Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43
44 /*
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
63 *
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
70 *
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /**
92 * read_seqbegin_or_lock - begin a sequence number check or locking block
93 * @lock: sequence lock
94 * @seq : sequence number to be checked
95 *
96 * First try it once optimistically without taking the lock. If that fails,
97 * take the lock. The sequence number is also used as a marker for deciding
98 * whether to be a reader (even) or writer (odd).
99 * N.B. seq must be initialized to an even number to begin with.
100 */
101 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
102 {
103 if (!(*seq & 1)) /* Even */
104 *seq = read_seqbegin(lock);
105 else /* Odd */
106 read_seqlock_excl(lock);
107 }
108
109 static inline int need_seqretry(seqlock_t *lock, int seq)
110 {
111 return !(seq & 1) && read_seqretry(lock, seq);
112 }
113
114 static inline void done_seqretry(seqlock_t *lock, int seq)
115 {
116 if (seq & 1)
117 read_sequnlock_excl(lock);
118 }
119
120 /*
121 * This is the single most critical data structure when it comes
122 * to the dcache: the hashtable for lookups. Somebody should try
123 * to make this good - I've just made it work.
124 *
125 * This hash-function tries to avoid losing too many bits of hash
126 * information, yet avoid using a prime hash-size or similar.
127 */
128 #define D_HASHBITS d_hash_shift
129 #define D_HASHMASK d_hash_mask
130
131 static unsigned int d_hash_mask __read_mostly;
132 static unsigned int d_hash_shift __read_mostly;
133
134 static struct hlist_bl_head *dentry_hashtable __read_mostly;
135
136 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
137 unsigned int hash)
138 {
139 hash += (unsigned long) parent / L1_CACHE_BYTES;
140 hash = hash + (hash >> D_HASHBITS);
141 return dentry_hashtable + (hash & D_HASHMASK);
142 }
143
144 /* Statistics gathering. */
145 struct dentry_stat_t dentry_stat = {
146 .age_limit = 45,
147 };
148
149 static DEFINE_PER_CPU(long, nr_dentry);
150 static DEFINE_PER_CPU(long, nr_dentry_unused);
151
152 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
153
154 /*
155 * Here we resort to our own counters instead of using generic per-cpu counters
156 * for consistency with what the vfs inode code does. We are expected to harvest
157 * better code and performance by having our own specialized counters.
158 *
159 * Please note that the loop is done over all possible CPUs, not over all online
160 * CPUs. The reason for this is that we don't want to play games with CPUs going
161 * on and off. If one of them goes off, we will just keep their counters.
162 *
163 * glommer: See cffbc8a for details, and if you ever intend to change this,
164 * please update all vfs counters to match.
165 */
166 static long get_nr_dentry(void)
167 {
168 int i;
169 long sum = 0;
170 for_each_possible_cpu(i)
171 sum += per_cpu(nr_dentry, i);
172 return sum < 0 ? 0 : sum;
173 }
174
175 static long get_nr_dentry_unused(void)
176 {
177 int i;
178 long sum = 0;
179 for_each_possible_cpu(i)
180 sum += per_cpu(nr_dentry_unused, i);
181 return sum < 0 ? 0 : sum;
182 }
183
184 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
185 size_t *lenp, loff_t *ppos)
186 {
187 dentry_stat.nr_dentry = get_nr_dentry();
188 dentry_stat.nr_unused = get_nr_dentry_unused();
189 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
190 }
191 #endif
192
193 /*
194 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
195 * The strings are both count bytes long, and count is non-zero.
196 */
197 #ifdef CONFIG_DCACHE_WORD_ACCESS
198
199 #include <asm/word-at-a-time.h>
200 /*
201 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
202 * aligned allocation for this particular component. We don't
203 * strictly need the load_unaligned_zeropad() safety, but it
204 * doesn't hurt either.
205 *
206 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
207 * need the careful unaligned handling.
208 */
209 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
210 {
211 unsigned long a,b,mask;
212
213 for (;;) {
214 a = *(unsigned long *)cs;
215 b = load_unaligned_zeropad(ct);
216 if (tcount < sizeof(unsigned long))
217 break;
218 if (unlikely(a != b))
219 return 1;
220 cs += sizeof(unsigned long);
221 ct += sizeof(unsigned long);
222 tcount -= sizeof(unsigned long);
223 if (!tcount)
224 return 0;
225 }
226 mask = ~(~0ul << tcount*8);
227 return unlikely(!!((a ^ b) & mask));
228 }
229
230 #else
231
232 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
233 {
234 do {
235 if (*cs != *ct)
236 return 1;
237 cs++;
238 ct++;
239 tcount--;
240 } while (tcount);
241 return 0;
242 }
243
244 #endif
245
246 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
247 {
248 const unsigned char *cs;
249 /*
250 * Be careful about RCU walk racing with rename:
251 * use ACCESS_ONCE to fetch the name pointer.
252 *
253 * NOTE! Even if a rename will mean that the length
254 * was not loaded atomically, we don't care. The
255 * RCU walk will check the sequence count eventually,
256 * and catch it. And we won't overrun the buffer,
257 * because we're reading the name pointer atomically,
258 * and a dentry name is guaranteed to be properly
259 * terminated with a NUL byte.
260 *
261 * End result: even if 'len' is wrong, we'll exit
262 * early because the data cannot match (there can
263 * be no NUL in the ct/tcount data)
264 */
265 cs = ACCESS_ONCE(dentry->d_name.name);
266 smp_read_barrier_depends();
267 return dentry_string_cmp(cs, ct, tcount);
268 }
269
270 static void __d_free(struct rcu_head *head)
271 {
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
273
274 WARN_ON(!hlist_unhashed(&dentry->d_alias));
275 if (dname_external(dentry))
276 kfree(dentry->d_name.name);
277 kmem_cache_free(dentry_cache, dentry);
278 }
279
280 /*
281 * no locks, please.
282 */
283 static void d_free(struct dentry *dentry)
284 {
285 BUG_ON((int)dentry->d_lockref.count > 0);
286 this_cpu_dec(nr_dentry);
287 if (dentry->d_op && dentry->d_op->d_release)
288 dentry->d_op->d_release(dentry);
289
290 /* if dentry was never visible to RCU, immediate free is OK */
291 if (!(dentry->d_flags & DCACHE_RCUACCESS))
292 __d_free(&dentry->d_u.d_rcu);
293 else
294 call_rcu(&dentry->d_u.d_rcu, __d_free);
295 }
296
297 /**
298 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
299 * @dentry: the target dentry
300 * After this call, in-progress rcu-walk path lookup will fail. This
301 * should be called after unhashing, and after changing d_inode (if
302 * the dentry has not already been unhashed).
303 */
304 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
305 {
306 assert_spin_locked(&dentry->d_lock);
307 /* Go through a barrier */
308 write_seqcount_barrier(&dentry->d_seq);
309 }
310
311 /*
312 * Release the dentry's inode, using the filesystem
313 * d_iput() operation if defined. Dentry has no refcount
314 * and is unhashed.
315 */
316 static void dentry_iput(struct dentry * dentry)
317 __releases(dentry->d_lock)
318 __releases(dentry->d_inode->i_lock)
319 {
320 struct inode *inode = dentry->d_inode;
321 if (inode) {
322 dentry->d_inode = NULL;
323 hlist_del_init(&dentry->d_alias);
324 spin_unlock(&dentry->d_lock);
325 spin_unlock(&inode->i_lock);
326 if (!inode->i_nlink)
327 fsnotify_inoderemove(inode);
328 if (dentry->d_op && dentry->d_op->d_iput)
329 dentry->d_op->d_iput(dentry, inode);
330 else
331 iput(inode);
332 } else {
333 spin_unlock(&dentry->d_lock);
334 }
335 }
336
337 /*
338 * Release the dentry's inode, using the filesystem
339 * d_iput() operation if defined. dentry remains in-use.
340 */
341 static void dentry_unlink_inode(struct dentry * dentry)
342 __releases(dentry->d_lock)
343 __releases(dentry->d_inode->i_lock)
344 {
345 struct inode *inode = dentry->d_inode;
346 dentry->d_inode = NULL;
347 hlist_del_init(&dentry->d_alias);
348 dentry_rcuwalk_barrier(dentry);
349 spin_unlock(&dentry->d_lock);
350 spin_unlock(&inode->i_lock);
351 if (!inode->i_nlink)
352 fsnotify_inoderemove(inode);
353 if (dentry->d_op && dentry->d_op->d_iput)
354 dentry->d_op->d_iput(dentry, inode);
355 else
356 iput(inode);
357 }
358
359 /*
360 * dentry_lru_(add|del)_list) must be called with d_lock held.
361 */
362 static void dentry_lru_add(struct dentry *dentry)
363 {
364 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) {
365 if (list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru))
366 this_cpu_inc(nr_dentry_unused);
367 dentry->d_flags |= DCACHE_LRU_LIST;
368 }
369 }
370
371 /*
372 * Remove a dentry with references from the LRU.
373 *
374 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
375 * lose our last reference through the parent walk. In this case, we need to
376 * remove ourselves from the shrink list, not the LRU.
377 */
378 static void dentry_lru_del(struct dentry *dentry)
379 {
380 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
381 list_del_init(&dentry->d_lru);
382 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
383 return;
384 }
385
386 if (list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru))
387 this_cpu_dec(nr_dentry_unused);
388 dentry->d_flags &= ~DCACHE_LRU_LIST;
389 }
390
391 /**
392 * d_kill - kill dentry and return parent
393 * @dentry: dentry to kill
394 * @parent: parent dentry
395 *
396 * The dentry must already be unhashed and removed from the LRU.
397 *
398 * If this is the root of the dentry tree, return NULL.
399 *
400 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
401 * d_kill.
402 */
403 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
404 __releases(dentry->d_lock)
405 __releases(parent->d_lock)
406 __releases(dentry->d_inode->i_lock)
407 {
408 list_del(&dentry->d_u.d_child);
409 /*
410 * Inform try_to_ascend() that we are no longer attached to the
411 * dentry tree
412 */
413 dentry->d_flags |= DCACHE_DENTRY_KILLED;
414 if (parent)
415 spin_unlock(&parent->d_lock);
416 dentry_iput(dentry);
417 /*
418 * dentry_iput drops the locks, at which point nobody (except
419 * transient RCU lookups) can reach this dentry.
420 */
421 d_free(dentry);
422 return parent;
423 }
424
425 /*
426 * Unhash a dentry without inserting an RCU walk barrier or checking that
427 * dentry->d_lock is locked. The caller must take care of that, if
428 * appropriate.
429 */
430 static void __d_shrink(struct dentry *dentry)
431 {
432 if (!d_unhashed(dentry)) {
433 struct hlist_bl_head *b;
434 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
435 b = &dentry->d_sb->s_anon;
436 else
437 b = d_hash(dentry->d_parent, dentry->d_name.hash);
438
439 hlist_bl_lock(b);
440 __hlist_bl_del(&dentry->d_hash);
441 dentry->d_hash.pprev = NULL;
442 hlist_bl_unlock(b);
443 }
444 }
445
446 /**
447 * d_drop - drop a dentry
448 * @dentry: dentry to drop
449 *
450 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
451 * be found through a VFS lookup any more. Note that this is different from
452 * deleting the dentry - d_delete will try to mark the dentry negative if
453 * possible, giving a successful _negative_ lookup, while d_drop will
454 * just make the cache lookup fail.
455 *
456 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
457 * reason (NFS timeouts or autofs deletes).
458 *
459 * __d_drop requires dentry->d_lock.
460 */
461 void __d_drop(struct dentry *dentry)
462 {
463 if (!d_unhashed(dentry)) {
464 __d_shrink(dentry);
465 dentry_rcuwalk_barrier(dentry);
466 }
467 }
468 EXPORT_SYMBOL(__d_drop);
469
470 void d_drop(struct dentry *dentry)
471 {
472 spin_lock(&dentry->d_lock);
473 __d_drop(dentry);
474 spin_unlock(&dentry->d_lock);
475 }
476 EXPORT_SYMBOL(d_drop);
477
478 /*
479 * Finish off a dentry we've decided to kill.
480 * dentry->d_lock must be held, returns with it unlocked.
481 * If ref is non-zero, then decrement the refcount too.
482 * Returns dentry requiring refcount drop, or NULL if we're done.
483 */
484 static inline struct dentry *
485 dentry_kill(struct dentry *dentry, int unlock_on_failure)
486 __releases(dentry->d_lock)
487 {
488 struct inode *inode;
489 struct dentry *parent;
490
491 inode = dentry->d_inode;
492 if (inode && !spin_trylock(&inode->i_lock)) {
493 relock:
494 if (unlock_on_failure) {
495 spin_unlock(&dentry->d_lock);
496 cpu_relax();
497 }
498 return dentry; /* try again with same dentry */
499 }
500 if (IS_ROOT(dentry))
501 parent = NULL;
502 else
503 parent = dentry->d_parent;
504 if (parent && !spin_trylock(&parent->d_lock)) {
505 if (inode)
506 spin_unlock(&inode->i_lock);
507 goto relock;
508 }
509
510 /*
511 * The dentry is now unrecoverably dead to the world.
512 */
513 lockref_mark_dead(&dentry->d_lockref);
514
515 /*
516 * inform the fs via d_prune that this dentry is about to be
517 * unhashed and destroyed.
518 */
519 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
520 dentry->d_op->d_prune(dentry);
521
522 dentry_lru_del(dentry);
523 /* if it was on the hash then remove it */
524 __d_drop(dentry);
525 return d_kill(dentry, parent);
526 }
527
528 /*
529 * This is dput
530 *
531 * This is complicated by the fact that we do not want to put
532 * dentries that are no longer on any hash chain on the unused
533 * list: we'd much rather just get rid of them immediately.
534 *
535 * However, that implies that we have to traverse the dentry
536 * tree upwards to the parents which might _also_ now be
537 * scheduled for deletion (it may have been only waiting for
538 * its last child to go away).
539 *
540 * This tail recursion is done by hand as we don't want to depend
541 * on the compiler to always get this right (gcc generally doesn't).
542 * Real recursion would eat up our stack space.
543 */
544
545 /*
546 * dput - release a dentry
547 * @dentry: dentry to release
548 *
549 * Release a dentry. This will drop the usage count and if appropriate
550 * call the dentry unlink method as well as removing it from the queues and
551 * releasing its resources. If the parent dentries were scheduled for release
552 * they too may now get deleted.
553 */
554 void dput(struct dentry *dentry)
555 {
556 if (unlikely(!dentry))
557 return;
558
559 repeat:
560 if (lockref_put_or_lock(&dentry->d_lockref))
561 return;
562
563 /* Unreachable? Get rid of it */
564 if (unlikely(d_unhashed(dentry)))
565 goto kill_it;
566
567 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
568 if (dentry->d_op->d_delete(dentry))
569 goto kill_it;
570 }
571
572 dentry->d_flags |= DCACHE_REFERENCED;
573 dentry_lru_add(dentry);
574
575 dentry->d_lockref.count--;
576 spin_unlock(&dentry->d_lock);
577 return;
578
579 kill_it:
580 dentry = dentry_kill(dentry, 1);
581 if (dentry)
582 goto repeat;
583 }
584 EXPORT_SYMBOL(dput);
585
586 /**
587 * d_invalidate - invalidate a dentry
588 * @dentry: dentry to invalidate
589 *
590 * Try to invalidate the dentry if it turns out to be
591 * possible. If there are other dentries that can be
592 * reached through this one we can't delete it and we
593 * return -EBUSY. On success we return 0.
594 *
595 * no dcache lock.
596 */
597
598 int d_invalidate(struct dentry * dentry)
599 {
600 /*
601 * If it's already been dropped, return OK.
602 */
603 spin_lock(&dentry->d_lock);
604 if (d_unhashed(dentry)) {
605 spin_unlock(&dentry->d_lock);
606 return 0;
607 }
608 /*
609 * Check whether to do a partial shrink_dcache
610 * to get rid of unused child entries.
611 */
612 if (!list_empty(&dentry->d_subdirs)) {
613 spin_unlock(&dentry->d_lock);
614 shrink_dcache_parent(dentry);
615 spin_lock(&dentry->d_lock);
616 }
617
618 /*
619 * Somebody else still using it?
620 *
621 * If it's a directory, we can't drop it
622 * for fear of somebody re-populating it
623 * with children (even though dropping it
624 * would make it unreachable from the root,
625 * we might still populate it if it was a
626 * working directory or similar).
627 * We also need to leave mountpoints alone,
628 * directory or not.
629 */
630 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
631 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
632 spin_unlock(&dentry->d_lock);
633 return -EBUSY;
634 }
635 }
636
637 __d_drop(dentry);
638 spin_unlock(&dentry->d_lock);
639 return 0;
640 }
641 EXPORT_SYMBOL(d_invalidate);
642
643 /* This must be called with d_lock held */
644 static inline void __dget_dlock(struct dentry *dentry)
645 {
646 dentry->d_lockref.count++;
647 }
648
649 static inline void __dget(struct dentry *dentry)
650 {
651 lockref_get(&dentry->d_lockref);
652 }
653
654 struct dentry *dget_parent(struct dentry *dentry)
655 {
656 int gotref;
657 struct dentry *ret;
658
659 /*
660 * Do optimistic parent lookup without any
661 * locking.
662 */
663 rcu_read_lock();
664 ret = ACCESS_ONCE(dentry->d_parent);
665 gotref = lockref_get_not_zero(&ret->d_lockref);
666 rcu_read_unlock();
667 if (likely(gotref)) {
668 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
669 return ret;
670 dput(ret);
671 }
672
673 repeat:
674 /*
675 * Don't need rcu_dereference because we re-check it was correct under
676 * the lock.
677 */
678 rcu_read_lock();
679 ret = dentry->d_parent;
680 spin_lock(&ret->d_lock);
681 if (unlikely(ret != dentry->d_parent)) {
682 spin_unlock(&ret->d_lock);
683 rcu_read_unlock();
684 goto repeat;
685 }
686 rcu_read_unlock();
687 BUG_ON(!ret->d_lockref.count);
688 ret->d_lockref.count++;
689 spin_unlock(&ret->d_lock);
690 return ret;
691 }
692 EXPORT_SYMBOL(dget_parent);
693
694 /**
695 * d_find_alias - grab a hashed alias of inode
696 * @inode: inode in question
697 * @want_discon: flag, used by d_splice_alias, to request
698 * that only a DISCONNECTED alias be returned.
699 *
700 * If inode has a hashed alias, or is a directory and has any alias,
701 * acquire the reference to alias and return it. Otherwise return NULL.
702 * Notice that if inode is a directory there can be only one alias and
703 * it can be unhashed only if it has no children, or if it is the root
704 * of a filesystem.
705 *
706 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
707 * any other hashed alias over that one unless @want_discon is set,
708 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
709 */
710 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
711 {
712 struct dentry *alias, *discon_alias;
713
714 again:
715 discon_alias = NULL;
716 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
717 spin_lock(&alias->d_lock);
718 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
719 if (IS_ROOT(alias) &&
720 (alias->d_flags & DCACHE_DISCONNECTED)) {
721 discon_alias = alias;
722 } else if (!want_discon) {
723 __dget_dlock(alias);
724 spin_unlock(&alias->d_lock);
725 return alias;
726 }
727 }
728 spin_unlock(&alias->d_lock);
729 }
730 if (discon_alias) {
731 alias = discon_alias;
732 spin_lock(&alias->d_lock);
733 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
734 if (IS_ROOT(alias) &&
735 (alias->d_flags & DCACHE_DISCONNECTED)) {
736 __dget_dlock(alias);
737 spin_unlock(&alias->d_lock);
738 return alias;
739 }
740 }
741 spin_unlock(&alias->d_lock);
742 goto again;
743 }
744 return NULL;
745 }
746
747 struct dentry *d_find_alias(struct inode *inode)
748 {
749 struct dentry *de = NULL;
750
751 if (!hlist_empty(&inode->i_dentry)) {
752 spin_lock(&inode->i_lock);
753 de = __d_find_alias(inode, 0);
754 spin_unlock(&inode->i_lock);
755 }
756 return de;
757 }
758 EXPORT_SYMBOL(d_find_alias);
759
760 /*
761 * Try to kill dentries associated with this inode.
762 * WARNING: you must own a reference to inode.
763 */
764 void d_prune_aliases(struct inode *inode)
765 {
766 struct dentry *dentry;
767 restart:
768 spin_lock(&inode->i_lock);
769 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
770 spin_lock(&dentry->d_lock);
771 if (!dentry->d_lockref.count) {
772 /*
773 * inform the fs via d_prune that this dentry
774 * is about to be unhashed and destroyed.
775 */
776 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
777 !d_unhashed(dentry))
778 dentry->d_op->d_prune(dentry);
779
780 __dget_dlock(dentry);
781 __d_drop(dentry);
782 spin_unlock(&dentry->d_lock);
783 spin_unlock(&inode->i_lock);
784 dput(dentry);
785 goto restart;
786 }
787 spin_unlock(&dentry->d_lock);
788 }
789 spin_unlock(&inode->i_lock);
790 }
791 EXPORT_SYMBOL(d_prune_aliases);
792
793 /*
794 * Try to throw away a dentry - free the inode, dput the parent.
795 * Requires dentry->d_lock is held, and dentry->d_count == 0.
796 * Releases dentry->d_lock.
797 *
798 * This may fail if locks cannot be acquired no problem, just try again.
799 */
800 static struct dentry * try_prune_one_dentry(struct dentry *dentry)
801 __releases(dentry->d_lock)
802 {
803 struct dentry *parent;
804
805 parent = dentry_kill(dentry, 0);
806 /*
807 * If dentry_kill returns NULL, we have nothing more to do.
808 * if it returns the same dentry, trylocks failed. In either
809 * case, just loop again.
810 *
811 * Otherwise, we need to prune ancestors too. This is necessary
812 * to prevent quadratic behavior of shrink_dcache_parent(), but
813 * is also expected to be beneficial in reducing dentry cache
814 * fragmentation.
815 */
816 if (!parent)
817 return NULL;
818 if (parent == dentry)
819 return dentry;
820
821 /* Prune ancestors. */
822 dentry = parent;
823 while (dentry) {
824 if (lockref_put_or_lock(&dentry->d_lockref))
825 return NULL;
826 dentry = dentry_kill(dentry, 1);
827 }
828 return NULL;
829 }
830
831 static void shrink_dentry_list(struct list_head *list)
832 {
833 struct dentry *dentry;
834
835 rcu_read_lock();
836 for (;;) {
837 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
838 if (&dentry->d_lru == list)
839 break; /* empty */
840 spin_lock(&dentry->d_lock);
841 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
842 spin_unlock(&dentry->d_lock);
843 continue;
844 }
845
846 /*
847 * The dispose list is isolated and dentries are not accounted
848 * to the LRU here, so we can simply remove it from the list
849 * here regardless of whether it is referenced or not.
850 */
851 list_del_init(&dentry->d_lru);
852 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
853
854 /*
855 * We found an inuse dentry which was not removed from
856 * the LRU because of laziness during lookup. Do not free it.
857 */
858 if (dentry->d_lockref.count) {
859 spin_unlock(&dentry->d_lock);
860 continue;
861 }
862 rcu_read_unlock();
863
864 dentry = try_prune_one_dentry(dentry);
865
866 rcu_read_lock();
867 if (dentry) {
868 dentry->d_flags |= DCACHE_SHRINK_LIST;
869 list_add(&dentry->d_lru, list);
870 spin_unlock(&dentry->d_lock);
871 }
872 }
873 rcu_read_unlock();
874 }
875
876 static enum lru_status
877 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
878 {
879 struct list_head *freeable = arg;
880 struct dentry *dentry = container_of(item, struct dentry, d_lru);
881
882
883 /*
884 * we are inverting the lru lock/dentry->d_lock here,
885 * so use a trylock. If we fail to get the lock, just skip
886 * it
887 */
888 if (!spin_trylock(&dentry->d_lock))
889 return LRU_SKIP;
890
891 /*
892 * Referenced dentries are still in use. If they have active
893 * counts, just remove them from the LRU. Otherwise give them
894 * another pass through the LRU.
895 */
896 if (dentry->d_lockref.count) {
897 list_del_init(&dentry->d_lru);
898 spin_unlock(&dentry->d_lock);
899 return LRU_REMOVED;
900 }
901
902 if (dentry->d_flags & DCACHE_REFERENCED) {
903 dentry->d_flags &= ~DCACHE_REFERENCED;
904 spin_unlock(&dentry->d_lock);
905
906 /*
907 * The list move itself will be made by the common LRU code. At
908 * this point, we've dropped the dentry->d_lock but keep the
909 * lru lock. This is safe to do, since every list movement is
910 * protected by the lru lock even if both locks are held.
911 *
912 * This is guaranteed by the fact that all LRU management
913 * functions are intermediated by the LRU API calls like
914 * list_lru_add and list_lru_del. List movement in this file
915 * only ever occur through this functions or through callbacks
916 * like this one, that are called from the LRU API.
917 *
918 * The only exceptions to this are functions like
919 * shrink_dentry_list, and code that first checks for the
920 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
921 * operating only with stack provided lists after they are
922 * properly isolated from the main list. It is thus, always a
923 * local access.
924 */
925 return LRU_ROTATE;
926 }
927
928 dentry->d_flags |= DCACHE_SHRINK_LIST;
929 list_move_tail(&dentry->d_lru, freeable);
930 this_cpu_dec(nr_dentry_unused);
931 spin_unlock(&dentry->d_lock);
932
933 return LRU_REMOVED;
934 }
935
936 /**
937 * prune_dcache_sb - shrink the dcache
938 * @sb: superblock
939 * @nr_to_scan : number of entries to try to free
940 * @nid: which node to scan for freeable entities
941 *
942 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
943 * done when we need more memory an called from the superblock shrinker
944 * function.
945 *
946 * This function may fail to free any resources if all the dentries are in
947 * use.
948 */
949 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
950 int nid)
951 {
952 LIST_HEAD(dispose);
953 long freed;
954
955 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
956 &dispose, &nr_to_scan);
957 shrink_dentry_list(&dispose);
958 return freed;
959 }
960
961 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
962 spinlock_t *lru_lock, void *arg)
963 {
964 struct list_head *freeable = arg;
965 struct dentry *dentry = container_of(item, struct dentry, d_lru);
966
967 /*
968 * we are inverting the lru lock/dentry->d_lock here,
969 * so use a trylock. If we fail to get the lock, just skip
970 * it
971 */
972 if (!spin_trylock(&dentry->d_lock))
973 return LRU_SKIP;
974
975 dentry->d_flags |= DCACHE_SHRINK_LIST;
976 list_move_tail(&dentry->d_lru, freeable);
977 this_cpu_dec(nr_dentry_unused);
978 spin_unlock(&dentry->d_lock);
979
980 return LRU_REMOVED;
981 }
982
983
984 /**
985 * shrink_dcache_sb - shrink dcache for a superblock
986 * @sb: superblock
987 *
988 * Shrink the dcache for the specified super block. This is used to free
989 * the dcache before unmounting a file system.
990 */
991 void shrink_dcache_sb(struct super_block *sb)
992 {
993 long freed;
994
995 do {
996 LIST_HEAD(dispose);
997
998 freed = list_lru_walk(&sb->s_dentry_lru,
999 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1000
1001 this_cpu_sub(nr_dentry_unused, freed);
1002 shrink_dentry_list(&dispose);
1003 } while (freed > 0);
1004 }
1005 EXPORT_SYMBOL(shrink_dcache_sb);
1006
1007 /*
1008 * destroy a single subtree of dentries for unmount
1009 * - see the comments on shrink_dcache_for_umount() for a description of the
1010 * locking
1011 */
1012 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
1013 {
1014 struct dentry *parent;
1015
1016 BUG_ON(!IS_ROOT(dentry));
1017
1018 for (;;) {
1019 /* descend to the first leaf in the current subtree */
1020 while (!list_empty(&dentry->d_subdirs))
1021 dentry = list_entry(dentry->d_subdirs.next,
1022 struct dentry, d_u.d_child);
1023
1024 /* consume the dentries from this leaf up through its parents
1025 * until we find one with children or run out altogether */
1026 do {
1027 struct inode *inode;
1028
1029 /*
1030 * inform the fs that this dentry is about to be
1031 * unhashed and destroyed.
1032 */
1033 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
1034 !d_unhashed(dentry))
1035 dentry->d_op->d_prune(dentry);
1036
1037 dentry_lru_del(dentry);
1038 __d_shrink(dentry);
1039
1040 if (dentry->d_lockref.count != 0) {
1041 printk(KERN_ERR
1042 "BUG: Dentry %p{i=%lx,n=%s}"
1043 " still in use (%d)"
1044 " [unmount of %s %s]\n",
1045 dentry,
1046 dentry->d_inode ?
1047 dentry->d_inode->i_ino : 0UL,
1048 dentry->d_name.name,
1049 dentry->d_lockref.count,
1050 dentry->d_sb->s_type->name,
1051 dentry->d_sb->s_id);
1052 BUG();
1053 }
1054
1055 if (IS_ROOT(dentry)) {
1056 parent = NULL;
1057 list_del(&dentry->d_u.d_child);
1058 } else {
1059 parent = dentry->d_parent;
1060 parent->d_lockref.count--;
1061 list_del(&dentry->d_u.d_child);
1062 }
1063
1064 inode = dentry->d_inode;
1065 if (inode) {
1066 dentry->d_inode = NULL;
1067 hlist_del_init(&dentry->d_alias);
1068 if (dentry->d_op && dentry->d_op->d_iput)
1069 dentry->d_op->d_iput(dentry, inode);
1070 else
1071 iput(inode);
1072 }
1073
1074 d_free(dentry);
1075
1076 /* finished when we fall off the top of the tree,
1077 * otherwise we ascend to the parent and move to the
1078 * next sibling if there is one */
1079 if (!parent)
1080 return;
1081 dentry = parent;
1082 } while (list_empty(&dentry->d_subdirs));
1083
1084 dentry = list_entry(dentry->d_subdirs.next,
1085 struct dentry, d_u.d_child);
1086 }
1087 }
1088
1089 /*
1090 * destroy the dentries attached to a superblock on unmounting
1091 * - we don't need to use dentry->d_lock because:
1092 * - the superblock is detached from all mountings and open files, so the
1093 * dentry trees will not be rearranged by the VFS
1094 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1095 * any dentries belonging to this superblock that it comes across
1096 * - the filesystem itself is no longer permitted to rearrange the dentries
1097 * in this superblock
1098 */
1099 void shrink_dcache_for_umount(struct super_block *sb)
1100 {
1101 struct dentry *dentry;
1102
1103 if (down_read_trylock(&sb->s_umount))
1104 BUG();
1105
1106 dentry = sb->s_root;
1107 sb->s_root = NULL;
1108 dentry->d_lockref.count--;
1109 shrink_dcache_for_umount_subtree(dentry);
1110
1111 while (!hlist_bl_empty(&sb->s_anon)) {
1112 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1113 shrink_dcache_for_umount_subtree(dentry);
1114 }
1115 }
1116
1117 /*
1118 * This tries to ascend one level of parenthood, but
1119 * we can race with renaming, so we need to re-check
1120 * the parenthood after dropping the lock and check
1121 * that the sequence number still matches.
1122 */
1123 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
1124 {
1125 struct dentry *new = old->d_parent;
1126
1127 rcu_read_lock();
1128 spin_unlock(&old->d_lock);
1129 spin_lock(&new->d_lock);
1130
1131 /*
1132 * might go back up the wrong parent if we have had a rename
1133 * or deletion
1134 */
1135 if (new != old->d_parent ||
1136 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1137 need_seqretry(&rename_lock, seq)) {
1138 spin_unlock(&new->d_lock);
1139 new = NULL;
1140 }
1141 rcu_read_unlock();
1142 return new;
1143 }
1144
1145 /**
1146 * enum d_walk_ret - action to talke during tree walk
1147 * @D_WALK_CONTINUE: contrinue walk
1148 * @D_WALK_QUIT: quit walk
1149 * @D_WALK_NORETRY: quit when retry is needed
1150 * @D_WALK_SKIP: skip this dentry and its children
1151 */
1152 enum d_walk_ret {
1153 D_WALK_CONTINUE,
1154 D_WALK_QUIT,
1155 D_WALK_NORETRY,
1156 D_WALK_SKIP,
1157 };
1158
1159 /**
1160 * d_walk - walk the dentry tree
1161 * @parent: start of walk
1162 * @data: data passed to @enter() and @finish()
1163 * @enter: callback when first entering the dentry
1164 * @finish: callback when successfully finished the walk
1165 *
1166 * The @enter() and @finish() callbacks are called with d_lock held.
1167 */
1168 static void d_walk(struct dentry *parent, void *data,
1169 enum d_walk_ret (*enter)(void *, struct dentry *),
1170 void (*finish)(void *))
1171 {
1172 struct dentry *this_parent;
1173 struct list_head *next;
1174 unsigned seq = 0;
1175 enum d_walk_ret ret;
1176 bool retry = true;
1177
1178 again:
1179 read_seqbegin_or_lock(&rename_lock, &seq);
1180 this_parent = parent;
1181 spin_lock(&this_parent->d_lock);
1182
1183 ret = enter(data, this_parent);
1184 switch (ret) {
1185 case D_WALK_CONTINUE:
1186 break;
1187 case D_WALK_QUIT:
1188 case D_WALK_SKIP:
1189 goto out_unlock;
1190 case D_WALK_NORETRY:
1191 retry = false;
1192 break;
1193 }
1194 repeat:
1195 next = this_parent->d_subdirs.next;
1196 resume:
1197 while (next != &this_parent->d_subdirs) {
1198 struct list_head *tmp = next;
1199 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1200 next = tmp->next;
1201
1202 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1203
1204 ret = enter(data, dentry);
1205 switch (ret) {
1206 case D_WALK_CONTINUE:
1207 break;
1208 case D_WALK_QUIT:
1209 spin_unlock(&dentry->d_lock);
1210 goto out_unlock;
1211 case D_WALK_NORETRY:
1212 retry = false;
1213 break;
1214 case D_WALK_SKIP:
1215 spin_unlock(&dentry->d_lock);
1216 continue;
1217 }
1218
1219 if (!list_empty(&dentry->d_subdirs)) {
1220 spin_unlock(&this_parent->d_lock);
1221 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1222 this_parent = dentry;
1223 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1224 goto repeat;
1225 }
1226 spin_unlock(&dentry->d_lock);
1227 }
1228 /*
1229 * All done at this level ... ascend and resume the search.
1230 */
1231 if (this_parent != parent) {
1232 struct dentry *child = this_parent;
1233 this_parent = try_to_ascend(this_parent, seq);
1234 if (!this_parent)
1235 goto rename_retry;
1236 next = child->d_u.d_child.next;
1237 goto resume;
1238 }
1239 if (need_seqretry(&rename_lock, seq)) {
1240 spin_unlock(&this_parent->d_lock);
1241 goto rename_retry;
1242 }
1243 if (finish)
1244 finish(data);
1245
1246 out_unlock:
1247 spin_unlock(&this_parent->d_lock);
1248 done_seqretry(&rename_lock, seq);
1249 return;
1250
1251 rename_retry:
1252 if (!retry)
1253 return;
1254 seq = 1;
1255 goto again;
1256 }
1257
1258 /*
1259 * Search for at least 1 mount point in the dentry's subdirs.
1260 * We descend to the next level whenever the d_subdirs
1261 * list is non-empty and continue searching.
1262 */
1263
1264 /**
1265 * have_submounts - check for mounts over a dentry
1266 * @parent: dentry to check.
1267 *
1268 * Return true if the parent or its subdirectories contain
1269 * a mount point
1270 */
1271
1272 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1273 {
1274 int *ret = data;
1275 if (d_mountpoint(dentry)) {
1276 *ret = 1;
1277 return D_WALK_QUIT;
1278 }
1279 return D_WALK_CONTINUE;
1280 }
1281
1282 int have_submounts(struct dentry *parent)
1283 {
1284 int ret = 0;
1285
1286 d_walk(parent, &ret, check_mount, NULL);
1287
1288 return ret;
1289 }
1290 EXPORT_SYMBOL(have_submounts);
1291
1292 /*
1293 * Called by mount code to set a mountpoint and check if the mountpoint is
1294 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1295 * subtree can become unreachable).
1296 *
1297 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1298 * this reason take rename_lock and d_lock on dentry and ancestors.
1299 */
1300 int d_set_mounted(struct dentry *dentry)
1301 {
1302 struct dentry *p;
1303 int ret = -ENOENT;
1304 write_seqlock(&rename_lock);
1305 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1306 /* Need exclusion wrt. check_submounts_and_drop() */
1307 spin_lock(&p->d_lock);
1308 if (unlikely(d_unhashed(p))) {
1309 spin_unlock(&p->d_lock);
1310 goto out;
1311 }
1312 spin_unlock(&p->d_lock);
1313 }
1314 spin_lock(&dentry->d_lock);
1315 if (!d_unlinked(dentry)) {
1316 dentry->d_flags |= DCACHE_MOUNTED;
1317 ret = 0;
1318 }
1319 spin_unlock(&dentry->d_lock);
1320 out:
1321 write_sequnlock(&rename_lock);
1322 return ret;
1323 }
1324
1325 /*
1326 * Search the dentry child list of the specified parent,
1327 * and move any unused dentries to the end of the unused
1328 * list for prune_dcache(). We descend to the next level
1329 * whenever the d_subdirs list is non-empty and continue
1330 * searching.
1331 *
1332 * It returns zero iff there are no unused children,
1333 * otherwise it returns the number of children moved to
1334 * the end of the unused list. This may not be the total
1335 * number of unused children, because select_parent can
1336 * drop the lock and return early due to latency
1337 * constraints.
1338 */
1339
1340 struct select_data {
1341 struct dentry *start;
1342 struct list_head dispose;
1343 int found;
1344 };
1345
1346 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1347 {
1348 struct select_data *data = _data;
1349 enum d_walk_ret ret = D_WALK_CONTINUE;
1350
1351 if (data->start == dentry)
1352 goto out;
1353
1354 /*
1355 * move only zero ref count dentries to the dispose list.
1356 *
1357 * Those which are presently on the shrink list, being processed
1358 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1359 * loop in shrink_dcache_parent() might not make any progress
1360 * and loop forever.
1361 */
1362 if (dentry->d_lockref.count) {
1363 dentry_lru_del(dentry);
1364 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1365 dentry_lru_del(dentry);
1366 list_add_tail(&dentry->d_lru, &data->dispose);
1367 dentry->d_flags |= DCACHE_SHRINK_LIST;
1368 data->found++;
1369 ret = D_WALK_NORETRY;
1370 }
1371 /*
1372 * We can return to the caller if we have found some (this
1373 * ensures forward progress). We'll be coming back to find
1374 * the rest.
1375 */
1376 if (data->found && need_resched())
1377 ret = D_WALK_QUIT;
1378 out:
1379 return ret;
1380 }
1381
1382 /**
1383 * shrink_dcache_parent - prune dcache
1384 * @parent: parent of entries to prune
1385 *
1386 * Prune the dcache to remove unused children of the parent dentry.
1387 */
1388 void shrink_dcache_parent(struct dentry *parent)
1389 {
1390 for (;;) {
1391 struct select_data data;
1392
1393 INIT_LIST_HEAD(&data.dispose);
1394 data.start = parent;
1395 data.found = 0;
1396
1397 d_walk(parent, &data, select_collect, NULL);
1398 if (!data.found)
1399 break;
1400
1401 shrink_dentry_list(&data.dispose);
1402 cond_resched();
1403 }
1404 }
1405 EXPORT_SYMBOL(shrink_dcache_parent);
1406
1407 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1408 {
1409 struct select_data *data = _data;
1410
1411 if (d_mountpoint(dentry)) {
1412 data->found = -EBUSY;
1413 return D_WALK_QUIT;
1414 }
1415
1416 return select_collect(_data, dentry);
1417 }
1418
1419 static void check_and_drop(void *_data)
1420 {
1421 struct select_data *data = _data;
1422
1423 if (d_mountpoint(data->start))
1424 data->found = -EBUSY;
1425 if (!data->found)
1426 __d_drop(data->start);
1427 }
1428
1429 /**
1430 * check_submounts_and_drop - prune dcache, check for submounts and drop
1431 *
1432 * All done as a single atomic operation relative to has_unlinked_ancestor().
1433 * Returns 0 if successfully unhashed @parent. If there were submounts then
1434 * return -EBUSY.
1435 *
1436 * @dentry: dentry to prune and drop
1437 */
1438 int check_submounts_and_drop(struct dentry *dentry)
1439 {
1440 int ret = 0;
1441
1442 /* Negative dentries can be dropped without further checks */
1443 if (!dentry->d_inode) {
1444 d_drop(dentry);
1445 goto out;
1446 }
1447
1448 for (;;) {
1449 struct select_data data;
1450
1451 INIT_LIST_HEAD(&data.dispose);
1452 data.start = dentry;
1453 data.found = 0;
1454
1455 d_walk(dentry, &data, check_and_collect, check_and_drop);
1456 ret = data.found;
1457
1458 if (!list_empty(&data.dispose))
1459 shrink_dentry_list(&data.dispose);
1460
1461 if (ret <= 0)
1462 break;
1463
1464 cond_resched();
1465 }
1466
1467 out:
1468 return ret;
1469 }
1470 EXPORT_SYMBOL(check_submounts_and_drop);
1471
1472 /**
1473 * __d_alloc - allocate a dcache entry
1474 * @sb: filesystem it will belong to
1475 * @name: qstr of the name
1476 *
1477 * Allocates a dentry. It returns %NULL if there is insufficient memory
1478 * available. On a success the dentry is returned. The name passed in is
1479 * copied and the copy passed in may be reused after this call.
1480 */
1481
1482 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1483 {
1484 struct dentry *dentry;
1485 char *dname;
1486
1487 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1488 if (!dentry)
1489 return NULL;
1490
1491 /*
1492 * We guarantee that the inline name is always NUL-terminated.
1493 * This way the memcpy() done by the name switching in rename
1494 * will still always have a NUL at the end, even if we might
1495 * be overwriting an internal NUL character
1496 */
1497 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1498 if (name->len > DNAME_INLINE_LEN-1) {
1499 dname = kmalloc(name->len + 1, GFP_KERNEL);
1500 if (!dname) {
1501 kmem_cache_free(dentry_cache, dentry);
1502 return NULL;
1503 }
1504 } else {
1505 dname = dentry->d_iname;
1506 }
1507
1508 dentry->d_name.len = name->len;
1509 dentry->d_name.hash = name->hash;
1510 memcpy(dname, name->name, name->len);
1511 dname[name->len] = 0;
1512
1513 /* Make sure we always see the terminating NUL character */
1514 smp_wmb();
1515 dentry->d_name.name = dname;
1516
1517 dentry->d_lockref.count = 1;
1518 dentry->d_flags = 0;
1519 spin_lock_init(&dentry->d_lock);
1520 seqcount_init(&dentry->d_seq);
1521 dentry->d_inode = NULL;
1522 dentry->d_parent = dentry;
1523 dentry->d_sb = sb;
1524 dentry->d_op = NULL;
1525 dentry->d_fsdata = NULL;
1526 INIT_HLIST_BL_NODE(&dentry->d_hash);
1527 INIT_LIST_HEAD(&dentry->d_lru);
1528 INIT_LIST_HEAD(&dentry->d_subdirs);
1529 INIT_HLIST_NODE(&dentry->d_alias);
1530 INIT_LIST_HEAD(&dentry->d_u.d_child);
1531 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1532
1533 this_cpu_inc(nr_dentry);
1534
1535 return dentry;
1536 }
1537
1538 /**
1539 * d_alloc - allocate a dcache entry
1540 * @parent: parent of entry to allocate
1541 * @name: qstr of the name
1542 *
1543 * Allocates a dentry. It returns %NULL if there is insufficient memory
1544 * available. On a success the dentry is returned. The name passed in is
1545 * copied and the copy passed in may be reused after this call.
1546 */
1547 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1548 {
1549 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1550 if (!dentry)
1551 return NULL;
1552
1553 spin_lock(&parent->d_lock);
1554 /*
1555 * don't need child lock because it is not subject
1556 * to concurrency here
1557 */
1558 __dget_dlock(parent);
1559 dentry->d_parent = parent;
1560 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1561 spin_unlock(&parent->d_lock);
1562
1563 return dentry;
1564 }
1565 EXPORT_SYMBOL(d_alloc);
1566
1567 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1568 {
1569 struct dentry *dentry = __d_alloc(sb, name);
1570 if (dentry)
1571 dentry->d_flags |= DCACHE_DISCONNECTED;
1572 return dentry;
1573 }
1574 EXPORT_SYMBOL(d_alloc_pseudo);
1575
1576 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1577 {
1578 struct qstr q;
1579
1580 q.name = name;
1581 q.len = strlen(name);
1582 q.hash = full_name_hash(q.name, q.len);
1583 return d_alloc(parent, &q);
1584 }
1585 EXPORT_SYMBOL(d_alloc_name);
1586
1587 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1588 {
1589 WARN_ON_ONCE(dentry->d_op);
1590 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1591 DCACHE_OP_COMPARE |
1592 DCACHE_OP_REVALIDATE |
1593 DCACHE_OP_WEAK_REVALIDATE |
1594 DCACHE_OP_DELETE ));
1595 dentry->d_op = op;
1596 if (!op)
1597 return;
1598 if (op->d_hash)
1599 dentry->d_flags |= DCACHE_OP_HASH;
1600 if (op->d_compare)
1601 dentry->d_flags |= DCACHE_OP_COMPARE;
1602 if (op->d_revalidate)
1603 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1604 if (op->d_weak_revalidate)
1605 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1606 if (op->d_delete)
1607 dentry->d_flags |= DCACHE_OP_DELETE;
1608 if (op->d_prune)
1609 dentry->d_flags |= DCACHE_OP_PRUNE;
1610
1611 }
1612 EXPORT_SYMBOL(d_set_d_op);
1613
1614 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1615 {
1616 spin_lock(&dentry->d_lock);
1617 if (inode) {
1618 if (unlikely(IS_AUTOMOUNT(inode)))
1619 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1620 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1621 }
1622 dentry->d_inode = inode;
1623 dentry_rcuwalk_barrier(dentry);
1624 spin_unlock(&dentry->d_lock);
1625 fsnotify_d_instantiate(dentry, inode);
1626 }
1627
1628 /**
1629 * d_instantiate - fill in inode information for a dentry
1630 * @entry: dentry to complete
1631 * @inode: inode to attach to this dentry
1632 *
1633 * Fill in inode information in the entry.
1634 *
1635 * This turns negative dentries into productive full members
1636 * of society.
1637 *
1638 * NOTE! This assumes that the inode count has been incremented
1639 * (or otherwise set) by the caller to indicate that it is now
1640 * in use by the dcache.
1641 */
1642
1643 void d_instantiate(struct dentry *entry, struct inode * inode)
1644 {
1645 BUG_ON(!hlist_unhashed(&entry->d_alias));
1646 if (inode)
1647 spin_lock(&inode->i_lock);
1648 __d_instantiate(entry, inode);
1649 if (inode)
1650 spin_unlock(&inode->i_lock);
1651 security_d_instantiate(entry, inode);
1652 }
1653 EXPORT_SYMBOL(d_instantiate);
1654
1655 /**
1656 * d_instantiate_unique - instantiate a non-aliased dentry
1657 * @entry: dentry to instantiate
1658 * @inode: inode to attach to this dentry
1659 *
1660 * Fill in inode information in the entry. On success, it returns NULL.
1661 * If an unhashed alias of "entry" already exists, then we return the
1662 * aliased dentry instead and drop one reference to inode.
1663 *
1664 * Note that in order to avoid conflicts with rename() etc, the caller
1665 * had better be holding the parent directory semaphore.
1666 *
1667 * This also assumes that the inode count has been incremented
1668 * (or otherwise set) by the caller to indicate that it is now
1669 * in use by the dcache.
1670 */
1671 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1672 struct inode *inode)
1673 {
1674 struct dentry *alias;
1675 int len = entry->d_name.len;
1676 const char *name = entry->d_name.name;
1677 unsigned int hash = entry->d_name.hash;
1678
1679 if (!inode) {
1680 __d_instantiate(entry, NULL);
1681 return NULL;
1682 }
1683
1684 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1685 /*
1686 * Don't need alias->d_lock here, because aliases with
1687 * d_parent == entry->d_parent are not subject to name or
1688 * parent changes, because the parent inode i_mutex is held.
1689 */
1690 if (alias->d_name.hash != hash)
1691 continue;
1692 if (alias->d_parent != entry->d_parent)
1693 continue;
1694 if (alias->d_name.len != len)
1695 continue;
1696 if (dentry_cmp(alias, name, len))
1697 continue;
1698 __dget(alias);
1699 return alias;
1700 }
1701
1702 __d_instantiate(entry, inode);
1703 return NULL;
1704 }
1705
1706 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1707 {
1708 struct dentry *result;
1709
1710 BUG_ON(!hlist_unhashed(&entry->d_alias));
1711
1712 if (inode)
1713 spin_lock(&inode->i_lock);
1714 result = __d_instantiate_unique(entry, inode);
1715 if (inode)
1716 spin_unlock(&inode->i_lock);
1717
1718 if (!result) {
1719 security_d_instantiate(entry, inode);
1720 return NULL;
1721 }
1722
1723 BUG_ON(!d_unhashed(result));
1724 iput(inode);
1725 return result;
1726 }
1727
1728 EXPORT_SYMBOL(d_instantiate_unique);
1729
1730 struct dentry *d_make_root(struct inode *root_inode)
1731 {
1732 struct dentry *res = NULL;
1733
1734 if (root_inode) {
1735 static const struct qstr name = QSTR_INIT("/", 1);
1736
1737 res = __d_alloc(root_inode->i_sb, &name);
1738 if (res)
1739 d_instantiate(res, root_inode);
1740 else
1741 iput(root_inode);
1742 }
1743 return res;
1744 }
1745 EXPORT_SYMBOL(d_make_root);
1746
1747 static struct dentry * __d_find_any_alias(struct inode *inode)
1748 {
1749 struct dentry *alias;
1750
1751 if (hlist_empty(&inode->i_dentry))
1752 return NULL;
1753 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1754 __dget(alias);
1755 return alias;
1756 }
1757
1758 /**
1759 * d_find_any_alias - find any alias for a given inode
1760 * @inode: inode to find an alias for
1761 *
1762 * If any aliases exist for the given inode, take and return a
1763 * reference for one of them. If no aliases exist, return %NULL.
1764 */
1765 struct dentry *d_find_any_alias(struct inode *inode)
1766 {
1767 struct dentry *de;
1768
1769 spin_lock(&inode->i_lock);
1770 de = __d_find_any_alias(inode);
1771 spin_unlock(&inode->i_lock);
1772 return de;
1773 }
1774 EXPORT_SYMBOL(d_find_any_alias);
1775
1776 /**
1777 * d_obtain_alias - find or allocate a dentry for a given inode
1778 * @inode: inode to allocate the dentry for
1779 *
1780 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1781 * similar open by handle operations. The returned dentry may be anonymous,
1782 * or may have a full name (if the inode was already in the cache).
1783 *
1784 * When called on a directory inode, we must ensure that the inode only ever
1785 * has one dentry. If a dentry is found, that is returned instead of
1786 * allocating a new one.
1787 *
1788 * On successful return, the reference to the inode has been transferred
1789 * to the dentry. In case of an error the reference on the inode is released.
1790 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1791 * be passed in and will be the error will be propagate to the return value,
1792 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1793 */
1794 struct dentry *d_obtain_alias(struct inode *inode)
1795 {
1796 static const struct qstr anonstring = QSTR_INIT("/", 1);
1797 struct dentry *tmp;
1798 struct dentry *res;
1799
1800 if (!inode)
1801 return ERR_PTR(-ESTALE);
1802 if (IS_ERR(inode))
1803 return ERR_CAST(inode);
1804
1805 res = d_find_any_alias(inode);
1806 if (res)
1807 goto out_iput;
1808
1809 tmp = __d_alloc(inode->i_sb, &anonstring);
1810 if (!tmp) {
1811 res = ERR_PTR(-ENOMEM);
1812 goto out_iput;
1813 }
1814
1815 spin_lock(&inode->i_lock);
1816 res = __d_find_any_alias(inode);
1817 if (res) {
1818 spin_unlock(&inode->i_lock);
1819 dput(tmp);
1820 goto out_iput;
1821 }
1822
1823 /* attach a disconnected dentry */
1824 spin_lock(&tmp->d_lock);
1825 tmp->d_inode = inode;
1826 tmp->d_flags |= DCACHE_DISCONNECTED;
1827 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1828 hlist_bl_lock(&tmp->d_sb->s_anon);
1829 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1830 hlist_bl_unlock(&tmp->d_sb->s_anon);
1831 spin_unlock(&tmp->d_lock);
1832 spin_unlock(&inode->i_lock);
1833 security_d_instantiate(tmp, inode);
1834
1835 return tmp;
1836
1837 out_iput:
1838 if (res && !IS_ERR(res))
1839 security_d_instantiate(res, inode);
1840 iput(inode);
1841 return res;
1842 }
1843 EXPORT_SYMBOL(d_obtain_alias);
1844
1845 /**
1846 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1847 * @inode: the inode which may have a disconnected dentry
1848 * @dentry: a negative dentry which we want to point to the inode.
1849 *
1850 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1851 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1852 * and return it, else simply d_add the inode to the dentry and return NULL.
1853 *
1854 * This is needed in the lookup routine of any filesystem that is exportable
1855 * (via knfsd) so that we can build dcache paths to directories effectively.
1856 *
1857 * If a dentry was found and moved, then it is returned. Otherwise NULL
1858 * is returned. This matches the expected return value of ->lookup.
1859 *
1860 * Cluster filesystems may call this function with a negative, hashed dentry.
1861 * In that case, we know that the inode will be a regular file, and also this
1862 * will only occur during atomic_open. So we need to check for the dentry
1863 * being already hashed only in the final case.
1864 */
1865 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1866 {
1867 struct dentry *new = NULL;
1868
1869 if (IS_ERR(inode))
1870 return ERR_CAST(inode);
1871
1872 if (inode && S_ISDIR(inode->i_mode)) {
1873 spin_lock(&inode->i_lock);
1874 new = __d_find_alias(inode, 1);
1875 if (new) {
1876 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1877 spin_unlock(&inode->i_lock);
1878 security_d_instantiate(new, inode);
1879 d_move(new, dentry);
1880 iput(inode);
1881 } else {
1882 /* already taking inode->i_lock, so d_add() by hand */
1883 __d_instantiate(dentry, inode);
1884 spin_unlock(&inode->i_lock);
1885 security_d_instantiate(dentry, inode);
1886 d_rehash(dentry);
1887 }
1888 } else {
1889 d_instantiate(dentry, inode);
1890 if (d_unhashed(dentry))
1891 d_rehash(dentry);
1892 }
1893 return new;
1894 }
1895 EXPORT_SYMBOL(d_splice_alias);
1896
1897 /**
1898 * d_add_ci - lookup or allocate new dentry with case-exact name
1899 * @inode: the inode case-insensitive lookup has found
1900 * @dentry: the negative dentry that was passed to the parent's lookup func
1901 * @name: the case-exact name to be associated with the returned dentry
1902 *
1903 * This is to avoid filling the dcache with case-insensitive names to the
1904 * same inode, only the actual correct case is stored in the dcache for
1905 * case-insensitive filesystems.
1906 *
1907 * For a case-insensitive lookup match and if the the case-exact dentry
1908 * already exists in in the dcache, use it and return it.
1909 *
1910 * If no entry exists with the exact case name, allocate new dentry with
1911 * the exact case, and return the spliced entry.
1912 */
1913 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1914 struct qstr *name)
1915 {
1916 struct dentry *found;
1917 struct dentry *new;
1918
1919 /*
1920 * First check if a dentry matching the name already exists,
1921 * if not go ahead and create it now.
1922 */
1923 found = d_hash_and_lookup(dentry->d_parent, name);
1924 if (unlikely(IS_ERR(found)))
1925 goto err_out;
1926 if (!found) {
1927 new = d_alloc(dentry->d_parent, name);
1928 if (!new) {
1929 found = ERR_PTR(-ENOMEM);
1930 goto err_out;
1931 }
1932
1933 found = d_splice_alias(inode, new);
1934 if (found) {
1935 dput(new);
1936 return found;
1937 }
1938 return new;
1939 }
1940
1941 /*
1942 * If a matching dentry exists, and it's not negative use it.
1943 *
1944 * Decrement the reference count to balance the iget() done
1945 * earlier on.
1946 */
1947 if (found->d_inode) {
1948 if (unlikely(found->d_inode != inode)) {
1949 /* This can't happen because bad inodes are unhashed. */
1950 BUG_ON(!is_bad_inode(inode));
1951 BUG_ON(!is_bad_inode(found->d_inode));
1952 }
1953 iput(inode);
1954 return found;
1955 }
1956
1957 /*
1958 * Negative dentry: instantiate it unless the inode is a directory and
1959 * already has a dentry.
1960 */
1961 new = d_splice_alias(inode, found);
1962 if (new) {
1963 dput(found);
1964 found = new;
1965 }
1966 return found;
1967
1968 err_out:
1969 iput(inode);
1970 return found;
1971 }
1972 EXPORT_SYMBOL(d_add_ci);
1973
1974 /*
1975 * Do the slow-case of the dentry name compare.
1976 *
1977 * Unlike the dentry_cmp() function, we need to atomically
1978 * load the name and length information, so that the
1979 * filesystem can rely on them, and can use the 'name' and
1980 * 'len' information without worrying about walking off the
1981 * end of memory etc.
1982 *
1983 * Thus the read_seqcount_retry() and the "duplicate" info
1984 * in arguments (the low-level filesystem should not look
1985 * at the dentry inode or name contents directly, since
1986 * rename can change them while we're in RCU mode).
1987 */
1988 enum slow_d_compare {
1989 D_COMP_OK,
1990 D_COMP_NOMATCH,
1991 D_COMP_SEQRETRY,
1992 };
1993
1994 static noinline enum slow_d_compare slow_dentry_cmp(
1995 const struct dentry *parent,
1996 struct dentry *dentry,
1997 unsigned int seq,
1998 const struct qstr *name)
1999 {
2000 int tlen = dentry->d_name.len;
2001 const char *tname = dentry->d_name.name;
2002
2003 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2004 cpu_relax();
2005 return D_COMP_SEQRETRY;
2006 }
2007 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2008 return D_COMP_NOMATCH;
2009 return D_COMP_OK;
2010 }
2011
2012 /**
2013 * __d_lookup_rcu - search for a dentry (racy, store-free)
2014 * @parent: parent dentry
2015 * @name: qstr of name we wish to find
2016 * @seqp: returns d_seq value at the point where the dentry was found
2017 * Returns: dentry, or NULL
2018 *
2019 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2020 * resolution (store-free path walking) design described in
2021 * Documentation/filesystems/path-lookup.txt.
2022 *
2023 * This is not to be used outside core vfs.
2024 *
2025 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2026 * held, and rcu_read_lock held. The returned dentry must not be stored into
2027 * without taking d_lock and checking d_seq sequence count against @seq
2028 * returned here.
2029 *
2030 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2031 * function.
2032 *
2033 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2034 * the returned dentry, so long as its parent's seqlock is checked after the
2035 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2036 * is formed, giving integrity down the path walk.
2037 *
2038 * NOTE! The caller *has* to check the resulting dentry against the sequence
2039 * number we've returned before using any of the resulting dentry state!
2040 */
2041 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2042 const struct qstr *name,
2043 unsigned *seqp)
2044 {
2045 u64 hashlen = name->hash_len;
2046 const unsigned char *str = name->name;
2047 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2048 struct hlist_bl_node *node;
2049 struct dentry *dentry;
2050
2051 /*
2052 * Note: There is significant duplication with __d_lookup_rcu which is
2053 * required to prevent single threaded performance regressions
2054 * especially on architectures where smp_rmb (in seqcounts) are costly.
2055 * Keep the two functions in sync.
2056 */
2057
2058 /*
2059 * The hash list is protected using RCU.
2060 *
2061 * Carefully use d_seq when comparing a candidate dentry, to avoid
2062 * races with d_move().
2063 *
2064 * It is possible that concurrent renames can mess up our list
2065 * walk here and result in missing our dentry, resulting in the
2066 * false-negative result. d_lookup() protects against concurrent
2067 * renames using rename_lock seqlock.
2068 *
2069 * See Documentation/filesystems/path-lookup.txt for more details.
2070 */
2071 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2072 unsigned seq;
2073
2074 seqretry:
2075 /*
2076 * The dentry sequence count protects us from concurrent
2077 * renames, and thus protects parent and name fields.
2078 *
2079 * The caller must perform a seqcount check in order
2080 * to do anything useful with the returned dentry.
2081 *
2082 * NOTE! We do a "raw" seqcount_begin here. That means that
2083 * we don't wait for the sequence count to stabilize if it
2084 * is in the middle of a sequence change. If we do the slow
2085 * dentry compare, we will do seqretries until it is stable,
2086 * and if we end up with a successful lookup, we actually
2087 * want to exit RCU lookup anyway.
2088 */
2089 seq = raw_seqcount_begin(&dentry->d_seq);
2090 if (dentry->d_parent != parent)
2091 continue;
2092 if (d_unhashed(dentry))
2093 continue;
2094
2095 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2096 if (dentry->d_name.hash != hashlen_hash(hashlen))
2097 continue;
2098 *seqp = seq;
2099 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2100 case D_COMP_OK:
2101 return dentry;
2102 case D_COMP_NOMATCH:
2103 continue;
2104 default:
2105 goto seqretry;
2106 }
2107 }
2108
2109 if (dentry->d_name.hash_len != hashlen)
2110 continue;
2111 *seqp = seq;
2112 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2113 return dentry;
2114 }
2115 return NULL;
2116 }
2117
2118 /**
2119 * d_lookup - search for a dentry
2120 * @parent: parent dentry
2121 * @name: qstr of name we wish to find
2122 * Returns: dentry, or NULL
2123 *
2124 * d_lookup searches the children of the parent dentry for the name in
2125 * question. If the dentry is found its reference count is incremented and the
2126 * dentry is returned. The caller must use dput to free the entry when it has
2127 * finished using it. %NULL is returned if the dentry does not exist.
2128 */
2129 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2130 {
2131 struct dentry *dentry;
2132 unsigned seq;
2133
2134 do {
2135 seq = read_seqbegin(&rename_lock);
2136 dentry = __d_lookup(parent, name);
2137 if (dentry)
2138 break;
2139 } while (read_seqretry(&rename_lock, seq));
2140 return dentry;
2141 }
2142 EXPORT_SYMBOL(d_lookup);
2143
2144 /**
2145 * __d_lookup - search for a dentry (racy)
2146 * @parent: parent dentry
2147 * @name: qstr of name we wish to find
2148 * Returns: dentry, or NULL
2149 *
2150 * __d_lookup is like d_lookup, however it may (rarely) return a
2151 * false-negative result due to unrelated rename activity.
2152 *
2153 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2154 * however it must be used carefully, eg. with a following d_lookup in
2155 * the case of failure.
2156 *
2157 * __d_lookup callers must be commented.
2158 */
2159 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2160 {
2161 unsigned int len = name->len;
2162 unsigned int hash = name->hash;
2163 const unsigned char *str = name->name;
2164 struct hlist_bl_head *b = d_hash(parent, hash);
2165 struct hlist_bl_node *node;
2166 struct dentry *found = NULL;
2167 struct dentry *dentry;
2168
2169 /*
2170 * Note: There is significant duplication with __d_lookup_rcu which is
2171 * required to prevent single threaded performance regressions
2172 * especially on architectures where smp_rmb (in seqcounts) are costly.
2173 * Keep the two functions in sync.
2174 */
2175
2176 /*
2177 * The hash list is protected using RCU.
2178 *
2179 * Take d_lock when comparing a candidate dentry, to avoid races
2180 * with d_move().
2181 *
2182 * It is possible that concurrent renames can mess up our list
2183 * walk here and result in missing our dentry, resulting in the
2184 * false-negative result. d_lookup() protects against concurrent
2185 * renames using rename_lock seqlock.
2186 *
2187 * See Documentation/filesystems/path-lookup.txt for more details.
2188 */
2189 rcu_read_lock();
2190
2191 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2192
2193 if (dentry->d_name.hash != hash)
2194 continue;
2195
2196 spin_lock(&dentry->d_lock);
2197 if (dentry->d_parent != parent)
2198 goto next;
2199 if (d_unhashed(dentry))
2200 goto next;
2201
2202 /*
2203 * It is safe to compare names since d_move() cannot
2204 * change the qstr (protected by d_lock).
2205 */
2206 if (parent->d_flags & DCACHE_OP_COMPARE) {
2207 int tlen = dentry->d_name.len;
2208 const char *tname = dentry->d_name.name;
2209 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2210 goto next;
2211 } else {
2212 if (dentry->d_name.len != len)
2213 goto next;
2214 if (dentry_cmp(dentry, str, len))
2215 goto next;
2216 }
2217
2218 dentry->d_lockref.count++;
2219 found = dentry;
2220 spin_unlock(&dentry->d_lock);
2221 break;
2222 next:
2223 spin_unlock(&dentry->d_lock);
2224 }
2225 rcu_read_unlock();
2226
2227 return found;
2228 }
2229
2230 /**
2231 * d_hash_and_lookup - hash the qstr then search for a dentry
2232 * @dir: Directory to search in
2233 * @name: qstr of name we wish to find
2234 *
2235 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2236 */
2237 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2238 {
2239 /*
2240 * Check for a fs-specific hash function. Note that we must
2241 * calculate the standard hash first, as the d_op->d_hash()
2242 * routine may choose to leave the hash value unchanged.
2243 */
2244 name->hash = full_name_hash(name->name, name->len);
2245 if (dir->d_flags & DCACHE_OP_HASH) {
2246 int err = dir->d_op->d_hash(dir, name);
2247 if (unlikely(err < 0))
2248 return ERR_PTR(err);
2249 }
2250 return d_lookup(dir, name);
2251 }
2252 EXPORT_SYMBOL(d_hash_and_lookup);
2253
2254 /**
2255 * d_validate - verify dentry provided from insecure source (deprecated)
2256 * @dentry: The dentry alleged to be valid child of @dparent
2257 * @dparent: The parent dentry (known to be valid)
2258 *
2259 * An insecure source has sent us a dentry, here we verify it and dget() it.
2260 * This is used by ncpfs in its readdir implementation.
2261 * Zero is returned in the dentry is invalid.
2262 *
2263 * This function is slow for big directories, and deprecated, do not use it.
2264 */
2265 int d_validate(struct dentry *dentry, struct dentry *dparent)
2266 {
2267 struct dentry *child;
2268
2269 spin_lock(&dparent->d_lock);
2270 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2271 if (dentry == child) {
2272 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2273 __dget_dlock(dentry);
2274 spin_unlock(&dentry->d_lock);
2275 spin_unlock(&dparent->d_lock);
2276 return 1;
2277 }
2278 }
2279 spin_unlock(&dparent->d_lock);
2280
2281 return 0;
2282 }
2283 EXPORT_SYMBOL(d_validate);
2284
2285 /*
2286 * When a file is deleted, we have two options:
2287 * - turn this dentry into a negative dentry
2288 * - unhash this dentry and free it.
2289 *
2290 * Usually, we want to just turn this into
2291 * a negative dentry, but if anybody else is
2292 * currently using the dentry or the inode
2293 * we can't do that and we fall back on removing
2294 * it from the hash queues and waiting for
2295 * it to be deleted later when it has no users
2296 */
2297
2298 /**
2299 * d_delete - delete a dentry
2300 * @dentry: The dentry to delete
2301 *
2302 * Turn the dentry into a negative dentry if possible, otherwise
2303 * remove it from the hash queues so it can be deleted later
2304 */
2305
2306 void d_delete(struct dentry * dentry)
2307 {
2308 struct inode *inode;
2309 int isdir = 0;
2310 /*
2311 * Are we the only user?
2312 */
2313 again:
2314 spin_lock(&dentry->d_lock);
2315 inode = dentry->d_inode;
2316 isdir = S_ISDIR(inode->i_mode);
2317 if (dentry->d_lockref.count == 1) {
2318 if (!spin_trylock(&inode->i_lock)) {
2319 spin_unlock(&dentry->d_lock);
2320 cpu_relax();
2321 goto again;
2322 }
2323 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2324 dentry_unlink_inode(dentry);
2325 fsnotify_nameremove(dentry, isdir);
2326 return;
2327 }
2328
2329 if (!d_unhashed(dentry))
2330 __d_drop(dentry);
2331
2332 spin_unlock(&dentry->d_lock);
2333
2334 fsnotify_nameremove(dentry, isdir);
2335 }
2336 EXPORT_SYMBOL(d_delete);
2337
2338 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2339 {
2340 BUG_ON(!d_unhashed(entry));
2341 hlist_bl_lock(b);
2342 entry->d_flags |= DCACHE_RCUACCESS;
2343 hlist_bl_add_head_rcu(&entry->d_hash, b);
2344 hlist_bl_unlock(b);
2345 }
2346
2347 static void _d_rehash(struct dentry * entry)
2348 {
2349 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2350 }
2351
2352 /**
2353 * d_rehash - add an entry back to the hash
2354 * @entry: dentry to add to the hash
2355 *
2356 * Adds a dentry to the hash according to its name.
2357 */
2358
2359 void d_rehash(struct dentry * entry)
2360 {
2361 spin_lock(&entry->d_lock);
2362 _d_rehash(entry);
2363 spin_unlock(&entry->d_lock);
2364 }
2365 EXPORT_SYMBOL(d_rehash);
2366
2367 /**
2368 * dentry_update_name_case - update case insensitive dentry with a new name
2369 * @dentry: dentry to be updated
2370 * @name: new name
2371 *
2372 * Update a case insensitive dentry with new case of name.
2373 *
2374 * dentry must have been returned by d_lookup with name @name. Old and new
2375 * name lengths must match (ie. no d_compare which allows mismatched name
2376 * lengths).
2377 *
2378 * Parent inode i_mutex must be held over d_lookup and into this call (to
2379 * keep renames and concurrent inserts, and readdir(2) away).
2380 */
2381 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2382 {
2383 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2384 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2385
2386 spin_lock(&dentry->d_lock);
2387 write_seqcount_begin(&dentry->d_seq);
2388 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2389 write_seqcount_end(&dentry->d_seq);
2390 spin_unlock(&dentry->d_lock);
2391 }
2392 EXPORT_SYMBOL(dentry_update_name_case);
2393
2394 static void switch_names(struct dentry *dentry, struct dentry *target)
2395 {
2396 if (dname_external(target)) {
2397 if (dname_external(dentry)) {
2398 /*
2399 * Both external: swap the pointers
2400 */
2401 swap(target->d_name.name, dentry->d_name.name);
2402 } else {
2403 /*
2404 * dentry:internal, target:external. Steal target's
2405 * storage and make target internal.
2406 */
2407 memcpy(target->d_iname, dentry->d_name.name,
2408 dentry->d_name.len + 1);
2409 dentry->d_name.name = target->d_name.name;
2410 target->d_name.name = target->d_iname;
2411 }
2412 } else {
2413 if (dname_external(dentry)) {
2414 /*
2415 * dentry:external, target:internal. Give dentry's
2416 * storage to target and make dentry internal
2417 */
2418 memcpy(dentry->d_iname, target->d_name.name,
2419 target->d_name.len + 1);
2420 target->d_name.name = dentry->d_name.name;
2421 dentry->d_name.name = dentry->d_iname;
2422 } else {
2423 /*
2424 * Both are internal. Just copy target to dentry
2425 */
2426 memcpy(dentry->d_iname, target->d_name.name,
2427 target->d_name.len + 1);
2428 dentry->d_name.len = target->d_name.len;
2429 return;
2430 }
2431 }
2432 swap(dentry->d_name.len, target->d_name.len);
2433 }
2434
2435 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2436 {
2437 /*
2438 * XXXX: do we really need to take target->d_lock?
2439 */
2440 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2441 spin_lock(&target->d_parent->d_lock);
2442 else {
2443 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2444 spin_lock(&dentry->d_parent->d_lock);
2445 spin_lock_nested(&target->d_parent->d_lock,
2446 DENTRY_D_LOCK_NESTED);
2447 } else {
2448 spin_lock(&target->d_parent->d_lock);
2449 spin_lock_nested(&dentry->d_parent->d_lock,
2450 DENTRY_D_LOCK_NESTED);
2451 }
2452 }
2453 if (target < dentry) {
2454 spin_lock_nested(&target->d_lock, 2);
2455 spin_lock_nested(&dentry->d_lock, 3);
2456 } else {
2457 spin_lock_nested(&dentry->d_lock, 2);
2458 spin_lock_nested(&target->d_lock, 3);
2459 }
2460 }
2461
2462 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2463 struct dentry *target)
2464 {
2465 if (target->d_parent != dentry->d_parent)
2466 spin_unlock(&dentry->d_parent->d_lock);
2467 if (target->d_parent != target)
2468 spin_unlock(&target->d_parent->d_lock);
2469 }
2470
2471 /*
2472 * When switching names, the actual string doesn't strictly have to
2473 * be preserved in the target - because we're dropping the target
2474 * anyway. As such, we can just do a simple memcpy() to copy over
2475 * the new name before we switch.
2476 *
2477 * Note that we have to be a lot more careful about getting the hash
2478 * switched - we have to switch the hash value properly even if it
2479 * then no longer matches the actual (corrupted) string of the target.
2480 * The hash value has to match the hash queue that the dentry is on..
2481 */
2482 /*
2483 * __d_move - move a dentry
2484 * @dentry: entry to move
2485 * @target: new dentry
2486 *
2487 * Update the dcache to reflect the move of a file name. Negative
2488 * dcache entries should not be moved in this way. Caller must hold
2489 * rename_lock, the i_mutex of the source and target directories,
2490 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2491 */
2492 static void __d_move(struct dentry * dentry, struct dentry * target)
2493 {
2494 if (!dentry->d_inode)
2495 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2496
2497 BUG_ON(d_ancestor(dentry, target));
2498 BUG_ON(d_ancestor(target, dentry));
2499
2500 dentry_lock_for_move(dentry, target);
2501
2502 write_seqcount_begin(&dentry->d_seq);
2503 write_seqcount_begin(&target->d_seq);
2504
2505 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2506
2507 /*
2508 * Move the dentry to the target hash queue. Don't bother checking
2509 * for the same hash queue because of how unlikely it is.
2510 */
2511 __d_drop(dentry);
2512 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2513
2514 /* Unhash the target: dput() will then get rid of it */
2515 __d_drop(target);
2516
2517 list_del(&dentry->d_u.d_child);
2518 list_del(&target->d_u.d_child);
2519
2520 /* Switch the names.. */
2521 switch_names(dentry, target);
2522 swap(dentry->d_name.hash, target->d_name.hash);
2523
2524 /* ... and switch the parents */
2525 if (IS_ROOT(dentry)) {
2526 dentry->d_parent = target->d_parent;
2527 target->d_parent = target;
2528 INIT_LIST_HEAD(&target->d_u.d_child);
2529 } else {
2530 swap(dentry->d_parent, target->d_parent);
2531
2532 /* And add them back to the (new) parent lists */
2533 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2534 }
2535
2536 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2537
2538 write_seqcount_end(&target->d_seq);
2539 write_seqcount_end(&dentry->d_seq);
2540
2541 dentry_unlock_parents_for_move(dentry, target);
2542 spin_unlock(&target->d_lock);
2543 fsnotify_d_move(dentry);
2544 spin_unlock(&dentry->d_lock);
2545 }
2546
2547 /*
2548 * d_move - move a dentry
2549 * @dentry: entry to move
2550 * @target: new dentry
2551 *
2552 * Update the dcache to reflect the move of a file name. Negative
2553 * dcache entries should not be moved in this way. See the locking
2554 * requirements for __d_move.
2555 */
2556 void d_move(struct dentry *dentry, struct dentry *target)
2557 {
2558 write_seqlock(&rename_lock);
2559 __d_move(dentry, target);
2560 write_sequnlock(&rename_lock);
2561 }
2562 EXPORT_SYMBOL(d_move);
2563
2564 /**
2565 * d_ancestor - search for an ancestor
2566 * @p1: ancestor dentry
2567 * @p2: child dentry
2568 *
2569 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2570 * an ancestor of p2, else NULL.
2571 */
2572 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2573 {
2574 struct dentry *p;
2575
2576 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2577 if (p->d_parent == p1)
2578 return p;
2579 }
2580 return NULL;
2581 }
2582
2583 /*
2584 * This helper attempts to cope with remotely renamed directories
2585 *
2586 * It assumes that the caller is already holding
2587 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2588 *
2589 * Note: If ever the locking in lock_rename() changes, then please
2590 * remember to update this too...
2591 */
2592 static struct dentry *__d_unalias(struct inode *inode,
2593 struct dentry *dentry, struct dentry *alias)
2594 {
2595 struct mutex *m1 = NULL, *m2 = NULL;
2596 struct dentry *ret = ERR_PTR(-EBUSY);
2597
2598 /* If alias and dentry share a parent, then no extra locks required */
2599 if (alias->d_parent == dentry->d_parent)
2600 goto out_unalias;
2601
2602 /* See lock_rename() */
2603 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2604 goto out_err;
2605 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2606 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2607 goto out_err;
2608 m2 = &alias->d_parent->d_inode->i_mutex;
2609 out_unalias:
2610 if (likely(!d_mountpoint(alias))) {
2611 __d_move(alias, dentry);
2612 ret = alias;
2613 }
2614 out_err:
2615 spin_unlock(&inode->i_lock);
2616 if (m2)
2617 mutex_unlock(m2);
2618 if (m1)
2619 mutex_unlock(m1);
2620 return ret;
2621 }
2622
2623 /*
2624 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2625 * named dentry in place of the dentry to be replaced.
2626 * returns with anon->d_lock held!
2627 */
2628 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2629 {
2630 struct dentry *dparent;
2631
2632 dentry_lock_for_move(anon, dentry);
2633
2634 write_seqcount_begin(&dentry->d_seq);
2635 write_seqcount_begin(&anon->d_seq);
2636
2637 dparent = dentry->d_parent;
2638
2639 switch_names(dentry, anon);
2640 swap(dentry->d_name.hash, anon->d_name.hash);
2641
2642 dentry->d_parent = dentry;
2643 list_del_init(&dentry->d_u.d_child);
2644 anon->d_parent = dparent;
2645 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2646
2647 write_seqcount_end(&dentry->d_seq);
2648 write_seqcount_end(&anon->d_seq);
2649
2650 dentry_unlock_parents_for_move(anon, dentry);
2651 spin_unlock(&dentry->d_lock);
2652
2653 /* anon->d_lock still locked, returns locked */
2654 anon->d_flags &= ~DCACHE_DISCONNECTED;
2655 }
2656
2657 /**
2658 * d_materialise_unique - introduce an inode into the tree
2659 * @dentry: candidate dentry
2660 * @inode: inode to bind to the dentry, to which aliases may be attached
2661 *
2662 * Introduces an dentry into the tree, substituting an extant disconnected
2663 * root directory alias in its place if there is one. Caller must hold the
2664 * i_mutex of the parent directory.
2665 */
2666 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2667 {
2668 struct dentry *actual;
2669
2670 BUG_ON(!d_unhashed(dentry));
2671
2672 if (!inode) {
2673 actual = dentry;
2674 __d_instantiate(dentry, NULL);
2675 d_rehash(actual);
2676 goto out_nolock;
2677 }
2678
2679 spin_lock(&inode->i_lock);
2680
2681 if (S_ISDIR(inode->i_mode)) {
2682 struct dentry *alias;
2683
2684 /* Does an aliased dentry already exist? */
2685 alias = __d_find_alias(inode, 0);
2686 if (alias) {
2687 actual = alias;
2688 write_seqlock(&rename_lock);
2689
2690 if (d_ancestor(alias, dentry)) {
2691 /* Check for loops */
2692 actual = ERR_PTR(-ELOOP);
2693 spin_unlock(&inode->i_lock);
2694 } else if (IS_ROOT(alias)) {
2695 /* Is this an anonymous mountpoint that we
2696 * could splice into our tree? */
2697 __d_materialise_dentry(dentry, alias);
2698 write_sequnlock(&rename_lock);
2699 __d_drop(alias);
2700 goto found;
2701 } else {
2702 /* Nope, but we must(!) avoid directory
2703 * aliasing. This drops inode->i_lock */
2704 actual = __d_unalias(inode, dentry, alias);
2705 }
2706 write_sequnlock(&rename_lock);
2707 if (IS_ERR(actual)) {
2708 if (PTR_ERR(actual) == -ELOOP)
2709 pr_warn_ratelimited(
2710 "VFS: Lookup of '%s' in %s %s"
2711 " would have caused loop\n",
2712 dentry->d_name.name,
2713 inode->i_sb->s_type->name,
2714 inode->i_sb->s_id);
2715 dput(alias);
2716 }
2717 goto out_nolock;
2718 }
2719 }
2720
2721 /* Add a unique reference */
2722 actual = __d_instantiate_unique(dentry, inode);
2723 if (!actual)
2724 actual = dentry;
2725 else
2726 BUG_ON(!d_unhashed(actual));
2727
2728 spin_lock(&actual->d_lock);
2729 found:
2730 _d_rehash(actual);
2731 spin_unlock(&actual->d_lock);
2732 spin_unlock(&inode->i_lock);
2733 out_nolock:
2734 if (actual == dentry) {
2735 security_d_instantiate(dentry, inode);
2736 return NULL;
2737 }
2738
2739 iput(inode);
2740 return actual;
2741 }
2742 EXPORT_SYMBOL_GPL(d_materialise_unique);
2743
2744 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2745 {
2746 *buflen -= namelen;
2747 if (*buflen < 0)
2748 return -ENAMETOOLONG;
2749 *buffer -= namelen;
2750 memcpy(*buffer, str, namelen);
2751 return 0;
2752 }
2753
2754 /**
2755 * prepend_name - prepend a pathname in front of current buffer pointer
2756 * @buffer: buffer pointer
2757 * @buflen: allocated length of the buffer
2758 * @name: name string and length qstr structure
2759 *
2760 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2761 * make sure that either the old or the new name pointer and length are
2762 * fetched. However, there may be mismatch between length and pointer.
2763 * The length cannot be trusted, we need to copy it byte-by-byte until
2764 * the length is reached or a null byte is found. It also prepends "/" at
2765 * the beginning of the name. The sequence number check at the caller will
2766 * retry it again when a d_move() does happen. So any garbage in the buffer
2767 * due to mismatched pointer and length will be discarded.
2768 */
2769 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2770 {
2771 const char *dname = ACCESS_ONCE(name->name);
2772 u32 dlen = ACCESS_ONCE(name->len);
2773 char *p;
2774
2775 if (*buflen < dlen + 1)
2776 return -ENAMETOOLONG;
2777 *buflen -= dlen + 1;
2778 p = *buffer -= dlen + 1;
2779 *p++ = '/';
2780 while (dlen--) {
2781 char c = *dname++;
2782 if (!c)
2783 break;
2784 *p++ = c;
2785 }
2786 return 0;
2787 }
2788
2789 /**
2790 * prepend_path - Prepend path string to a buffer
2791 * @path: the dentry/vfsmount to report
2792 * @root: root vfsmnt/dentry
2793 * @buffer: pointer to the end of the buffer
2794 * @buflen: pointer to buffer length
2795 *
2796 * The function will first try to write out the pathname without taking any
2797 * lock other than the RCU read lock to make sure that dentries won't go away.
2798 * It only checks the sequence number of the global rename_lock as any change
2799 * in the dentry's d_seq will be preceded by changes in the rename_lock
2800 * sequence number. If the sequence number had been changed, it will restart
2801 * the whole pathname back-tracing sequence again by taking the rename_lock.
2802 * In this case, there is no need to take the RCU read lock as the recursive
2803 * parent pointer references will keep the dentry chain alive as long as no
2804 * rename operation is performed.
2805 */
2806 static int prepend_path(const struct path *path,
2807 const struct path *root,
2808 char **buffer, int *buflen)
2809 {
2810 struct dentry *dentry = path->dentry;
2811 struct vfsmount *vfsmnt = path->mnt;
2812 struct mount *mnt = real_mount(vfsmnt);
2813 int error = 0;
2814 unsigned seq = 0;
2815 char *bptr;
2816 int blen;
2817
2818 rcu_read_lock();
2819 restart:
2820 bptr = *buffer;
2821 blen = *buflen;
2822 read_seqbegin_or_lock(&rename_lock, &seq);
2823 while (dentry != root->dentry || vfsmnt != root->mnt) {
2824 struct dentry * parent;
2825
2826 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2827 /* Global root? */
2828 if (mnt_has_parent(mnt)) {
2829 dentry = mnt->mnt_mountpoint;
2830 mnt = mnt->mnt_parent;
2831 vfsmnt = &mnt->mnt;
2832 continue;
2833 }
2834 /*
2835 * Filesystems needing to implement special "root names"
2836 * should do so with ->d_dname()
2837 */
2838 if (IS_ROOT(dentry) &&
2839 (dentry->d_name.len != 1 ||
2840 dentry->d_name.name[0] != '/')) {
2841 WARN(1, "Root dentry has weird name <%.*s>\n",
2842 (int) dentry->d_name.len,
2843 dentry->d_name.name);
2844 }
2845 if (!error)
2846 error = is_mounted(vfsmnt) ? 1 : 2;
2847 break;
2848 }
2849 parent = dentry->d_parent;
2850 prefetch(parent);
2851 error = prepend_name(&bptr, &blen, &dentry->d_name);
2852 if (error)
2853 break;
2854
2855 dentry = parent;
2856 }
2857 if (!(seq & 1))
2858 rcu_read_unlock();
2859 if (need_seqretry(&rename_lock, seq)) {
2860 seq = 1;
2861 goto restart;
2862 }
2863 done_seqretry(&rename_lock, seq);
2864
2865 if (error >= 0 && bptr == *buffer) {
2866 if (--blen < 0)
2867 error = -ENAMETOOLONG;
2868 else
2869 *--bptr = '/';
2870 }
2871 *buffer = bptr;
2872 *buflen = blen;
2873 return error;
2874 }
2875
2876 /**
2877 * __d_path - return the path of a dentry
2878 * @path: the dentry/vfsmount to report
2879 * @root: root vfsmnt/dentry
2880 * @buf: buffer to return value in
2881 * @buflen: buffer length
2882 *
2883 * Convert a dentry into an ASCII path name.
2884 *
2885 * Returns a pointer into the buffer or an error code if the
2886 * path was too long.
2887 *
2888 * "buflen" should be positive.
2889 *
2890 * If the path is not reachable from the supplied root, return %NULL.
2891 */
2892 char *__d_path(const struct path *path,
2893 const struct path *root,
2894 char *buf, int buflen)
2895 {
2896 char *res = buf + buflen;
2897 int error;
2898
2899 prepend(&res, &buflen, "\0", 1);
2900 br_read_lock(&vfsmount_lock);
2901 error = prepend_path(path, root, &res, &buflen);
2902 br_read_unlock(&vfsmount_lock);
2903
2904 if (error < 0)
2905 return ERR_PTR(error);
2906 if (error > 0)
2907 return NULL;
2908 return res;
2909 }
2910
2911 char *d_absolute_path(const struct path *path,
2912 char *buf, int buflen)
2913 {
2914 struct path root = {};
2915 char *res = buf + buflen;
2916 int error;
2917
2918 prepend(&res, &buflen, "\0", 1);
2919 br_read_lock(&vfsmount_lock);
2920 error = prepend_path(path, &root, &res, &buflen);
2921 br_read_unlock(&vfsmount_lock);
2922
2923 if (error > 1)
2924 error = -EINVAL;
2925 if (error < 0)
2926 return ERR_PTR(error);
2927 return res;
2928 }
2929
2930 /*
2931 * same as __d_path but appends "(deleted)" for unlinked files.
2932 */
2933 static int path_with_deleted(const struct path *path,
2934 const struct path *root,
2935 char **buf, int *buflen)
2936 {
2937 prepend(buf, buflen, "\0", 1);
2938 if (d_unlinked(path->dentry)) {
2939 int error = prepend(buf, buflen, " (deleted)", 10);
2940 if (error)
2941 return error;
2942 }
2943
2944 return prepend_path(path, root, buf, buflen);
2945 }
2946
2947 static int prepend_unreachable(char **buffer, int *buflen)
2948 {
2949 return prepend(buffer, buflen, "(unreachable)", 13);
2950 }
2951
2952 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
2953 {
2954 unsigned seq;
2955
2956 do {
2957 seq = read_seqcount_begin(&fs->seq);
2958 *root = fs->root;
2959 } while (read_seqcount_retry(&fs->seq, seq));
2960 }
2961
2962 /**
2963 * d_path - return the path of a dentry
2964 * @path: path to report
2965 * @buf: buffer to return value in
2966 * @buflen: buffer length
2967 *
2968 * Convert a dentry into an ASCII path name. If the entry has been deleted
2969 * the string " (deleted)" is appended. Note that this is ambiguous.
2970 *
2971 * Returns a pointer into the buffer or an error code if the path was
2972 * too long. Note: Callers should use the returned pointer, not the passed
2973 * in buffer, to use the name! The implementation often starts at an offset
2974 * into the buffer, and may leave 0 bytes at the start.
2975 *
2976 * "buflen" should be positive.
2977 */
2978 char *d_path(const struct path *path, char *buf, int buflen)
2979 {
2980 char *res = buf + buflen;
2981 struct path root;
2982 int error;
2983
2984 /*
2985 * We have various synthetic filesystems that never get mounted. On
2986 * these filesystems dentries are never used for lookup purposes, and
2987 * thus don't need to be hashed. They also don't need a name until a
2988 * user wants to identify the object in /proc/pid/fd/. The little hack
2989 * below allows us to generate a name for these objects on demand:
2990 */
2991 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2992 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2993
2994 rcu_read_lock();
2995 get_fs_root_rcu(current->fs, &root);
2996 br_read_lock(&vfsmount_lock);
2997 error = path_with_deleted(path, &root, &res, &buflen);
2998 br_read_unlock(&vfsmount_lock);
2999 rcu_read_unlock();
3000
3001 if (error < 0)
3002 res = ERR_PTR(error);
3003 return res;
3004 }
3005 EXPORT_SYMBOL(d_path);
3006
3007 /*
3008 * Helper function for dentry_operations.d_dname() members
3009 */
3010 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3011 const char *fmt, ...)
3012 {
3013 va_list args;
3014 char temp[64];
3015 int sz;
3016
3017 va_start(args, fmt);
3018 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3019 va_end(args);
3020
3021 if (sz > sizeof(temp) || sz > buflen)
3022 return ERR_PTR(-ENAMETOOLONG);
3023
3024 buffer += buflen - sz;
3025 return memcpy(buffer, temp, sz);
3026 }
3027
3028 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3029 {
3030 char *end = buffer + buflen;
3031 /* these dentries are never renamed, so d_lock is not needed */
3032 if (prepend(&end, &buflen, " (deleted)", 11) ||
3033 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3034 prepend(&end, &buflen, "/", 1))
3035 end = ERR_PTR(-ENAMETOOLONG);
3036 return end;
3037 }
3038
3039 /*
3040 * Write full pathname from the root of the filesystem into the buffer.
3041 */
3042 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
3043 {
3044 char *end, *retval;
3045 int len, seq = 0;
3046 int error = 0;
3047
3048 rcu_read_lock();
3049 restart:
3050 end = buf + buflen;
3051 len = buflen;
3052 prepend(&end, &len, "\0", 1);
3053 if (buflen < 1)
3054 goto Elong;
3055 /* Get '/' right */
3056 retval = end-1;
3057 *retval = '/';
3058 read_seqbegin_or_lock(&rename_lock, &seq);
3059 while (!IS_ROOT(dentry)) {
3060 struct dentry *parent = dentry->d_parent;
3061 int error;
3062
3063 prefetch(parent);
3064 error = prepend_name(&end, &len, &dentry->d_name);
3065 if (error)
3066 break;
3067
3068 retval = end;
3069 dentry = parent;
3070 }
3071 if (!(seq & 1))
3072 rcu_read_unlock();
3073 if (need_seqretry(&rename_lock, seq)) {
3074 seq = 1;
3075 goto restart;
3076 }
3077 done_seqretry(&rename_lock, seq);
3078 if (error)
3079 goto Elong;
3080 return retval;
3081 Elong:
3082 return ERR_PTR(-ENAMETOOLONG);
3083 }
3084
3085 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3086 {
3087 return __dentry_path(dentry, buf, buflen);
3088 }
3089 EXPORT_SYMBOL(dentry_path_raw);
3090
3091 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3092 {
3093 char *p = NULL;
3094 char *retval;
3095
3096 if (d_unlinked(dentry)) {
3097 p = buf + buflen;
3098 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3099 goto Elong;
3100 buflen++;
3101 }
3102 retval = __dentry_path(dentry, buf, buflen);
3103 if (!IS_ERR(retval) && p)
3104 *p = '/'; /* restore '/' overriden with '\0' */
3105 return retval;
3106 Elong:
3107 return ERR_PTR(-ENAMETOOLONG);
3108 }
3109
3110 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3111 struct path *pwd)
3112 {
3113 unsigned seq;
3114
3115 do {
3116 seq = read_seqcount_begin(&fs->seq);
3117 *root = fs->root;
3118 *pwd = fs->pwd;
3119 } while (read_seqcount_retry(&fs->seq, seq));
3120 }
3121
3122 /*
3123 * NOTE! The user-level library version returns a
3124 * character pointer. The kernel system call just
3125 * returns the length of the buffer filled (which
3126 * includes the ending '\0' character), or a negative
3127 * error value. So libc would do something like
3128 *
3129 * char *getcwd(char * buf, size_t size)
3130 * {
3131 * int retval;
3132 *
3133 * retval = sys_getcwd(buf, size);
3134 * if (retval >= 0)
3135 * return buf;
3136 * errno = -retval;
3137 * return NULL;
3138 * }
3139 */
3140 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3141 {
3142 int error;
3143 struct path pwd, root;
3144 char *page = __getname();
3145
3146 if (!page)
3147 return -ENOMEM;
3148
3149 rcu_read_lock();
3150 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3151
3152 error = -ENOENT;
3153 br_read_lock(&vfsmount_lock);
3154 if (!d_unlinked(pwd.dentry)) {
3155 unsigned long len;
3156 char *cwd = page + PATH_MAX;
3157 int buflen = PATH_MAX;
3158
3159 prepend(&cwd, &buflen, "\0", 1);
3160 error = prepend_path(&pwd, &root, &cwd, &buflen);
3161 br_read_unlock(&vfsmount_lock);
3162 rcu_read_unlock();
3163
3164 if (error < 0)
3165 goto out;
3166
3167 /* Unreachable from current root */
3168 if (error > 0) {
3169 error = prepend_unreachable(&cwd, &buflen);
3170 if (error)
3171 goto out;
3172 }
3173
3174 error = -ERANGE;
3175 len = PATH_MAX + page - cwd;
3176 if (len <= size) {
3177 error = len;
3178 if (copy_to_user(buf, cwd, len))
3179 error = -EFAULT;
3180 }
3181 } else {
3182 br_read_unlock(&vfsmount_lock);
3183 rcu_read_unlock();
3184 }
3185
3186 out:
3187 __putname(page);
3188 return error;
3189 }
3190
3191 /*
3192 * Test whether new_dentry is a subdirectory of old_dentry.
3193 *
3194 * Trivially implemented using the dcache structure
3195 */
3196
3197 /**
3198 * is_subdir - is new dentry a subdirectory of old_dentry
3199 * @new_dentry: new dentry
3200 * @old_dentry: old dentry
3201 *
3202 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3203 * Returns 0 otherwise.
3204 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3205 */
3206
3207 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3208 {
3209 int result;
3210 unsigned seq;
3211
3212 if (new_dentry == old_dentry)
3213 return 1;
3214
3215 do {
3216 /* for restarting inner loop in case of seq retry */
3217 seq = read_seqbegin(&rename_lock);
3218 /*
3219 * Need rcu_readlock to protect against the d_parent trashing
3220 * due to d_move
3221 */
3222 rcu_read_lock();
3223 if (d_ancestor(old_dentry, new_dentry))
3224 result = 1;
3225 else
3226 result = 0;
3227 rcu_read_unlock();
3228 } while (read_seqretry(&rename_lock, seq));
3229
3230 return result;
3231 }
3232
3233 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3234 {
3235 struct dentry *root = data;
3236 if (dentry != root) {
3237 if (d_unhashed(dentry) || !dentry->d_inode)
3238 return D_WALK_SKIP;
3239
3240 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3241 dentry->d_flags |= DCACHE_GENOCIDE;
3242 dentry->d_lockref.count--;
3243 }
3244 }
3245 return D_WALK_CONTINUE;
3246 }
3247
3248 void d_genocide(struct dentry *parent)
3249 {
3250 d_walk(parent, parent, d_genocide_kill, NULL);
3251 }
3252
3253 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3254 {
3255 inode_dec_link_count(inode);
3256 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3257 !hlist_unhashed(&dentry->d_alias) ||
3258 !d_unlinked(dentry));
3259 spin_lock(&dentry->d_parent->d_lock);
3260 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3261 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3262 (unsigned long long)inode->i_ino);
3263 spin_unlock(&dentry->d_lock);
3264 spin_unlock(&dentry->d_parent->d_lock);
3265 d_instantiate(dentry, inode);
3266 }
3267 EXPORT_SYMBOL(d_tmpfile);
3268
3269 static __initdata unsigned long dhash_entries;
3270 static int __init set_dhash_entries(char *str)
3271 {
3272 if (!str)
3273 return 0;
3274 dhash_entries = simple_strtoul(str, &str, 0);
3275 return 1;
3276 }
3277 __setup("dhash_entries=", set_dhash_entries);
3278
3279 static void __init dcache_init_early(void)
3280 {
3281 unsigned int loop;
3282
3283 /* If hashes are distributed across NUMA nodes, defer
3284 * hash allocation until vmalloc space is available.
3285 */
3286 if (hashdist)
3287 return;
3288
3289 dentry_hashtable =
3290 alloc_large_system_hash("Dentry cache",
3291 sizeof(struct hlist_bl_head),
3292 dhash_entries,
3293 13,
3294 HASH_EARLY,
3295 &d_hash_shift,
3296 &d_hash_mask,
3297 0,
3298 0);
3299
3300 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3301 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3302 }
3303
3304 static void __init dcache_init(void)
3305 {
3306 unsigned int loop;
3307
3308 /*
3309 * A constructor could be added for stable state like the lists,
3310 * but it is probably not worth it because of the cache nature
3311 * of the dcache.
3312 */
3313 dentry_cache = KMEM_CACHE(dentry,
3314 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3315
3316 /* Hash may have been set up in dcache_init_early */
3317 if (!hashdist)
3318 return;
3319
3320 dentry_hashtable =
3321 alloc_large_system_hash("Dentry cache",
3322 sizeof(struct hlist_bl_head),
3323 dhash_entries,
3324 13,
3325 0,
3326 &d_hash_shift,
3327 &d_hash_mask,
3328 0,
3329 0);
3330
3331 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3332 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3333 }
3334
3335 /* SLAB cache for __getname() consumers */
3336 struct kmem_cache *names_cachep __read_mostly;
3337 EXPORT_SYMBOL(names_cachep);
3338
3339 EXPORT_SYMBOL(d_genocide);
3340
3341 void __init vfs_caches_init_early(void)
3342 {
3343 dcache_init_early();
3344 inode_init_early();
3345 }
3346
3347 void __init vfs_caches_init(unsigned long mempages)
3348 {
3349 unsigned long reserve;
3350
3351 /* Base hash sizes on available memory, with a reserve equal to
3352 150% of current kernel size */
3353
3354 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3355 mempages -= reserve;
3356
3357 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3358 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3359
3360 dcache_init();
3361 inode_init();
3362 files_init(mempages);
3363 mnt_init();
3364 bdev_cache_init();
3365 chrdev_init();
3366 }
This page took 0.10065 seconds and 6 git commands to generate.