph_mds_request,
1914 r_unsafe_dir_item);
1915 } while (req->r_tid < last_tid);
1916 out:
1917 spin_unlock(&ci->i_unsafe_lock);
1918 return ret;
1919 }
1920
1921 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1922 {
1923 struct inode *inode = file->f_mapping->host;
1924 struct ceph_inode_info *ci = ceph_inode(inode);
1925 u16 flush_tid[CEPH_CAP_BITS];
1926 int ret;
1927 int dirty;
1928
1929 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1930 sync_write_wait(inode);
1931
1932 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1933 if (ret < 0)
1934 goto out;
1935
1936 if (datasync)
1937 goto out;
1938
1939 mutex_lock(&inode->i_mutex);
1940
1941 dirty = try_flush_caps(inode, flush_tid);
1942 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1943
1944 ret = unsafe_dirop_wait(inode);
1945
1946 /*
1947 * only wait on non-file metadata writeback (the mds
1948 * can recover size and mtime, so we don't need to
1949 * wait for that)
1950 */
1951 if (!ret && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1952 ret = wait_event_interruptible(ci->i_cap_wq,
1953 caps_are_flushed(inode, flush_tid));
1954 }
1955 mutex_unlock(&inode->i_mutex);
1956 out:
1957 dout("fsync %p%s result=%d\n", inode, datasync ? " datasync" : "", ret);
1958 return ret;
1959 }
1960
1961 /*
1962 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1963 * queue inode for flush but don't do so immediately, because we can
1964 * get by with fewer MDS messages if we wait for data writeback to
1965 * complete first.
1966 */
1967 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1968 {
1969 struct ceph_inode_info *ci = ceph_inode(inode);
1970 u16 flush_tid[CEPH_CAP_BITS];
1971 int err = 0;
1972 int dirty;
1973 int wait = wbc->sync_mode == WB_SYNC_ALL;
1974
1975 dout("write_inode %p wait=%d\n", inode, wait);
1976 if (wait) {
1977 dirty = try_flush_caps(inode, flush_tid);
1978 if (dirty)
1979 err = wait_event_interruptible(ci->i_cap_wq,
1980 caps_are_flushed(inode, flush_tid));
1981 } else {
1982 struct ceph_mds_client *mdsc =
1983 ceph_sb_to_client(inode->i_sb)->mdsc;
1984
1985 spin_lock(&ci->i_ceph_lock);
1986 if (__ceph_caps_dirty(ci))
1987 __cap_delay_requeue_front(mdsc, ci);
1988 spin_unlock(&ci->i_ceph_lock);
1989 }
1990 return err;
1991 }
1992
1993 /*
1994 * After a recovering MDS goes active, we need to resend any caps
1995 * we were flushing.
1996 *
1997 * Caller holds session->s_mutex.
1998 */
1999 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
2000 struct ceph_mds_session *session)
2001 {
2002 struct ceph_cap_snap *capsnap;
2003
2004 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
2005 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
2006 flushing_item) {
2007 struct ceph_inode_info *ci = capsnap->ci;
2008 struct inode *inode = &ci->vfs_inode;
2009 struct ceph_cap *cap;
2010
2011 spin_lock(&ci->i_ceph_lock);
2012 cap = ci->i_auth_cap;
2013 if (cap && cap->session == session) {
2014 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
2015 cap, capsnap);
2016 __ceph_flush_snaps(ci, &session, 1);
2017 } else {
2018 pr_err("%p auth cap %p not mds%d ???\n", inode,
2019 cap, session->s_mds);
2020 }
2021 spin_unlock(&ci->i_ceph_lock);
2022 }
2023 }
2024
2025 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
2026 struct ceph_mds_session *session)
2027 {
2028 struct ceph_inode_info *ci;
2029
2030 kick_flushing_capsnaps(mdsc, session);
2031
2032 dout("kick_flushing_caps mds%d\n", session->s_mds);
2033 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
2034 struct inode *inode = &ci->vfs_inode;
2035 struct ceph_cap *cap;
2036 int delayed = 0;
2037
2038 spin_lock(&ci->i_ceph_lock);
2039 cap = ci->i_auth_cap;
2040 if (cap && cap->session == session) {
2041 dout("kick_flushing_caps %p cap %p %s\n", inode,
2042 cap, ceph_cap_string(ci->i_flushing_caps));
2043 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2044 __ceph_caps_used(ci),
2045 __ceph_caps_wanted(ci),
2046 cap->issued | cap->implemented,
2047 ci->i_flushing_caps);
2048 if (delayed) {
2049 spin_lock(&ci->i_ceph_lock);
2050 __cap_delay_requeue(mdsc, ci);
2051 spin_unlock(&ci->i_ceph_lock);
2052 }
2053 } else {
2054 pr_err("%p auth cap %p not mds%d ???\n", inode,
2055 cap, session->s_mds);
2056 spin_unlock(&ci->i_ceph_lock);
2057 }
2058 }
2059 }
2060
2061 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
2062 struct ceph_mds_session *session,
2063 struct inode *inode)
2064 {
2065 struct ceph_inode_info *ci = ceph_inode(inode);
2066 struct ceph_cap *cap;
2067 int delayed = 0;
2068
2069 spin_lock(&ci->i_ceph_lock);
2070 cap = ci->i_auth_cap;
2071 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
2072 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
2073
2074 __ceph_flush_snaps(ci, &session, 1);
2075
2076 if (ci->i_flushing_caps) {
2077 spin_lock(&mdsc->cap_dirty_lock);
2078 list_move_tail(&ci->i_flushing_item,
2079 &cap->session->s_cap_flushing);
2080 spin_unlock(&mdsc->cap_dirty_lock);
2081
2082 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2083 __ceph_caps_used(ci),
2084 __ceph_caps_wanted(ci),
2085 cap->issued | cap->implemented,
2086 ci->i_flushing_caps);
2087 if (delayed) {
2088 spin_lock(&ci->i_ceph_lock);
2089 __cap_delay_requeue(mdsc, ci);
2090 spin_unlock(&ci->i_ceph_lock);
2091 }
2092 } else {
2093 spin_unlock(&ci->i_ceph_lock);
2094 }
2095 }
2096
2097
2098 /*
2099 * Take references to capabilities we hold, so that we don't release
2100 * them to the MDS prematurely.
2101 *
2102 * Protected by i_ceph_lock.
2103 */
2104 static void __take_cap_refs(struct ceph_inode_info *ci, int got,
2105 bool snap_rwsem_locked)
2106 {
2107 if (got & CEPH_CAP_PIN)
2108 ci->i_pin_ref++;
2109 if (got & CEPH_CAP_FILE_RD)
2110 ci->i_rd_ref++;
2111 if (got & CEPH_CAP_FILE_CACHE)
2112 ci->i_rdcache_ref++;
2113 if (got & CEPH_CAP_FILE_WR) {
2114 if (ci->i_wr_ref == 0 && !ci->i_head_snapc) {
2115 BUG_ON(!snap_rwsem_locked);
2116 ci->i_head_snapc = ceph_get_snap_context(
2117 ci->i_snap_realm->cached_context);
2118 }
2119 ci->i_wr_ref++;
2120 }
2121 if (got & CEPH_CAP_FILE_BUFFER) {
2122 if (ci->i_wb_ref == 0)
2123 ihold(&ci->vfs_inode);
2124 ci->i_wb_ref++;
2125 dout("__take_cap_refs %p wb %d -> %d (?)\n",
2126 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2127 }
2128 }
2129
2130 /*
2131 * Try to grab cap references. Specify those refs we @want, and the
2132 * minimal set we @need. Also include the larger offset we are writing
2133 * to (when applicable), and check against max_size here as well.
2134 * Note that caller is responsible for ensuring max_size increases are
2135 * requested from the MDS.
2136 */
2137 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2138 loff_t endoff, bool nonblock, int *got, int *err)
2139 {
2140 struct inode *inode = &ci->vfs_inode;
2141 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2142 int ret = 0;
2143 int have, implemented;
2144 int file_wanted;
2145 bool snap_rwsem_locked = false;
2146
2147 dout("get_cap_refs %p need %s want %s\n", inode,
2148 ceph_cap_string(need), ceph_cap_string(want));
2149
2150 again:
2151 spin_lock(&ci->i_ceph_lock);
2152
2153 /* make sure file is actually open */
2154 file_wanted = __ceph_caps_file_wanted(ci);
2155 if ((file_wanted & need) == 0) {
2156 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2157 ceph_cap_string(need), ceph_cap_string(file_wanted));
2158 *err = -EBADF;
2159 ret = 1;
2160 goto out_unlock;
2161 }
2162
2163 /* finish pending truncate */
2164 while (ci->i_truncate_pending) {
2165 spin_unlock(&ci->i_ceph_lock);
2166 if (snap_rwsem_locked) {
2167 up_read(&mdsc->snap_rwsem);
2168 snap_rwsem_locked = false;
2169 }
2170 __ceph_do_pending_vmtruncate(inode);
2171 spin_lock(&ci->i_ceph_lock);
2172 }
2173
2174 have = __ceph_caps_issued(ci, &implemented);
2175
2176 if (have & need & CEPH_CAP_FILE_WR) {
2177 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2178 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2179 inode, endoff, ci->i_max_size);
2180 if (endoff > ci->i_requested_max_size) {
2181 *err = -EAGAIN;
2182 ret = 1;
2183 }
2184 goto out_unlock;
2185 }
2186 /*
2187 * If a sync write is in progress, we must wait, so that we
2188 * can get a final snapshot value for size+mtime.
2189 */
2190 if (__ceph_have_pending_cap_snap(ci)) {
2191 dout("get_cap_refs %p cap_snap_pending\n", inode);
2192 goto out_unlock;
2193 }
2194 }
2195
2196 if ((have & need) == need) {
2197 /*
2198 * Look at (implemented & ~have & not) so that we keep waiting
2199 * on transition from wanted -> needed caps. This is needed
2200 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2201 * going before a prior buffered writeback happens.
2202 */
2203 int not = want & ~(have & need);
2204 int revoking = implemented & ~have;
2205 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2206 inode, ceph_cap_string(have), ceph_cap_string(not),
2207 ceph_cap_string(revoking));
2208 if ((revoking & not) == 0) {
2209 if (!snap_rwsem_locked &&
2210 !ci->i_head_snapc &&
2211 (need & CEPH_CAP_FILE_WR)) {
2212 if (!down_read_trylock(&mdsc->snap_rwsem)) {
2213 /*
2214 * we can not call down_read() when
2215 * task isn't in TASK_RUNNING state
2216 */
2217 if (nonblock) {
2218 *err = -EAGAIN;
2219 ret = 1;
2220 goto out_unlock;
2221 }
2222
2223 spin_unlock(&ci->i_ceph_lock);
2224 down_read(&mdsc->snap_rwsem);
2225 snap_rwsem_locked = true;
2226 goto again;
2227 }
2228 snap_rwsem_locked = true;
2229 }
2230 *got = need | (have & want);
2231 __take_cap_refs(ci, *got, true);
2232 ret = 1;
2233 }
2234 } else {
2235 int session_readonly = false;
2236 if ((need & CEPH_CAP_FILE_WR) && ci->i_auth_cap) {
2237 struct ceph_mds_session *s = ci->i_auth_cap->session;
2238 spin_lock(&s->s_cap_lock);
2239 session_readonly = s->s_readonly;
2240 spin_unlock(&s->s_cap_lock);
2241 }
2242 if (session_readonly) {
2243 dout("get_cap_refs %p needed %s but mds%d readonly\n",
2244 inode, ceph_cap_string(need), ci->i_auth_cap->mds);
2245 *err = -EROFS;
2246 ret = 1;
2247 goto out_unlock;
2248 }
2249
2250 dout("get_cap_refs %p have %s needed %s\n", inode,
2251 ceph_cap_string(have), ceph_cap_string(need));
2252 }
2253 out_unlock:
2254 spin_unlock(&ci->i_ceph_lock);
2255 if (snap_rwsem_locked)
2256 up_read(&mdsc->snap_rwsem);
2257
2258 dout("get_cap_refs %p ret %d got %s\n", inode,
2259 ret, ceph_cap_string(*got));
2260 return ret;
2261 }
2262
2263 /*
2264 * Check the offset we are writing up to against our current
2265 * max_size. If necessary, tell the MDS we want to write to
2266 * a larger offset.
2267 */
2268 static void check_max_size(struct inode *inode, loff_t endoff)
2269 {
2270 struct ceph_inode_info *ci = ceph_inode(inode);
2271 int check = 0;
2272
2273 /* do we need to explicitly request a larger max_size? */
2274 spin_lock(&ci->i_ceph_lock);
2275 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
2276 dout("write %p at large endoff %llu, req max_size\n",
2277 inode, endoff);
2278 ci->i_wanted_max_size = endoff;
2279 }
2280 /* duplicate ceph_check_caps()'s logic */
2281 if (ci->i_auth_cap &&
2282 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
2283 ci->i_wanted_max_size > ci->i_max_size &&
2284 ci->i_wanted_max_size > ci->i_requested_max_size)
2285 check = 1;
2286 spin_unlock(&ci->i_ceph_lock);
2287 if (check)
2288 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2289 }
2290
2291 /*
2292 * Wait for caps, and take cap references. If we can't get a WR cap
2293 * due to a small max_size, make sure we check_max_size (and possibly
2294 * ask the mds) so we don't get hung up indefinitely.
2295 */
2296 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want,
2297 loff_t endoff, int *got, struct page **pinned_page)
2298 {
2299 int _got, ret, err = 0;
2300
2301 ret = ceph_pool_perm_check(ci, need);
2302 if (ret < 0)
2303 return ret;
2304
2305 while (true) {
2306 if (endoff > 0)
2307 check_max_size(&ci->vfs_inode, endoff);
2308
2309 err = 0;
2310 _got = 0;
2311 ret = try_get_cap_refs(ci, need, want, endoff,
2312 false, &_got, &err);
2313 if (ret) {
2314 if (err == -EAGAIN)
2315 continue;
2316 if (err < 0)
2317 return err;
2318 } else {
2319 ret = wait_event_interruptible(ci->i_cap_wq,
2320 try_get_cap_refs(ci, need, want, endoff,
2321 true, &_got, &err));
2322 if (err == -EAGAIN)
2323 continue;
2324 if (err < 0)
2325 ret = err;
2326 if (ret < 0)
2327 return ret;
2328 }
2329
2330 if (ci->i_inline_version != CEPH_INLINE_NONE &&
2331 (_got & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
2332 i_size_read(&ci->vfs_inode) > 0) {
2333 struct page *page =
2334 find_get_page(ci->vfs_inode.i_mapping, 0);
2335 if (page) {
2336 if (PageUptodate(page)) {
2337 *pinned_page = page;
2338 break;
2339 }
2340 page_cache_release(page);
2341 }
2342 /*
2343 * drop cap refs first because getattr while
2344 * holding * caps refs can cause deadlock.
2345 */
2346 ceph_put_cap_refs(ci, _got);
2347 _got = 0;
2348
2349 /*
2350 * getattr request will bring inline data into
2351 * page cache
2352 */
2353 ret = __ceph_do_getattr(&ci->vfs_inode, NULL,
2354 CEPH_STAT_CAP_INLINE_DATA,
2355 true);
2356 if (ret < 0)
2357 return ret;
2358 continue;
2359 }
2360 break;
2361 }
2362
2363 *got = _got;
2364 return 0;
2365 }
2366
2367 /*
2368 * Take cap refs. Caller must already know we hold at least one ref
2369 * on the caps in question or we don't know this is safe.
2370 */
2371 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2372 {
2373 spin_lock(&ci->i_ceph_lock);
2374 __take_cap_refs(ci, caps, false);
2375 spin_unlock(&ci->i_ceph_lock);
2376 }
2377
2378
2379 /*
2380 * drop cap_snap that is not associated with any snapshot.
2381 * we don't need to send FLUSHSNAP message for it.
2382 */
2383 static int ceph_try_drop_cap_snap(struct ceph_cap_snap *capsnap)
2384 {
2385 if (!capsnap->need_flush &&
2386 !capsnap->writing && !capsnap->dirty_pages) {
2387
2388 dout("dropping cap_snap %p follows %llu\n",
2389 capsnap, capsnap->follows);
2390 ceph_put_snap_context(capsnap->context);
2391 list_del(&capsnap->ci_item);
2392 list_del(&capsnap->flushing_item);
2393 ceph_put_cap_snap(capsnap);
2394 return 1;
2395 }
2396 return 0;
2397 }
2398
2399 /*
2400 * Release cap refs.
2401 *
2402 * If we released the last ref on any given cap, call ceph_check_caps
2403 * to release (or schedule a release).
2404 *
2405 * If we are releasing a WR cap (from a sync write), finalize any affected
2406 * cap_snap, and wake up any waiters.
2407 */
2408 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2409 {
2410 struct inode *inode = &ci->vfs_inode;
2411 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2412
2413 spin_lock(&ci->i_ceph_lock);
2414 if (had & CEPH_CAP_PIN)
2415 --ci->i_pin_ref;
2416 if (had & CEPH_CAP_FILE_RD)
2417 if (--ci->i_rd_ref == 0)
2418 last++;
2419 if (had & CEPH_CAP_FILE_CACHE)
2420 if (--ci->i_rdcache_ref == 0)
2421 last++;
2422 if (had & CEPH_CAP_FILE_BUFFER) {
2423 if (--ci->i_wb_ref == 0) {
2424 last++;
2425 put++;
2426 }
2427 dout("put_cap_refs %p wb %d -> %d (?)\n",
2428 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2429 }
2430 if (had & CEPH_CAP_FILE_WR)
2431 if (--ci->i_wr_ref == 0) {
2432 last++;
2433 if (__ceph_have_pending_cap_snap(ci)) {
2434 struct ceph_cap_snap *capsnap =
2435 list_last_entry(&ci->i_cap_snaps,
2436 struct ceph_cap_snap,
2437 ci_item);
2438 capsnap->writing = 0;
2439 if (ceph_try_drop_cap_snap(capsnap))
2440 put++;
2441 else if (__ceph_finish_cap_snap(ci, capsnap))
2442 flushsnaps = 1;
2443 wake = 1;
2444 }
2445 if (ci->i_wrbuffer_ref_head == 0 &&
2446 ci->i_dirty_caps == 0 &&
2447 ci->i_flushing_caps == 0) {
2448 BUG_ON(!ci->i_head_snapc);
2449 ceph_put_snap_context(ci->i_head_snapc);
2450 ci->i_head_snapc = NULL;
2451 }
2452 /* see comment in __ceph_remove_cap() */
2453 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm)
2454 drop_inode_snap_realm(ci);
2455 }
2456 spin_unlock(&ci->i_ceph_lock);
2457
2458 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2459 last ? " last" : "", put ? " put" : "");
2460
2461 if (last && !flushsnaps)
2462 ceph_check_caps(ci, 0, NULL);
2463 else if (flushsnaps)
2464 ceph_flush_snaps(ci);
2465 if (wake)
2466 wake_up_all(&ci->i_cap_wq);
2467 while (put-- > 0)
2468 iput(inode);
2469 }
2470
2471 /*
2472 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2473 * context. Adjust per-snap dirty page accounting as appropriate.
2474 * Once all dirty data for a cap_snap is flushed, flush snapped file
2475 * metadata back to the MDS. If we dropped the last ref, call
2476 * ceph_check_caps.
2477 */
2478 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2479 struct ceph_snap_context *snapc)
2480 {
2481 struct inode *inode = &ci->vfs_inode;
2482 int last = 0;
2483 int complete_capsnap = 0;
2484 int drop_capsnap = 0;
2485 int found = 0;
2486 struct ceph_cap_snap *capsnap = NULL;
2487
2488 spin_lock(&ci->i_ceph_lock);
2489 ci->i_wrbuffer_ref -= nr;
2490 last = !ci->i_wrbuffer_ref;
2491
2492 if (ci->i_head_snapc == snapc) {
2493 ci->i_wrbuffer_ref_head -= nr;
2494 if (ci->i_wrbuffer_ref_head == 0 &&
2495 ci->i_wr_ref == 0 &&
2496 ci->i_dirty_caps == 0 &&
2497 ci->i_flushing_caps == 0) {
2498 BUG_ON(!ci->i_head_snapc);
2499 ceph_put_snap_context(ci->i_head_snapc);
2500 ci->i_head_snapc = NULL;
2501 }
2502 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2503 inode,
2504 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2505 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2506 last ? " LAST" : "");
2507 } else {
2508 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2509 if (capsnap->context == snapc) {
2510 found = 1;
2511 break;
2512 }
2513 }
2514 BUG_ON(!found);
2515 capsnap->dirty_pages -= nr;
2516 if (capsnap->dirty_pages == 0) {
2517 complete_capsnap = 1;
2518 drop_capsnap = ceph_try_drop_cap_snap(capsnap);
2519 }
2520 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2521 " snap %lld %d/%d -> %d/%d %s%s\n",
2522 inode, capsnap, capsnap->context->seq,
2523 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2524 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2525 last ? " (wrbuffer last)" : "",
2526 complete_capsnap ? " (complete capsnap)" : "");
2527 }
2528
2529 spin_unlock(&ci->i_ceph_lock);
2530
2531 if (last) {
2532 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2533 iput(inode);
2534 } else if (complete_capsnap) {
2535 ceph_flush_snaps(ci);
2536 wake_up_all(&ci->i_cap_wq);
2537 }
2538 if (drop_capsnap)
2539 iput(inode);
2540 }
2541
2542 /*
2543 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
2544 */
2545 static void invalidate_aliases(struct inode *inode)
2546 {
2547 struct dentry *dn, *prev = NULL;
2548
2549 dout("invalidate_aliases inode %p\n", inode);
2550 d_prune_aliases(inode);
2551 /*
2552 * For non-directory inode, d_find_alias() only returns
2553 * hashed dentry. After calling d_invalidate(), the
2554 * dentry becomes unhashed.
2555 *
2556 * For directory inode, d_find_alias() can return
2557 * unhashed dentry. But directory inode should have
2558 * one alias at most.
2559 */
2560 while ((dn = d_find_alias(inode))) {
2561 if (dn == prev) {
2562 dput(dn);
2563 break;
2564 }
2565 d_invalidate(dn);
2566 if (prev)
2567 dput(prev);
2568 prev = dn;
2569 }
2570 if (prev)
2571 dput(prev);
2572 }
2573
2574 /*
2575 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2576 * actually be a revocation if it specifies a smaller cap set.)
2577 *
2578 * caller holds s_mutex and i_ceph_lock, we drop both.
2579 */
2580 static void handle_cap_grant(struct ceph_mds_client *mdsc,
2581 struct inode *inode, struct ceph_mds_caps *grant,
2582 u64 inline_version,
2583 void *inline_data, int inline_len,
2584 struct ceph_buffer *xattr_buf,
2585 struct ceph_mds_session *session,
2586 struct ceph_cap *cap, int issued)
2587 __releases(ci->i_ceph_lock)
2588 __releases(mdsc->snap_rwsem)
2589 {
2590 struct ceph_inode_info *ci = ceph_inode(inode);
2591 int mds = session->s_mds;
2592 int seq = le32_to_cpu(grant->seq);
2593 int newcaps = le32_to_cpu(grant->caps);
2594 int used, wanted, dirty;
2595 u64 size = le64_to_cpu(grant->size);
2596 u64 max_size = le64_to_cpu(grant->max_size);
2597 struct timespec mtime, atime, ctime;
2598 int check_caps = 0;
2599 bool wake = false;
2600 bool writeback = false;
2601 bool queue_trunc = false;
2602 bool queue_invalidate = false;
2603 bool queue_revalidate = false;
2604 bool deleted_inode = false;
2605 bool fill_inline = false;
2606
2607 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2608 inode, cap, mds, seq, ceph_cap_string(newcaps));
2609 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2610 inode->i_size);
2611
2612
2613 /*
2614 * auth mds of the inode changed. we received the cap export message,
2615 * but still haven't received the cap import message. handle_cap_export
2616 * updated the new auth MDS' cap.
2617 *
2618 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message
2619 * that was sent before the cap import message. So don't remove caps.
2620 */
2621 if (ceph_seq_cmp(seq, cap->seq) <= 0) {
2622 WARN_ON(cap != ci->i_auth_cap);
2623 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id));
2624 seq = cap->seq;
2625 newcaps |= cap->issued;
2626 }
2627
2628 /*
2629 * If CACHE is being revoked, and we have no dirty buffers,
2630 * try to invalidate (once). (If there are dirty buffers, we
2631 * will invalidate _after_ writeback.)
2632 */
2633 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2634 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2635 !ci->i_wrbuffer_ref) {
2636 if (try_nonblocking_invalidate(inode)) {
2637 /* there were locked pages.. invalidate later
2638 in a separate thread. */
2639 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2640 queue_invalidate = true;
2641 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2642 }
2643 }
2644
2645 ceph_fscache_invalidate(inode);
2646 }
2647
2648 /* side effects now are allowed */
2649 cap->cap_gen = session->s_cap_gen;
2650 cap->seq = seq;
2651
2652 __check_cap_issue(ci, cap, newcaps);
2653
2654 if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
2655 (issued & CEPH_CAP_AUTH_EXCL) == 0) {
2656 inode->i_mode = le32_to_cpu(grant->mode);
2657 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2658 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2659 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2660 from_kuid(&init_user_ns, inode->i_uid),
2661 from_kgid(&init_user_ns, inode->i_gid));
2662 }
2663
2664 if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
2665 (issued & CEPH_CAP_LINK_EXCL) == 0) {
2666 set_nlink(inode, le32_to_cpu(grant->nlink));
2667 if (inode->i_nlink == 0 &&
2668 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL)))
2669 deleted_inode = true;
2670 }
2671
2672 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2673 int len = le32_to_cpu(grant->xattr_len);
2674 u64 version = le64_to_cpu(grant->xattr_version);
2675
2676 if (version > ci->i_xattrs.version) {
2677 dout(" got new xattrs v%llu on %p len %d\n",
2678 version, inode, len);
2679 if (ci->i_xattrs.blob)
2680 ceph_buffer_put(ci->i_xattrs.blob);
2681 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2682 ci->i_xattrs.version = version;
2683 ceph_forget_all_cached_acls(inode);
2684 }
2685 }
2686
2687 /* Do we need to revalidate our fscache cookie. Don't bother on the
2688 * first cache cap as we already validate at cookie creation time. */
2689 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1)
2690 queue_revalidate = true;
2691
2692 if (newcaps & CEPH_CAP_ANY_RD) {
2693 /* ctime/mtime/atime? */
2694 ceph_decode_timespec(&mtime, &grant->mtime);
2695 ceph_decode_timespec(&atime, &grant->atime);
2696 ceph_decode_timespec(&ctime, &grant->ctime);
2697 ceph_fill_file_time(inode, issued,
2698 le32_to_cpu(grant->time_warp_seq),
2699 &ctime, &mtime, &atime);
2700 }
2701
2702 if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) {
2703 /* file layout may have changed */
2704 ci->i_layout = grant->layout;
2705 /* size/truncate_seq? */
2706 queue_trunc = ceph_fill_file_size(inode, issued,
2707 le32_to_cpu(grant->truncate_seq),
2708 le64_to_cpu(grant->truncate_size),
2709 size);
2710 /* max size increase? */
2711 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2712 dout("max_size %lld -> %llu\n",
2713 ci->i_max_size, max_size);
2714 ci->i_max_size = max_size;
2715 if (max_size >= ci->i_wanted_max_size) {
2716 ci->i_wanted_max_size = 0; /* reset */
2717 ci->i_requested_max_size = 0;
2718 }
2719 wake = true;
2720 }
2721 }
2722
2723 /* check cap bits */
2724 wanted = __ceph_caps_wanted(ci);
2725 used = __ceph_caps_used(ci);
2726 dirty = __ceph_caps_dirty(ci);
2727 dout(" my wanted = %s, used = %s, dirty %s\n",
2728 ceph_cap_string(wanted),
2729 ceph_cap_string(used),
2730 ceph_cap_string(dirty));
2731 if (wanted != le32_to_cpu(grant->wanted)) {
2732 dout("mds wanted %s -> %s\n",
2733 ceph_cap_string(le32_to_cpu(grant->wanted)),
2734 ceph_cap_string(wanted));
2735 /* imported cap may not have correct mds_wanted */
2736 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2737 check_caps = 1;
2738 }
2739
2740 /* revocation, grant, or no-op? */
2741 if (cap->issued & ~newcaps) {
2742 int revoking = cap->issued & ~newcaps;
2743
2744 dout("revocation: %s -> %s (revoking %s)\n",
2745 ceph_cap_string(cap->issued),
2746 ceph_cap_string(newcaps),
2747 ceph_cap_string(revoking));
2748 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2749 writeback = true; /* initiate writeback; will delay ack */
2750 else if (revoking == CEPH_CAP_FILE_CACHE &&
2751 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2752 queue_invalidate)
2753 ; /* do nothing yet, invalidation will be queued */
2754 else if (cap == ci->i_auth_cap)
2755 check_caps = 1; /* check auth cap only */
2756 else
2757 check_caps = 2; /* check all caps */
2758 cap->issued = newcaps;
2759 cap->implemented |= newcaps;
2760 } else if (cap->issued == newcaps) {
2761 dout("caps unchanged: %s -> %s\n",
2762 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2763 } else {
2764 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2765 ceph_cap_string(newcaps));
2766 /* non-auth MDS is revoking the newly grant caps ? */
2767 if (cap == ci->i_auth_cap &&
2768 __ceph_caps_revoking_other(ci, cap, newcaps))
2769 check_caps = 2;
2770
2771 cap->issued = newcaps;
2772 cap->implemented |= newcaps; /* add bits only, to
2773 * avoid stepping on a
2774 * pending revocation */
2775 wake = true;
2776 }
2777 BUG_ON(cap->issued & ~cap->implemented);
2778
2779 if (inline_version > 0 && inline_version >= ci->i_inline_version) {
2780 ci->i_inline_version = inline_version;
2781 if (ci->i_inline_version != CEPH_INLINE_NONE &&
2782 (newcaps & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)))
2783 fill_inline = true;
2784 }
2785
2786 spin_unlock(&ci->i_ceph_lock);
2787
2788 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) {
2789 kick_flushing_inode_caps(mdsc, session, inode);
2790 up_read(&mdsc->snap_rwsem);
2791 if (newcaps & ~issued)
2792 wake = true;
2793 }
2794
2795 if (fill_inline)
2796 ceph_fill_inline_data(inode, NULL, inline_data, inline_len);
2797
2798 if (queue_trunc) {
2799 ceph_queue_vmtruncate(inode);
2800 ceph_queue_revalidate(inode);
2801 } else if (queue_revalidate)
2802 ceph_queue_revalidate(inode);
2803
2804 if (writeback)
2805 /*
2806 * queue inode for writeback: we can't actually call
2807 * filemap_write_and_wait, etc. from message handler
2808 * context.
2809 */
2810 ceph_queue_writeback(inode);
2811 if (queue_invalidate)
2812 ceph_queue_invalidate(inode);
2813 if (deleted_inode)
2814 invalidate_aliases(inode);
2815 if (wake)
2816 wake_up_all(&ci->i_cap_wq);
2817
2818 if (check_caps == 1)
2819 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2820 session);
2821 else if (check_caps == 2)
2822 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2823 else
2824 mutex_unlock(&session->s_mutex);
2825 }
2826
2827 /*
2828 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2829 * MDS has been safely committed.
2830 */
2831 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2832 struct ceph_mds_caps *m,
2833 struct ceph_mds_session *session,
2834 struct ceph_cap *cap)
2835 __releases(ci->i_ceph_lock)
2836 {
2837 struct ceph_inode_info *ci = ceph_inode(inode);
2838 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2839 unsigned seq = le32_to_cpu(m->seq);
2840 int dirty = le32_to_cpu(m->dirty);
2841 int cleaned = 0;
2842 int drop = 0;
2843 int i;
2844
2845 for (i = 0; i < CEPH_CAP_BITS; i++)
2846 if ((dirty & (1 << i)) &&
2847 (u16)flush_tid == ci->i_cap_flush_tid[i])
2848 cleaned |= 1 << i;
2849
2850 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2851 " flushing %s -> %s\n",
2852 inode, session->s_mds, seq, ceph_cap_string(dirty),
2853 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2854 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2855
2856 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2857 goto out;
2858
2859 ci->i_flushing_caps &= ~cleaned;
2860
2861 spin_lock(&mdsc->cap_dirty_lock);
2862 if (ci->i_flushing_caps == 0) {
2863 list_del_init(&ci->i_flushing_item);
2864 if (!list_empty(&session->s_cap_flushing))
2865 dout(" mds%d still flushing cap on %p\n",
2866 session->s_mds,
2867 &list_entry(session->s_cap_flushing.next,
2868 struct ceph_inode_info,
2869 i_flushing_item)->vfs_inode);
2870 mdsc->num_cap_flushing--;
2871 wake_up_all(&mdsc->cap_flushing_wq);
2872 dout(" inode %p now !flushing\n", inode);
2873
2874 if (ci->i_dirty_caps == 0) {
2875 dout(" inode %p now clean\n", inode);
2876 BUG_ON(!list_empty(&ci->i_dirty_item));
2877 drop = 1;
2878 if (ci->i_wr_ref == 0 &&
2879 ci->i_wrbuffer_ref_head == 0) {
2880 BUG_ON(!ci->i_head_snapc);
2881 ceph_put_snap_context(ci->i_head_snapc);
2882 ci->i_head_snapc = NULL;
2883 }
2884 } else {
2885 BUG_ON(list_empty(&ci->i_dirty_item));
2886 }
2887 }
2888 spin_unlock(&mdsc->cap_dirty_lock);
2889 wake_up_all(&ci->i_cap_wq);
2890
2891 out:
2892 spin_unlock(&ci->i_ceph_lock);
2893 if (drop)
2894 iput(inode);
2895 }
2896
2897 /*
2898 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2899 * throw away our cap_snap.
2900 *
2901 * Caller hold s_mutex.
2902 */
2903 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2904 struct ceph_mds_caps *m,
2905 struct ceph_mds_session *session)
2906 {
2907 struct ceph_inode_info *ci = ceph_inode(inode);
2908 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2909 u64 follows = le64_to_cpu(m->snap_follows);
2910 struct ceph_cap_snap *capsnap;
2911 int drop = 0;
2912
2913 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2914 inode, ci, session->s_mds, follows);
2915
2916 spin_lock(&ci->i_ceph_lock);
2917 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2918 if (capsnap->follows == follows) {
2919 if (capsnap->flush_tid != flush_tid) {
2920 dout(" cap_snap %p follows %lld tid %lld !="
2921 " %lld\n", capsnap, follows,
2922 flush_tid, capsnap->flush_tid);
2923 break;
2924 }
2925 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2926 dout(" removing %p cap_snap %p follows %lld\n",
2927 inode, capsnap, follows);
2928 ceph_put_snap_context(capsnap->context);
2929 list_del(&capsnap->ci_item);
2930 list_del(&capsnap->flushing_item);
2931 ceph_put_cap_snap(capsnap);
2932 wake_up_all(&mdsc->cap_flushing_wq);
2933 drop = 1;
2934 break;
2935 } else {
2936 dout(" skipping cap_snap %p follows %lld\n",
2937 capsnap, capsnap->follows);
2938 }
2939 }
2940 spin_unlock(&ci->i_ceph_lock);
2941 if (drop)
2942 iput(inode);
2943 }
2944
2945 /*
2946 * Handle TRUNC from MDS, indicating file truncation.
2947 *
2948 * caller hold s_mutex.
2949 */
2950 static void handle_cap_trunc(struct inode *inode,
2951 struct ceph_mds_caps *trunc,
2952 struct ceph_mds_session *session)
2953 __releases(ci->i_ceph_lock)
2954 {
2955 struct ceph_inode_info *ci = ceph_inode(inode);
2956 int mds = session->s_mds;
2957 int seq = le32_to_cpu(trunc->seq);
2958 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2959 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2960 u64 size = le64_to_cpu(trunc->size);
2961 int implemented = 0;
2962 int dirty = __ceph_caps_dirty(ci);
2963 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2964 int queue_trunc = 0;
2965
2966 issued |= implemented | dirty;
2967
2968 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2969 inode, mds, seq, truncate_size, truncate_seq);
2970 queue_trunc = ceph_fill_file_size(inode, issued,
2971 truncate_seq, truncate_size, size);
2972 spin_unlock(&ci->i_ceph_lock);
2973
2974 if (queue_trunc) {
2975 ceph_queue_vmtruncate(inode);
2976 ceph_fscache_invalidate(inode);
2977 }
2978 }
2979
2980 /*
2981 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2982 * different one. If we are the most recent migration we've seen (as
2983 * indicated by mseq), make note of the migrating cap bits for the
2984 * duration (until we see the corresponding IMPORT).
2985 *
2986 * caller holds s_mutex
2987 */
2988 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2989 struct ceph_mds_cap_peer *ph,
2990 struct ceph_mds_session *session)
2991 {
2992 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2993 struct ceph_mds_session *tsession = NULL;
2994 struct ceph_cap *cap, *tcap, *new_cap = NULL;
2995 struct ceph_inode_info *ci = ceph_inode(inode);
2996 u64 t_cap_id;
2997 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2998 unsigned t_seq, t_mseq;
2999 int target, issued;
3000 int mds = session->s_mds;
3001
3002 if (ph) {
3003 t_cap_id = le64_to_cpu(ph->cap_id);
3004 t_seq = le32_to_cpu(ph->seq);
3005 t_mseq = le32_to_cpu(ph->mseq);
3006 target = le32_to_cpu(ph->mds);
3007 } else {
3008 t_cap_id = t_seq = t_mseq = 0;
3009 target = -1;
3010 }
3011
3012 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n",
3013 inode, ci, mds, mseq, target);
3014 retry:
3015 spin_lock(&ci->i_ceph_lock);
3016 cap = __get_cap_for_mds(ci, mds);
3017 if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id))
3018 goto out_unlock;
3019
3020 if (target < 0) {
3021 __ceph_remove_cap(cap, false);
3022 goto out_unlock;
3023 }
3024
3025 /*
3026 * now we know we haven't received the cap import message yet
3027 * because the exported cap still exist.
3028 */
3029
3030 issued = cap->issued;
3031 WARN_ON(issued != cap->implemented);
3032
3033 tcap = __get_cap_for_mds(ci, target);
3034 if (tcap) {
3035 /* already have caps from the target */
3036 if (tcap->cap_id != t_cap_id ||
3037 ceph_seq_cmp(tcap->seq, t_seq) < 0) {
3038 dout(" updating import cap %p mds%d\n", tcap, target);
3039 tcap->cap_id = t_cap_id;
3040 tcap->seq = t_seq - 1;
3041 tcap->issue_seq = t_seq - 1;
3042 tcap->mseq = t_mseq;
3043 tcap->issued |= issued;
3044 tcap->implemented |= issued;
3045 if (cap == ci->i_auth_cap)
3046 ci->i_auth_cap = tcap;
3047 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) {
3048 spin_lock(&mdsc->cap_dirty_lock);
3049 list_move_tail(&ci->i_flushing_item,
3050 &tcap->session->s_cap_flushing);
3051 spin_unlock(&mdsc->cap_dirty_lock);
3052 }
3053 }
3054 __ceph_remove_cap(cap, false);
3055 goto out_unlock;
3056 } else if (tsession) {
3057 /* add placeholder for the export tagert */
3058 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0;
3059 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0,
3060 t_seq - 1, t_mseq, (u64)-1, flag, &new_cap);
3061
3062 __ceph_remove_cap(cap, false);
3063 goto out_unlock;
3064 }
3065
3066 spin_unlock(&ci->i_ceph_lock);
3067 mutex_unlock(&session->s_mutex);
3068
3069 /* open target session */
3070 tsession = ceph_mdsc_open_export_target_session(mdsc, target);
3071 if (!IS_ERR(tsession)) {
3072 if (mds > target) {
3073 mutex_lock(&session->s_mutex);
3074 mutex_lock_nested(&tsession->s_mutex,
3075 SINGLE_DEPTH_NESTING);
3076 } else {
3077 mutex_lock(&tsession->s_mutex);
3078 mutex_lock_nested(&session->s_mutex,
3079 SINGLE_DEPTH_NESTING);
3080 }
3081 new_cap = ceph_get_cap(mdsc, NULL);
3082 } else {
3083 WARN_ON(1);
3084 tsession = NULL;
3085 target = -1;
3086 }
3087 goto retry;
3088
3089 out_unlock:
3090 spin_unlock(&ci->i_ceph_lock);
3091 mutex_unlock(&session->s_mutex);
3092 if (tsession) {
3093 mutex_unlock(&tsession->s_mutex);
3094 ceph_put_mds_session(tsession);
3095 }
3096 if (new_cap)
3097 ceph_put_cap(mdsc, new_cap);
3098 }
3099
3100 /*
3101 * Handle cap IMPORT.
3102 *
3103 * caller holds s_mutex. acquires i_ceph_lock
3104 */
3105 static void handle_cap_import(struct ceph_mds_client *mdsc,
3106 struct inode *inode, struct ceph_mds_caps *im,
3107 struct ceph_mds_cap_peer *ph,
3108 struct ceph_mds_session *session,
3109 struct ceph_cap **target_cap, int *old_issued)
3110 __acquires(ci->i_ceph_lock)
3111 {
3112 struct ceph_inode_info *ci = ceph_inode(inode);
3113 struct ceph_cap *cap, *ocap, *new_cap = NULL;
3114 int mds = session->s_mds;
3115 int issued;
3116 unsigned caps = le32_to_cpu(im->caps);
3117 unsigned wanted = le32_to_cpu(im->wanted);
3118 unsigned seq = le32_to_cpu(im->seq);
3119 unsigned mseq = le32_to_cpu(im->migrate_seq);
3120 u64 realmino = le64_to_cpu(im->realm);
3121 u64 cap_id = le64_to_cpu(im->cap_id);
3122 u64 p_cap_id;
3123 int peer;
3124
3125 if (ph) {
3126 p_cap_id = le64_to_cpu(ph->cap_id);
3127 peer = le32_to_cpu(ph->mds);
3128 } else {
3129 p_cap_id = 0;
3130 peer = -1;
3131 }
3132
3133 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n",
3134 inode, ci, mds, mseq, peer);
3135
3136 retry:
3137 spin_lock(&ci->i_ceph_lock);
3138 cap = __get_cap_for_mds(ci, mds);
3139 if (!cap) {
3140 if (!new_cap) {
3141 spin_unlock(&ci->i_ceph_lock);
3142 new_cap = ceph_get_cap(mdsc, NULL);
3143 goto retry;
3144 }
3145 cap = new_cap;
3146 } else {
3147 if (new_cap) {
3148 ceph_put_cap(mdsc, new_cap);
3149 new_cap = NULL;
3150 }
3151 }
3152
3153 __ceph_caps_issued(ci, &issued);
3154 issued |= __ceph_caps_dirty(ci);
3155
3156 ceph_add_cap(inode, session, cap_id, -1, caps, wanted, seq, mseq,
3157 realmino, CEPH_CAP_FLAG_AUTH, &new_cap);
3158
3159 ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL;
3160 if (ocap && ocap->cap_id == p_cap_id) {
3161 dout(" remove export cap %p mds%d flags %d\n",
3162 ocap, peer, ph->flags);
3163 if ((ph->flags & CEPH_CAP_FLAG_AUTH) &&
3164 (ocap->seq != le32_to_cpu(ph->seq) ||
3165 ocap->mseq != le32_to_cpu(ph->mseq))) {
3166 pr_err("handle_cap_import: mismatched seq/mseq: "
3167 "ino (%llx.%llx) mds%d seq %d mseq %d "
3168 "importer mds%d has peer seq %d mseq %d\n",
3169 ceph_vinop(inode), peer, ocap->seq,
3170 ocap->mseq, mds, le32_to_cpu(ph->seq),
3171 le32_to_cpu(ph->mseq));
3172 }
3173 __ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE));
3174 }
3175
3176 /* make sure we re-request max_size, if necessary */
3177 ci->i_wanted_max_size = 0;
3178 ci->i_requested_max_size = 0;
3179
3180 *old_issued = issued;
3181 *target_cap = cap;
3182 }
3183
3184 /*
3185 * Handle a caps message from the MDS.
3186 *
3187 * Identify the appropriate session, inode, and call the right handler
3188 * based on the cap op.
3189 */
3190 void ceph_handle_caps(struct ceph_mds_session *session,
3191 struct ceph_msg *msg)
3192 {
3193 struct ceph_mds_client *mdsc = session->s_mdsc;
3194 struct super_block *sb = mdsc->fsc->sb;
3195 struct inode *inode;
3196 struct ceph_inode_info *ci;
3197 struct ceph_cap *cap;
3198 struct ceph_mds_caps *h;
3199 struct ceph_mds_cap_peer *peer = NULL;
3200 struct ceph_snap_realm *realm;
3201 int mds = session->s_mds;
3202 int op, issued;
3203 u32 seq, mseq;
3204 struct ceph_vino vino;
3205 u64 cap_id;
3206 u64 size, max_size;
3207 u64 tid;
3208 u64 inline_version = 0;
3209 void *inline_data = NULL;
3210 u32 inline_len = 0;
3211 void *snaptrace;
3212 size_t snaptrace_len;
3213 void *p, *end;
3214
3215 dout("handle_caps from mds%d\n", mds);
3216
3217 /* decode */
3218 end = msg->front.iov_base + msg->front.iov_len;
3219 tid = le64_to_cpu(msg->hdr.tid);
3220 if (msg->front.iov_len < sizeof(*h))
3221 goto bad;
3222 h = msg->front.iov_base;
3223 op = le32_to_cpu(h->op);
3224 vino.ino = le64_to_cpu(h->ino);
3225 vino.snap = CEPH_NOSNAP;
3226 cap_id = le64_to_cpu(h->cap_id);
3227 seq = le32_to_cpu(h->seq);
3228 mseq = le32_to_cpu(h->migrate_seq);
3229 size = le64_to_cpu(h->size);
3230 max_size = le64_to_cpu(h->max_size);
3231
3232 snaptrace = h + 1;
3233 snaptrace_len = le32_to_cpu(h->snap_trace_len);
3234 p = snaptrace + snaptrace_len;
3235
3236 if (le16_to_cpu(msg->hdr.version) >= 2) {
3237 u32 flock_len;
3238 ceph_decode_32_safe(&p, end, flock_len, bad);
3239 if (p + flock_len > end)
3240 goto bad;
3241 p += flock_len;
3242 }
3243
3244 if (le16_to_cpu(msg->hdr.version) >= 3) {
3245 if (op == CEPH_CAP_OP_IMPORT) {
3246 if (p + sizeof(*peer) > end)
3247 goto bad;
3248 peer = p;
3249 p += sizeof(*peer);
3250 } else if (op == CEPH_CAP_OP_EXPORT) {
3251 /* recorded in unused fields */
3252 peer = (void *)&h->size;
3253 }
3254 }
3255
3256 if (le16_to_cpu(msg->hdr.version) >= 4) {
3257 ceph_decode_64_safe(&p, end, inline_version, bad);
3258 ceph_decode_32_safe(&p, end, inline_len, bad);
3259 if (p + inline_len > end)
3260 goto bad;
3261 inline_data = p;
3262 p += inline_len;
3263 }
3264
3265 /* lookup ino */
3266 inode = ceph_find_inode(sb, vino);
3267 ci = ceph_inode(inode);
3268 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
3269 vino.snap, inode);
3270
3271 mutex_lock(&session->s_mutex);
3272 session->s_seq++;
3273 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
3274 (unsigned)seq);
3275
3276 if (!inode) {
3277 dout(" i don't have ino %llx\n", vino.ino);
3278
3279 if (op == CEPH_CAP_OP_IMPORT) {
3280 cap = ceph_get_cap(mdsc, NULL);
3281 cap->cap_ino = vino.ino;
3282 cap->queue_release = 1;
3283 cap->cap_id = cap_id;
3284 cap->mseq = mseq;
3285 cap->seq = seq;
3286 spin_lock(&session->s_cap_lock);
3287 list_add_tail(&cap->session_caps,
3288 &session->s_cap_releases);
3289 session->s_num_cap_releases++;
3290 spin_unlock(&session->s_cap_lock);
3291 }
3292 goto flush_cap_releases;
3293 }
3294
3295 /* these will work even if we don't have a cap yet */
3296 switch (op) {
3297 case CEPH_CAP_OP_FLUSHSNAP_ACK:
3298 handle_cap_flushsnap_ack(inode, tid, h, session);
3299 goto done;
3300
3301 case CEPH_CAP_OP_EXPORT:
3302 handle_cap_export(inode, h, peer, session);
3303 goto done_unlocked;
3304
3305 case CEPH_CAP_OP_IMPORT:
3306 realm = NULL;
3307 if (snaptrace_len) {
3308 down_write(&mdsc->snap_rwsem);
3309 ceph_update_snap_trace(mdsc, snaptrace,
3310 snaptrace + snaptrace_len,
3311 false, &realm);
3312 downgrade_write(&mdsc->snap_rwsem);
3313 } else {
3314 down_read(&mdsc->snap_rwsem);
3315 }
3316 handle_cap_import(mdsc, inode, h, peer, session,
3317 &cap, &issued);
3318 handle_cap_grant(mdsc, inode, h,
3319 inline_version, inline_data, inline_len,
3320 msg->middle, session, cap, issued);
3321 if (realm)
3322 ceph_put_snap_realm(mdsc, realm);
3323 goto done_unlocked;
3324 }
3325
3326 /* the rest require a cap */
3327 spin_lock(&ci->i_ceph_lock);
3328 cap = __get_cap_for_mds(ceph_inode(inode), mds);
3329 if (!cap) {
3330 dout(" no cap on %p ino %llx.%llx from mds%d\n",
3331 inode, ceph_ino(inode), ceph_snap(inode), mds);
3332 spin_unlock(&ci->i_ceph_lock);
3333 goto flush_cap_releases;
3334 }
3335
3336 /* note that each of these drops i_ceph_lock for us */
3337 switch (op) {
3338 case CEPH_CAP_OP_REVOKE:
3339 case CEPH_CAP_OP_GRANT:
3340 __ceph_caps_issued(ci, &issued);
3341 issued |= __ceph_caps_dirty(ci);
3342 handle_cap_grant(mdsc, inode, h,
3343 inline_version, inline_data, inline_len,
3344 msg->middle, session, cap, issued);
3345 goto done_unlocked;
3346
3347 case CEPH_CAP_OP_FLUSH_ACK:
3348 handle_cap_flush_ack(inode, tid, h, session, cap);
3349 break;
3350
3351 case CEPH_CAP_OP_TRUNC:
3352 handle_cap_trunc(inode, h, session);
3353 break;
3354
3355 default:
3356 spin_unlock(&ci->i_ceph_lock);
3357 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
3358 ceph_cap_op_name(op));
3359 }
3360
3361 goto done;
3362
3363 flush_cap_releases:
3364 /*
3365 * send any cap release message to try to move things
3366 * along for the mds (who clearly thinks we still have this
3367 * cap).
3368 */
3369 ceph_send_cap_releases(mdsc, session);
3370
3371 done:
3372 mutex_unlock(&session->s_mutex);
3373 done_unlocked:
3374 iput(inode);
3375 return;
3376
3377 bad:
3378 pr_err("ceph_handle_caps: corrupt message\n");
3379 ceph_msg_dump(msg);
3380 return;
3381 }
3382
3383 /*
3384 * Delayed work handler to process end of delayed cap release LRU list.
3385 */
3386 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
3387 {
3388 struct ceph_inode_info *ci;
3389 int flags = CHECK_CAPS_NODELAY;
3390
3391 dout("check_delayed_caps\n");
3392 while (1) {
3393 spin_lock(&mdsc->cap_delay_lock);
3394 if (list_empty(&mdsc->cap_delay_list))
3395 break;
3396 ci = list_first_entry(&mdsc->cap_delay_list,
3397 struct ceph_inode_info,
3398 i_cap_delay_list);
3399 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
3400 time_before(jiffies, ci->i_hold_caps_max))
3401 break;
3402 list_del_init(&ci->i_cap_delay_list);
3403 spin_unlock(&mdsc->cap_delay_lock);
3404 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
3405 ceph_check_caps(ci, flags, NULL);
3406 }
3407 spin_unlock(&mdsc->cap_delay_lock);
3408 }
3409
3410 /*
3411 * Flush all dirty caps to the mds
3412 */
3413 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
3414 {
3415 struct ceph_inode_info *ci;
3416 struct inode *inode;
3417
3418 dout("flush_dirty_caps\n");
3419 spin_lock(&mdsc->cap_dirty_lock);
3420 while (!list_empty(&mdsc->cap_dirty)) {
3421 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
3422 i_dirty_item);
3423 inode = &ci->vfs_inode;
3424 ihold(inode);
3425 dout("flush_dirty_caps %p\n", inode);
3426 spin_unlock(&mdsc->cap_dirty_lock);
3427 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
3428 iput(inode);
3429 spin_lock(&mdsc->cap_dirty_lock);
3430 }
3431 spin_unlock(&mdsc->cap_dirty_lock);
3432 dout("flush_dirty_caps done\n");
3433 }
3434
3435 /*
3436 * Drop open file reference. If we were the last open file,
3437 * we may need to release capabilities to the MDS (or schedule
3438 * their delayed release).
3439 */
3440 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
3441 {
3442 struct inode *inode = &ci->vfs_inode;
3443 int last = 0;
3444
3445 spin_lock(&ci->i_ceph_lock);
3446 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3447 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3448 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3449 if (--ci->i_nr_by_mode[fmode] == 0)
3450 last++;
3451 spin_unlock(&ci->i_ceph_lock);
3452
3453 if (last && ci->i_vino.snap == CEPH_NOSNAP)
3454 ceph_check_caps(ci, 0, NULL);
3455 }
3456
3457 /*
3458 * Helpers for embedding cap and dentry lease releases into mds
3459 * requests.
3460 *
3461 * @force is used by dentry_release (below) to force inclusion of a
3462 * record for the directory inode, even when there aren't any caps to
3463 * drop.
3464 */
3465 int ceph_encode_inode_release(void **p, struct inode *inode,
3466 int mds, int drop, int unless, int force)
3467 {
3468 struct ceph_inode_info *ci = ceph_inode(inode);
3469 struct ceph_cap *cap;
3470 struct ceph_mds_request_release *rel = *p;
3471 int used, dirty;
3472 int ret = 0;
3473
3474 spin_lock(&ci->i_ceph_lock);
3475 used = __ceph_caps_used(ci);
3476 dirty = __ceph_caps_dirty(ci);
3477
3478 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3479 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3480 ceph_cap_string(unless));
3481
3482 /* only drop unused, clean caps */
3483 drop &= ~(used | dirty);
3484
3485 cap = __get_cap_for_mds(ci, mds);
3486 if (cap && __cap_is_valid(cap)) {
3487 if (force ||
3488 ((cap->issued & drop) &&
3489 (cap->issued & unless) == 0)) {
3490 if ((cap->issued & drop) &&
3491 (cap->issued & unless) == 0) {
3492 int wanted = __ceph_caps_wanted(ci);
3493 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
3494 wanted |= cap->mds_wanted;
3495 dout("encode_inode_release %p cap %p "
3496 "%s -> %s, wanted %s -> %s\n", inode, cap,
3497 ceph_cap_string(cap->issued),
3498 ceph_cap_string(cap->issued & ~drop),
3499 ceph_cap_string(cap->mds_wanted),
3500 ceph_cap_string(wanted));
3501
3502 cap->issued &= ~drop;
3503 cap->implemented &= ~drop;
3504 cap->mds_wanted = wanted;
3505 } else {
3506 dout("encode_inode_release %p cap %p %s"
3507 " (force)\n", inode, cap,
3508 ceph_cap_string(cap->issued));
3509 }
3510
3511 rel->ino = cpu_to_le64(ceph_ino(inode));
3512 rel->cap_id = cpu_to_le64(cap->cap_id);
3513 rel->seq = cpu_to_le32(cap->seq);
3514 rel->issue_seq = cpu_to_le32(cap->issue_seq);
3515 rel->mseq = cpu_to_le32(cap->mseq);
3516 rel->caps = cpu_to_le32(cap->implemented);
3517 rel->wanted = cpu_to_le32(cap->mds_wanted);
3518 rel->dname_len = 0;
3519 rel->dname_seq = 0;
3520 *p += sizeof(*rel);
3521 ret = 1;
3522 } else {
3523 dout("encode_inode_release %p cap %p %s\n",
3524 inode, cap, ceph_cap_string(cap->issued));
3525 }
3526 }
3527 spin_unlock(&ci->i_ceph_lock);
3528 return ret;
3529 }
3530
3531 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3532 int mds, int drop, int unless)
3533 {
3534 struct inode *dir = d_inode(dentry->d_parent);
3535 struct ceph_mds_request_release *rel = *p;
3536 struct ceph_dentry_info *di = ceph_dentry(dentry);
3537 int force = 0;
3538 int ret;
3539
3540 /*
3541 * force an record for the directory caps if we have a dentry lease.
3542 * this is racy (can't take i_ceph_lock and d_lock together), but it
3543 * doesn't have to be perfect; the mds will revoke anything we don't
3544 * release.
3545 */
3546 spin_lock(&dentry->d_lock);
3547 if (di->lease_session && di->lease_session->s_mds == mds)
3548 force = 1;
3549 spin_unlock(&dentry->d_lock);
3550
3551 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3552
3553 spin_lock(&dentry->d_lock);
3554 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3555 dout("encode_dentry_release %p mds%d seq %d\n",
3556 dentry, mds, (int)di->lease_seq);
3557 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3558 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3559 *p += dentry->d_name.len;
3560 rel->dname_seq = cpu_to_le32(di->lease_seq);
3561 __ceph_mdsc_drop_dentry_lease(dentry);
3562 }
3563 spin_unlock(&dentry->d_lock);
3564 return ret;
3565 }
This page took 0.101748 seconds and 5 git commands to generate.