cifs: remove uneeded __KERNEL__ block from cifsacl.h
[deliverable/linux.git] / fs / cifs / cifsacl.c
1 /*
2 * fs/cifs/cifsacl.c
3 *
4 * Copyright (C) International Business Machines Corp., 2007,2008
5 * Author(s): Steve French (sfrench@us.ibm.com)
6 *
7 * Contains the routines for mapping CIFS/NTFS ACLs
8 *
9 * This library is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU Lesser General Public License as published
11 * by the Free Software Foundation; either version 2.1 of the License, or
12 * (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
17 * the GNU Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public License
20 * along with this library; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24 #include <linux/fs.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/keyctl.h>
28 #include <linux/key-type.h>
29 #include <keys/user-type.h>
30 #include "cifspdu.h"
31 #include "cifsglob.h"
32 #include "cifsacl.h"
33 #include "cifsproto.h"
34 #include "cifs_debug.h"
35
36 /* security id for everyone/world system group */
37 static const struct cifs_sid sid_everyone = {
38 1, 1, {0, 0, 0, 0, 0, 1}, {0} };
39 /* security id for Authenticated Users system group */
40 static const struct cifs_sid sid_authusers = {
41 1, 1, {0, 0, 0, 0, 0, 5}, {__constant_cpu_to_le32(11)} };
42 /* group users */
43 static const struct cifs_sid sid_user = {1, 2 , {0, 0, 0, 0, 0, 5}, {} };
44
45 static const struct cred *root_cred;
46
47 static void
48 shrink_idmap_tree(struct rb_root *root, int nr_to_scan, int *nr_rem,
49 int *nr_del)
50 {
51 struct rb_node *node;
52 struct rb_node *tmp;
53 struct cifs_sid_id *psidid;
54
55 node = rb_first(root);
56 while (node) {
57 tmp = node;
58 node = rb_next(tmp);
59 psidid = rb_entry(tmp, struct cifs_sid_id, rbnode);
60 if (nr_to_scan == 0 || *nr_del == nr_to_scan)
61 ++(*nr_rem);
62 else {
63 if (time_after(jiffies, psidid->time + SID_MAP_EXPIRE)
64 && psidid->refcount == 0) {
65 rb_erase(tmp, root);
66 ++(*nr_del);
67 } else
68 ++(*nr_rem);
69 }
70 }
71 }
72
73 /*
74 * Run idmap cache shrinker.
75 */
76 static int
77 cifs_idmap_shrinker(struct shrinker *shrink, struct shrink_control *sc)
78 {
79 int nr_to_scan = sc->nr_to_scan;
80 int nr_del = 0;
81 int nr_rem = 0;
82 struct rb_root *root;
83
84 root = &uidtree;
85 spin_lock(&siduidlock);
86 shrink_idmap_tree(root, nr_to_scan, &nr_rem, &nr_del);
87 spin_unlock(&siduidlock);
88
89 root = &gidtree;
90 spin_lock(&sidgidlock);
91 shrink_idmap_tree(root, nr_to_scan, &nr_rem, &nr_del);
92 spin_unlock(&sidgidlock);
93
94 root = &siduidtree;
95 spin_lock(&uidsidlock);
96 shrink_idmap_tree(root, nr_to_scan, &nr_rem, &nr_del);
97 spin_unlock(&uidsidlock);
98
99 root = &sidgidtree;
100 spin_lock(&gidsidlock);
101 shrink_idmap_tree(root, nr_to_scan, &nr_rem, &nr_del);
102 spin_unlock(&gidsidlock);
103
104 return nr_rem;
105 }
106
107 static void
108 sid_rb_insert(struct rb_root *root, unsigned long cid,
109 struct cifs_sid_id **psidid, char *typestr)
110 {
111 char *strptr;
112 struct rb_node *node = root->rb_node;
113 struct rb_node *parent = NULL;
114 struct rb_node **linkto = &(root->rb_node);
115 struct cifs_sid_id *lsidid;
116
117 while (node) {
118 lsidid = rb_entry(node, struct cifs_sid_id, rbnode);
119 parent = node;
120 if (cid > lsidid->id) {
121 linkto = &(node->rb_left);
122 node = node->rb_left;
123 }
124 if (cid < lsidid->id) {
125 linkto = &(node->rb_right);
126 node = node->rb_right;
127 }
128 }
129
130 (*psidid)->id = cid;
131 (*psidid)->time = jiffies - (SID_MAP_RETRY + 1);
132 (*psidid)->refcount = 0;
133
134 sprintf((*psidid)->sidstr, "%s", typestr);
135 strptr = (*psidid)->sidstr + strlen((*psidid)->sidstr);
136 sprintf(strptr, "%ld", cid);
137
138 clear_bit(SID_ID_PENDING, &(*psidid)->state);
139 clear_bit(SID_ID_MAPPED, &(*psidid)->state);
140
141 rb_link_node(&(*psidid)->rbnode, parent, linkto);
142 rb_insert_color(&(*psidid)->rbnode, root);
143 }
144
145 static struct cifs_sid_id *
146 sid_rb_search(struct rb_root *root, unsigned long cid)
147 {
148 struct rb_node *node = root->rb_node;
149 struct cifs_sid_id *lsidid;
150
151 while (node) {
152 lsidid = rb_entry(node, struct cifs_sid_id, rbnode);
153 if (cid > lsidid->id)
154 node = node->rb_left;
155 else if (cid < lsidid->id)
156 node = node->rb_right;
157 else /* node found */
158 return lsidid;
159 }
160
161 return NULL;
162 }
163
164 static struct shrinker cifs_shrinker = {
165 .shrink = cifs_idmap_shrinker,
166 .seeks = DEFAULT_SEEKS,
167 };
168
169 static int
170 cifs_idmap_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
171 {
172 char *payload;
173
174 payload = kmalloc(prep->datalen, GFP_KERNEL);
175 if (!payload)
176 return -ENOMEM;
177
178 memcpy(payload, prep->data, prep->datalen);
179 key->payload.data = payload;
180 key->datalen = prep->datalen;
181 return 0;
182 }
183
184 static inline void
185 cifs_idmap_key_destroy(struct key *key)
186 {
187 kfree(key->payload.data);
188 }
189
190 static struct key_type cifs_idmap_key_type = {
191 .name = "cifs.idmap",
192 .instantiate = cifs_idmap_key_instantiate,
193 .destroy = cifs_idmap_key_destroy,
194 .describe = user_describe,
195 .match = user_match,
196 };
197
198 static void
199 sid_to_str(struct cifs_sid *sidptr, char *sidstr)
200 {
201 int i;
202 unsigned int saval;
203 char *strptr;
204
205 strptr = sidstr;
206
207 sprintf(strptr, "S-%hhu", sidptr->revision);
208 strptr = sidstr + strlen(sidstr);
209
210 for (i = 0; i < NUM_AUTHS; ++i) {
211 if (sidptr->authority[i]) {
212 sprintf(strptr, "-%hhu", sidptr->authority[i]);
213 strptr = sidstr + strlen(sidstr);
214 }
215 }
216
217 for (i = 0; i < sidptr->num_subauth; ++i) {
218 saval = le32_to_cpu(sidptr->sub_auth[i]);
219 sprintf(strptr, "-%u", saval);
220 strptr = sidstr + strlen(sidstr);
221 }
222 }
223
224 /*
225 * if the two SIDs (roughly equivalent to a UUID for a user or group) are
226 * the same returns zero, if they do not match returns non-zero.
227 */
228 static int
229 compare_sids(const struct cifs_sid *ctsid, const struct cifs_sid *cwsid)
230 {
231 int i;
232 int num_subauth, num_sat, num_saw;
233
234 if ((!ctsid) || (!cwsid))
235 return 1;
236
237 /* compare the revision */
238 if (ctsid->revision != cwsid->revision) {
239 if (ctsid->revision > cwsid->revision)
240 return 1;
241 else
242 return -1;
243 }
244
245 /* compare all of the six auth values */
246 for (i = 0; i < NUM_AUTHS; ++i) {
247 if (ctsid->authority[i] != cwsid->authority[i]) {
248 if (ctsid->authority[i] > cwsid->authority[i])
249 return 1;
250 else
251 return -1;
252 }
253 }
254
255 /* compare all of the subauth values if any */
256 num_sat = ctsid->num_subauth;
257 num_saw = cwsid->num_subauth;
258 num_subauth = num_sat < num_saw ? num_sat : num_saw;
259 if (num_subauth) {
260 for (i = 0; i < num_subauth; ++i) {
261 if (ctsid->sub_auth[i] != cwsid->sub_auth[i]) {
262 if (le32_to_cpu(ctsid->sub_auth[i]) >
263 le32_to_cpu(cwsid->sub_auth[i]))
264 return 1;
265 else
266 return -1;
267 }
268 }
269 }
270
271 return 0; /* sids compare/match */
272 }
273
274 static void
275 cifs_copy_sid(struct cifs_sid *dst, const struct cifs_sid *src)
276 {
277 int i;
278
279 dst->revision = src->revision;
280 dst->num_subauth = min_t(u8, src->num_subauth, SID_MAX_SUB_AUTHORITIES);
281 for (i = 0; i < NUM_AUTHS; ++i)
282 dst->authority[i] = src->authority[i];
283 for (i = 0; i < dst->num_subauth; ++i)
284 dst->sub_auth[i] = src->sub_auth[i];
285 }
286
287 static void
288 id_rb_insert(struct rb_root *root, struct cifs_sid *sidptr,
289 struct cifs_sid_id **psidid, char *typestr)
290 {
291 int rc;
292 char *strptr;
293 struct rb_node *node = root->rb_node;
294 struct rb_node *parent = NULL;
295 struct rb_node **linkto = &(root->rb_node);
296 struct cifs_sid_id *lsidid;
297
298 while (node) {
299 lsidid = rb_entry(node, struct cifs_sid_id, rbnode);
300 parent = node;
301 rc = compare_sids(sidptr, &((lsidid)->sid));
302 if (rc > 0) {
303 linkto = &(node->rb_left);
304 node = node->rb_left;
305 } else if (rc < 0) {
306 linkto = &(node->rb_right);
307 node = node->rb_right;
308 }
309 }
310
311 cifs_copy_sid(&(*psidid)->sid, sidptr);
312 (*psidid)->time = jiffies - (SID_MAP_RETRY + 1);
313 (*psidid)->refcount = 0;
314
315 sprintf((*psidid)->sidstr, "%s", typestr);
316 strptr = (*psidid)->sidstr + strlen((*psidid)->sidstr);
317 sid_to_str(&(*psidid)->sid, strptr);
318
319 clear_bit(SID_ID_PENDING, &(*psidid)->state);
320 clear_bit(SID_ID_MAPPED, &(*psidid)->state);
321
322 rb_link_node(&(*psidid)->rbnode, parent, linkto);
323 rb_insert_color(&(*psidid)->rbnode, root);
324 }
325
326 static struct cifs_sid_id *
327 id_rb_search(struct rb_root *root, struct cifs_sid *sidptr)
328 {
329 int rc;
330 struct rb_node *node = root->rb_node;
331 struct cifs_sid_id *lsidid;
332
333 while (node) {
334 lsidid = rb_entry(node, struct cifs_sid_id, rbnode);
335 rc = compare_sids(sidptr, &((lsidid)->sid));
336 if (rc > 0) {
337 node = node->rb_left;
338 } else if (rc < 0) {
339 node = node->rb_right;
340 } else /* node found */
341 return lsidid;
342 }
343
344 return NULL;
345 }
346
347 static int
348 sidid_pending_wait(void *unused)
349 {
350 schedule();
351 return signal_pending(current) ? -ERESTARTSYS : 0;
352 }
353
354 static int
355 id_to_sid(unsigned long cid, uint sidtype, struct cifs_sid *ssid)
356 {
357 int rc = 0;
358 struct key *sidkey;
359 const struct cred *saved_cred;
360 struct cifs_sid *lsid;
361 struct cifs_sid_id *psidid, *npsidid;
362 struct rb_root *cidtree;
363 spinlock_t *cidlock;
364
365 if (sidtype == SIDOWNER) {
366 cidlock = &siduidlock;
367 cidtree = &uidtree;
368 } else if (sidtype == SIDGROUP) {
369 cidlock = &sidgidlock;
370 cidtree = &gidtree;
371 } else
372 return -EINVAL;
373
374 spin_lock(cidlock);
375 psidid = sid_rb_search(cidtree, cid);
376
377 if (!psidid) { /* node does not exist, allocate one & attempt adding */
378 spin_unlock(cidlock);
379 npsidid = kzalloc(sizeof(struct cifs_sid_id), GFP_KERNEL);
380 if (!npsidid)
381 return -ENOMEM;
382
383 npsidid->sidstr = kmalloc(SID_STRING_MAX, GFP_KERNEL);
384 if (!npsidid->sidstr) {
385 kfree(npsidid);
386 return -ENOMEM;
387 }
388
389 spin_lock(cidlock);
390 psidid = sid_rb_search(cidtree, cid);
391 if (psidid) { /* node happened to get inserted meanwhile */
392 ++psidid->refcount;
393 spin_unlock(cidlock);
394 kfree(npsidid->sidstr);
395 kfree(npsidid);
396 } else {
397 psidid = npsidid;
398 sid_rb_insert(cidtree, cid, &psidid,
399 sidtype == SIDOWNER ? "oi:" : "gi:");
400 ++psidid->refcount;
401 spin_unlock(cidlock);
402 }
403 } else {
404 ++psidid->refcount;
405 spin_unlock(cidlock);
406 }
407
408 /*
409 * If we are here, it is safe to access psidid and its fields
410 * since a reference was taken earlier while holding the spinlock.
411 * A reference on the node is put without holding the spinlock
412 * and it is OK to do so in this case, shrinker will not erase
413 * this node until all references are put and we do not access
414 * any fields of the node after a reference is put .
415 */
416 if (test_bit(SID_ID_MAPPED, &psidid->state)) {
417 cifs_copy_sid(ssid, &psidid->sid);
418 psidid->time = jiffies; /* update ts for accessing */
419 goto id_sid_out;
420 }
421
422 if (time_after(psidid->time + SID_MAP_RETRY, jiffies)) {
423 rc = -EINVAL;
424 goto id_sid_out;
425 }
426
427 if (!test_and_set_bit(SID_ID_PENDING, &psidid->state)) {
428 saved_cred = override_creds(root_cred);
429 sidkey = request_key(&cifs_idmap_key_type, psidid->sidstr, "");
430 if (IS_ERR(sidkey)) {
431 rc = -EINVAL;
432 cFYI(1, "%s: Can't map and id to a SID", __func__);
433 } else if (sidkey->datalen < CIFS_SID_BASE_SIZE) {
434 rc = -EIO;
435 cFYI(1, "%s: Downcall contained malformed key "
436 "(datalen=%hu)", __func__, sidkey->datalen);
437 } else {
438 lsid = (struct cifs_sid *)sidkey->payload.data;
439 cifs_copy_sid(&psidid->sid, lsid);
440 cifs_copy_sid(ssid, &psidid->sid);
441 set_bit(SID_ID_MAPPED, &psidid->state);
442 key_put(sidkey);
443 kfree(psidid->sidstr);
444 }
445 psidid->time = jiffies; /* update ts for accessing */
446 revert_creds(saved_cred);
447 clear_bit(SID_ID_PENDING, &psidid->state);
448 wake_up_bit(&psidid->state, SID_ID_PENDING);
449 } else {
450 rc = wait_on_bit(&psidid->state, SID_ID_PENDING,
451 sidid_pending_wait, TASK_INTERRUPTIBLE);
452 if (rc) {
453 cFYI(1, "%s: sidid_pending_wait interrupted %d",
454 __func__, rc);
455 --psidid->refcount;
456 return rc;
457 }
458 if (test_bit(SID_ID_MAPPED, &psidid->state))
459 cifs_copy_sid(ssid, &psidid->sid);
460 else
461 rc = -EINVAL;
462 }
463 id_sid_out:
464 --psidid->refcount;
465 return rc;
466 }
467
468 static int
469 sid_to_id(struct cifs_sb_info *cifs_sb, struct cifs_sid *psid,
470 struct cifs_fattr *fattr, uint sidtype)
471 {
472 int rc;
473 unsigned long cid;
474 struct key *idkey;
475 const struct cred *saved_cred;
476 struct cifs_sid_id *psidid, *npsidid;
477 struct rb_root *cidtree;
478 spinlock_t *cidlock;
479
480 if (sidtype == SIDOWNER) {
481 cid = cifs_sb->mnt_uid; /* default uid, in case upcall fails */
482 cidlock = &siduidlock;
483 cidtree = &uidtree;
484 } else if (sidtype == SIDGROUP) {
485 cid = cifs_sb->mnt_gid; /* default gid, in case upcall fails */
486 cidlock = &sidgidlock;
487 cidtree = &gidtree;
488 } else
489 return -ENOENT;
490
491 spin_lock(cidlock);
492 psidid = id_rb_search(cidtree, psid);
493
494 if (!psidid) { /* node does not exist, allocate one & attempt adding */
495 spin_unlock(cidlock);
496 npsidid = kzalloc(sizeof(struct cifs_sid_id), GFP_KERNEL);
497 if (!npsidid)
498 return -ENOMEM;
499
500 npsidid->sidstr = kmalloc(SID_STRING_MAX, GFP_KERNEL);
501 if (!npsidid->sidstr) {
502 kfree(npsidid);
503 return -ENOMEM;
504 }
505
506 spin_lock(cidlock);
507 psidid = id_rb_search(cidtree, psid);
508 if (psidid) { /* node happened to get inserted meanwhile */
509 ++psidid->refcount;
510 spin_unlock(cidlock);
511 kfree(npsidid->sidstr);
512 kfree(npsidid);
513 } else {
514 psidid = npsidid;
515 id_rb_insert(cidtree, psid, &psidid,
516 sidtype == SIDOWNER ? "os:" : "gs:");
517 ++psidid->refcount;
518 spin_unlock(cidlock);
519 }
520 } else {
521 ++psidid->refcount;
522 spin_unlock(cidlock);
523 }
524
525 /*
526 * If we are here, it is safe to access psidid and its fields
527 * since a reference was taken earlier while holding the spinlock.
528 * A reference on the node is put without holding the spinlock
529 * and it is OK to do so in this case, shrinker will not erase
530 * this node until all references are put and we do not access
531 * any fields of the node after a reference is put .
532 */
533 if (test_bit(SID_ID_MAPPED, &psidid->state)) {
534 cid = psidid->id;
535 psidid->time = jiffies; /* update ts for accessing */
536 goto sid_to_id_out;
537 }
538
539 if (time_after(psidid->time + SID_MAP_RETRY, jiffies))
540 goto sid_to_id_out;
541
542 if (!test_and_set_bit(SID_ID_PENDING, &psidid->state)) {
543 saved_cred = override_creds(root_cred);
544 idkey = request_key(&cifs_idmap_key_type, psidid->sidstr, "");
545 if (IS_ERR(idkey))
546 cFYI(1, "%s: Can't map SID to an id", __func__);
547 else {
548 cid = *(unsigned long *)idkey->payload.value;
549 psidid->id = cid;
550 set_bit(SID_ID_MAPPED, &psidid->state);
551 key_put(idkey);
552 kfree(psidid->sidstr);
553 }
554 revert_creds(saved_cred);
555 psidid->time = jiffies; /* update ts for accessing */
556 clear_bit(SID_ID_PENDING, &psidid->state);
557 wake_up_bit(&psidid->state, SID_ID_PENDING);
558 } else {
559 rc = wait_on_bit(&psidid->state, SID_ID_PENDING,
560 sidid_pending_wait, TASK_INTERRUPTIBLE);
561 if (rc) {
562 cFYI(1, "%s: sidid_pending_wait interrupted %d",
563 __func__, rc);
564 --psidid->refcount; /* decremented without spinlock */
565 return rc;
566 }
567 if (test_bit(SID_ID_MAPPED, &psidid->state))
568 cid = psidid->id;
569 }
570
571 sid_to_id_out:
572 --psidid->refcount; /* decremented without spinlock */
573 if (sidtype == SIDOWNER)
574 fattr->cf_uid = cid;
575 else
576 fattr->cf_gid = cid;
577
578 return 0;
579 }
580
581 int
582 init_cifs_idmap(void)
583 {
584 struct cred *cred;
585 struct key *keyring;
586 int ret;
587
588 cFYI(1, "Registering the %s key type", cifs_idmap_key_type.name);
589
590 /* create an override credential set with a special thread keyring in
591 * which requests are cached
592 *
593 * this is used to prevent malicious redirections from being installed
594 * with add_key().
595 */
596 cred = prepare_kernel_cred(NULL);
597 if (!cred)
598 return -ENOMEM;
599
600 keyring = key_alloc(&key_type_keyring, ".cifs_idmap", 0, 0, cred,
601 (KEY_POS_ALL & ~KEY_POS_SETATTR) |
602 KEY_USR_VIEW | KEY_USR_READ,
603 KEY_ALLOC_NOT_IN_QUOTA);
604 if (IS_ERR(keyring)) {
605 ret = PTR_ERR(keyring);
606 goto failed_put_cred;
607 }
608
609 ret = key_instantiate_and_link(keyring, NULL, 0, NULL, NULL);
610 if (ret < 0)
611 goto failed_put_key;
612
613 ret = register_key_type(&cifs_idmap_key_type);
614 if (ret < 0)
615 goto failed_put_key;
616
617 /* instruct request_key() to use this special keyring as a cache for
618 * the results it looks up */
619 set_bit(KEY_FLAG_ROOT_CAN_CLEAR, &keyring->flags);
620 cred->thread_keyring = keyring;
621 cred->jit_keyring = KEY_REQKEY_DEFL_THREAD_KEYRING;
622 root_cred = cred;
623
624 spin_lock_init(&siduidlock);
625 uidtree = RB_ROOT;
626 spin_lock_init(&sidgidlock);
627 gidtree = RB_ROOT;
628
629 spin_lock_init(&uidsidlock);
630 siduidtree = RB_ROOT;
631 spin_lock_init(&gidsidlock);
632 sidgidtree = RB_ROOT;
633 register_shrinker(&cifs_shrinker);
634
635 cFYI(1, "cifs idmap keyring: %d", key_serial(keyring));
636 return 0;
637
638 failed_put_key:
639 key_put(keyring);
640 failed_put_cred:
641 put_cred(cred);
642 return ret;
643 }
644
645 void
646 exit_cifs_idmap(void)
647 {
648 key_revoke(root_cred->thread_keyring);
649 unregister_key_type(&cifs_idmap_key_type);
650 put_cred(root_cred);
651 unregister_shrinker(&cifs_shrinker);
652 cFYI(1, "Unregistered %s key type", cifs_idmap_key_type.name);
653 }
654
655 void
656 cifs_destroy_idmaptrees(void)
657 {
658 struct rb_root *root;
659 struct rb_node *node;
660
661 root = &uidtree;
662 spin_lock(&siduidlock);
663 while ((node = rb_first(root)))
664 rb_erase(node, root);
665 spin_unlock(&siduidlock);
666
667 root = &gidtree;
668 spin_lock(&sidgidlock);
669 while ((node = rb_first(root)))
670 rb_erase(node, root);
671 spin_unlock(&sidgidlock);
672
673 root = &siduidtree;
674 spin_lock(&uidsidlock);
675 while ((node = rb_first(root)))
676 rb_erase(node, root);
677 spin_unlock(&uidsidlock);
678
679 root = &sidgidtree;
680 spin_lock(&gidsidlock);
681 while ((node = rb_first(root)))
682 rb_erase(node, root);
683 spin_unlock(&gidsidlock);
684 }
685
686 /* copy ntsd, owner sid, and group sid from a security descriptor to another */
687 static void copy_sec_desc(const struct cifs_ntsd *pntsd,
688 struct cifs_ntsd *pnntsd, __u32 sidsoffset)
689 {
690 struct cifs_sid *owner_sid_ptr, *group_sid_ptr;
691 struct cifs_sid *nowner_sid_ptr, *ngroup_sid_ptr;
692
693 /* copy security descriptor control portion */
694 pnntsd->revision = pntsd->revision;
695 pnntsd->type = pntsd->type;
696 pnntsd->dacloffset = cpu_to_le32(sizeof(struct cifs_ntsd));
697 pnntsd->sacloffset = 0;
698 pnntsd->osidoffset = cpu_to_le32(sidsoffset);
699 pnntsd->gsidoffset = cpu_to_le32(sidsoffset + sizeof(struct cifs_sid));
700
701 /* copy owner sid */
702 owner_sid_ptr = (struct cifs_sid *)((char *)pntsd +
703 le32_to_cpu(pntsd->osidoffset));
704 nowner_sid_ptr = (struct cifs_sid *)((char *)pnntsd + sidsoffset);
705 cifs_copy_sid(nowner_sid_ptr, owner_sid_ptr);
706
707 /* copy group sid */
708 group_sid_ptr = (struct cifs_sid *)((char *)pntsd +
709 le32_to_cpu(pntsd->gsidoffset));
710 ngroup_sid_ptr = (struct cifs_sid *)((char *)pnntsd + sidsoffset +
711 sizeof(struct cifs_sid));
712 cifs_copy_sid(ngroup_sid_ptr, group_sid_ptr);
713
714 return;
715 }
716
717
718 /*
719 change posix mode to reflect permissions
720 pmode is the existing mode (we only want to overwrite part of this
721 bits to set can be: S_IRWXU, S_IRWXG or S_IRWXO ie 00700 or 00070 or 00007
722 */
723 static void access_flags_to_mode(__le32 ace_flags, int type, umode_t *pmode,
724 umode_t *pbits_to_set)
725 {
726 __u32 flags = le32_to_cpu(ace_flags);
727 /* the order of ACEs is important. The canonical order is to begin with
728 DENY entries followed by ALLOW, otherwise an allow entry could be
729 encountered first, making the subsequent deny entry like "dead code"
730 which would be superflous since Windows stops when a match is made
731 for the operation you are trying to perform for your user */
732
733 /* For deny ACEs we change the mask so that subsequent allow access
734 control entries do not turn on the bits we are denying */
735 if (type == ACCESS_DENIED) {
736 if (flags & GENERIC_ALL)
737 *pbits_to_set &= ~S_IRWXUGO;
738
739 if ((flags & GENERIC_WRITE) ||
740 ((flags & FILE_WRITE_RIGHTS) == FILE_WRITE_RIGHTS))
741 *pbits_to_set &= ~S_IWUGO;
742 if ((flags & GENERIC_READ) ||
743 ((flags & FILE_READ_RIGHTS) == FILE_READ_RIGHTS))
744 *pbits_to_set &= ~S_IRUGO;
745 if ((flags & GENERIC_EXECUTE) ||
746 ((flags & FILE_EXEC_RIGHTS) == FILE_EXEC_RIGHTS))
747 *pbits_to_set &= ~S_IXUGO;
748 return;
749 } else if (type != ACCESS_ALLOWED) {
750 cERROR(1, "unknown access control type %d", type);
751 return;
752 }
753 /* else ACCESS_ALLOWED type */
754
755 if (flags & GENERIC_ALL) {
756 *pmode |= (S_IRWXUGO & (*pbits_to_set));
757 cFYI(DBG2, "all perms");
758 return;
759 }
760 if ((flags & GENERIC_WRITE) ||
761 ((flags & FILE_WRITE_RIGHTS) == FILE_WRITE_RIGHTS))
762 *pmode |= (S_IWUGO & (*pbits_to_set));
763 if ((flags & GENERIC_READ) ||
764 ((flags & FILE_READ_RIGHTS) == FILE_READ_RIGHTS))
765 *pmode |= (S_IRUGO & (*pbits_to_set));
766 if ((flags & GENERIC_EXECUTE) ||
767 ((flags & FILE_EXEC_RIGHTS) == FILE_EXEC_RIGHTS))
768 *pmode |= (S_IXUGO & (*pbits_to_set));
769
770 cFYI(DBG2, "access flags 0x%x mode now 0x%x", flags, *pmode);
771 return;
772 }
773
774 /*
775 Generate access flags to reflect permissions mode is the existing mode.
776 This function is called for every ACE in the DACL whose SID matches
777 with either owner or group or everyone.
778 */
779
780 static void mode_to_access_flags(umode_t mode, umode_t bits_to_use,
781 __u32 *pace_flags)
782 {
783 /* reset access mask */
784 *pace_flags = 0x0;
785
786 /* bits to use are either S_IRWXU or S_IRWXG or S_IRWXO */
787 mode &= bits_to_use;
788
789 /* check for R/W/X UGO since we do not know whose flags
790 is this but we have cleared all the bits sans RWX for
791 either user or group or other as per bits_to_use */
792 if (mode & S_IRUGO)
793 *pace_flags |= SET_FILE_READ_RIGHTS;
794 if (mode & S_IWUGO)
795 *pace_flags |= SET_FILE_WRITE_RIGHTS;
796 if (mode & S_IXUGO)
797 *pace_flags |= SET_FILE_EXEC_RIGHTS;
798
799 cFYI(DBG2, "mode: 0x%x, access flags now 0x%x", mode, *pace_flags);
800 return;
801 }
802
803 static __u16 fill_ace_for_sid(struct cifs_ace *pntace,
804 const struct cifs_sid *psid, __u64 nmode, umode_t bits)
805 {
806 int i;
807 __u16 size = 0;
808 __u32 access_req = 0;
809
810 pntace->type = ACCESS_ALLOWED;
811 pntace->flags = 0x0;
812 mode_to_access_flags(nmode, bits, &access_req);
813 if (!access_req)
814 access_req = SET_MINIMUM_RIGHTS;
815 pntace->access_req = cpu_to_le32(access_req);
816
817 pntace->sid.revision = psid->revision;
818 pntace->sid.num_subauth = psid->num_subauth;
819 for (i = 0; i < NUM_AUTHS; i++)
820 pntace->sid.authority[i] = psid->authority[i];
821 for (i = 0; i < psid->num_subauth; i++)
822 pntace->sid.sub_auth[i] = psid->sub_auth[i];
823
824 size = 1 + 1 + 2 + 4 + 1 + 1 + 6 + (psid->num_subauth * 4);
825 pntace->size = cpu_to_le16(size);
826
827 return size;
828 }
829
830
831 #ifdef CONFIG_CIFS_DEBUG2
832 static void dump_ace(struct cifs_ace *pace, char *end_of_acl)
833 {
834 int num_subauth;
835
836 /* validate that we do not go past end of acl */
837
838 if (le16_to_cpu(pace->size) < 16) {
839 cERROR(1, "ACE too small %d", le16_to_cpu(pace->size));
840 return;
841 }
842
843 if (end_of_acl < (char *)pace + le16_to_cpu(pace->size)) {
844 cERROR(1, "ACL too small to parse ACE");
845 return;
846 }
847
848 num_subauth = pace->sid.num_subauth;
849 if (num_subauth) {
850 int i;
851 cFYI(1, "ACE revision %d num_auth %d type %d flags %d size %d",
852 pace->sid.revision, pace->sid.num_subauth, pace->type,
853 pace->flags, le16_to_cpu(pace->size));
854 for (i = 0; i < num_subauth; ++i) {
855 cFYI(1, "ACE sub_auth[%d]: 0x%x", i,
856 le32_to_cpu(pace->sid.sub_auth[i]));
857 }
858
859 /* BB add length check to make sure that we do not have huge
860 num auths and therefore go off the end */
861 }
862
863 return;
864 }
865 #endif
866
867
868 static void parse_dacl(struct cifs_acl *pdacl, char *end_of_acl,
869 struct cifs_sid *pownersid, struct cifs_sid *pgrpsid,
870 struct cifs_fattr *fattr)
871 {
872 int i;
873 int num_aces = 0;
874 int acl_size;
875 char *acl_base;
876 struct cifs_ace **ppace;
877
878 /* BB need to add parm so we can store the SID BB */
879
880 if (!pdacl) {
881 /* no DACL in the security descriptor, set
882 all the permissions for user/group/other */
883 fattr->cf_mode |= S_IRWXUGO;
884 return;
885 }
886
887 /* validate that we do not go past end of acl */
888 if (end_of_acl < (char *)pdacl + le16_to_cpu(pdacl->size)) {
889 cERROR(1, "ACL too small to parse DACL");
890 return;
891 }
892
893 cFYI(DBG2, "DACL revision %d size %d num aces %d",
894 le16_to_cpu(pdacl->revision), le16_to_cpu(pdacl->size),
895 le32_to_cpu(pdacl->num_aces));
896
897 /* reset rwx permissions for user/group/other.
898 Also, if num_aces is 0 i.e. DACL has no ACEs,
899 user/group/other have no permissions */
900 fattr->cf_mode &= ~(S_IRWXUGO);
901
902 acl_base = (char *)pdacl;
903 acl_size = sizeof(struct cifs_acl);
904
905 num_aces = le32_to_cpu(pdacl->num_aces);
906 if (num_aces > 0) {
907 umode_t user_mask = S_IRWXU;
908 umode_t group_mask = S_IRWXG;
909 umode_t other_mask = S_IRWXU | S_IRWXG | S_IRWXO;
910
911 if (num_aces > ULONG_MAX / sizeof(struct cifs_ace *))
912 return;
913 ppace = kmalloc(num_aces * sizeof(struct cifs_ace *),
914 GFP_KERNEL);
915 if (!ppace) {
916 cERROR(1, "DACL memory allocation error");
917 return;
918 }
919
920 for (i = 0; i < num_aces; ++i) {
921 ppace[i] = (struct cifs_ace *) (acl_base + acl_size);
922 #ifdef CONFIG_CIFS_DEBUG2
923 dump_ace(ppace[i], end_of_acl);
924 #endif
925 if (compare_sids(&(ppace[i]->sid), pownersid) == 0)
926 access_flags_to_mode(ppace[i]->access_req,
927 ppace[i]->type,
928 &fattr->cf_mode,
929 &user_mask);
930 if (compare_sids(&(ppace[i]->sid), pgrpsid) == 0)
931 access_flags_to_mode(ppace[i]->access_req,
932 ppace[i]->type,
933 &fattr->cf_mode,
934 &group_mask);
935 if (compare_sids(&(ppace[i]->sid), &sid_everyone) == 0)
936 access_flags_to_mode(ppace[i]->access_req,
937 ppace[i]->type,
938 &fattr->cf_mode,
939 &other_mask);
940 if (compare_sids(&(ppace[i]->sid), &sid_authusers) == 0)
941 access_flags_to_mode(ppace[i]->access_req,
942 ppace[i]->type,
943 &fattr->cf_mode,
944 &other_mask);
945
946
947 /* memcpy((void *)(&(cifscred->aces[i])),
948 (void *)ppace[i],
949 sizeof(struct cifs_ace)); */
950
951 acl_base = (char *)ppace[i];
952 acl_size = le16_to_cpu(ppace[i]->size);
953 }
954
955 kfree(ppace);
956 }
957
958 return;
959 }
960
961
962 static int set_chmod_dacl(struct cifs_acl *pndacl, struct cifs_sid *pownersid,
963 struct cifs_sid *pgrpsid, __u64 nmode)
964 {
965 u16 size = 0;
966 struct cifs_acl *pnndacl;
967
968 pnndacl = (struct cifs_acl *)((char *)pndacl + sizeof(struct cifs_acl));
969
970 size += fill_ace_for_sid((struct cifs_ace *) ((char *)pnndacl + size),
971 pownersid, nmode, S_IRWXU);
972 size += fill_ace_for_sid((struct cifs_ace *)((char *)pnndacl + size),
973 pgrpsid, nmode, S_IRWXG);
974 size += fill_ace_for_sid((struct cifs_ace *)((char *)pnndacl + size),
975 &sid_everyone, nmode, S_IRWXO);
976
977 pndacl->size = cpu_to_le16(size + sizeof(struct cifs_acl));
978 pndacl->num_aces = cpu_to_le32(3);
979
980 return 0;
981 }
982
983
984 static int parse_sid(struct cifs_sid *psid, char *end_of_acl)
985 {
986 /* BB need to add parm so we can store the SID BB */
987
988 /* validate that we do not go past end of ACL - sid must be at least 8
989 bytes long (assuming no sub-auths - e.g. the null SID */
990 if (end_of_acl < (char *)psid + 8) {
991 cERROR(1, "ACL too small to parse SID %p", psid);
992 return -EINVAL;
993 }
994
995 #ifdef CONFIG_CIFS_DEBUG2
996 if (psid->num_subauth) {
997 int i;
998 cFYI(1, "SID revision %d num_auth %d",
999 psid->revision, psid->num_subauth);
1000
1001 for (i = 0; i < psid->num_subauth; i++) {
1002 cFYI(1, "SID sub_auth[%d]: 0x%x ", i,
1003 le32_to_cpu(psid->sub_auth[i]));
1004 }
1005
1006 /* BB add length check to make sure that we do not have huge
1007 num auths and therefore go off the end */
1008 cFYI(1, "RID 0x%x",
1009 le32_to_cpu(psid->sub_auth[psid->num_subauth-1]));
1010 }
1011 #endif
1012
1013 return 0;
1014 }
1015
1016
1017 /* Convert CIFS ACL to POSIX form */
1018 static int parse_sec_desc(struct cifs_sb_info *cifs_sb,
1019 struct cifs_ntsd *pntsd, int acl_len, struct cifs_fattr *fattr)
1020 {
1021 int rc = 0;
1022 struct cifs_sid *owner_sid_ptr, *group_sid_ptr;
1023 struct cifs_acl *dacl_ptr; /* no need for SACL ptr */
1024 char *end_of_acl = ((char *)pntsd) + acl_len;
1025 __u32 dacloffset;
1026
1027 if (pntsd == NULL)
1028 return -EIO;
1029
1030 owner_sid_ptr = (struct cifs_sid *)((char *)pntsd +
1031 le32_to_cpu(pntsd->osidoffset));
1032 group_sid_ptr = (struct cifs_sid *)((char *)pntsd +
1033 le32_to_cpu(pntsd->gsidoffset));
1034 dacloffset = le32_to_cpu(pntsd->dacloffset);
1035 dacl_ptr = (struct cifs_acl *)((char *)pntsd + dacloffset);
1036 cFYI(DBG2, "revision %d type 0x%x ooffset 0x%x goffset 0x%x "
1037 "sacloffset 0x%x dacloffset 0x%x",
1038 pntsd->revision, pntsd->type, le32_to_cpu(pntsd->osidoffset),
1039 le32_to_cpu(pntsd->gsidoffset),
1040 le32_to_cpu(pntsd->sacloffset), dacloffset);
1041 /* cifs_dump_mem("owner_sid: ", owner_sid_ptr, 64); */
1042 rc = parse_sid(owner_sid_ptr, end_of_acl);
1043 if (rc) {
1044 cFYI(1, "%s: Error %d parsing Owner SID", __func__, rc);
1045 return rc;
1046 }
1047 rc = sid_to_id(cifs_sb, owner_sid_ptr, fattr, SIDOWNER);
1048 if (rc) {
1049 cFYI(1, "%s: Error %d mapping Owner SID to uid", __func__, rc);
1050 return rc;
1051 }
1052
1053 rc = parse_sid(group_sid_ptr, end_of_acl);
1054 if (rc) {
1055 cFYI(1, "%s: Error %d mapping Owner SID to gid", __func__, rc);
1056 return rc;
1057 }
1058 rc = sid_to_id(cifs_sb, group_sid_ptr, fattr, SIDGROUP);
1059 if (rc) {
1060 cFYI(1, "%s: Error %d mapping Group SID to gid", __func__, rc);
1061 return rc;
1062 }
1063
1064 if (dacloffset)
1065 parse_dacl(dacl_ptr, end_of_acl, owner_sid_ptr,
1066 group_sid_ptr, fattr);
1067 else
1068 cFYI(1, "no ACL"); /* BB grant all or default perms? */
1069
1070 return rc;
1071 }
1072
1073 /* Convert permission bits from mode to equivalent CIFS ACL */
1074 static int build_sec_desc(struct cifs_ntsd *pntsd, struct cifs_ntsd *pnntsd,
1075 __u32 secdesclen, __u64 nmode, uid_t uid, gid_t gid, int *aclflag)
1076 {
1077 int rc = 0;
1078 __u32 dacloffset;
1079 __u32 ndacloffset;
1080 __u32 sidsoffset;
1081 struct cifs_sid *owner_sid_ptr, *group_sid_ptr;
1082 struct cifs_sid *nowner_sid_ptr, *ngroup_sid_ptr;
1083 struct cifs_acl *dacl_ptr = NULL; /* no need for SACL ptr */
1084 struct cifs_acl *ndacl_ptr = NULL; /* no need for SACL ptr */
1085
1086 if (nmode != NO_CHANGE_64) { /* chmod */
1087 owner_sid_ptr = (struct cifs_sid *)((char *)pntsd +
1088 le32_to_cpu(pntsd->osidoffset));
1089 group_sid_ptr = (struct cifs_sid *)((char *)pntsd +
1090 le32_to_cpu(pntsd->gsidoffset));
1091 dacloffset = le32_to_cpu(pntsd->dacloffset);
1092 dacl_ptr = (struct cifs_acl *)((char *)pntsd + dacloffset);
1093 ndacloffset = sizeof(struct cifs_ntsd);
1094 ndacl_ptr = (struct cifs_acl *)((char *)pnntsd + ndacloffset);
1095 ndacl_ptr->revision = dacl_ptr->revision;
1096 ndacl_ptr->size = 0;
1097 ndacl_ptr->num_aces = 0;
1098
1099 rc = set_chmod_dacl(ndacl_ptr, owner_sid_ptr, group_sid_ptr,
1100 nmode);
1101 sidsoffset = ndacloffset + le16_to_cpu(ndacl_ptr->size);
1102 /* copy sec desc control portion & owner and group sids */
1103 copy_sec_desc(pntsd, pnntsd, sidsoffset);
1104 *aclflag = CIFS_ACL_DACL;
1105 } else {
1106 memcpy(pnntsd, pntsd, secdesclen);
1107 if (uid != NO_CHANGE_32) { /* chown */
1108 owner_sid_ptr = (struct cifs_sid *)((char *)pnntsd +
1109 le32_to_cpu(pnntsd->osidoffset));
1110 nowner_sid_ptr = kmalloc(sizeof(struct cifs_sid),
1111 GFP_KERNEL);
1112 if (!nowner_sid_ptr)
1113 return -ENOMEM;
1114 rc = id_to_sid(uid, SIDOWNER, nowner_sid_ptr);
1115 if (rc) {
1116 cFYI(1, "%s: Mapping error %d for owner id %d",
1117 __func__, rc, uid);
1118 kfree(nowner_sid_ptr);
1119 return rc;
1120 }
1121 cifs_copy_sid(owner_sid_ptr, nowner_sid_ptr);
1122 kfree(nowner_sid_ptr);
1123 *aclflag = CIFS_ACL_OWNER;
1124 }
1125 if (gid != NO_CHANGE_32) { /* chgrp */
1126 group_sid_ptr = (struct cifs_sid *)((char *)pnntsd +
1127 le32_to_cpu(pnntsd->gsidoffset));
1128 ngroup_sid_ptr = kmalloc(sizeof(struct cifs_sid),
1129 GFP_KERNEL);
1130 if (!ngroup_sid_ptr)
1131 return -ENOMEM;
1132 rc = id_to_sid(gid, SIDGROUP, ngroup_sid_ptr);
1133 if (rc) {
1134 cFYI(1, "%s: Mapping error %d for group id %d",
1135 __func__, rc, gid);
1136 kfree(ngroup_sid_ptr);
1137 return rc;
1138 }
1139 cifs_copy_sid(group_sid_ptr, ngroup_sid_ptr);
1140 kfree(ngroup_sid_ptr);
1141 *aclflag = CIFS_ACL_GROUP;
1142 }
1143 }
1144
1145 return rc;
1146 }
1147
1148 static struct cifs_ntsd *get_cifs_acl_by_fid(struct cifs_sb_info *cifs_sb,
1149 __u16 fid, u32 *pacllen)
1150 {
1151 struct cifs_ntsd *pntsd = NULL;
1152 unsigned int xid;
1153 int rc;
1154 struct tcon_link *tlink = cifs_sb_tlink(cifs_sb);
1155
1156 if (IS_ERR(tlink))
1157 return ERR_CAST(tlink);
1158
1159 xid = get_xid();
1160 rc = CIFSSMBGetCIFSACL(xid, tlink_tcon(tlink), fid, &pntsd, pacllen);
1161 free_xid(xid);
1162
1163 cifs_put_tlink(tlink);
1164
1165 cFYI(1, "%s: rc = %d ACL len %d", __func__, rc, *pacllen);
1166 if (rc)
1167 return ERR_PTR(rc);
1168 return pntsd;
1169 }
1170
1171 static struct cifs_ntsd *get_cifs_acl_by_path(struct cifs_sb_info *cifs_sb,
1172 const char *path, u32 *pacllen)
1173 {
1174 struct cifs_ntsd *pntsd = NULL;
1175 int oplock = 0;
1176 unsigned int xid;
1177 int rc, create_options = 0;
1178 __u16 fid;
1179 struct cifs_tcon *tcon;
1180 struct tcon_link *tlink = cifs_sb_tlink(cifs_sb);
1181
1182 if (IS_ERR(tlink))
1183 return ERR_CAST(tlink);
1184
1185 tcon = tlink_tcon(tlink);
1186 xid = get_xid();
1187
1188 if (backup_cred(cifs_sb))
1189 create_options |= CREATE_OPEN_BACKUP_INTENT;
1190
1191 rc = CIFSSMBOpen(xid, tcon, path, FILE_OPEN, READ_CONTROL,
1192 create_options, &fid, &oplock, NULL, cifs_sb->local_nls,
1193 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MAP_SPECIAL_CHR);
1194 if (!rc) {
1195 rc = CIFSSMBGetCIFSACL(xid, tcon, fid, &pntsd, pacllen);
1196 CIFSSMBClose(xid, tcon, fid);
1197 }
1198
1199 cifs_put_tlink(tlink);
1200 free_xid(xid);
1201
1202 cFYI(1, "%s: rc = %d ACL len %d", __func__, rc, *pacllen);
1203 if (rc)
1204 return ERR_PTR(rc);
1205 return pntsd;
1206 }
1207
1208 /* Retrieve an ACL from the server */
1209 struct cifs_ntsd *get_cifs_acl(struct cifs_sb_info *cifs_sb,
1210 struct inode *inode, const char *path,
1211 u32 *pacllen)
1212 {
1213 struct cifs_ntsd *pntsd = NULL;
1214 struct cifsFileInfo *open_file = NULL;
1215
1216 if (inode)
1217 open_file = find_readable_file(CIFS_I(inode), true);
1218 if (!open_file)
1219 return get_cifs_acl_by_path(cifs_sb, path, pacllen);
1220
1221 pntsd = get_cifs_acl_by_fid(cifs_sb, open_file->fid.netfid, pacllen);
1222 cifsFileInfo_put(open_file);
1223 return pntsd;
1224 }
1225
1226 /* Set an ACL on the server */
1227 int set_cifs_acl(struct cifs_ntsd *pnntsd, __u32 acllen,
1228 struct inode *inode, const char *path, int aclflag)
1229 {
1230 int oplock = 0;
1231 unsigned int xid;
1232 int rc, access_flags, create_options = 0;
1233 __u16 fid;
1234 struct cifs_tcon *tcon;
1235 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
1236 struct tcon_link *tlink = cifs_sb_tlink(cifs_sb);
1237
1238 if (IS_ERR(tlink))
1239 return PTR_ERR(tlink);
1240
1241 tcon = tlink_tcon(tlink);
1242 xid = get_xid();
1243
1244 if (backup_cred(cifs_sb))
1245 create_options |= CREATE_OPEN_BACKUP_INTENT;
1246
1247 if (aclflag == CIFS_ACL_OWNER || aclflag == CIFS_ACL_GROUP)
1248 access_flags = WRITE_OWNER;
1249 else
1250 access_flags = WRITE_DAC;
1251
1252 rc = CIFSSMBOpen(xid, tcon, path, FILE_OPEN, access_flags,
1253 create_options, &fid, &oplock, NULL, cifs_sb->local_nls,
1254 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MAP_SPECIAL_CHR);
1255 if (rc) {
1256 cERROR(1, "Unable to open file to set ACL");
1257 goto out;
1258 }
1259
1260 rc = CIFSSMBSetCIFSACL(xid, tcon, fid, pnntsd, acllen, aclflag);
1261 cFYI(DBG2, "SetCIFSACL rc = %d", rc);
1262
1263 CIFSSMBClose(xid, tcon, fid);
1264 out:
1265 free_xid(xid);
1266 cifs_put_tlink(tlink);
1267 return rc;
1268 }
1269
1270 /* Translate the CIFS ACL (simlar to NTFS ACL) for a file into mode bits */
1271 int
1272 cifs_acl_to_fattr(struct cifs_sb_info *cifs_sb, struct cifs_fattr *fattr,
1273 struct inode *inode, const char *path, const __u16 *pfid)
1274 {
1275 struct cifs_ntsd *pntsd = NULL;
1276 u32 acllen = 0;
1277 int rc = 0;
1278
1279 cFYI(DBG2, "converting ACL to mode for %s", path);
1280
1281 if (pfid)
1282 pntsd = get_cifs_acl_by_fid(cifs_sb, *pfid, &acllen);
1283 else
1284 pntsd = get_cifs_acl(cifs_sb, inode, path, &acllen);
1285
1286 /* if we can retrieve the ACL, now parse Access Control Entries, ACEs */
1287 if (IS_ERR(pntsd)) {
1288 rc = PTR_ERR(pntsd);
1289 cERROR(1, "%s: error %d getting sec desc", __func__, rc);
1290 } else {
1291 rc = parse_sec_desc(cifs_sb, pntsd, acllen, fattr);
1292 kfree(pntsd);
1293 if (rc)
1294 cERROR(1, "parse sec desc failed rc = %d", rc);
1295 }
1296
1297 return rc;
1298 }
1299
1300 /* Convert mode bits to an ACL so we can update the ACL on the server */
1301 int
1302 id_mode_to_cifs_acl(struct inode *inode, const char *path, __u64 nmode,
1303 uid_t uid, gid_t gid)
1304 {
1305 int rc = 0;
1306 int aclflag = CIFS_ACL_DACL; /* default flag to set */
1307 __u32 secdesclen = 0;
1308 struct cifs_ntsd *pntsd = NULL; /* acl obtained from server */
1309 struct cifs_ntsd *pnntsd = NULL; /* modified acl to be sent to server */
1310
1311 cFYI(DBG2, "set ACL from mode for %s", path);
1312
1313 /* Get the security descriptor */
1314 pntsd = get_cifs_acl(CIFS_SB(inode->i_sb), inode, path, &secdesclen);
1315 if (IS_ERR(pntsd)) {
1316 rc = PTR_ERR(pntsd);
1317 cERROR(1, "%s: error %d getting sec desc", __func__, rc);
1318 goto out;
1319 }
1320
1321 /*
1322 * Add three ACEs for owner, group, everyone getting rid of other ACEs
1323 * as chmod disables ACEs and set the security descriptor. Allocate
1324 * memory for the smb header, set security descriptor request security
1325 * descriptor parameters, and secuirty descriptor itself
1326 */
1327 secdesclen = max_t(u32, secdesclen, DEFSECDESCLEN);
1328 pnntsd = kmalloc(secdesclen, GFP_KERNEL);
1329 if (!pnntsd) {
1330 cERROR(1, "Unable to allocate security descriptor");
1331 kfree(pntsd);
1332 return -ENOMEM;
1333 }
1334
1335 rc = build_sec_desc(pntsd, pnntsd, secdesclen, nmode, uid, gid,
1336 &aclflag);
1337
1338 cFYI(DBG2, "build_sec_desc rc: %d", rc);
1339
1340 if (!rc) {
1341 /* Set the security descriptor */
1342 rc = set_cifs_acl(pnntsd, secdesclen, inode, path, aclflag);
1343 cFYI(DBG2, "set_cifs_acl rc: %d", rc);
1344 }
1345
1346 kfree(pnntsd);
1347 kfree(pntsd);
1348 out:
1349 return rc;
1350 }
This page took 0.066661 seconds and 5 git commands to generate.