Btrfs: fix crash of compressed writes
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130 }
131
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134 {
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 /*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145
146 #include <asm/word-at-a-time.h>
147 /*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 unsigned long a,b,mask;
159
160 for (;;) {
161 a = *(unsigned long *)cs;
162 b = load_unaligned_zeropad(ct);
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
175 }
176
177 #else
178
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189 }
190
191 #endif
192
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 const unsigned char *cs;
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
215 }
216
217 static void __d_free(struct rcu_head *head)
218 {
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225 }
226
227 /*
228 * no locks, please.
229 */
230 static void d_free(struct dentry *dentry)
231 {
232 BUG_ON(dentry->d_lockref.count);
233 this_cpu_dec(nr_dentry);
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
236
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 __d_free(&dentry->d_u.d_rcu);
240 else
241 call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243
244 /**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256 }
257
258 /*
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
262 */
263 static void dentry_iput(struct dentry * dentry)
264 __releases(dentry->d_lock)
265 __releases(dentry->d_inode->i_lock)
266 {
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 hlist_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&inode->i_lock);
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
281 }
282 }
283
284 /*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
290 __releases(dentry->d_inode->i_lock)
291 {
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 hlist_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
297 spin_unlock(&inode->i_lock);
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304 }
305
306 /*
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308 */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 if (list_empty(&dentry->d_lru)) {
312 spin_lock(&dcache_lru_lock);
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
315 dentry_stat.nr_unused++;
316 spin_unlock(&dcache_lru_lock);
317 }
318 }
319
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 list_del_init(&dentry->d_lru);
323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326 }
327
328 /*
329 * Remove a dentry with references from the LRU.
330 */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 if (!list_empty(&dentry->d_lru)) {
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
337 }
338 }
339
340 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
341 {
342 spin_lock(&dcache_lru_lock);
343 if (list_empty(&dentry->d_lru)) {
344 list_add_tail(&dentry->d_lru, list);
345 dentry->d_sb->s_nr_dentry_unused++;
346 dentry_stat.nr_unused++;
347 } else {
348 list_move_tail(&dentry->d_lru, list);
349 }
350 spin_unlock(&dcache_lru_lock);
351 }
352
353 /**
354 * d_kill - kill dentry and return parent
355 * @dentry: dentry to kill
356 * @parent: parent dentry
357 *
358 * The dentry must already be unhashed and removed from the LRU.
359 *
360 * If this is the root of the dentry tree, return NULL.
361 *
362 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
363 * d_kill.
364 */
365 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
366 __releases(dentry->d_lock)
367 __releases(parent->d_lock)
368 __releases(dentry->d_inode->i_lock)
369 {
370 list_del(&dentry->d_u.d_child);
371 /*
372 * Inform try_to_ascend() that we are no longer attached to the
373 * dentry tree
374 */
375 dentry->d_flags |= DCACHE_DENTRY_KILLED;
376 if (parent)
377 spin_unlock(&parent->d_lock);
378 dentry_iput(dentry);
379 /*
380 * dentry_iput drops the locks, at which point nobody (except
381 * transient RCU lookups) can reach this dentry.
382 */
383 d_free(dentry);
384 return parent;
385 }
386
387 /*
388 * Unhash a dentry without inserting an RCU walk barrier or checking that
389 * dentry->d_lock is locked. The caller must take care of that, if
390 * appropriate.
391 */
392 static void __d_shrink(struct dentry *dentry)
393 {
394 if (!d_unhashed(dentry)) {
395 struct hlist_bl_head *b;
396 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
397 b = &dentry->d_sb->s_anon;
398 else
399 b = d_hash(dentry->d_parent, dentry->d_name.hash);
400
401 hlist_bl_lock(b);
402 __hlist_bl_del(&dentry->d_hash);
403 dentry->d_hash.pprev = NULL;
404 hlist_bl_unlock(b);
405 }
406 }
407
408 /**
409 * d_drop - drop a dentry
410 * @dentry: dentry to drop
411 *
412 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
413 * be found through a VFS lookup any more. Note that this is different from
414 * deleting the dentry - d_delete will try to mark the dentry negative if
415 * possible, giving a successful _negative_ lookup, while d_drop will
416 * just make the cache lookup fail.
417 *
418 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
419 * reason (NFS timeouts or autofs deletes).
420 *
421 * __d_drop requires dentry->d_lock.
422 */
423 void __d_drop(struct dentry *dentry)
424 {
425 if (!d_unhashed(dentry)) {
426 __d_shrink(dentry);
427 dentry_rcuwalk_barrier(dentry);
428 }
429 }
430 EXPORT_SYMBOL(__d_drop);
431
432 void d_drop(struct dentry *dentry)
433 {
434 spin_lock(&dentry->d_lock);
435 __d_drop(dentry);
436 spin_unlock(&dentry->d_lock);
437 }
438 EXPORT_SYMBOL(d_drop);
439
440 /*
441 * Finish off a dentry we've decided to kill.
442 * dentry->d_lock must be held, returns with it unlocked.
443 * If ref is non-zero, then decrement the refcount too.
444 * Returns dentry requiring refcount drop, or NULL if we're done.
445 */
446 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
447 __releases(dentry->d_lock)
448 {
449 struct inode *inode;
450 struct dentry *parent;
451
452 inode = dentry->d_inode;
453 if (inode && !spin_trylock(&inode->i_lock)) {
454 relock:
455 spin_unlock(&dentry->d_lock);
456 cpu_relax();
457 return dentry; /* try again with same dentry */
458 }
459 if (IS_ROOT(dentry))
460 parent = NULL;
461 else
462 parent = dentry->d_parent;
463 if (parent && !spin_trylock(&parent->d_lock)) {
464 if (inode)
465 spin_unlock(&inode->i_lock);
466 goto relock;
467 }
468
469 if (ref)
470 dentry->d_lockref.count--;
471 /*
472 * inform the fs via d_prune that this dentry is about to be
473 * unhashed and destroyed.
474 */
475 if (dentry->d_flags & DCACHE_OP_PRUNE)
476 dentry->d_op->d_prune(dentry);
477
478 dentry_lru_del(dentry);
479 /* if it was on the hash then remove it */
480 __d_drop(dentry);
481 return d_kill(dentry, parent);
482 }
483
484 /*
485 * This is dput
486 *
487 * This is complicated by the fact that we do not want to put
488 * dentries that are no longer on any hash chain on the unused
489 * list: we'd much rather just get rid of them immediately.
490 *
491 * However, that implies that we have to traverse the dentry
492 * tree upwards to the parents which might _also_ now be
493 * scheduled for deletion (it may have been only waiting for
494 * its last child to go away).
495 *
496 * This tail recursion is done by hand as we don't want to depend
497 * on the compiler to always get this right (gcc generally doesn't).
498 * Real recursion would eat up our stack space.
499 */
500
501 /*
502 * dput - release a dentry
503 * @dentry: dentry to release
504 *
505 * Release a dentry. This will drop the usage count and if appropriate
506 * call the dentry unlink method as well as removing it from the queues and
507 * releasing its resources. If the parent dentries were scheduled for release
508 * they too may now get deleted.
509 */
510 void dput(struct dentry *dentry)
511 {
512 if (!dentry)
513 return;
514
515 repeat:
516 if (dentry->d_lockref.count == 1)
517 might_sleep();
518 if (lockref_put_or_lock(&dentry->d_lockref))
519 return;
520
521 if (dentry->d_flags & DCACHE_OP_DELETE) {
522 if (dentry->d_op->d_delete(dentry))
523 goto kill_it;
524 }
525
526 /* Unreachable? Get rid of it */
527 if (d_unhashed(dentry))
528 goto kill_it;
529
530 dentry->d_flags |= DCACHE_REFERENCED;
531 dentry_lru_add(dentry);
532
533 dentry->d_lockref.count--;
534 spin_unlock(&dentry->d_lock);
535 return;
536
537 kill_it:
538 dentry = dentry_kill(dentry, 1);
539 if (dentry)
540 goto repeat;
541 }
542 EXPORT_SYMBOL(dput);
543
544 /**
545 * d_invalidate - invalidate a dentry
546 * @dentry: dentry to invalidate
547 *
548 * Try to invalidate the dentry if it turns out to be
549 * possible. If there are other dentries that can be
550 * reached through this one we can't delete it and we
551 * return -EBUSY. On success we return 0.
552 *
553 * no dcache lock.
554 */
555
556 int d_invalidate(struct dentry * dentry)
557 {
558 /*
559 * If it's already been dropped, return OK.
560 */
561 spin_lock(&dentry->d_lock);
562 if (d_unhashed(dentry)) {
563 spin_unlock(&dentry->d_lock);
564 return 0;
565 }
566 /*
567 * Check whether to do a partial shrink_dcache
568 * to get rid of unused child entries.
569 */
570 if (!list_empty(&dentry->d_subdirs)) {
571 spin_unlock(&dentry->d_lock);
572 shrink_dcache_parent(dentry);
573 spin_lock(&dentry->d_lock);
574 }
575
576 /*
577 * Somebody else still using it?
578 *
579 * If it's a directory, we can't drop it
580 * for fear of somebody re-populating it
581 * with children (even though dropping it
582 * would make it unreachable from the root,
583 * we might still populate it if it was a
584 * working directory or similar).
585 * We also need to leave mountpoints alone,
586 * directory or not.
587 */
588 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
589 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
590 spin_unlock(&dentry->d_lock);
591 return -EBUSY;
592 }
593 }
594
595 __d_drop(dentry);
596 spin_unlock(&dentry->d_lock);
597 return 0;
598 }
599 EXPORT_SYMBOL(d_invalidate);
600
601 /* This must be called with d_lock held */
602 static inline void __dget_dlock(struct dentry *dentry)
603 {
604 dentry->d_lockref.count++;
605 }
606
607 static inline void __dget(struct dentry *dentry)
608 {
609 lockref_get(&dentry->d_lockref);
610 }
611
612 struct dentry *dget_parent(struct dentry *dentry)
613 {
614 struct dentry *ret;
615
616 repeat:
617 /*
618 * Don't need rcu_dereference because we re-check it was correct under
619 * the lock.
620 */
621 rcu_read_lock();
622 ret = dentry->d_parent;
623 spin_lock(&ret->d_lock);
624 if (unlikely(ret != dentry->d_parent)) {
625 spin_unlock(&ret->d_lock);
626 rcu_read_unlock();
627 goto repeat;
628 }
629 rcu_read_unlock();
630 BUG_ON(!ret->d_lockref.count);
631 ret->d_lockref.count++;
632 spin_unlock(&ret->d_lock);
633 return ret;
634 }
635 EXPORT_SYMBOL(dget_parent);
636
637 /**
638 * d_find_alias - grab a hashed alias of inode
639 * @inode: inode in question
640 * @want_discon: flag, used by d_splice_alias, to request
641 * that only a DISCONNECTED alias be returned.
642 *
643 * If inode has a hashed alias, or is a directory and has any alias,
644 * acquire the reference to alias and return it. Otherwise return NULL.
645 * Notice that if inode is a directory there can be only one alias and
646 * it can be unhashed only if it has no children, or if it is the root
647 * of a filesystem.
648 *
649 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
650 * any other hashed alias over that one unless @want_discon is set,
651 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
652 */
653 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
654 {
655 struct dentry *alias, *discon_alias;
656
657 again:
658 discon_alias = NULL;
659 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
660 spin_lock(&alias->d_lock);
661 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
662 if (IS_ROOT(alias) &&
663 (alias->d_flags & DCACHE_DISCONNECTED)) {
664 discon_alias = alias;
665 } else if (!want_discon) {
666 __dget_dlock(alias);
667 spin_unlock(&alias->d_lock);
668 return alias;
669 }
670 }
671 spin_unlock(&alias->d_lock);
672 }
673 if (discon_alias) {
674 alias = discon_alias;
675 spin_lock(&alias->d_lock);
676 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
677 if (IS_ROOT(alias) &&
678 (alias->d_flags & DCACHE_DISCONNECTED)) {
679 __dget_dlock(alias);
680 spin_unlock(&alias->d_lock);
681 return alias;
682 }
683 }
684 spin_unlock(&alias->d_lock);
685 goto again;
686 }
687 return NULL;
688 }
689
690 struct dentry *d_find_alias(struct inode *inode)
691 {
692 struct dentry *de = NULL;
693
694 if (!hlist_empty(&inode->i_dentry)) {
695 spin_lock(&inode->i_lock);
696 de = __d_find_alias(inode, 0);
697 spin_unlock(&inode->i_lock);
698 }
699 return de;
700 }
701 EXPORT_SYMBOL(d_find_alias);
702
703 /*
704 * Try to kill dentries associated with this inode.
705 * WARNING: you must own a reference to inode.
706 */
707 void d_prune_aliases(struct inode *inode)
708 {
709 struct dentry *dentry;
710 restart:
711 spin_lock(&inode->i_lock);
712 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
713 spin_lock(&dentry->d_lock);
714 if (!dentry->d_lockref.count) {
715 __dget_dlock(dentry);
716 __d_drop(dentry);
717 spin_unlock(&dentry->d_lock);
718 spin_unlock(&inode->i_lock);
719 dput(dentry);
720 goto restart;
721 }
722 spin_unlock(&dentry->d_lock);
723 }
724 spin_unlock(&inode->i_lock);
725 }
726 EXPORT_SYMBOL(d_prune_aliases);
727
728 /*
729 * Try to throw away a dentry - free the inode, dput the parent.
730 * Requires dentry->d_lock is held, and dentry->d_count == 0.
731 * Releases dentry->d_lock.
732 *
733 * This may fail if locks cannot be acquired no problem, just try again.
734 */
735 static void try_prune_one_dentry(struct dentry *dentry)
736 __releases(dentry->d_lock)
737 {
738 struct dentry *parent;
739
740 parent = dentry_kill(dentry, 0);
741 /*
742 * If dentry_kill returns NULL, we have nothing more to do.
743 * if it returns the same dentry, trylocks failed. In either
744 * case, just loop again.
745 *
746 * Otherwise, we need to prune ancestors too. This is necessary
747 * to prevent quadratic behavior of shrink_dcache_parent(), but
748 * is also expected to be beneficial in reducing dentry cache
749 * fragmentation.
750 */
751 if (!parent)
752 return;
753 if (parent == dentry)
754 return;
755
756 /* Prune ancestors. */
757 dentry = parent;
758 while (dentry) {
759 if (lockref_put_or_lock(&dentry->d_lockref))
760 return;
761 dentry = dentry_kill(dentry, 1);
762 }
763 }
764
765 static void shrink_dentry_list(struct list_head *list)
766 {
767 struct dentry *dentry;
768
769 rcu_read_lock();
770 for (;;) {
771 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
772 if (&dentry->d_lru == list)
773 break; /* empty */
774 spin_lock(&dentry->d_lock);
775 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
776 spin_unlock(&dentry->d_lock);
777 continue;
778 }
779
780 /*
781 * We found an inuse dentry which was not removed from
782 * the LRU because of laziness during lookup. Do not free
783 * it - just keep it off the LRU list.
784 */
785 if (dentry->d_lockref.count) {
786 dentry_lru_del(dentry);
787 spin_unlock(&dentry->d_lock);
788 continue;
789 }
790
791 rcu_read_unlock();
792
793 try_prune_one_dentry(dentry);
794
795 rcu_read_lock();
796 }
797 rcu_read_unlock();
798 }
799
800 /**
801 * prune_dcache_sb - shrink the dcache
802 * @sb: superblock
803 * @count: number of entries to try to free
804 *
805 * Attempt to shrink the superblock dcache LRU by @count entries. This is
806 * done when we need more memory an called from the superblock shrinker
807 * function.
808 *
809 * This function may fail to free any resources if all the dentries are in
810 * use.
811 */
812 void prune_dcache_sb(struct super_block *sb, int count)
813 {
814 struct dentry *dentry;
815 LIST_HEAD(referenced);
816 LIST_HEAD(tmp);
817
818 relock:
819 spin_lock(&dcache_lru_lock);
820 while (!list_empty(&sb->s_dentry_lru)) {
821 dentry = list_entry(sb->s_dentry_lru.prev,
822 struct dentry, d_lru);
823 BUG_ON(dentry->d_sb != sb);
824
825 if (!spin_trylock(&dentry->d_lock)) {
826 spin_unlock(&dcache_lru_lock);
827 cpu_relax();
828 goto relock;
829 }
830
831 if (dentry->d_flags & DCACHE_REFERENCED) {
832 dentry->d_flags &= ~DCACHE_REFERENCED;
833 list_move(&dentry->d_lru, &referenced);
834 spin_unlock(&dentry->d_lock);
835 } else {
836 list_move_tail(&dentry->d_lru, &tmp);
837 dentry->d_flags |= DCACHE_SHRINK_LIST;
838 spin_unlock(&dentry->d_lock);
839 if (!--count)
840 break;
841 }
842 cond_resched_lock(&dcache_lru_lock);
843 }
844 if (!list_empty(&referenced))
845 list_splice(&referenced, &sb->s_dentry_lru);
846 spin_unlock(&dcache_lru_lock);
847
848 shrink_dentry_list(&tmp);
849 }
850
851 /**
852 * shrink_dcache_sb - shrink dcache for a superblock
853 * @sb: superblock
854 *
855 * Shrink the dcache for the specified super block. This is used to free
856 * the dcache before unmounting a file system.
857 */
858 void shrink_dcache_sb(struct super_block *sb)
859 {
860 LIST_HEAD(tmp);
861
862 spin_lock(&dcache_lru_lock);
863 while (!list_empty(&sb->s_dentry_lru)) {
864 list_splice_init(&sb->s_dentry_lru, &tmp);
865 spin_unlock(&dcache_lru_lock);
866 shrink_dentry_list(&tmp);
867 spin_lock(&dcache_lru_lock);
868 }
869 spin_unlock(&dcache_lru_lock);
870 }
871 EXPORT_SYMBOL(shrink_dcache_sb);
872
873 /*
874 * destroy a single subtree of dentries for unmount
875 * - see the comments on shrink_dcache_for_umount() for a description of the
876 * locking
877 */
878 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
879 {
880 struct dentry *parent;
881
882 BUG_ON(!IS_ROOT(dentry));
883
884 for (;;) {
885 /* descend to the first leaf in the current subtree */
886 while (!list_empty(&dentry->d_subdirs))
887 dentry = list_entry(dentry->d_subdirs.next,
888 struct dentry, d_u.d_child);
889
890 /* consume the dentries from this leaf up through its parents
891 * until we find one with children or run out altogether */
892 do {
893 struct inode *inode;
894
895 /*
896 * inform the fs that this dentry is about to be
897 * unhashed and destroyed.
898 */
899 if (dentry->d_flags & DCACHE_OP_PRUNE)
900 dentry->d_op->d_prune(dentry);
901
902 dentry_lru_del(dentry);
903 __d_shrink(dentry);
904
905 if (dentry->d_lockref.count != 0) {
906 printk(KERN_ERR
907 "BUG: Dentry %p{i=%lx,n=%s}"
908 " still in use (%d)"
909 " [unmount of %s %s]\n",
910 dentry,
911 dentry->d_inode ?
912 dentry->d_inode->i_ino : 0UL,
913 dentry->d_name.name,
914 dentry->d_lockref.count,
915 dentry->d_sb->s_type->name,
916 dentry->d_sb->s_id);
917 BUG();
918 }
919
920 if (IS_ROOT(dentry)) {
921 parent = NULL;
922 list_del(&dentry->d_u.d_child);
923 } else {
924 parent = dentry->d_parent;
925 parent->d_lockref.count--;
926 list_del(&dentry->d_u.d_child);
927 }
928
929 inode = dentry->d_inode;
930 if (inode) {
931 dentry->d_inode = NULL;
932 hlist_del_init(&dentry->d_alias);
933 if (dentry->d_op && dentry->d_op->d_iput)
934 dentry->d_op->d_iput(dentry, inode);
935 else
936 iput(inode);
937 }
938
939 d_free(dentry);
940
941 /* finished when we fall off the top of the tree,
942 * otherwise we ascend to the parent and move to the
943 * next sibling if there is one */
944 if (!parent)
945 return;
946 dentry = parent;
947 } while (list_empty(&dentry->d_subdirs));
948
949 dentry = list_entry(dentry->d_subdirs.next,
950 struct dentry, d_u.d_child);
951 }
952 }
953
954 /*
955 * destroy the dentries attached to a superblock on unmounting
956 * - we don't need to use dentry->d_lock because:
957 * - the superblock is detached from all mountings and open files, so the
958 * dentry trees will not be rearranged by the VFS
959 * - s_umount is write-locked, so the memory pressure shrinker will ignore
960 * any dentries belonging to this superblock that it comes across
961 * - the filesystem itself is no longer permitted to rearrange the dentries
962 * in this superblock
963 */
964 void shrink_dcache_for_umount(struct super_block *sb)
965 {
966 struct dentry *dentry;
967
968 if (down_read_trylock(&sb->s_umount))
969 BUG();
970
971 dentry = sb->s_root;
972 sb->s_root = NULL;
973 dentry->d_lockref.count--;
974 shrink_dcache_for_umount_subtree(dentry);
975
976 while (!hlist_bl_empty(&sb->s_anon)) {
977 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
978 shrink_dcache_for_umount_subtree(dentry);
979 }
980 }
981
982 /*
983 * This tries to ascend one level of parenthood, but
984 * we can race with renaming, so we need to re-check
985 * the parenthood after dropping the lock and check
986 * that the sequence number still matches.
987 */
988 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
989 {
990 struct dentry *new = old->d_parent;
991
992 rcu_read_lock();
993 spin_unlock(&old->d_lock);
994 spin_lock(&new->d_lock);
995
996 /*
997 * might go back up the wrong parent if we have had a rename
998 * or deletion
999 */
1000 if (new != old->d_parent ||
1001 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1002 (!locked && read_seqretry(&rename_lock, seq))) {
1003 spin_unlock(&new->d_lock);
1004 new = NULL;
1005 }
1006 rcu_read_unlock();
1007 return new;
1008 }
1009
1010
1011 /*
1012 * Search for at least 1 mount point in the dentry's subdirs.
1013 * We descend to the next level whenever the d_subdirs
1014 * list is non-empty and continue searching.
1015 */
1016
1017 /**
1018 * have_submounts - check for mounts over a dentry
1019 * @parent: dentry to check.
1020 *
1021 * Return true if the parent or its subdirectories contain
1022 * a mount point
1023 */
1024 int have_submounts(struct dentry *parent)
1025 {
1026 struct dentry *this_parent;
1027 struct list_head *next;
1028 unsigned seq;
1029 int locked = 0;
1030
1031 seq = read_seqbegin(&rename_lock);
1032 again:
1033 this_parent = parent;
1034
1035 if (d_mountpoint(parent))
1036 goto positive;
1037 spin_lock(&this_parent->d_lock);
1038 repeat:
1039 next = this_parent->d_subdirs.next;
1040 resume:
1041 while (next != &this_parent->d_subdirs) {
1042 struct list_head *tmp = next;
1043 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1044 next = tmp->next;
1045
1046 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1047 /* Have we found a mount point ? */
1048 if (d_mountpoint(dentry)) {
1049 spin_unlock(&dentry->d_lock);
1050 spin_unlock(&this_parent->d_lock);
1051 goto positive;
1052 }
1053 if (!list_empty(&dentry->d_subdirs)) {
1054 spin_unlock(&this_parent->d_lock);
1055 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1056 this_parent = dentry;
1057 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1058 goto repeat;
1059 }
1060 spin_unlock(&dentry->d_lock);
1061 }
1062 /*
1063 * All done at this level ... ascend and resume the search.
1064 */
1065 if (this_parent != parent) {
1066 struct dentry *child = this_parent;
1067 this_parent = try_to_ascend(this_parent, locked, seq);
1068 if (!this_parent)
1069 goto rename_retry;
1070 next = child->d_u.d_child.next;
1071 goto resume;
1072 }
1073 spin_unlock(&this_parent->d_lock);
1074 if (!locked && read_seqretry(&rename_lock, seq))
1075 goto rename_retry;
1076 if (locked)
1077 write_sequnlock(&rename_lock);
1078 return 0; /* No mount points found in tree */
1079 positive:
1080 if (!locked && read_seqretry(&rename_lock, seq))
1081 goto rename_retry;
1082 if (locked)
1083 write_sequnlock(&rename_lock);
1084 return 1;
1085
1086 rename_retry:
1087 if (locked)
1088 goto again;
1089 locked = 1;
1090 write_seqlock(&rename_lock);
1091 goto again;
1092 }
1093 EXPORT_SYMBOL(have_submounts);
1094
1095 /*
1096 * Search the dentry child list of the specified parent,
1097 * and move any unused dentries to the end of the unused
1098 * list for prune_dcache(). We descend to the next level
1099 * whenever the d_subdirs list is non-empty and continue
1100 * searching.
1101 *
1102 * It returns zero iff there are no unused children,
1103 * otherwise it returns the number of children moved to
1104 * the end of the unused list. This may not be the total
1105 * number of unused children, because select_parent can
1106 * drop the lock and return early due to latency
1107 * constraints.
1108 */
1109 static int select_parent(struct dentry *parent, struct list_head *dispose)
1110 {
1111 struct dentry *this_parent;
1112 struct list_head *next;
1113 unsigned seq;
1114 int found = 0;
1115 int locked = 0;
1116
1117 seq = read_seqbegin(&rename_lock);
1118 again:
1119 this_parent = parent;
1120 spin_lock(&this_parent->d_lock);
1121 repeat:
1122 next = this_parent->d_subdirs.next;
1123 resume:
1124 while (next != &this_parent->d_subdirs) {
1125 struct list_head *tmp = next;
1126 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1127 next = tmp->next;
1128
1129 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1130
1131 /*
1132 * move only zero ref count dentries to the dispose list.
1133 *
1134 * Those which are presently on the shrink list, being processed
1135 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1136 * loop in shrink_dcache_parent() might not make any progress
1137 * and loop forever.
1138 */
1139 if (dentry->d_lockref.count) {
1140 dentry_lru_del(dentry);
1141 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1142 dentry_lru_move_list(dentry, dispose);
1143 dentry->d_flags |= DCACHE_SHRINK_LIST;
1144 found++;
1145 }
1146 /*
1147 * We can return to the caller if we have found some (this
1148 * ensures forward progress). We'll be coming back to find
1149 * the rest.
1150 */
1151 if (found && need_resched()) {
1152 spin_unlock(&dentry->d_lock);
1153 goto out;
1154 }
1155
1156 /*
1157 * Descend a level if the d_subdirs list is non-empty.
1158 */
1159 if (!list_empty(&dentry->d_subdirs)) {
1160 spin_unlock(&this_parent->d_lock);
1161 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1162 this_parent = dentry;
1163 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1164 goto repeat;
1165 }
1166
1167 spin_unlock(&dentry->d_lock);
1168 }
1169 /*
1170 * All done at this level ... ascend and resume the search.
1171 */
1172 if (this_parent != parent) {
1173 struct dentry *child = this_parent;
1174 this_parent = try_to_ascend(this_parent, locked, seq);
1175 if (!this_parent)
1176 goto rename_retry;
1177 next = child->d_u.d_child.next;
1178 goto resume;
1179 }
1180 out:
1181 spin_unlock(&this_parent->d_lock);
1182 if (!locked && read_seqretry(&rename_lock, seq))
1183 goto rename_retry;
1184 if (locked)
1185 write_sequnlock(&rename_lock);
1186 return found;
1187
1188 rename_retry:
1189 if (found)
1190 return found;
1191 if (locked)
1192 goto again;
1193 locked = 1;
1194 write_seqlock(&rename_lock);
1195 goto again;
1196 }
1197
1198 /**
1199 * shrink_dcache_parent - prune dcache
1200 * @parent: parent of entries to prune
1201 *
1202 * Prune the dcache to remove unused children of the parent dentry.
1203 */
1204 void shrink_dcache_parent(struct dentry * parent)
1205 {
1206 LIST_HEAD(dispose);
1207 int found;
1208
1209 while ((found = select_parent(parent, &dispose)) != 0) {
1210 shrink_dentry_list(&dispose);
1211 cond_resched();
1212 }
1213 }
1214 EXPORT_SYMBOL(shrink_dcache_parent);
1215
1216 /**
1217 * __d_alloc - allocate a dcache entry
1218 * @sb: filesystem it will belong to
1219 * @name: qstr of the name
1220 *
1221 * Allocates a dentry. It returns %NULL if there is insufficient memory
1222 * available. On a success the dentry is returned. The name passed in is
1223 * copied and the copy passed in may be reused after this call.
1224 */
1225
1226 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1227 {
1228 struct dentry *dentry;
1229 char *dname;
1230
1231 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1232 if (!dentry)
1233 return NULL;
1234
1235 /*
1236 * We guarantee that the inline name is always NUL-terminated.
1237 * This way the memcpy() done by the name switching in rename
1238 * will still always have a NUL at the end, even if we might
1239 * be overwriting an internal NUL character
1240 */
1241 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1242 if (name->len > DNAME_INLINE_LEN-1) {
1243 dname = kmalloc(name->len + 1, GFP_KERNEL);
1244 if (!dname) {
1245 kmem_cache_free(dentry_cache, dentry);
1246 return NULL;
1247 }
1248 } else {
1249 dname = dentry->d_iname;
1250 }
1251
1252 dentry->d_name.len = name->len;
1253 dentry->d_name.hash = name->hash;
1254 memcpy(dname, name->name, name->len);
1255 dname[name->len] = 0;
1256
1257 /* Make sure we always see the terminating NUL character */
1258 smp_wmb();
1259 dentry->d_name.name = dname;
1260
1261 dentry->d_lockref.count = 1;
1262 dentry->d_flags = 0;
1263 spin_lock_init(&dentry->d_lock);
1264 seqcount_init(&dentry->d_seq);
1265 dentry->d_inode = NULL;
1266 dentry->d_parent = dentry;
1267 dentry->d_sb = sb;
1268 dentry->d_op = NULL;
1269 dentry->d_fsdata = NULL;
1270 INIT_HLIST_BL_NODE(&dentry->d_hash);
1271 INIT_LIST_HEAD(&dentry->d_lru);
1272 INIT_LIST_HEAD(&dentry->d_subdirs);
1273 INIT_HLIST_NODE(&dentry->d_alias);
1274 INIT_LIST_HEAD(&dentry->d_u.d_child);
1275 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1276
1277 this_cpu_inc(nr_dentry);
1278
1279 return dentry;
1280 }
1281
1282 /**
1283 * d_alloc - allocate a dcache entry
1284 * @parent: parent of entry to allocate
1285 * @name: qstr of the name
1286 *
1287 * Allocates a dentry. It returns %NULL if there is insufficient memory
1288 * available. On a success the dentry is returned. The name passed in is
1289 * copied and the copy passed in may be reused after this call.
1290 */
1291 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1292 {
1293 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1294 if (!dentry)
1295 return NULL;
1296
1297 spin_lock(&parent->d_lock);
1298 /*
1299 * don't need child lock because it is not subject
1300 * to concurrency here
1301 */
1302 __dget_dlock(parent);
1303 dentry->d_parent = parent;
1304 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1305 spin_unlock(&parent->d_lock);
1306
1307 return dentry;
1308 }
1309 EXPORT_SYMBOL(d_alloc);
1310
1311 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1312 {
1313 struct dentry *dentry = __d_alloc(sb, name);
1314 if (dentry)
1315 dentry->d_flags |= DCACHE_DISCONNECTED;
1316 return dentry;
1317 }
1318 EXPORT_SYMBOL(d_alloc_pseudo);
1319
1320 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1321 {
1322 struct qstr q;
1323
1324 q.name = name;
1325 q.len = strlen(name);
1326 q.hash = full_name_hash(q.name, q.len);
1327 return d_alloc(parent, &q);
1328 }
1329 EXPORT_SYMBOL(d_alloc_name);
1330
1331 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1332 {
1333 WARN_ON_ONCE(dentry->d_op);
1334 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1335 DCACHE_OP_COMPARE |
1336 DCACHE_OP_REVALIDATE |
1337 DCACHE_OP_WEAK_REVALIDATE |
1338 DCACHE_OP_DELETE ));
1339 dentry->d_op = op;
1340 if (!op)
1341 return;
1342 if (op->d_hash)
1343 dentry->d_flags |= DCACHE_OP_HASH;
1344 if (op->d_compare)
1345 dentry->d_flags |= DCACHE_OP_COMPARE;
1346 if (op->d_revalidate)
1347 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1348 if (op->d_weak_revalidate)
1349 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1350 if (op->d_delete)
1351 dentry->d_flags |= DCACHE_OP_DELETE;
1352 if (op->d_prune)
1353 dentry->d_flags |= DCACHE_OP_PRUNE;
1354
1355 }
1356 EXPORT_SYMBOL(d_set_d_op);
1357
1358 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1359 {
1360 spin_lock(&dentry->d_lock);
1361 if (inode) {
1362 if (unlikely(IS_AUTOMOUNT(inode)))
1363 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1364 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1365 }
1366 dentry->d_inode = inode;
1367 dentry_rcuwalk_barrier(dentry);
1368 spin_unlock(&dentry->d_lock);
1369 fsnotify_d_instantiate(dentry, inode);
1370 }
1371
1372 /**
1373 * d_instantiate - fill in inode information for a dentry
1374 * @entry: dentry to complete
1375 * @inode: inode to attach to this dentry
1376 *
1377 * Fill in inode information in the entry.
1378 *
1379 * This turns negative dentries into productive full members
1380 * of society.
1381 *
1382 * NOTE! This assumes that the inode count has been incremented
1383 * (or otherwise set) by the caller to indicate that it is now
1384 * in use by the dcache.
1385 */
1386
1387 void d_instantiate(struct dentry *entry, struct inode * inode)
1388 {
1389 BUG_ON(!hlist_unhashed(&entry->d_alias));
1390 if (inode)
1391 spin_lock(&inode->i_lock);
1392 __d_instantiate(entry, inode);
1393 if (inode)
1394 spin_unlock(&inode->i_lock);
1395 security_d_instantiate(entry, inode);
1396 }
1397 EXPORT_SYMBOL(d_instantiate);
1398
1399 /**
1400 * d_instantiate_unique - instantiate a non-aliased dentry
1401 * @entry: dentry to instantiate
1402 * @inode: inode to attach to this dentry
1403 *
1404 * Fill in inode information in the entry. On success, it returns NULL.
1405 * If an unhashed alias of "entry" already exists, then we return the
1406 * aliased dentry instead and drop one reference to inode.
1407 *
1408 * Note that in order to avoid conflicts with rename() etc, the caller
1409 * had better be holding the parent directory semaphore.
1410 *
1411 * This also assumes that the inode count has been incremented
1412 * (or otherwise set) by the caller to indicate that it is now
1413 * in use by the dcache.
1414 */
1415 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1416 struct inode *inode)
1417 {
1418 struct dentry *alias;
1419 int len = entry->d_name.len;
1420 const char *name = entry->d_name.name;
1421 unsigned int hash = entry->d_name.hash;
1422
1423 if (!inode) {
1424 __d_instantiate(entry, NULL);
1425 return NULL;
1426 }
1427
1428 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1429 /*
1430 * Don't need alias->d_lock here, because aliases with
1431 * d_parent == entry->d_parent are not subject to name or
1432 * parent changes, because the parent inode i_mutex is held.
1433 */
1434 if (alias->d_name.hash != hash)
1435 continue;
1436 if (alias->d_parent != entry->d_parent)
1437 continue;
1438 if (alias->d_name.len != len)
1439 continue;
1440 if (dentry_cmp(alias, name, len))
1441 continue;
1442 __dget(alias);
1443 return alias;
1444 }
1445
1446 __d_instantiate(entry, inode);
1447 return NULL;
1448 }
1449
1450 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1451 {
1452 struct dentry *result;
1453
1454 BUG_ON(!hlist_unhashed(&entry->d_alias));
1455
1456 if (inode)
1457 spin_lock(&inode->i_lock);
1458 result = __d_instantiate_unique(entry, inode);
1459 if (inode)
1460 spin_unlock(&inode->i_lock);
1461
1462 if (!result) {
1463 security_d_instantiate(entry, inode);
1464 return NULL;
1465 }
1466
1467 BUG_ON(!d_unhashed(result));
1468 iput(inode);
1469 return result;
1470 }
1471
1472 EXPORT_SYMBOL(d_instantiate_unique);
1473
1474 struct dentry *d_make_root(struct inode *root_inode)
1475 {
1476 struct dentry *res = NULL;
1477
1478 if (root_inode) {
1479 static const struct qstr name = QSTR_INIT("/", 1);
1480
1481 res = __d_alloc(root_inode->i_sb, &name);
1482 if (res)
1483 d_instantiate(res, root_inode);
1484 else
1485 iput(root_inode);
1486 }
1487 return res;
1488 }
1489 EXPORT_SYMBOL(d_make_root);
1490
1491 static struct dentry * __d_find_any_alias(struct inode *inode)
1492 {
1493 struct dentry *alias;
1494
1495 if (hlist_empty(&inode->i_dentry))
1496 return NULL;
1497 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1498 __dget(alias);
1499 return alias;
1500 }
1501
1502 /**
1503 * d_find_any_alias - find any alias for a given inode
1504 * @inode: inode to find an alias for
1505 *
1506 * If any aliases exist for the given inode, take and return a
1507 * reference for one of them. If no aliases exist, return %NULL.
1508 */
1509 struct dentry *d_find_any_alias(struct inode *inode)
1510 {
1511 struct dentry *de;
1512
1513 spin_lock(&inode->i_lock);
1514 de = __d_find_any_alias(inode);
1515 spin_unlock(&inode->i_lock);
1516 return de;
1517 }
1518 EXPORT_SYMBOL(d_find_any_alias);
1519
1520 /**
1521 * d_obtain_alias - find or allocate a dentry for a given inode
1522 * @inode: inode to allocate the dentry for
1523 *
1524 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1525 * similar open by handle operations. The returned dentry may be anonymous,
1526 * or may have a full name (if the inode was already in the cache).
1527 *
1528 * When called on a directory inode, we must ensure that the inode only ever
1529 * has one dentry. If a dentry is found, that is returned instead of
1530 * allocating a new one.
1531 *
1532 * On successful return, the reference to the inode has been transferred
1533 * to the dentry. In case of an error the reference on the inode is released.
1534 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1535 * be passed in and will be the error will be propagate to the return value,
1536 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1537 */
1538 struct dentry *d_obtain_alias(struct inode *inode)
1539 {
1540 static const struct qstr anonstring = QSTR_INIT("/", 1);
1541 struct dentry *tmp;
1542 struct dentry *res;
1543
1544 if (!inode)
1545 return ERR_PTR(-ESTALE);
1546 if (IS_ERR(inode))
1547 return ERR_CAST(inode);
1548
1549 res = d_find_any_alias(inode);
1550 if (res)
1551 goto out_iput;
1552
1553 tmp = __d_alloc(inode->i_sb, &anonstring);
1554 if (!tmp) {
1555 res = ERR_PTR(-ENOMEM);
1556 goto out_iput;
1557 }
1558
1559 spin_lock(&inode->i_lock);
1560 res = __d_find_any_alias(inode);
1561 if (res) {
1562 spin_unlock(&inode->i_lock);
1563 dput(tmp);
1564 goto out_iput;
1565 }
1566
1567 /* attach a disconnected dentry */
1568 spin_lock(&tmp->d_lock);
1569 tmp->d_inode = inode;
1570 tmp->d_flags |= DCACHE_DISCONNECTED;
1571 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1572 hlist_bl_lock(&tmp->d_sb->s_anon);
1573 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1574 hlist_bl_unlock(&tmp->d_sb->s_anon);
1575 spin_unlock(&tmp->d_lock);
1576 spin_unlock(&inode->i_lock);
1577 security_d_instantiate(tmp, inode);
1578
1579 return tmp;
1580
1581 out_iput:
1582 if (res && !IS_ERR(res))
1583 security_d_instantiate(res, inode);
1584 iput(inode);
1585 return res;
1586 }
1587 EXPORT_SYMBOL(d_obtain_alias);
1588
1589 /**
1590 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1591 * @inode: the inode which may have a disconnected dentry
1592 * @dentry: a negative dentry which we want to point to the inode.
1593 *
1594 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1595 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1596 * and return it, else simply d_add the inode to the dentry and return NULL.
1597 *
1598 * This is needed in the lookup routine of any filesystem that is exportable
1599 * (via knfsd) so that we can build dcache paths to directories effectively.
1600 *
1601 * If a dentry was found and moved, then it is returned. Otherwise NULL
1602 * is returned. This matches the expected return value of ->lookup.
1603 *
1604 * Cluster filesystems may call this function with a negative, hashed dentry.
1605 * In that case, we know that the inode will be a regular file, and also this
1606 * will only occur during atomic_open. So we need to check for the dentry
1607 * being already hashed only in the final case.
1608 */
1609 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1610 {
1611 struct dentry *new = NULL;
1612
1613 if (IS_ERR(inode))
1614 return ERR_CAST(inode);
1615
1616 if (inode && S_ISDIR(inode->i_mode)) {
1617 spin_lock(&inode->i_lock);
1618 new = __d_find_alias(inode, 1);
1619 if (new) {
1620 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1621 spin_unlock(&inode->i_lock);
1622 security_d_instantiate(new, inode);
1623 d_move(new, dentry);
1624 iput(inode);
1625 } else {
1626 /* already taking inode->i_lock, so d_add() by hand */
1627 __d_instantiate(dentry, inode);
1628 spin_unlock(&inode->i_lock);
1629 security_d_instantiate(dentry, inode);
1630 d_rehash(dentry);
1631 }
1632 } else {
1633 d_instantiate(dentry, inode);
1634 if (d_unhashed(dentry))
1635 d_rehash(dentry);
1636 }
1637 return new;
1638 }
1639 EXPORT_SYMBOL(d_splice_alias);
1640
1641 /**
1642 * d_add_ci - lookup or allocate new dentry with case-exact name
1643 * @inode: the inode case-insensitive lookup has found
1644 * @dentry: the negative dentry that was passed to the parent's lookup func
1645 * @name: the case-exact name to be associated with the returned dentry
1646 *
1647 * This is to avoid filling the dcache with case-insensitive names to the
1648 * same inode, only the actual correct case is stored in the dcache for
1649 * case-insensitive filesystems.
1650 *
1651 * For a case-insensitive lookup match and if the the case-exact dentry
1652 * already exists in in the dcache, use it and return it.
1653 *
1654 * If no entry exists with the exact case name, allocate new dentry with
1655 * the exact case, and return the spliced entry.
1656 */
1657 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1658 struct qstr *name)
1659 {
1660 struct dentry *found;
1661 struct dentry *new;
1662
1663 /*
1664 * First check if a dentry matching the name already exists,
1665 * if not go ahead and create it now.
1666 */
1667 found = d_hash_and_lookup(dentry->d_parent, name);
1668 if (unlikely(IS_ERR(found)))
1669 goto err_out;
1670 if (!found) {
1671 new = d_alloc(dentry->d_parent, name);
1672 if (!new) {
1673 found = ERR_PTR(-ENOMEM);
1674 goto err_out;
1675 }
1676
1677 found = d_splice_alias(inode, new);
1678 if (found) {
1679 dput(new);
1680 return found;
1681 }
1682 return new;
1683 }
1684
1685 /*
1686 * If a matching dentry exists, and it's not negative use it.
1687 *
1688 * Decrement the reference count to balance the iget() done
1689 * earlier on.
1690 */
1691 if (found->d_inode) {
1692 if (unlikely(found->d_inode != inode)) {
1693 /* This can't happen because bad inodes are unhashed. */
1694 BUG_ON(!is_bad_inode(inode));
1695 BUG_ON(!is_bad_inode(found->d_inode));
1696 }
1697 iput(inode);
1698 return found;
1699 }
1700
1701 /*
1702 * Negative dentry: instantiate it unless the inode is a directory and
1703 * already has a dentry.
1704 */
1705 new = d_splice_alias(inode, found);
1706 if (new) {
1707 dput(found);
1708 found = new;
1709 }
1710 return found;
1711
1712 err_out:
1713 iput(inode);
1714 return found;
1715 }
1716 EXPORT_SYMBOL(d_add_ci);
1717
1718 /*
1719 * Do the slow-case of the dentry name compare.
1720 *
1721 * Unlike the dentry_cmp() function, we need to atomically
1722 * load the name and length information, so that the
1723 * filesystem can rely on them, and can use the 'name' and
1724 * 'len' information without worrying about walking off the
1725 * end of memory etc.
1726 *
1727 * Thus the read_seqcount_retry() and the "duplicate" info
1728 * in arguments (the low-level filesystem should not look
1729 * at the dentry inode or name contents directly, since
1730 * rename can change them while we're in RCU mode).
1731 */
1732 enum slow_d_compare {
1733 D_COMP_OK,
1734 D_COMP_NOMATCH,
1735 D_COMP_SEQRETRY,
1736 };
1737
1738 static noinline enum slow_d_compare slow_dentry_cmp(
1739 const struct dentry *parent,
1740 struct dentry *dentry,
1741 unsigned int seq,
1742 const struct qstr *name)
1743 {
1744 int tlen = dentry->d_name.len;
1745 const char *tname = dentry->d_name.name;
1746
1747 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1748 cpu_relax();
1749 return D_COMP_SEQRETRY;
1750 }
1751 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1752 return D_COMP_NOMATCH;
1753 return D_COMP_OK;
1754 }
1755
1756 /**
1757 * __d_lookup_rcu - search for a dentry (racy, store-free)
1758 * @parent: parent dentry
1759 * @name: qstr of name we wish to find
1760 * @seqp: returns d_seq value at the point where the dentry was found
1761 * Returns: dentry, or NULL
1762 *
1763 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1764 * resolution (store-free path walking) design described in
1765 * Documentation/filesystems/path-lookup.txt.
1766 *
1767 * This is not to be used outside core vfs.
1768 *
1769 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1770 * held, and rcu_read_lock held. The returned dentry must not be stored into
1771 * without taking d_lock and checking d_seq sequence count against @seq
1772 * returned here.
1773 *
1774 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1775 * function.
1776 *
1777 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1778 * the returned dentry, so long as its parent's seqlock is checked after the
1779 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1780 * is formed, giving integrity down the path walk.
1781 *
1782 * NOTE! The caller *has* to check the resulting dentry against the sequence
1783 * number we've returned before using any of the resulting dentry state!
1784 */
1785 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1786 const struct qstr *name,
1787 unsigned *seqp)
1788 {
1789 u64 hashlen = name->hash_len;
1790 const unsigned char *str = name->name;
1791 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1792 struct hlist_bl_node *node;
1793 struct dentry *dentry;
1794
1795 /*
1796 * Note: There is significant duplication with __d_lookup_rcu which is
1797 * required to prevent single threaded performance regressions
1798 * especially on architectures where smp_rmb (in seqcounts) are costly.
1799 * Keep the two functions in sync.
1800 */
1801
1802 /*
1803 * The hash list is protected using RCU.
1804 *
1805 * Carefully use d_seq when comparing a candidate dentry, to avoid
1806 * races with d_move().
1807 *
1808 * It is possible that concurrent renames can mess up our list
1809 * walk here and result in missing our dentry, resulting in the
1810 * false-negative result. d_lookup() protects against concurrent
1811 * renames using rename_lock seqlock.
1812 *
1813 * See Documentation/filesystems/path-lookup.txt for more details.
1814 */
1815 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1816 unsigned seq;
1817
1818 seqretry:
1819 /*
1820 * The dentry sequence count protects us from concurrent
1821 * renames, and thus protects parent and name fields.
1822 *
1823 * The caller must perform a seqcount check in order
1824 * to do anything useful with the returned dentry.
1825 *
1826 * NOTE! We do a "raw" seqcount_begin here. That means that
1827 * we don't wait for the sequence count to stabilize if it
1828 * is in the middle of a sequence change. If we do the slow
1829 * dentry compare, we will do seqretries until it is stable,
1830 * and if we end up with a successful lookup, we actually
1831 * want to exit RCU lookup anyway.
1832 */
1833 seq = raw_seqcount_begin(&dentry->d_seq);
1834 if (dentry->d_parent != parent)
1835 continue;
1836 if (d_unhashed(dentry))
1837 continue;
1838
1839 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1840 if (dentry->d_name.hash != hashlen_hash(hashlen))
1841 continue;
1842 *seqp = seq;
1843 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
1844 case D_COMP_OK:
1845 return dentry;
1846 case D_COMP_NOMATCH:
1847 continue;
1848 default:
1849 goto seqretry;
1850 }
1851 }
1852
1853 if (dentry->d_name.hash_len != hashlen)
1854 continue;
1855 *seqp = seq;
1856 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1857 return dentry;
1858 }
1859 return NULL;
1860 }
1861
1862 /**
1863 * d_lookup - search for a dentry
1864 * @parent: parent dentry
1865 * @name: qstr of name we wish to find
1866 * Returns: dentry, or NULL
1867 *
1868 * d_lookup searches the children of the parent dentry for the name in
1869 * question. If the dentry is found its reference count is incremented and the
1870 * dentry is returned. The caller must use dput to free the entry when it has
1871 * finished using it. %NULL is returned if the dentry does not exist.
1872 */
1873 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1874 {
1875 struct dentry *dentry;
1876 unsigned seq;
1877
1878 do {
1879 seq = read_seqbegin(&rename_lock);
1880 dentry = __d_lookup(parent, name);
1881 if (dentry)
1882 break;
1883 } while (read_seqretry(&rename_lock, seq));
1884 return dentry;
1885 }
1886 EXPORT_SYMBOL(d_lookup);
1887
1888 /**
1889 * __d_lookup - search for a dentry (racy)
1890 * @parent: parent dentry
1891 * @name: qstr of name we wish to find
1892 * Returns: dentry, or NULL
1893 *
1894 * __d_lookup is like d_lookup, however it may (rarely) return a
1895 * false-negative result due to unrelated rename activity.
1896 *
1897 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1898 * however it must be used carefully, eg. with a following d_lookup in
1899 * the case of failure.
1900 *
1901 * __d_lookup callers must be commented.
1902 */
1903 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1904 {
1905 unsigned int len = name->len;
1906 unsigned int hash = name->hash;
1907 const unsigned char *str = name->name;
1908 struct hlist_bl_head *b = d_hash(parent, hash);
1909 struct hlist_bl_node *node;
1910 struct dentry *found = NULL;
1911 struct dentry *dentry;
1912
1913 /*
1914 * Note: There is significant duplication with __d_lookup_rcu which is
1915 * required to prevent single threaded performance regressions
1916 * especially on architectures where smp_rmb (in seqcounts) are costly.
1917 * Keep the two functions in sync.
1918 */
1919
1920 /*
1921 * The hash list is protected using RCU.
1922 *
1923 * Take d_lock when comparing a candidate dentry, to avoid races
1924 * with d_move().
1925 *
1926 * It is possible that concurrent renames can mess up our list
1927 * walk here and result in missing our dentry, resulting in the
1928 * false-negative result. d_lookup() protects against concurrent
1929 * renames using rename_lock seqlock.
1930 *
1931 * See Documentation/filesystems/path-lookup.txt for more details.
1932 */
1933 rcu_read_lock();
1934
1935 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1936
1937 if (dentry->d_name.hash != hash)
1938 continue;
1939
1940 spin_lock(&dentry->d_lock);
1941 if (dentry->d_parent != parent)
1942 goto next;
1943 if (d_unhashed(dentry))
1944 goto next;
1945
1946 /*
1947 * It is safe to compare names since d_move() cannot
1948 * change the qstr (protected by d_lock).
1949 */
1950 if (parent->d_flags & DCACHE_OP_COMPARE) {
1951 int tlen = dentry->d_name.len;
1952 const char *tname = dentry->d_name.name;
1953 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1954 goto next;
1955 } else {
1956 if (dentry->d_name.len != len)
1957 goto next;
1958 if (dentry_cmp(dentry, str, len))
1959 goto next;
1960 }
1961
1962 dentry->d_lockref.count++;
1963 found = dentry;
1964 spin_unlock(&dentry->d_lock);
1965 break;
1966 next:
1967 spin_unlock(&dentry->d_lock);
1968 }
1969 rcu_read_unlock();
1970
1971 return found;
1972 }
1973
1974 /**
1975 * d_hash_and_lookup - hash the qstr then search for a dentry
1976 * @dir: Directory to search in
1977 * @name: qstr of name we wish to find
1978 *
1979 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
1980 */
1981 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1982 {
1983 /*
1984 * Check for a fs-specific hash function. Note that we must
1985 * calculate the standard hash first, as the d_op->d_hash()
1986 * routine may choose to leave the hash value unchanged.
1987 */
1988 name->hash = full_name_hash(name->name, name->len);
1989 if (dir->d_flags & DCACHE_OP_HASH) {
1990 int err = dir->d_op->d_hash(dir, name);
1991 if (unlikely(err < 0))
1992 return ERR_PTR(err);
1993 }
1994 return d_lookup(dir, name);
1995 }
1996 EXPORT_SYMBOL(d_hash_and_lookup);
1997
1998 /**
1999 * d_validate - verify dentry provided from insecure source (deprecated)
2000 * @dentry: The dentry alleged to be valid child of @dparent
2001 * @dparent: The parent dentry (known to be valid)
2002 *
2003 * An insecure source has sent us a dentry, here we verify it and dget() it.
2004 * This is used by ncpfs in its readdir implementation.
2005 * Zero is returned in the dentry is invalid.
2006 *
2007 * This function is slow for big directories, and deprecated, do not use it.
2008 */
2009 int d_validate(struct dentry *dentry, struct dentry *dparent)
2010 {
2011 struct dentry *child;
2012
2013 spin_lock(&dparent->d_lock);
2014 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2015 if (dentry == child) {
2016 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2017 __dget_dlock(dentry);
2018 spin_unlock(&dentry->d_lock);
2019 spin_unlock(&dparent->d_lock);
2020 return 1;
2021 }
2022 }
2023 spin_unlock(&dparent->d_lock);
2024
2025 return 0;
2026 }
2027 EXPORT_SYMBOL(d_validate);
2028
2029 /*
2030 * When a file is deleted, we have two options:
2031 * - turn this dentry into a negative dentry
2032 * - unhash this dentry and free it.
2033 *
2034 * Usually, we want to just turn this into
2035 * a negative dentry, but if anybody else is
2036 * currently using the dentry or the inode
2037 * we can't do that and we fall back on removing
2038 * it from the hash queues and waiting for
2039 * it to be deleted later when it has no users
2040 */
2041
2042 /**
2043 * d_delete - delete a dentry
2044 * @dentry: The dentry to delete
2045 *
2046 * Turn the dentry into a negative dentry if possible, otherwise
2047 * remove it from the hash queues so it can be deleted later
2048 */
2049
2050 void d_delete(struct dentry * dentry)
2051 {
2052 struct inode *inode;
2053 int isdir = 0;
2054 /*
2055 * Are we the only user?
2056 */
2057 again:
2058 spin_lock(&dentry->d_lock);
2059 inode = dentry->d_inode;
2060 isdir = S_ISDIR(inode->i_mode);
2061 if (dentry->d_lockref.count == 1) {
2062 if (!spin_trylock(&inode->i_lock)) {
2063 spin_unlock(&dentry->d_lock);
2064 cpu_relax();
2065 goto again;
2066 }
2067 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2068 dentry_unlink_inode(dentry);
2069 fsnotify_nameremove(dentry, isdir);
2070 return;
2071 }
2072
2073 if (!d_unhashed(dentry))
2074 __d_drop(dentry);
2075
2076 spin_unlock(&dentry->d_lock);
2077
2078 fsnotify_nameremove(dentry, isdir);
2079 }
2080 EXPORT_SYMBOL(d_delete);
2081
2082 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2083 {
2084 BUG_ON(!d_unhashed(entry));
2085 hlist_bl_lock(b);
2086 entry->d_flags |= DCACHE_RCUACCESS;
2087 hlist_bl_add_head_rcu(&entry->d_hash, b);
2088 hlist_bl_unlock(b);
2089 }
2090
2091 static void _d_rehash(struct dentry * entry)
2092 {
2093 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2094 }
2095
2096 /**
2097 * d_rehash - add an entry back to the hash
2098 * @entry: dentry to add to the hash
2099 *
2100 * Adds a dentry to the hash according to its name.
2101 */
2102
2103 void d_rehash(struct dentry * entry)
2104 {
2105 spin_lock(&entry->d_lock);
2106 _d_rehash(entry);
2107 spin_unlock(&entry->d_lock);
2108 }
2109 EXPORT_SYMBOL(d_rehash);
2110
2111 /**
2112 * dentry_update_name_case - update case insensitive dentry with a new name
2113 * @dentry: dentry to be updated
2114 * @name: new name
2115 *
2116 * Update a case insensitive dentry with new case of name.
2117 *
2118 * dentry must have been returned by d_lookup with name @name. Old and new
2119 * name lengths must match (ie. no d_compare which allows mismatched name
2120 * lengths).
2121 *
2122 * Parent inode i_mutex must be held over d_lookup and into this call (to
2123 * keep renames and concurrent inserts, and readdir(2) away).
2124 */
2125 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2126 {
2127 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2128 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2129
2130 spin_lock(&dentry->d_lock);
2131 write_seqcount_begin(&dentry->d_seq);
2132 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2133 write_seqcount_end(&dentry->d_seq);
2134 spin_unlock(&dentry->d_lock);
2135 }
2136 EXPORT_SYMBOL(dentry_update_name_case);
2137
2138 static void switch_names(struct dentry *dentry, struct dentry *target)
2139 {
2140 if (dname_external(target)) {
2141 if (dname_external(dentry)) {
2142 /*
2143 * Both external: swap the pointers
2144 */
2145 swap(target->d_name.name, dentry->d_name.name);
2146 } else {
2147 /*
2148 * dentry:internal, target:external. Steal target's
2149 * storage and make target internal.
2150 */
2151 memcpy(target->d_iname, dentry->d_name.name,
2152 dentry->d_name.len + 1);
2153 dentry->d_name.name = target->d_name.name;
2154 target->d_name.name = target->d_iname;
2155 }
2156 } else {
2157 if (dname_external(dentry)) {
2158 /*
2159 * dentry:external, target:internal. Give dentry's
2160 * storage to target and make dentry internal
2161 */
2162 memcpy(dentry->d_iname, target->d_name.name,
2163 target->d_name.len + 1);
2164 target->d_name.name = dentry->d_name.name;
2165 dentry->d_name.name = dentry->d_iname;
2166 } else {
2167 /*
2168 * Both are internal. Just copy target to dentry
2169 */
2170 memcpy(dentry->d_iname, target->d_name.name,
2171 target->d_name.len + 1);
2172 dentry->d_name.len = target->d_name.len;
2173 return;
2174 }
2175 }
2176 swap(dentry->d_name.len, target->d_name.len);
2177 }
2178
2179 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2180 {
2181 /*
2182 * XXXX: do we really need to take target->d_lock?
2183 */
2184 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2185 spin_lock(&target->d_parent->d_lock);
2186 else {
2187 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2188 spin_lock(&dentry->d_parent->d_lock);
2189 spin_lock_nested(&target->d_parent->d_lock,
2190 DENTRY_D_LOCK_NESTED);
2191 } else {
2192 spin_lock(&target->d_parent->d_lock);
2193 spin_lock_nested(&dentry->d_parent->d_lock,
2194 DENTRY_D_LOCK_NESTED);
2195 }
2196 }
2197 if (target < dentry) {
2198 spin_lock_nested(&target->d_lock, 2);
2199 spin_lock_nested(&dentry->d_lock, 3);
2200 } else {
2201 spin_lock_nested(&dentry->d_lock, 2);
2202 spin_lock_nested(&target->d_lock, 3);
2203 }
2204 }
2205
2206 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2207 struct dentry *target)
2208 {
2209 if (target->d_parent != dentry->d_parent)
2210 spin_unlock(&dentry->d_parent->d_lock);
2211 if (target->d_parent != target)
2212 spin_unlock(&target->d_parent->d_lock);
2213 }
2214
2215 /*
2216 * When switching names, the actual string doesn't strictly have to
2217 * be preserved in the target - because we're dropping the target
2218 * anyway. As such, we can just do a simple memcpy() to copy over
2219 * the new name before we switch.
2220 *
2221 * Note that we have to be a lot more careful about getting the hash
2222 * switched - we have to switch the hash value properly even if it
2223 * then no longer matches the actual (corrupted) string of the target.
2224 * The hash value has to match the hash queue that the dentry is on..
2225 */
2226 /*
2227 * __d_move - move a dentry
2228 * @dentry: entry to move
2229 * @target: new dentry
2230 *
2231 * Update the dcache to reflect the move of a file name. Negative
2232 * dcache entries should not be moved in this way. Caller must hold
2233 * rename_lock, the i_mutex of the source and target directories,
2234 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2235 */
2236 static void __d_move(struct dentry * dentry, struct dentry * target)
2237 {
2238 if (!dentry->d_inode)
2239 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2240
2241 BUG_ON(d_ancestor(dentry, target));
2242 BUG_ON(d_ancestor(target, dentry));
2243
2244 dentry_lock_for_move(dentry, target);
2245
2246 write_seqcount_begin(&dentry->d_seq);
2247 write_seqcount_begin(&target->d_seq);
2248
2249 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2250
2251 /*
2252 * Move the dentry to the target hash queue. Don't bother checking
2253 * for the same hash queue because of how unlikely it is.
2254 */
2255 __d_drop(dentry);
2256 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2257
2258 /* Unhash the target: dput() will then get rid of it */
2259 __d_drop(target);
2260
2261 list_del(&dentry->d_u.d_child);
2262 list_del(&target->d_u.d_child);
2263
2264 /* Switch the names.. */
2265 switch_names(dentry, target);
2266 swap(dentry->d_name.hash, target->d_name.hash);
2267
2268 /* ... and switch the parents */
2269 if (IS_ROOT(dentry)) {
2270 dentry->d_parent = target->d_parent;
2271 target->d_parent = target;
2272 INIT_LIST_HEAD(&target->d_u.d_child);
2273 } else {
2274 swap(dentry->d_parent, target->d_parent);
2275
2276 /* And add them back to the (new) parent lists */
2277 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2278 }
2279
2280 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2281
2282 write_seqcount_end(&target->d_seq);
2283 write_seqcount_end(&dentry->d_seq);
2284
2285 dentry_unlock_parents_for_move(dentry, target);
2286 spin_unlock(&target->d_lock);
2287 fsnotify_d_move(dentry);
2288 spin_unlock(&dentry->d_lock);
2289 }
2290
2291 /*
2292 * d_move - move a dentry
2293 * @dentry: entry to move
2294 * @target: new dentry
2295 *
2296 * Update the dcache to reflect the move of a file name. Negative
2297 * dcache entries should not be moved in this way. See the locking
2298 * requirements for __d_move.
2299 */
2300 void d_move(struct dentry *dentry, struct dentry *target)
2301 {
2302 write_seqlock(&rename_lock);
2303 __d_move(dentry, target);
2304 write_sequnlock(&rename_lock);
2305 }
2306 EXPORT_SYMBOL(d_move);
2307
2308 /**
2309 * d_ancestor - search for an ancestor
2310 * @p1: ancestor dentry
2311 * @p2: child dentry
2312 *
2313 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2314 * an ancestor of p2, else NULL.
2315 */
2316 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2317 {
2318 struct dentry *p;
2319
2320 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2321 if (p->d_parent == p1)
2322 return p;
2323 }
2324 return NULL;
2325 }
2326
2327 /*
2328 * This helper attempts to cope with remotely renamed directories
2329 *
2330 * It assumes that the caller is already holding
2331 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2332 *
2333 * Note: If ever the locking in lock_rename() changes, then please
2334 * remember to update this too...
2335 */
2336 static struct dentry *__d_unalias(struct inode *inode,
2337 struct dentry *dentry, struct dentry *alias)
2338 {
2339 struct mutex *m1 = NULL, *m2 = NULL;
2340 struct dentry *ret = ERR_PTR(-EBUSY);
2341
2342 /* If alias and dentry share a parent, then no extra locks required */
2343 if (alias->d_parent == dentry->d_parent)
2344 goto out_unalias;
2345
2346 /* See lock_rename() */
2347 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2348 goto out_err;
2349 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2350 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2351 goto out_err;
2352 m2 = &alias->d_parent->d_inode->i_mutex;
2353 out_unalias:
2354 if (likely(!d_mountpoint(alias))) {
2355 __d_move(alias, dentry);
2356 ret = alias;
2357 }
2358 out_err:
2359 spin_unlock(&inode->i_lock);
2360 if (m2)
2361 mutex_unlock(m2);
2362 if (m1)
2363 mutex_unlock(m1);
2364 return ret;
2365 }
2366
2367 /*
2368 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2369 * named dentry in place of the dentry to be replaced.
2370 * returns with anon->d_lock held!
2371 */
2372 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2373 {
2374 struct dentry *dparent;
2375
2376 dentry_lock_for_move(anon, dentry);
2377
2378 write_seqcount_begin(&dentry->d_seq);
2379 write_seqcount_begin(&anon->d_seq);
2380
2381 dparent = dentry->d_parent;
2382
2383 switch_names(dentry, anon);
2384 swap(dentry->d_name.hash, anon->d_name.hash);
2385
2386 dentry->d_parent = dentry;
2387 list_del_init(&dentry->d_u.d_child);
2388 anon->d_parent = dparent;
2389 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2390
2391 write_seqcount_end(&dentry->d_seq);
2392 write_seqcount_end(&anon->d_seq);
2393
2394 dentry_unlock_parents_for_move(anon, dentry);
2395 spin_unlock(&dentry->d_lock);
2396
2397 /* anon->d_lock still locked, returns locked */
2398 anon->d_flags &= ~DCACHE_DISCONNECTED;
2399 }
2400
2401 /**
2402 * d_materialise_unique - introduce an inode into the tree
2403 * @dentry: candidate dentry
2404 * @inode: inode to bind to the dentry, to which aliases may be attached
2405 *
2406 * Introduces an dentry into the tree, substituting an extant disconnected
2407 * root directory alias in its place if there is one. Caller must hold the
2408 * i_mutex of the parent directory.
2409 */
2410 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2411 {
2412 struct dentry *actual;
2413
2414 BUG_ON(!d_unhashed(dentry));
2415
2416 if (!inode) {
2417 actual = dentry;
2418 __d_instantiate(dentry, NULL);
2419 d_rehash(actual);
2420 goto out_nolock;
2421 }
2422
2423 spin_lock(&inode->i_lock);
2424
2425 if (S_ISDIR(inode->i_mode)) {
2426 struct dentry *alias;
2427
2428 /* Does an aliased dentry already exist? */
2429 alias = __d_find_alias(inode, 0);
2430 if (alias) {
2431 actual = alias;
2432 write_seqlock(&rename_lock);
2433
2434 if (d_ancestor(alias, dentry)) {
2435 /* Check for loops */
2436 actual = ERR_PTR(-ELOOP);
2437 spin_unlock(&inode->i_lock);
2438 } else if (IS_ROOT(alias)) {
2439 /* Is this an anonymous mountpoint that we
2440 * could splice into our tree? */
2441 __d_materialise_dentry(dentry, alias);
2442 write_sequnlock(&rename_lock);
2443 __d_drop(alias);
2444 goto found;
2445 } else {
2446 /* Nope, but we must(!) avoid directory
2447 * aliasing. This drops inode->i_lock */
2448 actual = __d_unalias(inode, dentry, alias);
2449 }
2450 write_sequnlock(&rename_lock);
2451 if (IS_ERR(actual)) {
2452 if (PTR_ERR(actual) == -ELOOP)
2453 pr_warn_ratelimited(
2454 "VFS: Lookup of '%s' in %s %s"
2455 " would have caused loop\n",
2456 dentry->d_name.name,
2457 inode->i_sb->s_type->name,
2458 inode->i_sb->s_id);
2459 dput(alias);
2460 }
2461 goto out_nolock;
2462 }
2463 }
2464
2465 /* Add a unique reference */
2466 actual = __d_instantiate_unique(dentry, inode);
2467 if (!actual)
2468 actual = dentry;
2469 else
2470 BUG_ON(!d_unhashed(actual));
2471
2472 spin_lock(&actual->d_lock);
2473 found:
2474 _d_rehash(actual);
2475 spin_unlock(&actual->d_lock);
2476 spin_unlock(&inode->i_lock);
2477 out_nolock:
2478 if (actual == dentry) {
2479 security_d_instantiate(dentry, inode);
2480 return NULL;
2481 }
2482
2483 iput(inode);
2484 return actual;
2485 }
2486 EXPORT_SYMBOL_GPL(d_materialise_unique);
2487
2488 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2489 {
2490 *buflen -= namelen;
2491 if (*buflen < 0)
2492 return -ENAMETOOLONG;
2493 *buffer -= namelen;
2494 memcpy(*buffer, str, namelen);
2495 return 0;
2496 }
2497
2498 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2499 {
2500 return prepend(buffer, buflen, name->name, name->len);
2501 }
2502
2503 /**
2504 * prepend_path - Prepend path string to a buffer
2505 * @path: the dentry/vfsmount to report
2506 * @root: root vfsmnt/dentry
2507 * @buffer: pointer to the end of the buffer
2508 * @buflen: pointer to buffer length
2509 *
2510 * Caller holds the rename_lock.
2511 */
2512 static int prepend_path(const struct path *path,
2513 const struct path *root,
2514 char **buffer, int *buflen)
2515 {
2516 struct dentry *dentry = path->dentry;
2517 struct vfsmount *vfsmnt = path->mnt;
2518 struct mount *mnt = real_mount(vfsmnt);
2519 bool slash = false;
2520 int error = 0;
2521
2522 while (dentry != root->dentry || vfsmnt != root->mnt) {
2523 struct dentry * parent;
2524
2525 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2526 /* Global root? */
2527 if (!mnt_has_parent(mnt))
2528 goto global_root;
2529 dentry = mnt->mnt_mountpoint;
2530 mnt = mnt->mnt_parent;
2531 vfsmnt = &mnt->mnt;
2532 continue;
2533 }
2534 parent = dentry->d_parent;
2535 prefetch(parent);
2536 spin_lock(&dentry->d_lock);
2537 error = prepend_name(buffer, buflen, &dentry->d_name);
2538 spin_unlock(&dentry->d_lock);
2539 if (!error)
2540 error = prepend(buffer, buflen, "/", 1);
2541 if (error)
2542 break;
2543
2544 slash = true;
2545 dentry = parent;
2546 }
2547
2548 if (!error && !slash)
2549 error = prepend(buffer, buflen, "/", 1);
2550
2551 return error;
2552
2553 global_root:
2554 /*
2555 * Filesystems needing to implement special "root names"
2556 * should do so with ->d_dname()
2557 */
2558 if (IS_ROOT(dentry) &&
2559 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2560 WARN(1, "Root dentry has weird name <%.*s>\n",
2561 (int) dentry->d_name.len, dentry->d_name.name);
2562 }
2563 if (!slash)
2564 error = prepend(buffer, buflen, "/", 1);
2565 if (!error)
2566 error = is_mounted(vfsmnt) ? 1 : 2;
2567 return error;
2568 }
2569
2570 /**
2571 * __d_path - return the path of a dentry
2572 * @path: the dentry/vfsmount to report
2573 * @root: root vfsmnt/dentry
2574 * @buf: buffer to return value in
2575 * @buflen: buffer length
2576 *
2577 * Convert a dentry into an ASCII path name.
2578 *
2579 * Returns a pointer into the buffer or an error code if the
2580 * path was too long.
2581 *
2582 * "buflen" should be positive.
2583 *
2584 * If the path is not reachable from the supplied root, return %NULL.
2585 */
2586 char *__d_path(const struct path *path,
2587 const struct path *root,
2588 char *buf, int buflen)
2589 {
2590 char *res = buf + buflen;
2591 int error;
2592
2593 prepend(&res, &buflen, "\0", 1);
2594 br_read_lock(&vfsmount_lock);
2595 write_seqlock(&rename_lock);
2596 error = prepend_path(path, root, &res, &buflen);
2597 write_sequnlock(&rename_lock);
2598 br_read_unlock(&vfsmount_lock);
2599
2600 if (error < 0)
2601 return ERR_PTR(error);
2602 if (error > 0)
2603 return NULL;
2604 return res;
2605 }
2606
2607 char *d_absolute_path(const struct path *path,
2608 char *buf, int buflen)
2609 {
2610 struct path root = {};
2611 char *res = buf + buflen;
2612 int error;
2613
2614 prepend(&res, &buflen, "\0", 1);
2615 br_read_lock(&vfsmount_lock);
2616 write_seqlock(&rename_lock);
2617 error = prepend_path(path, &root, &res, &buflen);
2618 write_sequnlock(&rename_lock);
2619 br_read_unlock(&vfsmount_lock);
2620
2621 if (error > 1)
2622 error = -EINVAL;
2623 if (error < 0)
2624 return ERR_PTR(error);
2625 return res;
2626 }
2627
2628 /*
2629 * same as __d_path but appends "(deleted)" for unlinked files.
2630 */
2631 static int path_with_deleted(const struct path *path,
2632 const struct path *root,
2633 char **buf, int *buflen)
2634 {
2635 prepend(buf, buflen, "\0", 1);
2636 if (d_unlinked(path->dentry)) {
2637 int error = prepend(buf, buflen, " (deleted)", 10);
2638 if (error)
2639 return error;
2640 }
2641
2642 return prepend_path(path, root, buf, buflen);
2643 }
2644
2645 static int prepend_unreachable(char **buffer, int *buflen)
2646 {
2647 return prepend(buffer, buflen, "(unreachable)", 13);
2648 }
2649
2650 /**
2651 * d_path - return the path of a dentry
2652 * @path: path to report
2653 * @buf: buffer to return value in
2654 * @buflen: buffer length
2655 *
2656 * Convert a dentry into an ASCII path name. If the entry has been deleted
2657 * the string " (deleted)" is appended. Note that this is ambiguous.
2658 *
2659 * Returns a pointer into the buffer or an error code if the path was
2660 * too long. Note: Callers should use the returned pointer, not the passed
2661 * in buffer, to use the name! The implementation often starts at an offset
2662 * into the buffer, and may leave 0 bytes at the start.
2663 *
2664 * "buflen" should be positive.
2665 */
2666 char *d_path(const struct path *path, char *buf, int buflen)
2667 {
2668 char *res = buf + buflen;
2669 struct path root;
2670 int error;
2671
2672 /*
2673 * We have various synthetic filesystems that never get mounted. On
2674 * these filesystems dentries are never used for lookup purposes, and
2675 * thus don't need to be hashed. They also don't need a name until a
2676 * user wants to identify the object in /proc/pid/fd/. The little hack
2677 * below allows us to generate a name for these objects on demand:
2678 */
2679 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2680 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2681
2682 get_fs_root(current->fs, &root);
2683 br_read_lock(&vfsmount_lock);
2684 write_seqlock(&rename_lock);
2685 error = path_with_deleted(path, &root, &res, &buflen);
2686 write_sequnlock(&rename_lock);
2687 br_read_unlock(&vfsmount_lock);
2688 if (error < 0)
2689 res = ERR_PTR(error);
2690 path_put(&root);
2691 return res;
2692 }
2693 EXPORT_SYMBOL(d_path);
2694
2695 /*
2696 * Helper function for dentry_operations.d_dname() members
2697 */
2698 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2699 const char *fmt, ...)
2700 {
2701 va_list args;
2702 char temp[64];
2703 int sz;
2704
2705 va_start(args, fmt);
2706 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2707 va_end(args);
2708
2709 if (sz > sizeof(temp) || sz > buflen)
2710 return ERR_PTR(-ENAMETOOLONG);
2711
2712 buffer += buflen - sz;
2713 return memcpy(buffer, temp, sz);
2714 }
2715
2716 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2717 {
2718 char *end = buffer + buflen;
2719 /* these dentries are never renamed, so d_lock is not needed */
2720 if (prepend(&end, &buflen, " (deleted)", 11) ||
2721 prepend_name(&end, &buflen, &dentry->d_name) ||
2722 prepend(&end, &buflen, "/", 1))
2723 end = ERR_PTR(-ENAMETOOLONG);
2724 return end;
2725 }
2726
2727 /*
2728 * Write full pathname from the root of the filesystem into the buffer.
2729 */
2730 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2731 {
2732 char *end = buf + buflen;
2733 char *retval;
2734
2735 prepend(&end, &buflen, "\0", 1);
2736 if (buflen < 1)
2737 goto Elong;
2738 /* Get '/' right */
2739 retval = end-1;
2740 *retval = '/';
2741
2742 while (!IS_ROOT(dentry)) {
2743 struct dentry *parent = dentry->d_parent;
2744 int error;
2745
2746 prefetch(parent);
2747 spin_lock(&dentry->d_lock);
2748 error = prepend_name(&end, &buflen, &dentry->d_name);
2749 spin_unlock(&dentry->d_lock);
2750 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2751 goto Elong;
2752
2753 retval = end;
2754 dentry = parent;
2755 }
2756 return retval;
2757 Elong:
2758 return ERR_PTR(-ENAMETOOLONG);
2759 }
2760
2761 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2762 {
2763 char *retval;
2764
2765 write_seqlock(&rename_lock);
2766 retval = __dentry_path(dentry, buf, buflen);
2767 write_sequnlock(&rename_lock);
2768
2769 return retval;
2770 }
2771 EXPORT_SYMBOL(dentry_path_raw);
2772
2773 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2774 {
2775 char *p = NULL;
2776 char *retval;
2777
2778 write_seqlock(&rename_lock);
2779 if (d_unlinked(dentry)) {
2780 p = buf + buflen;
2781 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2782 goto Elong;
2783 buflen++;
2784 }
2785 retval = __dentry_path(dentry, buf, buflen);
2786 write_sequnlock(&rename_lock);
2787 if (!IS_ERR(retval) && p)
2788 *p = '/'; /* restore '/' overriden with '\0' */
2789 return retval;
2790 Elong:
2791 return ERR_PTR(-ENAMETOOLONG);
2792 }
2793
2794 /*
2795 * NOTE! The user-level library version returns a
2796 * character pointer. The kernel system call just
2797 * returns the length of the buffer filled (which
2798 * includes the ending '\0' character), or a negative
2799 * error value. So libc would do something like
2800 *
2801 * char *getcwd(char * buf, size_t size)
2802 * {
2803 * int retval;
2804 *
2805 * retval = sys_getcwd(buf, size);
2806 * if (retval >= 0)
2807 * return buf;
2808 * errno = -retval;
2809 * return NULL;
2810 * }
2811 */
2812 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2813 {
2814 int error;
2815 struct path pwd, root;
2816 char *page = (char *) __get_free_page(GFP_USER);
2817
2818 if (!page)
2819 return -ENOMEM;
2820
2821 get_fs_root_and_pwd(current->fs, &root, &pwd);
2822
2823 error = -ENOENT;
2824 br_read_lock(&vfsmount_lock);
2825 write_seqlock(&rename_lock);
2826 if (!d_unlinked(pwd.dentry)) {
2827 unsigned long len;
2828 char *cwd = page + PAGE_SIZE;
2829 int buflen = PAGE_SIZE;
2830
2831 prepend(&cwd, &buflen, "\0", 1);
2832 error = prepend_path(&pwd, &root, &cwd, &buflen);
2833 write_sequnlock(&rename_lock);
2834 br_read_unlock(&vfsmount_lock);
2835
2836 if (error < 0)
2837 goto out;
2838
2839 /* Unreachable from current root */
2840 if (error > 0) {
2841 error = prepend_unreachable(&cwd, &buflen);
2842 if (error)
2843 goto out;
2844 }
2845
2846 error = -ERANGE;
2847 len = PAGE_SIZE + page - cwd;
2848 if (len <= size) {
2849 error = len;
2850 if (copy_to_user(buf, cwd, len))
2851 error = -EFAULT;
2852 }
2853 } else {
2854 write_sequnlock(&rename_lock);
2855 br_read_unlock(&vfsmount_lock);
2856 }
2857
2858 out:
2859 path_put(&pwd);
2860 path_put(&root);
2861 free_page((unsigned long) page);
2862 return error;
2863 }
2864
2865 /*
2866 * Test whether new_dentry is a subdirectory of old_dentry.
2867 *
2868 * Trivially implemented using the dcache structure
2869 */
2870
2871 /**
2872 * is_subdir - is new dentry a subdirectory of old_dentry
2873 * @new_dentry: new dentry
2874 * @old_dentry: old dentry
2875 *
2876 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2877 * Returns 0 otherwise.
2878 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2879 */
2880
2881 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2882 {
2883 int result;
2884 unsigned seq;
2885
2886 if (new_dentry == old_dentry)
2887 return 1;
2888
2889 do {
2890 /* for restarting inner loop in case of seq retry */
2891 seq = read_seqbegin(&rename_lock);
2892 /*
2893 * Need rcu_readlock to protect against the d_parent trashing
2894 * due to d_move
2895 */
2896 rcu_read_lock();
2897 if (d_ancestor(old_dentry, new_dentry))
2898 result = 1;
2899 else
2900 result = 0;
2901 rcu_read_unlock();
2902 } while (read_seqretry(&rename_lock, seq));
2903
2904 return result;
2905 }
2906
2907 void d_genocide(struct dentry *root)
2908 {
2909 struct dentry *this_parent;
2910 struct list_head *next;
2911 unsigned seq;
2912 int locked = 0;
2913
2914 seq = read_seqbegin(&rename_lock);
2915 again:
2916 this_parent = root;
2917 spin_lock(&this_parent->d_lock);
2918 repeat:
2919 next = this_parent->d_subdirs.next;
2920 resume:
2921 while (next != &this_parent->d_subdirs) {
2922 struct list_head *tmp = next;
2923 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2924 next = tmp->next;
2925
2926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2927 if (d_unhashed(dentry) || !dentry->d_inode) {
2928 spin_unlock(&dentry->d_lock);
2929 continue;
2930 }
2931 if (!list_empty(&dentry->d_subdirs)) {
2932 spin_unlock(&this_parent->d_lock);
2933 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2934 this_parent = dentry;
2935 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2936 goto repeat;
2937 }
2938 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2939 dentry->d_flags |= DCACHE_GENOCIDE;
2940 dentry->d_lockref.count--;
2941 }
2942 spin_unlock(&dentry->d_lock);
2943 }
2944 if (this_parent != root) {
2945 struct dentry *child = this_parent;
2946 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2947 this_parent->d_flags |= DCACHE_GENOCIDE;
2948 this_parent->d_lockref.count--;
2949 }
2950 this_parent = try_to_ascend(this_parent, locked, seq);
2951 if (!this_parent)
2952 goto rename_retry;
2953 next = child->d_u.d_child.next;
2954 goto resume;
2955 }
2956 spin_unlock(&this_parent->d_lock);
2957 if (!locked && read_seqretry(&rename_lock, seq))
2958 goto rename_retry;
2959 if (locked)
2960 write_sequnlock(&rename_lock);
2961 return;
2962
2963 rename_retry:
2964 if (locked)
2965 goto again;
2966 locked = 1;
2967 write_seqlock(&rename_lock);
2968 goto again;
2969 }
2970
2971 void d_tmpfile(struct dentry *dentry, struct inode *inode)
2972 {
2973 inode_dec_link_count(inode);
2974 BUG_ON(dentry->d_name.name != dentry->d_iname ||
2975 !hlist_unhashed(&dentry->d_alias) ||
2976 !d_unlinked(dentry));
2977 spin_lock(&dentry->d_parent->d_lock);
2978 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2979 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
2980 (unsigned long long)inode->i_ino);
2981 spin_unlock(&dentry->d_lock);
2982 spin_unlock(&dentry->d_parent->d_lock);
2983 d_instantiate(dentry, inode);
2984 }
2985 EXPORT_SYMBOL(d_tmpfile);
2986
2987 static __initdata unsigned long dhash_entries;
2988 static int __init set_dhash_entries(char *str)
2989 {
2990 if (!str)
2991 return 0;
2992 dhash_entries = simple_strtoul(str, &str, 0);
2993 return 1;
2994 }
2995 __setup("dhash_entries=", set_dhash_entries);
2996
2997 static void __init dcache_init_early(void)
2998 {
2999 unsigned int loop;
3000
3001 /* If hashes are distributed across NUMA nodes, defer
3002 * hash allocation until vmalloc space is available.
3003 */
3004 if (hashdist)
3005 return;
3006
3007 dentry_hashtable =
3008 alloc_large_system_hash("Dentry cache",
3009 sizeof(struct hlist_bl_head),
3010 dhash_entries,
3011 13,
3012 HASH_EARLY,
3013 &d_hash_shift,
3014 &d_hash_mask,
3015 0,
3016 0);
3017
3018 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3019 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3020 }
3021
3022 static void __init dcache_init(void)
3023 {
3024 unsigned int loop;
3025
3026 /*
3027 * A constructor could be added for stable state like the lists,
3028 * but it is probably not worth it because of the cache nature
3029 * of the dcache.
3030 */
3031 dentry_cache = KMEM_CACHE(dentry,
3032 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3033
3034 /* Hash may have been set up in dcache_init_early */
3035 if (!hashdist)
3036 return;
3037
3038 dentry_hashtable =
3039 alloc_large_system_hash("Dentry cache",
3040 sizeof(struct hlist_bl_head),
3041 dhash_entries,
3042 13,
3043 0,
3044 &d_hash_shift,
3045 &d_hash_mask,
3046 0,
3047 0);
3048
3049 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3050 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3051 }
3052
3053 /* SLAB cache for __getname() consumers */
3054 struct kmem_cache *names_cachep __read_mostly;
3055 EXPORT_SYMBOL(names_cachep);
3056
3057 EXPORT_SYMBOL(d_genocide);
3058
3059 void __init vfs_caches_init_early(void)
3060 {
3061 dcache_init_early();
3062 inode_init_early();
3063 }
3064
3065 void __init vfs_caches_init(unsigned long mempages)
3066 {
3067 unsigned long reserve;
3068
3069 /* Base hash sizes on available memory, with a reserve equal to
3070 150% of current kernel size */
3071
3072 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3073 mempages -= reserve;
3074
3075 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3076 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3077
3078 dcache_init();
3079 inode_init();
3080 files_init(mempages);
3081 mnt_init();
3082 bdev_cache_init();
3083 chrdev_init();
3084 }
This page took 0.122849 seconds and 5 git commands to generate.