Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /**
92 * read_seqbegin_or_lock - begin a sequence number check or locking block
93 * @lock: sequence lock
94 * @seq : sequence number to be checked
95 *
96 * First try it once optimistically without taking the lock. If that fails,
97 * take the lock. The sequence number is also used as a marker for deciding
98 * whether to be a reader (even) or writer (odd).
99 * N.B. seq must be initialized to an even number to begin with.
100 */
101 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
102 {
103 if (!(*seq & 1)) /* Even */
104 *seq = read_seqbegin(lock);
105 else /* Odd */
106 read_seqlock_excl(lock);
107 }
108
109 static inline int need_seqretry(seqlock_t *lock, int seq)
110 {
111 return !(seq & 1) && read_seqretry(lock, seq);
112 }
113
114 static inline void done_seqretry(seqlock_t *lock, int seq)
115 {
116 if (seq & 1)
117 read_sequnlock_excl(lock);
118 }
119
120 /*
121 * This is the single most critical data structure when it comes
122 * to the dcache: the hashtable for lookups. Somebody should try
123 * to make this good - I've just made it work.
124 *
125 * This hash-function tries to avoid losing too many bits of hash
126 * information, yet avoid using a prime hash-size or similar.
127 */
128 #define D_HASHBITS d_hash_shift
129 #define D_HASHMASK d_hash_mask
130
131 static unsigned int d_hash_mask __read_mostly;
132 static unsigned int d_hash_shift __read_mostly;
133
134 static struct hlist_bl_head *dentry_hashtable __read_mostly;
135
136 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
137 unsigned int hash)
138 {
139 hash += (unsigned long) parent / L1_CACHE_BYTES;
140 hash = hash + (hash >> D_HASHBITS);
141 return dentry_hashtable + (hash & D_HASHMASK);
142 }
143
144 /* Statistics gathering. */
145 struct dentry_stat_t dentry_stat = {
146 .age_limit = 45,
147 };
148
149 static DEFINE_PER_CPU(long, nr_dentry);
150 static DEFINE_PER_CPU(long, nr_dentry_unused);
151
152 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
153
154 /*
155 * Here we resort to our own counters instead of using generic per-cpu counters
156 * for consistency with what the vfs inode code does. We are expected to harvest
157 * better code and performance by having our own specialized counters.
158 *
159 * Please note that the loop is done over all possible CPUs, not over all online
160 * CPUs. The reason for this is that we don't want to play games with CPUs going
161 * on and off. If one of them goes off, we will just keep their counters.
162 *
163 * glommer: See cffbc8a for details, and if you ever intend to change this,
164 * please update all vfs counters to match.
165 */
166 static long get_nr_dentry(void)
167 {
168 int i;
169 long sum = 0;
170 for_each_possible_cpu(i)
171 sum += per_cpu(nr_dentry, i);
172 return sum < 0 ? 0 : sum;
173 }
174
175 static long get_nr_dentry_unused(void)
176 {
177 int i;
178 long sum = 0;
179 for_each_possible_cpu(i)
180 sum += per_cpu(nr_dentry_unused, i);
181 return sum < 0 ? 0 : sum;
182 }
183
184 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
185 size_t *lenp, loff_t *ppos)
186 {
187 dentry_stat.nr_dentry = get_nr_dentry();
188 dentry_stat.nr_unused = get_nr_dentry_unused();
189 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
190 }
191 #endif
192
193 /*
194 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
195 * The strings are both count bytes long, and count is non-zero.
196 */
197 #ifdef CONFIG_DCACHE_WORD_ACCESS
198
199 #include <asm/word-at-a-time.h>
200 /*
201 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
202 * aligned allocation for this particular component. We don't
203 * strictly need the load_unaligned_zeropad() safety, but it
204 * doesn't hurt either.
205 *
206 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
207 * need the careful unaligned handling.
208 */
209 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
210 {
211 unsigned long a,b,mask;
212
213 for (;;) {
214 a = *(unsigned long *)cs;
215 b = load_unaligned_zeropad(ct);
216 if (tcount < sizeof(unsigned long))
217 break;
218 if (unlikely(a != b))
219 return 1;
220 cs += sizeof(unsigned long);
221 ct += sizeof(unsigned long);
222 tcount -= sizeof(unsigned long);
223 if (!tcount)
224 return 0;
225 }
226 mask = ~(~0ul << tcount*8);
227 return unlikely(!!((a ^ b) & mask));
228 }
229
230 #else
231
232 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
233 {
234 do {
235 if (*cs != *ct)
236 return 1;
237 cs++;
238 ct++;
239 tcount--;
240 } while (tcount);
241 return 0;
242 }
243
244 #endif
245
246 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
247 {
248 const unsigned char *cs;
249 /*
250 * Be careful about RCU walk racing with rename:
251 * use ACCESS_ONCE to fetch the name pointer.
252 *
253 * NOTE! Even if a rename will mean that the length
254 * was not loaded atomically, we don't care. The
255 * RCU walk will check the sequence count eventually,
256 * and catch it. And we won't overrun the buffer,
257 * because we're reading the name pointer atomically,
258 * and a dentry name is guaranteed to be properly
259 * terminated with a NUL byte.
260 *
261 * End result: even if 'len' is wrong, we'll exit
262 * early because the data cannot match (there can
263 * be no NUL in the ct/tcount data)
264 */
265 cs = ACCESS_ONCE(dentry->d_name.name);
266 smp_read_barrier_depends();
267 return dentry_string_cmp(cs, ct, tcount);
268 }
269
270 static void __d_free(struct rcu_head *head)
271 {
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
273
274 WARN_ON(!hlist_unhashed(&dentry->d_alias));
275 if (dname_external(dentry))
276 kfree(dentry->d_name.name);
277 kmem_cache_free(dentry_cache, dentry);
278 }
279
280 /*
281 * no locks, please.
282 */
283 static void d_free(struct dentry *dentry)
284 {
285 BUG_ON((int)dentry->d_lockref.count > 0);
286 this_cpu_dec(nr_dentry);
287 if (dentry->d_op && dentry->d_op->d_release)
288 dentry->d_op->d_release(dentry);
289
290 /* if dentry was never visible to RCU, immediate free is OK */
291 if (!(dentry->d_flags & DCACHE_RCUACCESS))
292 __d_free(&dentry->d_u.d_rcu);
293 else
294 call_rcu(&dentry->d_u.d_rcu, __d_free);
295 }
296
297 /**
298 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
299 * @dentry: the target dentry
300 * After this call, in-progress rcu-walk path lookup will fail. This
301 * should be called after unhashing, and after changing d_inode (if
302 * the dentry has not already been unhashed).
303 */
304 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
305 {
306 assert_spin_locked(&dentry->d_lock);
307 /* Go through a barrier */
308 write_seqcount_barrier(&dentry->d_seq);
309 }
310
311 /*
312 * Release the dentry's inode, using the filesystem
313 * d_iput() operation if defined. Dentry has no refcount
314 * and is unhashed.
315 */
316 static void dentry_iput(struct dentry * dentry)
317 __releases(dentry->d_lock)
318 __releases(dentry->d_inode->i_lock)
319 {
320 struct inode *inode = dentry->d_inode;
321 if (inode) {
322 dentry->d_inode = NULL;
323 hlist_del_init(&dentry->d_alias);
324 spin_unlock(&dentry->d_lock);
325 spin_unlock(&inode->i_lock);
326 if (!inode->i_nlink)
327 fsnotify_inoderemove(inode);
328 if (dentry->d_op && dentry->d_op->d_iput)
329 dentry->d_op->d_iput(dentry, inode);
330 else
331 iput(inode);
332 } else {
333 spin_unlock(&dentry->d_lock);
334 }
335 }
336
337 /*
338 * Release the dentry's inode, using the filesystem
339 * d_iput() operation if defined. dentry remains in-use.
340 */
341 static void dentry_unlink_inode(struct dentry * dentry)
342 __releases(dentry->d_lock)
343 __releases(dentry->d_inode->i_lock)
344 {
345 struct inode *inode = dentry->d_inode;
346 dentry->d_inode = NULL;
347 hlist_del_init(&dentry->d_alias);
348 dentry_rcuwalk_barrier(dentry);
349 spin_unlock(&dentry->d_lock);
350 spin_unlock(&inode->i_lock);
351 if (!inode->i_nlink)
352 fsnotify_inoderemove(inode);
353 if (dentry->d_op && dentry->d_op->d_iput)
354 dentry->d_op->d_iput(dentry, inode);
355 else
356 iput(inode);
357 }
358
359 /*
360 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
361 * is in use - which includes both the "real" per-superblock
362 * LRU list _and_ the DCACHE_SHRINK_LIST use.
363 *
364 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
365 * on the shrink list (ie not on the superblock LRU list).
366 *
367 * The per-cpu "nr_dentry_unused" counters are updated with
368 * the DCACHE_LRU_LIST bit.
369 *
370 * These helper functions make sure we always follow the
371 * rules. d_lock must be held by the caller.
372 */
373 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
374 static void d_lru_add(struct dentry *dentry)
375 {
376 D_FLAG_VERIFY(dentry, 0);
377 dentry->d_flags |= DCACHE_LRU_LIST;
378 this_cpu_inc(nr_dentry_unused);
379 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
380 }
381
382 static void d_lru_del(struct dentry *dentry)
383 {
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags &= ~DCACHE_LRU_LIST;
386 this_cpu_dec(nr_dentry_unused);
387 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
388 }
389
390 static void d_shrink_del(struct dentry *dentry)
391 {
392 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
393 list_del_init(&dentry->d_lru);
394 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
395 this_cpu_dec(nr_dentry_unused);
396 }
397
398 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
399 {
400 D_FLAG_VERIFY(dentry, 0);
401 list_add(&dentry->d_lru, list);
402 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
403 this_cpu_inc(nr_dentry_unused);
404 }
405
406 /*
407 * These can only be called under the global LRU lock, ie during the
408 * callback for freeing the LRU list. "isolate" removes it from the
409 * LRU lists entirely, while shrink_move moves it to the indicated
410 * private list.
411 */
412 static void d_lru_isolate(struct dentry *dentry)
413 {
414 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
415 dentry->d_flags &= ~DCACHE_LRU_LIST;
416 this_cpu_dec(nr_dentry_unused);
417 list_del_init(&dentry->d_lru);
418 }
419
420 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
421 {
422 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
423 dentry->d_flags |= DCACHE_SHRINK_LIST;
424 list_move_tail(&dentry->d_lru, list);
425 }
426
427 /*
428 * dentry_lru_(add|del)_list) must be called with d_lock held.
429 */
430 static void dentry_lru_add(struct dentry *dentry)
431 {
432 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
433 d_lru_add(dentry);
434 }
435
436 /*
437 * Remove a dentry with references from the LRU.
438 *
439 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
440 * lose our last reference through the parent walk. In this case, we need to
441 * remove ourselves from the shrink list, not the LRU.
442 */
443 static void dentry_lru_del(struct dentry *dentry)
444 {
445 if (dentry->d_flags & DCACHE_LRU_LIST) {
446 if (dentry->d_flags & DCACHE_SHRINK_LIST)
447 return d_shrink_del(dentry);
448 d_lru_del(dentry);
449 }
450 }
451
452 /**
453 * d_kill - kill dentry and return parent
454 * @dentry: dentry to kill
455 * @parent: parent dentry
456 *
457 * The dentry must already be unhashed and removed from the LRU.
458 *
459 * If this is the root of the dentry tree, return NULL.
460 *
461 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
462 * d_kill.
463 */
464 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
465 __releases(dentry->d_lock)
466 __releases(parent->d_lock)
467 __releases(dentry->d_inode->i_lock)
468 {
469 list_del(&dentry->d_u.d_child);
470 /*
471 * Inform try_to_ascend() that we are no longer attached to the
472 * dentry tree
473 */
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
478 /*
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
481 */
482 d_free(dentry);
483 return parent;
484 }
485
486 /*
487 * Unhash a dentry without inserting an RCU walk barrier or checking that
488 * dentry->d_lock is locked. The caller must take care of that, if
489 * appropriate.
490 */
491 static void __d_shrink(struct dentry *dentry)
492 {
493 if (!d_unhashed(dentry)) {
494 struct hlist_bl_head *b;
495 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
496 b = &dentry->d_sb->s_anon;
497 else
498 b = d_hash(dentry->d_parent, dentry->d_name.hash);
499
500 hlist_bl_lock(b);
501 __hlist_bl_del(&dentry->d_hash);
502 dentry->d_hash.pprev = NULL;
503 hlist_bl_unlock(b);
504 }
505 }
506
507 /**
508 * d_drop - drop a dentry
509 * @dentry: dentry to drop
510 *
511 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
512 * be found through a VFS lookup any more. Note that this is different from
513 * deleting the dentry - d_delete will try to mark the dentry negative if
514 * possible, giving a successful _negative_ lookup, while d_drop will
515 * just make the cache lookup fail.
516 *
517 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
518 * reason (NFS timeouts or autofs deletes).
519 *
520 * __d_drop requires dentry->d_lock.
521 */
522 void __d_drop(struct dentry *dentry)
523 {
524 if (!d_unhashed(dentry)) {
525 __d_shrink(dentry);
526 dentry_rcuwalk_barrier(dentry);
527 }
528 }
529 EXPORT_SYMBOL(__d_drop);
530
531 void d_drop(struct dentry *dentry)
532 {
533 spin_lock(&dentry->d_lock);
534 __d_drop(dentry);
535 spin_unlock(&dentry->d_lock);
536 }
537 EXPORT_SYMBOL(d_drop);
538
539 /*
540 * Finish off a dentry we've decided to kill.
541 * dentry->d_lock must be held, returns with it unlocked.
542 * If ref is non-zero, then decrement the refcount too.
543 * Returns dentry requiring refcount drop, or NULL if we're done.
544 */
545 static inline struct dentry *
546 dentry_kill(struct dentry *dentry, int unlock_on_failure)
547 __releases(dentry->d_lock)
548 {
549 struct inode *inode;
550 struct dentry *parent;
551
552 inode = dentry->d_inode;
553 if (inode && !spin_trylock(&inode->i_lock)) {
554 relock:
555 if (unlock_on_failure) {
556 spin_unlock(&dentry->d_lock);
557 cpu_relax();
558 }
559 return dentry; /* try again with same dentry */
560 }
561 if (IS_ROOT(dentry))
562 parent = NULL;
563 else
564 parent = dentry->d_parent;
565 if (parent && !spin_trylock(&parent->d_lock)) {
566 if (inode)
567 spin_unlock(&inode->i_lock);
568 goto relock;
569 }
570
571 /*
572 * The dentry is now unrecoverably dead to the world.
573 */
574 lockref_mark_dead(&dentry->d_lockref);
575
576 /*
577 * inform the fs via d_prune that this dentry is about to be
578 * unhashed and destroyed.
579 */
580 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
581 dentry->d_op->d_prune(dentry);
582
583 dentry_lru_del(dentry);
584 /* if it was on the hash then remove it */
585 __d_drop(dentry);
586 return d_kill(dentry, parent);
587 }
588
589 /*
590 * This is dput
591 *
592 * This is complicated by the fact that we do not want to put
593 * dentries that are no longer on any hash chain on the unused
594 * list: we'd much rather just get rid of them immediately.
595 *
596 * However, that implies that we have to traverse the dentry
597 * tree upwards to the parents which might _also_ now be
598 * scheduled for deletion (it may have been only waiting for
599 * its last child to go away).
600 *
601 * This tail recursion is done by hand as we don't want to depend
602 * on the compiler to always get this right (gcc generally doesn't).
603 * Real recursion would eat up our stack space.
604 */
605
606 /*
607 * dput - release a dentry
608 * @dentry: dentry to release
609 *
610 * Release a dentry. This will drop the usage count and if appropriate
611 * call the dentry unlink method as well as removing it from the queues and
612 * releasing its resources. If the parent dentries were scheduled for release
613 * they too may now get deleted.
614 */
615 void dput(struct dentry *dentry)
616 {
617 if (unlikely(!dentry))
618 return;
619
620 repeat:
621 if (lockref_put_or_lock(&dentry->d_lockref))
622 return;
623
624 /* Unreachable? Get rid of it */
625 if (unlikely(d_unhashed(dentry)))
626 goto kill_it;
627
628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
629 if (dentry->d_op->d_delete(dentry))
630 goto kill_it;
631 }
632
633 dentry->d_flags |= DCACHE_REFERENCED;
634 dentry_lru_add(dentry);
635
636 dentry->d_lockref.count--;
637 spin_unlock(&dentry->d_lock);
638 return;
639
640 kill_it:
641 dentry = dentry_kill(dentry, 1);
642 if (dentry)
643 goto repeat;
644 }
645 EXPORT_SYMBOL(dput);
646
647 /**
648 * d_invalidate - invalidate a dentry
649 * @dentry: dentry to invalidate
650 *
651 * Try to invalidate the dentry if it turns out to be
652 * possible. If there are other dentries that can be
653 * reached through this one we can't delete it and we
654 * return -EBUSY. On success we return 0.
655 *
656 * no dcache lock.
657 */
658
659 int d_invalidate(struct dentry * dentry)
660 {
661 /*
662 * If it's already been dropped, return OK.
663 */
664 spin_lock(&dentry->d_lock);
665 if (d_unhashed(dentry)) {
666 spin_unlock(&dentry->d_lock);
667 return 0;
668 }
669 /*
670 * Check whether to do a partial shrink_dcache
671 * to get rid of unused child entries.
672 */
673 if (!list_empty(&dentry->d_subdirs)) {
674 spin_unlock(&dentry->d_lock);
675 shrink_dcache_parent(dentry);
676 spin_lock(&dentry->d_lock);
677 }
678
679 /*
680 * Somebody else still using it?
681 *
682 * If it's a directory, we can't drop it
683 * for fear of somebody re-populating it
684 * with children (even though dropping it
685 * would make it unreachable from the root,
686 * we might still populate it if it was a
687 * working directory or similar).
688 * We also need to leave mountpoints alone,
689 * directory or not.
690 */
691 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
692 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
693 spin_unlock(&dentry->d_lock);
694 return -EBUSY;
695 }
696 }
697
698 __d_drop(dentry);
699 spin_unlock(&dentry->d_lock);
700 return 0;
701 }
702 EXPORT_SYMBOL(d_invalidate);
703
704 /* This must be called with d_lock held */
705 static inline void __dget_dlock(struct dentry *dentry)
706 {
707 dentry->d_lockref.count++;
708 }
709
710 static inline void __dget(struct dentry *dentry)
711 {
712 lockref_get(&dentry->d_lockref);
713 }
714
715 struct dentry *dget_parent(struct dentry *dentry)
716 {
717 int gotref;
718 struct dentry *ret;
719
720 /*
721 * Do optimistic parent lookup without any
722 * locking.
723 */
724 rcu_read_lock();
725 ret = ACCESS_ONCE(dentry->d_parent);
726 gotref = lockref_get_not_zero(&ret->d_lockref);
727 rcu_read_unlock();
728 if (likely(gotref)) {
729 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
730 return ret;
731 dput(ret);
732 }
733
734 repeat:
735 /*
736 * Don't need rcu_dereference because we re-check it was correct under
737 * the lock.
738 */
739 rcu_read_lock();
740 ret = dentry->d_parent;
741 spin_lock(&ret->d_lock);
742 if (unlikely(ret != dentry->d_parent)) {
743 spin_unlock(&ret->d_lock);
744 rcu_read_unlock();
745 goto repeat;
746 }
747 rcu_read_unlock();
748 BUG_ON(!ret->d_lockref.count);
749 ret->d_lockref.count++;
750 spin_unlock(&ret->d_lock);
751 return ret;
752 }
753 EXPORT_SYMBOL(dget_parent);
754
755 /**
756 * d_find_alias - grab a hashed alias of inode
757 * @inode: inode in question
758 * @want_discon: flag, used by d_splice_alias, to request
759 * that only a DISCONNECTED alias be returned.
760 *
761 * If inode has a hashed alias, or is a directory and has any alias,
762 * acquire the reference to alias and return it. Otherwise return NULL.
763 * Notice that if inode is a directory there can be only one alias and
764 * it can be unhashed only if it has no children, or if it is the root
765 * of a filesystem.
766 *
767 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
768 * any other hashed alias over that one unless @want_discon is set,
769 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
770 */
771 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
772 {
773 struct dentry *alias, *discon_alias;
774
775 again:
776 discon_alias = NULL;
777 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
778 spin_lock(&alias->d_lock);
779 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
780 if (IS_ROOT(alias) &&
781 (alias->d_flags & DCACHE_DISCONNECTED)) {
782 discon_alias = alias;
783 } else if (!want_discon) {
784 __dget_dlock(alias);
785 spin_unlock(&alias->d_lock);
786 return alias;
787 }
788 }
789 spin_unlock(&alias->d_lock);
790 }
791 if (discon_alias) {
792 alias = discon_alias;
793 spin_lock(&alias->d_lock);
794 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
795 if (IS_ROOT(alias) &&
796 (alias->d_flags & DCACHE_DISCONNECTED)) {
797 __dget_dlock(alias);
798 spin_unlock(&alias->d_lock);
799 return alias;
800 }
801 }
802 spin_unlock(&alias->d_lock);
803 goto again;
804 }
805 return NULL;
806 }
807
808 struct dentry *d_find_alias(struct inode *inode)
809 {
810 struct dentry *de = NULL;
811
812 if (!hlist_empty(&inode->i_dentry)) {
813 spin_lock(&inode->i_lock);
814 de = __d_find_alias(inode, 0);
815 spin_unlock(&inode->i_lock);
816 }
817 return de;
818 }
819 EXPORT_SYMBOL(d_find_alias);
820
821 /*
822 * Try to kill dentries associated with this inode.
823 * WARNING: you must own a reference to inode.
824 */
825 void d_prune_aliases(struct inode *inode)
826 {
827 struct dentry *dentry;
828 restart:
829 spin_lock(&inode->i_lock);
830 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
831 spin_lock(&dentry->d_lock);
832 if (!dentry->d_lockref.count) {
833 /*
834 * inform the fs via d_prune that this dentry
835 * is about to be unhashed and destroyed.
836 */
837 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
838 !d_unhashed(dentry))
839 dentry->d_op->d_prune(dentry);
840
841 __dget_dlock(dentry);
842 __d_drop(dentry);
843 spin_unlock(&dentry->d_lock);
844 spin_unlock(&inode->i_lock);
845 dput(dentry);
846 goto restart;
847 }
848 spin_unlock(&dentry->d_lock);
849 }
850 spin_unlock(&inode->i_lock);
851 }
852 EXPORT_SYMBOL(d_prune_aliases);
853
854 /*
855 * Try to throw away a dentry - free the inode, dput the parent.
856 * Requires dentry->d_lock is held, and dentry->d_count == 0.
857 * Releases dentry->d_lock.
858 *
859 * This may fail if locks cannot be acquired no problem, just try again.
860 */
861 static struct dentry * try_prune_one_dentry(struct dentry *dentry)
862 __releases(dentry->d_lock)
863 {
864 struct dentry *parent;
865
866 parent = dentry_kill(dentry, 0);
867 /*
868 * If dentry_kill returns NULL, we have nothing more to do.
869 * if it returns the same dentry, trylocks failed. In either
870 * case, just loop again.
871 *
872 * Otherwise, we need to prune ancestors too. This is necessary
873 * to prevent quadratic behavior of shrink_dcache_parent(), but
874 * is also expected to be beneficial in reducing dentry cache
875 * fragmentation.
876 */
877 if (!parent)
878 return NULL;
879 if (parent == dentry)
880 return dentry;
881
882 /* Prune ancestors. */
883 dentry = parent;
884 while (dentry) {
885 if (lockref_put_or_lock(&dentry->d_lockref))
886 return NULL;
887 dentry = dentry_kill(dentry, 1);
888 }
889 return NULL;
890 }
891
892 static void shrink_dentry_list(struct list_head *list)
893 {
894 struct dentry *dentry;
895
896 rcu_read_lock();
897 for (;;) {
898 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
899 if (&dentry->d_lru == list)
900 break; /* empty */
901
902 /*
903 * Get the dentry lock, and re-verify that the dentry is
904 * this on the shrinking list. If it is, we know that
905 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
906 */
907 spin_lock(&dentry->d_lock);
908 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
909 spin_unlock(&dentry->d_lock);
910 continue;
911 }
912
913 /*
914 * The dispose list is isolated and dentries are not accounted
915 * to the LRU here, so we can simply remove it from the list
916 * here regardless of whether it is referenced or not.
917 */
918 d_shrink_del(dentry);
919
920 /*
921 * We found an inuse dentry which was not removed from
922 * the LRU because of laziness during lookup. Do not free it.
923 */
924 if (dentry->d_lockref.count) {
925 spin_unlock(&dentry->d_lock);
926 continue;
927 }
928 rcu_read_unlock();
929
930 /*
931 * If 'try_to_prune()' returns a dentry, it will
932 * be the same one we passed in, and d_lock will
933 * have been held the whole time, so it will not
934 * have been added to any other lists. We failed
935 * to get the inode lock.
936 *
937 * We just add it back to the shrink list.
938 */
939 dentry = try_prune_one_dentry(dentry);
940
941 rcu_read_lock();
942 if (dentry) {
943 d_shrink_add(dentry, list);
944 spin_unlock(&dentry->d_lock);
945 }
946 }
947 rcu_read_unlock();
948 }
949
950 static enum lru_status
951 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
952 {
953 struct list_head *freeable = arg;
954 struct dentry *dentry = container_of(item, struct dentry, d_lru);
955
956
957 /*
958 * we are inverting the lru lock/dentry->d_lock here,
959 * so use a trylock. If we fail to get the lock, just skip
960 * it
961 */
962 if (!spin_trylock(&dentry->d_lock))
963 return LRU_SKIP;
964
965 /*
966 * Referenced dentries are still in use. If they have active
967 * counts, just remove them from the LRU. Otherwise give them
968 * another pass through the LRU.
969 */
970 if (dentry->d_lockref.count) {
971 d_lru_isolate(dentry);
972 spin_unlock(&dentry->d_lock);
973 return LRU_REMOVED;
974 }
975
976 if (dentry->d_flags & DCACHE_REFERENCED) {
977 dentry->d_flags &= ~DCACHE_REFERENCED;
978 spin_unlock(&dentry->d_lock);
979
980 /*
981 * The list move itself will be made by the common LRU code. At
982 * this point, we've dropped the dentry->d_lock but keep the
983 * lru lock. This is safe to do, since every list movement is
984 * protected by the lru lock even if both locks are held.
985 *
986 * This is guaranteed by the fact that all LRU management
987 * functions are intermediated by the LRU API calls like
988 * list_lru_add and list_lru_del. List movement in this file
989 * only ever occur through this functions or through callbacks
990 * like this one, that are called from the LRU API.
991 *
992 * The only exceptions to this are functions like
993 * shrink_dentry_list, and code that first checks for the
994 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
995 * operating only with stack provided lists after they are
996 * properly isolated from the main list. It is thus, always a
997 * local access.
998 */
999 return LRU_ROTATE;
1000 }
1001
1002 d_lru_shrink_move(dentry, freeable);
1003 spin_unlock(&dentry->d_lock);
1004
1005 return LRU_REMOVED;
1006 }
1007
1008 /**
1009 * prune_dcache_sb - shrink the dcache
1010 * @sb: superblock
1011 * @nr_to_scan : number of entries to try to free
1012 * @nid: which node to scan for freeable entities
1013 *
1014 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
1015 * done when we need more memory an called from the superblock shrinker
1016 * function.
1017 *
1018 * This function may fail to free any resources if all the dentries are in
1019 * use.
1020 */
1021 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1022 int nid)
1023 {
1024 LIST_HEAD(dispose);
1025 long freed;
1026
1027 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1028 &dispose, &nr_to_scan);
1029 shrink_dentry_list(&dispose);
1030 return freed;
1031 }
1032
1033 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1034 spinlock_t *lru_lock, void *arg)
1035 {
1036 struct list_head *freeable = arg;
1037 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1038
1039 /*
1040 * we are inverting the lru lock/dentry->d_lock here,
1041 * so use a trylock. If we fail to get the lock, just skip
1042 * it
1043 */
1044 if (!spin_trylock(&dentry->d_lock))
1045 return LRU_SKIP;
1046
1047 d_lru_shrink_move(dentry, freeable);
1048 spin_unlock(&dentry->d_lock);
1049
1050 return LRU_REMOVED;
1051 }
1052
1053
1054 /**
1055 * shrink_dcache_sb - shrink dcache for a superblock
1056 * @sb: superblock
1057 *
1058 * Shrink the dcache for the specified super block. This is used to free
1059 * the dcache before unmounting a file system.
1060 */
1061 void shrink_dcache_sb(struct super_block *sb)
1062 {
1063 long freed;
1064
1065 do {
1066 LIST_HEAD(dispose);
1067
1068 freed = list_lru_walk(&sb->s_dentry_lru,
1069 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1070
1071 this_cpu_sub(nr_dentry_unused, freed);
1072 shrink_dentry_list(&dispose);
1073 } while (freed > 0);
1074 }
1075 EXPORT_SYMBOL(shrink_dcache_sb);
1076
1077 /*
1078 * destroy a single subtree of dentries for unmount
1079 * - see the comments on shrink_dcache_for_umount() for a description of the
1080 * locking
1081 */
1082 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
1083 {
1084 struct dentry *parent;
1085
1086 BUG_ON(!IS_ROOT(dentry));
1087
1088 for (;;) {
1089 /* descend to the first leaf in the current subtree */
1090 while (!list_empty(&dentry->d_subdirs))
1091 dentry = list_entry(dentry->d_subdirs.next,
1092 struct dentry, d_u.d_child);
1093
1094 /* consume the dentries from this leaf up through its parents
1095 * until we find one with children or run out altogether */
1096 do {
1097 struct inode *inode;
1098
1099 /*
1100 * inform the fs that this dentry is about to be
1101 * unhashed and destroyed.
1102 */
1103 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
1104 !d_unhashed(dentry))
1105 dentry->d_op->d_prune(dentry);
1106
1107 dentry_lru_del(dentry);
1108 __d_shrink(dentry);
1109
1110 if (dentry->d_lockref.count != 0) {
1111 printk(KERN_ERR
1112 "BUG: Dentry %p{i=%lx,n=%s}"
1113 " still in use (%d)"
1114 " [unmount of %s %s]\n",
1115 dentry,
1116 dentry->d_inode ?
1117 dentry->d_inode->i_ino : 0UL,
1118 dentry->d_name.name,
1119 dentry->d_lockref.count,
1120 dentry->d_sb->s_type->name,
1121 dentry->d_sb->s_id);
1122 BUG();
1123 }
1124
1125 if (IS_ROOT(dentry)) {
1126 parent = NULL;
1127 list_del(&dentry->d_u.d_child);
1128 } else {
1129 parent = dentry->d_parent;
1130 parent->d_lockref.count--;
1131 list_del(&dentry->d_u.d_child);
1132 }
1133
1134 inode = dentry->d_inode;
1135 if (inode) {
1136 dentry->d_inode = NULL;
1137 hlist_del_init(&dentry->d_alias);
1138 if (dentry->d_op && dentry->d_op->d_iput)
1139 dentry->d_op->d_iput(dentry, inode);
1140 else
1141 iput(inode);
1142 }
1143
1144 d_free(dentry);
1145
1146 /* finished when we fall off the top of the tree,
1147 * otherwise we ascend to the parent and move to the
1148 * next sibling if there is one */
1149 if (!parent)
1150 return;
1151 dentry = parent;
1152 } while (list_empty(&dentry->d_subdirs));
1153
1154 dentry = list_entry(dentry->d_subdirs.next,
1155 struct dentry, d_u.d_child);
1156 }
1157 }
1158
1159 /*
1160 * destroy the dentries attached to a superblock on unmounting
1161 * - we don't need to use dentry->d_lock because:
1162 * - the superblock is detached from all mountings and open files, so the
1163 * dentry trees will not be rearranged by the VFS
1164 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1165 * any dentries belonging to this superblock that it comes across
1166 * - the filesystem itself is no longer permitted to rearrange the dentries
1167 * in this superblock
1168 */
1169 void shrink_dcache_for_umount(struct super_block *sb)
1170 {
1171 struct dentry *dentry;
1172
1173 if (down_read_trylock(&sb->s_umount))
1174 BUG();
1175
1176 dentry = sb->s_root;
1177 sb->s_root = NULL;
1178 dentry->d_lockref.count--;
1179 shrink_dcache_for_umount_subtree(dentry);
1180
1181 while (!hlist_bl_empty(&sb->s_anon)) {
1182 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1183 shrink_dcache_for_umount_subtree(dentry);
1184 }
1185 }
1186
1187 /*
1188 * This tries to ascend one level of parenthood, but
1189 * we can race with renaming, so we need to re-check
1190 * the parenthood after dropping the lock and check
1191 * that the sequence number still matches.
1192 */
1193 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
1194 {
1195 struct dentry *new = old->d_parent;
1196
1197 rcu_read_lock();
1198 spin_unlock(&old->d_lock);
1199 spin_lock(&new->d_lock);
1200
1201 /*
1202 * might go back up the wrong parent if we have had a rename
1203 * or deletion
1204 */
1205 if (new != old->d_parent ||
1206 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1207 need_seqretry(&rename_lock, seq)) {
1208 spin_unlock(&new->d_lock);
1209 new = NULL;
1210 }
1211 rcu_read_unlock();
1212 return new;
1213 }
1214
1215 /**
1216 * enum d_walk_ret - action to talke during tree walk
1217 * @D_WALK_CONTINUE: contrinue walk
1218 * @D_WALK_QUIT: quit walk
1219 * @D_WALK_NORETRY: quit when retry is needed
1220 * @D_WALK_SKIP: skip this dentry and its children
1221 */
1222 enum d_walk_ret {
1223 D_WALK_CONTINUE,
1224 D_WALK_QUIT,
1225 D_WALK_NORETRY,
1226 D_WALK_SKIP,
1227 };
1228
1229 /**
1230 * d_walk - walk the dentry tree
1231 * @parent: start of walk
1232 * @data: data passed to @enter() and @finish()
1233 * @enter: callback when first entering the dentry
1234 * @finish: callback when successfully finished the walk
1235 *
1236 * The @enter() and @finish() callbacks are called with d_lock held.
1237 */
1238 static void d_walk(struct dentry *parent, void *data,
1239 enum d_walk_ret (*enter)(void *, struct dentry *),
1240 void (*finish)(void *))
1241 {
1242 struct dentry *this_parent;
1243 struct list_head *next;
1244 unsigned seq = 0;
1245 enum d_walk_ret ret;
1246 bool retry = true;
1247
1248 again:
1249 read_seqbegin_or_lock(&rename_lock, &seq);
1250 this_parent = parent;
1251 spin_lock(&this_parent->d_lock);
1252
1253 ret = enter(data, this_parent);
1254 switch (ret) {
1255 case D_WALK_CONTINUE:
1256 break;
1257 case D_WALK_QUIT:
1258 case D_WALK_SKIP:
1259 goto out_unlock;
1260 case D_WALK_NORETRY:
1261 retry = false;
1262 break;
1263 }
1264 repeat:
1265 next = this_parent->d_subdirs.next;
1266 resume:
1267 while (next != &this_parent->d_subdirs) {
1268 struct list_head *tmp = next;
1269 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1270 next = tmp->next;
1271
1272 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1273
1274 ret = enter(data, dentry);
1275 switch (ret) {
1276 case D_WALK_CONTINUE:
1277 break;
1278 case D_WALK_QUIT:
1279 spin_unlock(&dentry->d_lock);
1280 goto out_unlock;
1281 case D_WALK_NORETRY:
1282 retry = false;
1283 break;
1284 case D_WALK_SKIP:
1285 spin_unlock(&dentry->d_lock);
1286 continue;
1287 }
1288
1289 if (!list_empty(&dentry->d_subdirs)) {
1290 spin_unlock(&this_parent->d_lock);
1291 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1292 this_parent = dentry;
1293 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1294 goto repeat;
1295 }
1296 spin_unlock(&dentry->d_lock);
1297 }
1298 /*
1299 * All done at this level ... ascend and resume the search.
1300 */
1301 if (this_parent != parent) {
1302 struct dentry *child = this_parent;
1303 this_parent = try_to_ascend(this_parent, seq);
1304 if (!this_parent)
1305 goto rename_retry;
1306 next = child->d_u.d_child.next;
1307 goto resume;
1308 }
1309 if (need_seqretry(&rename_lock, seq)) {
1310 spin_unlock(&this_parent->d_lock);
1311 goto rename_retry;
1312 }
1313 if (finish)
1314 finish(data);
1315
1316 out_unlock:
1317 spin_unlock(&this_parent->d_lock);
1318 done_seqretry(&rename_lock, seq);
1319 return;
1320
1321 rename_retry:
1322 if (!retry)
1323 return;
1324 seq = 1;
1325 goto again;
1326 }
1327
1328 /*
1329 * Search for at least 1 mount point in the dentry's subdirs.
1330 * We descend to the next level whenever the d_subdirs
1331 * list is non-empty and continue searching.
1332 */
1333
1334 /**
1335 * have_submounts - check for mounts over a dentry
1336 * @parent: dentry to check.
1337 *
1338 * Return true if the parent or its subdirectories contain
1339 * a mount point
1340 */
1341
1342 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1343 {
1344 int *ret = data;
1345 if (d_mountpoint(dentry)) {
1346 *ret = 1;
1347 return D_WALK_QUIT;
1348 }
1349 return D_WALK_CONTINUE;
1350 }
1351
1352 int have_submounts(struct dentry *parent)
1353 {
1354 int ret = 0;
1355
1356 d_walk(parent, &ret, check_mount, NULL);
1357
1358 return ret;
1359 }
1360 EXPORT_SYMBOL(have_submounts);
1361
1362 /*
1363 * Called by mount code to set a mountpoint and check if the mountpoint is
1364 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1365 * subtree can become unreachable).
1366 *
1367 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1368 * this reason take rename_lock and d_lock on dentry and ancestors.
1369 */
1370 int d_set_mounted(struct dentry *dentry)
1371 {
1372 struct dentry *p;
1373 int ret = -ENOENT;
1374 write_seqlock(&rename_lock);
1375 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1376 /* Need exclusion wrt. check_submounts_and_drop() */
1377 spin_lock(&p->d_lock);
1378 if (unlikely(d_unhashed(p))) {
1379 spin_unlock(&p->d_lock);
1380 goto out;
1381 }
1382 spin_unlock(&p->d_lock);
1383 }
1384 spin_lock(&dentry->d_lock);
1385 if (!d_unlinked(dentry)) {
1386 dentry->d_flags |= DCACHE_MOUNTED;
1387 ret = 0;
1388 }
1389 spin_unlock(&dentry->d_lock);
1390 out:
1391 write_sequnlock(&rename_lock);
1392 return ret;
1393 }
1394
1395 /*
1396 * Search the dentry child list of the specified parent,
1397 * and move any unused dentries to the end of the unused
1398 * list for prune_dcache(). We descend to the next level
1399 * whenever the d_subdirs list is non-empty and continue
1400 * searching.
1401 *
1402 * It returns zero iff there are no unused children,
1403 * otherwise it returns the number of children moved to
1404 * the end of the unused list. This may not be the total
1405 * number of unused children, because select_parent can
1406 * drop the lock and return early due to latency
1407 * constraints.
1408 */
1409
1410 struct select_data {
1411 struct dentry *start;
1412 struct list_head dispose;
1413 int found;
1414 };
1415
1416 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1417 {
1418 struct select_data *data = _data;
1419 enum d_walk_ret ret = D_WALK_CONTINUE;
1420
1421 if (data->start == dentry)
1422 goto out;
1423
1424 /*
1425 * move only zero ref count dentries to the dispose list.
1426 *
1427 * Those which are presently on the shrink list, being processed
1428 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1429 * loop in shrink_dcache_parent() might not make any progress
1430 * and loop forever.
1431 */
1432 if (dentry->d_lockref.count) {
1433 dentry_lru_del(dentry);
1434 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1435 /*
1436 * We can't use d_lru_shrink_move() because we
1437 * need to get the global LRU lock and do the
1438 * LRU accounting.
1439 */
1440 d_lru_del(dentry);
1441 d_shrink_add(dentry, &data->dispose);
1442 data->found++;
1443 ret = D_WALK_NORETRY;
1444 }
1445 /*
1446 * We can return to the caller if we have found some (this
1447 * ensures forward progress). We'll be coming back to find
1448 * the rest.
1449 */
1450 if (data->found && need_resched())
1451 ret = D_WALK_QUIT;
1452 out:
1453 return ret;
1454 }
1455
1456 /**
1457 * shrink_dcache_parent - prune dcache
1458 * @parent: parent of entries to prune
1459 *
1460 * Prune the dcache to remove unused children of the parent dentry.
1461 */
1462 void shrink_dcache_parent(struct dentry *parent)
1463 {
1464 for (;;) {
1465 struct select_data data;
1466
1467 INIT_LIST_HEAD(&data.dispose);
1468 data.start = parent;
1469 data.found = 0;
1470
1471 d_walk(parent, &data, select_collect, NULL);
1472 if (!data.found)
1473 break;
1474
1475 shrink_dentry_list(&data.dispose);
1476 cond_resched();
1477 }
1478 }
1479 EXPORT_SYMBOL(shrink_dcache_parent);
1480
1481 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1482 {
1483 struct select_data *data = _data;
1484
1485 if (d_mountpoint(dentry)) {
1486 data->found = -EBUSY;
1487 return D_WALK_QUIT;
1488 }
1489
1490 return select_collect(_data, dentry);
1491 }
1492
1493 static void check_and_drop(void *_data)
1494 {
1495 struct select_data *data = _data;
1496
1497 if (d_mountpoint(data->start))
1498 data->found = -EBUSY;
1499 if (!data->found)
1500 __d_drop(data->start);
1501 }
1502
1503 /**
1504 * check_submounts_and_drop - prune dcache, check for submounts and drop
1505 *
1506 * All done as a single atomic operation relative to has_unlinked_ancestor().
1507 * Returns 0 if successfully unhashed @parent. If there were submounts then
1508 * return -EBUSY.
1509 *
1510 * @dentry: dentry to prune and drop
1511 */
1512 int check_submounts_and_drop(struct dentry *dentry)
1513 {
1514 int ret = 0;
1515
1516 /* Negative dentries can be dropped without further checks */
1517 if (!dentry->d_inode) {
1518 d_drop(dentry);
1519 goto out;
1520 }
1521
1522 for (;;) {
1523 struct select_data data;
1524
1525 INIT_LIST_HEAD(&data.dispose);
1526 data.start = dentry;
1527 data.found = 0;
1528
1529 d_walk(dentry, &data, check_and_collect, check_and_drop);
1530 ret = data.found;
1531
1532 if (!list_empty(&data.dispose))
1533 shrink_dentry_list(&data.dispose);
1534
1535 if (ret <= 0)
1536 break;
1537
1538 cond_resched();
1539 }
1540
1541 out:
1542 return ret;
1543 }
1544 EXPORT_SYMBOL(check_submounts_and_drop);
1545
1546 /**
1547 * __d_alloc - allocate a dcache entry
1548 * @sb: filesystem it will belong to
1549 * @name: qstr of the name
1550 *
1551 * Allocates a dentry. It returns %NULL if there is insufficient memory
1552 * available. On a success the dentry is returned. The name passed in is
1553 * copied and the copy passed in may be reused after this call.
1554 */
1555
1556 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1557 {
1558 struct dentry *dentry;
1559 char *dname;
1560
1561 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1562 if (!dentry)
1563 return NULL;
1564
1565 /*
1566 * We guarantee that the inline name is always NUL-terminated.
1567 * This way the memcpy() done by the name switching in rename
1568 * will still always have a NUL at the end, even if we might
1569 * be overwriting an internal NUL character
1570 */
1571 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1572 if (name->len > DNAME_INLINE_LEN-1) {
1573 dname = kmalloc(name->len + 1, GFP_KERNEL);
1574 if (!dname) {
1575 kmem_cache_free(dentry_cache, dentry);
1576 return NULL;
1577 }
1578 } else {
1579 dname = dentry->d_iname;
1580 }
1581
1582 dentry->d_name.len = name->len;
1583 dentry->d_name.hash = name->hash;
1584 memcpy(dname, name->name, name->len);
1585 dname[name->len] = 0;
1586
1587 /* Make sure we always see the terminating NUL character */
1588 smp_wmb();
1589 dentry->d_name.name = dname;
1590
1591 dentry->d_lockref.count = 1;
1592 dentry->d_flags = 0;
1593 spin_lock_init(&dentry->d_lock);
1594 seqcount_init(&dentry->d_seq);
1595 dentry->d_inode = NULL;
1596 dentry->d_parent = dentry;
1597 dentry->d_sb = sb;
1598 dentry->d_op = NULL;
1599 dentry->d_fsdata = NULL;
1600 INIT_HLIST_BL_NODE(&dentry->d_hash);
1601 INIT_LIST_HEAD(&dentry->d_lru);
1602 INIT_LIST_HEAD(&dentry->d_subdirs);
1603 INIT_HLIST_NODE(&dentry->d_alias);
1604 INIT_LIST_HEAD(&dentry->d_u.d_child);
1605 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1606
1607 this_cpu_inc(nr_dentry);
1608
1609 return dentry;
1610 }
1611
1612 /**
1613 * d_alloc - allocate a dcache entry
1614 * @parent: parent of entry to allocate
1615 * @name: qstr of the name
1616 *
1617 * Allocates a dentry. It returns %NULL if there is insufficient memory
1618 * available. On a success the dentry is returned. The name passed in is
1619 * copied and the copy passed in may be reused after this call.
1620 */
1621 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1622 {
1623 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1624 if (!dentry)
1625 return NULL;
1626
1627 spin_lock(&parent->d_lock);
1628 /*
1629 * don't need child lock because it is not subject
1630 * to concurrency here
1631 */
1632 __dget_dlock(parent);
1633 dentry->d_parent = parent;
1634 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1635 spin_unlock(&parent->d_lock);
1636
1637 return dentry;
1638 }
1639 EXPORT_SYMBOL(d_alloc);
1640
1641 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1642 {
1643 struct dentry *dentry = __d_alloc(sb, name);
1644 if (dentry)
1645 dentry->d_flags |= DCACHE_DISCONNECTED;
1646 return dentry;
1647 }
1648 EXPORT_SYMBOL(d_alloc_pseudo);
1649
1650 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1651 {
1652 struct qstr q;
1653
1654 q.name = name;
1655 q.len = strlen(name);
1656 q.hash = full_name_hash(q.name, q.len);
1657 return d_alloc(parent, &q);
1658 }
1659 EXPORT_SYMBOL(d_alloc_name);
1660
1661 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1662 {
1663 WARN_ON_ONCE(dentry->d_op);
1664 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1665 DCACHE_OP_COMPARE |
1666 DCACHE_OP_REVALIDATE |
1667 DCACHE_OP_WEAK_REVALIDATE |
1668 DCACHE_OP_DELETE ));
1669 dentry->d_op = op;
1670 if (!op)
1671 return;
1672 if (op->d_hash)
1673 dentry->d_flags |= DCACHE_OP_HASH;
1674 if (op->d_compare)
1675 dentry->d_flags |= DCACHE_OP_COMPARE;
1676 if (op->d_revalidate)
1677 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1678 if (op->d_weak_revalidate)
1679 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1680 if (op->d_delete)
1681 dentry->d_flags |= DCACHE_OP_DELETE;
1682 if (op->d_prune)
1683 dentry->d_flags |= DCACHE_OP_PRUNE;
1684
1685 }
1686 EXPORT_SYMBOL(d_set_d_op);
1687
1688 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1689 {
1690 spin_lock(&dentry->d_lock);
1691 if (inode) {
1692 if (unlikely(IS_AUTOMOUNT(inode)))
1693 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1694 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1695 }
1696 dentry->d_inode = inode;
1697 dentry_rcuwalk_barrier(dentry);
1698 spin_unlock(&dentry->d_lock);
1699 fsnotify_d_instantiate(dentry, inode);
1700 }
1701
1702 /**
1703 * d_instantiate - fill in inode information for a dentry
1704 * @entry: dentry to complete
1705 * @inode: inode to attach to this dentry
1706 *
1707 * Fill in inode information in the entry.
1708 *
1709 * This turns negative dentries into productive full members
1710 * of society.
1711 *
1712 * NOTE! This assumes that the inode count has been incremented
1713 * (or otherwise set) by the caller to indicate that it is now
1714 * in use by the dcache.
1715 */
1716
1717 void d_instantiate(struct dentry *entry, struct inode * inode)
1718 {
1719 BUG_ON(!hlist_unhashed(&entry->d_alias));
1720 if (inode)
1721 spin_lock(&inode->i_lock);
1722 __d_instantiate(entry, inode);
1723 if (inode)
1724 spin_unlock(&inode->i_lock);
1725 security_d_instantiate(entry, inode);
1726 }
1727 EXPORT_SYMBOL(d_instantiate);
1728
1729 /**
1730 * d_instantiate_unique - instantiate a non-aliased dentry
1731 * @entry: dentry to instantiate
1732 * @inode: inode to attach to this dentry
1733 *
1734 * Fill in inode information in the entry. On success, it returns NULL.
1735 * If an unhashed alias of "entry" already exists, then we return the
1736 * aliased dentry instead and drop one reference to inode.
1737 *
1738 * Note that in order to avoid conflicts with rename() etc, the caller
1739 * had better be holding the parent directory semaphore.
1740 *
1741 * This also assumes that the inode count has been incremented
1742 * (or otherwise set) by the caller to indicate that it is now
1743 * in use by the dcache.
1744 */
1745 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1746 struct inode *inode)
1747 {
1748 struct dentry *alias;
1749 int len = entry->d_name.len;
1750 const char *name = entry->d_name.name;
1751 unsigned int hash = entry->d_name.hash;
1752
1753 if (!inode) {
1754 __d_instantiate(entry, NULL);
1755 return NULL;
1756 }
1757
1758 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1759 /*
1760 * Don't need alias->d_lock here, because aliases with
1761 * d_parent == entry->d_parent are not subject to name or
1762 * parent changes, because the parent inode i_mutex is held.
1763 */
1764 if (alias->d_name.hash != hash)
1765 continue;
1766 if (alias->d_parent != entry->d_parent)
1767 continue;
1768 if (alias->d_name.len != len)
1769 continue;
1770 if (dentry_cmp(alias, name, len))
1771 continue;
1772 __dget(alias);
1773 return alias;
1774 }
1775
1776 __d_instantiate(entry, inode);
1777 return NULL;
1778 }
1779
1780 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1781 {
1782 struct dentry *result;
1783
1784 BUG_ON(!hlist_unhashed(&entry->d_alias));
1785
1786 if (inode)
1787 spin_lock(&inode->i_lock);
1788 result = __d_instantiate_unique(entry, inode);
1789 if (inode)
1790 spin_unlock(&inode->i_lock);
1791
1792 if (!result) {
1793 security_d_instantiate(entry, inode);
1794 return NULL;
1795 }
1796
1797 BUG_ON(!d_unhashed(result));
1798 iput(inode);
1799 return result;
1800 }
1801
1802 EXPORT_SYMBOL(d_instantiate_unique);
1803
1804 struct dentry *d_make_root(struct inode *root_inode)
1805 {
1806 struct dentry *res = NULL;
1807
1808 if (root_inode) {
1809 static const struct qstr name = QSTR_INIT("/", 1);
1810
1811 res = __d_alloc(root_inode->i_sb, &name);
1812 if (res)
1813 d_instantiate(res, root_inode);
1814 else
1815 iput(root_inode);
1816 }
1817 return res;
1818 }
1819 EXPORT_SYMBOL(d_make_root);
1820
1821 static struct dentry * __d_find_any_alias(struct inode *inode)
1822 {
1823 struct dentry *alias;
1824
1825 if (hlist_empty(&inode->i_dentry))
1826 return NULL;
1827 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1828 __dget(alias);
1829 return alias;
1830 }
1831
1832 /**
1833 * d_find_any_alias - find any alias for a given inode
1834 * @inode: inode to find an alias for
1835 *
1836 * If any aliases exist for the given inode, take and return a
1837 * reference for one of them. If no aliases exist, return %NULL.
1838 */
1839 struct dentry *d_find_any_alias(struct inode *inode)
1840 {
1841 struct dentry *de;
1842
1843 spin_lock(&inode->i_lock);
1844 de = __d_find_any_alias(inode);
1845 spin_unlock(&inode->i_lock);
1846 return de;
1847 }
1848 EXPORT_SYMBOL(d_find_any_alias);
1849
1850 /**
1851 * d_obtain_alias - find or allocate a dentry for a given inode
1852 * @inode: inode to allocate the dentry for
1853 *
1854 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1855 * similar open by handle operations. The returned dentry may be anonymous,
1856 * or may have a full name (if the inode was already in the cache).
1857 *
1858 * When called on a directory inode, we must ensure that the inode only ever
1859 * has one dentry. If a dentry is found, that is returned instead of
1860 * allocating a new one.
1861 *
1862 * On successful return, the reference to the inode has been transferred
1863 * to the dentry. In case of an error the reference on the inode is released.
1864 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1865 * be passed in and will be the error will be propagate to the return value,
1866 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1867 */
1868 struct dentry *d_obtain_alias(struct inode *inode)
1869 {
1870 static const struct qstr anonstring = QSTR_INIT("/", 1);
1871 struct dentry *tmp;
1872 struct dentry *res;
1873
1874 if (!inode)
1875 return ERR_PTR(-ESTALE);
1876 if (IS_ERR(inode))
1877 return ERR_CAST(inode);
1878
1879 res = d_find_any_alias(inode);
1880 if (res)
1881 goto out_iput;
1882
1883 tmp = __d_alloc(inode->i_sb, &anonstring);
1884 if (!tmp) {
1885 res = ERR_PTR(-ENOMEM);
1886 goto out_iput;
1887 }
1888
1889 spin_lock(&inode->i_lock);
1890 res = __d_find_any_alias(inode);
1891 if (res) {
1892 spin_unlock(&inode->i_lock);
1893 dput(tmp);
1894 goto out_iput;
1895 }
1896
1897 /* attach a disconnected dentry */
1898 spin_lock(&tmp->d_lock);
1899 tmp->d_inode = inode;
1900 tmp->d_flags |= DCACHE_DISCONNECTED;
1901 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1902 hlist_bl_lock(&tmp->d_sb->s_anon);
1903 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1904 hlist_bl_unlock(&tmp->d_sb->s_anon);
1905 spin_unlock(&tmp->d_lock);
1906 spin_unlock(&inode->i_lock);
1907 security_d_instantiate(tmp, inode);
1908
1909 return tmp;
1910
1911 out_iput:
1912 if (res && !IS_ERR(res))
1913 security_d_instantiate(res, inode);
1914 iput(inode);
1915 return res;
1916 }
1917 EXPORT_SYMBOL(d_obtain_alias);
1918
1919 /**
1920 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1921 * @inode: the inode which may have a disconnected dentry
1922 * @dentry: a negative dentry which we want to point to the inode.
1923 *
1924 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1925 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1926 * and return it, else simply d_add the inode to the dentry and return NULL.
1927 *
1928 * This is needed in the lookup routine of any filesystem that is exportable
1929 * (via knfsd) so that we can build dcache paths to directories effectively.
1930 *
1931 * If a dentry was found and moved, then it is returned. Otherwise NULL
1932 * is returned. This matches the expected return value of ->lookup.
1933 *
1934 * Cluster filesystems may call this function with a negative, hashed dentry.
1935 * In that case, we know that the inode will be a regular file, and also this
1936 * will only occur during atomic_open. So we need to check for the dentry
1937 * being already hashed only in the final case.
1938 */
1939 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1940 {
1941 struct dentry *new = NULL;
1942
1943 if (IS_ERR(inode))
1944 return ERR_CAST(inode);
1945
1946 if (inode && S_ISDIR(inode->i_mode)) {
1947 spin_lock(&inode->i_lock);
1948 new = __d_find_alias(inode, 1);
1949 if (new) {
1950 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1951 spin_unlock(&inode->i_lock);
1952 security_d_instantiate(new, inode);
1953 d_move(new, dentry);
1954 iput(inode);
1955 } else {
1956 /* already taking inode->i_lock, so d_add() by hand */
1957 __d_instantiate(dentry, inode);
1958 spin_unlock(&inode->i_lock);
1959 security_d_instantiate(dentry, inode);
1960 d_rehash(dentry);
1961 }
1962 } else {
1963 d_instantiate(dentry, inode);
1964 if (d_unhashed(dentry))
1965 d_rehash(dentry);
1966 }
1967 return new;
1968 }
1969 EXPORT_SYMBOL(d_splice_alias);
1970
1971 /**
1972 * d_add_ci - lookup or allocate new dentry with case-exact name
1973 * @inode: the inode case-insensitive lookup has found
1974 * @dentry: the negative dentry that was passed to the parent's lookup func
1975 * @name: the case-exact name to be associated with the returned dentry
1976 *
1977 * This is to avoid filling the dcache with case-insensitive names to the
1978 * same inode, only the actual correct case is stored in the dcache for
1979 * case-insensitive filesystems.
1980 *
1981 * For a case-insensitive lookup match and if the the case-exact dentry
1982 * already exists in in the dcache, use it and return it.
1983 *
1984 * If no entry exists with the exact case name, allocate new dentry with
1985 * the exact case, and return the spliced entry.
1986 */
1987 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1988 struct qstr *name)
1989 {
1990 struct dentry *found;
1991 struct dentry *new;
1992
1993 /*
1994 * First check if a dentry matching the name already exists,
1995 * if not go ahead and create it now.
1996 */
1997 found = d_hash_and_lookup(dentry->d_parent, name);
1998 if (unlikely(IS_ERR(found)))
1999 goto err_out;
2000 if (!found) {
2001 new = d_alloc(dentry->d_parent, name);
2002 if (!new) {
2003 found = ERR_PTR(-ENOMEM);
2004 goto err_out;
2005 }
2006
2007 found = d_splice_alias(inode, new);
2008 if (found) {
2009 dput(new);
2010 return found;
2011 }
2012 return new;
2013 }
2014
2015 /*
2016 * If a matching dentry exists, and it's not negative use it.
2017 *
2018 * Decrement the reference count to balance the iget() done
2019 * earlier on.
2020 */
2021 if (found->d_inode) {
2022 if (unlikely(found->d_inode != inode)) {
2023 /* This can't happen because bad inodes are unhashed. */
2024 BUG_ON(!is_bad_inode(inode));
2025 BUG_ON(!is_bad_inode(found->d_inode));
2026 }
2027 iput(inode);
2028 return found;
2029 }
2030
2031 /*
2032 * Negative dentry: instantiate it unless the inode is a directory and
2033 * already has a dentry.
2034 */
2035 new = d_splice_alias(inode, found);
2036 if (new) {
2037 dput(found);
2038 found = new;
2039 }
2040 return found;
2041
2042 err_out:
2043 iput(inode);
2044 return found;
2045 }
2046 EXPORT_SYMBOL(d_add_ci);
2047
2048 /*
2049 * Do the slow-case of the dentry name compare.
2050 *
2051 * Unlike the dentry_cmp() function, we need to atomically
2052 * load the name and length information, so that the
2053 * filesystem can rely on them, and can use the 'name' and
2054 * 'len' information without worrying about walking off the
2055 * end of memory etc.
2056 *
2057 * Thus the read_seqcount_retry() and the "duplicate" info
2058 * in arguments (the low-level filesystem should not look
2059 * at the dentry inode or name contents directly, since
2060 * rename can change them while we're in RCU mode).
2061 */
2062 enum slow_d_compare {
2063 D_COMP_OK,
2064 D_COMP_NOMATCH,
2065 D_COMP_SEQRETRY,
2066 };
2067
2068 static noinline enum slow_d_compare slow_dentry_cmp(
2069 const struct dentry *parent,
2070 struct dentry *dentry,
2071 unsigned int seq,
2072 const struct qstr *name)
2073 {
2074 int tlen = dentry->d_name.len;
2075 const char *tname = dentry->d_name.name;
2076
2077 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2078 cpu_relax();
2079 return D_COMP_SEQRETRY;
2080 }
2081 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2082 return D_COMP_NOMATCH;
2083 return D_COMP_OK;
2084 }
2085
2086 /**
2087 * __d_lookup_rcu - search for a dentry (racy, store-free)
2088 * @parent: parent dentry
2089 * @name: qstr of name we wish to find
2090 * @seqp: returns d_seq value at the point where the dentry was found
2091 * Returns: dentry, or NULL
2092 *
2093 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2094 * resolution (store-free path walking) design described in
2095 * Documentation/filesystems/path-lookup.txt.
2096 *
2097 * This is not to be used outside core vfs.
2098 *
2099 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2100 * held, and rcu_read_lock held. The returned dentry must not be stored into
2101 * without taking d_lock and checking d_seq sequence count against @seq
2102 * returned here.
2103 *
2104 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2105 * function.
2106 *
2107 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2108 * the returned dentry, so long as its parent's seqlock is checked after the
2109 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2110 * is formed, giving integrity down the path walk.
2111 *
2112 * NOTE! The caller *has* to check the resulting dentry against the sequence
2113 * number we've returned before using any of the resulting dentry state!
2114 */
2115 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2116 const struct qstr *name,
2117 unsigned *seqp)
2118 {
2119 u64 hashlen = name->hash_len;
2120 const unsigned char *str = name->name;
2121 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2122 struct hlist_bl_node *node;
2123 struct dentry *dentry;
2124
2125 /*
2126 * Note: There is significant duplication with __d_lookup_rcu which is
2127 * required to prevent single threaded performance regressions
2128 * especially on architectures where smp_rmb (in seqcounts) are costly.
2129 * Keep the two functions in sync.
2130 */
2131
2132 /*
2133 * The hash list is protected using RCU.
2134 *
2135 * Carefully use d_seq when comparing a candidate dentry, to avoid
2136 * races with d_move().
2137 *
2138 * It is possible that concurrent renames can mess up our list
2139 * walk here and result in missing our dentry, resulting in the
2140 * false-negative result. d_lookup() protects against concurrent
2141 * renames using rename_lock seqlock.
2142 *
2143 * See Documentation/filesystems/path-lookup.txt for more details.
2144 */
2145 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2146 unsigned seq;
2147
2148 seqretry:
2149 /*
2150 * The dentry sequence count protects us from concurrent
2151 * renames, and thus protects parent and name fields.
2152 *
2153 * The caller must perform a seqcount check in order
2154 * to do anything useful with the returned dentry.
2155 *
2156 * NOTE! We do a "raw" seqcount_begin here. That means that
2157 * we don't wait for the sequence count to stabilize if it
2158 * is in the middle of a sequence change. If we do the slow
2159 * dentry compare, we will do seqretries until it is stable,
2160 * and if we end up with a successful lookup, we actually
2161 * want to exit RCU lookup anyway.
2162 */
2163 seq = raw_seqcount_begin(&dentry->d_seq);
2164 if (dentry->d_parent != parent)
2165 continue;
2166 if (d_unhashed(dentry))
2167 continue;
2168
2169 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2170 if (dentry->d_name.hash != hashlen_hash(hashlen))
2171 continue;
2172 *seqp = seq;
2173 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2174 case D_COMP_OK:
2175 return dentry;
2176 case D_COMP_NOMATCH:
2177 continue;
2178 default:
2179 goto seqretry;
2180 }
2181 }
2182
2183 if (dentry->d_name.hash_len != hashlen)
2184 continue;
2185 *seqp = seq;
2186 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2187 return dentry;
2188 }
2189 return NULL;
2190 }
2191
2192 /**
2193 * d_lookup - search for a dentry
2194 * @parent: parent dentry
2195 * @name: qstr of name we wish to find
2196 * Returns: dentry, or NULL
2197 *
2198 * d_lookup searches the children of the parent dentry for the name in
2199 * question. If the dentry is found its reference count is incremented and the
2200 * dentry is returned. The caller must use dput to free the entry when it has
2201 * finished using it. %NULL is returned if the dentry does not exist.
2202 */
2203 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2204 {
2205 struct dentry *dentry;
2206 unsigned seq;
2207
2208 do {
2209 seq = read_seqbegin(&rename_lock);
2210 dentry = __d_lookup(parent, name);
2211 if (dentry)
2212 break;
2213 } while (read_seqretry(&rename_lock, seq));
2214 return dentry;
2215 }
2216 EXPORT_SYMBOL(d_lookup);
2217
2218 /**
2219 * __d_lookup - search for a dentry (racy)
2220 * @parent: parent dentry
2221 * @name: qstr of name we wish to find
2222 * Returns: dentry, or NULL
2223 *
2224 * __d_lookup is like d_lookup, however it may (rarely) return a
2225 * false-negative result due to unrelated rename activity.
2226 *
2227 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2228 * however it must be used carefully, eg. with a following d_lookup in
2229 * the case of failure.
2230 *
2231 * __d_lookup callers must be commented.
2232 */
2233 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2234 {
2235 unsigned int len = name->len;
2236 unsigned int hash = name->hash;
2237 const unsigned char *str = name->name;
2238 struct hlist_bl_head *b = d_hash(parent, hash);
2239 struct hlist_bl_node *node;
2240 struct dentry *found = NULL;
2241 struct dentry *dentry;
2242
2243 /*
2244 * Note: There is significant duplication with __d_lookup_rcu which is
2245 * required to prevent single threaded performance regressions
2246 * especially on architectures where smp_rmb (in seqcounts) are costly.
2247 * Keep the two functions in sync.
2248 */
2249
2250 /*
2251 * The hash list is protected using RCU.
2252 *
2253 * Take d_lock when comparing a candidate dentry, to avoid races
2254 * with d_move().
2255 *
2256 * It is possible that concurrent renames can mess up our list
2257 * walk here and result in missing our dentry, resulting in the
2258 * false-negative result. d_lookup() protects against concurrent
2259 * renames using rename_lock seqlock.
2260 *
2261 * See Documentation/filesystems/path-lookup.txt for more details.
2262 */
2263 rcu_read_lock();
2264
2265 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2266
2267 if (dentry->d_name.hash != hash)
2268 continue;
2269
2270 spin_lock(&dentry->d_lock);
2271 if (dentry->d_parent != parent)
2272 goto next;
2273 if (d_unhashed(dentry))
2274 goto next;
2275
2276 /*
2277 * It is safe to compare names since d_move() cannot
2278 * change the qstr (protected by d_lock).
2279 */
2280 if (parent->d_flags & DCACHE_OP_COMPARE) {
2281 int tlen = dentry->d_name.len;
2282 const char *tname = dentry->d_name.name;
2283 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2284 goto next;
2285 } else {
2286 if (dentry->d_name.len != len)
2287 goto next;
2288 if (dentry_cmp(dentry, str, len))
2289 goto next;
2290 }
2291
2292 dentry->d_lockref.count++;
2293 found = dentry;
2294 spin_unlock(&dentry->d_lock);
2295 break;
2296 next:
2297 spin_unlock(&dentry->d_lock);
2298 }
2299 rcu_read_unlock();
2300
2301 return found;
2302 }
2303
2304 /**
2305 * d_hash_and_lookup - hash the qstr then search for a dentry
2306 * @dir: Directory to search in
2307 * @name: qstr of name we wish to find
2308 *
2309 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2310 */
2311 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2312 {
2313 /*
2314 * Check for a fs-specific hash function. Note that we must
2315 * calculate the standard hash first, as the d_op->d_hash()
2316 * routine may choose to leave the hash value unchanged.
2317 */
2318 name->hash = full_name_hash(name->name, name->len);
2319 if (dir->d_flags & DCACHE_OP_HASH) {
2320 int err = dir->d_op->d_hash(dir, name);
2321 if (unlikely(err < 0))
2322 return ERR_PTR(err);
2323 }
2324 return d_lookup(dir, name);
2325 }
2326 EXPORT_SYMBOL(d_hash_and_lookup);
2327
2328 /**
2329 * d_validate - verify dentry provided from insecure source (deprecated)
2330 * @dentry: The dentry alleged to be valid child of @dparent
2331 * @dparent: The parent dentry (known to be valid)
2332 *
2333 * An insecure source has sent us a dentry, here we verify it and dget() it.
2334 * This is used by ncpfs in its readdir implementation.
2335 * Zero is returned in the dentry is invalid.
2336 *
2337 * This function is slow for big directories, and deprecated, do not use it.
2338 */
2339 int d_validate(struct dentry *dentry, struct dentry *dparent)
2340 {
2341 struct dentry *child;
2342
2343 spin_lock(&dparent->d_lock);
2344 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2345 if (dentry == child) {
2346 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2347 __dget_dlock(dentry);
2348 spin_unlock(&dentry->d_lock);
2349 spin_unlock(&dparent->d_lock);
2350 return 1;
2351 }
2352 }
2353 spin_unlock(&dparent->d_lock);
2354
2355 return 0;
2356 }
2357 EXPORT_SYMBOL(d_validate);
2358
2359 /*
2360 * When a file is deleted, we have two options:
2361 * - turn this dentry into a negative dentry
2362 * - unhash this dentry and free it.
2363 *
2364 * Usually, we want to just turn this into
2365 * a negative dentry, but if anybody else is
2366 * currently using the dentry or the inode
2367 * we can't do that and we fall back on removing
2368 * it from the hash queues and waiting for
2369 * it to be deleted later when it has no users
2370 */
2371
2372 /**
2373 * d_delete - delete a dentry
2374 * @dentry: The dentry to delete
2375 *
2376 * Turn the dentry into a negative dentry if possible, otherwise
2377 * remove it from the hash queues so it can be deleted later
2378 */
2379
2380 void d_delete(struct dentry * dentry)
2381 {
2382 struct inode *inode;
2383 int isdir = 0;
2384 /*
2385 * Are we the only user?
2386 */
2387 again:
2388 spin_lock(&dentry->d_lock);
2389 inode = dentry->d_inode;
2390 isdir = S_ISDIR(inode->i_mode);
2391 if (dentry->d_lockref.count == 1) {
2392 if (!spin_trylock(&inode->i_lock)) {
2393 spin_unlock(&dentry->d_lock);
2394 cpu_relax();
2395 goto again;
2396 }
2397 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2398 dentry_unlink_inode(dentry);
2399 fsnotify_nameremove(dentry, isdir);
2400 return;
2401 }
2402
2403 if (!d_unhashed(dentry))
2404 __d_drop(dentry);
2405
2406 spin_unlock(&dentry->d_lock);
2407
2408 fsnotify_nameremove(dentry, isdir);
2409 }
2410 EXPORT_SYMBOL(d_delete);
2411
2412 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2413 {
2414 BUG_ON(!d_unhashed(entry));
2415 hlist_bl_lock(b);
2416 entry->d_flags |= DCACHE_RCUACCESS;
2417 hlist_bl_add_head_rcu(&entry->d_hash, b);
2418 hlist_bl_unlock(b);
2419 }
2420
2421 static void _d_rehash(struct dentry * entry)
2422 {
2423 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2424 }
2425
2426 /**
2427 * d_rehash - add an entry back to the hash
2428 * @entry: dentry to add to the hash
2429 *
2430 * Adds a dentry to the hash according to its name.
2431 */
2432
2433 void d_rehash(struct dentry * entry)
2434 {
2435 spin_lock(&entry->d_lock);
2436 _d_rehash(entry);
2437 spin_unlock(&entry->d_lock);
2438 }
2439 EXPORT_SYMBOL(d_rehash);
2440
2441 /**
2442 * dentry_update_name_case - update case insensitive dentry with a new name
2443 * @dentry: dentry to be updated
2444 * @name: new name
2445 *
2446 * Update a case insensitive dentry with new case of name.
2447 *
2448 * dentry must have been returned by d_lookup with name @name. Old and new
2449 * name lengths must match (ie. no d_compare which allows mismatched name
2450 * lengths).
2451 *
2452 * Parent inode i_mutex must be held over d_lookup and into this call (to
2453 * keep renames and concurrent inserts, and readdir(2) away).
2454 */
2455 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2456 {
2457 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2458 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2459
2460 spin_lock(&dentry->d_lock);
2461 write_seqcount_begin(&dentry->d_seq);
2462 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2463 write_seqcount_end(&dentry->d_seq);
2464 spin_unlock(&dentry->d_lock);
2465 }
2466 EXPORT_SYMBOL(dentry_update_name_case);
2467
2468 static void switch_names(struct dentry *dentry, struct dentry *target)
2469 {
2470 if (dname_external(target)) {
2471 if (dname_external(dentry)) {
2472 /*
2473 * Both external: swap the pointers
2474 */
2475 swap(target->d_name.name, dentry->d_name.name);
2476 } else {
2477 /*
2478 * dentry:internal, target:external. Steal target's
2479 * storage and make target internal.
2480 */
2481 memcpy(target->d_iname, dentry->d_name.name,
2482 dentry->d_name.len + 1);
2483 dentry->d_name.name = target->d_name.name;
2484 target->d_name.name = target->d_iname;
2485 }
2486 } else {
2487 if (dname_external(dentry)) {
2488 /*
2489 * dentry:external, target:internal. Give dentry's
2490 * storage to target and make dentry internal
2491 */
2492 memcpy(dentry->d_iname, target->d_name.name,
2493 target->d_name.len + 1);
2494 target->d_name.name = dentry->d_name.name;
2495 dentry->d_name.name = dentry->d_iname;
2496 } else {
2497 /*
2498 * Both are internal. Just copy target to dentry
2499 */
2500 memcpy(dentry->d_iname, target->d_name.name,
2501 target->d_name.len + 1);
2502 dentry->d_name.len = target->d_name.len;
2503 return;
2504 }
2505 }
2506 swap(dentry->d_name.len, target->d_name.len);
2507 }
2508
2509 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2510 {
2511 /*
2512 * XXXX: do we really need to take target->d_lock?
2513 */
2514 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2515 spin_lock(&target->d_parent->d_lock);
2516 else {
2517 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2518 spin_lock(&dentry->d_parent->d_lock);
2519 spin_lock_nested(&target->d_parent->d_lock,
2520 DENTRY_D_LOCK_NESTED);
2521 } else {
2522 spin_lock(&target->d_parent->d_lock);
2523 spin_lock_nested(&dentry->d_parent->d_lock,
2524 DENTRY_D_LOCK_NESTED);
2525 }
2526 }
2527 if (target < dentry) {
2528 spin_lock_nested(&target->d_lock, 2);
2529 spin_lock_nested(&dentry->d_lock, 3);
2530 } else {
2531 spin_lock_nested(&dentry->d_lock, 2);
2532 spin_lock_nested(&target->d_lock, 3);
2533 }
2534 }
2535
2536 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2537 struct dentry *target)
2538 {
2539 if (target->d_parent != dentry->d_parent)
2540 spin_unlock(&dentry->d_parent->d_lock);
2541 if (target->d_parent != target)
2542 spin_unlock(&target->d_parent->d_lock);
2543 }
2544
2545 /*
2546 * When switching names, the actual string doesn't strictly have to
2547 * be preserved in the target - because we're dropping the target
2548 * anyway. As such, we can just do a simple memcpy() to copy over
2549 * the new name before we switch.
2550 *
2551 * Note that we have to be a lot more careful about getting the hash
2552 * switched - we have to switch the hash value properly even if it
2553 * then no longer matches the actual (corrupted) string of the target.
2554 * The hash value has to match the hash queue that the dentry is on..
2555 */
2556 /*
2557 * __d_move - move a dentry
2558 * @dentry: entry to move
2559 * @target: new dentry
2560 *
2561 * Update the dcache to reflect the move of a file name. Negative
2562 * dcache entries should not be moved in this way. Caller must hold
2563 * rename_lock, the i_mutex of the source and target directories,
2564 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2565 */
2566 static void __d_move(struct dentry * dentry, struct dentry * target)
2567 {
2568 if (!dentry->d_inode)
2569 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2570
2571 BUG_ON(d_ancestor(dentry, target));
2572 BUG_ON(d_ancestor(target, dentry));
2573
2574 dentry_lock_for_move(dentry, target);
2575
2576 write_seqcount_begin(&dentry->d_seq);
2577 write_seqcount_begin(&target->d_seq);
2578
2579 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2580
2581 /*
2582 * Move the dentry to the target hash queue. Don't bother checking
2583 * for the same hash queue because of how unlikely it is.
2584 */
2585 __d_drop(dentry);
2586 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2587
2588 /* Unhash the target: dput() will then get rid of it */
2589 __d_drop(target);
2590
2591 list_del(&dentry->d_u.d_child);
2592 list_del(&target->d_u.d_child);
2593
2594 /* Switch the names.. */
2595 switch_names(dentry, target);
2596 swap(dentry->d_name.hash, target->d_name.hash);
2597
2598 /* ... and switch the parents */
2599 if (IS_ROOT(dentry)) {
2600 dentry->d_parent = target->d_parent;
2601 target->d_parent = target;
2602 INIT_LIST_HEAD(&target->d_u.d_child);
2603 } else {
2604 swap(dentry->d_parent, target->d_parent);
2605
2606 /* And add them back to the (new) parent lists */
2607 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2608 }
2609
2610 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2611
2612 write_seqcount_end(&target->d_seq);
2613 write_seqcount_end(&dentry->d_seq);
2614
2615 dentry_unlock_parents_for_move(dentry, target);
2616 spin_unlock(&target->d_lock);
2617 fsnotify_d_move(dentry);
2618 spin_unlock(&dentry->d_lock);
2619 }
2620
2621 /*
2622 * d_move - move a dentry
2623 * @dentry: entry to move
2624 * @target: new dentry
2625 *
2626 * Update the dcache to reflect the move of a file name. Negative
2627 * dcache entries should not be moved in this way. See the locking
2628 * requirements for __d_move.
2629 */
2630 void d_move(struct dentry *dentry, struct dentry *target)
2631 {
2632 write_seqlock(&rename_lock);
2633 __d_move(dentry, target);
2634 write_sequnlock(&rename_lock);
2635 }
2636 EXPORT_SYMBOL(d_move);
2637
2638 /**
2639 * d_ancestor - search for an ancestor
2640 * @p1: ancestor dentry
2641 * @p2: child dentry
2642 *
2643 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2644 * an ancestor of p2, else NULL.
2645 */
2646 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2647 {
2648 struct dentry *p;
2649
2650 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2651 if (p->d_parent == p1)
2652 return p;
2653 }
2654 return NULL;
2655 }
2656
2657 /*
2658 * This helper attempts to cope with remotely renamed directories
2659 *
2660 * It assumes that the caller is already holding
2661 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2662 *
2663 * Note: If ever the locking in lock_rename() changes, then please
2664 * remember to update this too...
2665 */
2666 static struct dentry *__d_unalias(struct inode *inode,
2667 struct dentry *dentry, struct dentry *alias)
2668 {
2669 struct mutex *m1 = NULL, *m2 = NULL;
2670 struct dentry *ret = ERR_PTR(-EBUSY);
2671
2672 /* If alias and dentry share a parent, then no extra locks required */
2673 if (alias->d_parent == dentry->d_parent)
2674 goto out_unalias;
2675
2676 /* See lock_rename() */
2677 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2678 goto out_err;
2679 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2680 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2681 goto out_err;
2682 m2 = &alias->d_parent->d_inode->i_mutex;
2683 out_unalias:
2684 if (likely(!d_mountpoint(alias))) {
2685 __d_move(alias, dentry);
2686 ret = alias;
2687 }
2688 out_err:
2689 spin_unlock(&inode->i_lock);
2690 if (m2)
2691 mutex_unlock(m2);
2692 if (m1)
2693 mutex_unlock(m1);
2694 return ret;
2695 }
2696
2697 /*
2698 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2699 * named dentry in place of the dentry to be replaced.
2700 * returns with anon->d_lock held!
2701 */
2702 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2703 {
2704 struct dentry *dparent;
2705
2706 dentry_lock_for_move(anon, dentry);
2707
2708 write_seqcount_begin(&dentry->d_seq);
2709 write_seqcount_begin(&anon->d_seq);
2710
2711 dparent = dentry->d_parent;
2712
2713 switch_names(dentry, anon);
2714 swap(dentry->d_name.hash, anon->d_name.hash);
2715
2716 dentry->d_parent = dentry;
2717 list_del_init(&dentry->d_u.d_child);
2718 anon->d_parent = dparent;
2719 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2720
2721 write_seqcount_end(&dentry->d_seq);
2722 write_seqcount_end(&anon->d_seq);
2723
2724 dentry_unlock_parents_for_move(anon, dentry);
2725 spin_unlock(&dentry->d_lock);
2726
2727 /* anon->d_lock still locked, returns locked */
2728 anon->d_flags &= ~DCACHE_DISCONNECTED;
2729 }
2730
2731 /**
2732 * d_materialise_unique - introduce an inode into the tree
2733 * @dentry: candidate dentry
2734 * @inode: inode to bind to the dentry, to which aliases may be attached
2735 *
2736 * Introduces an dentry into the tree, substituting an extant disconnected
2737 * root directory alias in its place if there is one. Caller must hold the
2738 * i_mutex of the parent directory.
2739 */
2740 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2741 {
2742 struct dentry *actual;
2743
2744 BUG_ON(!d_unhashed(dentry));
2745
2746 if (!inode) {
2747 actual = dentry;
2748 __d_instantiate(dentry, NULL);
2749 d_rehash(actual);
2750 goto out_nolock;
2751 }
2752
2753 spin_lock(&inode->i_lock);
2754
2755 if (S_ISDIR(inode->i_mode)) {
2756 struct dentry *alias;
2757
2758 /* Does an aliased dentry already exist? */
2759 alias = __d_find_alias(inode, 0);
2760 if (alias) {
2761 actual = alias;
2762 write_seqlock(&rename_lock);
2763
2764 if (d_ancestor(alias, dentry)) {
2765 /* Check for loops */
2766 actual = ERR_PTR(-ELOOP);
2767 spin_unlock(&inode->i_lock);
2768 } else if (IS_ROOT(alias)) {
2769 /* Is this an anonymous mountpoint that we
2770 * could splice into our tree? */
2771 __d_materialise_dentry(dentry, alias);
2772 write_sequnlock(&rename_lock);
2773 __d_drop(alias);
2774 goto found;
2775 } else {
2776 /* Nope, but we must(!) avoid directory
2777 * aliasing. This drops inode->i_lock */
2778 actual = __d_unalias(inode, dentry, alias);
2779 }
2780 write_sequnlock(&rename_lock);
2781 if (IS_ERR(actual)) {
2782 if (PTR_ERR(actual) == -ELOOP)
2783 pr_warn_ratelimited(
2784 "VFS: Lookup of '%s' in %s %s"
2785 " would have caused loop\n",
2786 dentry->d_name.name,
2787 inode->i_sb->s_type->name,
2788 inode->i_sb->s_id);
2789 dput(alias);
2790 }
2791 goto out_nolock;
2792 }
2793 }
2794
2795 /* Add a unique reference */
2796 actual = __d_instantiate_unique(dentry, inode);
2797 if (!actual)
2798 actual = dentry;
2799 else
2800 BUG_ON(!d_unhashed(actual));
2801
2802 spin_lock(&actual->d_lock);
2803 found:
2804 _d_rehash(actual);
2805 spin_unlock(&actual->d_lock);
2806 spin_unlock(&inode->i_lock);
2807 out_nolock:
2808 if (actual == dentry) {
2809 security_d_instantiate(dentry, inode);
2810 return NULL;
2811 }
2812
2813 iput(inode);
2814 return actual;
2815 }
2816 EXPORT_SYMBOL_GPL(d_materialise_unique);
2817
2818 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2819 {
2820 *buflen -= namelen;
2821 if (*buflen < 0)
2822 return -ENAMETOOLONG;
2823 *buffer -= namelen;
2824 memcpy(*buffer, str, namelen);
2825 return 0;
2826 }
2827
2828 /**
2829 * prepend_name - prepend a pathname in front of current buffer pointer
2830 * @buffer: buffer pointer
2831 * @buflen: allocated length of the buffer
2832 * @name: name string and length qstr structure
2833 *
2834 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2835 * make sure that either the old or the new name pointer and length are
2836 * fetched. However, there may be mismatch between length and pointer.
2837 * The length cannot be trusted, we need to copy it byte-by-byte until
2838 * the length is reached or a null byte is found. It also prepends "/" at
2839 * the beginning of the name. The sequence number check at the caller will
2840 * retry it again when a d_move() does happen. So any garbage in the buffer
2841 * due to mismatched pointer and length will be discarded.
2842 */
2843 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2844 {
2845 const char *dname = ACCESS_ONCE(name->name);
2846 u32 dlen = ACCESS_ONCE(name->len);
2847 char *p;
2848
2849 if (*buflen < dlen + 1)
2850 return -ENAMETOOLONG;
2851 *buflen -= dlen + 1;
2852 p = *buffer -= dlen + 1;
2853 *p++ = '/';
2854 while (dlen--) {
2855 char c = *dname++;
2856 if (!c)
2857 break;
2858 *p++ = c;
2859 }
2860 return 0;
2861 }
2862
2863 /**
2864 * prepend_path - Prepend path string to a buffer
2865 * @path: the dentry/vfsmount to report
2866 * @root: root vfsmnt/dentry
2867 * @buffer: pointer to the end of the buffer
2868 * @buflen: pointer to buffer length
2869 *
2870 * The function will first try to write out the pathname without taking any
2871 * lock other than the RCU read lock to make sure that dentries won't go away.
2872 * It only checks the sequence number of the global rename_lock as any change
2873 * in the dentry's d_seq will be preceded by changes in the rename_lock
2874 * sequence number. If the sequence number had been changed, it will restart
2875 * the whole pathname back-tracing sequence again by taking the rename_lock.
2876 * In this case, there is no need to take the RCU read lock as the recursive
2877 * parent pointer references will keep the dentry chain alive as long as no
2878 * rename operation is performed.
2879 */
2880 static int prepend_path(const struct path *path,
2881 const struct path *root,
2882 char **buffer, int *buflen)
2883 {
2884 struct dentry *dentry = path->dentry;
2885 struct vfsmount *vfsmnt = path->mnt;
2886 struct mount *mnt = real_mount(vfsmnt);
2887 int error = 0;
2888 unsigned seq = 0;
2889 char *bptr;
2890 int blen;
2891
2892 rcu_read_lock();
2893 restart:
2894 bptr = *buffer;
2895 blen = *buflen;
2896 read_seqbegin_or_lock(&rename_lock, &seq);
2897 while (dentry != root->dentry || vfsmnt != root->mnt) {
2898 struct dentry * parent;
2899
2900 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2901 /* Global root? */
2902 if (mnt_has_parent(mnt)) {
2903 dentry = mnt->mnt_mountpoint;
2904 mnt = mnt->mnt_parent;
2905 vfsmnt = &mnt->mnt;
2906 continue;
2907 }
2908 /*
2909 * Filesystems needing to implement special "root names"
2910 * should do so with ->d_dname()
2911 */
2912 if (IS_ROOT(dentry) &&
2913 (dentry->d_name.len != 1 ||
2914 dentry->d_name.name[0] != '/')) {
2915 WARN(1, "Root dentry has weird name <%.*s>\n",
2916 (int) dentry->d_name.len,
2917 dentry->d_name.name);
2918 }
2919 if (!error)
2920 error = is_mounted(vfsmnt) ? 1 : 2;
2921 break;
2922 }
2923 parent = dentry->d_parent;
2924 prefetch(parent);
2925 error = prepend_name(&bptr, &blen, &dentry->d_name);
2926 if (error)
2927 break;
2928
2929 dentry = parent;
2930 }
2931 if (!(seq & 1))
2932 rcu_read_unlock();
2933 if (need_seqretry(&rename_lock, seq)) {
2934 seq = 1;
2935 goto restart;
2936 }
2937 done_seqretry(&rename_lock, seq);
2938
2939 if (error >= 0 && bptr == *buffer) {
2940 if (--blen < 0)
2941 error = -ENAMETOOLONG;
2942 else
2943 *--bptr = '/';
2944 }
2945 *buffer = bptr;
2946 *buflen = blen;
2947 return error;
2948 }
2949
2950 /**
2951 * __d_path - return the path of a dentry
2952 * @path: the dentry/vfsmount to report
2953 * @root: root vfsmnt/dentry
2954 * @buf: buffer to return value in
2955 * @buflen: buffer length
2956 *
2957 * Convert a dentry into an ASCII path name.
2958 *
2959 * Returns a pointer into the buffer or an error code if the
2960 * path was too long.
2961 *
2962 * "buflen" should be positive.
2963 *
2964 * If the path is not reachable from the supplied root, return %NULL.
2965 */
2966 char *__d_path(const struct path *path,
2967 const struct path *root,
2968 char *buf, int buflen)
2969 {
2970 char *res = buf + buflen;
2971 int error;
2972
2973 prepend(&res, &buflen, "\0", 1);
2974 br_read_lock(&vfsmount_lock);
2975 error = prepend_path(path, root, &res, &buflen);
2976 br_read_unlock(&vfsmount_lock);
2977
2978 if (error < 0)
2979 return ERR_PTR(error);
2980 if (error > 0)
2981 return NULL;
2982 return res;
2983 }
2984
2985 char *d_absolute_path(const struct path *path,
2986 char *buf, int buflen)
2987 {
2988 struct path root = {};
2989 char *res = buf + buflen;
2990 int error;
2991
2992 prepend(&res, &buflen, "\0", 1);
2993 br_read_lock(&vfsmount_lock);
2994 error = prepend_path(path, &root, &res, &buflen);
2995 br_read_unlock(&vfsmount_lock);
2996
2997 if (error > 1)
2998 error = -EINVAL;
2999 if (error < 0)
3000 return ERR_PTR(error);
3001 return res;
3002 }
3003
3004 /*
3005 * same as __d_path but appends "(deleted)" for unlinked files.
3006 */
3007 static int path_with_deleted(const struct path *path,
3008 const struct path *root,
3009 char **buf, int *buflen)
3010 {
3011 prepend(buf, buflen, "\0", 1);
3012 if (d_unlinked(path->dentry)) {
3013 int error = prepend(buf, buflen, " (deleted)", 10);
3014 if (error)
3015 return error;
3016 }
3017
3018 return prepend_path(path, root, buf, buflen);
3019 }
3020
3021 static int prepend_unreachable(char **buffer, int *buflen)
3022 {
3023 return prepend(buffer, buflen, "(unreachable)", 13);
3024 }
3025
3026 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3027 {
3028 unsigned seq;
3029
3030 do {
3031 seq = read_seqcount_begin(&fs->seq);
3032 *root = fs->root;
3033 } while (read_seqcount_retry(&fs->seq, seq));
3034 }
3035
3036 /**
3037 * d_path - return the path of a dentry
3038 * @path: path to report
3039 * @buf: buffer to return value in
3040 * @buflen: buffer length
3041 *
3042 * Convert a dentry into an ASCII path name. If the entry has been deleted
3043 * the string " (deleted)" is appended. Note that this is ambiguous.
3044 *
3045 * Returns a pointer into the buffer or an error code if the path was
3046 * too long. Note: Callers should use the returned pointer, not the passed
3047 * in buffer, to use the name! The implementation often starts at an offset
3048 * into the buffer, and may leave 0 bytes at the start.
3049 *
3050 * "buflen" should be positive.
3051 */
3052 char *d_path(const struct path *path, char *buf, int buflen)
3053 {
3054 char *res = buf + buflen;
3055 struct path root;
3056 int error;
3057
3058 /*
3059 * We have various synthetic filesystems that never get mounted. On
3060 * these filesystems dentries are never used for lookup purposes, and
3061 * thus don't need to be hashed. They also don't need a name until a
3062 * user wants to identify the object in /proc/pid/fd/. The little hack
3063 * below allows us to generate a name for these objects on demand:
3064 */
3065 if (path->dentry->d_op && path->dentry->d_op->d_dname)
3066 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3067
3068 rcu_read_lock();
3069 get_fs_root_rcu(current->fs, &root);
3070 br_read_lock(&vfsmount_lock);
3071 error = path_with_deleted(path, &root, &res, &buflen);
3072 br_read_unlock(&vfsmount_lock);
3073 rcu_read_unlock();
3074
3075 if (error < 0)
3076 res = ERR_PTR(error);
3077 return res;
3078 }
3079 EXPORT_SYMBOL(d_path);
3080
3081 /*
3082 * Helper function for dentry_operations.d_dname() members
3083 */
3084 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3085 const char *fmt, ...)
3086 {
3087 va_list args;
3088 char temp[64];
3089 int sz;
3090
3091 va_start(args, fmt);
3092 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3093 va_end(args);
3094
3095 if (sz > sizeof(temp) || sz > buflen)
3096 return ERR_PTR(-ENAMETOOLONG);
3097
3098 buffer += buflen - sz;
3099 return memcpy(buffer, temp, sz);
3100 }
3101
3102 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3103 {
3104 char *end = buffer + buflen;
3105 /* these dentries are never renamed, so d_lock is not needed */
3106 if (prepend(&end, &buflen, " (deleted)", 11) ||
3107 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3108 prepend(&end, &buflen, "/", 1))
3109 end = ERR_PTR(-ENAMETOOLONG);
3110 return end;
3111 }
3112
3113 /*
3114 * Write full pathname from the root of the filesystem into the buffer.
3115 */
3116 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
3117 {
3118 char *end, *retval;
3119 int len, seq = 0;
3120 int error = 0;
3121
3122 rcu_read_lock();
3123 restart:
3124 end = buf + buflen;
3125 len = buflen;
3126 prepend(&end, &len, "\0", 1);
3127 if (buflen < 1)
3128 goto Elong;
3129 /* Get '/' right */
3130 retval = end-1;
3131 *retval = '/';
3132 read_seqbegin_or_lock(&rename_lock, &seq);
3133 while (!IS_ROOT(dentry)) {
3134 struct dentry *parent = dentry->d_parent;
3135 int error;
3136
3137 prefetch(parent);
3138 error = prepend_name(&end, &len, &dentry->d_name);
3139 if (error)
3140 break;
3141
3142 retval = end;
3143 dentry = parent;
3144 }
3145 if (!(seq & 1))
3146 rcu_read_unlock();
3147 if (need_seqretry(&rename_lock, seq)) {
3148 seq = 1;
3149 goto restart;
3150 }
3151 done_seqretry(&rename_lock, seq);
3152 if (error)
3153 goto Elong;
3154 return retval;
3155 Elong:
3156 return ERR_PTR(-ENAMETOOLONG);
3157 }
3158
3159 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3160 {
3161 return __dentry_path(dentry, buf, buflen);
3162 }
3163 EXPORT_SYMBOL(dentry_path_raw);
3164
3165 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3166 {
3167 char *p = NULL;
3168 char *retval;
3169
3170 if (d_unlinked(dentry)) {
3171 p = buf + buflen;
3172 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3173 goto Elong;
3174 buflen++;
3175 }
3176 retval = __dentry_path(dentry, buf, buflen);
3177 if (!IS_ERR(retval) && p)
3178 *p = '/'; /* restore '/' overriden with '\0' */
3179 return retval;
3180 Elong:
3181 return ERR_PTR(-ENAMETOOLONG);
3182 }
3183
3184 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3185 struct path *pwd)
3186 {
3187 unsigned seq;
3188
3189 do {
3190 seq = read_seqcount_begin(&fs->seq);
3191 *root = fs->root;
3192 *pwd = fs->pwd;
3193 } while (read_seqcount_retry(&fs->seq, seq));
3194 }
3195
3196 /*
3197 * NOTE! The user-level library version returns a
3198 * character pointer. The kernel system call just
3199 * returns the length of the buffer filled (which
3200 * includes the ending '\0' character), or a negative
3201 * error value. So libc would do something like
3202 *
3203 * char *getcwd(char * buf, size_t size)
3204 * {
3205 * int retval;
3206 *
3207 * retval = sys_getcwd(buf, size);
3208 * if (retval >= 0)
3209 * return buf;
3210 * errno = -retval;
3211 * return NULL;
3212 * }
3213 */
3214 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3215 {
3216 int error;
3217 struct path pwd, root;
3218 char *page = __getname();
3219
3220 if (!page)
3221 return -ENOMEM;
3222
3223 rcu_read_lock();
3224 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3225
3226 error = -ENOENT;
3227 br_read_lock(&vfsmount_lock);
3228 if (!d_unlinked(pwd.dentry)) {
3229 unsigned long len;
3230 char *cwd = page + PATH_MAX;
3231 int buflen = PATH_MAX;
3232
3233 prepend(&cwd, &buflen, "\0", 1);
3234 error = prepend_path(&pwd, &root, &cwd, &buflen);
3235 br_read_unlock(&vfsmount_lock);
3236 rcu_read_unlock();
3237
3238 if (error < 0)
3239 goto out;
3240
3241 /* Unreachable from current root */
3242 if (error > 0) {
3243 error = prepend_unreachable(&cwd, &buflen);
3244 if (error)
3245 goto out;
3246 }
3247
3248 error = -ERANGE;
3249 len = PATH_MAX + page - cwd;
3250 if (len <= size) {
3251 error = len;
3252 if (copy_to_user(buf, cwd, len))
3253 error = -EFAULT;
3254 }
3255 } else {
3256 br_read_unlock(&vfsmount_lock);
3257 rcu_read_unlock();
3258 }
3259
3260 out:
3261 __putname(page);
3262 return error;
3263 }
3264
3265 /*
3266 * Test whether new_dentry is a subdirectory of old_dentry.
3267 *
3268 * Trivially implemented using the dcache structure
3269 */
3270
3271 /**
3272 * is_subdir - is new dentry a subdirectory of old_dentry
3273 * @new_dentry: new dentry
3274 * @old_dentry: old dentry
3275 *
3276 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3277 * Returns 0 otherwise.
3278 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3279 */
3280
3281 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3282 {
3283 int result;
3284 unsigned seq;
3285
3286 if (new_dentry == old_dentry)
3287 return 1;
3288
3289 do {
3290 /* for restarting inner loop in case of seq retry */
3291 seq = read_seqbegin(&rename_lock);
3292 /*
3293 * Need rcu_readlock to protect against the d_parent trashing
3294 * due to d_move
3295 */
3296 rcu_read_lock();
3297 if (d_ancestor(old_dentry, new_dentry))
3298 result = 1;
3299 else
3300 result = 0;
3301 rcu_read_unlock();
3302 } while (read_seqretry(&rename_lock, seq));
3303
3304 return result;
3305 }
3306
3307 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3308 {
3309 struct dentry *root = data;
3310 if (dentry != root) {
3311 if (d_unhashed(dentry) || !dentry->d_inode)
3312 return D_WALK_SKIP;
3313
3314 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3315 dentry->d_flags |= DCACHE_GENOCIDE;
3316 dentry->d_lockref.count--;
3317 }
3318 }
3319 return D_WALK_CONTINUE;
3320 }
3321
3322 void d_genocide(struct dentry *parent)
3323 {
3324 d_walk(parent, parent, d_genocide_kill, NULL);
3325 }
3326
3327 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3328 {
3329 inode_dec_link_count(inode);
3330 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3331 !hlist_unhashed(&dentry->d_alias) ||
3332 !d_unlinked(dentry));
3333 spin_lock(&dentry->d_parent->d_lock);
3334 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3335 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3336 (unsigned long long)inode->i_ino);
3337 spin_unlock(&dentry->d_lock);
3338 spin_unlock(&dentry->d_parent->d_lock);
3339 d_instantiate(dentry, inode);
3340 }
3341 EXPORT_SYMBOL(d_tmpfile);
3342
3343 static __initdata unsigned long dhash_entries;
3344 static int __init set_dhash_entries(char *str)
3345 {
3346 if (!str)
3347 return 0;
3348 dhash_entries = simple_strtoul(str, &str, 0);
3349 return 1;
3350 }
3351 __setup("dhash_entries=", set_dhash_entries);
3352
3353 static void __init dcache_init_early(void)
3354 {
3355 unsigned int loop;
3356
3357 /* If hashes are distributed across NUMA nodes, defer
3358 * hash allocation until vmalloc space is available.
3359 */
3360 if (hashdist)
3361 return;
3362
3363 dentry_hashtable =
3364 alloc_large_system_hash("Dentry cache",
3365 sizeof(struct hlist_bl_head),
3366 dhash_entries,
3367 13,
3368 HASH_EARLY,
3369 &d_hash_shift,
3370 &d_hash_mask,
3371 0,
3372 0);
3373
3374 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3375 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3376 }
3377
3378 static void __init dcache_init(void)
3379 {
3380 unsigned int loop;
3381
3382 /*
3383 * A constructor could be added for stable state like the lists,
3384 * but it is probably not worth it because of the cache nature
3385 * of the dcache.
3386 */
3387 dentry_cache = KMEM_CACHE(dentry,
3388 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3389
3390 /* Hash may have been set up in dcache_init_early */
3391 if (!hashdist)
3392 return;
3393
3394 dentry_hashtable =
3395 alloc_large_system_hash("Dentry cache",
3396 sizeof(struct hlist_bl_head),
3397 dhash_entries,
3398 13,
3399 0,
3400 &d_hash_shift,
3401 &d_hash_mask,
3402 0,
3403 0);
3404
3405 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3406 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3407 }
3408
3409 /* SLAB cache for __getname() consumers */
3410 struct kmem_cache *names_cachep __read_mostly;
3411 EXPORT_SYMBOL(names_cachep);
3412
3413 EXPORT_SYMBOL(d_genocide);
3414
3415 void __init vfs_caches_init_early(void)
3416 {
3417 dcache_init_early();
3418 inode_init_early();
3419 }
3420
3421 void __init vfs_caches_init(unsigned long mempages)
3422 {
3423 unsigned long reserve;
3424
3425 /* Base hash sizes on available memory, with a reserve equal to
3426 150% of current kernel size */
3427
3428 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3429 mempages -= reserve;
3430
3431 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3432 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3433
3434 dcache_init();
3435 inode_init();
3436 files_init(mempages);
3437 mnt_init();
3438 bdev_cache_init();
3439 chrdev_init();
3440 }
This page took 0.101403 seconds and 5 git commands to generate.