Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/gfp.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
12
13 #include "super.h"
14 #include "mds_client.h"
15
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
22
23 /*
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
30 *
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
35 * requests.
36 *
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
40 *
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
46 */
47
48 struct ceph_reconnect_state {
49 int nr_caps;
50 struct ceph_pagelist *pagelist;
51 bool flock;
52 };
53
54 static void __wake_requests(struct ceph_mds_client *mdsc,
55 struct list_head *head);
56
57 static const struct ceph_connection_operations mds_con_ops;
58
59
60 /*
61 * mds reply parsing
62 */
63
64 /*
65 * parse individual inode info
66 */
67 static int parse_reply_info_in(void **p, void *end,
68 struct ceph_mds_reply_info_in *info,
69 u64 features)
70 {
71 int err = -EIO;
72
73 info->in = *p;
74 *p += sizeof(struct ceph_mds_reply_inode) +
75 sizeof(*info->in->fragtree.splits) *
76 le32_to_cpu(info->in->fragtree.nsplits);
77
78 ceph_decode_32_safe(p, end, info->symlink_len, bad);
79 ceph_decode_need(p, end, info->symlink_len, bad);
80 info->symlink = *p;
81 *p += info->symlink_len;
82
83 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
84 ceph_decode_copy_safe(p, end, &info->dir_layout,
85 sizeof(info->dir_layout), bad);
86 else
87 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
88
89 ceph_decode_32_safe(p, end, info->xattr_len, bad);
90 ceph_decode_need(p, end, info->xattr_len, bad);
91 info->xattr_data = *p;
92 *p += info->xattr_len;
93
94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
95 ceph_decode_64_safe(p, end, info->inline_version, bad);
96 ceph_decode_32_safe(p, end, info->inline_len, bad);
97 ceph_decode_need(p, end, info->inline_len, bad);
98 info->inline_data = *p;
99 *p += info->inline_len;
100 } else
101 info->inline_version = CEPH_INLINE_NONE;
102
103 return 0;
104 bad:
105 return err;
106 }
107
108 /*
109 * parse a normal reply, which may contain a (dir+)dentry and/or a
110 * target inode.
111 */
112 static int parse_reply_info_trace(void **p, void *end,
113 struct ceph_mds_reply_info_parsed *info,
114 u64 features)
115 {
116 int err;
117
118 if (info->head->is_dentry) {
119 err = parse_reply_info_in(p, end, &info->diri, features);
120 if (err < 0)
121 goto out_bad;
122
123 if (unlikely(*p + sizeof(*info->dirfrag) > end))
124 goto bad;
125 info->dirfrag = *p;
126 *p += sizeof(*info->dirfrag) +
127 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
128 if (unlikely(*p > end))
129 goto bad;
130
131 ceph_decode_32_safe(p, end, info->dname_len, bad);
132 ceph_decode_need(p, end, info->dname_len, bad);
133 info->dname = *p;
134 *p += info->dname_len;
135 info->dlease = *p;
136 *p += sizeof(*info->dlease);
137 }
138
139 if (info->head->is_target) {
140 err = parse_reply_info_in(p, end, &info->targeti, features);
141 if (err < 0)
142 goto out_bad;
143 }
144
145 if (unlikely(*p != end))
146 goto bad;
147 return 0;
148
149 bad:
150 err = -EIO;
151 out_bad:
152 pr_err("problem parsing mds trace %d\n", err);
153 return err;
154 }
155
156 /*
157 * parse readdir results
158 */
159 static int parse_reply_info_dir(void **p, void *end,
160 struct ceph_mds_reply_info_parsed *info,
161 u64 features)
162 {
163 u32 num, i = 0;
164 int err;
165
166 info->dir_dir = *p;
167 if (*p + sizeof(*info->dir_dir) > end)
168 goto bad;
169 *p += sizeof(*info->dir_dir) +
170 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
171 if (*p > end)
172 goto bad;
173
174 ceph_decode_need(p, end, sizeof(num) + 2, bad);
175 num = ceph_decode_32(p);
176 info->dir_end = ceph_decode_8(p);
177 info->dir_complete = ceph_decode_8(p);
178 if (num == 0)
179 goto done;
180
181 BUG_ON(!info->dir_in);
182 info->dir_dname = (void *)(info->dir_in + num);
183 info->dir_dname_len = (void *)(info->dir_dname + num);
184 info->dir_dlease = (void *)(info->dir_dname_len + num);
185 if ((unsigned long)(info->dir_dlease + num) >
186 (unsigned long)info->dir_in + info->dir_buf_size) {
187 pr_err("dir contents are larger than expected\n");
188 WARN_ON(1);
189 goto bad;
190 }
191
192 info->dir_nr = num;
193 while (num) {
194 /* dentry */
195 ceph_decode_need(p, end, sizeof(u32)*2, bad);
196 info->dir_dname_len[i] = ceph_decode_32(p);
197 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
198 info->dir_dname[i] = *p;
199 *p += info->dir_dname_len[i];
200 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
201 info->dir_dname[i]);
202 info->dir_dlease[i] = *p;
203 *p += sizeof(struct ceph_mds_reply_lease);
204
205 /* inode */
206 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
207 if (err < 0)
208 goto out_bad;
209 i++;
210 num--;
211 }
212
213 done:
214 if (*p != end)
215 goto bad;
216 return 0;
217
218 bad:
219 err = -EIO;
220 out_bad:
221 pr_err("problem parsing dir contents %d\n", err);
222 return err;
223 }
224
225 /*
226 * parse fcntl F_GETLK results
227 */
228 static int parse_reply_info_filelock(void **p, void *end,
229 struct ceph_mds_reply_info_parsed *info,
230 u64 features)
231 {
232 if (*p + sizeof(*info->filelock_reply) > end)
233 goto bad;
234
235 info->filelock_reply = *p;
236 *p += sizeof(*info->filelock_reply);
237
238 if (unlikely(*p != end))
239 goto bad;
240 return 0;
241
242 bad:
243 return -EIO;
244 }
245
246 /*
247 * parse create results
248 */
249 static int parse_reply_info_create(void **p, void *end,
250 struct ceph_mds_reply_info_parsed *info,
251 u64 features)
252 {
253 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
254 if (*p == end) {
255 info->has_create_ino = false;
256 } else {
257 info->has_create_ino = true;
258 info->ino = ceph_decode_64(p);
259 }
260 }
261
262 if (unlikely(*p != end))
263 goto bad;
264 return 0;
265
266 bad:
267 return -EIO;
268 }
269
270 /*
271 * parse extra results
272 */
273 static int parse_reply_info_extra(void **p, void *end,
274 struct ceph_mds_reply_info_parsed *info,
275 u64 features)
276 {
277 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
278 return parse_reply_info_filelock(p, end, info, features);
279 else if (info->head->op == CEPH_MDS_OP_READDIR ||
280 info->head->op == CEPH_MDS_OP_LSSNAP)
281 return parse_reply_info_dir(p, end, info, features);
282 else if (info->head->op == CEPH_MDS_OP_CREATE)
283 return parse_reply_info_create(p, end, info, features);
284 else
285 return -EIO;
286 }
287
288 /*
289 * parse entire mds reply
290 */
291 static int parse_reply_info(struct ceph_msg *msg,
292 struct ceph_mds_reply_info_parsed *info,
293 u64 features)
294 {
295 void *p, *end;
296 u32 len;
297 int err;
298
299 info->head = msg->front.iov_base;
300 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
301 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
302
303 /* trace */
304 ceph_decode_32_safe(&p, end, len, bad);
305 if (len > 0) {
306 ceph_decode_need(&p, end, len, bad);
307 err = parse_reply_info_trace(&p, p+len, info, features);
308 if (err < 0)
309 goto out_bad;
310 }
311
312 /* extra */
313 ceph_decode_32_safe(&p, end, len, bad);
314 if (len > 0) {
315 ceph_decode_need(&p, end, len, bad);
316 err = parse_reply_info_extra(&p, p+len, info, features);
317 if (err < 0)
318 goto out_bad;
319 }
320
321 /* snap blob */
322 ceph_decode_32_safe(&p, end, len, bad);
323 info->snapblob_len = len;
324 info->snapblob = p;
325 p += len;
326
327 if (p != end)
328 goto bad;
329 return 0;
330
331 bad:
332 err = -EIO;
333 out_bad:
334 pr_err("mds parse_reply err %d\n", err);
335 return err;
336 }
337
338 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
339 {
340 if (!info->dir_in)
341 return;
342 free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size));
343 }
344
345
346 /*
347 * sessions
348 */
349 const char *ceph_session_state_name(int s)
350 {
351 switch (s) {
352 case CEPH_MDS_SESSION_NEW: return "new";
353 case CEPH_MDS_SESSION_OPENING: return "opening";
354 case CEPH_MDS_SESSION_OPEN: return "open";
355 case CEPH_MDS_SESSION_HUNG: return "hung";
356 case CEPH_MDS_SESSION_CLOSING: return "closing";
357 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
358 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
359 default: return "???";
360 }
361 }
362
363 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
364 {
365 if (atomic_inc_not_zero(&s->s_ref)) {
366 dout("mdsc get_session %p %d -> %d\n", s,
367 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
368 return s;
369 } else {
370 dout("mdsc get_session %p 0 -- FAIL", s);
371 return NULL;
372 }
373 }
374
375 void ceph_put_mds_session(struct ceph_mds_session *s)
376 {
377 dout("mdsc put_session %p %d -> %d\n", s,
378 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
379 if (atomic_dec_and_test(&s->s_ref)) {
380 if (s->s_auth.authorizer)
381 ceph_auth_destroy_authorizer(
382 s->s_mdsc->fsc->client->monc.auth,
383 s->s_auth.authorizer);
384 kfree(s);
385 }
386 }
387
388 /*
389 * called under mdsc->mutex
390 */
391 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
392 int mds)
393 {
394 struct ceph_mds_session *session;
395
396 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
397 return NULL;
398 session = mdsc->sessions[mds];
399 dout("lookup_mds_session %p %d\n", session,
400 atomic_read(&session->s_ref));
401 get_session(session);
402 return session;
403 }
404
405 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
406 {
407 if (mds >= mdsc->max_sessions)
408 return false;
409 return mdsc->sessions[mds];
410 }
411
412 static int __verify_registered_session(struct ceph_mds_client *mdsc,
413 struct ceph_mds_session *s)
414 {
415 if (s->s_mds >= mdsc->max_sessions ||
416 mdsc->sessions[s->s_mds] != s)
417 return -ENOENT;
418 return 0;
419 }
420
421 /*
422 * create+register a new session for given mds.
423 * called under mdsc->mutex.
424 */
425 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
426 int mds)
427 {
428 struct ceph_mds_session *s;
429
430 if (mds >= mdsc->mdsmap->m_max_mds)
431 return ERR_PTR(-EINVAL);
432
433 s = kzalloc(sizeof(*s), GFP_NOFS);
434 if (!s)
435 return ERR_PTR(-ENOMEM);
436 s->s_mdsc = mdsc;
437 s->s_mds = mds;
438 s->s_state = CEPH_MDS_SESSION_NEW;
439 s->s_ttl = 0;
440 s->s_seq = 0;
441 mutex_init(&s->s_mutex);
442
443 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
444
445 spin_lock_init(&s->s_gen_ttl_lock);
446 s->s_cap_gen = 0;
447 s->s_cap_ttl = jiffies - 1;
448
449 spin_lock_init(&s->s_cap_lock);
450 s->s_renew_requested = 0;
451 s->s_renew_seq = 0;
452 INIT_LIST_HEAD(&s->s_caps);
453 s->s_nr_caps = 0;
454 s->s_trim_caps = 0;
455 atomic_set(&s->s_ref, 1);
456 INIT_LIST_HEAD(&s->s_waiting);
457 INIT_LIST_HEAD(&s->s_unsafe);
458 s->s_num_cap_releases = 0;
459 s->s_cap_reconnect = 0;
460 s->s_cap_iterator = NULL;
461 INIT_LIST_HEAD(&s->s_cap_releases);
462 INIT_LIST_HEAD(&s->s_cap_flushing);
463 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
464
465 dout("register_session mds%d\n", mds);
466 if (mds >= mdsc->max_sessions) {
467 int newmax = 1 << get_count_order(mds+1);
468 struct ceph_mds_session **sa;
469
470 dout("register_session realloc to %d\n", newmax);
471 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
472 if (sa == NULL)
473 goto fail_realloc;
474 if (mdsc->sessions) {
475 memcpy(sa, mdsc->sessions,
476 mdsc->max_sessions * sizeof(void *));
477 kfree(mdsc->sessions);
478 }
479 mdsc->sessions = sa;
480 mdsc->max_sessions = newmax;
481 }
482 mdsc->sessions[mds] = s;
483 atomic_inc(&mdsc->num_sessions);
484 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
485
486 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
487 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
488
489 return s;
490
491 fail_realloc:
492 kfree(s);
493 return ERR_PTR(-ENOMEM);
494 }
495
496 /*
497 * called under mdsc->mutex
498 */
499 static void __unregister_session(struct ceph_mds_client *mdsc,
500 struct ceph_mds_session *s)
501 {
502 dout("__unregister_session mds%d %p\n", s->s_mds, s);
503 BUG_ON(mdsc->sessions[s->s_mds] != s);
504 mdsc->sessions[s->s_mds] = NULL;
505 ceph_con_close(&s->s_con);
506 ceph_put_mds_session(s);
507 atomic_dec(&mdsc->num_sessions);
508 }
509
510 /*
511 * drop session refs in request.
512 *
513 * should be last request ref, or hold mdsc->mutex
514 */
515 static void put_request_session(struct ceph_mds_request *req)
516 {
517 if (req->r_session) {
518 ceph_put_mds_session(req->r_session);
519 req->r_session = NULL;
520 }
521 }
522
523 void ceph_mdsc_release_request(struct kref *kref)
524 {
525 struct ceph_mds_request *req = container_of(kref,
526 struct ceph_mds_request,
527 r_kref);
528 destroy_reply_info(&req->r_reply_info);
529 if (req->r_request)
530 ceph_msg_put(req->r_request);
531 if (req->r_reply)
532 ceph_msg_put(req->r_reply);
533 if (req->r_inode) {
534 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
535 iput(req->r_inode);
536 }
537 if (req->r_locked_dir)
538 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
539 iput(req->r_target_inode);
540 if (req->r_dentry)
541 dput(req->r_dentry);
542 if (req->r_old_dentry)
543 dput(req->r_old_dentry);
544 if (req->r_old_dentry_dir) {
545 /*
546 * track (and drop pins for) r_old_dentry_dir
547 * separately, since r_old_dentry's d_parent may have
548 * changed between the dir mutex being dropped and
549 * this request being freed.
550 */
551 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
552 CEPH_CAP_PIN);
553 iput(req->r_old_dentry_dir);
554 }
555 kfree(req->r_path1);
556 kfree(req->r_path2);
557 if (req->r_pagelist)
558 ceph_pagelist_release(req->r_pagelist);
559 put_request_session(req);
560 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
561 kfree(req);
562 }
563
564 /*
565 * lookup session, bump ref if found.
566 *
567 * called under mdsc->mutex.
568 */
569 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
570 u64 tid)
571 {
572 struct ceph_mds_request *req;
573 struct rb_node *n = mdsc->request_tree.rb_node;
574
575 while (n) {
576 req = rb_entry(n, struct ceph_mds_request, r_node);
577 if (tid < req->r_tid)
578 n = n->rb_left;
579 else if (tid > req->r_tid)
580 n = n->rb_right;
581 else {
582 ceph_mdsc_get_request(req);
583 return req;
584 }
585 }
586 return NULL;
587 }
588
589 static void __insert_request(struct ceph_mds_client *mdsc,
590 struct ceph_mds_request *new)
591 {
592 struct rb_node **p = &mdsc->request_tree.rb_node;
593 struct rb_node *parent = NULL;
594 struct ceph_mds_request *req = NULL;
595
596 while (*p) {
597 parent = *p;
598 req = rb_entry(parent, struct ceph_mds_request, r_node);
599 if (new->r_tid < req->r_tid)
600 p = &(*p)->rb_left;
601 else if (new->r_tid > req->r_tid)
602 p = &(*p)->rb_right;
603 else
604 BUG();
605 }
606
607 rb_link_node(&new->r_node, parent, p);
608 rb_insert_color(&new->r_node, &mdsc->request_tree);
609 }
610
611 /*
612 * Register an in-flight request, and assign a tid. Link to directory
613 * are modifying (if any).
614 *
615 * Called under mdsc->mutex.
616 */
617 static void __register_request(struct ceph_mds_client *mdsc,
618 struct ceph_mds_request *req,
619 struct inode *dir)
620 {
621 req->r_tid = ++mdsc->last_tid;
622 if (req->r_num_caps)
623 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
624 req->r_num_caps);
625 dout("__register_request %p tid %lld\n", req, req->r_tid);
626 ceph_mdsc_get_request(req);
627 __insert_request(mdsc, req);
628
629 req->r_uid = current_fsuid();
630 req->r_gid = current_fsgid();
631
632 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
633 mdsc->oldest_tid = req->r_tid;
634
635 if (dir) {
636 ihold(dir);
637 req->r_unsafe_dir = dir;
638 }
639 }
640
641 static void __unregister_request(struct ceph_mds_client *mdsc,
642 struct ceph_mds_request *req)
643 {
644 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
645
646 if (req->r_tid == mdsc->oldest_tid) {
647 struct rb_node *p = rb_next(&req->r_node);
648 mdsc->oldest_tid = 0;
649 while (p) {
650 struct ceph_mds_request *next_req =
651 rb_entry(p, struct ceph_mds_request, r_node);
652 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
653 mdsc->oldest_tid = next_req->r_tid;
654 break;
655 }
656 p = rb_next(p);
657 }
658 }
659
660 rb_erase(&req->r_node, &mdsc->request_tree);
661 RB_CLEAR_NODE(&req->r_node);
662
663 if (req->r_unsafe_dir && req->r_got_unsafe) {
664 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
665 spin_lock(&ci->i_unsafe_lock);
666 list_del_init(&req->r_unsafe_dir_item);
667 spin_unlock(&ci->i_unsafe_lock);
668 }
669 if (req->r_target_inode && req->r_got_unsafe) {
670 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
671 spin_lock(&ci->i_unsafe_lock);
672 list_del_init(&req->r_unsafe_target_item);
673 spin_unlock(&ci->i_unsafe_lock);
674 }
675
676 if (req->r_unsafe_dir) {
677 iput(req->r_unsafe_dir);
678 req->r_unsafe_dir = NULL;
679 }
680
681 complete_all(&req->r_safe_completion);
682
683 ceph_mdsc_put_request(req);
684 }
685
686 /*
687 * Choose mds to send request to next. If there is a hint set in the
688 * request (e.g., due to a prior forward hint from the mds), use that.
689 * Otherwise, consult frag tree and/or caps to identify the
690 * appropriate mds. If all else fails, choose randomly.
691 *
692 * Called under mdsc->mutex.
693 */
694 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
695 {
696 /*
697 * we don't need to worry about protecting the d_parent access
698 * here because we never renaming inside the snapped namespace
699 * except to resplice to another snapdir, and either the old or new
700 * result is a valid result.
701 */
702 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP)
703 dentry = dentry->d_parent;
704 return dentry;
705 }
706
707 static int __choose_mds(struct ceph_mds_client *mdsc,
708 struct ceph_mds_request *req)
709 {
710 struct inode *inode;
711 struct ceph_inode_info *ci;
712 struct ceph_cap *cap;
713 int mode = req->r_direct_mode;
714 int mds = -1;
715 u32 hash = req->r_direct_hash;
716 bool is_hash = req->r_direct_is_hash;
717
718 /*
719 * is there a specific mds we should try? ignore hint if we have
720 * no session and the mds is not up (active or recovering).
721 */
722 if (req->r_resend_mds >= 0 &&
723 (__have_session(mdsc, req->r_resend_mds) ||
724 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
725 dout("choose_mds using resend_mds mds%d\n",
726 req->r_resend_mds);
727 return req->r_resend_mds;
728 }
729
730 if (mode == USE_RANDOM_MDS)
731 goto random;
732
733 inode = NULL;
734 if (req->r_inode) {
735 inode = req->r_inode;
736 } else if (req->r_dentry) {
737 /* ignore race with rename; old or new d_parent is okay */
738 struct dentry *parent = req->r_dentry->d_parent;
739 struct inode *dir = d_inode(parent);
740
741 if (dir->i_sb != mdsc->fsc->sb) {
742 /* not this fs! */
743 inode = d_inode(req->r_dentry);
744 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
745 /* direct snapped/virtual snapdir requests
746 * based on parent dir inode */
747 struct dentry *dn = get_nonsnap_parent(parent);
748 inode = d_inode(dn);
749 dout("__choose_mds using nonsnap parent %p\n", inode);
750 } else {
751 /* dentry target */
752 inode = d_inode(req->r_dentry);
753 if (!inode || mode == USE_AUTH_MDS) {
754 /* dir + name */
755 inode = dir;
756 hash = ceph_dentry_hash(dir, req->r_dentry);
757 is_hash = true;
758 }
759 }
760 }
761
762 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
763 (int)hash, mode);
764 if (!inode)
765 goto random;
766 ci = ceph_inode(inode);
767
768 if (is_hash && S_ISDIR(inode->i_mode)) {
769 struct ceph_inode_frag frag;
770 int found;
771
772 ceph_choose_frag(ci, hash, &frag, &found);
773 if (found) {
774 if (mode == USE_ANY_MDS && frag.ndist > 0) {
775 u8 r;
776
777 /* choose a random replica */
778 get_random_bytes(&r, 1);
779 r %= frag.ndist;
780 mds = frag.dist[r];
781 dout("choose_mds %p %llx.%llx "
782 "frag %u mds%d (%d/%d)\n",
783 inode, ceph_vinop(inode),
784 frag.frag, mds,
785 (int)r, frag.ndist);
786 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
787 CEPH_MDS_STATE_ACTIVE)
788 return mds;
789 }
790
791 /* since this file/dir wasn't known to be
792 * replicated, then we want to look for the
793 * authoritative mds. */
794 mode = USE_AUTH_MDS;
795 if (frag.mds >= 0) {
796 /* choose auth mds */
797 mds = frag.mds;
798 dout("choose_mds %p %llx.%llx "
799 "frag %u mds%d (auth)\n",
800 inode, ceph_vinop(inode), frag.frag, mds);
801 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
802 CEPH_MDS_STATE_ACTIVE)
803 return mds;
804 }
805 }
806 }
807
808 spin_lock(&ci->i_ceph_lock);
809 cap = NULL;
810 if (mode == USE_AUTH_MDS)
811 cap = ci->i_auth_cap;
812 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
813 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
814 if (!cap) {
815 spin_unlock(&ci->i_ceph_lock);
816 goto random;
817 }
818 mds = cap->session->s_mds;
819 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
820 inode, ceph_vinop(inode), mds,
821 cap == ci->i_auth_cap ? "auth " : "", cap);
822 spin_unlock(&ci->i_ceph_lock);
823 return mds;
824
825 random:
826 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
827 dout("choose_mds chose random mds%d\n", mds);
828 return mds;
829 }
830
831
832 /*
833 * session messages
834 */
835 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
836 {
837 struct ceph_msg *msg;
838 struct ceph_mds_session_head *h;
839
840 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
841 false);
842 if (!msg) {
843 pr_err("create_session_msg ENOMEM creating msg\n");
844 return NULL;
845 }
846 h = msg->front.iov_base;
847 h->op = cpu_to_le32(op);
848 h->seq = cpu_to_le64(seq);
849
850 return msg;
851 }
852
853 /*
854 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
855 * to include additional client metadata fields.
856 */
857 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
858 {
859 struct ceph_msg *msg;
860 struct ceph_mds_session_head *h;
861 int i = -1;
862 int metadata_bytes = 0;
863 int metadata_key_count = 0;
864 struct ceph_options *opt = mdsc->fsc->client->options;
865 void *p;
866
867 const char* metadata[][2] = {
868 {"hostname", utsname()->nodename},
869 {"kernel_version", utsname()->release},
870 {"entity_id", opt->name ? opt->name : ""},
871 {NULL, NULL}
872 };
873
874 /* Calculate serialized length of metadata */
875 metadata_bytes = 4; /* map length */
876 for (i = 0; metadata[i][0] != NULL; ++i) {
877 metadata_bytes += 8 + strlen(metadata[i][0]) +
878 strlen(metadata[i][1]);
879 metadata_key_count++;
880 }
881
882 /* Allocate the message */
883 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes,
884 GFP_NOFS, false);
885 if (!msg) {
886 pr_err("create_session_msg ENOMEM creating msg\n");
887 return NULL;
888 }
889 h = msg->front.iov_base;
890 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
891 h->seq = cpu_to_le64(seq);
892
893 /*
894 * Serialize client metadata into waiting buffer space, using
895 * the format that userspace expects for map<string, string>
896 *
897 * ClientSession messages with metadata are v2
898 */
899 msg->hdr.version = cpu_to_le16(2);
900 msg->hdr.compat_version = cpu_to_le16(1);
901
902 /* The write pointer, following the session_head structure */
903 p = msg->front.iov_base + sizeof(*h);
904
905 /* Number of entries in the map */
906 ceph_encode_32(&p, metadata_key_count);
907
908 /* Two length-prefixed strings for each entry in the map */
909 for (i = 0; metadata[i][0] != NULL; ++i) {
910 size_t const key_len = strlen(metadata[i][0]);
911 size_t const val_len = strlen(metadata[i][1]);
912
913 ceph_encode_32(&p, key_len);
914 memcpy(p, metadata[i][0], key_len);
915 p += key_len;
916 ceph_encode_32(&p, val_len);
917 memcpy(p, metadata[i][1], val_len);
918 p += val_len;
919 }
920
921 return msg;
922 }
923
924 /*
925 * send session open request.
926 *
927 * called under mdsc->mutex
928 */
929 static int __open_session(struct ceph_mds_client *mdsc,
930 struct ceph_mds_session *session)
931 {
932 struct ceph_msg *msg;
933 int mstate;
934 int mds = session->s_mds;
935
936 /* wait for mds to go active? */
937 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
938 dout("open_session to mds%d (%s)\n", mds,
939 ceph_mds_state_name(mstate));
940 session->s_state = CEPH_MDS_SESSION_OPENING;
941 session->s_renew_requested = jiffies;
942
943 /* send connect message */
944 msg = create_session_open_msg(mdsc, session->s_seq);
945 if (!msg)
946 return -ENOMEM;
947 ceph_con_send(&session->s_con, msg);
948 return 0;
949 }
950
951 /*
952 * open sessions for any export targets for the given mds
953 *
954 * called under mdsc->mutex
955 */
956 static struct ceph_mds_session *
957 __open_export_target_session(struct ceph_mds_client *mdsc, int target)
958 {
959 struct ceph_mds_session *session;
960
961 session = __ceph_lookup_mds_session(mdsc, target);
962 if (!session) {
963 session = register_session(mdsc, target);
964 if (IS_ERR(session))
965 return session;
966 }
967 if (session->s_state == CEPH_MDS_SESSION_NEW ||
968 session->s_state == CEPH_MDS_SESSION_CLOSING)
969 __open_session(mdsc, session);
970
971 return session;
972 }
973
974 struct ceph_mds_session *
975 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
976 {
977 struct ceph_mds_session *session;
978
979 dout("open_export_target_session to mds%d\n", target);
980
981 mutex_lock(&mdsc->mutex);
982 session = __open_export_target_session(mdsc, target);
983 mutex_unlock(&mdsc->mutex);
984
985 return session;
986 }
987
988 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
989 struct ceph_mds_session *session)
990 {
991 struct ceph_mds_info *mi;
992 struct ceph_mds_session *ts;
993 int i, mds = session->s_mds;
994
995 if (mds >= mdsc->mdsmap->m_max_mds)
996 return;
997
998 mi = &mdsc->mdsmap->m_info[mds];
999 dout("open_export_target_sessions for mds%d (%d targets)\n",
1000 session->s_mds, mi->num_export_targets);
1001
1002 for (i = 0; i < mi->num_export_targets; i++) {
1003 ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1004 if (!IS_ERR(ts))
1005 ceph_put_mds_session(ts);
1006 }
1007 }
1008
1009 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
1010 struct ceph_mds_session *session)
1011 {
1012 mutex_lock(&mdsc->mutex);
1013 __open_export_target_sessions(mdsc, session);
1014 mutex_unlock(&mdsc->mutex);
1015 }
1016
1017 /*
1018 * session caps
1019 */
1020
1021 /* caller holds s_cap_lock, we drop it */
1022 static void cleanup_cap_releases(struct ceph_mds_client *mdsc,
1023 struct ceph_mds_session *session)
1024 __releases(session->s_cap_lock)
1025 {
1026 LIST_HEAD(tmp_list);
1027 list_splice_init(&session->s_cap_releases, &tmp_list);
1028 session->s_num_cap_releases = 0;
1029 spin_unlock(&session->s_cap_lock);
1030
1031 dout("cleanup_cap_releases mds%d\n", session->s_mds);
1032 while (!list_empty(&tmp_list)) {
1033 struct ceph_cap *cap;
1034 /* zero out the in-progress message */
1035 cap = list_first_entry(&tmp_list,
1036 struct ceph_cap, session_caps);
1037 list_del(&cap->session_caps);
1038 ceph_put_cap(mdsc, cap);
1039 }
1040 }
1041
1042 static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1043 struct ceph_mds_session *session)
1044 {
1045 struct ceph_mds_request *req;
1046 struct rb_node *p;
1047
1048 dout("cleanup_session_requests mds%d\n", session->s_mds);
1049 mutex_lock(&mdsc->mutex);
1050 while (!list_empty(&session->s_unsafe)) {
1051 req = list_first_entry(&session->s_unsafe,
1052 struct ceph_mds_request, r_unsafe_item);
1053 list_del_init(&req->r_unsafe_item);
1054 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1055 req->r_tid);
1056 __unregister_request(mdsc, req);
1057 }
1058 /* zero r_attempts, so kick_requests() will re-send requests */
1059 p = rb_first(&mdsc->request_tree);
1060 while (p) {
1061 req = rb_entry(p, struct ceph_mds_request, r_node);
1062 p = rb_next(p);
1063 if (req->r_session &&
1064 req->r_session->s_mds == session->s_mds)
1065 req->r_attempts = 0;
1066 }
1067 mutex_unlock(&mdsc->mutex);
1068 }
1069
1070 /*
1071 * Helper to safely iterate over all caps associated with a session, with
1072 * special care taken to handle a racing __ceph_remove_cap().
1073 *
1074 * Caller must hold session s_mutex.
1075 */
1076 static int iterate_session_caps(struct ceph_mds_session *session,
1077 int (*cb)(struct inode *, struct ceph_cap *,
1078 void *), void *arg)
1079 {
1080 struct list_head *p;
1081 struct ceph_cap *cap;
1082 struct inode *inode, *last_inode = NULL;
1083 struct ceph_cap *old_cap = NULL;
1084 int ret;
1085
1086 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
1087 spin_lock(&session->s_cap_lock);
1088 p = session->s_caps.next;
1089 while (p != &session->s_caps) {
1090 cap = list_entry(p, struct ceph_cap, session_caps);
1091 inode = igrab(&cap->ci->vfs_inode);
1092 if (!inode) {
1093 p = p->next;
1094 continue;
1095 }
1096 session->s_cap_iterator = cap;
1097 spin_unlock(&session->s_cap_lock);
1098
1099 if (last_inode) {
1100 iput(last_inode);
1101 last_inode = NULL;
1102 }
1103 if (old_cap) {
1104 ceph_put_cap(session->s_mdsc, old_cap);
1105 old_cap = NULL;
1106 }
1107
1108 ret = cb(inode, cap, arg);
1109 last_inode = inode;
1110
1111 spin_lock(&session->s_cap_lock);
1112 p = p->next;
1113 if (cap->ci == NULL) {
1114 dout("iterate_session_caps finishing cap %p removal\n",
1115 cap);
1116 BUG_ON(cap->session != session);
1117 cap->session = NULL;
1118 list_del_init(&cap->session_caps);
1119 session->s_nr_caps--;
1120 if (cap->queue_release) {
1121 list_add_tail(&cap->session_caps,
1122 &session->s_cap_releases);
1123 session->s_num_cap_releases++;
1124 } else {
1125 old_cap = cap; /* put_cap it w/o locks held */
1126 }
1127 }
1128 if (ret < 0)
1129 goto out;
1130 }
1131 ret = 0;
1132 out:
1133 session->s_cap_iterator = NULL;
1134 spin_unlock(&session->s_cap_lock);
1135
1136 iput(last_inode);
1137 if (old_cap)
1138 ceph_put_cap(session->s_mdsc, old_cap);
1139
1140 return ret;
1141 }
1142
1143 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
1144 void *arg)
1145 {
1146 struct ceph_inode_info *ci = ceph_inode(inode);
1147 LIST_HEAD(to_remove);
1148 int drop = 0;
1149
1150 dout("removing cap %p, ci is %p, inode is %p\n",
1151 cap, ci, &ci->vfs_inode);
1152 spin_lock(&ci->i_ceph_lock);
1153 __ceph_remove_cap(cap, false);
1154 if (!ci->i_auth_cap) {
1155 struct ceph_cap_flush *cf;
1156 struct ceph_mds_client *mdsc =
1157 ceph_sb_to_client(inode->i_sb)->mdsc;
1158
1159 while (true) {
1160 struct rb_node *n = rb_first(&ci->i_cap_flush_tree);
1161 if (!n)
1162 break;
1163 cf = rb_entry(n, struct ceph_cap_flush, i_node);
1164 rb_erase(&cf->i_node, &ci->i_cap_flush_tree);
1165 list_add(&cf->list, &to_remove);
1166 }
1167
1168 spin_lock(&mdsc->cap_dirty_lock);
1169
1170 list_for_each_entry(cf, &to_remove, list)
1171 rb_erase(&cf->g_node, &mdsc->cap_flush_tree);
1172
1173 if (!list_empty(&ci->i_dirty_item)) {
1174 pr_warn_ratelimited(
1175 " dropping dirty %s state for %p %lld\n",
1176 ceph_cap_string(ci->i_dirty_caps),
1177 inode, ceph_ino(inode));
1178 ci->i_dirty_caps = 0;
1179 list_del_init(&ci->i_dirty_item);
1180 drop = 1;
1181 }
1182 if (!list_empty(&ci->i_flushing_item)) {
1183 pr_warn_ratelimited(
1184 " dropping dirty+flushing %s state for %p %lld\n",
1185 ceph_cap_string(ci->i_flushing_caps),
1186 inode, ceph_ino(inode));
1187 ci->i_flushing_caps = 0;
1188 list_del_init(&ci->i_flushing_item);
1189 mdsc->num_cap_flushing--;
1190 drop = 1;
1191 }
1192 spin_unlock(&mdsc->cap_dirty_lock);
1193
1194 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
1195 list_add(&ci->i_prealloc_cap_flush->list, &to_remove);
1196 ci->i_prealloc_cap_flush = NULL;
1197 }
1198 }
1199 spin_unlock(&ci->i_ceph_lock);
1200 while (!list_empty(&to_remove)) {
1201 struct ceph_cap_flush *cf;
1202 cf = list_first_entry(&to_remove,
1203 struct ceph_cap_flush, list);
1204 list_del(&cf->list);
1205 ceph_free_cap_flush(cf);
1206 }
1207 while (drop--)
1208 iput(inode);
1209 return 0;
1210 }
1211
1212 /*
1213 * caller must hold session s_mutex
1214 */
1215 static void remove_session_caps(struct ceph_mds_session *session)
1216 {
1217 dout("remove_session_caps on %p\n", session);
1218 iterate_session_caps(session, remove_session_caps_cb, NULL);
1219
1220 spin_lock(&session->s_cap_lock);
1221 if (session->s_nr_caps > 0) {
1222 struct super_block *sb = session->s_mdsc->fsc->sb;
1223 struct inode *inode;
1224 struct ceph_cap *cap, *prev = NULL;
1225 struct ceph_vino vino;
1226 /*
1227 * iterate_session_caps() skips inodes that are being
1228 * deleted, we need to wait until deletions are complete.
1229 * __wait_on_freeing_inode() is designed for the job,
1230 * but it is not exported, so use lookup inode function
1231 * to access it.
1232 */
1233 while (!list_empty(&session->s_caps)) {
1234 cap = list_entry(session->s_caps.next,
1235 struct ceph_cap, session_caps);
1236 if (cap == prev)
1237 break;
1238 prev = cap;
1239 vino = cap->ci->i_vino;
1240 spin_unlock(&session->s_cap_lock);
1241
1242 inode = ceph_find_inode(sb, vino);
1243 iput(inode);
1244
1245 spin_lock(&session->s_cap_lock);
1246 }
1247 }
1248
1249 // drop cap expires and unlock s_cap_lock
1250 cleanup_cap_releases(session->s_mdsc, session);
1251
1252 BUG_ON(session->s_nr_caps > 0);
1253 BUG_ON(!list_empty(&session->s_cap_flushing));
1254 }
1255
1256 /*
1257 * wake up any threads waiting on this session's caps. if the cap is
1258 * old (didn't get renewed on the client reconnect), remove it now.
1259 *
1260 * caller must hold s_mutex.
1261 */
1262 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1263 void *arg)
1264 {
1265 struct ceph_inode_info *ci = ceph_inode(inode);
1266
1267 wake_up_all(&ci->i_cap_wq);
1268 if (arg) {
1269 spin_lock(&ci->i_ceph_lock);
1270 ci->i_wanted_max_size = 0;
1271 ci->i_requested_max_size = 0;
1272 spin_unlock(&ci->i_ceph_lock);
1273 }
1274 return 0;
1275 }
1276
1277 static void wake_up_session_caps(struct ceph_mds_session *session,
1278 int reconnect)
1279 {
1280 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1281 iterate_session_caps(session, wake_up_session_cb,
1282 (void *)(unsigned long)reconnect);
1283 }
1284
1285 /*
1286 * Send periodic message to MDS renewing all currently held caps. The
1287 * ack will reset the expiration for all caps from this session.
1288 *
1289 * caller holds s_mutex
1290 */
1291 static int send_renew_caps(struct ceph_mds_client *mdsc,
1292 struct ceph_mds_session *session)
1293 {
1294 struct ceph_msg *msg;
1295 int state;
1296
1297 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1298 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1299 pr_info("mds%d caps stale\n", session->s_mds);
1300 session->s_renew_requested = jiffies;
1301
1302 /* do not try to renew caps until a recovering mds has reconnected
1303 * with its clients. */
1304 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1305 if (state < CEPH_MDS_STATE_RECONNECT) {
1306 dout("send_renew_caps ignoring mds%d (%s)\n",
1307 session->s_mds, ceph_mds_state_name(state));
1308 return 0;
1309 }
1310
1311 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1312 ceph_mds_state_name(state));
1313 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1314 ++session->s_renew_seq);
1315 if (!msg)
1316 return -ENOMEM;
1317 ceph_con_send(&session->s_con, msg);
1318 return 0;
1319 }
1320
1321 static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
1322 struct ceph_mds_session *session, u64 seq)
1323 {
1324 struct ceph_msg *msg;
1325
1326 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1327 session->s_mds, ceph_session_state_name(session->s_state), seq);
1328 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
1329 if (!msg)
1330 return -ENOMEM;
1331 ceph_con_send(&session->s_con, msg);
1332 return 0;
1333 }
1334
1335
1336 /*
1337 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1338 *
1339 * Called under session->s_mutex
1340 */
1341 static void renewed_caps(struct ceph_mds_client *mdsc,
1342 struct ceph_mds_session *session, int is_renew)
1343 {
1344 int was_stale;
1345 int wake = 0;
1346
1347 spin_lock(&session->s_cap_lock);
1348 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1349
1350 session->s_cap_ttl = session->s_renew_requested +
1351 mdsc->mdsmap->m_session_timeout*HZ;
1352
1353 if (was_stale) {
1354 if (time_before(jiffies, session->s_cap_ttl)) {
1355 pr_info("mds%d caps renewed\n", session->s_mds);
1356 wake = 1;
1357 } else {
1358 pr_info("mds%d caps still stale\n", session->s_mds);
1359 }
1360 }
1361 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1362 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1363 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1364 spin_unlock(&session->s_cap_lock);
1365
1366 if (wake)
1367 wake_up_session_caps(session, 0);
1368 }
1369
1370 /*
1371 * send a session close request
1372 */
1373 static int request_close_session(struct ceph_mds_client *mdsc,
1374 struct ceph_mds_session *session)
1375 {
1376 struct ceph_msg *msg;
1377
1378 dout("request_close_session mds%d state %s seq %lld\n",
1379 session->s_mds, ceph_session_state_name(session->s_state),
1380 session->s_seq);
1381 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1382 if (!msg)
1383 return -ENOMEM;
1384 ceph_con_send(&session->s_con, msg);
1385 return 0;
1386 }
1387
1388 /*
1389 * Called with s_mutex held.
1390 */
1391 static int __close_session(struct ceph_mds_client *mdsc,
1392 struct ceph_mds_session *session)
1393 {
1394 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1395 return 0;
1396 session->s_state = CEPH_MDS_SESSION_CLOSING;
1397 return request_close_session(mdsc, session);
1398 }
1399
1400 /*
1401 * Trim old(er) caps.
1402 *
1403 * Because we can't cache an inode without one or more caps, we do
1404 * this indirectly: if a cap is unused, we prune its aliases, at which
1405 * point the inode will hopefully get dropped to.
1406 *
1407 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1408 * memory pressure from the MDS, though, so it needn't be perfect.
1409 */
1410 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1411 {
1412 struct ceph_mds_session *session = arg;
1413 struct ceph_inode_info *ci = ceph_inode(inode);
1414 int used, wanted, oissued, mine;
1415
1416 if (session->s_trim_caps <= 0)
1417 return -1;
1418
1419 spin_lock(&ci->i_ceph_lock);
1420 mine = cap->issued | cap->implemented;
1421 used = __ceph_caps_used(ci);
1422 wanted = __ceph_caps_file_wanted(ci);
1423 oissued = __ceph_caps_issued_other(ci, cap);
1424
1425 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1426 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1427 ceph_cap_string(used), ceph_cap_string(wanted));
1428 if (cap == ci->i_auth_cap) {
1429 if (ci->i_dirty_caps || ci->i_flushing_caps ||
1430 !list_empty(&ci->i_cap_snaps))
1431 goto out;
1432 if ((used | wanted) & CEPH_CAP_ANY_WR)
1433 goto out;
1434 }
1435 /* The inode has cached pages, but it's no longer used.
1436 * we can safely drop it */
1437 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
1438 !(oissued & CEPH_CAP_FILE_CACHE)) {
1439 used = 0;
1440 oissued = 0;
1441 }
1442 if ((used | wanted) & ~oissued & mine)
1443 goto out; /* we need these caps */
1444
1445 session->s_trim_caps--;
1446 if (oissued) {
1447 /* we aren't the only cap.. just remove us */
1448 __ceph_remove_cap(cap, true);
1449 } else {
1450 /* try dropping referring dentries */
1451 spin_unlock(&ci->i_ceph_lock);
1452 d_prune_aliases(inode);
1453 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1454 inode, cap, atomic_read(&inode->i_count));
1455 return 0;
1456 }
1457
1458 out:
1459 spin_unlock(&ci->i_ceph_lock);
1460 return 0;
1461 }
1462
1463 /*
1464 * Trim session cap count down to some max number.
1465 */
1466 static int trim_caps(struct ceph_mds_client *mdsc,
1467 struct ceph_mds_session *session,
1468 int max_caps)
1469 {
1470 int trim_caps = session->s_nr_caps - max_caps;
1471
1472 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1473 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1474 if (trim_caps > 0) {
1475 session->s_trim_caps = trim_caps;
1476 iterate_session_caps(session, trim_caps_cb, session);
1477 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1478 session->s_mds, session->s_nr_caps, max_caps,
1479 trim_caps - session->s_trim_caps);
1480 session->s_trim_caps = 0;
1481 }
1482
1483 ceph_send_cap_releases(mdsc, session);
1484 return 0;
1485 }
1486
1487 static int check_capsnap_flush(struct ceph_inode_info *ci,
1488 u64 want_snap_seq)
1489 {
1490 int ret = 1;
1491 spin_lock(&ci->i_ceph_lock);
1492 if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) {
1493 struct ceph_cap_snap *capsnap =
1494 list_first_entry(&ci->i_cap_snaps,
1495 struct ceph_cap_snap, ci_item);
1496 ret = capsnap->follows >= want_snap_seq;
1497 }
1498 spin_unlock(&ci->i_ceph_lock);
1499 return ret;
1500 }
1501
1502 static int check_caps_flush(struct ceph_mds_client *mdsc,
1503 u64 want_flush_tid)
1504 {
1505 struct rb_node *n;
1506 struct ceph_cap_flush *cf;
1507 int ret = 1;
1508
1509 spin_lock(&mdsc->cap_dirty_lock);
1510 n = rb_first(&mdsc->cap_flush_tree);
1511 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL;
1512 if (cf && cf->tid <= want_flush_tid) {
1513 dout("check_caps_flush still flushing tid %llu <= %llu\n",
1514 cf->tid, want_flush_tid);
1515 ret = 0;
1516 }
1517 spin_unlock(&mdsc->cap_dirty_lock);
1518 return ret;
1519 }
1520
1521 /*
1522 * flush all dirty inode data to disk.
1523 *
1524 * returns true if we've flushed through want_flush_tid
1525 */
1526 static void wait_caps_flush(struct ceph_mds_client *mdsc,
1527 u64 want_flush_tid, u64 want_snap_seq)
1528 {
1529 int mds;
1530
1531 dout("check_caps_flush want %llu snap want %llu\n",
1532 want_flush_tid, want_snap_seq);
1533 mutex_lock(&mdsc->mutex);
1534 for (mds = 0; mds < mdsc->max_sessions; ) {
1535 struct ceph_mds_session *session = mdsc->sessions[mds];
1536 struct inode *inode = NULL;
1537
1538 if (!session) {
1539 mds++;
1540 continue;
1541 }
1542 get_session(session);
1543 mutex_unlock(&mdsc->mutex);
1544
1545 mutex_lock(&session->s_mutex);
1546 if (!list_empty(&session->s_cap_snaps_flushing)) {
1547 struct ceph_cap_snap *capsnap =
1548 list_first_entry(&session->s_cap_snaps_flushing,
1549 struct ceph_cap_snap,
1550 flushing_item);
1551 struct ceph_inode_info *ci = capsnap->ci;
1552 if (!check_capsnap_flush(ci, want_snap_seq)) {
1553 dout("check_cap_flush still flushing snap %p "
1554 "follows %lld <= %lld to mds%d\n",
1555 &ci->vfs_inode, capsnap->follows,
1556 want_snap_seq, mds);
1557 inode = igrab(&ci->vfs_inode);
1558 }
1559 }
1560 mutex_unlock(&session->s_mutex);
1561 ceph_put_mds_session(session);
1562
1563 if (inode) {
1564 wait_event(mdsc->cap_flushing_wq,
1565 check_capsnap_flush(ceph_inode(inode),
1566 want_snap_seq));
1567 iput(inode);
1568 } else {
1569 mds++;
1570 }
1571
1572 mutex_lock(&mdsc->mutex);
1573 }
1574 mutex_unlock(&mdsc->mutex);
1575
1576 wait_event(mdsc->cap_flushing_wq,
1577 check_caps_flush(mdsc, want_flush_tid));
1578
1579 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid);
1580 }
1581
1582 /*
1583 * called under s_mutex
1584 */
1585 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1586 struct ceph_mds_session *session)
1587 {
1588 struct ceph_msg *msg = NULL;
1589 struct ceph_mds_cap_release *head;
1590 struct ceph_mds_cap_item *item;
1591 struct ceph_cap *cap;
1592 LIST_HEAD(tmp_list);
1593 int num_cap_releases;
1594
1595 spin_lock(&session->s_cap_lock);
1596 again:
1597 list_splice_init(&session->s_cap_releases, &tmp_list);
1598 num_cap_releases = session->s_num_cap_releases;
1599 session->s_num_cap_releases = 0;
1600 spin_unlock(&session->s_cap_lock);
1601
1602 while (!list_empty(&tmp_list)) {
1603 if (!msg) {
1604 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
1605 PAGE_CACHE_SIZE, GFP_NOFS, false);
1606 if (!msg)
1607 goto out_err;
1608 head = msg->front.iov_base;
1609 head->num = cpu_to_le32(0);
1610 msg->front.iov_len = sizeof(*head);
1611 }
1612 cap = list_first_entry(&tmp_list, struct ceph_cap,
1613 session_caps);
1614 list_del(&cap->session_caps);
1615 num_cap_releases--;
1616
1617 head = msg->front.iov_base;
1618 le32_add_cpu(&head->num, 1);
1619 item = msg->front.iov_base + msg->front.iov_len;
1620 item->ino = cpu_to_le64(cap->cap_ino);
1621 item->cap_id = cpu_to_le64(cap->cap_id);
1622 item->migrate_seq = cpu_to_le32(cap->mseq);
1623 item->seq = cpu_to_le32(cap->issue_seq);
1624 msg->front.iov_len += sizeof(*item);
1625
1626 ceph_put_cap(mdsc, cap);
1627
1628 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1629 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1630 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1631 ceph_con_send(&session->s_con, msg);
1632 msg = NULL;
1633 }
1634 }
1635
1636 BUG_ON(num_cap_releases != 0);
1637
1638 spin_lock(&session->s_cap_lock);
1639 if (!list_empty(&session->s_cap_releases))
1640 goto again;
1641 spin_unlock(&session->s_cap_lock);
1642
1643 if (msg) {
1644 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1645 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1646 ceph_con_send(&session->s_con, msg);
1647 }
1648 return;
1649 out_err:
1650 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1651 session->s_mds);
1652 spin_lock(&session->s_cap_lock);
1653 list_splice(&tmp_list, &session->s_cap_releases);
1654 session->s_num_cap_releases += num_cap_releases;
1655 spin_unlock(&session->s_cap_lock);
1656 }
1657
1658 /*
1659 * requests
1660 */
1661
1662 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
1663 struct inode *dir)
1664 {
1665 struct ceph_inode_info *ci = ceph_inode(dir);
1666 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
1667 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
1668 size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) +
1669 sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease);
1670 int order, num_entries;
1671
1672 spin_lock(&ci->i_ceph_lock);
1673 num_entries = ci->i_files + ci->i_subdirs;
1674 spin_unlock(&ci->i_ceph_lock);
1675 num_entries = max(num_entries, 1);
1676 num_entries = min(num_entries, opt->max_readdir);
1677
1678 order = get_order(size * num_entries);
1679 while (order >= 0) {
1680 rinfo->dir_in = (void*)__get_free_pages(GFP_KERNEL |
1681 __GFP_NOWARN,
1682 order);
1683 if (rinfo->dir_in)
1684 break;
1685 order--;
1686 }
1687 if (!rinfo->dir_in)
1688 return -ENOMEM;
1689
1690 num_entries = (PAGE_SIZE << order) / size;
1691 num_entries = min(num_entries, opt->max_readdir);
1692
1693 rinfo->dir_buf_size = PAGE_SIZE << order;
1694 req->r_num_caps = num_entries + 1;
1695 req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
1696 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
1697 return 0;
1698 }
1699
1700 /*
1701 * Create an mds request.
1702 */
1703 struct ceph_mds_request *
1704 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1705 {
1706 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1707
1708 if (!req)
1709 return ERR_PTR(-ENOMEM);
1710
1711 mutex_init(&req->r_fill_mutex);
1712 req->r_mdsc = mdsc;
1713 req->r_started = jiffies;
1714 req->r_resend_mds = -1;
1715 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1716 INIT_LIST_HEAD(&req->r_unsafe_target_item);
1717 req->r_fmode = -1;
1718 kref_init(&req->r_kref);
1719 INIT_LIST_HEAD(&req->r_wait);
1720 init_completion(&req->r_completion);
1721 init_completion(&req->r_safe_completion);
1722 INIT_LIST_HEAD(&req->r_unsafe_item);
1723
1724 req->r_stamp = CURRENT_TIME;
1725
1726 req->r_op = op;
1727 req->r_direct_mode = mode;
1728 return req;
1729 }
1730
1731 /*
1732 * return oldest (lowest) request, tid in request tree, 0 if none.
1733 *
1734 * called under mdsc->mutex.
1735 */
1736 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1737 {
1738 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1739 return NULL;
1740 return rb_entry(rb_first(&mdsc->request_tree),
1741 struct ceph_mds_request, r_node);
1742 }
1743
1744 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1745 {
1746 return mdsc->oldest_tid;
1747 }
1748
1749 /*
1750 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1751 * on build_path_from_dentry in fs/cifs/dir.c.
1752 *
1753 * If @stop_on_nosnap, generate path relative to the first non-snapped
1754 * inode.
1755 *
1756 * Encode hidden .snap dirs as a double /, i.e.
1757 * foo/.snap/bar -> foo//bar
1758 */
1759 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1760 int stop_on_nosnap)
1761 {
1762 struct dentry *temp;
1763 char *path;
1764 int len, pos;
1765 unsigned seq;
1766
1767 if (dentry == NULL)
1768 return ERR_PTR(-EINVAL);
1769
1770 retry:
1771 len = 0;
1772 seq = read_seqbegin(&rename_lock);
1773 rcu_read_lock();
1774 for (temp = dentry; !IS_ROOT(temp);) {
1775 struct inode *inode = d_inode(temp);
1776 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1777 len++; /* slash only */
1778 else if (stop_on_nosnap && inode &&
1779 ceph_snap(inode) == CEPH_NOSNAP)
1780 break;
1781 else
1782 len += 1 + temp->d_name.len;
1783 temp = temp->d_parent;
1784 }
1785 rcu_read_unlock();
1786 if (len)
1787 len--; /* no leading '/' */
1788
1789 path = kmalloc(len+1, GFP_NOFS);
1790 if (path == NULL)
1791 return ERR_PTR(-ENOMEM);
1792 pos = len;
1793 path[pos] = 0; /* trailing null */
1794 rcu_read_lock();
1795 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1796 struct inode *inode;
1797
1798 spin_lock(&temp->d_lock);
1799 inode = d_inode(temp);
1800 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1801 dout("build_path path+%d: %p SNAPDIR\n",
1802 pos, temp);
1803 } else if (stop_on_nosnap && inode &&
1804 ceph_snap(inode) == CEPH_NOSNAP) {
1805 spin_unlock(&temp->d_lock);
1806 break;
1807 } else {
1808 pos -= temp->d_name.len;
1809 if (pos < 0) {
1810 spin_unlock(&temp->d_lock);
1811 break;
1812 }
1813 strncpy(path + pos, temp->d_name.name,
1814 temp->d_name.len);
1815 }
1816 spin_unlock(&temp->d_lock);
1817 if (pos)
1818 path[--pos] = '/';
1819 temp = temp->d_parent;
1820 }
1821 rcu_read_unlock();
1822 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1823 pr_err("build_path did not end path lookup where "
1824 "expected, namelen is %d, pos is %d\n", len, pos);
1825 /* presumably this is only possible if racing with a
1826 rename of one of the parent directories (we can not
1827 lock the dentries above us to prevent this, but
1828 retrying should be harmless) */
1829 kfree(path);
1830 goto retry;
1831 }
1832
1833 *base = ceph_ino(d_inode(temp));
1834 *plen = len;
1835 dout("build_path on %p %d built %llx '%.*s'\n",
1836 dentry, d_count(dentry), *base, len, path);
1837 return path;
1838 }
1839
1840 static int build_dentry_path(struct dentry *dentry,
1841 const char **ppath, int *ppathlen, u64 *pino,
1842 int *pfreepath)
1843 {
1844 char *path;
1845
1846 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) {
1847 *pino = ceph_ino(d_inode(dentry->d_parent));
1848 *ppath = dentry->d_name.name;
1849 *ppathlen = dentry->d_name.len;
1850 return 0;
1851 }
1852 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1853 if (IS_ERR(path))
1854 return PTR_ERR(path);
1855 *ppath = path;
1856 *pfreepath = 1;
1857 return 0;
1858 }
1859
1860 static int build_inode_path(struct inode *inode,
1861 const char **ppath, int *ppathlen, u64 *pino,
1862 int *pfreepath)
1863 {
1864 struct dentry *dentry;
1865 char *path;
1866
1867 if (ceph_snap(inode) == CEPH_NOSNAP) {
1868 *pino = ceph_ino(inode);
1869 *ppathlen = 0;
1870 return 0;
1871 }
1872 dentry = d_find_alias(inode);
1873 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1874 dput(dentry);
1875 if (IS_ERR(path))
1876 return PTR_ERR(path);
1877 *ppath = path;
1878 *pfreepath = 1;
1879 return 0;
1880 }
1881
1882 /*
1883 * request arguments may be specified via an inode *, a dentry *, or
1884 * an explicit ino+path.
1885 */
1886 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1887 const char *rpath, u64 rino,
1888 const char **ppath, int *pathlen,
1889 u64 *ino, int *freepath)
1890 {
1891 int r = 0;
1892
1893 if (rinode) {
1894 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1895 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1896 ceph_snap(rinode));
1897 } else if (rdentry) {
1898 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1899 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1900 *ppath);
1901 } else if (rpath || rino) {
1902 *ino = rino;
1903 *ppath = rpath;
1904 *pathlen = rpath ? strlen(rpath) : 0;
1905 dout(" path %.*s\n", *pathlen, rpath);
1906 }
1907
1908 return r;
1909 }
1910
1911 /*
1912 * called under mdsc->mutex
1913 */
1914 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1915 struct ceph_mds_request *req,
1916 int mds, bool drop_cap_releases)
1917 {
1918 struct ceph_msg *msg;
1919 struct ceph_mds_request_head *head;
1920 const char *path1 = NULL;
1921 const char *path2 = NULL;
1922 u64 ino1 = 0, ino2 = 0;
1923 int pathlen1 = 0, pathlen2 = 0;
1924 int freepath1 = 0, freepath2 = 0;
1925 int len;
1926 u16 releases;
1927 void *p, *end;
1928 int ret;
1929
1930 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1931 req->r_path1, req->r_ino1.ino,
1932 &path1, &pathlen1, &ino1, &freepath1);
1933 if (ret < 0) {
1934 msg = ERR_PTR(ret);
1935 goto out;
1936 }
1937
1938 ret = set_request_path_attr(NULL, req->r_old_dentry,
1939 req->r_path2, req->r_ino2.ino,
1940 &path2, &pathlen2, &ino2, &freepath2);
1941 if (ret < 0) {
1942 msg = ERR_PTR(ret);
1943 goto out_free1;
1944 }
1945
1946 len = sizeof(*head) +
1947 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) +
1948 sizeof(struct ceph_timespec);
1949
1950 /* calculate (max) length for cap releases */
1951 len += sizeof(struct ceph_mds_request_release) *
1952 (!!req->r_inode_drop + !!req->r_dentry_drop +
1953 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1954 if (req->r_dentry_drop)
1955 len += req->r_dentry->d_name.len;
1956 if (req->r_old_dentry_drop)
1957 len += req->r_old_dentry->d_name.len;
1958
1959 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1960 if (!msg) {
1961 msg = ERR_PTR(-ENOMEM);
1962 goto out_free2;
1963 }
1964
1965 msg->hdr.version = cpu_to_le16(2);
1966 msg->hdr.tid = cpu_to_le64(req->r_tid);
1967
1968 head = msg->front.iov_base;
1969 p = msg->front.iov_base + sizeof(*head);
1970 end = msg->front.iov_base + msg->front.iov_len;
1971
1972 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1973 head->op = cpu_to_le32(req->r_op);
1974 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1975 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1976 head->args = req->r_args;
1977
1978 ceph_encode_filepath(&p, end, ino1, path1);
1979 ceph_encode_filepath(&p, end, ino2, path2);
1980
1981 /* make note of release offset, in case we need to replay */
1982 req->r_request_release_offset = p - msg->front.iov_base;
1983
1984 /* cap releases */
1985 releases = 0;
1986 if (req->r_inode_drop)
1987 releases += ceph_encode_inode_release(&p,
1988 req->r_inode ? req->r_inode : d_inode(req->r_dentry),
1989 mds, req->r_inode_drop, req->r_inode_unless, 0);
1990 if (req->r_dentry_drop)
1991 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1992 mds, req->r_dentry_drop, req->r_dentry_unless);
1993 if (req->r_old_dentry_drop)
1994 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1995 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1996 if (req->r_old_inode_drop)
1997 releases += ceph_encode_inode_release(&p,
1998 d_inode(req->r_old_dentry),
1999 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
2000
2001 if (drop_cap_releases) {
2002 releases = 0;
2003 p = msg->front.iov_base + req->r_request_release_offset;
2004 }
2005
2006 head->num_releases = cpu_to_le16(releases);
2007
2008 /* time stamp */
2009 {
2010 struct ceph_timespec ts;
2011 ceph_encode_timespec(&ts, &req->r_stamp);
2012 ceph_encode_copy(&p, &ts, sizeof(ts));
2013 }
2014
2015 BUG_ON(p > end);
2016 msg->front.iov_len = p - msg->front.iov_base;
2017 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2018
2019 if (req->r_pagelist) {
2020 struct ceph_pagelist *pagelist = req->r_pagelist;
2021 atomic_inc(&pagelist->refcnt);
2022 ceph_msg_data_add_pagelist(msg, pagelist);
2023 msg->hdr.data_len = cpu_to_le32(pagelist->length);
2024 } else {
2025 msg->hdr.data_len = 0;
2026 }
2027
2028 msg->hdr.data_off = cpu_to_le16(0);
2029
2030 out_free2:
2031 if (freepath2)
2032 kfree((char *)path2);
2033 out_free1:
2034 if (freepath1)
2035 kfree((char *)path1);
2036 out:
2037 return msg;
2038 }
2039
2040 /*
2041 * called under mdsc->mutex if error, under no mutex if
2042 * success.
2043 */
2044 static void complete_request(struct ceph_mds_client *mdsc,
2045 struct ceph_mds_request *req)
2046 {
2047 if (req->r_callback)
2048 req->r_callback(mdsc, req);
2049 else
2050 complete_all(&req->r_completion);
2051 }
2052
2053 /*
2054 * called under mdsc->mutex
2055 */
2056 static int __prepare_send_request(struct ceph_mds_client *mdsc,
2057 struct ceph_mds_request *req,
2058 int mds, bool drop_cap_releases)
2059 {
2060 struct ceph_mds_request_head *rhead;
2061 struct ceph_msg *msg;
2062 int flags = 0;
2063
2064 req->r_attempts++;
2065 if (req->r_inode) {
2066 struct ceph_cap *cap =
2067 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
2068
2069 if (cap)
2070 req->r_sent_on_mseq = cap->mseq;
2071 else
2072 req->r_sent_on_mseq = -1;
2073 }
2074 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
2075 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
2076
2077 if (req->r_got_unsafe) {
2078 void *p;
2079 /*
2080 * Replay. Do not regenerate message (and rebuild
2081 * paths, etc.); just use the original message.
2082 * Rebuilding paths will break for renames because
2083 * d_move mangles the src name.
2084 */
2085 msg = req->r_request;
2086 rhead = msg->front.iov_base;
2087
2088 flags = le32_to_cpu(rhead->flags);
2089 flags |= CEPH_MDS_FLAG_REPLAY;
2090 rhead->flags = cpu_to_le32(flags);
2091
2092 if (req->r_target_inode)
2093 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
2094
2095 rhead->num_retry = req->r_attempts - 1;
2096
2097 /* remove cap/dentry releases from message */
2098 rhead->num_releases = 0;
2099
2100 /* time stamp */
2101 p = msg->front.iov_base + req->r_request_release_offset;
2102 {
2103 struct ceph_timespec ts;
2104 ceph_encode_timespec(&ts, &req->r_stamp);
2105 ceph_encode_copy(&p, &ts, sizeof(ts));
2106 }
2107
2108 msg->front.iov_len = p - msg->front.iov_base;
2109 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2110 return 0;
2111 }
2112
2113 if (req->r_request) {
2114 ceph_msg_put(req->r_request);
2115 req->r_request = NULL;
2116 }
2117 msg = create_request_message(mdsc, req, mds, drop_cap_releases);
2118 if (IS_ERR(msg)) {
2119 req->r_err = PTR_ERR(msg);
2120 return PTR_ERR(msg);
2121 }
2122 req->r_request = msg;
2123
2124 rhead = msg->front.iov_base;
2125 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
2126 if (req->r_got_unsafe)
2127 flags |= CEPH_MDS_FLAG_REPLAY;
2128 if (req->r_locked_dir)
2129 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
2130 rhead->flags = cpu_to_le32(flags);
2131 rhead->num_fwd = req->r_num_fwd;
2132 rhead->num_retry = req->r_attempts - 1;
2133 rhead->ino = 0;
2134
2135 dout(" r_locked_dir = %p\n", req->r_locked_dir);
2136 return 0;
2137 }
2138
2139 /*
2140 * send request, or put it on the appropriate wait list.
2141 */
2142 static int __do_request(struct ceph_mds_client *mdsc,
2143 struct ceph_mds_request *req)
2144 {
2145 struct ceph_mds_session *session = NULL;
2146 int mds = -1;
2147 int err = 0;
2148
2149 if (req->r_err || req->r_got_result) {
2150 if (req->r_aborted)
2151 __unregister_request(mdsc, req);
2152 goto out;
2153 }
2154
2155 if (req->r_timeout &&
2156 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
2157 dout("do_request timed out\n");
2158 err = -EIO;
2159 goto finish;
2160 }
2161 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
2162 dout("do_request forced umount\n");
2163 err = -EIO;
2164 goto finish;
2165 }
2166
2167 put_request_session(req);
2168
2169 mds = __choose_mds(mdsc, req);
2170 if (mds < 0 ||
2171 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
2172 dout("do_request no mds or not active, waiting for map\n");
2173 list_add(&req->r_wait, &mdsc->waiting_for_map);
2174 goto out;
2175 }
2176
2177 /* get, open session */
2178 session = __ceph_lookup_mds_session(mdsc, mds);
2179 if (!session) {
2180 session = register_session(mdsc, mds);
2181 if (IS_ERR(session)) {
2182 err = PTR_ERR(session);
2183 goto finish;
2184 }
2185 }
2186 req->r_session = get_session(session);
2187
2188 dout("do_request mds%d session %p state %s\n", mds, session,
2189 ceph_session_state_name(session->s_state));
2190 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
2191 session->s_state != CEPH_MDS_SESSION_HUNG) {
2192 if (session->s_state == CEPH_MDS_SESSION_NEW ||
2193 session->s_state == CEPH_MDS_SESSION_CLOSING)
2194 __open_session(mdsc, session);
2195 list_add(&req->r_wait, &session->s_waiting);
2196 goto out_session;
2197 }
2198
2199 /* send request */
2200 req->r_resend_mds = -1; /* forget any previous mds hint */
2201
2202 if (req->r_request_started == 0) /* note request start time */
2203 req->r_request_started = jiffies;
2204
2205 err = __prepare_send_request(mdsc, req, mds, false);
2206 if (!err) {
2207 ceph_msg_get(req->r_request);
2208 ceph_con_send(&session->s_con, req->r_request);
2209 }
2210
2211 out_session:
2212 ceph_put_mds_session(session);
2213 finish:
2214 if (err) {
2215 dout("__do_request early error %d\n", err);
2216 req->r_err = err;
2217 complete_request(mdsc, req);
2218 __unregister_request(mdsc, req);
2219 }
2220 out:
2221 return err;
2222 }
2223
2224 /*
2225 * called under mdsc->mutex
2226 */
2227 static void __wake_requests(struct ceph_mds_client *mdsc,
2228 struct list_head *head)
2229 {
2230 struct ceph_mds_request *req;
2231 LIST_HEAD(tmp_list);
2232
2233 list_splice_init(head, &tmp_list);
2234
2235 while (!list_empty(&tmp_list)) {
2236 req = list_entry(tmp_list.next,
2237 struct ceph_mds_request, r_wait);
2238 list_del_init(&req->r_wait);
2239 dout(" wake request %p tid %llu\n", req, req->r_tid);
2240 __do_request(mdsc, req);
2241 }
2242 }
2243
2244 /*
2245 * Wake up threads with requests pending for @mds, so that they can
2246 * resubmit their requests to a possibly different mds.
2247 */
2248 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
2249 {
2250 struct ceph_mds_request *req;
2251 struct rb_node *p = rb_first(&mdsc->request_tree);
2252
2253 dout("kick_requests mds%d\n", mds);
2254 while (p) {
2255 req = rb_entry(p, struct ceph_mds_request, r_node);
2256 p = rb_next(p);
2257 if (req->r_got_unsafe)
2258 continue;
2259 if (req->r_attempts > 0)
2260 continue; /* only new requests */
2261 if (req->r_session &&
2262 req->r_session->s_mds == mds) {
2263 dout(" kicking tid %llu\n", req->r_tid);
2264 list_del_init(&req->r_wait);
2265 __do_request(mdsc, req);
2266 }
2267 }
2268 }
2269
2270 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
2271 struct ceph_mds_request *req)
2272 {
2273 dout("submit_request on %p\n", req);
2274 mutex_lock(&mdsc->mutex);
2275 __register_request(mdsc, req, NULL);
2276 __do_request(mdsc, req);
2277 mutex_unlock(&mdsc->mutex);
2278 }
2279
2280 /*
2281 * Synchrously perform an mds request. Take care of all of the
2282 * session setup, forwarding, retry details.
2283 */
2284 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2285 struct inode *dir,
2286 struct ceph_mds_request *req)
2287 {
2288 int err;
2289
2290 dout("do_request on %p\n", req);
2291
2292 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2293 if (req->r_inode)
2294 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2295 if (req->r_locked_dir)
2296 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2297 if (req->r_old_dentry_dir)
2298 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2299 CEPH_CAP_PIN);
2300
2301 /* issue */
2302 mutex_lock(&mdsc->mutex);
2303 __register_request(mdsc, req, dir);
2304 __do_request(mdsc, req);
2305
2306 if (req->r_err) {
2307 err = req->r_err;
2308 goto out;
2309 }
2310
2311 /* wait */
2312 mutex_unlock(&mdsc->mutex);
2313 dout("do_request waiting\n");
2314 if (!req->r_timeout && req->r_wait_for_completion) {
2315 err = req->r_wait_for_completion(mdsc, req);
2316 } else {
2317 long timeleft = wait_for_completion_killable_timeout(
2318 &req->r_completion,
2319 ceph_timeout_jiffies(req->r_timeout));
2320 if (timeleft > 0)
2321 err = 0;
2322 else if (!timeleft)
2323 err = -EIO; /* timed out */
2324 else
2325 err = timeleft; /* killed */
2326 }
2327 dout("do_request waited, got %d\n", err);
2328 mutex_lock(&mdsc->mutex);
2329
2330 /* only abort if we didn't race with a real reply */
2331 if (req->r_got_result) {
2332 err = le32_to_cpu(req->r_reply_info.head->result);
2333 } else if (err < 0) {
2334 dout("aborted request %lld with %d\n", req->r_tid, err);
2335
2336 /*
2337 * ensure we aren't running concurrently with
2338 * ceph_fill_trace or ceph_readdir_prepopulate, which
2339 * rely on locks (dir mutex) held by our caller.
2340 */
2341 mutex_lock(&req->r_fill_mutex);
2342 req->r_err = err;
2343 req->r_aborted = true;
2344 mutex_unlock(&req->r_fill_mutex);
2345
2346 if (req->r_locked_dir &&
2347 (req->r_op & CEPH_MDS_OP_WRITE))
2348 ceph_invalidate_dir_request(req);
2349 } else {
2350 err = req->r_err;
2351 }
2352
2353 out:
2354 mutex_unlock(&mdsc->mutex);
2355 dout("do_request %p done, result %d\n", req, err);
2356 return err;
2357 }
2358
2359 /*
2360 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2361 * namespace request.
2362 */
2363 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2364 {
2365 struct inode *inode = req->r_locked_dir;
2366
2367 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2368
2369 ceph_dir_clear_complete(inode);
2370 if (req->r_dentry)
2371 ceph_invalidate_dentry_lease(req->r_dentry);
2372 if (req->r_old_dentry)
2373 ceph_invalidate_dentry_lease(req->r_old_dentry);
2374 }
2375
2376 /*
2377 * Handle mds reply.
2378 *
2379 * We take the session mutex and parse and process the reply immediately.
2380 * This preserves the logical ordering of replies, capabilities, etc., sent
2381 * by the MDS as they are applied to our local cache.
2382 */
2383 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2384 {
2385 struct ceph_mds_client *mdsc = session->s_mdsc;
2386 struct ceph_mds_request *req;
2387 struct ceph_mds_reply_head *head = msg->front.iov_base;
2388 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2389 struct ceph_snap_realm *realm;
2390 u64 tid;
2391 int err, result;
2392 int mds = session->s_mds;
2393
2394 if (msg->front.iov_len < sizeof(*head)) {
2395 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2396 ceph_msg_dump(msg);
2397 return;
2398 }
2399
2400 /* get request, session */
2401 tid = le64_to_cpu(msg->hdr.tid);
2402 mutex_lock(&mdsc->mutex);
2403 req = __lookup_request(mdsc, tid);
2404 if (!req) {
2405 dout("handle_reply on unknown tid %llu\n", tid);
2406 mutex_unlock(&mdsc->mutex);
2407 return;
2408 }
2409 dout("handle_reply %p\n", req);
2410
2411 /* correct session? */
2412 if (req->r_session != session) {
2413 pr_err("mdsc_handle_reply got %llu on session mds%d"
2414 " not mds%d\n", tid, session->s_mds,
2415 req->r_session ? req->r_session->s_mds : -1);
2416 mutex_unlock(&mdsc->mutex);
2417 goto out;
2418 }
2419
2420 /* dup? */
2421 if ((req->r_got_unsafe && !head->safe) ||
2422 (req->r_got_safe && head->safe)) {
2423 pr_warn("got a dup %s reply on %llu from mds%d\n",
2424 head->safe ? "safe" : "unsafe", tid, mds);
2425 mutex_unlock(&mdsc->mutex);
2426 goto out;
2427 }
2428 if (req->r_got_safe) {
2429 pr_warn("got unsafe after safe on %llu from mds%d\n",
2430 tid, mds);
2431 mutex_unlock(&mdsc->mutex);
2432 goto out;
2433 }
2434
2435 result = le32_to_cpu(head->result);
2436
2437 /*
2438 * Handle an ESTALE
2439 * if we're not talking to the authority, send to them
2440 * if the authority has changed while we weren't looking,
2441 * send to new authority
2442 * Otherwise we just have to return an ESTALE
2443 */
2444 if (result == -ESTALE) {
2445 dout("got ESTALE on request %llu", req->r_tid);
2446 req->r_resend_mds = -1;
2447 if (req->r_direct_mode != USE_AUTH_MDS) {
2448 dout("not using auth, setting for that now");
2449 req->r_direct_mode = USE_AUTH_MDS;
2450 __do_request(mdsc, req);
2451 mutex_unlock(&mdsc->mutex);
2452 goto out;
2453 } else {
2454 int mds = __choose_mds(mdsc, req);
2455 if (mds >= 0 && mds != req->r_session->s_mds) {
2456 dout("but auth changed, so resending");
2457 __do_request(mdsc, req);
2458 mutex_unlock(&mdsc->mutex);
2459 goto out;
2460 }
2461 }
2462 dout("have to return ESTALE on request %llu", req->r_tid);
2463 }
2464
2465
2466 if (head->safe) {
2467 req->r_got_safe = true;
2468 __unregister_request(mdsc, req);
2469
2470 if (req->r_got_unsafe) {
2471 /*
2472 * We already handled the unsafe response, now do the
2473 * cleanup. No need to examine the response; the MDS
2474 * doesn't include any result info in the safe
2475 * response. And even if it did, there is nothing
2476 * useful we could do with a revised return value.
2477 */
2478 dout("got safe reply %llu, mds%d\n", tid, mds);
2479 list_del_init(&req->r_unsafe_item);
2480
2481 /* last unsafe request during umount? */
2482 if (mdsc->stopping && !__get_oldest_req(mdsc))
2483 complete_all(&mdsc->safe_umount_waiters);
2484 mutex_unlock(&mdsc->mutex);
2485 goto out;
2486 }
2487 } else {
2488 req->r_got_unsafe = true;
2489 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2490 if (req->r_unsafe_dir) {
2491 struct ceph_inode_info *ci =
2492 ceph_inode(req->r_unsafe_dir);
2493 spin_lock(&ci->i_unsafe_lock);
2494 list_add_tail(&req->r_unsafe_dir_item,
2495 &ci->i_unsafe_dirops);
2496 spin_unlock(&ci->i_unsafe_lock);
2497 }
2498 }
2499
2500 dout("handle_reply tid %lld result %d\n", tid, result);
2501 rinfo = &req->r_reply_info;
2502 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2503 mutex_unlock(&mdsc->mutex);
2504
2505 mutex_lock(&session->s_mutex);
2506 if (err < 0) {
2507 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2508 ceph_msg_dump(msg);
2509 goto out_err;
2510 }
2511
2512 /* snap trace */
2513 realm = NULL;
2514 if (rinfo->snapblob_len) {
2515 down_write(&mdsc->snap_rwsem);
2516 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2517 rinfo->snapblob + rinfo->snapblob_len,
2518 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
2519 &realm);
2520 downgrade_write(&mdsc->snap_rwsem);
2521 } else {
2522 down_read(&mdsc->snap_rwsem);
2523 }
2524
2525 /* insert trace into our cache */
2526 mutex_lock(&req->r_fill_mutex);
2527 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2528 if (err == 0) {
2529 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2530 req->r_op == CEPH_MDS_OP_LSSNAP))
2531 ceph_readdir_prepopulate(req, req->r_session);
2532 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2533 }
2534 mutex_unlock(&req->r_fill_mutex);
2535
2536 up_read(&mdsc->snap_rwsem);
2537 if (realm)
2538 ceph_put_snap_realm(mdsc, realm);
2539
2540 if (err == 0 && req->r_got_unsafe && req->r_target_inode) {
2541 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
2542 spin_lock(&ci->i_unsafe_lock);
2543 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops);
2544 spin_unlock(&ci->i_unsafe_lock);
2545 }
2546 out_err:
2547 mutex_lock(&mdsc->mutex);
2548 if (!req->r_aborted) {
2549 if (err) {
2550 req->r_err = err;
2551 } else {
2552 req->r_reply = ceph_msg_get(msg);
2553 req->r_got_result = true;
2554 }
2555 } else {
2556 dout("reply arrived after request %lld was aborted\n", tid);
2557 }
2558 mutex_unlock(&mdsc->mutex);
2559
2560 mutex_unlock(&session->s_mutex);
2561
2562 /* kick calling process */
2563 complete_request(mdsc, req);
2564 out:
2565 ceph_mdsc_put_request(req);
2566 return;
2567 }
2568
2569
2570
2571 /*
2572 * handle mds notification that our request has been forwarded.
2573 */
2574 static void handle_forward(struct ceph_mds_client *mdsc,
2575 struct ceph_mds_session *session,
2576 struct ceph_msg *msg)
2577 {
2578 struct ceph_mds_request *req;
2579 u64 tid = le64_to_cpu(msg->hdr.tid);
2580 u32 next_mds;
2581 u32 fwd_seq;
2582 int err = -EINVAL;
2583 void *p = msg->front.iov_base;
2584 void *end = p + msg->front.iov_len;
2585
2586 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2587 next_mds = ceph_decode_32(&p);
2588 fwd_seq = ceph_decode_32(&p);
2589
2590 mutex_lock(&mdsc->mutex);
2591 req = __lookup_request(mdsc, tid);
2592 if (!req) {
2593 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2594 goto out; /* dup reply? */
2595 }
2596
2597 if (req->r_aborted) {
2598 dout("forward tid %llu aborted, unregistering\n", tid);
2599 __unregister_request(mdsc, req);
2600 } else if (fwd_seq <= req->r_num_fwd) {
2601 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2602 tid, next_mds, req->r_num_fwd, fwd_seq);
2603 } else {
2604 /* resend. forward race not possible; mds would drop */
2605 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2606 BUG_ON(req->r_err);
2607 BUG_ON(req->r_got_result);
2608 req->r_attempts = 0;
2609 req->r_num_fwd = fwd_seq;
2610 req->r_resend_mds = next_mds;
2611 put_request_session(req);
2612 __do_request(mdsc, req);
2613 }
2614 ceph_mdsc_put_request(req);
2615 out:
2616 mutex_unlock(&mdsc->mutex);
2617 return;
2618
2619 bad:
2620 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2621 }
2622
2623 /*
2624 * handle a mds session control message
2625 */
2626 static void handle_session(struct ceph_mds_session *session,
2627 struct ceph_msg *msg)
2628 {
2629 struct ceph_mds_client *mdsc = session->s_mdsc;
2630 u32 op;
2631 u64 seq;
2632 int mds = session->s_mds;
2633 struct ceph_mds_session_head *h = msg->front.iov_base;
2634 int wake = 0;
2635
2636 /* decode */
2637 if (msg->front.iov_len != sizeof(*h))
2638 goto bad;
2639 op = le32_to_cpu(h->op);
2640 seq = le64_to_cpu(h->seq);
2641
2642 mutex_lock(&mdsc->mutex);
2643 if (op == CEPH_SESSION_CLOSE)
2644 __unregister_session(mdsc, session);
2645 /* FIXME: this ttl calculation is generous */
2646 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2647 mutex_unlock(&mdsc->mutex);
2648
2649 mutex_lock(&session->s_mutex);
2650
2651 dout("handle_session mds%d %s %p state %s seq %llu\n",
2652 mds, ceph_session_op_name(op), session,
2653 ceph_session_state_name(session->s_state), seq);
2654
2655 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2656 session->s_state = CEPH_MDS_SESSION_OPEN;
2657 pr_info("mds%d came back\n", session->s_mds);
2658 }
2659
2660 switch (op) {
2661 case CEPH_SESSION_OPEN:
2662 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2663 pr_info("mds%d reconnect success\n", session->s_mds);
2664 session->s_state = CEPH_MDS_SESSION_OPEN;
2665 renewed_caps(mdsc, session, 0);
2666 wake = 1;
2667 if (mdsc->stopping)
2668 __close_session(mdsc, session);
2669 break;
2670
2671 case CEPH_SESSION_RENEWCAPS:
2672 if (session->s_renew_seq == seq)
2673 renewed_caps(mdsc, session, 1);
2674 break;
2675
2676 case CEPH_SESSION_CLOSE:
2677 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2678 pr_info("mds%d reconnect denied\n", session->s_mds);
2679 cleanup_session_requests(mdsc, session);
2680 remove_session_caps(session);
2681 wake = 2; /* for good measure */
2682 wake_up_all(&mdsc->session_close_wq);
2683 break;
2684
2685 case CEPH_SESSION_STALE:
2686 pr_info("mds%d caps went stale, renewing\n",
2687 session->s_mds);
2688 spin_lock(&session->s_gen_ttl_lock);
2689 session->s_cap_gen++;
2690 session->s_cap_ttl = jiffies - 1;
2691 spin_unlock(&session->s_gen_ttl_lock);
2692 send_renew_caps(mdsc, session);
2693 break;
2694
2695 case CEPH_SESSION_RECALL_STATE:
2696 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2697 break;
2698
2699 case CEPH_SESSION_FLUSHMSG:
2700 send_flushmsg_ack(mdsc, session, seq);
2701 break;
2702
2703 case CEPH_SESSION_FORCE_RO:
2704 dout("force_session_readonly %p\n", session);
2705 spin_lock(&session->s_cap_lock);
2706 session->s_readonly = true;
2707 spin_unlock(&session->s_cap_lock);
2708 wake_up_session_caps(session, 0);
2709 break;
2710
2711 default:
2712 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2713 WARN_ON(1);
2714 }
2715
2716 mutex_unlock(&session->s_mutex);
2717 if (wake) {
2718 mutex_lock(&mdsc->mutex);
2719 __wake_requests(mdsc, &session->s_waiting);
2720 if (wake == 2)
2721 kick_requests(mdsc, mds);
2722 mutex_unlock(&mdsc->mutex);
2723 }
2724 return;
2725
2726 bad:
2727 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2728 (int)msg->front.iov_len);
2729 ceph_msg_dump(msg);
2730 return;
2731 }
2732
2733
2734 /*
2735 * called under session->mutex.
2736 */
2737 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2738 struct ceph_mds_session *session)
2739 {
2740 struct ceph_mds_request *req, *nreq;
2741 struct rb_node *p;
2742 int err;
2743
2744 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2745
2746 mutex_lock(&mdsc->mutex);
2747 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2748 err = __prepare_send_request(mdsc, req, session->s_mds, true);
2749 if (!err) {
2750 ceph_msg_get(req->r_request);
2751 ceph_con_send(&session->s_con, req->r_request);
2752 }
2753 }
2754
2755 /*
2756 * also re-send old requests when MDS enters reconnect stage. So that MDS
2757 * can process completed request in clientreplay stage.
2758 */
2759 p = rb_first(&mdsc->request_tree);
2760 while (p) {
2761 req = rb_entry(p, struct ceph_mds_request, r_node);
2762 p = rb_next(p);
2763 if (req->r_got_unsafe)
2764 continue;
2765 if (req->r_attempts == 0)
2766 continue; /* only old requests */
2767 if (req->r_session &&
2768 req->r_session->s_mds == session->s_mds) {
2769 err = __prepare_send_request(mdsc, req,
2770 session->s_mds, true);
2771 if (!err) {
2772 ceph_msg_get(req->r_request);
2773 ceph_con_send(&session->s_con, req->r_request);
2774 }
2775 }
2776 }
2777 mutex_unlock(&mdsc->mutex);
2778 }
2779
2780 /*
2781 * Encode information about a cap for a reconnect with the MDS.
2782 */
2783 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2784 void *arg)
2785 {
2786 union {
2787 struct ceph_mds_cap_reconnect v2;
2788 struct ceph_mds_cap_reconnect_v1 v1;
2789 } rec;
2790 size_t reclen;
2791 struct ceph_inode_info *ci;
2792 struct ceph_reconnect_state *recon_state = arg;
2793 struct ceph_pagelist *pagelist = recon_state->pagelist;
2794 char *path;
2795 int pathlen, err;
2796 u64 pathbase;
2797 struct dentry *dentry;
2798
2799 ci = cap->ci;
2800
2801 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2802 inode, ceph_vinop(inode), cap, cap->cap_id,
2803 ceph_cap_string(cap->issued));
2804 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2805 if (err)
2806 return err;
2807
2808 dentry = d_find_alias(inode);
2809 if (dentry) {
2810 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2811 if (IS_ERR(path)) {
2812 err = PTR_ERR(path);
2813 goto out_dput;
2814 }
2815 } else {
2816 path = NULL;
2817 pathlen = 0;
2818 }
2819 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2820 if (err)
2821 goto out_free;
2822
2823 spin_lock(&ci->i_ceph_lock);
2824 cap->seq = 0; /* reset cap seq */
2825 cap->issue_seq = 0; /* and issue_seq */
2826 cap->mseq = 0; /* and migrate_seq */
2827 cap->cap_gen = cap->session->s_cap_gen;
2828
2829 if (recon_state->flock) {
2830 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2831 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2832 rec.v2.issued = cpu_to_le32(cap->issued);
2833 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2834 rec.v2.pathbase = cpu_to_le64(pathbase);
2835 rec.v2.flock_len = 0;
2836 reclen = sizeof(rec.v2);
2837 } else {
2838 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2839 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2840 rec.v1.issued = cpu_to_le32(cap->issued);
2841 rec.v1.size = cpu_to_le64(inode->i_size);
2842 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2843 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2844 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2845 rec.v1.pathbase = cpu_to_le64(pathbase);
2846 reclen = sizeof(rec.v1);
2847 }
2848 spin_unlock(&ci->i_ceph_lock);
2849
2850 if (recon_state->flock) {
2851 int num_fcntl_locks, num_flock_locks;
2852 struct ceph_filelock *flocks;
2853
2854 encode_again:
2855 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2856 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2857 sizeof(struct ceph_filelock), GFP_NOFS);
2858 if (!flocks) {
2859 err = -ENOMEM;
2860 goto out_free;
2861 }
2862 err = ceph_encode_locks_to_buffer(inode, flocks,
2863 num_fcntl_locks,
2864 num_flock_locks);
2865 if (err) {
2866 kfree(flocks);
2867 if (err == -ENOSPC)
2868 goto encode_again;
2869 goto out_free;
2870 }
2871 /*
2872 * number of encoded locks is stable, so copy to pagelist
2873 */
2874 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2875 (num_fcntl_locks+num_flock_locks) *
2876 sizeof(struct ceph_filelock));
2877 err = ceph_pagelist_append(pagelist, &rec, reclen);
2878 if (!err)
2879 err = ceph_locks_to_pagelist(flocks, pagelist,
2880 num_fcntl_locks,
2881 num_flock_locks);
2882 kfree(flocks);
2883 } else {
2884 err = ceph_pagelist_append(pagelist, &rec, reclen);
2885 }
2886
2887 recon_state->nr_caps++;
2888 out_free:
2889 kfree(path);
2890 out_dput:
2891 dput(dentry);
2892 return err;
2893 }
2894
2895
2896 /*
2897 * If an MDS fails and recovers, clients need to reconnect in order to
2898 * reestablish shared state. This includes all caps issued through
2899 * this session _and_ the snap_realm hierarchy. Because it's not
2900 * clear which snap realms the mds cares about, we send everything we
2901 * know about.. that ensures we'll then get any new info the
2902 * recovering MDS might have.
2903 *
2904 * This is a relatively heavyweight operation, but it's rare.
2905 *
2906 * called with mdsc->mutex held.
2907 */
2908 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2909 struct ceph_mds_session *session)
2910 {
2911 struct ceph_msg *reply;
2912 struct rb_node *p;
2913 int mds = session->s_mds;
2914 int err = -ENOMEM;
2915 int s_nr_caps;
2916 struct ceph_pagelist *pagelist;
2917 struct ceph_reconnect_state recon_state;
2918
2919 pr_info("mds%d reconnect start\n", mds);
2920
2921 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2922 if (!pagelist)
2923 goto fail_nopagelist;
2924 ceph_pagelist_init(pagelist);
2925
2926 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2927 if (!reply)
2928 goto fail_nomsg;
2929
2930 mutex_lock(&session->s_mutex);
2931 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2932 session->s_seq = 0;
2933
2934 dout("session %p state %s\n", session,
2935 ceph_session_state_name(session->s_state));
2936
2937 spin_lock(&session->s_gen_ttl_lock);
2938 session->s_cap_gen++;
2939 spin_unlock(&session->s_gen_ttl_lock);
2940
2941 spin_lock(&session->s_cap_lock);
2942 /* don't know if session is readonly */
2943 session->s_readonly = 0;
2944 /*
2945 * notify __ceph_remove_cap() that we are composing cap reconnect.
2946 * If a cap get released before being added to the cap reconnect,
2947 * __ceph_remove_cap() should skip queuing cap release.
2948 */
2949 session->s_cap_reconnect = 1;
2950 /* drop old cap expires; we're about to reestablish that state */
2951 cleanup_cap_releases(mdsc, session);
2952
2953 /* trim unused caps to reduce MDS's cache rejoin time */
2954 if (mdsc->fsc->sb->s_root)
2955 shrink_dcache_parent(mdsc->fsc->sb->s_root);
2956
2957 ceph_con_close(&session->s_con);
2958 ceph_con_open(&session->s_con,
2959 CEPH_ENTITY_TYPE_MDS, mds,
2960 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2961
2962 /* replay unsafe requests */
2963 replay_unsafe_requests(mdsc, session);
2964
2965 down_read(&mdsc->snap_rwsem);
2966
2967 /* traverse this session's caps */
2968 s_nr_caps = session->s_nr_caps;
2969 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2970 if (err)
2971 goto fail;
2972
2973 recon_state.nr_caps = 0;
2974 recon_state.pagelist = pagelist;
2975 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2976 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2977 if (err < 0)
2978 goto fail;
2979
2980 spin_lock(&session->s_cap_lock);
2981 session->s_cap_reconnect = 0;
2982 spin_unlock(&session->s_cap_lock);
2983
2984 /*
2985 * snaprealms. we provide mds with the ino, seq (version), and
2986 * parent for all of our realms. If the mds has any newer info,
2987 * it will tell us.
2988 */
2989 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2990 struct ceph_snap_realm *realm =
2991 rb_entry(p, struct ceph_snap_realm, node);
2992 struct ceph_mds_snaprealm_reconnect sr_rec;
2993
2994 dout(" adding snap realm %llx seq %lld parent %llx\n",
2995 realm->ino, realm->seq, realm->parent_ino);
2996 sr_rec.ino = cpu_to_le64(realm->ino);
2997 sr_rec.seq = cpu_to_le64(realm->seq);
2998 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2999 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
3000 if (err)
3001 goto fail;
3002 }
3003
3004 if (recon_state.flock)
3005 reply->hdr.version = cpu_to_le16(2);
3006
3007 /* raced with cap release? */
3008 if (s_nr_caps != recon_state.nr_caps) {
3009 struct page *page = list_first_entry(&pagelist->head,
3010 struct page, lru);
3011 __le32 *addr = kmap_atomic(page);
3012 *addr = cpu_to_le32(recon_state.nr_caps);
3013 kunmap_atomic(addr);
3014 }
3015
3016 reply->hdr.data_len = cpu_to_le32(pagelist->length);
3017 ceph_msg_data_add_pagelist(reply, pagelist);
3018
3019 ceph_early_kick_flushing_caps(mdsc, session);
3020
3021 ceph_con_send(&session->s_con, reply);
3022
3023 mutex_unlock(&session->s_mutex);
3024
3025 mutex_lock(&mdsc->mutex);
3026 __wake_requests(mdsc, &session->s_waiting);
3027 mutex_unlock(&mdsc->mutex);
3028
3029 up_read(&mdsc->snap_rwsem);
3030 return;
3031
3032 fail:
3033 ceph_msg_put(reply);
3034 up_read(&mdsc->snap_rwsem);
3035 mutex_unlock(&session->s_mutex);
3036 fail_nomsg:
3037 ceph_pagelist_release(pagelist);
3038 fail_nopagelist:
3039 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
3040 return;
3041 }
3042
3043
3044 /*
3045 * compare old and new mdsmaps, kicking requests
3046 * and closing out old connections as necessary
3047 *
3048 * called under mdsc->mutex.
3049 */
3050 static void check_new_map(struct ceph_mds_client *mdsc,
3051 struct ceph_mdsmap *newmap,
3052 struct ceph_mdsmap *oldmap)
3053 {
3054 int i;
3055 int oldstate, newstate;
3056 struct ceph_mds_session *s;
3057
3058 dout("check_new_map new %u old %u\n",
3059 newmap->m_epoch, oldmap->m_epoch);
3060
3061 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
3062 if (mdsc->sessions[i] == NULL)
3063 continue;
3064 s = mdsc->sessions[i];
3065 oldstate = ceph_mdsmap_get_state(oldmap, i);
3066 newstate = ceph_mdsmap_get_state(newmap, i);
3067
3068 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3069 i, ceph_mds_state_name(oldstate),
3070 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
3071 ceph_mds_state_name(newstate),
3072 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
3073 ceph_session_state_name(s->s_state));
3074
3075 if (i >= newmap->m_max_mds ||
3076 memcmp(ceph_mdsmap_get_addr(oldmap, i),
3077 ceph_mdsmap_get_addr(newmap, i),
3078 sizeof(struct ceph_entity_addr))) {
3079 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
3080 /* the session never opened, just close it
3081 * out now */
3082 __wake_requests(mdsc, &s->s_waiting);
3083 __unregister_session(mdsc, s);
3084 } else {
3085 /* just close it */
3086 mutex_unlock(&mdsc->mutex);
3087 mutex_lock(&s->s_mutex);
3088 mutex_lock(&mdsc->mutex);
3089 ceph_con_close(&s->s_con);
3090 mutex_unlock(&s->s_mutex);
3091 s->s_state = CEPH_MDS_SESSION_RESTARTING;
3092 }
3093 } else if (oldstate == newstate) {
3094 continue; /* nothing new with this mds */
3095 }
3096
3097 /*
3098 * send reconnect?
3099 */
3100 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
3101 newstate >= CEPH_MDS_STATE_RECONNECT) {
3102 mutex_unlock(&mdsc->mutex);
3103 send_mds_reconnect(mdsc, s);
3104 mutex_lock(&mdsc->mutex);
3105 }
3106
3107 /*
3108 * kick request on any mds that has gone active.
3109 */
3110 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
3111 newstate >= CEPH_MDS_STATE_ACTIVE) {
3112 if (oldstate != CEPH_MDS_STATE_CREATING &&
3113 oldstate != CEPH_MDS_STATE_STARTING)
3114 pr_info("mds%d recovery completed\n", s->s_mds);
3115 kick_requests(mdsc, i);
3116 ceph_kick_flushing_caps(mdsc, s);
3117 wake_up_session_caps(s, 1);
3118 }
3119 }
3120
3121 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
3122 s = mdsc->sessions[i];
3123 if (!s)
3124 continue;
3125 if (!ceph_mdsmap_is_laggy(newmap, i))
3126 continue;
3127 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3128 s->s_state == CEPH_MDS_SESSION_HUNG ||
3129 s->s_state == CEPH_MDS_SESSION_CLOSING) {
3130 dout(" connecting to export targets of laggy mds%d\n",
3131 i);
3132 __open_export_target_sessions(mdsc, s);
3133 }
3134 }
3135 }
3136
3137
3138
3139 /*
3140 * leases
3141 */
3142
3143 /*
3144 * caller must hold session s_mutex, dentry->d_lock
3145 */
3146 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
3147 {
3148 struct ceph_dentry_info *di = ceph_dentry(dentry);
3149
3150 ceph_put_mds_session(di->lease_session);
3151 di->lease_session = NULL;
3152 }
3153
3154 static void handle_lease(struct ceph_mds_client *mdsc,
3155 struct ceph_mds_session *session,
3156 struct ceph_msg *msg)
3157 {
3158 struct super_block *sb = mdsc->fsc->sb;
3159 struct inode *inode;
3160 struct dentry *parent, *dentry;
3161 struct ceph_dentry_info *di;
3162 int mds = session->s_mds;
3163 struct ceph_mds_lease *h = msg->front.iov_base;
3164 u32 seq;
3165 struct ceph_vino vino;
3166 struct qstr dname;
3167 int release = 0;
3168
3169 dout("handle_lease from mds%d\n", mds);
3170
3171 /* decode */
3172 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
3173 goto bad;
3174 vino.ino = le64_to_cpu(h->ino);
3175 vino.snap = CEPH_NOSNAP;
3176 seq = le32_to_cpu(h->seq);
3177 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
3178 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
3179 if (dname.len != get_unaligned_le32(h+1))
3180 goto bad;
3181
3182 /* lookup inode */
3183 inode = ceph_find_inode(sb, vino);
3184 dout("handle_lease %s, ino %llx %p %.*s\n",
3185 ceph_lease_op_name(h->action), vino.ino, inode,
3186 dname.len, dname.name);
3187
3188 mutex_lock(&session->s_mutex);
3189 session->s_seq++;
3190
3191 if (inode == NULL) {
3192 dout("handle_lease no inode %llx\n", vino.ino);
3193 goto release;
3194 }
3195
3196 /* dentry */
3197 parent = d_find_alias(inode);
3198 if (!parent) {
3199 dout("no parent dentry on inode %p\n", inode);
3200 WARN_ON(1);
3201 goto release; /* hrm... */
3202 }
3203 dname.hash = full_name_hash(dname.name, dname.len);
3204 dentry = d_lookup(parent, &dname);
3205 dput(parent);
3206 if (!dentry)
3207 goto release;
3208
3209 spin_lock(&dentry->d_lock);
3210 di = ceph_dentry(dentry);
3211 switch (h->action) {
3212 case CEPH_MDS_LEASE_REVOKE:
3213 if (di->lease_session == session) {
3214 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
3215 h->seq = cpu_to_le32(di->lease_seq);
3216 __ceph_mdsc_drop_dentry_lease(dentry);
3217 }
3218 release = 1;
3219 break;
3220
3221 case CEPH_MDS_LEASE_RENEW:
3222 if (di->lease_session == session &&
3223 di->lease_gen == session->s_cap_gen &&
3224 di->lease_renew_from &&
3225 di->lease_renew_after == 0) {
3226 unsigned long duration =
3227 msecs_to_jiffies(le32_to_cpu(h->duration_ms));
3228
3229 di->lease_seq = seq;
3230 dentry->d_time = di->lease_renew_from + duration;
3231 di->lease_renew_after = di->lease_renew_from +
3232 (duration >> 1);
3233 di->lease_renew_from = 0;
3234 }
3235 break;
3236 }
3237 spin_unlock(&dentry->d_lock);
3238 dput(dentry);
3239
3240 if (!release)
3241 goto out;
3242
3243 release:
3244 /* let's just reuse the same message */
3245 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
3246 ceph_msg_get(msg);
3247 ceph_con_send(&session->s_con, msg);
3248
3249 out:
3250 iput(inode);
3251 mutex_unlock(&session->s_mutex);
3252 return;
3253
3254 bad:
3255 pr_err("corrupt lease message\n");
3256 ceph_msg_dump(msg);
3257 }
3258
3259 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
3260 struct inode *inode,
3261 struct dentry *dentry, char action,
3262 u32 seq)
3263 {
3264 struct ceph_msg *msg;
3265 struct ceph_mds_lease *lease;
3266 int len = sizeof(*lease) + sizeof(u32);
3267 int dnamelen = 0;
3268
3269 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3270 inode, dentry, ceph_lease_op_name(action), session->s_mds);
3271 dnamelen = dentry->d_name.len;
3272 len += dnamelen;
3273
3274 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
3275 if (!msg)
3276 return;
3277 lease = msg->front.iov_base;
3278 lease->action = action;
3279 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
3280 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
3281 lease->seq = cpu_to_le32(seq);
3282 put_unaligned_le32(dnamelen, lease + 1);
3283 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
3284
3285 /*
3286 * if this is a preemptive lease RELEASE, no need to
3287 * flush request stream, since the actual request will
3288 * soon follow.
3289 */
3290 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
3291
3292 ceph_con_send(&session->s_con, msg);
3293 }
3294
3295 /*
3296 * Preemptively release a lease we expect to invalidate anyway.
3297 * Pass @inode always, @dentry is optional.
3298 */
3299 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
3300 struct dentry *dentry)
3301 {
3302 struct ceph_dentry_info *di;
3303 struct ceph_mds_session *session;
3304 u32 seq;
3305
3306 BUG_ON(inode == NULL);
3307 BUG_ON(dentry == NULL);
3308
3309 /* is dentry lease valid? */
3310 spin_lock(&dentry->d_lock);
3311 di = ceph_dentry(dentry);
3312 if (!di || !di->lease_session ||
3313 di->lease_session->s_mds < 0 ||
3314 di->lease_gen != di->lease_session->s_cap_gen ||
3315 !time_before(jiffies, dentry->d_time)) {
3316 dout("lease_release inode %p dentry %p -- "
3317 "no lease\n",
3318 inode, dentry);
3319 spin_unlock(&dentry->d_lock);
3320 return;
3321 }
3322
3323 /* we do have a lease on this dentry; note mds and seq */
3324 session = ceph_get_mds_session(di->lease_session);
3325 seq = di->lease_seq;
3326 __ceph_mdsc_drop_dentry_lease(dentry);
3327 spin_unlock(&dentry->d_lock);
3328
3329 dout("lease_release inode %p dentry %p to mds%d\n",
3330 inode, dentry, session->s_mds);
3331 ceph_mdsc_lease_send_msg(session, inode, dentry,
3332 CEPH_MDS_LEASE_RELEASE, seq);
3333 ceph_put_mds_session(session);
3334 }
3335
3336 /*
3337 * drop all leases (and dentry refs) in preparation for umount
3338 */
3339 static void drop_leases(struct ceph_mds_client *mdsc)
3340 {
3341 int i;
3342
3343 dout("drop_leases\n");
3344 mutex_lock(&mdsc->mutex);
3345 for (i = 0; i < mdsc->max_sessions; i++) {
3346 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3347 if (!s)
3348 continue;
3349 mutex_unlock(&mdsc->mutex);
3350 mutex_lock(&s->s_mutex);
3351 mutex_unlock(&s->s_mutex);
3352 ceph_put_mds_session(s);
3353 mutex_lock(&mdsc->mutex);
3354 }
3355 mutex_unlock(&mdsc->mutex);
3356 }
3357
3358
3359
3360 /*
3361 * delayed work -- periodically trim expired leases, renew caps with mds
3362 */
3363 static void schedule_delayed(struct ceph_mds_client *mdsc)
3364 {
3365 int delay = 5;
3366 unsigned hz = round_jiffies_relative(HZ * delay);
3367 schedule_delayed_work(&mdsc->delayed_work, hz);
3368 }
3369
3370 static void delayed_work(struct work_struct *work)
3371 {
3372 int i;
3373 struct ceph_mds_client *mdsc =
3374 container_of(work, struct ceph_mds_client, delayed_work.work);
3375 int renew_interval;
3376 int renew_caps;
3377
3378 dout("mdsc delayed_work\n");
3379 ceph_check_delayed_caps(mdsc);
3380
3381 mutex_lock(&mdsc->mutex);
3382 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3383 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3384 mdsc->last_renew_caps);
3385 if (renew_caps)
3386 mdsc->last_renew_caps = jiffies;
3387
3388 for (i = 0; i < mdsc->max_sessions; i++) {
3389 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3390 if (s == NULL)
3391 continue;
3392 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3393 dout("resending session close request for mds%d\n",
3394 s->s_mds);
3395 request_close_session(mdsc, s);
3396 ceph_put_mds_session(s);
3397 continue;
3398 }
3399 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3400 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3401 s->s_state = CEPH_MDS_SESSION_HUNG;
3402 pr_info("mds%d hung\n", s->s_mds);
3403 }
3404 }
3405 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3406 /* this mds is failed or recovering, just wait */
3407 ceph_put_mds_session(s);
3408 continue;
3409 }
3410 mutex_unlock(&mdsc->mutex);
3411
3412 mutex_lock(&s->s_mutex);
3413 if (renew_caps)
3414 send_renew_caps(mdsc, s);
3415 else
3416 ceph_con_keepalive(&s->s_con);
3417 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3418 s->s_state == CEPH_MDS_SESSION_HUNG)
3419 ceph_send_cap_releases(mdsc, s);
3420 mutex_unlock(&s->s_mutex);
3421 ceph_put_mds_session(s);
3422
3423 mutex_lock(&mdsc->mutex);
3424 }
3425 mutex_unlock(&mdsc->mutex);
3426
3427 schedule_delayed(mdsc);
3428 }
3429
3430 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3431
3432 {
3433 struct ceph_mds_client *mdsc;
3434
3435 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3436 if (!mdsc)
3437 return -ENOMEM;
3438 mdsc->fsc = fsc;
3439 fsc->mdsc = mdsc;
3440 mutex_init(&mdsc->mutex);
3441 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3442 if (mdsc->mdsmap == NULL) {
3443 kfree(mdsc);
3444 return -ENOMEM;
3445 }
3446
3447 init_completion(&mdsc->safe_umount_waiters);
3448 init_waitqueue_head(&mdsc->session_close_wq);
3449 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3450 mdsc->sessions = NULL;
3451 atomic_set(&mdsc->num_sessions, 0);
3452 mdsc->max_sessions = 0;
3453 mdsc->stopping = 0;
3454 mdsc->last_snap_seq = 0;
3455 init_rwsem(&mdsc->snap_rwsem);
3456 mdsc->snap_realms = RB_ROOT;
3457 INIT_LIST_HEAD(&mdsc->snap_empty);
3458 spin_lock_init(&mdsc->snap_empty_lock);
3459 mdsc->last_tid = 0;
3460 mdsc->oldest_tid = 0;
3461 mdsc->request_tree = RB_ROOT;
3462 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3463 mdsc->last_renew_caps = jiffies;
3464 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3465 spin_lock_init(&mdsc->cap_delay_lock);
3466 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3467 spin_lock_init(&mdsc->snap_flush_lock);
3468 mdsc->last_cap_flush_tid = 1;
3469 mdsc->cap_flush_tree = RB_ROOT;
3470 INIT_LIST_HEAD(&mdsc->cap_dirty);
3471 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3472 mdsc->num_cap_flushing = 0;
3473 spin_lock_init(&mdsc->cap_dirty_lock);
3474 init_waitqueue_head(&mdsc->cap_flushing_wq);
3475 spin_lock_init(&mdsc->dentry_lru_lock);
3476 INIT_LIST_HEAD(&mdsc->dentry_lru);
3477
3478 ceph_caps_init(mdsc);
3479 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3480
3481 init_rwsem(&mdsc->pool_perm_rwsem);
3482 mdsc->pool_perm_tree = RB_ROOT;
3483
3484 return 0;
3485 }
3486
3487 /*
3488 * Wait for safe replies on open mds requests. If we time out, drop
3489 * all requests from the tree to avoid dangling dentry refs.
3490 */
3491 static void wait_requests(struct ceph_mds_client *mdsc)
3492 {
3493 struct ceph_options *opts = mdsc->fsc->client->options;
3494 struct ceph_mds_request *req;
3495
3496 mutex_lock(&mdsc->mutex);
3497 if (__get_oldest_req(mdsc)) {
3498 mutex_unlock(&mdsc->mutex);
3499
3500 dout("wait_requests waiting for requests\n");
3501 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3502 ceph_timeout_jiffies(opts->mount_timeout));
3503
3504 /* tear down remaining requests */
3505 mutex_lock(&mdsc->mutex);
3506 while ((req = __get_oldest_req(mdsc))) {
3507 dout("wait_requests timed out on tid %llu\n",
3508 req->r_tid);
3509 __unregister_request(mdsc, req);
3510 }
3511 }
3512 mutex_unlock(&mdsc->mutex);
3513 dout("wait_requests done\n");
3514 }
3515
3516 /*
3517 * called before mount is ro, and before dentries are torn down.
3518 * (hmm, does this still race with new lookups?)
3519 */
3520 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3521 {
3522 dout("pre_umount\n");
3523 mdsc->stopping = 1;
3524
3525 drop_leases(mdsc);
3526 ceph_flush_dirty_caps(mdsc);
3527 wait_requests(mdsc);
3528
3529 /*
3530 * wait for reply handlers to drop their request refs and
3531 * their inode/dcache refs
3532 */
3533 ceph_msgr_flush();
3534 }
3535
3536 /*
3537 * wait for all write mds requests to flush.
3538 */
3539 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3540 {
3541 struct ceph_mds_request *req = NULL, *nextreq;
3542 struct rb_node *n;
3543
3544 mutex_lock(&mdsc->mutex);
3545 dout("wait_unsafe_requests want %lld\n", want_tid);
3546 restart:
3547 req = __get_oldest_req(mdsc);
3548 while (req && req->r_tid <= want_tid) {
3549 /* find next request */
3550 n = rb_next(&req->r_node);
3551 if (n)
3552 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3553 else
3554 nextreq = NULL;
3555 if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
3556 (req->r_op & CEPH_MDS_OP_WRITE)) {
3557 /* write op */
3558 ceph_mdsc_get_request(req);
3559 if (nextreq)
3560 ceph_mdsc_get_request(nextreq);
3561 mutex_unlock(&mdsc->mutex);
3562 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3563 req->r_tid, want_tid);
3564 wait_for_completion(&req->r_safe_completion);
3565 mutex_lock(&mdsc->mutex);
3566 ceph_mdsc_put_request(req);
3567 if (!nextreq)
3568 break; /* next dne before, so we're done! */
3569 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3570 /* next request was removed from tree */
3571 ceph_mdsc_put_request(nextreq);
3572 goto restart;
3573 }
3574 ceph_mdsc_put_request(nextreq); /* won't go away */
3575 }
3576 req = nextreq;
3577 }
3578 mutex_unlock(&mdsc->mutex);
3579 dout("wait_unsafe_requests done\n");
3580 }
3581
3582 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3583 {
3584 u64 want_tid, want_flush, want_snap;
3585
3586 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3587 return;
3588
3589 dout("sync\n");
3590 mutex_lock(&mdsc->mutex);
3591 want_tid = mdsc->last_tid;
3592 mutex_unlock(&mdsc->mutex);
3593
3594 ceph_flush_dirty_caps(mdsc);
3595 spin_lock(&mdsc->cap_dirty_lock);
3596 want_flush = mdsc->last_cap_flush_tid;
3597 spin_unlock(&mdsc->cap_dirty_lock);
3598
3599 down_read(&mdsc->snap_rwsem);
3600 want_snap = mdsc->last_snap_seq;
3601 up_read(&mdsc->snap_rwsem);
3602
3603 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n",
3604 want_tid, want_flush, want_snap);
3605
3606 wait_unsafe_requests(mdsc, want_tid);
3607 wait_caps_flush(mdsc, want_flush, want_snap);
3608 }
3609
3610 /*
3611 * true if all sessions are closed, or we force unmount
3612 */
3613 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3614 {
3615 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
3616 return true;
3617 return atomic_read(&mdsc->num_sessions) == 0;
3618 }
3619
3620 /*
3621 * called after sb is ro.
3622 */
3623 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3624 {
3625 struct ceph_options *opts = mdsc->fsc->client->options;
3626 struct ceph_mds_session *session;
3627 int i;
3628
3629 dout("close_sessions\n");
3630
3631 /* close sessions */
3632 mutex_lock(&mdsc->mutex);
3633 for (i = 0; i < mdsc->max_sessions; i++) {
3634 session = __ceph_lookup_mds_session(mdsc, i);
3635 if (!session)
3636 continue;
3637 mutex_unlock(&mdsc->mutex);
3638 mutex_lock(&session->s_mutex);
3639 __close_session(mdsc, session);
3640 mutex_unlock(&session->s_mutex);
3641 ceph_put_mds_session(session);
3642 mutex_lock(&mdsc->mutex);
3643 }
3644 mutex_unlock(&mdsc->mutex);
3645
3646 dout("waiting for sessions to close\n");
3647 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3648 ceph_timeout_jiffies(opts->mount_timeout));
3649
3650 /* tear down remaining sessions */
3651 mutex_lock(&mdsc->mutex);
3652 for (i = 0; i < mdsc->max_sessions; i++) {
3653 if (mdsc->sessions[i]) {
3654 session = get_session(mdsc->sessions[i]);
3655 __unregister_session(mdsc, session);
3656 mutex_unlock(&mdsc->mutex);
3657 mutex_lock(&session->s_mutex);
3658 remove_session_caps(session);
3659 mutex_unlock(&session->s_mutex);
3660 ceph_put_mds_session(session);
3661 mutex_lock(&mdsc->mutex);
3662 }
3663 }
3664 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3665 mutex_unlock(&mdsc->mutex);
3666
3667 ceph_cleanup_empty_realms(mdsc);
3668
3669 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3670
3671 dout("stopped\n");
3672 }
3673
3674 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
3675 {
3676 struct ceph_mds_session *session;
3677 int mds;
3678
3679 dout("force umount\n");
3680
3681 mutex_lock(&mdsc->mutex);
3682 for (mds = 0; mds < mdsc->max_sessions; mds++) {
3683 session = __ceph_lookup_mds_session(mdsc, mds);
3684 if (!session)
3685 continue;
3686 mutex_unlock(&mdsc->mutex);
3687 mutex_lock(&session->s_mutex);
3688 __close_session(mdsc, session);
3689 if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
3690 cleanup_session_requests(mdsc, session);
3691 remove_session_caps(session);
3692 }
3693 mutex_unlock(&session->s_mutex);
3694 ceph_put_mds_session(session);
3695 mutex_lock(&mdsc->mutex);
3696 kick_requests(mdsc, mds);
3697 }
3698 __wake_requests(mdsc, &mdsc->waiting_for_map);
3699 mutex_unlock(&mdsc->mutex);
3700 }
3701
3702 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3703 {
3704 dout("stop\n");
3705 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3706 if (mdsc->mdsmap)
3707 ceph_mdsmap_destroy(mdsc->mdsmap);
3708 kfree(mdsc->sessions);
3709 ceph_caps_finalize(mdsc);
3710 ceph_pool_perm_destroy(mdsc);
3711 }
3712
3713 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3714 {
3715 struct ceph_mds_client *mdsc = fsc->mdsc;
3716
3717 dout("mdsc_destroy %p\n", mdsc);
3718 ceph_mdsc_stop(mdsc);
3719
3720 /* flush out any connection work with references to us */
3721 ceph_msgr_flush();
3722
3723 fsc->mdsc = NULL;
3724 kfree(mdsc);
3725 dout("mdsc_destroy %p done\n", mdsc);
3726 }
3727
3728
3729 /*
3730 * handle mds map update.
3731 */
3732 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3733 {
3734 u32 epoch;
3735 u32 maplen;
3736 void *p = msg->front.iov_base;
3737 void *end = p + msg->front.iov_len;
3738 struct ceph_mdsmap *newmap, *oldmap;
3739 struct ceph_fsid fsid;
3740 int err = -EINVAL;
3741
3742 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3743 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3744 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3745 return;
3746 epoch = ceph_decode_32(&p);
3747 maplen = ceph_decode_32(&p);
3748 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3749
3750 /* do we need it? */
3751 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3752 mutex_lock(&mdsc->mutex);
3753 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3754 dout("handle_map epoch %u <= our %u\n",
3755 epoch, mdsc->mdsmap->m_epoch);
3756 mutex_unlock(&mdsc->mutex);
3757 return;
3758 }
3759
3760 newmap = ceph_mdsmap_decode(&p, end);
3761 if (IS_ERR(newmap)) {
3762 err = PTR_ERR(newmap);
3763 goto bad_unlock;
3764 }
3765
3766 /* swap into place */
3767 if (mdsc->mdsmap) {
3768 oldmap = mdsc->mdsmap;
3769 mdsc->mdsmap = newmap;
3770 check_new_map(mdsc, newmap, oldmap);
3771 ceph_mdsmap_destroy(oldmap);
3772 } else {
3773 mdsc->mdsmap = newmap; /* first mds map */
3774 }
3775 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3776
3777 __wake_requests(mdsc, &mdsc->waiting_for_map);
3778
3779 mutex_unlock(&mdsc->mutex);
3780 schedule_delayed(mdsc);
3781 return;
3782
3783 bad_unlock:
3784 mutex_unlock(&mdsc->mutex);
3785 bad:
3786 pr_err("error decoding mdsmap %d\n", err);
3787 return;
3788 }
3789
3790 static struct ceph_connection *con_get(struct ceph_connection *con)
3791 {
3792 struct ceph_mds_session *s = con->private;
3793
3794 if (get_session(s)) {
3795 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3796 return con;
3797 }
3798 dout("mdsc con_get %p FAIL\n", s);
3799 return NULL;
3800 }
3801
3802 static void con_put(struct ceph_connection *con)
3803 {
3804 struct ceph_mds_session *s = con->private;
3805
3806 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3807 ceph_put_mds_session(s);
3808 }
3809
3810 /*
3811 * if the client is unresponsive for long enough, the mds will kill
3812 * the session entirely.
3813 */
3814 static void peer_reset(struct ceph_connection *con)
3815 {
3816 struct ceph_mds_session *s = con->private;
3817 struct ceph_mds_client *mdsc = s->s_mdsc;
3818
3819 pr_warn("mds%d closed our session\n", s->s_mds);
3820 send_mds_reconnect(mdsc, s);
3821 }
3822
3823 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3824 {
3825 struct ceph_mds_session *s = con->private;
3826 struct ceph_mds_client *mdsc = s->s_mdsc;
3827 int type = le16_to_cpu(msg->hdr.type);
3828
3829 mutex_lock(&mdsc->mutex);
3830 if (__verify_registered_session(mdsc, s) < 0) {
3831 mutex_unlock(&mdsc->mutex);
3832 goto out;
3833 }
3834 mutex_unlock(&mdsc->mutex);
3835
3836 switch (type) {
3837 case CEPH_MSG_MDS_MAP:
3838 ceph_mdsc_handle_map(mdsc, msg);
3839 break;
3840 case CEPH_MSG_CLIENT_SESSION:
3841 handle_session(s, msg);
3842 break;
3843 case CEPH_MSG_CLIENT_REPLY:
3844 handle_reply(s, msg);
3845 break;
3846 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3847 handle_forward(mdsc, s, msg);
3848 break;
3849 case CEPH_MSG_CLIENT_CAPS:
3850 ceph_handle_caps(s, msg);
3851 break;
3852 case CEPH_MSG_CLIENT_SNAP:
3853 ceph_handle_snap(mdsc, s, msg);
3854 break;
3855 case CEPH_MSG_CLIENT_LEASE:
3856 handle_lease(mdsc, s, msg);
3857 break;
3858
3859 default:
3860 pr_err("received unknown message type %d %s\n", type,
3861 ceph_msg_type_name(type));
3862 }
3863 out:
3864 ceph_msg_put(msg);
3865 }
3866
3867 /*
3868 * authentication
3869 */
3870
3871 /*
3872 * Note: returned pointer is the address of a structure that's
3873 * managed separately. Caller must *not* attempt to free it.
3874 */
3875 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3876 int *proto, int force_new)
3877 {
3878 struct ceph_mds_session *s = con->private;
3879 struct ceph_mds_client *mdsc = s->s_mdsc;
3880 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3881 struct ceph_auth_handshake *auth = &s->s_auth;
3882
3883 if (force_new && auth->authorizer) {
3884 ceph_auth_destroy_authorizer(ac, auth->authorizer);
3885 auth->authorizer = NULL;
3886 }
3887 if (!auth->authorizer) {
3888 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3889 auth);
3890 if (ret)
3891 return ERR_PTR(ret);
3892 } else {
3893 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3894 auth);
3895 if (ret)
3896 return ERR_PTR(ret);
3897 }
3898 *proto = ac->protocol;
3899
3900 return auth;
3901 }
3902
3903
3904 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3905 {
3906 struct ceph_mds_session *s = con->private;
3907 struct ceph_mds_client *mdsc = s->s_mdsc;
3908 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3909
3910 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3911 }
3912
3913 static int invalidate_authorizer(struct ceph_connection *con)
3914 {
3915 struct ceph_mds_session *s = con->private;
3916 struct ceph_mds_client *mdsc = s->s_mdsc;
3917 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3918
3919 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3920
3921 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3922 }
3923
3924 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3925 struct ceph_msg_header *hdr, int *skip)
3926 {
3927 struct ceph_msg *msg;
3928 int type = (int) le16_to_cpu(hdr->type);
3929 int front_len = (int) le32_to_cpu(hdr->front_len);
3930
3931 if (con->in_msg)
3932 return con->in_msg;
3933
3934 *skip = 0;
3935 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3936 if (!msg) {
3937 pr_err("unable to allocate msg type %d len %d\n",
3938 type, front_len);
3939 return NULL;
3940 }
3941
3942 return msg;
3943 }
3944
3945 static int mds_sign_message(struct ceph_msg *msg)
3946 {
3947 struct ceph_mds_session *s = msg->con->private;
3948 struct ceph_auth_handshake *auth = &s->s_auth;
3949
3950 return ceph_auth_sign_message(auth, msg);
3951 }
3952
3953 static int mds_check_message_signature(struct ceph_msg *msg)
3954 {
3955 struct ceph_mds_session *s = msg->con->private;
3956 struct ceph_auth_handshake *auth = &s->s_auth;
3957
3958 return ceph_auth_check_message_signature(auth, msg);
3959 }
3960
3961 static const struct ceph_connection_operations mds_con_ops = {
3962 .get = con_get,
3963 .put = con_put,
3964 .dispatch = dispatch,
3965 .get_authorizer = get_authorizer,
3966 .verify_authorizer_reply = verify_authorizer_reply,
3967 .invalidate_authorizer = invalidate_authorizer,
3968 .peer_reset = peer_reset,
3969 .alloc_msg = mds_alloc_msg,
3970 .sign_message = mds_sign_message,
3971 .check_message_signature = mds_check_message_signature,
3972 };
3973
3974 /* eof */
This page took 0.111914 seconds and 6 git commands to generate.