CIFS: Allow SMB2 statistics to be tracked
[deliverable/linux.git] / fs / cifs / file.c
1 /*
2 * fs/cifs/file.c
3 *
4 * vfs operations that deal with files
5 *
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
9 *
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <asm/div64.h>
37 #include "cifsfs.h"
38 #include "cifspdu.h"
39 #include "cifsglob.h"
40 #include "cifsproto.h"
41 #include "cifs_unicode.h"
42 #include "cifs_debug.h"
43 #include "cifs_fs_sb.h"
44 #include "fscache.h"
45
46 static inline int cifs_convert_flags(unsigned int flags)
47 {
48 if ((flags & O_ACCMODE) == O_RDONLY)
49 return GENERIC_READ;
50 else if ((flags & O_ACCMODE) == O_WRONLY)
51 return GENERIC_WRITE;
52 else if ((flags & O_ACCMODE) == O_RDWR) {
53 /* GENERIC_ALL is too much permission to request
54 can cause unnecessary access denied on create */
55 /* return GENERIC_ALL; */
56 return (GENERIC_READ | GENERIC_WRITE);
57 }
58
59 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
60 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
61 FILE_READ_DATA);
62 }
63
64 static u32 cifs_posix_convert_flags(unsigned int flags)
65 {
66 u32 posix_flags = 0;
67
68 if ((flags & O_ACCMODE) == O_RDONLY)
69 posix_flags = SMB_O_RDONLY;
70 else if ((flags & O_ACCMODE) == O_WRONLY)
71 posix_flags = SMB_O_WRONLY;
72 else if ((flags & O_ACCMODE) == O_RDWR)
73 posix_flags = SMB_O_RDWR;
74
75 if (flags & O_CREAT)
76 posix_flags |= SMB_O_CREAT;
77 if (flags & O_EXCL)
78 posix_flags |= SMB_O_EXCL;
79 if (flags & O_TRUNC)
80 posix_flags |= SMB_O_TRUNC;
81 /* be safe and imply O_SYNC for O_DSYNC */
82 if (flags & O_DSYNC)
83 posix_flags |= SMB_O_SYNC;
84 if (flags & O_DIRECTORY)
85 posix_flags |= SMB_O_DIRECTORY;
86 if (flags & O_NOFOLLOW)
87 posix_flags |= SMB_O_NOFOLLOW;
88 if (flags & O_DIRECT)
89 posix_flags |= SMB_O_DIRECT;
90
91 return posix_flags;
92 }
93
94 static inline int cifs_get_disposition(unsigned int flags)
95 {
96 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
97 return FILE_CREATE;
98 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
99 return FILE_OVERWRITE_IF;
100 else if ((flags & O_CREAT) == O_CREAT)
101 return FILE_OPEN_IF;
102 else if ((flags & O_TRUNC) == O_TRUNC)
103 return FILE_OVERWRITE;
104 else
105 return FILE_OPEN;
106 }
107
108 int cifs_posix_open(char *full_path, struct inode **pinode,
109 struct super_block *sb, int mode, unsigned int f_flags,
110 __u32 *poplock, __u16 *pnetfid, unsigned int xid)
111 {
112 int rc;
113 FILE_UNIX_BASIC_INFO *presp_data;
114 __u32 posix_flags = 0;
115 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
116 struct cifs_fattr fattr;
117 struct tcon_link *tlink;
118 struct cifs_tcon *tcon;
119
120 cFYI(1, "posix open %s", full_path);
121
122 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
123 if (presp_data == NULL)
124 return -ENOMEM;
125
126 tlink = cifs_sb_tlink(cifs_sb);
127 if (IS_ERR(tlink)) {
128 rc = PTR_ERR(tlink);
129 goto posix_open_ret;
130 }
131
132 tcon = tlink_tcon(tlink);
133 mode &= ~current_umask();
134
135 posix_flags = cifs_posix_convert_flags(f_flags);
136 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
137 poplock, full_path, cifs_sb->local_nls,
138 cifs_sb->mnt_cifs_flags &
139 CIFS_MOUNT_MAP_SPECIAL_CHR);
140 cifs_put_tlink(tlink);
141
142 if (rc)
143 goto posix_open_ret;
144
145 if (presp_data->Type == cpu_to_le32(-1))
146 goto posix_open_ret; /* open ok, caller does qpathinfo */
147
148 if (!pinode)
149 goto posix_open_ret; /* caller does not need info */
150
151 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
152
153 /* get new inode and set it up */
154 if (*pinode == NULL) {
155 cifs_fill_uniqueid(sb, &fattr);
156 *pinode = cifs_iget(sb, &fattr);
157 if (!*pinode) {
158 rc = -ENOMEM;
159 goto posix_open_ret;
160 }
161 } else {
162 cifs_fattr_to_inode(*pinode, &fattr);
163 }
164
165 posix_open_ret:
166 kfree(presp_data);
167 return rc;
168 }
169
170 static int
171 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
172 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *poplock,
173 __u16 *pnetfid, unsigned int xid)
174 {
175 int rc;
176 int desiredAccess;
177 int disposition;
178 int create_options = CREATE_NOT_DIR;
179 FILE_ALL_INFO *buf;
180
181 desiredAccess = cifs_convert_flags(f_flags);
182
183 /*********************************************************************
184 * open flag mapping table:
185 *
186 * POSIX Flag CIFS Disposition
187 * ---------- ----------------
188 * O_CREAT FILE_OPEN_IF
189 * O_CREAT | O_EXCL FILE_CREATE
190 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
191 * O_TRUNC FILE_OVERWRITE
192 * none of the above FILE_OPEN
193 *
194 * Note that there is not a direct match between disposition
195 * FILE_SUPERSEDE (ie create whether or not file exists although
196 * O_CREAT | O_TRUNC is similar but truncates the existing
197 * file rather than creating a new file as FILE_SUPERSEDE does
198 * (which uses the attributes / metadata passed in on open call)
199 *?
200 *? O_SYNC is a reasonable match to CIFS writethrough flag
201 *? and the read write flags match reasonably. O_LARGEFILE
202 *? is irrelevant because largefile support is always used
203 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
204 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
205 *********************************************************************/
206
207 disposition = cifs_get_disposition(f_flags);
208
209 /* BB pass O_SYNC flag through on file attributes .. BB */
210
211 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
212 if (!buf)
213 return -ENOMEM;
214
215 if (backup_cred(cifs_sb))
216 create_options |= CREATE_OPEN_BACKUP_INTENT;
217
218 if (tcon->ses->capabilities & CAP_NT_SMBS)
219 rc = CIFSSMBOpen(xid, tcon, full_path, disposition,
220 desiredAccess, create_options, pnetfid, poplock, buf,
221 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
222 & CIFS_MOUNT_MAP_SPECIAL_CHR);
223 else
224 rc = SMBLegacyOpen(xid, tcon, full_path, disposition,
225 desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
226 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
227 & CIFS_MOUNT_MAP_SPECIAL_CHR);
228
229 if (rc)
230 goto out;
231
232 if (tcon->unix_ext)
233 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
234 xid);
235 else
236 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
237 xid, pnetfid);
238
239 out:
240 kfree(buf);
241 return rc;
242 }
243
244 struct cifsFileInfo *
245 cifs_new_fileinfo(__u16 fileHandle, struct file *file,
246 struct tcon_link *tlink, __u32 oplock)
247 {
248 struct dentry *dentry = file->f_path.dentry;
249 struct inode *inode = dentry->d_inode;
250 struct cifsInodeInfo *pCifsInode = CIFS_I(inode);
251 struct cifsFileInfo *pCifsFile;
252
253 pCifsFile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
254 if (pCifsFile == NULL)
255 return pCifsFile;
256
257 pCifsFile->count = 1;
258 pCifsFile->netfid = fileHandle;
259 pCifsFile->pid = current->tgid;
260 pCifsFile->uid = current_fsuid();
261 pCifsFile->dentry = dget(dentry);
262 pCifsFile->f_flags = file->f_flags;
263 pCifsFile->invalidHandle = false;
264 pCifsFile->tlink = cifs_get_tlink(tlink);
265 mutex_init(&pCifsFile->fh_mutex);
266 INIT_WORK(&pCifsFile->oplock_break, cifs_oplock_break);
267 INIT_LIST_HEAD(&pCifsFile->llist);
268
269 spin_lock(&cifs_file_list_lock);
270 list_add(&pCifsFile->tlist, &(tlink_tcon(tlink)->openFileList));
271 /* if readable file instance put first in list*/
272 if (file->f_mode & FMODE_READ)
273 list_add(&pCifsFile->flist, &pCifsInode->openFileList);
274 else
275 list_add_tail(&pCifsFile->flist, &pCifsInode->openFileList);
276 spin_unlock(&cifs_file_list_lock);
277
278 cifs_set_oplock_level(pCifsInode, oplock);
279 pCifsInode->can_cache_brlcks = pCifsInode->clientCanCacheAll;
280
281 file->private_data = pCifsFile;
282 return pCifsFile;
283 }
284
285 static void cifs_del_lock_waiters(struct cifsLockInfo *lock);
286
287 /*
288 * Release a reference on the file private data. This may involve closing
289 * the filehandle out on the server. Must be called without holding
290 * cifs_file_list_lock.
291 */
292 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
293 {
294 struct inode *inode = cifs_file->dentry->d_inode;
295 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
296 struct cifsInodeInfo *cifsi = CIFS_I(inode);
297 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
298 struct cifsLockInfo *li, *tmp;
299
300 spin_lock(&cifs_file_list_lock);
301 if (--cifs_file->count > 0) {
302 spin_unlock(&cifs_file_list_lock);
303 return;
304 }
305
306 /* remove it from the lists */
307 list_del(&cifs_file->flist);
308 list_del(&cifs_file->tlist);
309
310 if (list_empty(&cifsi->openFileList)) {
311 cFYI(1, "closing last open instance for inode %p",
312 cifs_file->dentry->d_inode);
313
314 /* in strict cache mode we need invalidate mapping on the last
315 close because it may cause a error when we open this file
316 again and get at least level II oplock */
317 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
318 CIFS_I(inode)->invalid_mapping = true;
319
320 cifs_set_oplock_level(cifsi, 0);
321 }
322 spin_unlock(&cifs_file_list_lock);
323
324 cancel_work_sync(&cifs_file->oplock_break);
325
326 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
327 unsigned int xid;
328 int rc;
329 xid = get_xid();
330 rc = CIFSSMBClose(xid, tcon, cifs_file->netfid);
331 free_xid(xid);
332 }
333
334 /* Delete any outstanding lock records. We'll lose them when the file
335 * is closed anyway.
336 */
337 mutex_lock(&cifsi->lock_mutex);
338 list_for_each_entry_safe(li, tmp, &cifs_file->llist, llist) {
339 list_del(&li->llist);
340 cifs_del_lock_waiters(li);
341 kfree(li);
342 }
343 mutex_unlock(&cifsi->lock_mutex);
344
345 cifs_put_tlink(cifs_file->tlink);
346 dput(cifs_file->dentry);
347 kfree(cifs_file);
348 }
349
350 int cifs_open(struct inode *inode, struct file *file)
351 {
352 int rc = -EACCES;
353 unsigned int xid;
354 __u32 oplock;
355 struct cifs_sb_info *cifs_sb;
356 struct cifs_tcon *tcon;
357 struct tcon_link *tlink;
358 struct cifsFileInfo *pCifsFile = NULL;
359 char *full_path = NULL;
360 bool posix_open_ok = false;
361 __u16 netfid;
362
363 xid = get_xid();
364
365 cifs_sb = CIFS_SB(inode->i_sb);
366 tlink = cifs_sb_tlink(cifs_sb);
367 if (IS_ERR(tlink)) {
368 free_xid(xid);
369 return PTR_ERR(tlink);
370 }
371 tcon = tlink_tcon(tlink);
372
373 full_path = build_path_from_dentry(file->f_path.dentry);
374 if (full_path == NULL) {
375 rc = -ENOMEM;
376 goto out;
377 }
378
379 cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
380 inode, file->f_flags, full_path);
381
382 if (tcon->ses->server->oplocks)
383 oplock = REQ_OPLOCK;
384 else
385 oplock = 0;
386
387 if (!tcon->broken_posix_open && tcon->unix_ext &&
388 (tcon->ses->capabilities & CAP_UNIX) &&
389 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
390 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
391 /* can not refresh inode info since size could be stale */
392 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
393 cifs_sb->mnt_file_mode /* ignored */,
394 file->f_flags, &oplock, &netfid, xid);
395 if (rc == 0) {
396 cFYI(1, "posix open succeeded");
397 posix_open_ok = true;
398 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
399 if (tcon->ses->serverNOS)
400 cERROR(1, "server %s of type %s returned"
401 " unexpected error on SMB posix open"
402 ", disabling posix open support."
403 " Check if server update available.",
404 tcon->ses->serverName,
405 tcon->ses->serverNOS);
406 tcon->broken_posix_open = true;
407 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
408 (rc != -EOPNOTSUPP)) /* path not found or net err */
409 goto out;
410 /* else fallthrough to retry open the old way on network i/o
411 or DFS errors */
412 }
413
414 if (!posix_open_ok) {
415 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
416 file->f_flags, &oplock, &netfid, xid);
417 if (rc)
418 goto out;
419 }
420
421 pCifsFile = cifs_new_fileinfo(netfid, file, tlink, oplock);
422 if (pCifsFile == NULL) {
423 CIFSSMBClose(xid, tcon, netfid);
424 rc = -ENOMEM;
425 goto out;
426 }
427
428 cifs_fscache_set_inode_cookie(inode, file);
429
430 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
431 /* time to set mode which we can not set earlier due to
432 problems creating new read-only files */
433 struct cifs_unix_set_info_args args = {
434 .mode = inode->i_mode,
435 .uid = NO_CHANGE_64,
436 .gid = NO_CHANGE_64,
437 .ctime = NO_CHANGE_64,
438 .atime = NO_CHANGE_64,
439 .mtime = NO_CHANGE_64,
440 .device = 0,
441 };
442 CIFSSMBUnixSetFileInfo(xid, tcon, &args, netfid,
443 pCifsFile->pid);
444 }
445
446 out:
447 kfree(full_path);
448 free_xid(xid);
449 cifs_put_tlink(tlink);
450 return rc;
451 }
452
453 /* Try to reacquire byte range locks that were released when session */
454 /* to server was lost */
455 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
456 {
457 int rc = 0;
458
459 /* BB list all locks open on this file and relock */
460
461 return rc;
462 }
463
464 static int cifs_reopen_file(struct cifsFileInfo *pCifsFile, bool can_flush)
465 {
466 int rc = -EACCES;
467 unsigned int xid;
468 __u32 oplock;
469 struct cifs_sb_info *cifs_sb;
470 struct cifs_tcon *tcon;
471 struct cifsInodeInfo *pCifsInode;
472 struct inode *inode;
473 char *full_path = NULL;
474 int desiredAccess;
475 int disposition = FILE_OPEN;
476 int create_options = CREATE_NOT_DIR;
477 __u16 netfid;
478
479 xid = get_xid();
480 mutex_lock(&pCifsFile->fh_mutex);
481 if (!pCifsFile->invalidHandle) {
482 mutex_unlock(&pCifsFile->fh_mutex);
483 rc = 0;
484 free_xid(xid);
485 return rc;
486 }
487
488 inode = pCifsFile->dentry->d_inode;
489 cifs_sb = CIFS_SB(inode->i_sb);
490 tcon = tlink_tcon(pCifsFile->tlink);
491
492 /* can not grab rename sem here because various ops, including
493 those that already have the rename sem can end up causing writepage
494 to get called and if the server was down that means we end up here,
495 and we can never tell if the caller already has the rename_sem */
496 full_path = build_path_from_dentry(pCifsFile->dentry);
497 if (full_path == NULL) {
498 rc = -ENOMEM;
499 mutex_unlock(&pCifsFile->fh_mutex);
500 free_xid(xid);
501 return rc;
502 }
503
504 cFYI(1, "inode = 0x%p file flags 0x%x for %s",
505 inode, pCifsFile->f_flags, full_path);
506
507 if (tcon->ses->server->oplocks)
508 oplock = REQ_OPLOCK;
509 else
510 oplock = 0;
511
512 if (tcon->unix_ext && (tcon->ses->capabilities & CAP_UNIX) &&
513 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
514 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
515
516 /*
517 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
518 * original open. Must mask them off for a reopen.
519 */
520 unsigned int oflags = pCifsFile->f_flags &
521 ~(O_CREAT | O_EXCL | O_TRUNC);
522
523 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
524 cifs_sb->mnt_file_mode /* ignored */,
525 oflags, &oplock, &netfid, xid);
526 if (rc == 0) {
527 cFYI(1, "posix reopen succeeded");
528 goto reopen_success;
529 }
530 /* fallthrough to retry open the old way on errors, especially
531 in the reconnect path it is important to retry hard */
532 }
533
534 desiredAccess = cifs_convert_flags(pCifsFile->f_flags);
535
536 if (backup_cred(cifs_sb))
537 create_options |= CREATE_OPEN_BACKUP_INTENT;
538
539 /* Can not refresh inode by passing in file_info buf to be returned
540 by SMBOpen and then calling get_inode_info with returned buf
541 since file might have write behind data that needs to be flushed
542 and server version of file size can be stale. If we knew for sure
543 that inode was not dirty locally we could do this */
544
545 rc = CIFSSMBOpen(xid, tcon, full_path, disposition, desiredAccess,
546 create_options, &netfid, &oplock, NULL,
547 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
548 CIFS_MOUNT_MAP_SPECIAL_CHR);
549 if (rc) {
550 mutex_unlock(&pCifsFile->fh_mutex);
551 cFYI(1, "cifs_open returned 0x%x", rc);
552 cFYI(1, "oplock: %d", oplock);
553 goto reopen_error_exit;
554 }
555
556 reopen_success:
557 pCifsFile->netfid = netfid;
558 pCifsFile->invalidHandle = false;
559 mutex_unlock(&pCifsFile->fh_mutex);
560 pCifsInode = CIFS_I(inode);
561
562 if (can_flush) {
563 rc = filemap_write_and_wait(inode->i_mapping);
564 mapping_set_error(inode->i_mapping, rc);
565
566 if (tcon->unix_ext)
567 rc = cifs_get_inode_info_unix(&inode,
568 full_path, inode->i_sb, xid);
569 else
570 rc = cifs_get_inode_info(&inode,
571 full_path, NULL, inode->i_sb,
572 xid, NULL);
573 } /* else we are writing out data to server already
574 and could deadlock if we tried to flush data, and
575 since we do not know if we have data that would
576 invalidate the current end of file on the server
577 we can not go to the server to get the new inod
578 info */
579
580 cifs_set_oplock_level(pCifsInode, oplock);
581
582 cifs_relock_file(pCifsFile);
583
584 reopen_error_exit:
585 kfree(full_path);
586 free_xid(xid);
587 return rc;
588 }
589
590 int cifs_close(struct inode *inode, struct file *file)
591 {
592 if (file->private_data != NULL) {
593 cifsFileInfo_put(file->private_data);
594 file->private_data = NULL;
595 }
596
597 /* return code from the ->release op is always ignored */
598 return 0;
599 }
600
601 int cifs_closedir(struct inode *inode, struct file *file)
602 {
603 int rc = 0;
604 unsigned int xid;
605 struct cifsFileInfo *pCFileStruct = file->private_data;
606 char *ptmp;
607
608 cFYI(1, "Closedir inode = 0x%p", inode);
609
610 xid = get_xid();
611
612 if (pCFileStruct) {
613 struct cifs_tcon *pTcon = tlink_tcon(pCFileStruct->tlink);
614
615 cFYI(1, "Freeing private data in close dir");
616 spin_lock(&cifs_file_list_lock);
617 if (!pCFileStruct->srch_inf.endOfSearch &&
618 !pCFileStruct->invalidHandle) {
619 pCFileStruct->invalidHandle = true;
620 spin_unlock(&cifs_file_list_lock);
621 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
622 cFYI(1, "Closing uncompleted readdir with rc %d",
623 rc);
624 /* not much we can do if it fails anyway, ignore rc */
625 rc = 0;
626 } else
627 spin_unlock(&cifs_file_list_lock);
628 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
629 if (ptmp) {
630 cFYI(1, "closedir free smb buf in srch struct");
631 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
632 if (pCFileStruct->srch_inf.smallBuf)
633 cifs_small_buf_release(ptmp);
634 else
635 cifs_buf_release(ptmp);
636 }
637 cifs_put_tlink(pCFileStruct->tlink);
638 kfree(file->private_data);
639 file->private_data = NULL;
640 }
641 /* BB can we lock the filestruct while this is going on? */
642 free_xid(xid);
643 return rc;
644 }
645
646 static struct cifsLockInfo *
647 cifs_lock_init(__u64 offset, __u64 length, __u8 type)
648 {
649 struct cifsLockInfo *lock =
650 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
651 if (!lock)
652 return lock;
653 lock->offset = offset;
654 lock->length = length;
655 lock->type = type;
656 lock->pid = current->tgid;
657 INIT_LIST_HEAD(&lock->blist);
658 init_waitqueue_head(&lock->block_q);
659 return lock;
660 }
661
662 static void
663 cifs_del_lock_waiters(struct cifsLockInfo *lock)
664 {
665 struct cifsLockInfo *li, *tmp;
666 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
667 list_del_init(&li->blist);
668 wake_up(&li->block_q);
669 }
670 }
671
672 static bool
673 cifs_find_fid_lock_conflict(struct cifsFileInfo *cfile, __u64 offset,
674 __u64 length, __u8 type, struct cifsFileInfo *cur,
675 struct cifsLockInfo **conf_lock)
676 {
677 struct cifsLockInfo *li;
678 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
679
680 list_for_each_entry(li, &cfile->llist, llist) {
681 if (offset + length <= li->offset ||
682 offset >= li->offset + li->length)
683 continue;
684 else if ((type & server->vals->shared_lock_type) &&
685 ((server->ops->compare_fids(cur, cfile) &&
686 current->tgid == li->pid) || type == li->type))
687 continue;
688 else {
689 *conf_lock = li;
690 return true;
691 }
692 }
693 return false;
694 }
695
696 static bool
697 cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
698 __u8 type, struct cifsLockInfo **conf_lock)
699 {
700 bool rc = false;
701 struct cifsFileInfo *fid, *tmp;
702 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
703
704 spin_lock(&cifs_file_list_lock);
705 list_for_each_entry_safe(fid, tmp, &cinode->openFileList, flist) {
706 rc = cifs_find_fid_lock_conflict(fid, offset, length, type,
707 cfile, conf_lock);
708 if (rc)
709 break;
710 }
711 spin_unlock(&cifs_file_list_lock);
712
713 return rc;
714 }
715
716 /*
717 * Check if there is another lock that prevents us to set the lock (mandatory
718 * style). If such a lock exists, update the flock structure with its
719 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
720 * or leave it the same if we can't. Returns 0 if we don't need to request to
721 * the server or 1 otherwise.
722 */
723 static int
724 cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
725 __u8 type, struct file_lock *flock)
726 {
727 int rc = 0;
728 struct cifsLockInfo *conf_lock;
729 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
730 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
731 bool exist;
732
733 mutex_lock(&cinode->lock_mutex);
734
735 exist = cifs_find_lock_conflict(cfile, offset, length, type,
736 &conf_lock);
737 if (exist) {
738 flock->fl_start = conf_lock->offset;
739 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
740 flock->fl_pid = conf_lock->pid;
741 if (conf_lock->type & server->vals->shared_lock_type)
742 flock->fl_type = F_RDLCK;
743 else
744 flock->fl_type = F_WRLCK;
745 } else if (!cinode->can_cache_brlcks)
746 rc = 1;
747 else
748 flock->fl_type = F_UNLCK;
749
750 mutex_unlock(&cinode->lock_mutex);
751 return rc;
752 }
753
754 static void
755 cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
756 {
757 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
758 mutex_lock(&cinode->lock_mutex);
759 list_add_tail(&lock->llist, &cfile->llist);
760 mutex_unlock(&cinode->lock_mutex);
761 }
762
763 /*
764 * Set the byte-range lock (mandatory style). Returns:
765 * 1) 0, if we set the lock and don't need to request to the server;
766 * 2) 1, if no locks prevent us but we need to request to the server;
767 * 3) -EACCESS, if there is a lock that prevents us and wait is false.
768 */
769 static int
770 cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
771 bool wait)
772 {
773 struct cifsLockInfo *conf_lock;
774 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
775 bool exist;
776 int rc = 0;
777
778 try_again:
779 exist = false;
780 mutex_lock(&cinode->lock_mutex);
781
782 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
783 lock->type, &conf_lock);
784 if (!exist && cinode->can_cache_brlcks) {
785 list_add_tail(&lock->llist, &cfile->llist);
786 mutex_unlock(&cinode->lock_mutex);
787 return rc;
788 }
789
790 if (!exist)
791 rc = 1;
792 else if (!wait)
793 rc = -EACCES;
794 else {
795 list_add_tail(&lock->blist, &conf_lock->blist);
796 mutex_unlock(&cinode->lock_mutex);
797 rc = wait_event_interruptible(lock->block_q,
798 (lock->blist.prev == &lock->blist) &&
799 (lock->blist.next == &lock->blist));
800 if (!rc)
801 goto try_again;
802 mutex_lock(&cinode->lock_mutex);
803 list_del_init(&lock->blist);
804 }
805
806 mutex_unlock(&cinode->lock_mutex);
807 return rc;
808 }
809
810 /*
811 * Check if there is another lock that prevents us to set the lock (posix
812 * style). If such a lock exists, update the flock structure with its
813 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
814 * or leave it the same if we can't. Returns 0 if we don't need to request to
815 * the server or 1 otherwise.
816 */
817 static int
818 cifs_posix_lock_test(struct file *file, struct file_lock *flock)
819 {
820 int rc = 0;
821 struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
822 unsigned char saved_type = flock->fl_type;
823
824 if ((flock->fl_flags & FL_POSIX) == 0)
825 return 1;
826
827 mutex_lock(&cinode->lock_mutex);
828 posix_test_lock(file, flock);
829
830 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
831 flock->fl_type = saved_type;
832 rc = 1;
833 }
834
835 mutex_unlock(&cinode->lock_mutex);
836 return rc;
837 }
838
839 /*
840 * Set the byte-range lock (posix style). Returns:
841 * 1) 0, if we set the lock and don't need to request to the server;
842 * 2) 1, if we need to request to the server;
843 * 3) <0, if the error occurs while setting the lock.
844 */
845 static int
846 cifs_posix_lock_set(struct file *file, struct file_lock *flock)
847 {
848 struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
849 int rc = 1;
850
851 if ((flock->fl_flags & FL_POSIX) == 0)
852 return rc;
853
854 try_again:
855 mutex_lock(&cinode->lock_mutex);
856 if (!cinode->can_cache_brlcks) {
857 mutex_unlock(&cinode->lock_mutex);
858 return rc;
859 }
860
861 rc = posix_lock_file(file, flock, NULL);
862 mutex_unlock(&cinode->lock_mutex);
863 if (rc == FILE_LOCK_DEFERRED) {
864 rc = wait_event_interruptible(flock->fl_wait, !flock->fl_next);
865 if (!rc)
866 goto try_again;
867 locks_delete_block(flock);
868 }
869 return rc;
870 }
871
872 static int
873 cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
874 {
875 unsigned int xid;
876 int rc = 0, stored_rc;
877 struct cifsLockInfo *li, *tmp;
878 struct cifs_tcon *tcon;
879 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
880 unsigned int num, max_num, max_buf;
881 LOCKING_ANDX_RANGE *buf, *cur;
882 int types[] = {LOCKING_ANDX_LARGE_FILES,
883 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
884 int i;
885
886 xid = get_xid();
887 tcon = tlink_tcon(cfile->tlink);
888
889 mutex_lock(&cinode->lock_mutex);
890 if (!cinode->can_cache_brlcks) {
891 mutex_unlock(&cinode->lock_mutex);
892 free_xid(xid);
893 return rc;
894 }
895
896 /*
897 * Accessing maxBuf is racy with cifs_reconnect - need to store value
898 * and check it for zero before using.
899 */
900 max_buf = tcon->ses->server->maxBuf;
901 if (!max_buf) {
902 mutex_unlock(&cinode->lock_mutex);
903 free_xid(xid);
904 return -EINVAL;
905 }
906
907 max_num = (max_buf - sizeof(struct smb_hdr)) /
908 sizeof(LOCKING_ANDX_RANGE);
909 buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
910 if (!buf) {
911 mutex_unlock(&cinode->lock_mutex);
912 free_xid(xid);
913 return rc;
914 }
915
916 for (i = 0; i < 2; i++) {
917 cur = buf;
918 num = 0;
919 list_for_each_entry_safe(li, tmp, &cfile->llist, llist) {
920 if (li->type != types[i])
921 continue;
922 cur->Pid = cpu_to_le16(li->pid);
923 cur->LengthLow = cpu_to_le32((u32)li->length);
924 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
925 cur->OffsetLow = cpu_to_le32((u32)li->offset);
926 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
927 if (++num == max_num) {
928 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
929 (__u8)li->type, 0, num,
930 buf);
931 if (stored_rc)
932 rc = stored_rc;
933 cur = buf;
934 num = 0;
935 } else
936 cur++;
937 }
938
939 if (num) {
940 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
941 (__u8)types[i], 0, num, buf);
942 if (stored_rc)
943 rc = stored_rc;
944 }
945 }
946
947 cinode->can_cache_brlcks = false;
948 mutex_unlock(&cinode->lock_mutex);
949
950 kfree(buf);
951 free_xid(xid);
952 return rc;
953 }
954
955 /* copied from fs/locks.c with a name change */
956 #define cifs_for_each_lock(inode, lockp) \
957 for (lockp = &inode->i_flock; *lockp != NULL; \
958 lockp = &(*lockp)->fl_next)
959
960 struct lock_to_push {
961 struct list_head llist;
962 __u64 offset;
963 __u64 length;
964 __u32 pid;
965 __u16 netfid;
966 __u8 type;
967 };
968
969 static int
970 cifs_push_posix_locks(struct cifsFileInfo *cfile)
971 {
972 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
973 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
974 struct file_lock *flock, **before;
975 unsigned int count = 0, i = 0;
976 int rc = 0, xid, type;
977 struct list_head locks_to_send, *el;
978 struct lock_to_push *lck, *tmp;
979 __u64 length;
980
981 xid = get_xid();
982
983 mutex_lock(&cinode->lock_mutex);
984 if (!cinode->can_cache_brlcks) {
985 mutex_unlock(&cinode->lock_mutex);
986 free_xid(xid);
987 return rc;
988 }
989
990 lock_flocks();
991 cifs_for_each_lock(cfile->dentry->d_inode, before) {
992 if ((*before)->fl_flags & FL_POSIX)
993 count++;
994 }
995 unlock_flocks();
996
997 INIT_LIST_HEAD(&locks_to_send);
998
999 /*
1000 * Allocating count locks is enough because no FL_POSIX locks can be
1001 * added to the list while we are holding cinode->lock_mutex that
1002 * protects locking operations of this inode.
1003 */
1004 for (; i < count; i++) {
1005 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1006 if (!lck) {
1007 rc = -ENOMEM;
1008 goto err_out;
1009 }
1010 list_add_tail(&lck->llist, &locks_to_send);
1011 }
1012
1013 el = locks_to_send.next;
1014 lock_flocks();
1015 cifs_for_each_lock(cfile->dentry->d_inode, before) {
1016 flock = *before;
1017 if ((flock->fl_flags & FL_POSIX) == 0)
1018 continue;
1019 if (el == &locks_to_send) {
1020 /*
1021 * The list ended. We don't have enough allocated
1022 * structures - something is really wrong.
1023 */
1024 cERROR(1, "Can't push all brlocks!");
1025 break;
1026 }
1027 length = 1 + flock->fl_end - flock->fl_start;
1028 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1029 type = CIFS_RDLCK;
1030 else
1031 type = CIFS_WRLCK;
1032 lck = list_entry(el, struct lock_to_push, llist);
1033 lck->pid = flock->fl_pid;
1034 lck->netfid = cfile->netfid;
1035 lck->length = length;
1036 lck->type = type;
1037 lck->offset = flock->fl_start;
1038 el = el->next;
1039 }
1040 unlock_flocks();
1041
1042 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1043 int stored_rc;
1044
1045 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1046 lck->offset, lck->length, NULL,
1047 lck->type, 0);
1048 if (stored_rc)
1049 rc = stored_rc;
1050 list_del(&lck->llist);
1051 kfree(lck);
1052 }
1053
1054 out:
1055 cinode->can_cache_brlcks = false;
1056 mutex_unlock(&cinode->lock_mutex);
1057
1058 free_xid(xid);
1059 return rc;
1060 err_out:
1061 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1062 list_del(&lck->llist);
1063 kfree(lck);
1064 }
1065 goto out;
1066 }
1067
1068 static int
1069 cifs_push_locks(struct cifsFileInfo *cfile)
1070 {
1071 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1072 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1073
1074 if ((tcon->ses->capabilities & CAP_UNIX) &&
1075 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1076 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1077 return cifs_push_posix_locks(cfile);
1078
1079 return cifs_push_mandatory_locks(cfile);
1080 }
1081
1082 static void
1083 cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1084 bool *wait_flag, struct TCP_Server_Info *server)
1085 {
1086 if (flock->fl_flags & FL_POSIX)
1087 cFYI(1, "Posix");
1088 if (flock->fl_flags & FL_FLOCK)
1089 cFYI(1, "Flock");
1090 if (flock->fl_flags & FL_SLEEP) {
1091 cFYI(1, "Blocking lock");
1092 *wait_flag = true;
1093 }
1094 if (flock->fl_flags & FL_ACCESS)
1095 cFYI(1, "Process suspended by mandatory locking - "
1096 "not implemented yet");
1097 if (flock->fl_flags & FL_LEASE)
1098 cFYI(1, "Lease on file - not implemented yet");
1099 if (flock->fl_flags &
1100 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
1101 cFYI(1, "Unknown lock flags 0x%x", flock->fl_flags);
1102
1103 *type = server->vals->large_lock_type;
1104 if (flock->fl_type == F_WRLCK) {
1105 cFYI(1, "F_WRLCK ");
1106 *type |= server->vals->exclusive_lock_type;
1107 *lock = 1;
1108 } else if (flock->fl_type == F_UNLCK) {
1109 cFYI(1, "F_UNLCK");
1110 *type |= server->vals->unlock_lock_type;
1111 *unlock = 1;
1112 /* Check if unlock includes more than one lock range */
1113 } else if (flock->fl_type == F_RDLCK) {
1114 cFYI(1, "F_RDLCK");
1115 *type |= server->vals->shared_lock_type;
1116 *lock = 1;
1117 } else if (flock->fl_type == F_EXLCK) {
1118 cFYI(1, "F_EXLCK");
1119 *type |= server->vals->exclusive_lock_type;
1120 *lock = 1;
1121 } else if (flock->fl_type == F_SHLCK) {
1122 cFYI(1, "F_SHLCK");
1123 *type |= server->vals->shared_lock_type;
1124 *lock = 1;
1125 } else
1126 cFYI(1, "Unknown type of lock");
1127 }
1128
1129 static int
1130 cifs_mandatory_lock(unsigned int xid, struct cifsFileInfo *cfile, __u64 offset,
1131 __u64 length, __u32 type, int lock, int unlock, bool wait)
1132 {
1133 return CIFSSMBLock(xid, tlink_tcon(cfile->tlink), cfile->netfid,
1134 current->tgid, length, offset, unlock, lock,
1135 (__u8)type, wait, 0);
1136 }
1137
1138 static int
1139 cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1140 bool wait_flag, bool posix_lck, unsigned int xid)
1141 {
1142 int rc = 0;
1143 __u64 length = 1 + flock->fl_end - flock->fl_start;
1144 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1145 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1146 struct TCP_Server_Info *server = tcon->ses->server;
1147 __u16 netfid = cfile->netfid;
1148
1149 if (posix_lck) {
1150 int posix_lock_type;
1151
1152 rc = cifs_posix_lock_test(file, flock);
1153 if (!rc)
1154 return rc;
1155
1156 if (type & server->vals->shared_lock_type)
1157 posix_lock_type = CIFS_RDLCK;
1158 else
1159 posix_lock_type = CIFS_WRLCK;
1160 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1161 flock->fl_start, length, flock,
1162 posix_lock_type, wait_flag);
1163 return rc;
1164 }
1165
1166 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1167 if (!rc)
1168 return rc;
1169
1170 /* BB we could chain these into one lock request BB */
1171 rc = cifs_mandatory_lock(xid, cfile, flock->fl_start, length, type,
1172 1, 0, false);
1173 if (rc == 0) {
1174 rc = cifs_mandatory_lock(xid, cfile, flock->fl_start, length,
1175 type, 0, 1, false);
1176 flock->fl_type = F_UNLCK;
1177 if (rc != 0)
1178 cERROR(1, "Error unlocking previously locked "
1179 "range %d during test of lock", rc);
1180 return 0;
1181 }
1182
1183 if (type & server->vals->shared_lock_type) {
1184 flock->fl_type = F_WRLCK;
1185 return 0;
1186 }
1187
1188 rc = cifs_mandatory_lock(xid, cfile, flock->fl_start, length,
1189 type | server->vals->shared_lock_type, 1, 0,
1190 false);
1191 if (rc == 0) {
1192 rc = cifs_mandatory_lock(xid, cfile, flock->fl_start, length,
1193 type | server->vals->shared_lock_type,
1194 0, 1, false);
1195 flock->fl_type = F_RDLCK;
1196 if (rc != 0)
1197 cERROR(1, "Error unlocking previously locked "
1198 "range %d during test of lock", rc);
1199 } else
1200 flock->fl_type = F_WRLCK;
1201
1202 return 0;
1203 }
1204
1205 static void
1206 cifs_move_llist(struct list_head *source, struct list_head *dest)
1207 {
1208 struct list_head *li, *tmp;
1209 list_for_each_safe(li, tmp, source)
1210 list_move(li, dest);
1211 }
1212
1213 static void
1214 cifs_free_llist(struct list_head *llist)
1215 {
1216 struct cifsLockInfo *li, *tmp;
1217 list_for_each_entry_safe(li, tmp, llist, llist) {
1218 cifs_del_lock_waiters(li);
1219 list_del(&li->llist);
1220 kfree(li);
1221 }
1222 }
1223
1224 static int
1225 cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock,
1226 unsigned int xid)
1227 {
1228 int rc = 0, stored_rc;
1229 int types[] = {LOCKING_ANDX_LARGE_FILES,
1230 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1231 unsigned int i;
1232 unsigned int max_num, num, max_buf;
1233 LOCKING_ANDX_RANGE *buf, *cur;
1234 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1235 struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1236 struct cifsLockInfo *li, *tmp;
1237 __u64 length = 1 + flock->fl_end - flock->fl_start;
1238 struct list_head tmp_llist;
1239
1240 INIT_LIST_HEAD(&tmp_llist);
1241
1242 /*
1243 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1244 * and check it for zero before using.
1245 */
1246 max_buf = tcon->ses->server->maxBuf;
1247 if (!max_buf)
1248 return -EINVAL;
1249
1250 max_num = (max_buf - sizeof(struct smb_hdr)) /
1251 sizeof(LOCKING_ANDX_RANGE);
1252 buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1253 if (!buf)
1254 return -ENOMEM;
1255
1256 mutex_lock(&cinode->lock_mutex);
1257 for (i = 0; i < 2; i++) {
1258 cur = buf;
1259 num = 0;
1260 list_for_each_entry_safe(li, tmp, &cfile->llist, llist) {
1261 if (flock->fl_start > li->offset ||
1262 (flock->fl_start + length) <
1263 (li->offset + li->length))
1264 continue;
1265 if (current->tgid != li->pid)
1266 continue;
1267 if (types[i] != li->type)
1268 continue;
1269 if (cinode->can_cache_brlcks) {
1270 /*
1271 * We can cache brlock requests - simply remove
1272 * a lock from the file's list.
1273 */
1274 list_del(&li->llist);
1275 cifs_del_lock_waiters(li);
1276 kfree(li);
1277 continue;
1278 }
1279 cur->Pid = cpu_to_le16(li->pid);
1280 cur->LengthLow = cpu_to_le32((u32)li->length);
1281 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1282 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1283 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1284 /*
1285 * We need to save a lock here to let us add it again to
1286 * the file's list if the unlock range request fails on
1287 * the server.
1288 */
1289 list_move(&li->llist, &tmp_llist);
1290 if (++num == max_num) {
1291 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
1292 li->type, num, 0, buf);
1293 if (stored_rc) {
1294 /*
1295 * We failed on the unlock range
1296 * request - add all locks from the tmp
1297 * list to the head of the file's list.
1298 */
1299 cifs_move_llist(&tmp_llist,
1300 &cfile->llist);
1301 rc = stored_rc;
1302 } else
1303 /*
1304 * The unlock range request succeed -
1305 * free the tmp list.
1306 */
1307 cifs_free_llist(&tmp_llist);
1308 cur = buf;
1309 num = 0;
1310 } else
1311 cur++;
1312 }
1313 if (num) {
1314 stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
1315 types[i], num, 0, buf);
1316 if (stored_rc) {
1317 cifs_move_llist(&tmp_llist, &cfile->llist);
1318 rc = stored_rc;
1319 } else
1320 cifs_free_llist(&tmp_llist);
1321 }
1322 }
1323
1324 mutex_unlock(&cinode->lock_mutex);
1325 kfree(buf);
1326 return rc;
1327 }
1328
1329 static int
1330 cifs_setlk(struct file *file, struct file_lock *flock, __u32 type,
1331 bool wait_flag, bool posix_lck, int lock, int unlock,
1332 unsigned int xid)
1333 {
1334 int rc = 0;
1335 __u64 length = 1 + flock->fl_end - flock->fl_start;
1336 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1337 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1338 struct TCP_Server_Info *server = tcon->ses->server;
1339 __u16 netfid = cfile->netfid;
1340
1341 if (posix_lck) {
1342 int posix_lock_type;
1343
1344 rc = cifs_posix_lock_set(file, flock);
1345 if (!rc || rc < 0)
1346 return rc;
1347
1348 if (type & server->vals->shared_lock_type)
1349 posix_lock_type = CIFS_RDLCK;
1350 else
1351 posix_lock_type = CIFS_WRLCK;
1352
1353 if (unlock == 1)
1354 posix_lock_type = CIFS_UNLCK;
1355
1356 rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1357 flock->fl_start, length, NULL,
1358 posix_lock_type, wait_flag);
1359 goto out;
1360 }
1361
1362 if (lock) {
1363 struct cifsLockInfo *lock;
1364
1365 lock = cifs_lock_init(flock->fl_start, length, type);
1366 if (!lock)
1367 return -ENOMEM;
1368
1369 rc = cifs_lock_add_if(cfile, lock, wait_flag);
1370 if (rc < 0)
1371 kfree(lock);
1372 if (rc <= 0)
1373 goto out;
1374
1375 rc = cifs_mandatory_lock(xid, cfile, flock->fl_start, length,
1376 type, 1, 0, wait_flag);
1377 if (rc) {
1378 kfree(lock);
1379 goto out;
1380 }
1381
1382 cifs_lock_add(cfile, lock);
1383 } else if (unlock)
1384 rc = cifs_unlock_range(cfile, flock, xid);
1385
1386 out:
1387 if (flock->fl_flags & FL_POSIX)
1388 posix_lock_file_wait(file, flock);
1389 return rc;
1390 }
1391
1392 int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1393 {
1394 int rc, xid;
1395 int lock = 0, unlock = 0;
1396 bool wait_flag = false;
1397 bool posix_lck = false;
1398 struct cifs_sb_info *cifs_sb;
1399 struct cifs_tcon *tcon;
1400 struct cifsInodeInfo *cinode;
1401 struct cifsFileInfo *cfile;
1402 __u16 netfid;
1403 __u32 type;
1404
1405 rc = -EACCES;
1406 xid = get_xid();
1407
1408 cFYI(1, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld "
1409 "end: %lld", cmd, flock->fl_flags, flock->fl_type,
1410 flock->fl_start, flock->fl_end);
1411
1412 cfile = (struct cifsFileInfo *)file->private_data;
1413 tcon = tlink_tcon(cfile->tlink);
1414
1415 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1416 tcon->ses->server);
1417
1418 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1419 netfid = cfile->netfid;
1420 cinode = CIFS_I(file->f_path.dentry->d_inode);
1421
1422 if ((tcon->ses->capabilities & CAP_UNIX) &&
1423 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1424 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1425 posix_lck = true;
1426 /*
1427 * BB add code here to normalize offset and length to account for
1428 * negative length which we can not accept over the wire.
1429 */
1430 if (IS_GETLK(cmd)) {
1431 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1432 free_xid(xid);
1433 return rc;
1434 }
1435
1436 if (!lock && !unlock) {
1437 /*
1438 * if no lock or unlock then nothing to do since we do not
1439 * know what it is
1440 */
1441 free_xid(xid);
1442 return -EOPNOTSUPP;
1443 }
1444
1445 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1446 xid);
1447 free_xid(xid);
1448 return rc;
1449 }
1450
1451 /*
1452 * update the file size (if needed) after a write. Should be called with
1453 * the inode->i_lock held
1454 */
1455 void
1456 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1457 unsigned int bytes_written)
1458 {
1459 loff_t end_of_write = offset + bytes_written;
1460
1461 if (end_of_write > cifsi->server_eof)
1462 cifsi->server_eof = end_of_write;
1463 }
1464
1465 static ssize_t cifs_write(struct cifsFileInfo *open_file, __u32 pid,
1466 const char *write_data, size_t write_size,
1467 loff_t *poffset)
1468 {
1469 int rc = 0;
1470 unsigned int bytes_written = 0;
1471 unsigned int total_written;
1472 struct cifs_sb_info *cifs_sb;
1473 struct cifs_tcon *pTcon;
1474 unsigned int xid;
1475 struct dentry *dentry = open_file->dentry;
1476 struct cifsInodeInfo *cifsi = CIFS_I(dentry->d_inode);
1477 struct cifs_io_parms io_parms;
1478
1479 cifs_sb = CIFS_SB(dentry->d_sb);
1480
1481 cFYI(1, "write %zd bytes to offset %lld of %s", write_size,
1482 *poffset, dentry->d_name.name);
1483
1484 pTcon = tlink_tcon(open_file->tlink);
1485
1486 xid = get_xid();
1487
1488 for (total_written = 0; write_size > total_written;
1489 total_written += bytes_written) {
1490 rc = -EAGAIN;
1491 while (rc == -EAGAIN) {
1492 struct kvec iov[2];
1493 unsigned int len;
1494
1495 if (open_file->invalidHandle) {
1496 /* we could deadlock if we called
1497 filemap_fdatawait from here so tell
1498 reopen_file not to flush data to
1499 server now */
1500 rc = cifs_reopen_file(open_file, false);
1501 if (rc != 0)
1502 break;
1503 }
1504
1505 len = min((size_t)cifs_sb->wsize,
1506 write_size - total_written);
1507 /* iov[0] is reserved for smb header */
1508 iov[1].iov_base = (char *)write_data + total_written;
1509 iov[1].iov_len = len;
1510 io_parms.netfid = open_file->netfid;
1511 io_parms.pid = pid;
1512 io_parms.tcon = pTcon;
1513 io_parms.offset = *poffset;
1514 io_parms.length = len;
1515 rc = CIFSSMBWrite2(xid, &io_parms, &bytes_written, iov,
1516 1, 0);
1517 }
1518 if (rc || (bytes_written == 0)) {
1519 if (total_written)
1520 break;
1521 else {
1522 free_xid(xid);
1523 return rc;
1524 }
1525 } else {
1526 spin_lock(&dentry->d_inode->i_lock);
1527 cifs_update_eof(cifsi, *poffset, bytes_written);
1528 spin_unlock(&dentry->d_inode->i_lock);
1529 *poffset += bytes_written;
1530 }
1531 }
1532
1533 cifs_stats_bytes_written(pTcon, total_written);
1534
1535 if (total_written > 0) {
1536 spin_lock(&dentry->d_inode->i_lock);
1537 if (*poffset > dentry->d_inode->i_size)
1538 i_size_write(dentry->d_inode, *poffset);
1539 spin_unlock(&dentry->d_inode->i_lock);
1540 }
1541 mark_inode_dirty_sync(dentry->d_inode);
1542 free_xid(xid);
1543 return total_written;
1544 }
1545
1546 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1547 bool fsuid_only)
1548 {
1549 struct cifsFileInfo *open_file = NULL;
1550 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1551
1552 /* only filter by fsuid on multiuser mounts */
1553 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1554 fsuid_only = false;
1555
1556 spin_lock(&cifs_file_list_lock);
1557 /* we could simply get the first_list_entry since write-only entries
1558 are always at the end of the list but since the first entry might
1559 have a close pending, we go through the whole list */
1560 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1561 if (fsuid_only && open_file->uid != current_fsuid())
1562 continue;
1563 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1564 if (!open_file->invalidHandle) {
1565 /* found a good file */
1566 /* lock it so it will not be closed on us */
1567 cifsFileInfo_get(open_file);
1568 spin_unlock(&cifs_file_list_lock);
1569 return open_file;
1570 } /* else might as well continue, and look for
1571 another, or simply have the caller reopen it
1572 again rather than trying to fix this handle */
1573 } else /* write only file */
1574 break; /* write only files are last so must be done */
1575 }
1576 spin_unlock(&cifs_file_list_lock);
1577 return NULL;
1578 }
1579
1580 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1581 bool fsuid_only)
1582 {
1583 struct cifsFileInfo *open_file, *inv_file = NULL;
1584 struct cifs_sb_info *cifs_sb;
1585 bool any_available = false;
1586 int rc;
1587 unsigned int refind = 0;
1588
1589 /* Having a null inode here (because mapping->host was set to zero by
1590 the VFS or MM) should not happen but we had reports of on oops (due to
1591 it being zero) during stress testcases so we need to check for it */
1592
1593 if (cifs_inode == NULL) {
1594 cERROR(1, "Null inode passed to cifs_writeable_file");
1595 dump_stack();
1596 return NULL;
1597 }
1598
1599 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1600
1601 /* only filter by fsuid on multiuser mounts */
1602 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1603 fsuid_only = false;
1604
1605 spin_lock(&cifs_file_list_lock);
1606 refind_writable:
1607 if (refind > MAX_REOPEN_ATT) {
1608 spin_unlock(&cifs_file_list_lock);
1609 return NULL;
1610 }
1611 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1612 if (!any_available && open_file->pid != current->tgid)
1613 continue;
1614 if (fsuid_only && open_file->uid != current_fsuid())
1615 continue;
1616 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1617 if (!open_file->invalidHandle) {
1618 /* found a good writable file */
1619 cifsFileInfo_get(open_file);
1620 spin_unlock(&cifs_file_list_lock);
1621 return open_file;
1622 } else {
1623 if (!inv_file)
1624 inv_file = open_file;
1625 }
1626 }
1627 }
1628 /* couldn't find useable FH with same pid, try any available */
1629 if (!any_available) {
1630 any_available = true;
1631 goto refind_writable;
1632 }
1633
1634 if (inv_file) {
1635 any_available = false;
1636 cifsFileInfo_get(inv_file);
1637 }
1638
1639 spin_unlock(&cifs_file_list_lock);
1640
1641 if (inv_file) {
1642 rc = cifs_reopen_file(inv_file, false);
1643 if (!rc)
1644 return inv_file;
1645 else {
1646 spin_lock(&cifs_file_list_lock);
1647 list_move_tail(&inv_file->flist,
1648 &cifs_inode->openFileList);
1649 spin_unlock(&cifs_file_list_lock);
1650 cifsFileInfo_put(inv_file);
1651 spin_lock(&cifs_file_list_lock);
1652 ++refind;
1653 goto refind_writable;
1654 }
1655 }
1656
1657 return NULL;
1658 }
1659
1660 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1661 {
1662 struct address_space *mapping = page->mapping;
1663 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1664 char *write_data;
1665 int rc = -EFAULT;
1666 int bytes_written = 0;
1667 struct inode *inode;
1668 struct cifsFileInfo *open_file;
1669
1670 if (!mapping || !mapping->host)
1671 return -EFAULT;
1672
1673 inode = page->mapping->host;
1674
1675 offset += (loff_t)from;
1676 write_data = kmap(page);
1677 write_data += from;
1678
1679 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1680 kunmap(page);
1681 return -EIO;
1682 }
1683
1684 /* racing with truncate? */
1685 if (offset > mapping->host->i_size) {
1686 kunmap(page);
1687 return 0; /* don't care */
1688 }
1689
1690 /* check to make sure that we are not extending the file */
1691 if (mapping->host->i_size - offset < (loff_t)to)
1692 to = (unsigned)(mapping->host->i_size - offset);
1693
1694 open_file = find_writable_file(CIFS_I(mapping->host), false);
1695 if (open_file) {
1696 bytes_written = cifs_write(open_file, open_file->pid,
1697 write_data, to - from, &offset);
1698 cifsFileInfo_put(open_file);
1699 /* Does mm or vfs already set times? */
1700 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1701 if ((bytes_written > 0) && (offset))
1702 rc = 0;
1703 else if (bytes_written < 0)
1704 rc = bytes_written;
1705 } else {
1706 cFYI(1, "No writeable filehandles for inode");
1707 rc = -EIO;
1708 }
1709
1710 kunmap(page);
1711 return rc;
1712 }
1713
1714 /*
1715 * Marshal up the iov array, reserving the first one for the header. Also,
1716 * set wdata->bytes.
1717 */
1718 static void
1719 cifs_writepages_marshal_iov(struct kvec *iov, struct cifs_writedata *wdata)
1720 {
1721 int i;
1722 struct inode *inode = wdata->cfile->dentry->d_inode;
1723 loff_t size = i_size_read(inode);
1724
1725 /* marshal up the pages into iov array */
1726 wdata->bytes = 0;
1727 for (i = 0; i < wdata->nr_pages; i++) {
1728 iov[i + 1].iov_len = min(size - page_offset(wdata->pages[i]),
1729 (loff_t)PAGE_CACHE_SIZE);
1730 iov[i + 1].iov_base = kmap(wdata->pages[i]);
1731 wdata->bytes += iov[i + 1].iov_len;
1732 }
1733 }
1734
1735 static int cifs_writepages(struct address_space *mapping,
1736 struct writeback_control *wbc)
1737 {
1738 struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
1739 bool done = false, scanned = false, range_whole = false;
1740 pgoff_t end, index;
1741 struct cifs_writedata *wdata;
1742 struct page *page;
1743 int rc = 0;
1744
1745 /*
1746 * If wsize is smaller than the page cache size, default to writing
1747 * one page at a time via cifs_writepage
1748 */
1749 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1750 return generic_writepages(mapping, wbc);
1751
1752 if (wbc->range_cyclic) {
1753 index = mapping->writeback_index; /* Start from prev offset */
1754 end = -1;
1755 } else {
1756 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1757 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1758 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1759 range_whole = true;
1760 scanned = true;
1761 }
1762 retry:
1763 while (!done && index <= end) {
1764 unsigned int i, nr_pages, found_pages;
1765 pgoff_t next = 0, tofind;
1766 struct page **pages;
1767
1768 tofind = min((cifs_sb->wsize / PAGE_CACHE_SIZE) - 1,
1769 end - index) + 1;
1770
1771 wdata = cifs_writedata_alloc((unsigned int)tofind,
1772 cifs_writev_complete);
1773 if (!wdata) {
1774 rc = -ENOMEM;
1775 break;
1776 }
1777
1778 /*
1779 * find_get_pages_tag seems to return a max of 256 on each
1780 * iteration, so we must call it several times in order to
1781 * fill the array or the wsize is effectively limited to
1782 * 256 * PAGE_CACHE_SIZE.
1783 */
1784 found_pages = 0;
1785 pages = wdata->pages;
1786 do {
1787 nr_pages = find_get_pages_tag(mapping, &index,
1788 PAGECACHE_TAG_DIRTY,
1789 tofind, pages);
1790 found_pages += nr_pages;
1791 tofind -= nr_pages;
1792 pages += nr_pages;
1793 } while (nr_pages && tofind && index <= end);
1794
1795 if (found_pages == 0) {
1796 kref_put(&wdata->refcount, cifs_writedata_release);
1797 break;
1798 }
1799
1800 nr_pages = 0;
1801 for (i = 0; i < found_pages; i++) {
1802 page = wdata->pages[i];
1803 /*
1804 * At this point we hold neither mapping->tree_lock nor
1805 * lock on the page itself: the page may be truncated or
1806 * invalidated (changing page->mapping to NULL), or even
1807 * swizzled back from swapper_space to tmpfs file
1808 * mapping
1809 */
1810
1811 if (nr_pages == 0)
1812 lock_page(page);
1813 else if (!trylock_page(page))
1814 break;
1815
1816 if (unlikely(page->mapping != mapping)) {
1817 unlock_page(page);
1818 break;
1819 }
1820
1821 if (!wbc->range_cyclic && page->index > end) {
1822 done = true;
1823 unlock_page(page);
1824 break;
1825 }
1826
1827 if (next && (page->index != next)) {
1828 /* Not next consecutive page */
1829 unlock_page(page);
1830 break;
1831 }
1832
1833 if (wbc->sync_mode != WB_SYNC_NONE)
1834 wait_on_page_writeback(page);
1835
1836 if (PageWriteback(page) ||
1837 !clear_page_dirty_for_io(page)) {
1838 unlock_page(page);
1839 break;
1840 }
1841
1842 /*
1843 * This actually clears the dirty bit in the radix tree.
1844 * See cifs_writepage() for more commentary.
1845 */
1846 set_page_writeback(page);
1847
1848 if (page_offset(page) >= mapping->host->i_size) {
1849 done = true;
1850 unlock_page(page);
1851 end_page_writeback(page);
1852 break;
1853 }
1854
1855 wdata->pages[i] = page;
1856 next = page->index + 1;
1857 ++nr_pages;
1858 }
1859
1860 /* reset index to refind any pages skipped */
1861 if (nr_pages == 0)
1862 index = wdata->pages[0]->index + 1;
1863
1864 /* put any pages we aren't going to use */
1865 for (i = nr_pages; i < found_pages; i++) {
1866 page_cache_release(wdata->pages[i]);
1867 wdata->pages[i] = NULL;
1868 }
1869
1870 /* nothing to write? */
1871 if (nr_pages == 0) {
1872 kref_put(&wdata->refcount, cifs_writedata_release);
1873 continue;
1874 }
1875
1876 wdata->sync_mode = wbc->sync_mode;
1877 wdata->nr_pages = nr_pages;
1878 wdata->offset = page_offset(wdata->pages[0]);
1879 wdata->marshal_iov = cifs_writepages_marshal_iov;
1880
1881 do {
1882 if (wdata->cfile != NULL)
1883 cifsFileInfo_put(wdata->cfile);
1884 wdata->cfile = find_writable_file(CIFS_I(mapping->host),
1885 false);
1886 if (!wdata->cfile) {
1887 cERROR(1, "No writable handles for inode");
1888 rc = -EBADF;
1889 break;
1890 }
1891 wdata->pid = wdata->cfile->pid;
1892 rc = cifs_async_writev(wdata);
1893 } while (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN);
1894
1895 for (i = 0; i < nr_pages; ++i)
1896 unlock_page(wdata->pages[i]);
1897
1898 /* send failure -- clean up the mess */
1899 if (rc != 0) {
1900 for (i = 0; i < nr_pages; ++i) {
1901 if (rc == -EAGAIN)
1902 redirty_page_for_writepage(wbc,
1903 wdata->pages[i]);
1904 else
1905 SetPageError(wdata->pages[i]);
1906 end_page_writeback(wdata->pages[i]);
1907 page_cache_release(wdata->pages[i]);
1908 }
1909 if (rc != -EAGAIN)
1910 mapping_set_error(mapping, rc);
1911 }
1912 kref_put(&wdata->refcount, cifs_writedata_release);
1913
1914 wbc->nr_to_write -= nr_pages;
1915 if (wbc->nr_to_write <= 0)
1916 done = true;
1917
1918 index = next;
1919 }
1920
1921 if (!scanned && !done) {
1922 /*
1923 * We hit the last page and there is more work to be done: wrap
1924 * back to the start of the file
1925 */
1926 scanned = true;
1927 index = 0;
1928 goto retry;
1929 }
1930
1931 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1932 mapping->writeback_index = index;
1933
1934 return rc;
1935 }
1936
1937 static int
1938 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
1939 {
1940 int rc;
1941 unsigned int xid;
1942
1943 xid = get_xid();
1944 /* BB add check for wbc flags */
1945 page_cache_get(page);
1946 if (!PageUptodate(page))
1947 cFYI(1, "ppw - page not up to date");
1948
1949 /*
1950 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1951 *
1952 * A writepage() implementation always needs to do either this,
1953 * or re-dirty the page with "redirty_page_for_writepage()" in
1954 * the case of a failure.
1955 *
1956 * Just unlocking the page will cause the radix tree tag-bits
1957 * to fail to update with the state of the page correctly.
1958 */
1959 set_page_writeback(page);
1960 retry_write:
1961 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1962 if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
1963 goto retry_write;
1964 else if (rc == -EAGAIN)
1965 redirty_page_for_writepage(wbc, page);
1966 else if (rc != 0)
1967 SetPageError(page);
1968 else
1969 SetPageUptodate(page);
1970 end_page_writeback(page);
1971 page_cache_release(page);
1972 free_xid(xid);
1973 return rc;
1974 }
1975
1976 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1977 {
1978 int rc = cifs_writepage_locked(page, wbc);
1979 unlock_page(page);
1980 return rc;
1981 }
1982
1983 static int cifs_write_end(struct file *file, struct address_space *mapping,
1984 loff_t pos, unsigned len, unsigned copied,
1985 struct page *page, void *fsdata)
1986 {
1987 int rc;
1988 struct inode *inode = mapping->host;
1989 struct cifsFileInfo *cfile = file->private_data;
1990 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1991 __u32 pid;
1992
1993 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1994 pid = cfile->pid;
1995 else
1996 pid = current->tgid;
1997
1998 cFYI(1, "write_end for page %p from pos %lld with %d bytes",
1999 page, pos, copied);
2000
2001 if (PageChecked(page)) {
2002 if (copied == len)
2003 SetPageUptodate(page);
2004 ClearPageChecked(page);
2005 } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
2006 SetPageUptodate(page);
2007
2008 if (!PageUptodate(page)) {
2009 char *page_data;
2010 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2011 unsigned int xid;
2012
2013 xid = get_xid();
2014 /* this is probably better than directly calling
2015 partialpage_write since in this function the file handle is
2016 known which we might as well leverage */
2017 /* BB check if anything else missing out of ppw
2018 such as updating last write time */
2019 page_data = kmap(page);
2020 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2021 /* if (rc < 0) should we set writebehind rc? */
2022 kunmap(page);
2023
2024 free_xid(xid);
2025 } else {
2026 rc = copied;
2027 pos += copied;
2028 set_page_dirty(page);
2029 }
2030
2031 if (rc > 0) {
2032 spin_lock(&inode->i_lock);
2033 if (pos > inode->i_size)
2034 i_size_write(inode, pos);
2035 spin_unlock(&inode->i_lock);
2036 }
2037
2038 unlock_page(page);
2039 page_cache_release(page);
2040
2041 return rc;
2042 }
2043
2044 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2045 int datasync)
2046 {
2047 unsigned int xid;
2048 int rc = 0;
2049 struct cifs_tcon *tcon;
2050 struct cifsFileInfo *smbfile = file->private_data;
2051 struct inode *inode = file->f_path.dentry->d_inode;
2052 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2053
2054 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2055 if (rc)
2056 return rc;
2057 mutex_lock(&inode->i_mutex);
2058
2059 xid = get_xid();
2060
2061 cFYI(1, "Sync file - name: %s datasync: 0x%x",
2062 file->f_path.dentry->d_name.name, datasync);
2063
2064 if (!CIFS_I(inode)->clientCanCacheRead) {
2065 rc = cifs_invalidate_mapping(inode);
2066 if (rc) {
2067 cFYI(1, "rc: %d during invalidate phase", rc);
2068 rc = 0; /* don't care about it in fsync */
2069 }
2070 }
2071
2072 tcon = tlink_tcon(smbfile->tlink);
2073 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
2074 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
2075
2076 free_xid(xid);
2077 mutex_unlock(&inode->i_mutex);
2078 return rc;
2079 }
2080
2081 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2082 {
2083 unsigned int xid;
2084 int rc = 0;
2085 struct cifs_tcon *tcon;
2086 struct cifsFileInfo *smbfile = file->private_data;
2087 struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2088 struct inode *inode = file->f_mapping->host;
2089
2090 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2091 if (rc)
2092 return rc;
2093 mutex_lock(&inode->i_mutex);
2094
2095 xid = get_xid();
2096
2097 cFYI(1, "Sync file - name: %s datasync: 0x%x",
2098 file->f_path.dentry->d_name.name, datasync);
2099
2100 tcon = tlink_tcon(smbfile->tlink);
2101 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
2102 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
2103
2104 free_xid(xid);
2105 mutex_unlock(&inode->i_mutex);
2106 return rc;
2107 }
2108
2109 /*
2110 * As file closes, flush all cached write data for this inode checking
2111 * for write behind errors.
2112 */
2113 int cifs_flush(struct file *file, fl_owner_t id)
2114 {
2115 struct inode *inode = file->f_path.dentry->d_inode;
2116 int rc = 0;
2117
2118 if (file->f_mode & FMODE_WRITE)
2119 rc = filemap_write_and_wait(inode->i_mapping);
2120
2121 cFYI(1, "Flush inode %p file %p rc %d", inode, file, rc);
2122
2123 return rc;
2124 }
2125
2126 static int
2127 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2128 {
2129 int rc = 0;
2130 unsigned long i;
2131
2132 for (i = 0; i < num_pages; i++) {
2133 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2134 if (!pages[i]) {
2135 /*
2136 * save number of pages we have already allocated and
2137 * return with ENOMEM error
2138 */
2139 num_pages = i;
2140 rc = -ENOMEM;
2141 break;
2142 }
2143 }
2144
2145 if (rc) {
2146 for (i = 0; i < num_pages; i++)
2147 put_page(pages[i]);
2148 }
2149 return rc;
2150 }
2151
2152 static inline
2153 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2154 {
2155 size_t num_pages;
2156 size_t clen;
2157
2158 clen = min_t(const size_t, len, wsize);
2159 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2160
2161 if (cur_len)
2162 *cur_len = clen;
2163
2164 return num_pages;
2165 }
2166
2167 static void
2168 cifs_uncached_marshal_iov(struct kvec *iov, struct cifs_writedata *wdata)
2169 {
2170 int i;
2171 size_t bytes = wdata->bytes;
2172
2173 /* marshal up the pages into iov array */
2174 for (i = 0; i < wdata->nr_pages; i++) {
2175 iov[i + 1].iov_len = min_t(size_t, bytes, PAGE_SIZE);
2176 iov[i + 1].iov_base = kmap(wdata->pages[i]);
2177 bytes -= iov[i + 1].iov_len;
2178 }
2179 }
2180
2181 static void
2182 cifs_uncached_writev_complete(struct work_struct *work)
2183 {
2184 int i;
2185 struct cifs_writedata *wdata = container_of(work,
2186 struct cifs_writedata, work);
2187 struct inode *inode = wdata->cfile->dentry->d_inode;
2188 struct cifsInodeInfo *cifsi = CIFS_I(inode);
2189
2190 spin_lock(&inode->i_lock);
2191 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2192 if (cifsi->server_eof > inode->i_size)
2193 i_size_write(inode, cifsi->server_eof);
2194 spin_unlock(&inode->i_lock);
2195
2196 complete(&wdata->done);
2197
2198 if (wdata->result != -EAGAIN) {
2199 for (i = 0; i < wdata->nr_pages; i++)
2200 put_page(wdata->pages[i]);
2201 }
2202
2203 kref_put(&wdata->refcount, cifs_writedata_release);
2204 }
2205
2206 /* attempt to send write to server, retry on any -EAGAIN errors */
2207 static int
2208 cifs_uncached_retry_writev(struct cifs_writedata *wdata)
2209 {
2210 int rc;
2211
2212 do {
2213 if (wdata->cfile->invalidHandle) {
2214 rc = cifs_reopen_file(wdata->cfile, false);
2215 if (rc != 0)
2216 continue;
2217 }
2218 rc = cifs_async_writev(wdata);
2219 } while (rc == -EAGAIN);
2220
2221 return rc;
2222 }
2223
2224 static ssize_t
2225 cifs_iovec_write(struct file *file, const struct iovec *iov,
2226 unsigned long nr_segs, loff_t *poffset)
2227 {
2228 unsigned long nr_pages, i;
2229 size_t copied, len, cur_len;
2230 ssize_t total_written = 0;
2231 loff_t offset;
2232 struct iov_iter it;
2233 struct cifsFileInfo *open_file;
2234 struct cifs_tcon *tcon;
2235 struct cifs_sb_info *cifs_sb;
2236 struct cifs_writedata *wdata, *tmp;
2237 struct list_head wdata_list;
2238 int rc;
2239 pid_t pid;
2240
2241 len = iov_length(iov, nr_segs);
2242 if (!len)
2243 return 0;
2244
2245 rc = generic_write_checks(file, poffset, &len, 0);
2246 if (rc)
2247 return rc;
2248
2249 INIT_LIST_HEAD(&wdata_list);
2250 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2251 open_file = file->private_data;
2252 tcon = tlink_tcon(open_file->tlink);
2253 offset = *poffset;
2254
2255 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2256 pid = open_file->pid;
2257 else
2258 pid = current->tgid;
2259
2260 iov_iter_init(&it, iov, nr_segs, len, 0);
2261 do {
2262 size_t save_len;
2263
2264 nr_pages = get_numpages(cifs_sb->wsize, len, &cur_len);
2265 wdata = cifs_writedata_alloc(nr_pages,
2266 cifs_uncached_writev_complete);
2267 if (!wdata) {
2268 rc = -ENOMEM;
2269 break;
2270 }
2271
2272 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2273 if (rc) {
2274 kfree(wdata);
2275 break;
2276 }
2277
2278 save_len = cur_len;
2279 for (i = 0; i < nr_pages; i++) {
2280 copied = min_t(const size_t, cur_len, PAGE_SIZE);
2281 copied = iov_iter_copy_from_user(wdata->pages[i], &it,
2282 0, copied);
2283 cur_len -= copied;
2284 iov_iter_advance(&it, copied);
2285 }
2286 cur_len = save_len - cur_len;
2287
2288 wdata->sync_mode = WB_SYNC_ALL;
2289 wdata->nr_pages = nr_pages;
2290 wdata->offset = (__u64)offset;
2291 wdata->cfile = cifsFileInfo_get(open_file);
2292 wdata->pid = pid;
2293 wdata->bytes = cur_len;
2294 wdata->marshal_iov = cifs_uncached_marshal_iov;
2295 rc = cifs_uncached_retry_writev(wdata);
2296 if (rc) {
2297 kref_put(&wdata->refcount, cifs_writedata_release);
2298 break;
2299 }
2300
2301 list_add_tail(&wdata->list, &wdata_list);
2302 offset += cur_len;
2303 len -= cur_len;
2304 } while (len > 0);
2305
2306 /*
2307 * If at least one write was successfully sent, then discard any rc
2308 * value from the later writes. If the other write succeeds, then
2309 * we'll end up returning whatever was written. If it fails, then
2310 * we'll get a new rc value from that.
2311 */
2312 if (!list_empty(&wdata_list))
2313 rc = 0;
2314
2315 /*
2316 * Wait for and collect replies for any successful sends in order of
2317 * increasing offset. Once an error is hit or we get a fatal signal
2318 * while waiting, then return without waiting for any more replies.
2319 */
2320 restart_loop:
2321 list_for_each_entry_safe(wdata, tmp, &wdata_list, list) {
2322 if (!rc) {
2323 /* FIXME: freezable too? */
2324 rc = wait_for_completion_killable(&wdata->done);
2325 if (rc)
2326 rc = -EINTR;
2327 else if (wdata->result)
2328 rc = wdata->result;
2329 else
2330 total_written += wdata->bytes;
2331
2332 /* resend call if it's a retryable error */
2333 if (rc == -EAGAIN) {
2334 rc = cifs_uncached_retry_writev(wdata);
2335 goto restart_loop;
2336 }
2337 }
2338 list_del_init(&wdata->list);
2339 kref_put(&wdata->refcount, cifs_writedata_release);
2340 }
2341
2342 if (total_written > 0)
2343 *poffset += total_written;
2344
2345 cifs_stats_bytes_written(tcon, total_written);
2346 return total_written ? total_written : (ssize_t)rc;
2347 }
2348
2349 ssize_t cifs_user_writev(struct kiocb *iocb, const struct iovec *iov,
2350 unsigned long nr_segs, loff_t pos)
2351 {
2352 ssize_t written;
2353 struct inode *inode;
2354
2355 inode = iocb->ki_filp->f_path.dentry->d_inode;
2356
2357 /*
2358 * BB - optimize the way when signing is disabled. We can drop this
2359 * extra memory-to-memory copying and use iovec buffers for constructing
2360 * write request.
2361 */
2362
2363 written = cifs_iovec_write(iocb->ki_filp, iov, nr_segs, &pos);
2364 if (written > 0) {
2365 CIFS_I(inode)->invalid_mapping = true;
2366 iocb->ki_pos = pos;
2367 }
2368
2369 return written;
2370 }
2371
2372 ssize_t cifs_strict_writev(struct kiocb *iocb, const struct iovec *iov,
2373 unsigned long nr_segs, loff_t pos)
2374 {
2375 struct inode *inode;
2376
2377 inode = iocb->ki_filp->f_path.dentry->d_inode;
2378
2379 if (CIFS_I(inode)->clientCanCacheAll)
2380 return generic_file_aio_write(iocb, iov, nr_segs, pos);
2381
2382 /*
2383 * In strict cache mode we need to write the data to the server exactly
2384 * from the pos to pos+len-1 rather than flush all affected pages
2385 * because it may cause a error with mandatory locks on these pages but
2386 * not on the region from pos to ppos+len-1.
2387 */
2388
2389 return cifs_user_writev(iocb, iov, nr_segs, pos);
2390 }
2391
2392 static struct cifs_readdata *
2393 cifs_readdata_alloc(unsigned int nr_vecs, work_func_t complete)
2394 {
2395 struct cifs_readdata *rdata;
2396
2397 rdata = kzalloc(sizeof(*rdata) +
2398 sizeof(struct kvec) * nr_vecs, GFP_KERNEL);
2399 if (rdata != NULL) {
2400 kref_init(&rdata->refcount);
2401 INIT_LIST_HEAD(&rdata->list);
2402 init_completion(&rdata->done);
2403 INIT_WORK(&rdata->work, complete);
2404 INIT_LIST_HEAD(&rdata->pages);
2405 }
2406 return rdata;
2407 }
2408
2409 void
2410 cifs_readdata_release(struct kref *refcount)
2411 {
2412 struct cifs_readdata *rdata = container_of(refcount,
2413 struct cifs_readdata, refcount);
2414
2415 if (rdata->cfile)
2416 cifsFileInfo_put(rdata->cfile);
2417
2418 kfree(rdata);
2419 }
2420
2421 static int
2422 cifs_read_allocate_pages(struct list_head *list, unsigned int npages)
2423 {
2424 int rc = 0;
2425 struct page *page, *tpage;
2426 unsigned int i;
2427
2428 for (i = 0; i < npages; i++) {
2429 page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2430 if (!page) {
2431 rc = -ENOMEM;
2432 break;
2433 }
2434 list_add(&page->lru, list);
2435 }
2436
2437 if (rc) {
2438 list_for_each_entry_safe(page, tpage, list, lru) {
2439 list_del(&page->lru);
2440 put_page(page);
2441 }
2442 }
2443 return rc;
2444 }
2445
2446 static void
2447 cifs_uncached_readdata_release(struct kref *refcount)
2448 {
2449 struct page *page, *tpage;
2450 struct cifs_readdata *rdata = container_of(refcount,
2451 struct cifs_readdata, refcount);
2452
2453 list_for_each_entry_safe(page, tpage, &rdata->pages, lru) {
2454 list_del(&page->lru);
2455 put_page(page);
2456 }
2457 cifs_readdata_release(refcount);
2458 }
2459
2460 static int
2461 cifs_retry_async_readv(struct cifs_readdata *rdata)
2462 {
2463 int rc;
2464
2465 do {
2466 if (rdata->cfile->invalidHandle) {
2467 rc = cifs_reopen_file(rdata->cfile, true);
2468 if (rc != 0)
2469 continue;
2470 }
2471 rc = cifs_async_readv(rdata);
2472 } while (rc == -EAGAIN);
2473
2474 return rc;
2475 }
2476
2477 /**
2478 * cifs_readdata_to_iov - copy data from pages in response to an iovec
2479 * @rdata: the readdata response with list of pages holding data
2480 * @iov: vector in which we should copy the data
2481 * @nr_segs: number of segments in vector
2482 * @offset: offset into file of the first iovec
2483 * @copied: used to return the amount of data copied to the iov
2484 *
2485 * This function copies data from a list of pages in a readdata response into
2486 * an array of iovecs. It will first calculate where the data should go
2487 * based on the info in the readdata and then copy the data into that spot.
2488 */
2489 static ssize_t
2490 cifs_readdata_to_iov(struct cifs_readdata *rdata, const struct iovec *iov,
2491 unsigned long nr_segs, loff_t offset, ssize_t *copied)
2492 {
2493 int rc = 0;
2494 struct iov_iter ii;
2495 size_t pos = rdata->offset - offset;
2496 struct page *page, *tpage;
2497 ssize_t remaining = rdata->bytes;
2498 unsigned char *pdata;
2499
2500 /* set up iov_iter and advance to the correct offset */
2501 iov_iter_init(&ii, iov, nr_segs, iov_length(iov, nr_segs), 0);
2502 iov_iter_advance(&ii, pos);
2503
2504 *copied = 0;
2505 list_for_each_entry_safe(page, tpage, &rdata->pages, lru) {
2506 ssize_t copy;
2507
2508 /* copy a whole page or whatever's left */
2509 copy = min_t(ssize_t, remaining, PAGE_SIZE);
2510
2511 /* ...but limit it to whatever space is left in the iov */
2512 copy = min_t(ssize_t, copy, iov_iter_count(&ii));
2513
2514 /* go while there's data to be copied and no errors */
2515 if (copy && !rc) {
2516 pdata = kmap(page);
2517 rc = memcpy_toiovecend(ii.iov, pdata, ii.iov_offset,
2518 (int)copy);
2519 kunmap(page);
2520 if (!rc) {
2521 *copied += copy;
2522 remaining -= copy;
2523 iov_iter_advance(&ii, copy);
2524 }
2525 }
2526
2527 list_del(&page->lru);
2528 put_page(page);
2529 }
2530
2531 return rc;
2532 }
2533
2534 static void
2535 cifs_uncached_readv_complete(struct work_struct *work)
2536 {
2537 struct cifs_readdata *rdata = container_of(work,
2538 struct cifs_readdata, work);
2539
2540 /* if the result is non-zero then the pages weren't kmapped */
2541 if (rdata->result == 0) {
2542 struct page *page;
2543
2544 list_for_each_entry(page, &rdata->pages, lru)
2545 kunmap(page);
2546 }
2547
2548 complete(&rdata->done);
2549 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
2550 }
2551
2552 static int
2553 cifs_uncached_read_marshal_iov(struct cifs_readdata *rdata,
2554 unsigned int remaining)
2555 {
2556 int len = 0;
2557 struct page *page, *tpage;
2558
2559 rdata->nr_iov = 1;
2560 list_for_each_entry_safe(page, tpage, &rdata->pages, lru) {
2561 if (remaining >= PAGE_SIZE) {
2562 /* enough data to fill the page */
2563 rdata->iov[rdata->nr_iov].iov_base = kmap(page);
2564 rdata->iov[rdata->nr_iov].iov_len = PAGE_SIZE;
2565 cFYI(1, "%u: idx=%lu iov_base=%p iov_len=%zu",
2566 rdata->nr_iov, page->index,
2567 rdata->iov[rdata->nr_iov].iov_base,
2568 rdata->iov[rdata->nr_iov].iov_len);
2569 ++rdata->nr_iov;
2570 len += PAGE_SIZE;
2571 remaining -= PAGE_SIZE;
2572 } else if (remaining > 0) {
2573 /* enough for partial page, fill and zero the rest */
2574 rdata->iov[rdata->nr_iov].iov_base = kmap(page);
2575 rdata->iov[rdata->nr_iov].iov_len = remaining;
2576 cFYI(1, "%u: idx=%lu iov_base=%p iov_len=%zu",
2577 rdata->nr_iov, page->index,
2578 rdata->iov[rdata->nr_iov].iov_base,
2579 rdata->iov[rdata->nr_iov].iov_len);
2580 memset(rdata->iov[rdata->nr_iov].iov_base + remaining,
2581 '\0', PAGE_SIZE - remaining);
2582 ++rdata->nr_iov;
2583 len += remaining;
2584 remaining = 0;
2585 } else {
2586 /* no need to hold page hostage */
2587 list_del(&page->lru);
2588 put_page(page);
2589 }
2590 }
2591
2592 return len;
2593 }
2594
2595 static ssize_t
2596 cifs_iovec_read(struct file *file, const struct iovec *iov,
2597 unsigned long nr_segs, loff_t *poffset)
2598 {
2599 ssize_t rc;
2600 size_t len, cur_len;
2601 ssize_t total_read = 0;
2602 loff_t offset = *poffset;
2603 unsigned int npages;
2604 struct cifs_sb_info *cifs_sb;
2605 struct cifs_tcon *tcon;
2606 struct cifsFileInfo *open_file;
2607 struct cifs_readdata *rdata, *tmp;
2608 struct list_head rdata_list;
2609 pid_t pid;
2610
2611 if (!nr_segs)
2612 return 0;
2613
2614 len = iov_length(iov, nr_segs);
2615 if (!len)
2616 return 0;
2617
2618 INIT_LIST_HEAD(&rdata_list);
2619 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2620 open_file = file->private_data;
2621 tcon = tlink_tcon(open_file->tlink);
2622
2623 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2624 pid = open_file->pid;
2625 else
2626 pid = current->tgid;
2627
2628 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2629 cFYI(1, "attempting read on write only file instance");
2630
2631 do {
2632 cur_len = min_t(const size_t, len - total_read, cifs_sb->rsize);
2633 npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
2634
2635 /* allocate a readdata struct */
2636 rdata = cifs_readdata_alloc(npages,
2637 cifs_uncached_readv_complete);
2638 if (!rdata) {
2639 rc = -ENOMEM;
2640 goto error;
2641 }
2642
2643 rc = cifs_read_allocate_pages(&rdata->pages, npages);
2644 if (rc)
2645 goto error;
2646
2647 rdata->cfile = cifsFileInfo_get(open_file);
2648 rdata->offset = offset;
2649 rdata->bytes = cur_len;
2650 rdata->pid = pid;
2651 rdata->marshal_iov = cifs_uncached_read_marshal_iov;
2652
2653 rc = cifs_retry_async_readv(rdata);
2654 error:
2655 if (rc) {
2656 kref_put(&rdata->refcount,
2657 cifs_uncached_readdata_release);
2658 break;
2659 }
2660
2661 list_add_tail(&rdata->list, &rdata_list);
2662 offset += cur_len;
2663 len -= cur_len;
2664 } while (len > 0);
2665
2666 /* if at least one read request send succeeded, then reset rc */
2667 if (!list_empty(&rdata_list))
2668 rc = 0;
2669
2670 /* the loop below should proceed in the order of increasing offsets */
2671 restart_loop:
2672 list_for_each_entry_safe(rdata, tmp, &rdata_list, list) {
2673 if (!rc) {
2674 ssize_t copied;
2675
2676 /* FIXME: freezable sleep too? */
2677 rc = wait_for_completion_killable(&rdata->done);
2678 if (rc)
2679 rc = -EINTR;
2680 else if (rdata->result)
2681 rc = rdata->result;
2682 else {
2683 rc = cifs_readdata_to_iov(rdata, iov,
2684 nr_segs, *poffset,
2685 &copied);
2686 total_read += copied;
2687 }
2688
2689 /* resend call if it's a retryable error */
2690 if (rc == -EAGAIN) {
2691 rc = cifs_retry_async_readv(rdata);
2692 goto restart_loop;
2693 }
2694 }
2695 list_del_init(&rdata->list);
2696 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
2697 }
2698
2699 cifs_stats_bytes_read(tcon, total_read);
2700 *poffset += total_read;
2701
2702 return total_read ? total_read : rc;
2703 }
2704
2705 ssize_t cifs_user_readv(struct kiocb *iocb, const struct iovec *iov,
2706 unsigned long nr_segs, loff_t pos)
2707 {
2708 ssize_t read;
2709
2710 read = cifs_iovec_read(iocb->ki_filp, iov, nr_segs, &pos);
2711 if (read > 0)
2712 iocb->ki_pos = pos;
2713
2714 return read;
2715 }
2716
2717 ssize_t cifs_strict_readv(struct kiocb *iocb, const struct iovec *iov,
2718 unsigned long nr_segs, loff_t pos)
2719 {
2720 struct inode *inode;
2721
2722 inode = iocb->ki_filp->f_path.dentry->d_inode;
2723
2724 if (CIFS_I(inode)->clientCanCacheRead)
2725 return generic_file_aio_read(iocb, iov, nr_segs, pos);
2726
2727 /*
2728 * In strict cache mode we need to read from the server all the time
2729 * if we don't have level II oplock because the server can delay mtime
2730 * change - so we can't make a decision about inode invalidating.
2731 * And we can also fail with pagereading if there are mandatory locks
2732 * on pages affected by this read but not on the region from pos to
2733 * pos+len-1.
2734 */
2735
2736 return cifs_user_readv(iocb, iov, nr_segs, pos);
2737 }
2738
2739 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
2740 loff_t *poffset)
2741 {
2742 int rc = -EACCES;
2743 unsigned int bytes_read = 0;
2744 unsigned int total_read;
2745 unsigned int current_read_size;
2746 unsigned int rsize;
2747 struct cifs_sb_info *cifs_sb;
2748 struct cifs_tcon *pTcon;
2749 unsigned int xid;
2750 char *current_offset;
2751 struct cifsFileInfo *open_file;
2752 struct cifs_io_parms io_parms;
2753 int buf_type = CIFS_NO_BUFFER;
2754 __u32 pid;
2755
2756 xid = get_xid();
2757 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2758
2759 /* FIXME: set up handlers for larger reads and/or convert to async */
2760 rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
2761
2762 if (file->private_data == NULL) {
2763 rc = -EBADF;
2764 free_xid(xid);
2765 return rc;
2766 }
2767 open_file = file->private_data;
2768 pTcon = tlink_tcon(open_file->tlink);
2769
2770 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2771 pid = open_file->pid;
2772 else
2773 pid = current->tgid;
2774
2775 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2776 cFYI(1, "attempting read on write only file instance");
2777
2778 for (total_read = 0, current_offset = read_data;
2779 read_size > total_read;
2780 total_read += bytes_read, current_offset += bytes_read) {
2781 current_read_size = min_t(uint, read_size - total_read, rsize);
2782
2783 /* For windows me and 9x we do not want to request more
2784 than it negotiated since it will refuse the read then */
2785 if ((pTcon->ses) &&
2786 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
2787 current_read_size = min_t(uint, current_read_size,
2788 CIFSMaxBufSize);
2789 }
2790 rc = -EAGAIN;
2791 while (rc == -EAGAIN) {
2792 if (open_file->invalidHandle) {
2793 rc = cifs_reopen_file(open_file, true);
2794 if (rc != 0)
2795 break;
2796 }
2797 io_parms.netfid = open_file->netfid;
2798 io_parms.pid = pid;
2799 io_parms.tcon = pTcon;
2800 io_parms.offset = *poffset;
2801 io_parms.length = current_read_size;
2802 rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
2803 &current_offset, &buf_type);
2804 }
2805 if (rc || (bytes_read == 0)) {
2806 if (total_read) {
2807 break;
2808 } else {
2809 free_xid(xid);
2810 return rc;
2811 }
2812 } else {
2813 cifs_stats_bytes_read(pTcon, total_read);
2814 *poffset += bytes_read;
2815 }
2816 }
2817 free_xid(xid);
2818 return total_read;
2819 }
2820
2821 /*
2822 * If the page is mmap'ed into a process' page tables, then we need to make
2823 * sure that it doesn't change while being written back.
2824 */
2825 static int
2826 cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2827 {
2828 struct page *page = vmf->page;
2829
2830 lock_page(page);
2831 return VM_FAULT_LOCKED;
2832 }
2833
2834 static struct vm_operations_struct cifs_file_vm_ops = {
2835 .fault = filemap_fault,
2836 .page_mkwrite = cifs_page_mkwrite,
2837 };
2838
2839 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
2840 {
2841 int rc, xid;
2842 struct inode *inode = file->f_path.dentry->d_inode;
2843
2844 xid = get_xid();
2845
2846 if (!CIFS_I(inode)->clientCanCacheRead) {
2847 rc = cifs_invalidate_mapping(inode);
2848 if (rc)
2849 return rc;
2850 }
2851
2852 rc = generic_file_mmap(file, vma);
2853 if (rc == 0)
2854 vma->vm_ops = &cifs_file_vm_ops;
2855 free_xid(xid);
2856 return rc;
2857 }
2858
2859 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
2860 {
2861 int rc, xid;
2862
2863 xid = get_xid();
2864 rc = cifs_revalidate_file(file);
2865 if (rc) {
2866 cFYI(1, "Validation prior to mmap failed, error=%d", rc);
2867 free_xid(xid);
2868 return rc;
2869 }
2870 rc = generic_file_mmap(file, vma);
2871 if (rc == 0)
2872 vma->vm_ops = &cifs_file_vm_ops;
2873 free_xid(xid);
2874 return rc;
2875 }
2876
2877 static void
2878 cifs_readv_complete(struct work_struct *work)
2879 {
2880 struct cifs_readdata *rdata = container_of(work,
2881 struct cifs_readdata, work);
2882 struct page *page, *tpage;
2883
2884 list_for_each_entry_safe(page, tpage, &rdata->pages, lru) {
2885 list_del(&page->lru);
2886 lru_cache_add_file(page);
2887
2888 if (rdata->result == 0) {
2889 kunmap(page);
2890 flush_dcache_page(page);
2891 SetPageUptodate(page);
2892 }
2893
2894 unlock_page(page);
2895
2896 if (rdata->result == 0)
2897 cifs_readpage_to_fscache(rdata->mapping->host, page);
2898
2899 page_cache_release(page);
2900 }
2901 kref_put(&rdata->refcount, cifs_readdata_release);
2902 }
2903
2904 static int
2905 cifs_readpages_marshal_iov(struct cifs_readdata *rdata, unsigned int remaining)
2906 {
2907 int len = 0;
2908 struct page *page, *tpage;
2909 u64 eof;
2910 pgoff_t eof_index;
2911
2912 /* determine the eof that the server (probably) has */
2913 eof = CIFS_I(rdata->mapping->host)->server_eof;
2914 eof_index = eof ? (eof - 1) >> PAGE_CACHE_SHIFT : 0;
2915 cFYI(1, "eof=%llu eof_index=%lu", eof, eof_index);
2916
2917 rdata->nr_iov = 1;
2918 list_for_each_entry_safe(page, tpage, &rdata->pages, lru) {
2919 if (remaining >= PAGE_CACHE_SIZE) {
2920 /* enough data to fill the page */
2921 rdata->iov[rdata->nr_iov].iov_base = kmap(page);
2922 rdata->iov[rdata->nr_iov].iov_len = PAGE_CACHE_SIZE;
2923 cFYI(1, "%u: idx=%lu iov_base=%p iov_len=%zu",
2924 rdata->nr_iov, page->index,
2925 rdata->iov[rdata->nr_iov].iov_base,
2926 rdata->iov[rdata->nr_iov].iov_len);
2927 ++rdata->nr_iov;
2928 len += PAGE_CACHE_SIZE;
2929 remaining -= PAGE_CACHE_SIZE;
2930 } else if (remaining > 0) {
2931 /* enough for partial page, fill and zero the rest */
2932 rdata->iov[rdata->nr_iov].iov_base = kmap(page);
2933 rdata->iov[rdata->nr_iov].iov_len = remaining;
2934 cFYI(1, "%u: idx=%lu iov_base=%p iov_len=%zu",
2935 rdata->nr_iov, page->index,
2936 rdata->iov[rdata->nr_iov].iov_base,
2937 rdata->iov[rdata->nr_iov].iov_len);
2938 memset(rdata->iov[rdata->nr_iov].iov_base + remaining,
2939 '\0', PAGE_CACHE_SIZE - remaining);
2940 ++rdata->nr_iov;
2941 len += remaining;
2942 remaining = 0;
2943 } else if (page->index > eof_index) {
2944 /*
2945 * The VFS will not try to do readahead past the
2946 * i_size, but it's possible that we have outstanding
2947 * writes with gaps in the middle and the i_size hasn't
2948 * caught up yet. Populate those with zeroed out pages
2949 * to prevent the VFS from repeatedly attempting to
2950 * fill them until the writes are flushed.
2951 */
2952 zero_user(page, 0, PAGE_CACHE_SIZE);
2953 list_del(&page->lru);
2954 lru_cache_add_file(page);
2955 flush_dcache_page(page);
2956 SetPageUptodate(page);
2957 unlock_page(page);
2958 page_cache_release(page);
2959 } else {
2960 /* no need to hold page hostage */
2961 list_del(&page->lru);
2962 lru_cache_add_file(page);
2963 unlock_page(page);
2964 page_cache_release(page);
2965 }
2966 }
2967
2968 return len;
2969 }
2970
2971 static int cifs_readpages(struct file *file, struct address_space *mapping,
2972 struct list_head *page_list, unsigned num_pages)
2973 {
2974 int rc;
2975 struct list_head tmplist;
2976 struct cifsFileInfo *open_file = file->private_data;
2977 struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2978 unsigned int rsize = cifs_sb->rsize;
2979 pid_t pid;
2980
2981 /*
2982 * Give up immediately if rsize is too small to read an entire page.
2983 * The VFS will fall back to readpage. We should never reach this
2984 * point however since we set ra_pages to 0 when the rsize is smaller
2985 * than a cache page.
2986 */
2987 if (unlikely(rsize < PAGE_CACHE_SIZE))
2988 return 0;
2989
2990 /*
2991 * Reads as many pages as possible from fscache. Returns -ENOBUFS
2992 * immediately if the cookie is negative
2993 */
2994 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
2995 &num_pages);
2996 if (rc == 0)
2997 return rc;
2998
2999 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3000 pid = open_file->pid;
3001 else
3002 pid = current->tgid;
3003
3004 rc = 0;
3005 INIT_LIST_HEAD(&tmplist);
3006
3007 cFYI(1, "%s: file=%p mapping=%p num_pages=%u", __func__, file,
3008 mapping, num_pages);
3009
3010 /*
3011 * Start with the page at end of list and move it to private
3012 * list. Do the same with any following pages until we hit
3013 * the rsize limit, hit an index discontinuity, or run out of
3014 * pages. Issue the async read and then start the loop again
3015 * until the list is empty.
3016 *
3017 * Note that list order is important. The page_list is in
3018 * the order of declining indexes. When we put the pages in
3019 * the rdata->pages, then we want them in increasing order.
3020 */
3021 while (!list_empty(page_list)) {
3022 unsigned int bytes = PAGE_CACHE_SIZE;
3023 unsigned int expected_index;
3024 unsigned int nr_pages = 1;
3025 loff_t offset;
3026 struct page *page, *tpage;
3027 struct cifs_readdata *rdata;
3028
3029 page = list_entry(page_list->prev, struct page, lru);
3030
3031 /*
3032 * Lock the page and put it in the cache. Since no one else
3033 * should have access to this page, we're safe to simply set
3034 * PG_locked without checking it first.
3035 */
3036 __set_page_locked(page);
3037 rc = add_to_page_cache_locked(page, mapping,
3038 page->index, GFP_KERNEL);
3039
3040 /* give up if we can't stick it in the cache */
3041 if (rc) {
3042 __clear_page_locked(page);
3043 break;
3044 }
3045
3046 /* move first page to the tmplist */
3047 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
3048 list_move_tail(&page->lru, &tmplist);
3049
3050 /* now try and add more pages onto the request */
3051 expected_index = page->index + 1;
3052 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
3053 /* discontinuity ? */
3054 if (page->index != expected_index)
3055 break;
3056
3057 /* would this page push the read over the rsize? */
3058 if (bytes + PAGE_CACHE_SIZE > rsize)
3059 break;
3060
3061 __set_page_locked(page);
3062 if (add_to_page_cache_locked(page, mapping,
3063 page->index, GFP_KERNEL)) {
3064 __clear_page_locked(page);
3065 break;
3066 }
3067 list_move_tail(&page->lru, &tmplist);
3068 bytes += PAGE_CACHE_SIZE;
3069 expected_index++;
3070 nr_pages++;
3071 }
3072
3073 rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
3074 if (!rdata) {
3075 /* best to give up if we're out of mem */
3076 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3077 list_del(&page->lru);
3078 lru_cache_add_file(page);
3079 unlock_page(page);
3080 page_cache_release(page);
3081 }
3082 rc = -ENOMEM;
3083 break;
3084 }
3085
3086 spin_lock(&cifs_file_list_lock);
3087 spin_unlock(&cifs_file_list_lock);
3088 rdata->cfile = cifsFileInfo_get(open_file);
3089 rdata->mapping = mapping;
3090 rdata->offset = offset;
3091 rdata->bytes = bytes;
3092 rdata->pid = pid;
3093 rdata->marshal_iov = cifs_readpages_marshal_iov;
3094 list_splice_init(&tmplist, &rdata->pages);
3095
3096 rc = cifs_retry_async_readv(rdata);
3097 if (rc != 0) {
3098 list_for_each_entry_safe(page, tpage, &rdata->pages,
3099 lru) {
3100 list_del(&page->lru);
3101 lru_cache_add_file(page);
3102 unlock_page(page);
3103 page_cache_release(page);
3104 }
3105 kref_put(&rdata->refcount, cifs_readdata_release);
3106 break;
3107 }
3108
3109 kref_put(&rdata->refcount, cifs_readdata_release);
3110 }
3111
3112 return rc;
3113 }
3114
3115 static int cifs_readpage_worker(struct file *file, struct page *page,
3116 loff_t *poffset)
3117 {
3118 char *read_data;
3119 int rc;
3120
3121 /* Is the page cached? */
3122 rc = cifs_readpage_from_fscache(file->f_path.dentry->d_inode, page);
3123 if (rc == 0)
3124 goto read_complete;
3125
3126 page_cache_get(page);
3127 read_data = kmap(page);
3128 /* for reads over a certain size could initiate async read ahead */
3129
3130 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
3131
3132 if (rc < 0)
3133 goto io_error;
3134 else
3135 cFYI(1, "Bytes read %d", rc);
3136
3137 file->f_path.dentry->d_inode->i_atime =
3138 current_fs_time(file->f_path.dentry->d_inode->i_sb);
3139
3140 if (PAGE_CACHE_SIZE > rc)
3141 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
3142
3143 flush_dcache_page(page);
3144 SetPageUptodate(page);
3145
3146 /* send this page to the cache */
3147 cifs_readpage_to_fscache(file->f_path.dentry->d_inode, page);
3148
3149 rc = 0;
3150
3151 io_error:
3152 kunmap(page);
3153 page_cache_release(page);
3154
3155 read_complete:
3156 return rc;
3157 }
3158
3159 static int cifs_readpage(struct file *file, struct page *page)
3160 {
3161 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
3162 int rc = -EACCES;
3163 unsigned int xid;
3164
3165 xid = get_xid();
3166
3167 if (file->private_data == NULL) {
3168 rc = -EBADF;
3169 free_xid(xid);
3170 return rc;
3171 }
3172
3173 cFYI(1, "readpage %p at offset %d 0x%x",
3174 page, (int)offset, (int)offset);
3175
3176 rc = cifs_readpage_worker(file, page, &offset);
3177
3178 unlock_page(page);
3179
3180 free_xid(xid);
3181 return rc;
3182 }
3183
3184 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
3185 {
3186 struct cifsFileInfo *open_file;
3187
3188 spin_lock(&cifs_file_list_lock);
3189 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
3190 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
3191 spin_unlock(&cifs_file_list_lock);
3192 return 1;
3193 }
3194 }
3195 spin_unlock(&cifs_file_list_lock);
3196 return 0;
3197 }
3198
3199 /* We do not want to update the file size from server for inodes
3200 open for write - to avoid races with writepage extending
3201 the file - in the future we could consider allowing
3202 refreshing the inode only on increases in the file size
3203 but this is tricky to do without racing with writebehind
3204 page caching in the current Linux kernel design */
3205 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
3206 {
3207 if (!cifsInode)
3208 return true;
3209
3210 if (is_inode_writable(cifsInode)) {
3211 /* This inode is open for write at least once */
3212 struct cifs_sb_info *cifs_sb;
3213
3214 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
3215 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
3216 /* since no page cache to corrupt on directio
3217 we can change size safely */
3218 return true;
3219 }
3220
3221 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
3222 return true;
3223
3224 return false;
3225 } else
3226 return true;
3227 }
3228
3229 static int cifs_write_begin(struct file *file, struct address_space *mapping,
3230 loff_t pos, unsigned len, unsigned flags,
3231 struct page **pagep, void **fsdata)
3232 {
3233 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
3234 loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
3235 loff_t page_start = pos & PAGE_MASK;
3236 loff_t i_size;
3237 struct page *page;
3238 int rc = 0;
3239
3240 cFYI(1, "write_begin from %lld len %d", (long long)pos, len);
3241
3242 page = grab_cache_page_write_begin(mapping, index, flags);
3243 if (!page) {
3244 rc = -ENOMEM;
3245 goto out;
3246 }
3247
3248 if (PageUptodate(page))
3249 goto out;
3250
3251 /*
3252 * If we write a full page it will be up to date, no need to read from
3253 * the server. If the write is short, we'll end up doing a sync write
3254 * instead.
3255 */
3256 if (len == PAGE_CACHE_SIZE)
3257 goto out;
3258
3259 /*
3260 * optimize away the read when we have an oplock, and we're not
3261 * expecting to use any of the data we'd be reading in. That
3262 * is, when the page lies beyond the EOF, or straddles the EOF
3263 * and the write will cover all of the existing data.
3264 */
3265 if (CIFS_I(mapping->host)->clientCanCacheRead) {
3266 i_size = i_size_read(mapping->host);
3267 if (page_start >= i_size ||
3268 (offset == 0 && (pos + len) >= i_size)) {
3269 zero_user_segments(page, 0, offset,
3270 offset + len,
3271 PAGE_CACHE_SIZE);
3272 /*
3273 * PageChecked means that the parts of the page
3274 * to which we're not writing are considered up
3275 * to date. Once the data is copied to the
3276 * page, it can be set uptodate.
3277 */
3278 SetPageChecked(page);
3279 goto out;
3280 }
3281 }
3282
3283 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
3284 /*
3285 * might as well read a page, it is fast enough. If we get
3286 * an error, we don't need to return it. cifs_write_end will
3287 * do a sync write instead since PG_uptodate isn't set.
3288 */
3289 cifs_readpage_worker(file, page, &page_start);
3290 } else {
3291 /* we could try using another file handle if there is one -
3292 but how would we lock it to prevent close of that handle
3293 racing with this read? In any case
3294 this will be written out by write_end so is fine */
3295 }
3296 out:
3297 *pagep = page;
3298 return rc;
3299 }
3300
3301 static int cifs_release_page(struct page *page, gfp_t gfp)
3302 {
3303 if (PagePrivate(page))
3304 return 0;
3305
3306 return cifs_fscache_release_page(page, gfp);
3307 }
3308
3309 static void cifs_invalidate_page(struct page *page, unsigned long offset)
3310 {
3311 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
3312
3313 if (offset == 0)
3314 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
3315 }
3316
3317 static int cifs_launder_page(struct page *page)
3318 {
3319 int rc = 0;
3320 loff_t range_start = page_offset(page);
3321 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
3322 struct writeback_control wbc = {
3323 .sync_mode = WB_SYNC_ALL,
3324 .nr_to_write = 0,
3325 .range_start = range_start,
3326 .range_end = range_end,
3327 };
3328
3329 cFYI(1, "Launder page: %p", page);
3330
3331 if (clear_page_dirty_for_io(page))
3332 rc = cifs_writepage_locked(page, &wbc);
3333
3334 cifs_fscache_invalidate_page(page, page->mapping->host);
3335 return rc;
3336 }
3337
3338 void cifs_oplock_break(struct work_struct *work)
3339 {
3340 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
3341 oplock_break);
3342 struct inode *inode = cfile->dentry->d_inode;
3343 struct cifsInodeInfo *cinode = CIFS_I(inode);
3344 int rc = 0;
3345
3346 if (inode && S_ISREG(inode->i_mode)) {
3347 if (cinode->clientCanCacheRead)
3348 break_lease(inode, O_RDONLY);
3349 else
3350 break_lease(inode, O_WRONLY);
3351 rc = filemap_fdatawrite(inode->i_mapping);
3352 if (cinode->clientCanCacheRead == 0) {
3353 rc = filemap_fdatawait(inode->i_mapping);
3354 mapping_set_error(inode->i_mapping, rc);
3355 invalidate_remote_inode(inode);
3356 }
3357 cFYI(1, "Oplock flush inode %p rc %d", inode, rc);
3358 }
3359
3360 rc = cifs_push_locks(cfile);
3361 if (rc)
3362 cERROR(1, "Push locks rc = %d", rc);
3363
3364 /*
3365 * releasing stale oplock after recent reconnect of smb session using
3366 * a now incorrect file handle is not a data integrity issue but do
3367 * not bother sending an oplock release if session to server still is
3368 * disconnected since oplock already released by the server
3369 */
3370 if (!cfile->oplock_break_cancelled) {
3371 rc = CIFSSMBLock(0, tlink_tcon(cfile->tlink), cfile->netfid,
3372 current->tgid, 0, 0, 0, 0,
3373 LOCKING_ANDX_OPLOCK_RELEASE, false,
3374 cinode->clientCanCacheRead ? 1 : 0);
3375 cFYI(1, "Oplock release rc = %d", rc);
3376 }
3377 }
3378
3379 const struct address_space_operations cifs_addr_ops = {
3380 .readpage = cifs_readpage,
3381 .readpages = cifs_readpages,
3382 .writepage = cifs_writepage,
3383 .writepages = cifs_writepages,
3384 .write_begin = cifs_write_begin,
3385 .write_end = cifs_write_end,
3386 .set_page_dirty = __set_page_dirty_nobuffers,
3387 .releasepage = cifs_release_page,
3388 .invalidatepage = cifs_invalidate_page,
3389 .launder_page = cifs_launder_page,
3390 };
3391
3392 /*
3393 * cifs_readpages requires the server to support a buffer large enough to
3394 * contain the header plus one complete page of data. Otherwise, we need
3395 * to leave cifs_readpages out of the address space operations.
3396 */
3397 const struct address_space_operations cifs_addr_ops_smallbuf = {
3398 .readpage = cifs_readpage,
3399 .writepage = cifs_writepage,
3400 .writepages = cifs_writepages,
3401 .write_begin = cifs_write_begin,
3402 .write_end = cifs_write_end,
3403 .set_page_dirty = __set_page_dirty_nobuffers,
3404 .releasepage = cifs_release_page,
3405 .invalidatepage = cifs_invalidate_page,
3406 .launder_page = cifs_launder_page,
3407 };
This page took 0.144295 seconds and 5 git commands to generate.