ceph: remove bogus invalidate_mapping_pages
[deliverable/linux.git] / fs / ceph / caps.c
1 #include "ceph_debug.h"
2
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/vmalloc.h>
7 #include <linux/wait.h>
8
9 #include "super.h"
10 #include "decode.h"
11 #include "messenger.h"
12
13 /*
14 * Capability management
15 *
16 * The Ceph metadata servers control client access to inode metadata
17 * and file data by issuing capabilities, granting clients permission
18 * to read and/or write both inode field and file data to OSDs
19 * (storage nodes). Each capability consists of a set of bits
20 * indicating which operations are allowed.
21 *
22 * If the client holds a *_SHARED cap, the client has a coherent value
23 * that can be safely read from the cached inode.
24 *
25 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
26 * client is allowed to change inode attributes (e.g., file size,
27 * mtime), note its dirty state in the ceph_cap, and asynchronously
28 * flush that metadata change to the MDS.
29 *
30 * In the event of a conflicting operation (perhaps by another
31 * client), the MDS will revoke the conflicting client capabilities.
32 *
33 * In order for a client to cache an inode, it must hold a capability
34 * with at least one MDS server. When inodes are released, release
35 * notifications are batched and periodically sent en masse to the MDS
36 * cluster to release server state.
37 */
38
39
40 /*
41 * Generate readable cap strings for debugging output.
42 */
43 #define MAX_CAP_STR 20
44 static char cap_str[MAX_CAP_STR][40];
45 static DEFINE_SPINLOCK(cap_str_lock);
46 static int last_cap_str;
47
48 static char *gcap_string(char *s, int c)
49 {
50 if (c & CEPH_CAP_GSHARED)
51 *s++ = 's';
52 if (c & CEPH_CAP_GEXCL)
53 *s++ = 'x';
54 if (c & CEPH_CAP_GCACHE)
55 *s++ = 'c';
56 if (c & CEPH_CAP_GRD)
57 *s++ = 'r';
58 if (c & CEPH_CAP_GWR)
59 *s++ = 'w';
60 if (c & CEPH_CAP_GBUFFER)
61 *s++ = 'b';
62 if (c & CEPH_CAP_GLAZYIO)
63 *s++ = 'l';
64 return s;
65 }
66
67 const char *ceph_cap_string(int caps)
68 {
69 int i;
70 char *s;
71 int c;
72
73 spin_lock(&cap_str_lock);
74 i = last_cap_str++;
75 if (last_cap_str == MAX_CAP_STR)
76 last_cap_str = 0;
77 spin_unlock(&cap_str_lock);
78
79 s = cap_str[i];
80
81 if (caps & CEPH_CAP_PIN)
82 *s++ = 'p';
83
84 c = (caps >> CEPH_CAP_SAUTH) & 3;
85 if (c) {
86 *s++ = 'A';
87 s = gcap_string(s, c);
88 }
89
90 c = (caps >> CEPH_CAP_SLINK) & 3;
91 if (c) {
92 *s++ = 'L';
93 s = gcap_string(s, c);
94 }
95
96 c = (caps >> CEPH_CAP_SXATTR) & 3;
97 if (c) {
98 *s++ = 'X';
99 s = gcap_string(s, c);
100 }
101
102 c = caps >> CEPH_CAP_SFILE;
103 if (c) {
104 *s++ = 'F';
105 s = gcap_string(s, c);
106 }
107
108 if (s == cap_str[i])
109 *s++ = '-';
110 *s = 0;
111 return cap_str[i];
112 }
113
114 /*
115 * Cap reservations
116 *
117 * Maintain a global pool of preallocated struct ceph_caps, referenced
118 * by struct ceph_caps_reservations. This ensures that we preallocate
119 * memory needed to successfully process an MDS response. (If an MDS
120 * sends us cap information and we fail to process it, we will have
121 * problems due to the client and MDS being out of sync.)
122 *
123 * Reservations are 'owned' by a ceph_cap_reservation context.
124 */
125 static spinlock_t caps_list_lock;
126 static struct list_head caps_list; /* unused (reserved or unreserved) */
127 static int caps_total_count; /* total caps allocated */
128 static int caps_use_count; /* in use */
129 static int caps_reserve_count; /* unused, reserved */
130 static int caps_avail_count; /* unused, unreserved */
131
132 void __init ceph_caps_init(void)
133 {
134 INIT_LIST_HEAD(&caps_list);
135 spin_lock_init(&caps_list_lock);
136 }
137
138 void ceph_caps_finalize(void)
139 {
140 struct ceph_cap *cap;
141
142 spin_lock(&caps_list_lock);
143 while (!list_empty(&caps_list)) {
144 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
145 list_del(&cap->caps_item);
146 kmem_cache_free(ceph_cap_cachep, cap);
147 }
148 caps_total_count = 0;
149 caps_avail_count = 0;
150 caps_use_count = 0;
151 caps_reserve_count = 0;
152 spin_unlock(&caps_list_lock);
153 }
154
155 int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
156 {
157 int i;
158 struct ceph_cap *cap;
159 int have;
160 int alloc = 0;
161 LIST_HEAD(newcaps);
162 int ret = 0;
163
164 dout("reserve caps ctx=%p need=%d\n", ctx, need);
165
166 /* first reserve any caps that are already allocated */
167 spin_lock(&caps_list_lock);
168 if (caps_avail_count >= need)
169 have = need;
170 else
171 have = caps_avail_count;
172 caps_avail_count -= have;
173 caps_reserve_count += have;
174 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
175 caps_avail_count);
176 spin_unlock(&caps_list_lock);
177
178 for (i = have; i < need; i++) {
179 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
180 if (!cap) {
181 ret = -ENOMEM;
182 goto out_alloc_count;
183 }
184 list_add(&cap->caps_item, &newcaps);
185 alloc++;
186 }
187 BUG_ON(have + alloc != need);
188
189 spin_lock(&caps_list_lock);
190 caps_total_count += alloc;
191 caps_reserve_count += alloc;
192 list_splice(&newcaps, &caps_list);
193
194 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
195 caps_avail_count);
196 spin_unlock(&caps_list_lock);
197
198 ctx->count = need;
199 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
200 ctx, caps_total_count, caps_use_count, caps_reserve_count,
201 caps_avail_count);
202 return 0;
203
204 out_alloc_count:
205 /* we didn't manage to reserve as much as we needed */
206 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
207 ctx, need, have);
208 return ret;
209 }
210
211 int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
212 {
213 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
214 if (ctx->count) {
215 spin_lock(&caps_list_lock);
216 BUG_ON(caps_reserve_count < ctx->count);
217 caps_reserve_count -= ctx->count;
218 caps_avail_count += ctx->count;
219 ctx->count = 0;
220 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
221 caps_total_count, caps_use_count, caps_reserve_count,
222 caps_avail_count);
223 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
224 caps_avail_count);
225 spin_unlock(&caps_list_lock);
226 }
227 return 0;
228 }
229
230 static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
231 {
232 struct ceph_cap *cap = NULL;
233
234 /* temporary, until we do something about cap import/export */
235 if (!ctx)
236 return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
237
238 spin_lock(&caps_list_lock);
239 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
240 ctx, ctx->count, caps_total_count, caps_use_count,
241 caps_reserve_count, caps_avail_count);
242 BUG_ON(!ctx->count);
243 BUG_ON(ctx->count > caps_reserve_count);
244 BUG_ON(list_empty(&caps_list));
245
246 ctx->count--;
247 caps_reserve_count--;
248 caps_use_count++;
249
250 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
251 list_del(&cap->caps_item);
252
253 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
254 caps_avail_count);
255 spin_unlock(&caps_list_lock);
256 return cap;
257 }
258
259 static void put_cap(struct ceph_cap *cap,
260 struct ceph_cap_reservation *ctx)
261 {
262 spin_lock(&caps_list_lock);
263 dout("put_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
264 ctx, ctx ? ctx->count : 0, caps_total_count, caps_use_count,
265 caps_reserve_count, caps_avail_count);
266 caps_use_count--;
267 /*
268 * Keep some preallocated caps around, at least enough to do a
269 * readdir (which needs to preallocate lots of them), to avoid
270 * lots of free/alloc churn.
271 */
272 if (caps_avail_count >= caps_reserve_count +
273 ceph_client(cap->ci->vfs_inode.i_sb)->mount_args->max_readdir) {
274 caps_total_count--;
275 kmem_cache_free(ceph_cap_cachep, cap);
276 } else {
277 if (ctx) {
278 ctx->count++;
279 caps_reserve_count++;
280 } else {
281 caps_avail_count++;
282 }
283 list_add(&cap->caps_item, &caps_list);
284 }
285
286 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
287 caps_avail_count);
288 spin_unlock(&caps_list_lock);
289 }
290
291 void ceph_reservation_status(struct ceph_client *client,
292 int *total, int *avail, int *used, int *reserved)
293 {
294 if (total)
295 *total = caps_total_count;
296 if (avail)
297 *avail = caps_avail_count;
298 if (used)
299 *used = caps_use_count;
300 if (reserved)
301 *reserved = caps_reserve_count;
302 }
303
304 /*
305 * Find ceph_cap for given mds, if any.
306 *
307 * Called with i_lock held.
308 */
309 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
310 {
311 struct ceph_cap *cap;
312 struct rb_node *n = ci->i_caps.rb_node;
313
314 while (n) {
315 cap = rb_entry(n, struct ceph_cap, ci_node);
316 if (mds < cap->mds)
317 n = n->rb_left;
318 else if (mds > cap->mds)
319 n = n->rb_right;
320 else
321 return cap;
322 }
323 return NULL;
324 }
325
326 /*
327 * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
328 * -1.
329 */
330 static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
331 {
332 struct ceph_cap *cap;
333 int mds = -1;
334 struct rb_node *p;
335
336 /* prefer mds with WR|WRBUFFER|EXCL caps */
337 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
338 cap = rb_entry(p, struct ceph_cap, ci_node);
339 mds = cap->mds;
340 if (mseq)
341 *mseq = cap->mseq;
342 if (cap->issued & (CEPH_CAP_FILE_WR |
343 CEPH_CAP_FILE_BUFFER |
344 CEPH_CAP_FILE_EXCL))
345 break;
346 }
347 return mds;
348 }
349
350 int ceph_get_cap_mds(struct inode *inode)
351 {
352 int mds;
353 spin_lock(&inode->i_lock);
354 mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
355 spin_unlock(&inode->i_lock);
356 return mds;
357 }
358
359 /*
360 * Called under i_lock.
361 */
362 static void __insert_cap_node(struct ceph_inode_info *ci,
363 struct ceph_cap *new)
364 {
365 struct rb_node **p = &ci->i_caps.rb_node;
366 struct rb_node *parent = NULL;
367 struct ceph_cap *cap = NULL;
368
369 while (*p) {
370 parent = *p;
371 cap = rb_entry(parent, struct ceph_cap, ci_node);
372 if (new->mds < cap->mds)
373 p = &(*p)->rb_left;
374 else if (new->mds > cap->mds)
375 p = &(*p)->rb_right;
376 else
377 BUG();
378 }
379
380 rb_link_node(&new->ci_node, parent, p);
381 rb_insert_color(&new->ci_node, &ci->i_caps);
382 }
383
384 /*
385 * (re)set cap hold timeouts, which control the delayed release
386 * of unused caps back to the MDS. Should be called on cap use.
387 */
388 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
389 struct ceph_inode_info *ci)
390 {
391 struct ceph_mount_args *ma = mdsc->client->mount_args;
392
393 ci->i_hold_caps_min = round_jiffies(jiffies +
394 ma->caps_wanted_delay_min * HZ);
395 ci->i_hold_caps_max = round_jiffies(jiffies +
396 ma->caps_wanted_delay_max * HZ);
397 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
398 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
399 }
400
401 /*
402 * (Re)queue cap at the end of the delayed cap release list.
403 *
404 * If I_FLUSH is set, leave the inode at the front of the list.
405 *
406 * Caller holds i_lock
407 * -> we take mdsc->cap_delay_lock
408 */
409 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
410 struct ceph_inode_info *ci)
411 {
412 __cap_set_timeouts(mdsc, ci);
413 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
414 ci->i_ceph_flags, ci->i_hold_caps_max);
415 if (!mdsc->stopping) {
416 spin_lock(&mdsc->cap_delay_lock);
417 if (!list_empty(&ci->i_cap_delay_list)) {
418 if (ci->i_ceph_flags & CEPH_I_FLUSH)
419 goto no_change;
420 list_del_init(&ci->i_cap_delay_list);
421 }
422 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
423 no_change:
424 spin_unlock(&mdsc->cap_delay_lock);
425 }
426 }
427
428 /*
429 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
430 * indicating we should send a cap message to flush dirty metadata
431 * asap, and move to the front of the delayed cap list.
432 */
433 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
434 struct ceph_inode_info *ci)
435 {
436 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
437 spin_lock(&mdsc->cap_delay_lock);
438 ci->i_ceph_flags |= CEPH_I_FLUSH;
439 if (!list_empty(&ci->i_cap_delay_list))
440 list_del_init(&ci->i_cap_delay_list);
441 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
442 spin_unlock(&mdsc->cap_delay_lock);
443 }
444
445 /*
446 * Cancel delayed work on cap.
447 *
448 * Caller must hold i_lock.
449 */
450 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
451 struct ceph_inode_info *ci)
452 {
453 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
454 if (list_empty(&ci->i_cap_delay_list))
455 return;
456 spin_lock(&mdsc->cap_delay_lock);
457 list_del_init(&ci->i_cap_delay_list);
458 spin_unlock(&mdsc->cap_delay_lock);
459 }
460
461 /*
462 * Common issue checks for add_cap, handle_cap_grant.
463 */
464 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
465 unsigned issued)
466 {
467 unsigned had = __ceph_caps_issued(ci, NULL);
468
469 /*
470 * Each time we receive FILE_CACHE anew, we increment
471 * i_rdcache_gen.
472 */
473 if ((issued & CEPH_CAP_FILE_CACHE) &&
474 (had & CEPH_CAP_FILE_CACHE) == 0)
475 ci->i_rdcache_gen++;
476
477 /*
478 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
479 * don't know what happened to this directory while we didn't
480 * have the cap.
481 */
482 if ((issued & CEPH_CAP_FILE_SHARED) &&
483 (had & CEPH_CAP_FILE_SHARED) == 0) {
484 ci->i_shared_gen++;
485 if (S_ISDIR(ci->vfs_inode.i_mode)) {
486 dout(" marking %p NOT complete\n", &ci->vfs_inode);
487 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
488 }
489 }
490 }
491
492 /*
493 * Add a capability under the given MDS session.
494 *
495 * Caller should hold session snap_rwsem (read) and s_mutex.
496 *
497 * @fmode is the open file mode, if we are opening a file, otherwise
498 * it is < 0. (This is so we can atomically add the cap and add an
499 * open file reference to it.)
500 */
501 int ceph_add_cap(struct inode *inode,
502 struct ceph_mds_session *session, u64 cap_id,
503 int fmode, unsigned issued, unsigned wanted,
504 unsigned seq, unsigned mseq, u64 realmino, int flags,
505 struct ceph_cap_reservation *caps_reservation)
506 {
507 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
508 struct ceph_inode_info *ci = ceph_inode(inode);
509 struct ceph_cap *new_cap = NULL;
510 struct ceph_cap *cap;
511 int mds = session->s_mds;
512 int actual_wanted;
513
514 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
515 session->s_mds, cap_id, ceph_cap_string(issued), seq);
516
517 /*
518 * If we are opening the file, include file mode wanted bits
519 * in wanted.
520 */
521 if (fmode >= 0)
522 wanted |= ceph_caps_for_mode(fmode);
523
524 retry:
525 spin_lock(&inode->i_lock);
526 cap = __get_cap_for_mds(ci, mds);
527 if (!cap) {
528 if (new_cap) {
529 cap = new_cap;
530 new_cap = NULL;
531 } else {
532 spin_unlock(&inode->i_lock);
533 new_cap = get_cap(caps_reservation);
534 if (new_cap == NULL)
535 return -ENOMEM;
536 goto retry;
537 }
538
539 cap->issued = 0;
540 cap->implemented = 0;
541 cap->mds = mds;
542 cap->mds_wanted = 0;
543
544 cap->ci = ci;
545 __insert_cap_node(ci, cap);
546
547 /* clear out old exporting info? (i.e. on cap import) */
548 if (ci->i_cap_exporting_mds == mds) {
549 ci->i_cap_exporting_issued = 0;
550 ci->i_cap_exporting_mseq = 0;
551 ci->i_cap_exporting_mds = -1;
552 }
553
554 /* add to session cap list */
555 cap->session = session;
556 spin_lock(&session->s_cap_lock);
557 list_add_tail(&cap->session_caps, &session->s_caps);
558 session->s_nr_caps++;
559 spin_unlock(&session->s_cap_lock);
560 }
561
562 if (!ci->i_snap_realm) {
563 /*
564 * add this inode to the appropriate snap realm
565 */
566 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
567 realmino);
568 if (realm) {
569 ceph_get_snap_realm(mdsc, realm);
570 spin_lock(&realm->inodes_with_caps_lock);
571 ci->i_snap_realm = realm;
572 list_add(&ci->i_snap_realm_item,
573 &realm->inodes_with_caps);
574 spin_unlock(&realm->inodes_with_caps_lock);
575 } else {
576 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
577 realmino);
578 }
579 }
580
581 __check_cap_issue(ci, cap, issued);
582
583 /*
584 * If we are issued caps we don't want, or the mds' wanted
585 * value appears to be off, queue a check so we'll release
586 * later and/or update the mds wanted value.
587 */
588 actual_wanted = __ceph_caps_wanted(ci);
589 if ((wanted & ~actual_wanted) ||
590 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
591 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
592 ceph_cap_string(issued), ceph_cap_string(wanted),
593 ceph_cap_string(actual_wanted));
594 __cap_delay_requeue(mdsc, ci);
595 }
596
597 if (flags & CEPH_CAP_FLAG_AUTH)
598 ci->i_auth_cap = cap;
599 else if (ci->i_auth_cap == cap)
600 ci->i_auth_cap = NULL;
601
602 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
603 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
604 ceph_cap_string(issued|cap->issued), seq, mds);
605 cap->cap_id = cap_id;
606 cap->issued = issued;
607 cap->implemented |= issued;
608 cap->mds_wanted |= wanted;
609 cap->seq = seq;
610 cap->issue_seq = seq;
611 cap->mseq = mseq;
612 cap->cap_gen = session->s_cap_gen;
613
614 if (fmode >= 0)
615 __ceph_get_fmode(ci, fmode);
616 spin_unlock(&inode->i_lock);
617 wake_up(&ci->i_cap_wq);
618 return 0;
619 }
620
621 /*
622 * Return true if cap has not timed out and belongs to the current
623 * generation of the MDS session (i.e. has not gone 'stale' due to
624 * us losing touch with the mds).
625 */
626 static int __cap_is_valid(struct ceph_cap *cap)
627 {
628 unsigned long ttl;
629 u32 gen;
630
631 spin_lock(&cap->session->s_cap_lock);
632 gen = cap->session->s_cap_gen;
633 ttl = cap->session->s_cap_ttl;
634 spin_unlock(&cap->session->s_cap_lock);
635
636 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
637 dout("__cap_is_valid %p cap %p issued %s "
638 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
639 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
640 return 0;
641 }
642
643 return 1;
644 }
645
646 /*
647 * Return set of valid cap bits issued to us. Note that caps time
648 * out, and may be invalidated in bulk if the client session times out
649 * and session->s_cap_gen is bumped.
650 */
651 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
652 {
653 int have = ci->i_snap_caps;
654 struct ceph_cap *cap;
655 struct rb_node *p;
656
657 if (implemented)
658 *implemented = 0;
659 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
660 cap = rb_entry(p, struct ceph_cap, ci_node);
661 if (!__cap_is_valid(cap))
662 continue;
663 dout("__ceph_caps_issued %p cap %p issued %s\n",
664 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
665 have |= cap->issued;
666 if (implemented)
667 *implemented |= cap->implemented;
668 }
669 return have;
670 }
671
672 /*
673 * Get cap bits issued by caps other than @ocap
674 */
675 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
676 {
677 int have = ci->i_snap_caps;
678 struct ceph_cap *cap;
679 struct rb_node *p;
680
681 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
682 cap = rb_entry(p, struct ceph_cap, ci_node);
683 if (cap == ocap)
684 continue;
685 if (!__cap_is_valid(cap))
686 continue;
687 have |= cap->issued;
688 }
689 return have;
690 }
691
692 /*
693 * Move a cap to the end of the LRU (oldest caps at list head, newest
694 * at list tail).
695 */
696 static void __touch_cap(struct ceph_cap *cap)
697 {
698 struct ceph_mds_session *s = cap->session;
699
700 spin_lock(&s->s_cap_lock);
701 if (!s->s_iterating_caps) {
702 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
703 s->s_mds);
704 list_move_tail(&cap->session_caps, &s->s_caps);
705 } else {
706 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
707 &cap->ci->vfs_inode, cap, s->s_mds);
708 }
709 spin_unlock(&s->s_cap_lock);
710 }
711
712 /*
713 * Check if we hold the given mask. If so, move the cap(s) to the
714 * front of their respective LRUs. (This is the preferred way for
715 * callers to check for caps they want.)
716 */
717 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
718 {
719 struct ceph_cap *cap;
720 struct rb_node *p;
721 int have = ci->i_snap_caps;
722
723 if ((have & mask) == mask) {
724 dout("__ceph_caps_issued_mask %p snap issued %s"
725 " (mask %s)\n", &ci->vfs_inode,
726 ceph_cap_string(have),
727 ceph_cap_string(mask));
728 return 1;
729 }
730
731 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
732 cap = rb_entry(p, struct ceph_cap, ci_node);
733 if (!__cap_is_valid(cap))
734 continue;
735 if ((cap->issued & mask) == mask) {
736 dout("__ceph_caps_issued_mask %p cap %p issued %s"
737 " (mask %s)\n", &ci->vfs_inode, cap,
738 ceph_cap_string(cap->issued),
739 ceph_cap_string(mask));
740 if (touch)
741 __touch_cap(cap);
742 return 1;
743 }
744
745 /* does a combination of caps satisfy mask? */
746 have |= cap->issued;
747 if ((have & mask) == mask) {
748 dout("__ceph_caps_issued_mask %p combo issued %s"
749 " (mask %s)\n", &ci->vfs_inode,
750 ceph_cap_string(cap->issued),
751 ceph_cap_string(mask));
752 if (touch) {
753 struct rb_node *q;
754
755 /* touch this + preceeding caps */
756 __touch_cap(cap);
757 for (q = rb_first(&ci->i_caps); q != p;
758 q = rb_next(q)) {
759 cap = rb_entry(q, struct ceph_cap,
760 ci_node);
761 if (!__cap_is_valid(cap))
762 continue;
763 __touch_cap(cap);
764 }
765 }
766 return 1;
767 }
768 }
769
770 return 0;
771 }
772
773 /*
774 * Return true if mask caps are currently being revoked by an MDS.
775 */
776 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
777 {
778 struct inode *inode = &ci->vfs_inode;
779 struct ceph_cap *cap;
780 struct rb_node *p;
781 int ret = 0;
782
783 spin_lock(&inode->i_lock);
784 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
785 cap = rb_entry(p, struct ceph_cap, ci_node);
786 if (__cap_is_valid(cap) &&
787 (cap->implemented & ~cap->issued & mask)) {
788 ret = 1;
789 break;
790 }
791 }
792 spin_unlock(&inode->i_lock);
793 dout("ceph_caps_revoking %p %s = %d\n", inode,
794 ceph_cap_string(mask), ret);
795 return ret;
796 }
797
798 int __ceph_caps_used(struct ceph_inode_info *ci)
799 {
800 int used = 0;
801 if (ci->i_pin_ref)
802 used |= CEPH_CAP_PIN;
803 if (ci->i_rd_ref)
804 used |= CEPH_CAP_FILE_RD;
805 if (ci->i_rdcache_ref || ci->i_rdcache_gen)
806 used |= CEPH_CAP_FILE_CACHE;
807 if (ci->i_wr_ref)
808 used |= CEPH_CAP_FILE_WR;
809 if (ci->i_wrbuffer_ref)
810 used |= CEPH_CAP_FILE_BUFFER;
811 return used;
812 }
813
814 /*
815 * wanted, by virtue of open file modes
816 */
817 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
818 {
819 int want = 0;
820 int mode;
821 for (mode = 0; mode < 4; mode++)
822 if (ci->i_nr_by_mode[mode])
823 want |= ceph_caps_for_mode(mode);
824 return want;
825 }
826
827 /*
828 * Return caps we have registered with the MDS(s) as 'wanted'.
829 */
830 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
831 {
832 struct ceph_cap *cap;
833 struct rb_node *p;
834 int mds_wanted = 0;
835
836 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
837 cap = rb_entry(p, struct ceph_cap, ci_node);
838 if (!__cap_is_valid(cap))
839 continue;
840 mds_wanted |= cap->mds_wanted;
841 }
842 return mds_wanted;
843 }
844
845 /*
846 * called under i_lock
847 */
848 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
849 {
850 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
851 }
852
853 /*
854 * caller should hold i_lock, and session s_mutex.
855 * returns true if this is the last cap. if so, caller should iput.
856 */
857 void __ceph_remove_cap(struct ceph_cap *cap,
858 struct ceph_cap_reservation *ctx)
859 {
860 struct ceph_mds_session *session = cap->session;
861 struct ceph_inode_info *ci = cap->ci;
862 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
863
864 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
865
866 /* remove from session list */
867 spin_lock(&session->s_cap_lock);
868 list_del_init(&cap->session_caps);
869 session->s_nr_caps--;
870 spin_unlock(&session->s_cap_lock);
871
872 /* remove from inode list */
873 rb_erase(&cap->ci_node, &ci->i_caps);
874 cap->session = NULL;
875 if (ci->i_auth_cap == cap)
876 ci->i_auth_cap = NULL;
877
878 put_cap(cap, ctx);
879
880 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
881 struct ceph_snap_realm *realm = ci->i_snap_realm;
882 spin_lock(&realm->inodes_with_caps_lock);
883 list_del_init(&ci->i_snap_realm_item);
884 ci->i_snap_realm_counter++;
885 ci->i_snap_realm = NULL;
886 spin_unlock(&realm->inodes_with_caps_lock);
887 ceph_put_snap_realm(mdsc, realm);
888 }
889 if (!__ceph_is_any_real_caps(ci))
890 __cap_delay_cancel(mdsc, ci);
891 }
892
893 /*
894 * Build and send a cap message to the given MDS.
895 *
896 * Caller should be holding s_mutex.
897 */
898 static int send_cap_msg(struct ceph_mds_session *session,
899 u64 ino, u64 cid, int op,
900 int caps, int wanted, int dirty,
901 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
902 u64 size, u64 max_size,
903 struct timespec *mtime, struct timespec *atime,
904 u64 time_warp_seq,
905 uid_t uid, gid_t gid, mode_t mode,
906 u64 xattr_version,
907 struct ceph_buffer *xattrs_buf,
908 u64 follows)
909 {
910 struct ceph_mds_caps *fc;
911 struct ceph_msg *msg;
912
913 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
914 " seq %u/%u mseq %u follows %lld size %llu/%llu"
915 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
916 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
917 ceph_cap_string(dirty),
918 seq, issue_seq, mseq, follows, size, max_size,
919 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
920
921 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL);
922 if (IS_ERR(msg))
923 return PTR_ERR(msg);
924
925 msg->hdr.tid = cpu_to_le64(flush_tid);
926
927 fc = msg->front.iov_base;
928 memset(fc, 0, sizeof(*fc));
929
930 fc->cap_id = cpu_to_le64(cid);
931 fc->op = cpu_to_le32(op);
932 fc->seq = cpu_to_le32(seq);
933 fc->issue_seq = cpu_to_le32(issue_seq);
934 fc->migrate_seq = cpu_to_le32(mseq);
935 fc->caps = cpu_to_le32(caps);
936 fc->wanted = cpu_to_le32(wanted);
937 fc->dirty = cpu_to_le32(dirty);
938 fc->ino = cpu_to_le64(ino);
939 fc->snap_follows = cpu_to_le64(follows);
940
941 fc->size = cpu_to_le64(size);
942 fc->max_size = cpu_to_le64(max_size);
943 if (mtime)
944 ceph_encode_timespec(&fc->mtime, mtime);
945 if (atime)
946 ceph_encode_timespec(&fc->atime, atime);
947 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
948
949 fc->uid = cpu_to_le32(uid);
950 fc->gid = cpu_to_le32(gid);
951 fc->mode = cpu_to_le32(mode);
952
953 fc->xattr_version = cpu_to_le64(xattr_version);
954 if (xattrs_buf) {
955 msg->middle = ceph_buffer_get(xattrs_buf);
956 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
957 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
958 }
959
960 ceph_con_send(&session->s_con, msg);
961 return 0;
962 }
963
964 /*
965 * Queue cap releases when an inode is dropped from our
966 * cache.
967 */
968 void ceph_queue_caps_release(struct inode *inode)
969 {
970 struct ceph_inode_info *ci = ceph_inode(inode);
971 struct rb_node *p;
972
973 spin_lock(&inode->i_lock);
974 p = rb_first(&ci->i_caps);
975 while (p) {
976 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
977 struct ceph_mds_session *session = cap->session;
978 struct ceph_msg *msg;
979 struct ceph_mds_cap_release *head;
980 struct ceph_mds_cap_item *item;
981
982 spin_lock(&session->s_cap_lock);
983 BUG_ON(!session->s_num_cap_releases);
984 msg = list_first_entry(&session->s_cap_releases,
985 struct ceph_msg, list_head);
986
987 dout(" adding %p release to mds%d msg %p (%d left)\n",
988 inode, session->s_mds, msg, session->s_num_cap_releases);
989
990 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
991 head = msg->front.iov_base;
992 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
993 item = msg->front.iov_base + msg->front.iov_len;
994 item->ino = cpu_to_le64(ceph_ino(inode));
995 item->cap_id = cpu_to_le64(cap->cap_id);
996 item->migrate_seq = cpu_to_le32(cap->mseq);
997 item->seq = cpu_to_le32(cap->issue_seq);
998
999 session->s_num_cap_releases--;
1000
1001 msg->front.iov_len += sizeof(*item);
1002 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1003 dout(" release msg %p full\n", msg);
1004 list_move_tail(&msg->list_head,
1005 &session->s_cap_releases_done);
1006 } else {
1007 dout(" release msg %p at %d/%d (%d)\n", msg,
1008 (int)le32_to_cpu(head->num),
1009 (int)CEPH_CAPS_PER_RELEASE,
1010 (int)msg->front.iov_len);
1011 }
1012 spin_unlock(&session->s_cap_lock);
1013 p = rb_next(p);
1014 __ceph_remove_cap(cap, NULL);
1015
1016 }
1017 spin_unlock(&inode->i_lock);
1018 }
1019
1020 /*
1021 * Send a cap msg on the given inode. Update our caps state, then
1022 * drop i_lock and send the message.
1023 *
1024 * Make note of max_size reported/requested from mds, revoked caps
1025 * that have now been implemented.
1026 *
1027 * Make half-hearted attempt ot to invalidate page cache if we are
1028 * dropping RDCACHE. Note that this will leave behind locked pages
1029 * that we'll then need to deal with elsewhere.
1030 *
1031 * Return non-zero if delayed release, or we experienced an error
1032 * such that the caller should requeue + retry later.
1033 *
1034 * called with i_lock, then drops it.
1035 * caller should hold snap_rwsem (read), s_mutex.
1036 */
1037 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1038 int op, int used, int want, int retain, int flushing,
1039 unsigned *pflush_tid)
1040 __releases(cap->ci->vfs_inode->i_lock)
1041 {
1042 struct ceph_inode_info *ci = cap->ci;
1043 struct inode *inode = &ci->vfs_inode;
1044 u64 cap_id = cap->cap_id;
1045 int held, revoking, dropping, keep;
1046 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1047 u64 size, max_size;
1048 struct timespec mtime, atime;
1049 int wake = 0;
1050 mode_t mode;
1051 uid_t uid;
1052 gid_t gid;
1053 struct ceph_mds_session *session;
1054 u64 xattr_version = 0;
1055 int delayed = 0;
1056 u64 flush_tid = 0;
1057 int i;
1058 int ret;
1059
1060 held = cap->issued | cap->implemented;
1061 revoking = cap->implemented & ~cap->issued;
1062 retain &= ~revoking;
1063 dropping = cap->issued & ~retain;
1064
1065 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1066 inode, cap, cap->session,
1067 ceph_cap_string(held), ceph_cap_string(held & retain),
1068 ceph_cap_string(revoking));
1069 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1070
1071 session = cap->session;
1072
1073 /* don't release wanted unless we've waited a bit. */
1074 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1075 time_before(jiffies, ci->i_hold_caps_min)) {
1076 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1077 ceph_cap_string(cap->issued),
1078 ceph_cap_string(cap->issued & retain),
1079 ceph_cap_string(cap->mds_wanted),
1080 ceph_cap_string(want));
1081 want |= cap->mds_wanted;
1082 retain |= cap->issued;
1083 delayed = 1;
1084 }
1085 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1086
1087 cap->issued &= retain; /* drop bits we don't want */
1088 if (cap->implemented & ~cap->issued) {
1089 /*
1090 * Wake up any waiters on wanted -> needed transition.
1091 * This is due to the weird transition from buffered
1092 * to sync IO... we need to flush dirty pages _before_
1093 * allowing sync writes to avoid reordering.
1094 */
1095 wake = 1;
1096 }
1097 cap->implemented &= cap->issued | used;
1098 cap->mds_wanted = want;
1099
1100 if (flushing) {
1101 /*
1102 * assign a tid for flush operations so we can avoid
1103 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1104 * clean type races. track latest tid for every bit
1105 * so we can handle flush AxFw, flush Fw, and have the
1106 * first ack clean Ax.
1107 */
1108 flush_tid = ++ci->i_cap_flush_last_tid;
1109 if (pflush_tid)
1110 *pflush_tid = flush_tid;
1111 dout(" cap_flush_tid %d\n", (int)flush_tid);
1112 for (i = 0; i < CEPH_CAP_BITS; i++)
1113 if (flushing & (1 << i))
1114 ci->i_cap_flush_tid[i] = flush_tid;
1115 }
1116
1117 keep = cap->implemented;
1118 seq = cap->seq;
1119 issue_seq = cap->issue_seq;
1120 mseq = cap->mseq;
1121 size = inode->i_size;
1122 ci->i_reported_size = size;
1123 max_size = ci->i_wanted_max_size;
1124 ci->i_requested_max_size = max_size;
1125 mtime = inode->i_mtime;
1126 atime = inode->i_atime;
1127 time_warp_seq = ci->i_time_warp_seq;
1128 follows = ci->i_snap_realm->cached_context->seq;
1129 uid = inode->i_uid;
1130 gid = inode->i_gid;
1131 mode = inode->i_mode;
1132
1133 if (dropping & CEPH_CAP_XATTR_EXCL) {
1134 __ceph_build_xattrs_blob(ci);
1135 xattr_version = ci->i_xattrs.version + 1;
1136 }
1137
1138 spin_unlock(&inode->i_lock);
1139
1140 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1141 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1142 size, max_size, &mtime, &atime, time_warp_seq,
1143 uid, gid, mode,
1144 xattr_version,
1145 (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1146 follows);
1147 if (ret < 0) {
1148 dout("error sending cap msg, must requeue %p\n", inode);
1149 delayed = 1;
1150 }
1151
1152 if (wake)
1153 wake_up(&ci->i_cap_wq);
1154
1155 return delayed;
1156 }
1157
1158 /*
1159 * When a snapshot is taken, clients accumulate dirty metadata on
1160 * inodes with capabilities in ceph_cap_snaps to describe the file
1161 * state at the time the snapshot was taken. This must be flushed
1162 * asynchronously back to the MDS once sync writes complete and dirty
1163 * data is written out.
1164 *
1165 * Called under i_lock. Takes s_mutex as needed.
1166 */
1167 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1168 struct ceph_mds_session **psession)
1169 {
1170 struct inode *inode = &ci->vfs_inode;
1171 int mds;
1172 struct ceph_cap_snap *capsnap;
1173 u32 mseq;
1174 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1175 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1176 session->s_mutex */
1177 u64 next_follows = 0; /* keep track of how far we've gotten through the
1178 i_cap_snaps list, and skip these entries next time
1179 around to avoid an infinite loop */
1180
1181 if (psession)
1182 session = *psession;
1183
1184 dout("__flush_snaps %p\n", inode);
1185 retry:
1186 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1187 /* avoid an infiniute loop after retry */
1188 if (capsnap->follows < next_follows)
1189 continue;
1190 /*
1191 * we need to wait for sync writes to complete and for dirty
1192 * pages to be written out.
1193 */
1194 if (capsnap->dirty_pages || capsnap->writing)
1195 continue;
1196
1197 /* pick mds, take s_mutex */
1198 mds = __ceph_get_cap_mds(ci, &mseq);
1199 if (session && session->s_mds != mds) {
1200 dout("oops, wrong session %p mutex\n", session);
1201 mutex_unlock(&session->s_mutex);
1202 ceph_put_mds_session(session);
1203 session = NULL;
1204 }
1205 if (!session) {
1206 spin_unlock(&inode->i_lock);
1207 mutex_lock(&mdsc->mutex);
1208 session = __ceph_lookup_mds_session(mdsc, mds);
1209 mutex_unlock(&mdsc->mutex);
1210 if (session) {
1211 dout("inverting session/ino locks on %p\n",
1212 session);
1213 mutex_lock(&session->s_mutex);
1214 }
1215 /*
1216 * if session == NULL, we raced against a cap
1217 * deletion. retry, and we'll get a better
1218 * @mds value next time.
1219 */
1220 spin_lock(&inode->i_lock);
1221 goto retry;
1222 }
1223
1224 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1225 atomic_inc(&capsnap->nref);
1226 if (!list_empty(&capsnap->flushing_item))
1227 list_del_init(&capsnap->flushing_item);
1228 list_add_tail(&capsnap->flushing_item,
1229 &session->s_cap_snaps_flushing);
1230 spin_unlock(&inode->i_lock);
1231
1232 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1233 inode, capsnap, next_follows, capsnap->size);
1234 send_cap_msg(session, ceph_vino(inode).ino, 0,
1235 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1236 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1237 capsnap->size, 0,
1238 &capsnap->mtime, &capsnap->atime,
1239 capsnap->time_warp_seq,
1240 capsnap->uid, capsnap->gid, capsnap->mode,
1241 0, NULL,
1242 capsnap->follows);
1243
1244 next_follows = capsnap->follows + 1;
1245 ceph_put_cap_snap(capsnap);
1246
1247 spin_lock(&inode->i_lock);
1248 goto retry;
1249 }
1250
1251 /* we flushed them all; remove this inode from the queue */
1252 spin_lock(&mdsc->snap_flush_lock);
1253 list_del_init(&ci->i_snap_flush_item);
1254 spin_unlock(&mdsc->snap_flush_lock);
1255
1256 if (psession)
1257 *psession = session;
1258 else if (session) {
1259 mutex_unlock(&session->s_mutex);
1260 ceph_put_mds_session(session);
1261 }
1262 }
1263
1264 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1265 {
1266 struct inode *inode = &ci->vfs_inode;
1267
1268 spin_lock(&inode->i_lock);
1269 __ceph_flush_snaps(ci, NULL);
1270 spin_unlock(&inode->i_lock);
1271 }
1272
1273 /*
1274 * Mark caps dirty. If inode is newly dirty, add to the global dirty
1275 * list.
1276 */
1277 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1278 {
1279 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
1280 struct inode *inode = &ci->vfs_inode;
1281 int was = ci->i_dirty_caps;
1282 int dirty = 0;
1283
1284 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1285 ceph_cap_string(mask), ceph_cap_string(was),
1286 ceph_cap_string(was | mask));
1287 ci->i_dirty_caps |= mask;
1288 if (was == 0) {
1289 dout(" inode %p now dirty\n", &ci->vfs_inode);
1290 BUG_ON(!list_empty(&ci->i_dirty_item));
1291 spin_lock(&mdsc->cap_dirty_lock);
1292 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1293 spin_unlock(&mdsc->cap_dirty_lock);
1294 if (ci->i_flushing_caps == 0) {
1295 igrab(inode);
1296 dirty |= I_DIRTY_SYNC;
1297 }
1298 }
1299 BUG_ON(list_empty(&ci->i_dirty_item));
1300 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1301 (mask & CEPH_CAP_FILE_BUFFER))
1302 dirty |= I_DIRTY_DATASYNC;
1303 if (dirty)
1304 __mark_inode_dirty(inode, dirty);
1305 __cap_delay_requeue(mdsc, ci);
1306 }
1307
1308 /*
1309 * Add dirty inode to the flushing list. Assigned a seq number so we
1310 * can wait for caps to flush without starving.
1311 *
1312 * Called under i_lock.
1313 */
1314 static int __mark_caps_flushing(struct inode *inode,
1315 struct ceph_mds_session *session)
1316 {
1317 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1318 struct ceph_inode_info *ci = ceph_inode(inode);
1319 int flushing;
1320
1321 BUG_ON(ci->i_dirty_caps == 0);
1322 BUG_ON(list_empty(&ci->i_dirty_item));
1323
1324 flushing = ci->i_dirty_caps;
1325 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1326 ceph_cap_string(flushing),
1327 ceph_cap_string(ci->i_flushing_caps),
1328 ceph_cap_string(ci->i_flushing_caps | flushing));
1329 ci->i_flushing_caps |= flushing;
1330 ci->i_dirty_caps = 0;
1331 dout(" inode %p now !dirty\n", inode);
1332
1333 spin_lock(&mdsc->cap_dirty_lock);
1334 list_del_init(&ci->i_dirty_item);
1335
1336 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1337 if (list_empty(&ci->i_flushing_item)) {
1338 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1339 mdsc->num_cap_flushing++;
1340 dout(" inode %p now flushing seq %lld\n", inode,
1341 ci->i_cap_flush_seq);
1342 } else {
1343 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1344 dout(" inode %p now flushing (more) seq %lld\n", inode,
1345 ci->i_cap_flush_seq);
1346 }
1347 spin_unlock(&mdsc->cap_dirty_lock);
1348
1349 return flushing;
1350 }
1351
1352 /*
1353 * Swiss army knife function to examine currently used and wanted
1354 * versus held caps. Release, flush, ack revoked caps to mds as
1355 * appropriate.
1356 *
1357 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1358 * cap release further.
1359 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1360 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1361 * further delay.
1362 */
1363 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1364 struct ceph_mds_session *session)
1365 {
1366 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1367 struct ceph_mds_client *mdsc = &client->mdsc;
1368 struct inode *inode = &ci->vfs_inode;
1369 struct ceph_cap *cap;
1370 int file_wanted, used;
1371 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1372 int drop_session_lock = session ? 0 : 1;
1373 int issued, implemented, want, retain, revoking, flushing = 0;
1374 int mds = -1; /* keep track of how far we've gone through i_caps list
1375 to avoid an infinite loop on retry */
1376 struct rb_node *p;
1377 int tried_invalidate = 0;
1378 int delayed = 0, sent = 0, force_requeue = 0, num;
1379 int queue_invalidate = 0;
1380 int is_delayed = flags & CHECK_CAPS_NODELAY;
1381
1382 /* if we are unmounting, flush any unused caps immediately. */
1383 if (mdsc->stopping)
1384 is_delayed = 1;
1385
1386 spin_lock(&inode->i_lock);
1387
1388 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1389 flags |= CHECK_CAPS_FLUSH;
1390
1391 /* flush snaps first time around only */
1392 if (!list_empty(&ci->i_cap_snaps))
1393 __ceph_flush_snaps(ci, &session);
1394 goto retry_locked;
1395 retry:
1396 spin_lock(&inode->i_lock);
1397 retry_locked:
1398 file_wanted = __ceph_caps_file_wanted(ci);
1399 used = __ceph_caps_used(ci);
1400 want = file_wanted | used;
1401 issued = __ceph_caps_issued(ci, &implemented);
1402 revoking = implemented & ~issued;
1403
1404 retain = want | CEPH_CAP_PIN;
1405 if (!mdsc->stopping && inode->i_nlink > 0) {
1406 if (want) {
1407 retain |= CEPH_CAP_ANY; /* be greedy */
1408 } else {
1409 retain |= CEPH_CAP_ANY_SHARED;
1410 /*
1411 * keep RD only if we didn't have the file open RW,
1412 * because then the mds would revoke it anyway to
1413 * journal max_size=0.
1414 */
1415 if (ci->i_max_size == 0)
1416 retain |= CEPH_CAP_ANY_RD;
1417 }
1418 }
1419
1420 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1421 " issued %s revoking %s retain %s %s%s%s\n", inode,
1422 ceph_cap_string(file_wanted),
1423 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1424 ceph_cap_string(ci->i_flushing_caps),
1425 ceph_cap_string(issued), ceph_cap_string(revoking),
1426 ceph_cap_string(retain),
1427 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1428 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1429 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1430
1431 /*
1432 * If we no longer need to hold onto old our caps, and we may
1433 * have cached pages, but don't want them, then try to invalidate.
1434 * If we fail, it's because pages are locked.... try again later.
1435 */
1436 if ((!is_delayed || mdsc->stopping) &&
1437 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1438 ci->i_rdcache_gen && /* may have cached pages */
1439 (file_wanted == 0 || /* no open files */
1440 (revoking & CEPH_CAP_FILE_CACHE)) && /* or revoking cache */
1441 !tried_invalidate) {
1442 u32 invalidating_gen = ci->i_rdcache_gen;
1443 int ret;
1444
1445 dout("check_caps trying to invalidate on %p\n", inode);
1446 spin_unlock(&inode->i_lock);
1447 ret = invalidate_mapping_pages(&inode->i_data, 0, -1);
1448 spin_lock(&inode->i_lock);
1449 if (ret == 0 && invalidating_gen == ci->i_rdcache_gen) {
1450 /* success. */
1451 ci->i_rdcache_gen = 0;
1452 ci->i_rdcache_revoking = 0;
1453 } else if (revoking & CEPH_CAP_FILE_CACHE) {
1454 dout("check_caps queuing invalidate\n");
1455 queue_invalidate = 1;
1456 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1457 } else {
1458 dout("check_caps failed to invalidate pages\n");
1459 /* we failed to invalidate pages. check these
1460 caps again later. */
1461 force_requeue = 1;
1462 __cap_set_timeouts(mdsc, ci);
1463 }
1464 tried_invalidate = 1;
1465 goto retry_locked;
1466 }
1467
1468 num = 0;
1469 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1470 cap = rb_entry(p, struct ceph_cap, ci_node);
1471 num++;
1472
1473 /* avoid looping forever */
1474 if (mds >= cap->mds ||
1475 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1476 continue;
1477
1478 /* NOTE: no side-effects allowed, until we take s_mutex */
1479
1480 revoking = cap->implemented & ~cap->issued;
1481 if (revoking)
1482 dout(" mds%d revoking %s\n", cap->mds,
1483 ceph_cap_string(revoking));
1484
1485 if (cap == ci->i_auth_cap &&
1486 (cap->issued & CEPH_CAP_FILE_WR)) {
1487 /* request larger max_size from MDS? */
1488 if (ci->i_wanted_max_size > ci->i_max_size &&
1489 ci->i_wanted_max_size > ci->i_requested_max_size) {
1490 dout("requesting new max_size\n");
1491 goto ack;
1492 }
1493
1494 /* approaching file_max? */
1495 if ((inode->i_size << 1) >= ci->i_max_size &&
1496 (ci->i_reported_size << 1) < ci->i_max_size) {
1497 dout("i_size approaching max_size\n");
1498 goto ack;
1499 }
1500 }
1501 /* flush anything dirty? */
1502 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1503 ci->i_dirty_caps) {
1504 dout("flushing dirty caps\n");
1505 goto ack;
1506 }
1507
1508 /* completed revocation? going down and there are no caps? */
1509 if (revoking && (revoking & used) == 0) {
1510 dout("completed revocation of %s\n",
1511 ceph_cap_string(cap->implemented & ~cap->issued));
1512 goto ack;
1513 }
1514
1515 /* want more caps from mds? */
1516 if (want & ~(cap->mds_wanted | cap->issued))
1517 goto ack;
1518
1519 /* things we might delay */
1520 if ((cap->issued & ~retain) == 0 &&
1521 cap->mds_wanted == want)
1522 continue; /* nope, all good */
1523
1524 if (is_delayed)
1525 goto ack;
1526
1527 /* delay? */
1528 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1529 time_before(jiffies, ci->i_hold_caps_max)) {
1530 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1531 ceph_cap_string(cap->issued),
1532 ceph_cap_string(cap->issued & retain),
1533 ceph_cap_string(cap->mds_wanted),
1534 ceph_cap_string(want));
1535 delayed++;
1536 continue;
1537 }
1538
1539 ack:
1540 if (session && session != cap->session) {
1541 dout("oops, wrong session %p mutex\n", session);
1542 mutex_unlock(&session->s_mutex);
1543 session = NULL;
1544 }
1545 if (!session) {
1546 session = cap->session;
1547 if (mutex_trylock(&session->s_mutex) == 0) {
1548 dout("inverting session/ino locks on %p\n",
1549 session);
1550 spin_unlock(&inode->i_lock);
1551 if (took_snap_rwsem) {
1552 up_read(&mdsc->snap_rwsem);
1553 took_snap_rwsem = 0;
1554 }
1555 mutex_lock(&session->s_mutex);
1556 goto retry;
1557 }
1558 }
1559 /* take snap_rwsem after session mutex */
1560 if (!took_snap_rwsem) {
1561 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1562 dout("inverting snap/in locks on %p\n",
1563 inode);
1564 spin_unlock(&inode->i_lock);
1565 down_read(&mdsc->snap_rwsem);
1566 took_snap_rwsem = 1;
1567 goto retry;
1568 }
1569 took_snap_rwsem = 1;
1570 }
1571
1572 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1573 flushing = __mark_caps_flushing(inode, session);
1574
1575 mds = cap->mds; /* remember mds, so we don't repeat */
1576 sent++;
1577
1578 /* __send_cap drops i_lock */
1579 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1580 retain, flushing, NULL);
1581 goto retry; /* retake i_lock and restart our cap scan. */
1582 }
1583
1584 /*
1585 * Reschedule delayed caps release if we delayed anything,
1586 * otherwise cancel.
1587 */
1588 if (delayed && is_delayed)
1589 force_requeue = 1; /* __send_cap delayed release; requeue */
1590 if (!delayed && !is_delayed)
1591 __cap_delay_cancel(mdsc, ci);
1592 else if (!is_delayed || force_requeue)
1593 __cap_delay_requeue(mdsc, ci);
1594
1595 spin_unlock(&inode->i_lock);
1596
1597 if (queue_invalidate)
1598 ceph_queue_invalidate(inode);
1599
1600 if (session && drop_session_lock)
1601 mutex_unlock(&session->s_mutex);
1602 if (took_snap_rwsem)
1603 up_read(&mdsc->snap_rwsem);
1604 }
1605
1606 /*
1607 * Try to flush dirty caps back to the auth mds.
1608 */
1609 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1610 unsigned *flush_tid)
1611 {
1612 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1613 struct ceph_inode_info *ci = ceph_inode(inode);
1614 int unlock_session = session ? 0 : 1;
1615 int flushing = 0;
1616
1617 retry:
1618 spin_lock(&inode->i_lock);
1619 if (ci->i_dirty_caps && ci->i_auth_cap) {
1620 struct ceph_cap *cap = ci->i_auth_cap;
1621 int used = __ceph_caps_used(ci);
1622 int want = __ceph_caps_wanted(ci);
1623 int delayed;
1624
1625 if (!session) {
1626 spin_unlock(&inode->i_lock);
1627 session = cap->session;
1628 mutex_lock(&session->s_mutex);
1629 goto retry;
1630 }
1631 BUG_ON(session != cap->session);
1632 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1633 goto out;
1634
1635 flushing = __mark_caps_flushing(inode, session);
1636
1637 /* __send_cap drops i_lock */
1638 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1639 cap->issued | cap->implemented, flushing,
1640 flush_tid);
1641 if (!delayed)
1642 goto out_unlocked;
1643
1644 spin_lock(&inode->i_lock);
1645 __cap_delay_requeue(mdsc, ci);
1646 }
1647 out:
1648 spin_unlock(&inode->i_lock);
1649 out_unlocked:
1650 if (session && unlock_session)
1651 mutex_unlock(&session->s_mutex);
1652 return flushing;
1653 }
1654
1655 /*
1656 * Return true if we've flushed caps through the given flush_tid.
1657 */
1658 static int caps_are_flushed(struct inode *inode, unsigned tid)
1659 {
1660 struct ceph_inode_info *ci = ceph_inode(inode);
1661 int dirty, i, ret = 1;
1662
1663 spin_lock(&inode->i_lock);
1664 dirty = __ceph_caps_dirty(ci);
1665 for (i = 0; i < CEPH_CAP_BITS; i++)
1666 if ((ci->i_flushing_caps & (1 << i)) &&
1667 ci->i_cap_flush_tid[i] <= tid) {
1668 /* still flushing this bit */
1669 ret = 0;
1670 break;
1671 }
1672 spin_unlock(&inode->i_lock);
1673 return ret;
1674 }
1675
1676 /*
1677 * Wait on any unsafe replies for the given inode. First wait on the
1678 * newest request, and make that the upper bound. Then, if there are
1679 * more requests, keep waiting on the oldest as long as it is still older
1680 * than the original request.
1681 */
1682 static void sync_write_wait(struct inode *inode)
1683 {
1684 struct ceph_inode_info *ci = ceph_inode(inode);
1685 struct list_head *head = &ci->i_unsafe_writes;
1686 struct ceph_osd_request *req;
1687 u64 last_tid;
1688
1689 spin_lock(&ci->i_unsafe_lock);
1690 if (list_empty(head))
1691 goto out;
1692
1693 /* set upper bound as _last_ entry in chain */
1694 req = list_entry(head->prev, struct ceph_osd_request,
1695 r_unsafe_item);
1696 last_tid = req->r_tid;
1697
1698 do {
1699 ceph_osdc_get_request(req);
1700 spin_unlock(&ci->i_unsafe_lock);
1701 dout("sync_write_wait on tid %llu (until %llu)\n",
1702 req->r_tid, last_tid);
1703 wait_for_completion(&req->r_safe_completion);
1704 spin_lock(&ci->i_unsafe_lock);
1705 ceph_osdc_put_request(req);
1706
1707 /*
1708 * from here on look at first entry in chain, since we
1709 * only want to wait for anything older than last_tid
1710 */
1711 if (list_empty(head))
1712 break;
1713 req = list_entry(head->next, struct ceph_osd_request,
1714 r_unsafe_item);
1715 } while (req->r_tid < last_tid);
1716 out:
1717 spin_unlock(&ci->i_unsafe_lock);
1718 }
1719
1720 int ceph_fsync(struct file *file, struct dentry *dentry, int datasync)
1721 {
1722 struct inode *inode = dentry->d_inode;
1723 struct ceph_inode_info *ci = ceph_inode(inode);
1724 unsigned flush_tid;
1725 int ret;
1726 int dirty;
1727
1728 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1729 sync_write_wait(inode);
1730
1731 ret = filemap_write_and_wait(inode->i_mapping);
1732 if (ret < 0)
1733 return ret;
1734
1735 dirty = try_flush_caps(inode, NULL, &flush_tid);
1736 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1737
1738 /*
1739 * only wait on non-file metadata writeback (the mds
1740 * can recover size and mtime, so we don't need to
1741 * wait for that)
1742 */
1743 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1744 dout("fsync waiting for flush_tid %u\n", flush_tid);
1745 ret = wait_event_interruptible(ci->i_cap_wq,
1746 caps_are_flushed(inode, flush_tid));
1747 }
1748
1749 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1750 return ret;
1751 }
1752
1753 /*
1754 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1755 * queue inode for flush but don't do so immediately, because we can
1756 * get by with fewer MDS messages if we wait for data writeback to
1757 * complete first.
1758 */
1759 int ceph_write_inode(struct inode *inode, int wait)
1760 {
1761 struct ceph_inode_info *ci = ceph_inode(inode);
1762 unsigned flush_tid;
1763 int err = 0;
1764 int dirty;
1765
1766 dout("write_inode %p wait=%d\n", inode, wait);
1767 if (wait) {
1768 dirty = try_flush_caps(inode, NULL, &flush_tid);
1769 if (dirty)
1770 err = wait_event_interruptible(ci->i_cap_wq,
1771 caps_are_flushed(inode, flush_tid));
1772 } else {
1773 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1774
1775 spin_lock(&inode->i_lock);
1776 if (__ceph_caps_dirty(ci))
1777 __cap_delay_requeue_front(mdsc, ci);
1778 spin_unlock(&inode->i_lock);
1779 }
1780 return err;
1781 }
1782
1783 /*
1784 * After a recovering MDS goes active, we need to resend any caps
1785 * we were flushing.
1786 *
1787 * Caller holds session->s_mutex.
1788 */
1789 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1790 struct ceph_mds_session *session)
1791 {
1792 struct ceph_cap_snap *capsnap;
1793
1794 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1795 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1796 flushing_item) {
1797 struct ceph_inode_info *ci = capsnap->ci;
1798 struct inode *inode = &ci->vfs_inode;
1799 struct ceph_cap *cap;
1800
1801 spin_lock(&inode->i_lock);
1802 cap = ci->i_auth_cap;
1803 if (cap && cap->session == session) {
1804 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1805 cap, capsnap);
1806 __ceph_flush_snaps(ci, &session);
1807 } else {
1808 pr_err("%p auth cap %p not mds%d ???\n", inode,
1809 cap, session->s_mds);
1810 spin_unlock(&inode->i_lock);
1811 }
1812 }
1813 }
1814
1815 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1816 struct ceph_mds_session *session)
1817 {
1818 struct ceph_inode_info *ci;
1819
1820 kick_flushing_capsnaps(mdsc, session);
1821
1822 dout("kick_flushing_caps mds%d\n", session->s_mds);
1823 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1824 struct inode *inode = &ci->vfs_inode;
1825 struct ceph_cap *cap;
1826 int delayed = 0;
1827
1828 spin_lock(&inode->i_lock);
1829 cap = ci->i_auth_cap;
1830 if (cap && cap->session == session) {
1831 dout("kick_flushing_caps %p cap %p %s\n", inode,
1832 cap, ceph_cap_string(ci->i_flushing_caps));
1833 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1834 __ceph_caps_used(ci),
1835 __ceph_caps_wanted(ci),
1836 cap->issued | cap->implemented,
1837 ci->i_flushing_caps, NULL);
1838 if (delayed) {
1839 spin_lock(&inode->i_lock);
1840 __cap_delay_requeue(mdsc, ci);
1841 spin_unlock(&inode->i_lock);
1842 }
1843 } else {
1844 pr_err("%p auth cap %p not mds%d ???\n", inode,
1845 cap, session->s_mds);
1846 spin_unlock(&inode->i_lock);
1847 }
1848 }
1849 }
1850
1851
1852 /*
1853 * Take references to capabilities we hold, so that we don't release
1854 * them to the MDS prematurely.
1855 *
1856 * Protected by i_lock.
1857 */
1858 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1859 {
1860 if (got & CEPH_CAP_PIN)
1861 ci->i_pin_ref++;
1862 if (got & CEPH_CAP_FILE_RD)
1863 ci->i_rd_ref++;
1864 if (got & CEPH_CAP_FILE_CACHE)
1865 ci->i_rdcache_ref++;
1866 if (got & CEPH_CAP_FILE_WR)
1867 ci->i_wr_ref++;
1868 if (got & CEPH_CAP_FILE_BUFFER) {
1869 if (ci->i_wrbuffer_ref == 0)
1870 igrab(&ci->vfs_inode);
1871 ci->i_wrbuffer_ref++;
1872 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1873 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1874 }
1875 }
1876
1877 /*
1878 * Try to grab cap references. Specify those refs we @want, and the
1879 * minimal set we @need. Also include the larger offset we are writing
1880 * to (when applicable), and check against max_size here as well.
1881 * Note that caller is responsible for ensuring max_size increases are
1882 * requested from the MDS.
1883 */
1884 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1885 int *got, loff_t endoff, int *check_max, int *err)
1886 {
1887 struct inode *inode = &ci->vfs_inode;
1888 int ret = 0;
1889 int have, implemented;
1890
1891 dout("get_cap_refs %p need %s want %s\n", inode,
1892 ceph_cap_string(need), ceph_cap_string(want));
1893 spin_lock(&inode->i_lock);
1894
1895 /* make sure we _have_ some caps! */
1896 if (!__ceph_is_any_caps(ci)) {
1897 dout("get_cap_refs %p no real caps\n", inode);
1898 *err = -EBADF;
1899 ret = 1;
1900 goto out;
1901 }
1902
1903 if (need & CEPH_CAP_FILE_WR) {
1904 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1905 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1906 inode, endoff, ci->i_max_size);
1907 if (endoff > ci->i_wanted_max_size) {
1908 *check_max = 1;
1909 ret = 1;
1910 }
1911 goto out;
1912 }
1913 /*
1914 * If a sync write is in progress, we must wait, so that we
1915 * can get a final snapshot value for size+mtime.
1916 */
1917 if (__ceph_have_pending_cap_snap(ci)) {
1918 dout("get_cap_refs %p cap_snap_pending\n", inode);
1919 goto out;
1920 }
1921 }
1922 have = __ceph_caps_issued(ci, &implemented);
1923
1924 /*
1925 * disallow writes while a truncate is pending
1926 */
1927 if (ci->i_truncate_pending)
1928 have &= ~CEPH_CAP_FILE_WR;
1929
1930 if ((have & need) == need) {
1931 /*
1932 * Look at (implemented & ~have & not) so that we keep waiting
1933 * on transition from wanted -> needed caps. This is needed
1934 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
1935 * going before a prior buffered writeback happens.
1936 */
1937 int not = want & ~(have & need);
1938 int revoking = implemented & ~have;
1939 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
1940 inode, ceph_cap_string(have), ceph_cap_string(not),
1941 ceph_cap_string(revoking));
1942 if ((revoking & not) == 0) {
1943 *got = need | (have & want);
1944 __take_cap_refs(ci, *got);
1945 ret = 1;
1946 }
1947 } else {
1948 dout("get_cap_refs %p have %s needed %s\n", inode,
1949 ceph_cap_string(have), ceph_cap_string(need));
1950 }
1951 out:
1952 spin_unlock(&inode->i_lock);
1953 dout("get_cap_refs %p ret %d got %s\n", inode,
1954 ret, ceph_cap_string(*got));
1955 return ret;
1956 }
1957
1958 /*
1959 * Check the offset we are writing up to against our current
1960 * max_size. If necessary, tell the MDS we want to write to
1961 * a larger offset.
1962 */
1963 static void check_max_size(struct inode *inode, loff_t endoff)
1964 {
1965 struct ceph_inode_info *ci = ceph_inode(inode);
1966 int check = 0;
1967
1968 /* do we need to explicitly request a larger max_size? */
1969 spin_lock(&inode->i_lock);
1970 if ((endoff >= ci->i_max_size ||
1971 endoff > (inode->i_size << 1)) &&
1972 endoff > ci->i_wanted_max_size) {
1973 dout("write %p at large endoff %llu, req max_size\n",
1974 inode, endoff);
1975 ci->i_wanted_max_size = endoff;
1976 check = 1;
1977 }
1978 spin_unlock(&inode->i_lock);
1979 if (check)
1980 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
1981 }
1982
1983 /*
1984 * Wait for caps, and take cap references. If we can't get a WR cap
1985 * due to a small max_size, make sure we check_max_size (and possibly
1986 * ask the mds) so we don't get hung up indefinitely.
1987 */
1988 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
1989 loff_t endoff)
1990 {
1991 int check_max, ret, err;
1992
1993 retry:
1994 if (endoff > 0)
1995 check_max_size(&ci->vfs_inode, endoff);
1996 check_max = 0;
1997 err = 0;
1998 ret = wait_event_interruptible(ci->i_cap_wq,
1999 try_get_cap_refs(ci, need, want,
2000 got, endoff,
2001 &check_max, &err));
2002 if (err)
2003 ret = err;
2004 if (check_max)
2005 goto retry;
2006 return ret;
2007 }
2008
2009 /*
2010 * Take cap refs. Caller must already know we hold at least one ref
2011 * on the caps in question or we don't know this is safe.
2012 */
2013 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2014 {
2015 spin_lock(&ci->vfs_inode.i_lock);
2016 __take_cap_refs(ci, caps);
2017 spin_unlock(&ci->vfs_inode.i_lock);
2018 }
2019
2020 /*
2021 * Release cap refs.
2022 *
2023 * If we released the last ref on any given cap, call ceph_check_caps
2024 * to release (or schedule a release).
2025 *
2026 * If we are releasing a WR cap (from a sync write), finalize any affected
2027 * cap_snap, and wake up any waiters.
2028 */
2029 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2030 {
2031 struct inode *inode = &ci->vfs_inode;
2032 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2033 struct ceph_cap_snap *capsnap;
2034
2035 spin_lock(&inode->i_lock);
2036 if (had & CEPH_CAP_PIN)
2037 --ci->i_pin_ref;
2038 if (had & CEPH_CAP_FILE_RD)
2039 if (--ci->i_rd_ref == 0)
2040 last++;
2041 if (had & CEPH_CAP_FILE_CACHE)
2042 if (--ci->i_rdcache_ref == 0)
2043 last++;
2044 if (had & CEPH_CAP_FILE_BUFFER) {
2045 if (--ci->i_wrbuffer_ref == 0) {
2046 last++;
2047 put++;
2048 }
2049 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2050 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2051 }
2052 if (had & CEPH_CAP_FILE_WR)
2053 if (--ci->i_wr_ref == 0) {
2054 last++;
2055 if (!list_empty(&ci->i_cap_snaps)) {
2056 capsnap = list_first_entry(&ci->i_cap_snaps,
2057 struct ceph_cap_snap,
2058 ci_item);
2059 if (capsnap->writing) {
2060 capsnap->writing = 0;
2061 flushsnaps =
2062 __ceph_finish_cap_snap(ci,
2063 capsnap);
2064 wake = 1;
2065 }
2066 }
2067 }
2068 spin_unlock(&inode->i_lock);
2069
2070 dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had),
2071 last ? "last" : "");
2072
2073 if (last && !flushsnaps)
2074 ceph_check_caps(ci, 0, NULL);
2075 else if (flushsnaps)
2076 ceph_flush_snaps(ci);
2077 if (wake)
2078 wake_up(&ci->i_cap_wq);
2079 if (put)
2080 iput(inode);
2081 }
2082
2083 /*
2084 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2085 * context. Adjust per-snap dirty page accounting as appropriate.
2086 * Once all dirty data for a cap_snap is flushed, flush snapped file
2087 * metadata back to the MDS. If we dropped the last ref, call
2088 * ceph_check_caps.
2089 */
2090 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2091 struct ceph_snap_context *snapc)
2092 {
2093 struct inode *inode = &ci->vfs_inode;
2094 int last = 0;
2095 int last_snap = 0;
2096 int found = 0;
2097 struct ceph_cap_snap *capsnap = NULL;
2098
2099 spin_lock(&inode->i_lock);
2100 ci->i_wrbuffer_ref -= nr;
2101 last = !ci->i_wrbuffer_ref;
2102
2103 if (ci->i_head_snapc == snapc) {
2104 ci->i_wrbuffer_ref_head -= nr;
2105 if (!ci->i_wrbuffer_ref_head) {
2106 ceph_put_snap_context(ci->i_head_snapc);
2107 ci->i_head_snapc = NULL;
2108 }
2109 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2110 inode,
2111 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2112 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2113 last ? " LAST" : "");
2114 } else {
2115 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2116 if (capsnap->context == snapc) {
2117 found = 1;
2118 capsnap->dirty_pages -= nr;
2119 last_snap = !capsnap->dirty_pages;
2120 break;
2121 }
2122 }
2123 BUG_ON(!found);
2124 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2125 " snap %lld %d/%d -> %d/%d %s%s\n",
2126 inode, capsnap, capsnap->context->seq,
2127 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2128 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2129 last ? " (wrbuffer last)" : "",
2130 last_snap ? " (capsnap last)" : "");
2131 }
2132
2133 spin_unlock(&inode->i_lock);
2134
2135 if (last) {
2136 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2137 iput(inode);
2138 } else if (last_snap) {
2139 ceph_flush_snaps(ci);
2140 wake_up(&ci->i_cap_wq);
2141 }
2142 }
2143
2144 /*
2145 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2146 * actually be a revocation if it specifies a smaller cap set.)
2147 *
2148 * caller holds s_mutex.
2149 * return value:
2150 * 0 - ok
2151 * 1 - check_caps on auth cap only (writeback)
2152 * 2 - check_caps (ack revoke)
2153 */
2154 static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2155 struct ceph_mds_session *session,
2156 struct ceph_cap *cap,
2157 struct ceph_buffer *xattr_buf)
2158 __releases(inode->i_lock)
2159
2160 {
2161 struct ceph_inode_info *ci = ceph_inode(inode);
2162 int mds = session->s_mds;
2163 int seq = le32_to_cpu(grant->seq);
2164 int newcaps = le32_to_cpu(grant->caps);
2165 int issued, implemented, used, wanted, dirty;
2166 u64 size = le64_to_cpu(grant->size);
2167 u64 max_size = le64_to_cpu(grant->max_size);
2168 struct timespec mtime, atime, ctime;
2169 int reply = 0;
2170 int wake = 0;
2171 int writeback = 0;
2172 int revoked_rdcache = 0;
2173 int queue_invalidate = 0;
2174 int tried_invalidate = 0;
2175 int ret;
2176
2177 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2178 inode, cap, mds, seq, ceph_cap_string(newcaps));
2179 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2180 inode->i_size);
2181
2182 /*
2183 * If CACHE is being revoked, and we have no dirty buffers,
2184 * try to invalidate (once). (If there are dirty buffers, we
2185 * will invalidate _after_ writeback.)
2186 */
2187 restart:
2188 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2189 !ci->i_wrbuffer_ref && !tried_invalidate) {
2190 dout("CACHE invalidation\n");
2191 spin_unlock(&inode->i_lock);
2192 tried_invalidate = 1;
2193
2194 ret = invalidate_mapping_pages(&inode->i_data, 0, -1);
2195 spin_lock(&inode->i_lock);
2196 if (ret < 0) {
2197 /* there were locked pages.. invalidate later
2198 in a separate thread. */
2199 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2200 queue_invalidate = 1;
2201 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2202 }
2203 } else {
2204 /* we successfully invalidated those pages */
2205 revoked_rdcache = 1;
2206 ci->i_rdcache_gen = 0;
2207 ci->i_rdcache_revoking = 0;
2208 }
2209 goto restart;
2210 }
2211
2212 /* side effects now are allowed */
2213
2214 issued = __ceph_caps_issued(ci, &implemented);
2215 issued |= implemented | __ceph_caps_dirty(ci);
2216
2217 cap->cap_gen = session->s_cap_gen;
2218
2219 __check_cap_issue(ci, cap, newcaps);
2220
2221 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2222 inode->i_mode = le32_to_cpu(grant->mode);
2223 inode->i_uid = le32_to_cpu(grant->uid);
2224 inode->i_gid = le32_to_cpu(grant->gid);
2225 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2226 inode->i_uid, inode->i_gid);
2227 }
2228
2229 if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2230 inode->i_nlink = le32_to_cpu(grant->nlink);
2231
2232 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2233 int len = le32_to_cpu(grant->xattr_len);
2234 u64 version = le64_to_cpu(grant->xattr_version);
2235
2236 if (version > ci->i_xattrs.version) {
2237 dout(" got new xattrs v%llu on %p len %d\n",
2238 version, inode, len);
2239 if (ci->i_xattrs.blob)
2240 ceph_buffer_put(ci->i_xattrs.blob);
2241 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2242 ci->i_xattrs.version = version;
2243 }
2244 }
2245
2246 /* size/ctime/mtime/atime? */
2247 ceph_fill_file_size(inode, issued,
2248 le32_to_cpu(grant->truncate_seq),
2249 le64_to_cpu(grant->truncate_size), size);
2250 ceph_decode_timespec(&mtime, &grant->mtime);
2251 ceph_decode_timespec(&atime, &grant->atime);
2252 ceph_decode_timespec(&ctime, &grant->ctime);
2253 ceph_fill_file_time(inode, issued,
2254 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2255 &atime);
2256
2257 /* max size increase? */
2258 if (max_size != ci->i_max_size) {
2259 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2260 ci->i_max_size = max_size;
2261 if (max_size >= ci->i_wanted_max_size) {
2262 ci->i_wanted_max_size = 0; /* reset */
2263 ci->i_requested_max_size = 0;
2264 }
2265 wake = 1;
2266 }
2267
2268 /* check cap bits */
2269 wanted = __ceph_caps_wanted(ci);
2270 used = __ceph_caps_used(ci);
2271 dirty = __ceph_caps_dirty(ci);
2272 dout(" my wanted = %s, used = %s, dirty %s\n",
2273 ceph_cap_string(wanted),
2274 ceph_cap_string(used),
2275 ceph_cap_string(dirty));
2276 if (wanted != le32_to_cpu(grant->wanted)) {
2277 dout("mds wanted %s -> %s\n",
2278 ceph_cap_string(le32_to_cpu(grant->wanted)),
2279 ceph_cap_string(wanted));
2280 grant->wanted = cpu_to_le32(wanted);
2281 }
2282
2283 cap->seq = seq;
2284
2285 /* file layout may have changed */
2286 ci->i_layout = grant->layout;
2287
2288 /* revocation, grant, or no-op? */
2289 if (cap->issued & ~newcaps) {
2290 dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2291 ceph_cap_string(newcaps));
2292 if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2293 writeback = 1; /* will delay ack */
2294 else if (dirty & ~newcaps)
2295 reply = 1; /* initiate writeback in check_caps */
2296 else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2297 revoked_rdcache)
2298 reply = 2; /* send revoke ack in check_caps */
2299 cap->issued = newcaps;
2300 } else if (cap->issued == newcaps) {
2301 dout("caps unchanged: %s -> %s\n",
2302 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2303 } else {
2304 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2305 ceph_cap_string(newcaps));
2306 cap->issued = newcaps;
2307 cap->implemented |= newcaps; /* add bits only, to
2308 * avoid stepping on a
2309 * pending revocation */
2310 wake = 1;
2311 }
2312
2313 spin_unlock(&inode->i_lock);
2314 if (writeback)
2315 /*
2316 * queue inode for writeback: we can't actually call
2317 * filemap_write_and_wait, etc. from message handler
2318 * context.
2319 */
2320 ceph_queue_writeback(inode);
2321 if (queue_invalidate)
2322 ceph_queue_invalidate(inode);
2323 if (wake)
2324 wake_up(&ci->i_cap_wq);
2325 return reply;
2326 }
2327
2328 /*
2329 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2330 * MDS has been safely committed.
2331 */
2332 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2333 struct ceph_mds_caps *m,
2334 struct ceph_mds_session *session,
2335 struct ceph_cap *cap)
2336 __releases(inode->i_lock)
2337 {
2338 struct ceph_inode_info *ci = ceph_inode(inode);
2339 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
2340 unsigned seq = le32_to_cpu(m->seq);
2341 int dirty = le32_to_cpu(m->dirty);
2342 int cleaned = 0;
2343 int drop = 0;
2344 int i;
2345
2346 for (i = 0; i < CEPH_CAP_BITS; i++)
2347 if ((dirty & (1 << i)) &&
2348 flush_tid == ci->i_cap_flush_tid[i])
2349 cleaned |= 1 << i;
2350
2351 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2352 " flushing %s -> %s\n",
2353 inode, session->s_mds, seq, ceph_cap_string(dirty),
2354 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2355 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2356
2357 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2358 goto out;
2359
2360 ci->i_flushing_caps &= ~cleaned;
2361
2362 spin_lock(&mdsc->cap_dirty_lock);
2363 if (ci->i_flushing_caps == 0) {
2364 list_del_init(&ci->i_flushing_item);
2365 if (!list_empty(&session->s_cap_flushing))
2366 dout(" mds%d still flushing cap on %p\n",
2367 session->s_mds,
2368 &list_entry(session->s_cap_flushing.next,
2369 struct ceph_inode_info,
2370 i_flushing_item)->vfs_inode);
2371 mdsc->num_cap_flushing--;
2372 wake_up(&mdsc->cap_flushing_wq);
2373 dout(" inode %p now !flushing\n", inode);
2374
2375 if (ci->i_dirty_caps == 0) {
2376 dout(" inode %p now clean\n", inode);
2377 BUG_ON(!list_empty(&ci->i_dirty_item));
2378 drop = 1;
2379 } else {
2380 BUG_ON(list_empty(&ci->i_dirty_item));
2381 }
2382 }
2383 spin_unlock(&mdsc->cap_dirty_lock);
2384 wake_up(&ci->i_cap_wq);
2385
2386 out:
2387 spin_unlock(&inode->i_lock);
2388 if (drop)
2389 iput(inode);
2390 }
2391
2392 /*
2393 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2394 * throw away our cap_snap.
2395 *
2396 * Caller hold s_mutex.
2397 */
2398 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2399 struct ceph_mds_caps *m,
2400 struct ceph_mds_session *session)
2401 {
2402 struct ceph_inode_info *ci = ceph_inode(inode);
2403 u64 follows = le64_to_cpu(m->snap_follows);
2404 struct ceph_cap_snap *capsnap;
2405 int drop = 0;
2406
2407 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2408 inode, ci, session->s_mds, follows);
2409
2410 spin_lock(&inode->i_lock);
2411 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2412 if (capsnap->follows == follows) {
2413 if (capsnap->flush_tid != flush_tid) {
2414 dout(" cap_snap %p follows %lld tid %lld !="
2415 " %lld\n", capsnap, follows,
2416 flush_tid, capsnap->flush_tid);
2417 break;
2418 }
2419 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2420 dout(" removing cap_snap %p follows %lld\n",
2421 capsnap, follows);
2422 ceph_put_snap_context(capsnap->context);
2423 list_del(&capsnap->ci_item);
2424 list_del(&capsnap->flushing_item);
2425 ceph_put_cap_snap(capsnap);
2426 drop = 1;
2427 break;
2428 } else {
2429 dout(" skipping cap_snap %p follows %lld\n",
2430 capsnap, capsnap->follows);
2431 }
2432 }
2433 spin_unlock(&inode->i_lock);
2434 if (drop)
2435 iput(inode);
2436 }
2437
2438 /*
2439 * Handle TRUNC from MDS, indicating file truncation.
2440 *
2441 * caller hold s_mutex.
2442 */
2443 static void handle_cap_trunc(struct inode *inode,
2444 struct ceph_mds_caps *trunc,
2445 struct ceph_mds_session *session)
2446 __releases(inode->i_lock)
2447 {
2448 struct ceph_inode_info *ci = ceph_inode(inode);
2449 int mds = session->s_mds;
2450 int seq = le32_to_cpu(trunc->seq);
2451 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2452 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2453 u64 size = le64_to_cpu(trunc->size);
2454 int implemented = 0;
2455 int dirty = __ceph_caps_dirty(ci);
2456 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2457 int queue_trunc = 0;
2458
2459 issued |= implemented | dirty;
2460
2461 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2462 inode, mds, seq, truncate_size, truncate_seq);
2463 queue_trunc = ceph_fill_file_size(inode, issued,
2464 truncate_seq, truncate_size, size);
2465 spin_unlock(&inode->i_lock);
2466
2467 if (queue_trunc)
2468 ceph_queue_vmtruncate(inode);
2469 }
2470
2471 /*
2472 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2473 * different one. If we are the most recent migration we've seen (as
2474 * indicated by mseq), make note of the migrating cap bits for the
2475 * duration (until we see the corresponding IMPORT).
2476 *
2477 * caller holds s_mutex
2478 */
2479 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2480 struct ceph_mds_session *session)
2481 {
2482 struct ceph_inode_info *ci = ceph_inode(inode);
2483 int mds = session->s_mds;
2484 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2485 struct ceph_cap *cap = NULL, *t;
2486 struct rb_node *p;
2487 int remember = 1;
2488
2489 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2490 inode, ci, mds, mseq);
2491
2492 spin_lock(&inode->i_lock);
2493
2494 /* make sure we haven't seen a higher mseq */
2495 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2496 t = rb_entry(p, struct ceph_cap, ci_node);
2497 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2498 dout(" higher mseq on cap from mds%d\n",
2499 t->session->s_mds);
2500 remember = 0;
2501 }
2502 if (t->session->s_mds == mds)
2503 cap = t;
2504 }
2505
2506 if (cap) {
2507 if (remember) {
2508 /* make note */
2509 ci->i_cap_exporting_mds = mds;
2510 ci->i_cap_exporting_mseq = mseq;
2511 ci->i_cap_exporting_issued = cap->issued;
2512 }
2513 __ceph_remove_cap(cap, NULL);
2514 } else {
2515 WARN_ON(!cap);
2516 }
2517
2518 spin_unlock(&inode->i_lock);
2519 }
2520
2521 /*
2522 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2523 * clean them up.
2524 *
2525 * caller holds s_mutex.
2526 */
2527 static void handle_cap_import(struct ceph_mds_client *mdsc,
2528 struct inode *inode, struct ceph_mds_caps *im,
2529 struct ceph_mds_session *session,
2530 void *snaptrace, int snaptrace_len)
2531 {
2532 struct ceph_inode_info *ci = ceph_inode(inode);
2533 int mds = session->s_mds;
2534 unsigned issued = le32_to_cpu(im->caps);
2535 unsigned wanted = le32_to_cpu(im->wanted);
2536 unsigned seq = le32_to_cpu(im->seq);
2537 unsigned mseq = le32_to_cpu(im->migrate_seq);
2538 u64 realmino = le64_to_cpu(im->realm);
2539 u64 cap_id = le64_to_cpu(im->cap_id);
2540
2541 if (ci->i_cap_exporting_mds >= 0 &&
2542 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2543 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2544 " - cleared exporting from mds%d\n",
2545 inode, ci, mds, mseq,
2546 ci->i_cap_exporting_mds);
2547 ci->i_cap_exporting_issued = 0;
2548 ci->i_cap_exporting_mseq = 0;
2549 ci->i_cap_exporting_mds = -1;
2550 } else {
2551 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2552 inode, ci, mds, mseq);
2553 }
2554
2555 down_write(&mdsc->snap_rwsem);
2556 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2557 false);
2558 downgrade_write(&mdsc->snap_rwsem);
2559 ceph_add_cap(inode, session, cap_id, -1,
2560 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2561 NULL /* no caps context */);
2562 try_flush_caps(inode, session, NULL);
2563 up_read(&mdsc->snap_rwsem);
2564 }
2565
2566 /*
2567 * Handle a caps message from the MDS.
2568 *
2569 * Identify the appropriate session, inode, and call the right handler
2570 * based on the cap op.
2571 */
2572 void ceph_handle_caps(struct ceph_mds_session *session,
2573 struct ceph_msg *msg)
2574 {
2575 struct ceph_mds_client *mdsc = session->s_mdsc;
2576 struct super_block *sb = mdsc->client->sb;
2577 struct inode *inode;
2578 struct ceph_cap *cap;
2579 struct ceph_mds_caps *h;
2580 int mds = le64_to_cpu(msg->hdr.src.name.num);
2581 int op;
2582 u32 seq;
2583 struct ceph_vino vino;
2584 u64 cap_id;
2585 u64 size, max_size;
2586 u64 tid;
2587 int check_caps = 0;
2588 int r;
2589
2590 dout("handle_caps from mds%d\n", mds);
2591
2592 /* decode */
2593 tid = le64_to_cpu(msg->hdr.tid);
2594 if (msg->front.iov_len < sizeof(*h))
2595 goto bad;
2596 h = msg->front.iov_base;
2597 op = le32_to_cpu(h->op);
2598 vino.ino = le64_to_cpu(h->ino);
2599 vino.snap = CEPH_NOSNAP;
2600 cap_id = le64_to_cpu(h->cap_id);
2601 seq = le32_to_cpu(h->seq);
2602 size = le64_to_cpu(h->size);
2603 max_size = le64_to_cpu(h->max_size);
2604
2605 mutex_lock(&session->s_mutex);
2606 session->s_seq++;
2607 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2608 (unsigned)seq);
2609
2610 /* lookup ino */
2611 inode = ceph_find_inode(sb, vino);
2612 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2613 vino.snap, inode);
2614 if (!inode) {
2615 dout(" i don't have ino %llx\n", vino.ino);
2616 goto done;
2617 }
2618
2619 /* these will work even if we don't have a cap yet */
2620 switch (op) {
2621 case CEPH_CAP_OP_FLUSHSNAP_ACK:
2622 handle_cap_flushsnap_ack(inode, tid, h, session);
2623 goto done;
2624
2625 case CEPH_CAP_OP_EXPORT:
2626 handle_cap_export(inode, h, session);
2627 goto done;
2628
2629 case CEPH_CAP_OP_IMPORT:
2630 handle_cap_import(mdsc, inode, h, session,
2631 msg->middle,
2632 le32_to_cpu(h->snap_trace_len));
2633 check_caps = 1; /* we may have sent a RELEASE to the old auth */
2634 goto done;
2635 }
2636
2637 /* the rest require a cap */
2638 spin_lock(&inode->i_lock);
2639 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2640 if (!cap) {
2641 dout("no cap on %p ino %llx.%llx from mds%d, releasing\n",
2642 inode, ceph_ino(inode), ceph_snap(inode), mds);
2643 spin_unlock(&inode->i_lock);
2644 goto done;
2645 }
2646
2647 /* note that each of these drops i_lock for us */
2648 switch (op) {
2649 case CEPH_CAP_OP_REVOKE:
2650 case CEPH_CAP_OP_GRANT:
2651 r = handle_cap_grant(inode, h, session, cap, msg->middle);
2652 if (r == 1)
2653 ceph_check_caps(ceph_inode(inode),
2654 CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2655 session);
2656 else if (r == 2)
2657 ceph_check_caps(ceph_inode(inode),
2658 CHECK_CAPS_NODELAY,
2659 session);
2660 break;
2661
2662 case CEPH_CAP_OP_FLUSH_ACK:
2663 handle_cap_flush_ack(inode, tid, h, session, cap);
2664 break;
2665
2666 case CEPH_CAP_OP_TRUNC:
2667 handle_cap_trunc(inode, h, session);
2668 break;
2669
2670 default:
2671 spin_unlock(&inode->i_lock);
2672 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2673 ceph_cap_op_name(op));
2674 }
2675
2676 done:
2677 mutex_unlock(&session->s_mutex);
2678
2679 if (check_caps)
2680 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL);
2681 if (inode)
2682 iput(inode);
2683 return;
2684
2685 bad:
2686 pr_err("ceph_handle_caps: corrupt message\n");
2687 ceph_msg_dump(msg);
2688 return;
2689 }
2690
2691 /*
2692 * Delayed work handler to process end of delayed cap release LRU list.
2693 */
2694 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
2695 {
2696 struct ceph_inode_info *ci;
2697 int flags = CHECK_CAPS_NODELAY;
2698
2699 dout("check_delayed_caps\n");
2700 while (1) {
2701 spin_lock(&mdsc->cap_delay_lock);
2702 if (list_empty(&mdsc->cap_delay_list))
2703 break;
2704 ci = list_first_entry(&mdsc->cap_delay_list,
2705 struct ceph_inode_info,
2706 i_cap_delay_list);
2707 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2708 time_before(jiffies, ci->i_hold_caps_max))
2709 break;
2710 list_del_init(&ci->i_cap_delay_list);
2711 spin_unlock(&mdsc->cap_delay_lock);
2712 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2713 ceph_check_caps(ci, flags, NULL);
2714 }
2715 spin_unlock(&mdsc->cap_delay_lock);
2716 }
2717
2718 /*
2719 * Flush all dirty caps to the mds
2720 */
2721 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2722 {
2723 struct ceph_inode_info *ci;
2724 struct inode *inode;
2725
2726 dout("flush_dirty_caps\n");
2727 spin_lock(&mdsc->cap_dirty_lock);
2728 while (!list_empty(&mdsc->cap_dirty)) {
2729 ci = list_first_entry(&mdsc->cap_dirty,
2730 struct ceph_inode_info,
2731 i_dirty_item);
2732 inode = igrab(&ci->vfs_inode);
2733 spin_unlock(&mdsc->cap_dirty_lock);
2734 if (inode) {
2735 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2736 NULL);
2737 iput(inode);
2738 }
2739 spin_lock(&mdsc->cap_dirty_lock);
2740 }
2741 spin_unlock(&mdsc->cap_dirty_lock);
2742 }
2743
2744 /*
2745 * Drop open file reference. If we were the last open file,
2746 * we may need to release capabilities to the MDS (or schedule
2747 * their delayed release).
2748 */
2749 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2750 {
2751 struct inode *inode = &ci->vfs_inode;
2752 int last = 0;
2753
2754 spin_lock(&inode->i_lock);
2755 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2756 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2757 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2758 if (--ci->i_nr_by_mode[fmode] == 0)
2759 last++;
2760 spin_unlock(&inode->i_lock);
2761
2762 if (last && ci->i_vino.snap == CEPH_NOSNAP)
2763 ceph_check_caps(ci, 0, NULL);
2764 }
2765
2766 /*
2767 * Helpers for embedding cap and dentry lease releases into mds
2768 * requests.
2769 *
2770 * @force is used by dentry_release (below) to force inclusion of a
2771 * record for the directory inode, even when there aren't any caps to
2772 * drop.
2773 */
2774 int ceph_encode_inode_release(void **p, struct inode *inode,
2775 int mds, int drop, int unless, int force)
2776 {
2777 struct ceph_inode_info *ci = ceph_inode(inode);
2778 struct ceph_cap *cap;
2779 struct ceph_mds_request_release *rel = *p;
2780 int ret = 0;
2781
2782 dout("encode_inode_release %p mds%d drop %s unless %s\n", inode,
2783 mds, ceph_cap_string(drop), ceph_cap_string(unless));
2784
2785 spin_lock(&inode->i_lock);
2786 cap = __get_cap_for_mds(ci, mds);
2787 if (cap && __cap_is_valid(cap)) {
2788 if (force ||
2789 ((cap->issued & drop) &&
2790 (cap->issued & unless) == 0)) {
2791 if ((cap->issued & drop) &&
2792 (cap->issued & unless) == 0) {
2793 dout("encode_inode_release %p cap %p %s -> "
2794 "%s\n", inode, cap,
2795 ceph_cap_string(cap->issued),
2796 ceph_cap_string(cap->issued & ~drop));
2797 cap->issued &= ~drop;
2798 cap->implemented &= ~drop;
2799 if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2800 int wanted = __ceph_caps_wanted(ci);
2801 dout(" wanted %s -> %s (act %s)\n",
2802 ceph_cap_string(cap->mds_wanted),
2803 ceph_cap_string(cap->mds_wanted &
2804 ~wanted),
2805 ceph_cap_string(wanted));
2806 cap->mds_wanted &= wanted;
2807 }
2808 } else {
2809 dout("encode_inode_release %p cap %p %s"
2810 " (force)\n", inode, cap,
2811 ceph_cap_string(cap->issued));
2812 }
2813
2814 rel->ino = cpu_to_le64(ceph_ino(inode));
2815 rel->cap_id = cpu_to_le64(cap->cap_id);
2816 rel->seq = cpu_to_le32(cap->seq);
2817 rel->issue_seq = cpu_to_le32(cap->issue_seq),
2818 rel->mseq = cpu_to_le32(cap->mseq);
2819 rel->caps = cpu_to_le32(cap->issued);
2820 rel->wanted = cpu_to_le32(cap->mds_wanted);
2821 rel->dname_len = 0;
2822 rel->dname_seq = 0;
2823 *p += sizeof(*rel);
2824 ret = 1;
2825 } else {
2826 dout("encode_inode_release %p cap %p %s\n",
2827 inode, cap, ceph_cap_string(cap->issued));
2828 }
2829 }
2830 spin_unlock(&inode->i_lock);
2831 return ret;
2832 }
2833
2834 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2835 int mds, int drop, int unless)
2836 {
2837 struct inode *dir = dentry->d_parent->d_inode;
2838 struct ceph_mds_request_release *rel = *p;
2839 struct ceph_dentry_info *di = ceph_dentry(dentry);
2840 int force = 0;
2841 int ret;
2842
2843 /*
2844 * force an record for the directory caps if we have a dentry lease.
2845 * this is racy (can't take i_lock and d_lock together), but it
2846 * doesn't have to be perfect; the mds will revoke anything we don't
2847 * release.
2848 */
2849 spin_lock(&dentry->d_lock);
2850 if (di->lease_session && di->lease_session->s_mds == mds)
2851 force = 1;
2852 spin_unlock(&dentry->d_lock);
2853
2854 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2855
2856 spin_lock(&dentry->d_lock);
2857 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2858 dout("encode_dentry_release %p mds%d seq %d\n",
2859 dentry, mds, (int)di->lease_seq);
2860 rel->dname_len = cpu_to_le32(dentry->d_name.len);
2861 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2862 *p += dentry->d_name.len;
2863 rel->dname_seq = cpu_to_le32(di->lease_seq);
2864 }
2865 spin_unlock(&dentry->d_lock);
2866 return ret;
2867 }
This page took 0.103949 seconds and 6 git commands to generate.