dcache: convert dentry_stat.nr_unused to per-cpu counters
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /**
92 * read_seqbegin_or_lock - begin a sequence number check or locking block
93 * lock: sequence lock
94 * seq : sequence number to be checked
95 *
96 * First try it once optimistically without taking the lock. If that fails,
97 * take the lock. The sequence number is also used as a marker for deciding
98 * whether to be a reader (even) or writer (odd).
99 * N.B. seq must be initialized to an even number to begin with.
100 */
101 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
102 {
103 if (!(*seq & 1)) /* Even */
104 *seq = read_seqbegin(lock);
105 else /* Odd */
106 write_seqlock(lock);
107 }
108
109 static inline int need_seqretry(seqlock_t *lock, int seq)
110 {
111 return !(seq & 1) && read_seqretry(lock, seq);
112 }
113
114 static inline void done_seqretry(seqlock_t *lock, int seq)
115 {
116 if (seq & 1)
117 write_sequnlock(lock);
118 }
119
120 /*
121 * This is the single most critical data structure when it comes
122 * to the dcache: the hashtable for lookups. Somebody should try
123 * to make this good - I've just made it work.
124 *
125 * This hash-function tries to avoid losing too many bits of hash
126 * information, yet avoid using a prime hash-size or similar.
127 */
128 #define D_HASHBITS d_hash_shift
129 #define D_HASHMASK d_hash_mask
130
131 static unsigned int d_hash_mask __read_mostly;
132 static unsigned int d_hash_shift __read_mostly;
133
134 static struct hlist_bl_head *dentry_hashtable __read_mostly;
135
136 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
137 unsigned int hash)
138 {
139 hash += (unsigned long) parent / L1_CACHE_BYTES;
140 hash = hash + (hash >> D_HASHBITS);
141 return dentry_hashtable + (hash & D_HASHMASK);
142 }
143
144 /* Statistics gathering. */
145 struct dentry_stat_t dentry_stat = {
146 .age_limit = 45,
147 };
148
149 static DEFINE_PER_CPU(long, nr_dentry);
150 static DEFINE_PER_CPU(long, nr_dentry_unused);
151
152 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
153
154 /*
155 * Here we resort to our own counters instead of using generic per-cpu counters
156 * for consistency with what the vfs inode code does. We are expected to harvest
157 * better code and performance by having our own specialized counters.
158 *
159 * Please note that the loop is done over all possible CPUs, not over all online
160 * CPUs. The reason for this is that we don't want to play games with CPUs going
161 * on and off. If one of them goes off, we will just keep their counters.
162 *
163 * glommer: See cffbc8a for details, and if you ever intend to change this,
164 * please update all vfs counters to match.
165 */
166 static long get_nr_dentry(void)
167 {
168 int i;
169 long sum = 0;
170 for_each_possible_cpu(i)
171 sum += per_cpu(nr_dentry, i);
172 return sum < 0 ? 0 : sum;
173 }
174
175 static long get_nr_dentry_unused(void)
176 {
177 int i;
178 long sum = 0;
179 for_each_possible_cpu(i)
180 sum += per_cpu(nr_dentry_unused, i);
181 return sum < 0 ? 0 : sum;
182 }
183
184 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
185 size_t *lenp, loff_t *ppos)
186 {
187 dentry_stat.nr_dentry = get_nr_dentry();
188 dentry_stat.nr_unused = get_nr_dentry_unused();
189 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
190 }
191 #endif
192
193 /*
194 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
195 * The strings are both count bytes long, and count is non-zero.
196 */
197 #ifdef CONFIG_DCACHE_WORD_ACCESS
198
199 #include <asm/word-at-a-time.h>
200 /*
201 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
202 * aligned allocation for this particular component. We don't
203 * strictly need the load_unaligned_zeropad() safety, but it
204 * doesn't hurt either.
205 *
206 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
207 * need the careful unaligned handling.
208 */
209 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
210 {
211 unsigned long a,b,mask;
212
213 for (;;) {
214 a = *(unsigned long *)cs;
215 b = load_unaligned_zeropad(ct);
216 if (tcount < sizeof(unsigned long))
217 break;
218 if (unlikely(a != b))
219 return 1;
220 cs += sizeof(unsigned long);
221 ct += sizeof(unsigned long);
222 tcount -= sizeof(unsigned long);
223 if (!tcount)
224 return 0;
225 }
226 mask = ~(~0ul << tcount*8);
227 return unlikely(!!((a ^ b) & mask));
228 }
229
230 #else
231
232 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
233 {
234 do {
235 if (*cs != *ct)
236 return 1;
237 cs++;
238 ct++;
239 tcount--;
240 } while (tcount);
241 return 0;
242 }
243
244 #endif
245
246 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
247 {
248 const unsigned char *cs;
249 /*
250 * Be careful about RCU walk racing with rename:
251 * use ACCESS_ONCE to fetch the name pointer.
252 *
253 * NOTE! Even if a rename will mean that the length
254 * was not loaded atomically, we don't care. The
255 * RCU walk will check the sequence count eventually,
256 * and catch it. And we won't overrun the buffer,
257 * because we're reading the name pointer atomically,
258 * and a dentry name is guaranteed to be properly
259 * terminated with a NUL byte.
260 *
261 * End result: even if 'len' is wrong, we'll exit
262 * early because the data cannot match (there can
263 * be no NUL in the ct/tcount data)
264 */
265 cs = ACCESS_ONCE(dentry->d_name.name);
266 smp_read_barrier_depends();
267 return dentry_string_cmp(cs, ct, tcount);
268 }
269
270 static void __d_free(struct rcu_head *head)
271 {
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
273
274 WARN_ON(!hlist_unhashed(&dentry->d_alias));
275 if (dname_external(dentry))
276 kfree(dentry->d_name.name);
277 kmem_cache_free(dentry_cache, dentry);
278 }
279
280 /*
281 * no locks, please.
282 */
283 static void d_free(struct dentry *dentry)
284 {
285 BUG_ON((int)dentry->d_lockref.count > 0);
286 this_cpu_dec(nr_dentry);
287 if (dentry->d_op && dentry->d_op->d_release)
288 dentry->d_op->d_release(dentry);
289
290 /* if dentry was never visible to RCU, immediate free is OK */
291 if (!(dentry->d_flags & DCACHE_RCUACCESS))
292 __d_free(&dentry->d_u.d_rcu);
293 else
294 call_rcu(&dentry->d_u.d_rcu, __d_free);
295 }
296
297 /**
298 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
299 * @dentry: the target dentry
300 * After this call, in-progress rcu-walk path lookup will fail. This
301 * should be called after unhashing, and after changing d_inode (if
302 * the dentry has not already been unhashed).
303 */
304 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
305 {
306 assert_spin_locked(&dentry->d_lock);
307 /* Go through a barrier */
308 write_seqcount_barrier(&dentry->d_seq);
309 }
310
311 /*
312 * Release the dentry's inode, using the filesystem
313 * d_iput() operation if defined. Dentry has no refcount
314 * and is unhashed.
315 */
316 static void dentry_iput(struct dentry * dentry)
317 __releases(dentry->d_lock)
318 __releases(dentry->d_inode->i_lock)
319 {
320 struct inode *inode = dentry->d_inode;
321 if (inode) {
322 dentry->d_inode = NULL;
323 hlist_del_init(&dentry->d_alias);
324 spin_unlock(&dentry->d_lock);
325 spin_unlock(&inode->i_lock);
326 if (!inode->i_nlink)
327 fsnotify_inoderemove(inode);
328 if (dentry->d_op && dentry->d_op->d_iput)
329 dentry->d_op->d_iput(dentry, inode);
330 else
331 iput(inode);
332 } else {
333 spin_unlock(&dentry->d_lock);
334 }
335 }
336
337 /*
338 * Release the dentry's inode, using the filesystem
339 * d_iput() operation if defined. dentry remains in-use.
340 */
341 static void dentry_unlink_inode(struct dentry * dentry)
342 __releases(dentry->d_lock)
343 __releases(dentry->d_inode->i_lock)
344 {
345 struct inode *inode = dentry->d_inode;
346 dentry->d_inode = NULL;
347 hlist_del_init(&dentry->d_alias);
348 dentry_rcuwalk_barrier(dentry);
349 spin_unlock(&dentry->d_lock);
350 spin_unlock(&inode->i_lock);
351 if (!inode->i_nlink)
352 fsnotify_inoderemove(inode);
353 if (dentry->d_op && dentry->d_op->d_iput)
354 dentry->d_op->d_iput(dentry, inode);
355 else
356 iput(inode);
357 }
358
359 /*
360 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
361 */
362 static void dentry_lru_add(struct dentry *dentry)
363 {
364 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) {
365 spin_lock(&dcache_lru_lock);
366 dentry->d_flags |= DCACHE_LRU_LIST;
367 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
368 dentry->d_sb->s_nr_dentry_unused++;
369 this_cpu_inc(nr_dentry_unused);
370 spin_unlock(&dcache_lru_lock);
371 }
372 }
373
374 static void __dentry_lru_del(struct dentry *dentry)
375 {
376 list_del_init(&dentry->d_lru);
377 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
378 dentry->d_sb->s_nr_dentry_unused--;
379 this_cpu_dec(nr_dentry_unused);
380 }
381
382 /*
383 * Remove a dentry with references from the LRU.
384 */
385 static void dentry_lru_del(struct dentry *dentry)
386 {
387 if (!list_empty(&dentry->d_lru)) {
388 spin_lock(&dcache_lru_lock);
389 __dentry_lru_del(dentry);
390 spin_unlock(&dcache_lru_lock);
391 }
392 }
393
394 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
395 {
396 spin_lock(&dcache_lru_lock);
397 if (list_empty(&dentry->d_lru)) {
398 dentry->d_flags |= DCACHE_LRU_LIST;
399 list_add_tail(&dentry->d_lru, list);
400 dentry->d_sb->s_nr_dentry_unused++;
401 this_cpu_inc(nr_dentry_unused);
402 } else {
403 list_move_tail(&dentry->d_lru, list);
404 }
405 spin_unlock(&dcache_lru_lock);
406 }
407
408 /**
409 * d_kill - kill dentry and return parent
410 * @dentry: dentry to kill
411 * @parent: parent dentry
412 *
413 * The dentry must already be unhashed and removed from the LRU.
414 *
415 * If this is the root of the dentry tree, return NULL.
416 *
417 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
418 * d_kill.
419 */
420 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
421 __releases(dentry->d_lock)
422 __releases(parent->d_lock)
423 __releases(dentry->d_inode->i_lock)
424 {
425 list_del(&dentry->d_u.d_child);
426 /*
427 * Inform try_to_ascend() that we are no longer attached to the
428 * dentry tree
429 */
430 dentry->d_flags |= DCACHE_DENTRY_KILLED;
431 if (parent)
432 spin_unlock(&parent->d_lock);
433 dentry_iput(dentry);
434 /*
435 * dentry_iput drops the locks, at which point nobody (except
436 * transient RCU lookups) can reach this dentry.
437 */
438 d_free(dentry);
439 return parent;
440 }
441
442 /*
443 * Unhash a dentry without inserting an RCU walk barrier or checking that
444 * dentry->d_lock is locked. The caller must take care of that, if
445 * appropriate.
446 */
447 static void __d_shrink(struct dentry *dentry)
448 {
449 if (!d_unhashed(dentry)) {
450 struct hlist_bl_head *b;
451 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
452 b = &dentry->d_sb->s_anon;
453 else
454 b = d_hash(dentry->d_parent, dentry->d_name.hash);
455
456 hlist_bl_lock(b);
457 __hlist_bl_del(&dentry->d_hash);
458 dentry->d_hash.pprev = NULL;
459 hlist_bl_unlock(b);
460 }
461 }
462
463 /**
464 * d_drop - drop a dentry
465 * @dentry: dentry to drop
466 *
467 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
468 * be found through a VFS lookup any more. Note that this is different from
469 * deleting the dentry - d_delete will try to mark the dentry negative if
470 * possible, giving a successful _negative_ lookup, while d_drop will
471 * just make the cache lookup fail.
472 *
473 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
474 * reason (NFS timeouts or autofs deletes).
475 *
476 * __d_drop requires dentry->d_lock.
477 */
478 void __d_drop(struct dentry *dentry)
479 {
480 if (!d_unhashed(dentry)) {
481 __d_shrink(dentry);
482 dentry_rcuwalk_barrier(dentry);
483 }
484 }
485 EXPORT_SYMBOL(__d_drop);
486
487 void d_drop(struct dentry *dentry)
488 {
489 spin_lock(&dentry->d_lock);
490 __d_drop(dentry);
491 spin_unlock(&dentry->d_lock);
492 }
493 EXPORT_SYMBOL(d_drop);
494
495 /*
496 * Finish off a dentry we've decided to kill.
497 * dentry->d_lock must be held, returns with it unlocked.
498 * If ref is non-zero, then decrement the refcount too.
499 * Returns dentry requiring refcount drop, or NULL if we're done.
500 */
501 static inline struct dentry *dentry_kill(struct dentry *dentry)
502 __releases(dentry->d_lock)
503 {
504 struct inode *inode;
505 struct dentry *parent;
506
507 inode = dentry->d_inode;
508 if (inode && !spin_trylock(&inode->i_lock)) {
509 relock:
510 spin_unlock(&dentry->d_lock);
511 cpu_relax();
512 return dentry; /* try again with same dentry */
513 }
514 if (IS_ROOT(dentry))
515 parent = NULL;
516 else
517 parent = dentry->d_parent;
518 if (parent && !spin_trylock(&parent->d_lock)) {
519 if (inode)
520 spin_unlock(&inode->i_lock);
521 goto relock;
522 }
523
524 /*
525 * The dentry is now unrecoverably dead to the world.
526 */
527 lockref_mark_dead(&dentry->d_lockref);
528
529 /*
530 * inform the fs via d_prune that this dentry is about to be
531 * unhashed and destroyed.
532 */
533 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
534 dentry->d_op->d_prune(dentry);
535
536 dentry_lru_del(dentry);
537 /* if it was on the hash then remove it */
538 __d_drop(dentry);
539 return d_kill(dentry, parent);
540 }
541
542 /*
543 * This is dput
544 *
545 * This is complicated by the fact that we do not want to put
546 * dentries that are no longer on any hash chain on the unused
547 * list: we'd much rather just get rid of them immediately.
548 *
549 * However, that implies that we have to traverse the dentry
550 * tree upwards to the parents which might _also_ now be
551 * scheduled for deletion (it may have been only waiting for
552 * its last child to go away).
553 *
554 * This tail recursion is done by hand as we don't want to depend
555 * on the compiler to always get this right (gcc generally doesn't).
556 * Real recursion would eat up our stack space.
557 */
558
559 /*
560 * dput - release a dentry
561 * @dentry: dentry to release
562 *
563 * Release a dentry. This will drop the usage count and if appropriate
564 * call the dentry unlink method as well as removing it from the queues and
565 * releasing its resources. If the parent dentries were scheduled for release
566 * they too may now get deleted.
567 */
568 void dput(struct dentry *dentry)
569 {
570 if (unlikely(!dentry))
571 return;
572
573 repeat:
574 if (lockref_put_or_lock(&dentry->d_lockref))
575 return;
576
577 /* Unreachable? Get rid of it */
578 if (unlikely(d_unhashed(dentry)))
579 goto kill_it;
580
581 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
582 if (dentry->d_op->d_delete(dentry))
583 goto kill_it;
584 }
585
586 dentry->d_flags |= DCACHE_REFERENCED;
587 dentry_lru_add(dentry);
588
589 dentry->d_lockref.count--;
590 spin_unlock(&dentry->d_lock);
591 return;
592
593 kill_it:
594 dentry = dentry_kill(dentry);
595 if (dentry)
596 goto repeat;
597 }
598 EXPORT_SYMBOL(dput);
599
600 /**
601 * d_invalidate - invalidate a dentry
602 * @dentry: dentry to invalidate
603 *
604 * Try to invalidate the dentry if it turns out to be
605 * possible. If there are other dentries that can be
606 * reached through this one we can't delete it and we
607 * return -EBUSY. On success we return 0.
608 *
609 * no dcache lock.
610 */
611
612 int d_invalidate(struct dentry * dentry)
613 {
614 /*
615 * If it's already been dropped, return OK.
616 */
617 spin_lock(&dentry->d_lock);
618 if (d_unhashed(dentry)) {
619 spin_unlock(&dentry->d_lock);
620 return 0;
621 }
622 /*
623 * Check whether to do a partial shrink_dcache
624 * to get rid of unused child entries.
625 */
626 if (!list_empty(&dentry->d_subdirs)) {
627 spin_unlock(&dentry->d_lock);
628 shrink_dcache_parent(dentry);
629 spin_lock(&dentry->d_lock);
630 }
631
632 /*
633 * Somebody else still using it?
634 *
635 * If it's a directory, we can't drop it
636 * for fear of somebody re-populating it
637 * with children (even though dropping it
638 * would make it unreachable from the root,
639 * we might still populate it if it was a
640 * working directory or similar).
641 * We also need to leave mountpoints alone,
642 * directory or not.
643 */
644 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
645 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
646 spin_unlock(&dentry->d_lock);
647 return -EBUSY;
648 }
649 }
650
651 __d_drop(dentry);
652 spin_unlock(&dentry->d_lock);
653 return 0;
654 }
655 EXPORT_SYMBOL(d_invalidate);
656
657 /* This must be called with d_lock held */
658 static inline void __dget_dlock(struct dentry *dentry)
659 {
660 dentry->d_lockref.count++;
661 }
662
663 static inline void __dget(struct dentry *dentry)
664 {
665 lockref_get(&dentry->d_lockref);
666 }
667
668 struct dentry *dget_parent(struct dentry *dentry)
669 {
670 int gotref;
671 struct dentry *ret;
672
673 /*
674 * Do optimistic parent lookup without any
675 * locking.
676 */
677 rcu_read_lock();
678 ret = ACCESS_ONCE(dentry->d_parent);
679 gotref = lockref_get_not_zero(&ret->d_lockref);
680 rcu_read_unlock();
681 if (likely(gotref)) {
682 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
683 return ret;
684 dput(ret);
685 }
686
687 repeat:
688 /*
689 * Don't need rcu_dereference because we re-check it was correct under
690 * the lock.
691 */
692 rcu_read_lock();
693 ret = dentry->d_parent;
694 spin_lock(&ret->d_lock);
695 if (unlikely(ret != dentry->d_parent)) {
696 spin_unlock(&ret->d_lock);
697 rcu_read_unlock();
698 goto repeat;
699 }
700 rcu_read_unlock();
701 BUG_ON(!ret->d_lockref.count);
702 ret->d_lockref.count++;
703 spin_unlock(&ret->d_lock);
704 return ret;
705 }
706 EXPORT_SYMBOL(dget_parent);
707
708 /**
709 * d_find_alias - grab a hashed alias of inode
710 * @inode: inode in question
711 * @want_discon: flag, used by d_splice_alias, to request
712 * that only a DISCONNECTED alias be returned.
713 *
714 * If inode has a hashed alias, or is a directory and has any alias,
715 * acquire the reference to alias and return it. Otherwise return NULL.
716 * Notice that if inode is a directory there can be only one alias and
717 * it can be unhashed only if it has no children, or if it is the root
718 * of a filesystem.
719 *
720 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
721 * any other hashed alias over that one unless @want_discon is set,
722 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
723 */
724 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
725 {
726 struct dentry *alias, *discon_alias;
727
728 again:
729 discon_alias = NULL;
730 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
731 spin_lock(&alias->d_lock);
732 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
733 if (IS_ROOT(alias) &&
734 (alias->d_flags & DCACHE_DISCONNECTED)) {
735 discon_alias = alias;
736 } else if (!want_discon) {
737 __dget_dlock(alias);
738 spin_unlock(&alias->d_lock);
739 return alias;
740 }
741 }
742 spin_unlock(&alias->d_lock);
743 }
744 if (discon_alias) {
745 alias = discon_alias;
746 spin_lock(&alias->d_lock);
747 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
748 if (IS_ROOT(alias) &&
749 (alias->d_flags & DCACHE_DISCONNECTED)) {
750 __dget_dlock(alias);
751 spin_unlock(&alias->d_lock);
752 return alias;
753 }
754 }
755 spin_unlock(&alias->d_lock);
756 goto again;
757 }
758 return NULL;
759 }
760
761 struct dentry *d_find_alias(struct inode *inode)
762 {
763 struct dentry *de = NULL;
764
765 if (!hlist_empty(&inode->i_dentry)) {
766 spin_lock(&inode->i_lock);
767 de = __d_find_alias(inode, 0);
768 spin_unlock(&inode->i_lock);
769 }
770 return de;
771 }
772 EXPORT_SYMBOL(d_find_alias);
773
774 /*
775 * Try to kill dentries associated with this inode.
776 * WARNING: you must own a reference to inode.
777 */
778 void d_prune_aliases(struct inode *inode)
779 {
780 struct dentry *dentry;
781 restart:
782 spin_lock(&inode->i_lock);
783 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
784 spin_lock(&dentry->d_lock);
785 if (!dentry->d_lockref.count) {
786 /*
787 * inform the fs via d_prune that this dentry
788 * is about to be unhashed and destroyed.
789 */
790 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
791 !d_unhashed(dentry))
792 dentry->d_op->d_prune(dentry);
793
794 __dget_dlock(dentry);
795 __d_drop(dentry);
796 spin_unlock(&dentry->d_lock);
797 spin_unlock(&inode->i_lock);
798 dput(dentry);
799 goto restart;
800 }
801 spin_unlock(&dentry->d_lock);
802 }
803 spin_unlock(&inode->i_lock);
804 }
805 EXPORT_SYMBOL(d_prune_aliases);
806
807 /*
808 * Try to throw away a dentry - free the inode, dput the parent.
809 * Requires dentry->d_lock is held, and dentry->d_count == 0.
810 * Releases dentry->d_lock.
811 *
812 * This may fail if locks cannot be acquired no problem, just try again.
813 */
814 static void try_prune_one_dentry(struct dentry *dentry)
815 __releases(dentry->d_lock)
816 {
817 struct dentry *parent;
818
819 parent = dentry_kill(dentry);
820 /*
821 * If dentry_kill returns NULL, we have nothing more to do.
822 * if it returns the same dentry, trylocks failed. In either
823 * case, just loop again.
824 *
825 * Otherwise, we need to prune ancestors too. This is necessary
826 * to prevent quadratic behavior of shrink_dcache_parent(), but
827 * is also expected to be beneficial in reducing dentry cache
828 * fragmentation.
829 */
830 if (!parent)
831 return;
832 if (parent == dentry)
833 return;
834
835 /* Prune ancestors. */
836 dentry = parent;
837 while (dentry) {
838 if (lockref_put_or_lock(&dentry->d_lockref))
839 return;
840 dentry = dentry_kill(dentry);
841 }
842 }
843
844 static void shrink_dentry_list(struct list_head *list)
845 {
846 struct dentry *dentry;
847
848 rcu_read_lock();
849 for (;;) {
850 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
851 if (&dentry->d_lru == list)
852 break; /* empty */
853 spin_lock(&dentry->d_lock);
854 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
855 spin_unlock(&dentry->d_lock);
856 continue;
857 }
858
859 /*
860 * We found an inuse dentry which was not removed from
861 * the LRU because of laziness during lookup. Do not free
862 * it - just keep it off the LRU list.
863 */
864 if (dentry->d_lockref.count) {
865 dentry_lru_del(dentry);
866 spin_unlock(&dentry->d_lock);
867 continue;
868 }
869
870 rcu_read_unlock();
871
872 try_prune_one_dentry(dentry);
873
874 rcu_read_lock();
875 }
876 rcu_read_unlock();
877 }
878
879 /**
880 * prune_dcache_sb - shrink the dcache
881 * @sb: superblock
882 * @count: number of entries to try to free
883 *
884 * Attempt to shrink the superblock dcache LRU by @count entries. This is
885 * done when we need more memory an called from the superblock shrinker
886 * function.
887 *
888 * This function may fail to free any resources if all the dentries are in
889 * use.
890 */
891 void prune_dcache_sb(struct super_block *sb, int count)
892 {
893 struct dentry *dentry;
894 LIST_HEAD(referenced);
895 LIST_HEAD(tmp);
896
897 relock:
898 spin_lock(&dcache_lru_lock);
899 while (!list_empty(&sb->s_dentry_lru)) {
900 dentry = list_entry(sb->s_dentry_lru.prev,
901 struct dentry, d_lru);
902 BUG_ON(dentry->d_sb != sb);
903
904 if (!spin_trylock(&dentry->d_lock)) {
905 spin_unlock(&dcache_lru_lock);
906 cpu_relax();
907 goto relock;
908 }
909
910 if (dentry->d_flags & DCACHE_REFERENCED) {
911 dentry->d_flags &= ~DCACHE_REFERENCED;
912 list_move(&dentry->d_lru, &referenced);
913 spin_unlock(&dentry->d_lock);
914 } else {
915 list_move_tail(&dentry->d_lru, &tmp);
916 dentry->d_flags |= DCACHE_SHRINK_LIST;
917 spin_unlock(&dentry->d_lock);
918 if (!--count)
919 break;
920 }
921 cond_resched_lock(&dcache_lru_lock);
922 }
923 if (!list_empty(&referenced))
924 list_splice(&referenced, &sb->s_dentry_lru);
925 spin_unlock(&dcache_lru_lock);
926
927 shrink_dentry_list(&tmp);
928 }
929
930 /**
931 * shrink_dcache_sb - shrink dcache for a superblock
932 * @sb: superblock
933 *
934 * Shrink the dcache for the specified super block. This is used to free
935 * the dcache before unmounting a file system.
936 */
937 void shrink_dcache_sb(struct super_block *sb)
938 {
939 LIST_HEAD(tmp);
940
941 spin_lock(&dcache_lru_lock);
942 while (!list_empty(&sb->s_dentry_lru)) {
943 list_splice_init(&sb->s_dentry_lru, &tmp);
944 spin_unlock(&dcache_lru_lock);
945 shrink_dentry_list(&tmp);
946 spin_lock(&dcache_lru_lock);
947 }
948 spin_unlock(&dcache_lru_lock);
949 }
950 EXPORT_SYMBOL(shrink_dcache_sb);
951
952 /*
953 * destroy a single subtree of dentries for unmount
954 * - see the comments on shrink_dcache_for_umount() for a description of the
955 * locking
956 */
957 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
958 {
959 struct dentry *parent;
960
961 BUG_ON(!IS_ROOT(dentry));
962
963 for (;;) {
964 /* descend to the first leaf in the current subtree */
965 while (!list_empty(&dentry->d_subdirs))
966 dentry = list_entry(dentry->d_subdirs.next,
967 struct dentry, d_u.d_child);
968
969 /* consume the dentries from this leaf up through its parents
970 * until we find one with children or run out altogether */
971 do {
972 struct inode *inode;
973
974 /*
975 * inform the fs that this dentry is about to be
976 * unhashed and destroyed.
977 */
978 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
979 !d_unhashed(dentry))
980 dentry->d_op->d_prune(dentry);
981
982 dentry_lru_del(dentry);
983 __d_shrink(dentry);
984
985 if (dentry->d_lockref.count != 0) {
986 printk(KERN_ERR
987 "BUG: Dentry %p{i=%lx,n=%s}"
988 " still in use (%d)"
989 " [unmount of %s %s]\n",
990 dentry,
991 dentry->d_inode ?
992 dentry->d_inode->i_ino : 0UL,
993 dentry->d_name.name,
994 dentry->d_lockref.count,
995 dentry->d_sb->s_type->name,
996 dentry->d_sb->s_id);
997 BUG();
998 }
999
1000 if (IS_ROOT(dentry)) {
1001 parent = NULL;
1002 list_del(&dentry->d_u.d_child);
1003 } else {
1004 parent = dentry->d_parent;
1005 parent->d_lockref.count--;
1006 list_del(&dentry->d_u.d_child);
1007 }
1008
1009 inode = dentry->d_inode;
1010 if (inode) {
1011 dentry->d_inode = NULL;
1012 hlist_del_init(&dentry->d_alias);
1013 if (dentry->d_op && dentry->d_op->d_iput)
1014 dentry->d_op->d_iput(dentry, inode);
1015 else
1016 iput(inode);
1017 }
1018
1019 d_free(dentry);
1020
1021 /* finished when we fall off the top of the tree,
1022 * otherwise we ascend to the parent and move to the
1023 * next sibling if there is one */
1024 if (!parent)
1025 return;
1026 dentry = parent;
1027 } while (list_empty(&dentry->d_subdirs));
1028
1029 dentry = list_entry(dentry->d_subdirs.next,
1030 struct dentry, d_u.d_child);
1031 }
1032 }
1033
1034 /*
1035 * destroy the dentries attached to a superblock on unmounting
1036 * - we don't need to use dentry->d_lock because:
1037 * - the superblock is detached from all mountings and open files, so the
1038 * dentry trees will not be rearranged by the VFS
1039 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1040 * any dentries belonging to this superblock that it comes across
1041 * - the filesystem itself is no longer permitted to rearrange the dentries
1042 * in this superblock
1043 */
1044 void shrink_dcache_for_umount(struct super_block *sb)
1045 {
1046 struct dentry *dentry;
1047
1048 if (down_read_trylock(&sb->s_umount))
1049 BUG();
1050
1051 dentry = sb->s_root;
1052 sb->s_root = NULL;
1053 dentry->d_lockref.count--;
1054 shrink_dcache_for_umount_subtree(dentry);
1055
1056 while (!hlist_bl_empty(&sb->s_anon)) {
1057 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1058 shrink_dcache_for_umount_subtree(dentry);
1059 }
1060 }
1061
1062 /*
1063 * This tries to ascend one level of parenthood, but
1064 * we can race with renaming, so we need to re-check
1065 * the parenthood after dropping the lock and check
1066 * that the sequence number still matches.
1067 */
1068 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
1069 {
1070 struct dentry *new = old->d_parent;
1071
1072 rcu_read_lock();
1073 spin_unlock(&old->d_lock);
1074 spin_lock(&new->d_lock);
1075
1076 /*
1077 * might go back up the wrong parent if we have had a rename
1078 * or deletion
1079 */
1080 if (new != old->d_parent ||
1081 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1082 need_seqretry(&rename_lock, seq)) {
1083 spin_unlock(&new->d_lock);
1084 new = NULL;
1085 }
1086 rcu_read_unlock();
1087 return new;
1088 }
1089
1090 /**
1091 * enum d_walk_ret - action to talke during tree walk
1092 * @D_WALK_CONTINUE: contrinue walk
1093 * @D_WALK_QUIT: quit walk
1094 * @D_WALK_NORETRY: quit when retry is needed
1095 * @D_WALK_SKIP: skip this dentry and its children
1096 */
1097 enum d_walk_ret {
1098 D_WALK_CONTINUE,
1099 D_WALK_QUIT,
1100 D_WALK_NORETRY,
1101 D_WALK_SKIP,
1102 };
1103
1104 /**
1105 * d_walk - walk the dentry tree
1106 * @parent: start of walk
1107 * @data: data passed to @enter() and @finish()
1108 * @enter: callback when first entering the dentry
1109 * @finish: callback when successfully finished the walk
1110 *
1111 * The @enter() and @finish() callbacks are called with d_lock held.
1112 */
1113 static void d_walk(struct dentry *parent, void *data,
1114 enum d_walk_ret (*enter)(void *, struct dentry *),
1115 void (*finish)(void *))
1116 {
1117 struct dentry *this_parent;
1118 struct list_head *next;
1119 unsigned seq = 0;
1120 enum d_walk_ret ret;
1121 bool retry = true;
1122
1123 again:
1124 read_seqbegin_or_lock(&rename_lock, &seq);
1125 this_parent = parent;
1126 spin_lock(&this_parent->d_lock);
1127
1128 ret = enter(data, this_parent);
1129 switch (ret) {
1130 case D_WALK_CONTINUE:
1131 break;
1132 case D_WALK_QUIT:
1133 case D_WALK_SKIP:
1134 goto out_unlock;
1135 case D_WALK_NORETRY:
1136 retry = false;
1137 break;
1138 }
1139 repeat:
1140 next = this_parent->d_subdirs.next;
1141 resume:
1142 while (next != &this_parent->d_subdirs) {
1143 struct list_head *tmp = next;
1144 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1145 next = tmp->next;
1146
1147 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1148
1149 ret = enter(data, dentry);
1150 switch (ret) {
1151 case D_WALK_CONTINUE:
1152 break;
1153 case D_WALK_QUIT:
1154 spin_unlock(&dentry->d_lock);
1155 goto out_unlock;
1156 case D_WALK_NORETRY:
1157 retry = false;
1158 break;
1159 case D_WALK_SKIP:
1160 spin_unlock(&dentry->d_lock);
1161 continue;
1162 }
1163
1164 if (!list_empty(&dentry->d_subdirs)) {
1165 spin_unlock(&this_parent->d_lock);
1166 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1167 this_parent = dentry;
1168 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1169 goto repeat;
1170 }
1171 spin_unlock(&dentry->d_lock);
1172 }
1173 /*
1174 * All done at this level ... ascend and resume the search.
1175 */
1176 if (this_parent != parent) {
1177 struct dentry *child = this_parent;
1178 this_parent = try_to_ascend(this_parent, seq);
1179 if (!this_parent)
1180 goto rename_retry;
1181 next = child->d_u.d_child.next;
1182 goto resume;
1183 }
1184 if (need_seqretry(&rename_lock, seq)) {
1185 spin_unlock(&this_parent->d_lock);
1186 goto rename_retry;
1187 }
1188 if (finish)
1189 finish(data);
1190
1191 out_unlock:
1192 spin_unlock(&this_parent->d_lock);
1193 done_seqretry(&rename_lock, seq);
1194 return;
1195
1196 rename_retry:
1197 if (!retry)
1198 return;
1199 seq = 1;
1200 goto again;
1201 }
1202
1203 /*
1204 * Search for at least 1 mount point in the dentry's subdirs.
1205 * We descend to the next level whenever the d_subdirs
1206 * list is non-empty and continue searching.
1207 */
1208
1209 /**
1210 * have_submounts - check for mounts over a dentry
1211 * @parent: dentry to check.
1212 *
1213 * Return true if the parent or its subdirectories contain
1214 * a mount point
1215 */
1216
1217 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1218 {
1219 int *ret = data;
1220 if (d_mountpoint(dentry)) {
1221 *ret = 1;
1222 return D_WALK_QUIT;
1223 }
1224 return D_WALK_CONTINUE;
1225 }
1226
1227 int have_submounts(struct dentry *parent)
1228 {
1229 int ret = 0;
1230
1231 d_walk(parent, &ret, check_mount, NULL);
1232
1233 return ret;
1234 }
1235 EXPORT_SYMBOL(have_submounts);
1236
1237 /*
1238 * Called by mount code to set a mountpoint and check if the mountpoint is
1239 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1240 * subtree can become unreachable).
1241 *
1242 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1243 * this reason take rename_lock and d_lock on dentry and ancestors.
1244 */
1245 int d_set_mounted(struct dentry *dentry)
1246 {
1247 struct dentry *p;
1248 int ret = -ENOENT;
1249 write_seqlock(&rename_lock);
1250 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1251 /* Need exclusion wrt. check_submounts_and_drop() */
1252 spin_lock(&p->d_lock);
1253 if (unlikely(d_unhashed(p))) {
1254 spin_unlock(&p->d_lock);
1255 goto out;
1256 }
1257 spin_unlock(&p->d_lock);
1258 }
1259 spin_lock(&dentry->d_lock);
1260 if (!d_unlinked(dentry)) {
1261 dentry->d_flags |= DCACHE_MOUNTED;
1262 ret = 0;
1263 }
1264 spin_unlock(&dentry->d_lock);
1265 out:
1266 write_sequnlock(&rename_lock);
1267 return ret;
1268 }
1269
1270 /*
1271 * Search the dentry child list of the specified parent,
1272 * and move any unused dentries to the end of the unused
1273 * list for prune_dcache(). We descend to the next level
1274 * whenever the d_subdirs list is non-empty and continue
1275 * searching.
1276 *
1277 * It returns zero iff there are no unused children,
1278 * otherwise it returns the number of children moved to
1279 * the end of the unused list. This may not be the total
1280 * number of unused children, because select_parent can
1281 * drop the lock and return early due to latency
1282 * constraints.
1283 */
1284
1285 struct select_data {
1286 struct dentry *start;
1287 struct list_head dispose;
1288 int found;
1289 };
1290
1291 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1292 {
1293 struct select_data *data = _data;
1294 enum d_walk_ret ret = D_WALK_CONTINUE;
1295
1296 if (data->start == dentry)
1297 goto out;
1298
1299 /*
1300 * move only zero ref count dentries to the dispose list.
1301 *
1302 * Those which are presently on the shrink list, being processed
1303 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1304 * loop in shrink_dcache_parent() might not make any progress
1305 * and loop forever.
1306 */
1307 if (dentry->d_lockref.count) {
1308 dentry_lru_del(dentry);
1309 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1310 dentry_lru_move_list(dentry, &data->dispose);
1311 dentry->d_flags |= DCACHE_SHRINK_LIST;
1312 data->found++;
1313 ret = D_WALK_NORETRY;
1314 }
1315 /*
1316 * We can return to the caller if we have found some (this
1317 * ensures forward progress). We'll be coming back to find
1318 * the rest.
1319 */
1320 if (data->found && need_resched())
1321 ret = D_WALK_QUIT;
1322 out:
1323 return ret;
1324 }
1325
1326 /**
1327 * shrink_dcache_parent - prune dcache
1328 * @parent: parent of entries to prune
1329 *
1330 * Prune the dcache to remove unused children of the parent dentry.
1331 */
1332 void shrink_dcache_parent(struct dentry *parent)
1333 {
1334 for (;;) {
1335 struct select_data data;
1336
1337 INIT_LIST_HEAD(&data.dispose);
1338 data.start = parent;
1339 data.found = 0;
1340
1341 d_walk(parent, &data, select_collect, NULL);
1342 if (!data.found)
1343 break;
1344
1345 shrink_dentry_list(&data.dispose);
1346 cond_resched();
1347 }
1348 }
1349 EXPORT_SYMBOL(shrink_dcache_parent);
1350
1351 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1352 {
1353 struct select_data *data = _data;
1354
1355 if (d_mountpoint(dentry)) {
1356 data->found = -EBUSY;
1357 return D_WALK_QUIT;
1358 }
1359
1360 return select_collect(_data, dentry);
1361 }
1362
1363 static void check_and_drop(void *_data)
1364 {
1365 struct select_data *data = _data;
1366
1367 if (d_mountpoint(data->start))
1368 data->found = -EBUSY;
1369 if (!data->found)
1370 __d_drop(data->start);
1371 }
1372
1373 /**
1374 * check_submounts_and_drop - prune dcache, check for submounts and drop
1375 *
1376 * All done as a single atomic operation relative to has_unlinked_ancestor().
1377 * Returns 0 if successfully unhashed @parent. If there were submounts then
1378 * return -EBUSY.
1379 *
1380 * @dentry: dentry to prune and drop
1381 */
1382 int check_submounts_and_drop(struct dentry *dentry)
1383 {
1384 int ret = 0;
1385
1386 /* Negative dentries can be dropped without further checks */
1387 if (!dentry->d_inode) {
1388 d_drop(dentry);
1389 goto out;
1390 }
1391
1392 for (;;) {
1393 struct select_data data;
1394
1395 INIT_LIST_HEAD(&data.dispose);
1396 data.start = dentry;
1397 data.found = 0;
1398
1399 d_walk(dentry, &data, check_and_collect, check_and_drop);
1400 ret = data.found;
1401
1402 if (!list_empty(&data.dispose))
1403 shrink_dentry_list(&data.dispose);
1404
1405 if (ret <= 0)
1406 break;
1407
1408 cond_resched();
1409 }
1410
1411 out:
1412 return ret;
1413 }
1414 EXPORT_SYMBOL(check_submounts_and_drop);
1415
1416 /**
1417 * __d_alloc - allocate a dcache entry
1418 * @sb: filesystem it will belong to
1419 * @name: qstr of the name
1420 *
1421 * Allocates a dentry. It returns %NULL if there is insufficient memory
1422 * available. On a success the dentry is returned. The name passed in is
1423 * copied and the copy passed in may be reused after this call.
1424 */
1425
1426 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1427 {
1428 struct dentry *dentry;
1429 char *dname;
1430
1431 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1432 if (!dentry)
1433 return NULL;
1434
1435 /*
1436 * We guarantee that the inline name is always NUL-terminated.
1437 * This way the memcpy() done by the name switching in rename
1438 * will still always have a NUL at the end, even if we might
1439 * be overwriting an internal NUL character
1440 */
1441 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1442 if (name->len > DNAME_INLINE_LEN-1) {
1443 dname = kmalloc(name->len + 1, GFP_KERNEL);
1444 if (!dname) {
1445 kmem_cache_free(dentry_cache, dentry);
1446 return NULL;
1447 }
1448 } else {
1449 dname = dentry->d_iname;
1450 }
1451
1452 dentry->d_name.len = name->len;
1453 dentry->d_name.hash = name->hash;
1454 memcpy(dname, name->name, name->len);
1455 dname[name->len] = 0;
1456
1457 /* Make sure we always see the terminating NUL character */
1458 smp_wmb();
1459 dentry->d_name.name = dname;
1460
1461 dentry->d_lockref.count = 1;
1462 dentry->d_flags = 0;
1463 spin_lock_init(&dentry->d_lock);
1464 seqcount_init(&dentry->d_seq);
1465 dentry->d_inode = NULL;
1466 dentry->d_parent = dentry;
1467 dentry->d_sb = sb;
1468 dentry->d_op = NULL;
1469 dentry->d_fsdata = NULL;
1470 INIT_HLIST_BL_NODE(&dentry->d_hash);
1471 INIT_LIST_HEAD(&dentry->d_lru);
1472 INIT_LIST_HEAD(&dentry->d_subdirs);
1473 INIT_HLIST_NODE(&dentry->d_alias);
1474 INIT_LIST_HEAD(&dentry->d_u.d_child);
1475 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1476
1477 this_cpu_inc(nr_dentry);
1478
1479 return dentry;
1480 }
1481
1482 /**
1483 * d_alloc - allocate a dcache entry
1484 * @parent: parent of entry to allocate
1485 * @name: qstr of the name
1486 *
1487 * Allocates a dentry. It returns %NULL if there is insufficient memory
1488 * available. On a success the dentry is returned. The name passed in is
1489 * copied and the copy passed in may be reused after this call.
1490 */
1491 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1492 {
1493 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1494 if (!dentry)
1495 return NULL;
1496
1497 spin_lock(&parent->d_lock);
1498 /*
1499 * don't need child lock because it is not subject
1500 * to concurrency here
1501 */
1502 __dget_dlock(parent);
1503 dentry->d_parent = parent;
1504 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1505 spin_unlock(&parent->d_lock);
1506
1507 return dentry;
1508 }
1509 EXPORT_SYMBOL(d_alloc);
1510
1511 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1512 {
1513 struct dentry *dentry = __d_alloc(sb, name);
1514 if (dentry)
1515 dentry->d_flags |= DCACHE_DISCONNECTED;
1516 return dentry;
1517 }
1518 EXPORT_SYMBOL(d_alloc_pseudo);
1519
1520 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1521 {
1522 struct qstr q;
1523
1524 q.name = name;
1525 q.len = strlen(name);
1526 q.hash = full_name_hash(q.name, q.len);
1527 return d_alloc(parent, &q);
1528 }
1529 EXPORT_SYMBOL(d_alloc_name);
1530
1531 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1532 {
1533 WARN_ON_ONCE(dentry->d_op);
1534 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1535 DCACHE_OP_COMPARE |
1536 DCACHE_OP_REVALIDATE |
1537 DCACHE_OP_WEAK_REVALIDATE |
1538 DCACHE_OP_DELETE ));
1539 dentry->d_op = op;
1540 if (!op)
1541 return;
1542 if (op->d_hash)
1543 dentry->d_flags |= DCACHE_OP_HASH;
1544 if (op->d_compare)
1545 dentry->d_flags |= DCACHE_OP_COMPARE;
1546 if (op->d_revalidate)
1547 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1548 if (op->d_weak_revalidate)
1549 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1550 if (op->d_delete)
1551 dentry->d_flags |= DCACHE_OP_DELETE;
1552 if (op->d_prune)
1553 dentry->d_flags |= DCACHE_OP_PRUNE;
1554
1555 }
1556 EXPORT_SYMBOL(d_set_d_op);
1557
1558 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1559 {
1560 spin_lock(&dentry->d_lock);
1561 if (inode) {
1562 if (unlikely(IS_AUTOMOUNT(inode)))
1563 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1564 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1565 }
1566 dentry->d_inode = inode;
1567 dentry_rcuwalk_barrier(dentry);
1568 spin_unlock(&dentry->d_lock);
1569 fsnotify_d_instantiate(dentry, inode);
1570 }
1571
1572 /**
1573 * d_instantiate - fill in inode information for a dentry
1574 * @entry: dentry to complete
1575 * @inode: inode to attach to this dentry
1576 *
1577 * Fill in inode information in the entry.
1578 *
1579 * This turns negative dentries into productive full members
1580 * of society.
1581 *
1582 * NOTE! This assumes that the inode count has been incremented
1583 * (or otherwise set) by the caller to indicate that it is now
1584 * in use by the dcache.
1585 */
1586
1587 void d_instantiate(struct dentry *entry, struct inode * inode)
1588 {
1589 BUG_ON(!hlist_unhashed(&entry->d_alias));
1590 if (inode)
1591 spin_lock(&inode->i_lock);
1592 __d_instantiate(entry, inode);
1593 if (inode)
1594 spin_unlock(&inode->i_lock);
1595 security_d_instantiate(entry, inode);
1596 }
1597 EXPORT_SYMBOL(d_instantiate);
1598
1599 /**
1600 * d_instantiate_unique - instantiate a non-aliased dentry
1601 * @entry: dentry to instantiate
1602 * @inode: inode to attach to this dentry
1603 *
1604 * Fill in inode information in the entry. On success, it returns NULL.
1605 * If an unhashed alias of "entry" already exists, then we return the
1606 * aliased dentry instead and drop one reference to inode.
1607 *
1608 * Note that in order to avoid conflicts with rename() etc, the caller
1609 * had better be holding the parent directory semaphore.
1610 *
1611 * This also assumes that the inode count has been incremented
1612 * (or otherwise set) by the caller to indicate that it is now
1613 * in use by the dcache.
1614 */
1615 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1616 struct inode *inode)
1617 {
1618 struct dentry *alias;
1619 int len = entry->d_name.len;
1620 const char *name = entry->d_name.name;
1621 unsigned int hash = entry->d_name.hash;
1622
1623 if (!inode) {
1624 __d_instantiate(entry, NULL);
1625 return NULL;
1626 }
1627
1628 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1629 /*
1630 * Don't need alias->d_lock here, because aliases with
1631 * d_parent == entry->d_parent are not subject to name or
1632 * parent changes, because the parent inode i_mutex is held.
1633 */
1634 if (alias->d_name.hash != hash)
1635 continue;
1636 if (alias->d_parent != entry->d_parent)
1637 continue;
1638 if (alias->d_name.len != len)
1639 continue;
1640 if (dentry_cmp(alias, name, len))
1641 continue;
1642 __dget(alias);
1643 return alias;
1644 }
1645
1646 __d_instantiate(entry, inode);
1647 return NULL;
1648 }
1649
1650 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1651 {
1652 struct dentry *result;
1653
1654 BUG_ON(!hlist_unhashed(&entry->d_alias));
1655
1656 if (inode)
1657 spin_lock(&inode->i_lock);
1658 result = __d_instantiate_unique(entry, inode);
1659 if (inode)
1660 spin_unlock(&inode->i_lock);
1661
1662 if (!result) {
1663 security_d_instantiate(entry, inode);
1664 return NULL;
1665 }
1666
1667 BUG_ON(!d_unhashed(result));
1668 iput(inode);
1669 return result;
1670 }
1671
1672 EXPORT_SYMBOL(d_instantiate_unique);
1673
1674 struct dentry *d_make_root(struct inode *root_inode)
1675 {
1676 struct dentry *res = NULL;
1677
1678 if (root_inode) {
1679 static const struct qstr name = QSTR_INIT("/", 1);
1680
1681 res = __d_alloc(root_inode->i_sb, &name);
1682 if (res)
1683 d_instantiate(res, root_inode);
1684 else
1685 iput(root_inode);
1686 }
1687 return res;
1688 }
1689 EXPORT_SYMBOL(d_make_root);
1690
1691 static struct dentry * __d_find_any_alias(struct inode *inode)
1692 {
1693 struct dentry *alias;
1694
1695 if (hlist_empty(&inode->i_dentry))
1696 return NULL;
1697 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1698 __dget(alias);
1699 return alias;
1700 }
1701
1702 /**
1703 * d_find_any_alias - find any alias for a given inode
1704 * @inode: inode to find an alias for
1705 *
1706 * If any aliases exist for the given inode, take and return a
1707 * reference for one of them. If no aliases exist, return %NULL.
1708 */
1709 struct dentry *d_find_any_alias(struct inode *inode)
1710 {
1711 struct dentry *de;
1712
1713 spin_lock(&inode->i_lock);
1714 de = __d_find_any_alias(inode);
1715 spin_unlock(&inode->i_lock);
1716 return de;
1717 }
1718 EXPORT_SYMBOL(d_find_any_alias);
1719
1720 /**
1721 * d_obtain_alias - find or allocate a dentry for a given inode
1722 * @inode: inode to allocate the dentry for
1723 *
1724 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1725 * similar open by handle operations. The returned dentry may be anonymous,
1726 * or may have a full name (if the inode was already in the cache).
1727 *
1728 * When called on a directory inode, we must ensure that the inode only ever
1729 * has one dentry. If a dentry is found, that is returned instead of
1730 * allocating a new one.
1731 *
1732 * On successful return, the reference to the inode has been transferred
1733 * to the dentry. In case of an error the reference on the inode is released.
1734 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1735 * be passed in and will be the error will be propagate to the return value,
1736 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1737 */
1738 struct dentry *d_obtain_alias(struct inode *inode)
1739 {
1740 static const struct qstr anonstring = QSTR_INIT("/", 1);
1741 struct dentry *tmp;
1742 struct dentry *res;
1743
1744 if (!inode)
1745 return ERR_PTR(-ESTALE);
1746 if (IS_ERR(inode))
1747 return ERR_CAST(inode);
1748
1749 res = d_find_any_alias(inode);
1750 if (res)
1751 goto out_iput;
1752
1753 tmp = __d_alloc(inode->i_sb, &anonstring);
1754 if (!tmp) {
1755 res = ERR_PTR(-ENOMEM);
1756 goto out_iput;
1757 }
1758
1759 spin_lock(&inode->i_lock);
1760 res = __d_find_any_alias(inode);
1761 if (res) {
1762 spin_unlock(&inode->i_lock);
1763 dput(tmp);
1764 goto out_iput;
1765 }
1766
1767 /* attach a disconnected dentry */
1768 spin_lock(&tmp->d_lock);
1769 tmp->d_inode = inode;
1770 tmp->d_flags |= DCACHE_DISCONNECTED;
1771 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1772 hlist_bl_lock(&tmp->d_sb->s_anon);
1773 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1774 hlist_bl_unlock(&tmp->d_sb->s_anon);
1775 spin_unlock(&tmp->d_lock);
1776 spin_unlock(&inode->i_lock);
1777 security_d_instantiate(tmp, inode);
1778
1779 return tmp;
1780
1781 out_iput:
1782 if (res && !IS_ERR(res))
1783 security_d_instantiate(res, inode);
1784 iput(inode);
1785 return res;
1786 }
1787 EXPORT_SYMBOL(d_obtain_alias);
1788
1789 /**
1790 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1791 * @inode: the inode which may have a disconnected dentry
1792 * @dentry: a negative dentry which we want to point to the inode.
1793 *
1794 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1795 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1796 * and return it, else simply d_add the inode to the dentry and return NULL.
1797 *
1798 * This is needed in the lookup routine of any filesystem that is exportable
1799 * (via knfsd) so that we can build dcache paths to directories effectively.
1800 *
1801 * If a dentry was found and moved, then it is returned. Otherwise NULL
1802 * is returned. This matches the expected return value of ->lookup.
1803 *
1804 * Cluster filesystems may call this function with a negative, hashed dentry.
1805 * In that case, we know that the inode will be a regular file, and also this
1806 * will only occur during atomic_open. So we need to check for the dentry
1807 * being already hashed only in the final case.
1808 */
1809 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1810 {
1811 struct dentry *new = NULL;
1812
1813 if (IS_ERR(inode))
1814 return ERR_CAST(inode);
1815
1816 if (inode && S_ISDIR(inode->i_mode)) {
1817 spin_lock(&inode->i_lock);
1818 new = __d_find_alias(inode, 1);
1819 if (new) {
1820 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1821 spin_unlock(&inode->i_lock);
1822 security_d_instantiate(new, inode);
1823 d_move(new, dentry);
1824 iput(inode);
1825 } else {
1826 /* already taking inode->i_lock, so d_add() by hand */
1827 __d_instantiate(dentry, inode);
1828 spin_unlock(&inode->i_lock);
1829 security_d_instantiate(dentry, inode);
1830 d_rehash(dentry);
1831 }
1832 } else {
1833 d_instantiate(dentry, inode);
1834 if (d_unhashed(dentry))
1835 d_rehash(dentry);
1836 }
1837 return new;
1838 }
1839 EXPORT_SYMBOL(d_splice_alias);
1840
1841 /**
1842 * d_add_ci - lookup or allocate new dentry with case-exact name
1843 * @inode: the inode case-insensitive lookup has found
1844 * @dentry: the negative dentry that was passed to the parent's lookup func
1845 * @name: the case-exact name to be associated with the returned dentry
1846 *
1847 * This is to avoid filling the dcache with case-insensitive names to the
1848 * same inode, only the actual correct case is stored in the dcache for
1849 * case-insensitive filesystems.
1850 *
1851 * For a case-insensitive lookup match and if the the case-exact dentry
1852 * already exists in in the dcache, use it and return it.
1853 *
1854 * If no entry exists with the exact case name, allocate new dentry with
1855 * the exact case, and return the spliced entry.
1856 */
1857 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1858 struct qstr *name)
1859 {
1860 struct dentry *found;
1861 struct dentry *new;
1862
1863 /*
1864 * First check if a dentry matching the name already exists,
1865 * if not go ahead and create it now.
1866 */
1867 found = d_hash_and_lookup(dentry->d_parent, name);
1868 if (unlikely(IS_ERR(found)))
1869 goto err_out;
1870 if (!found) {
1871 new = d_alloc(dentry->d_parent, name);
1872 if (!new) {
1873 found = ERR_PTR(-ENOMEM);
1874 goto err_out;
1875 }
1876
1877 found = d_splice_alias(inode, new);
1878 if (found) {
1879 dput(new);
1880 return found;
1881 }
1882 return new;
1883 }
1884
1885 /*
1886 * If a matching dentry exists, and it's not negative use it.
1887 *
1888 * Decrement the reference count to balance the iget() done
1889 * earlier on.
1890 */
1891 if (found->d_inode) {
1892 if (unlikely(found->d_inode != inode)) {
1893 /* This can't happen because bad inodes are unhashed. */
1894 BUG_ON(!is_bad_inode(inode));
1895 BUG_ON(!is_bad_inode(found->d_inode));
1896 }
1897 iput(inode);
1898 return found;
1899 }
1900
1901 /*
1902 * Negative dentry: instantiate it unless the inode is a directory and
1903 * already has a dentry.
1904 */
1905 new = d_splice_alias(inode, found);
1906 if (new) {
1907 dput(found);
1908 found = new;
1909 }
1910 return found;
1911
1912 err_out:
1913 iput(inode);
1914 return found;
1915 }
1916 EXPORT_SYMBOL(d_add_ci);
1917
1918 /*
1919 * Do the slow-case of the dentry name compare.
1920 *
1921 * Unlike the dentry_cmp() function, we need to atomically
1922 * load the name and length information, so that the
1923 * filesystem can rely on them, and can use the 'name' and
1924 * 'len' information without worrying about walking off the
1925 * end of memory etc.
1926 *
1927 * Thus the read_seqcount_retry() and the "duplicate" info
1928 * in arguments (the low-level filesystem should not look
1929 * at the dentry inode or name contents directly, since
1930 * rename can change them while we're in RCU mode).
1931 */
1932 enum slow_d_compare {
1933 D_COMP_OK,
1934 D_COMP_NOMATCH,
1935 D_COMP_SEQRETRY,
1936 };
1937
1938 static noinline enum slow_d_compare slow_dentry_cmp(
1939 const struct dentry *parent,
1940 struct dentry *dentry,
1941 unsigned int seq,
1942 const struct qstr *name)
1943 {
1944 int tlen = dentry->d_name.len;
1945 const char *tname = dentry->d_name.name;
1946
1947 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1948 cpu_relax();
1949 return D_COMP_SEQRETRY;
1950 }
1951 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1952 return D_COMP_NOMATCH;
1953 return D_COMP_OK;
1954 }
1955
1956 /**
1957 * __d_lookup_rcu - search for a dentry (racy, store-free)
1958 * @parent: parent dentry
1959 * @name: qstr of name we wish to find
1960 * @seqp: returns d_seq value at the point where the dentry was found
1961 * Returns: dentry, or NULL
1962 *
1963 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1964 * resolution (store-free path walking) design described in
1965 * Documentation/filesystems/path-lookup.txt.
1966 *
1967 * This is not to be used outside core vfs.
1968 *
1969 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1970 * held, and rcu_read_lock held. The returned dentry must not be stored into
1971 * without taking d_lock and checking d_seq sequence count against @seq
1972 * returned here.
1973 *
1974 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1975 * function.
1976 *
1977 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1978 * the returned dentry, so long as its parent's seqlock is checked after the
1979 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1980 * is formed, giving integrity down the path walk.
1981 *
1982 * NOTE! The caller *has* to check the resulting dentry against the sequence
1983 * number we've returned before using any of the resulting dentry state!
1984 */
1985 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1986 const struct qstr *name,
1987 unsigned *seqp)
1988 {
1989 u64 hashlen = name->hash_len;
1990 const unsigned char *str = name->name;
1991 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1992 struct hlist_bl_node *node;
1993 struct dentry *dentry;
1994
1995 /*
1996 * Note: There is significant duplication with __d_lookup_rcu which is
1997 * required to prevent single threaded performance regressions
1998 * especially on architectures where smp_rmb (in seqcounts) are costly.
1999 * Keep the two functions in sync.
2000 */
2001
2002 /*
2003 * The hash list is protected using RCU.
2004 *
2005 * Carefully use d_seq when comparing a candidate dentry, to avoid
2006 * races with d_move().
2007 *
2008 * It is possible that concurrent renames can mess up our list
2009 * walk here and result in missing our dentry, resulting in the
2010 * false-negative result. d_lookup() protects against concurrent
2011 * renames using rename_lock seqlock.
2012 *
2013 * See Documentation/filesystems/path-lookup.txt for more details.
2014 */
2015 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2016 unsigned seq;
2017
2018 seqretry:
2019 /*
2020 * The dentry sequence count protects us from concurrent
2021 * renames, and thus protects parent and name fields.
2022 *
2023 * The caller must perform a seqcount check in order
2024 * to do anything useful with the returned dentry.
2025 *
2026 * NOTE! We do a "raw" seqcount_begin here. That means that
2027 * we don't wait for the sequence count to stabilize if it
2028 * is in the middle of a sequence change. If we do the slow
2029 * dentry compare, we will do seqretries until it is stable,
2030 * and if we end up with a successful lookup, we actually
2031 * want to exit RCU lookup anyway.
2032 */
2033 seq = raw_seqcount_begin(&dentry->d_seq);
2034 if (dentry->d_parent != parent)
2035 continue;
2036 if (d_unhashed(dentry))
2037 continue;
2038
2039 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2040 if (dentry->d_name.hash != hashlen_hash(hashlen))
2041 continue;
2042 *seqp = seq;
2043 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2044 case D_COMP_OK:
2045 return dentry;
2046 case D_COMP_NOMATCH:
2047 continue;
2048 default:
2049 goto seqretry;
2050 }
2051 }
2052
2053 if (dentry->d_name.hash_len != hashlen)
2054 continue;
2055 *seqp = seq;
2056 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2057 return dentry;
2058 }
2059 return NULL;
2060 }
2061
2062 /**
2063 * d_lookup - search for a dentry
2064 * @parent: parent dentry
2065 * @name: qstr of name we wish to find
2066 * Returns: dentry, or NULL
2067 *
2068 * d_lookup searches the children of the parent dentry for the name in
2069 * question. If the dentry is found its reference count is incremented and the
2070 * dentry is returned. The caller must use dput to free the entry when it has
2071 * finished using it. %NULL is returned if the dentry does not exist.
2072 */
2073 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2074 {
2075 struct dentry *dentry;
2076 unsigned seq;
2077
2078 do {
2079 seq = read_seqbegin(&rename_lock);
2080 dentry = __d_lookup(parent, name);
2081 if (dentry)
2082 break;
2083 } while (read_seqretry(&rename_lock, seq));
2084 return dentry;
2085 }
2086 EXPORT_SYMBOL(d_lookup);
2087
2088 /**
2089 * __d_lookup - search for a dentry (racy)
2090 * @parent: parent dentry
2091 * @name: qstr of name we wish to find
2092 * Returns: dentry, or NULL
2093 *
2094 * __d_lookup is like d_lookup, however it may (rarely) return a
2095 * false-negative result due to unrelated rename activity.
2096 *
2097 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2098 * however it must be used carefully, eg. with a following d_lookup in
2099 * the case of failure.
2100 *
2101 * __d_lookup callers must be commented.
2102 */
2103 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2104 {
2105 unsigned int len = name->len;
2106 unsigned int hash = name->hash;
2107 const unsigned char *str = name->name;
2108 struct hlist_bl_head *b = d_hash(parent, hash);
2109 struct hlist_bl_node *node;
2110 struct dentry *found = NULL;
2111 struct dentry *dentry;
2112
2113 /*
2114 * Note: There is significant duplication with __d_lookup_rcu which is
2115 * required to prevent single threaded performance regressions
2116 * especially on architectures where smp_rmb (in seqcounts) are costly.
2117 * Keep the two functions in sync.
2118 */
2119
2120 /*
2121 * The hash list is protected using RCU.
2122 *
2123 * Take d_lock when comparing a candidate dentry, to avoid races
2124 * with d_move().
2125 *
2126 * It is possible that concurrent renames can mess up our list
2127 * walk here and result in missing our dentry, resulting in the
2128 * false-negative result. d_lookup() protects against concurrent
2129 * renames using rename_lock seqlock.
2130 *
2131 * See Documentation/filesystems/path-lookup.txt for more details.
2132 */
2133 rcu_read_lock();
2134
2135 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2136
2137 if (dentry->d_name.hash != hash)
2138 continue;
2139
2140 spin_lock(&dentry->d_lock);
2141 if (dentry->d_parent != parent)
2142 goto next;
2143 if (d_unhashed(dentry))
2144 goto next;
2145
2146 /*
2147 * It is safe to compare names since d_move() cannot
2148 * change the qstr (protected by d_lock).
2149 */
2150 if (parent->d_flags & DCACHE_OP_COMPARE) {
2151 int tlen = dentry->d_name.len;
2152 const char *tname = dentry->d_name.name;
2153 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2154 goto next;
2155 } else {
2156 if (dentry->d_name.len != len)
2157 goto next;
2158 if (dentry_cmp(dentry, str, len))
2159 goto next;
2160 }
2161
2162 dentry->d_lockref.count++;
2163 found = dentry;
2164 spin_unlock(&dentry->d_lock);
2165 break;
2166 next:
2167 spin_unlock(&dentry->d_lock);
2168 }
2169 rcu_read_unlock();
2170
2171 return found;
2172 }
2173
2174 /**
2175 * d_hash_and_lookup - hash the qstr then search for a dentry
2176 * @dir: Directory to search in
2177 * @name: qstr of name we wish to find
2178 *
2179 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2180 */
2181 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2182 {
2183 /*
2184 * Check for a fs-specific hash function. Note that we must
2185 * calculate the standard hash first, as the d_op->d_hash()
2186 * routine may choose to leave the hash value unchanged.
2187 */
2188 name->hash = full_name_hash(name->name, name->len);
2189 if (dir->d_flags & DCACHE_OP_HASH) {
2190 int err = dir->d_op->d_hash(dir, name);
2191 if (unlikely(err < 0))
2192 return ERR_PTR(err);
2193 }
2194 return d_lookup(dir, name);
2195 }
2196 EXPORT_SYMBOL(d_hash_and_lookup);
2197
2198 /**
2199 * d_validate - verify dentry provided from insecure source (deprecated)
2200 * @dentry: The dentry alleged to be valid child of @dparent
2201 * @dparent: The parent dentry (known to be valid)
2202 *
2203 * An insecure source has sent us a dentry, here we verify it and dget() it.
2204 * This is used by ncpfs in its readdir implementation.
2205 * Zero is returned in the dentry is invalid.
2206 *
2207 * This function is slow for big directories, and deprecated, do not use it.
2208 */
2209 int d_validate(struct dentry *dentry, struct dentry *dparent)
2210 {
2211 struct dentry *child;
2212
2213 spin_lock(&dparent->d_lock);
2214 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2215 if (dentry == child) {
2216 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2217 __dget_dlock(dentry);
2218 spin_unlock(&dentry->d_lock);
2219 spin_unlock(&dparent->d_lock);
2220 return 1;
2221 }
2222 }
2223 spin_unlock(&dparent->d_lock);
2224
2225 return 0;
2226 }
2227 EXPORT_SYMBOL(d_validate);
2228
2229 /*
2230 * When a file is deleted, we have two options:
2231 * - turn this dentry into a negative dentry
2232 * - unhash this dentry and free it.
2233 *
2234 * Usually, we want to just turn this into
2235 * a negative dentry, but if anybody else is
2236 * currently using the dentry or the inode
2237 * we can't do that and we fall back on removing
2238 * it from the hash queues and waiting for
2239 * it to be deleted later when it has no users
2240 */
2241
2242 /**
2243 * d_delete - delete a dentry
2244 * @dentry: The dentry to delete
2245 *
2246 * Turn the dentry into a negative dentry if possible, otherwise
2247 * remove it from the hash queues so it can be deleted later
2248 */
2249
2250 void d_delete(struct dentry * dentry)
2251 {
2252 struct inode *inode;
2253 int isdir = 0;
2254 /*
2255 * Are we the only user?
2256 */
2257 again:
2258 spin_lock(&dentry->d_lock);
2259 inode = dentry->d_inode;
2260 isdir = S_ISDIR(inode->i_mode);
2261 if (dentry->d_lockref.count == 1) {
2262 if (!spin_trylock(&inode->i_lock)) {
2263 spin_unlock(&dentry->d_lock);
2264 cpu_relax();
2265 goto again;
2266 }
2267 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2268 dentry_unlink_inode(dentry);
2269 fsnotify_nameremove(dentry, isdir);
2270 return;
2271 }
2272
2273 if (!d_unhashed(dentry))
2274 __d_drop(dentry);
2275
2276 spin_unlock(&dentry->d_lock);
2277
2278 fsnotify_nameremove(dentry, isdir);
2279 }
2280 EXPORT_SYMBOL(d_delete);
2281
2282 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2283 {
2284 BUG_ON(!d_unhashed(entry));
2285 hlist_bl_lock(b);
2286 entry->d_flags |= DCACHE_RCUACCESS;
2287 hlist_bl_add_head_rcu(&entry->d_hash, b);
2288 hlist_bl_unlock(b);
2289 }
2290
2291 static void _d_rehash(struct dentry * entry)
2292 {
2293 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2294 }
2295
2296 /**
2297 * d_rehash - add an entry back to the hash
2298 * @entry: dentry to add to the hash
2299 *
2300 * Adds a dentry to the hash according to its name.
2301 */
2302
2303 void d_rehash(struct dentry * entry)
2304 {
2305 spin_lock(&entry->d_lock);
2306 _d_rehash(entry);
2307 spin_unlock(&entry->d_lock);
2308 }
2309 EXPORT_SYMBOL(d_rehash);
2310
2311 /**
2312 * dentry_update_name_case - update case insensitive dentry with a new name
2313 * @dentry: dentry to be updated
2314 * @name: new name
2315 *
2316 * Update a case insensitive dentry with new case of name.
2317 *
2318 * dentry must have been returned by d_lookup with name @name. Old and new
2319 * name lengths must match (ie. no d_compare which allows mismatched name
2320 * lengths).
2321 *
2322 * Parent inode i_mutex must be held over d_lookup and into this call (to
2323 * keep renames and concurrent inserts, and readdir(2) away).
2324 */
2325 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2326 {
2327 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2328 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2329
2330 spin_lock(&dentry->d_lock);
2331 write_seqcount_begin(&dentry->d_seq);
2332 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2333 write_seqcount_end(&dentry->d_seq);
2334 spin_unlock(&dentry->d_lock);
2335 }
2336 EXPORT_SYMBOL(dentry_update_name_case);
2337
2338 static void switch_names(struct dentry *dentry, struct dentry *target)
2339 {
2340 if (dname_external(target)) {
2341 if (dname_external(dentry)) {
2342 /*
2343 * Both external: swap the pointers
2344 */
2345 swap(target->d_name.name, dentry->d_name.name);
2346 } else {
2347 /*
2348 * dentry:internal, target:external. Steal target's
2349 * storage and make target internal.
2350 */
2351 memcpy(target->d_iname, dentry->d_name.name,
2352 dentry->d_name.len + 1);
2353 dentry->d_name.name = target->d_name.name;
2354 target->d_name.name = target->d_iname;
2355 }
2356 } else {
2357 if (dname_external(dentry)) {
2358 /*
2359 * dentry:external, target:internal. Give dentry's
2360 * storage to target and make dentry internal
2361 */
2362 memcpy(dentry->d_iname, target->d_name.name,
2363 target->d_name.len + 1);
2364 target->d_name.name = dentry->d_name.name;
2365 dentry->d_name.name = dentry->d_iname;
2366 } else {
2367 /*
2368 * Both are internal. Just copy target to dentry
2369 */
2370 memcpy(dentry->d_iname, target->d_name.name,
2371 target->d_name.len + 1);
2372 dentry->d_name.len = target->d_name.len;
2373 return;
2374 }
2375 }
2376 swap(dentry->d_name.len, target->d_name.len);
2377 }
2378
2379 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2380 {
2381 /*
2382 * XXXX: do we really need to take target->d_lock?
2383 */
2384 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2385 spin_lock(&target->d_parent->d_lock);
2386 else {
2387 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2388 spin_lock(&dentry->d_parent->d_lock);
2389 spin_lock_nested(&target->d_parent->d_lock,
2390 DENTRY_D_LOCK_NESTED);
2391 } else {
2392 spin_lock(&target->d_parent->d_lock);
2393 spin_lock_nested(&dentry->d_parent->d_lock,
2394 DENTRY_D_LOCK_NESTED);
2395 }
2396 }
2397 if (target < dentry) {
2398 spin_lock_nested(&target->d_lock, 2);
2399 spin_lock_nested(&dentry->d_lock, 3);
2400 } else {
2401 spin_lock_nested(&dentry->d_lock, 2);
2402 spin_lock_nested(&target->d_lock, 3);
2403 }
2404 }
2405
2406 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2407 struct dentry *target)
2408 {
2409 if (target->d_parent != dentry->d_parent)
2410 spin_unlock(&dentry->d_parent->d_lock);
2411 if (target->d_parent != target)
2412 spin_unlock(&target->d_parent->d_lock);
2413 }
2414
2415 /*
2416 * When switching names, the actual string doesn't strictly have to
2417 * be preserved in the target - because we're dropping the target
2418 * anyway. As such, we can just do a simple memcpy() to copy over
2419 * the new name before we switch.
2420 *
2421 * Note that we have to be a lot more careful about getting the hash
2422 * switched - we have to switch the hash value properly even if it
2423 * then no longer matches the actual (corrupted) string of the target.
2424 * The hash value has to match the hash queue that the dentry is on..
2425 */
2426 /*
2427 * __d_move - move a dentry
2428 * @dentry: entry to move
2429 * @target: new dentry
2430 *
2431 * Update the dcache to reflect the move of a file name. Negative
2432 * dcache entries should not be moved in this way. Caller must hold
2433 * rename_lock, the i_mutex of the source and target directories,
2434 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2435 */
2436 static void __d_move(struct dentry * dentry, struct dentry * target)
2437 {
2438 if (!dentry->d_inode)
2439 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2440
2441 BUG_ON(d_ancestor(dentry, target));
2442 BUG_ON(d_ancestor(target, dentry));
2443
2444 dentry_lock_for_move(dentry, target);
2445
2446 write_seqcount_begin(&dentry->d_seq);
2447 write_seqcount_begin(&target->d_seq);
2448
2449 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2450
2451 /*
2452 * Move the dentry to the target hash queue. Don't bother checking
2453 * for the same hash queue because of how unlikely it is.
2454 */
2455 __d_drop(dentry);
2456 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2457
2458 /* Unhash the target: dput() will then get rid of it */
2459 __d_drop(target);
2460
2461 list_del(&dentry->d_u.d_child);
2462 list_del(&target->d_u.d_child);
2463
2464 /* Switch the names.. */
2465 switch_names(dentry, target);
2466 swap(dentry->d_name.hash, target->d_name.hash);
2467
2468 /* ... and switch the parents */
2469 if (IS_ROOT(dentry)) {
2470 dentry->d_parent = target->d_parent;
2471 target->d_parent = target;
2472 INIT_LIST_HEAD(&target->d_u.d_child);
2473 } else {
2474 swap(dentry->d_parent, target->d_parent);
2475
2476 /* And add them back to the (new) parent lists */
2477 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2478 }
2479
2480 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2481
2482 write_seqcount_end(&target->d_seq);
2483 write_seqcount_end(&dentry->d_seq);
2484
2485 dentry_unlock_parents_for_move(dentry, target);
2486 spin_unlock(&target->d_lock);
2487 fsnotify_d_move(dentry);
2488 spin_unlock(&dentry->d_lock);
2489 }
2490
2491 /*
2492 * d_move - move a dentry
2493 * @dentry: entry to move
2494 * @target: new dentry
2495 *
2496 * Update the dcache to reflect the move of a file name. Negative
2497 * dcache entries should not be moved in this way. See the locking
2498 * requirements for __d_move.
2499 */
2500 void d_move(struct dentry *dentry, struct dentry *target)
2501 {
2502 write_seqlock(&rename_lock);
2503 __d_move(dentry, target);
2504 write_sequnlock(&rename_lock);
2505 }
2506 EXPORT_SYMBOL(d_move);
2507
2508 /**
2509 * d_ancestor - search for an ancestor
2510 * @p1: ancestor dentry
2511 * @p2: child dentry
2512 *
2513 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2514 * an ancestor of p2, else NULL.
2515 */
2516 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2517 {
2518 struct dentry *p;
2519
2520 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2521 if (p->d_parent == p1)
2522 return p;
2523 }
2524 return NULL;
2525 }
2526
2527 /*
2528 * This helper attempts to cope with remotely renamed directories
2529 *
2530 * It assumes that the caller is already holding
2531 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2532 *
2533 * Note: If ever the locking in lock_rename() changes, then please
2534 * remember to update this too...
2535 */
2536 static struct dentry *__d_unalias(struct inode *inode,
2537 struct dentry *dentry, struct dentry *alias)
2538 {
2539 struct mutex *m1 = NULL, *m2 = NULL;
2540 struct dentry *ret = ERR_PTR(-EBUSY);
2541
2542 /* If alias and dentry share a parent, then no extra locks required */
2543 if (alias->d_parent == dentry->d_parent)
2544 goto out_unalias;
2545
2546 /* See lock_rename() */
2547 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2548 goto out_err;
2549 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2550 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2551 goto out_err;
2552 m2 = &alias->d_parent->d_inode->i_mutex;
2553 out_unalias:
2554 if (likely(!d_mountpoint(alias))) {
2555 __d_move(alias, dentry);
2556 ret = alias;
2557 }
2558 out_err:
2559 spin_unlock(&inode->i_lock);
2560 if (m2)
2561 mutex_unlock(m2);
2562 if (m1)
2563 mutex_unlock(m1);
2564 return ret;
2565 }
2566
2567 /*
2568 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2569 * named dentry in place of the dentry to be replaced.
2570 * returns with anon->d_lock held!
2571 */
2572 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2573 {
2574 struct dentry *dparent;
2575
2576 dentry_lock_for_move(anon, dentry);
2577
2578 write_seqcount_begin(&dentry->d_seq);
2579 write_seqcount_begin(&anon->d_seq);
2580
2581 dparent = dentry->d_parent;
2582
2583 switch_names(dentry, anon);
2584 swap(dentry->d_name.hash, anon->d_name.hash);
2585
2586 dentry->d_parent = dentry;
2587 list_del_init(&dentry->d_u.d_child);
2588 anon->d_parent = dparent;
2589 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2590
2591 write_seqcount_end(&dentry->d_seq);
2592 write_seqcount_end(&anon->d_seq);
2593
2594 dentry_unlock_parents_for_move(anon, dentry);
2595 spin_unlock(&dentry->d_lock);
2596
2597 /* anon->d_lock still locked, returns locked */
2598 anon->d_flags &= ~DCACHE_DISCONNECTED;
2599 }
2600
2601 /**
2602 * d_materialise_unique - introduce an inode into the tree
2603 * @dentry: candidate dentry
2604 * @inode: inode to bind to the dentry, to which aliases may be attached
2605 *
2606 * Introduces an dentry into the tree, substituting an extant disconnected
2607 * root directory alias in its place if there is one. Caller must hold the
2608 * i_mutex of the parent directory.
2609 */
2610 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2611 {
2612 struct dentry *actual;
2613
2614 BUG_ON(!d_unhashed(dentry));
2615
2616 if (!inode) {
2617 actual = dentry;
2618 __d_instantiate(dentry, NULL);
2619 d_rehash(actual);
2620 goto out_nolock;
2621 }
2622
2623 spin_lock(&inode->i_lock);
2624
2625 if (S_ISDIR(inode->i_mode)) {
2626 struct dentry *alias;
2627
2628 /* Does an aliased dentry already exist? */
2629 alias = __d_find_alias(inode, 0);
2630 if (alias) {
2631 actual = alias;
2632 write_seqlock(&rename_lock);
2633
2634 if (d_ancestor(alias, dentry)) {
2635 /* Check for loops */
2636 actual = ERR_PTR(-ELOOP);
2637 spin_unlock(&inode->i_lock);
2638 } else if (IS_ROOT(alias)) {
2639 /* Is this an anonymous mountpoint that we
2640 * could splice into our tree? */
2641 __d_materialise_dentry(dentry, alias);
2642 write_sequnlock(&rename_lock);
2643 __d_drop(alias);
2644 goto found;
2645 } else {
2646 /* Nope, but we must(!) avoid directory
2647 * aliasing. This drops inode->i_lock */
2648 actual = __d_unalias(inode, dentry, alias);
2649 }
2650 write_sequnlock(&rename_lock);
2651 if (IS_ERR(actual)) {
2652 if (PTR_ERR(actual) == -ELOOP)
2653 pr_warn_ratelimited(
2654 "VFS: Lookup of '%s' in %s %s"
2655 " would have caused loop\n",
2656 dentry->d_name.name,
2657 inode->i_sb->s_type->name,
2658 inode->i_sb->s_id);
2659 dput(alias);
2660 }
2661 goto out_nolock;
2662 }
2663 }
2664
2665 /* Add a unique reference */
2666 actual = __d_instantiate_unique(dentry, inode);
2667 if (!actual)
2668 actual = dentry;
2669 else
2670 BUG_ON(!d_unhashed(actual));
2671
2672 spin_lock(&actual->d_lock);
2673 found:
2674 _d_rehash(actual);
2675 spin_unlock(&actual->d_lock);
2676 spin_unlock(&inode->i_lock);
2677 out_nolock:
2678 if (actual == dentry) {
2679 security_d_instantiate(dentry, inode);
2680 return NULL;
2681 }
2682
2683 iput(inode);
2684 return actual;
2685 }
2686 EXPORT_SYMBOL_GPL(d_materialise_unique);
2687
2688 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2689 {
2690 *buflen -= namelen;
2691 if (*buflen < 0)
2692 return -ENAMETOOLONG;
2693 *buffer -= namelen;
2694 memcpy(*buffer, str, namelen);
2695 return 0;
2696 }
2697
2698 /**
2699 * prepend_name - prepend a pathname in front of current buffer pointer
2700 * buffer: buffer pointer
2701 * buflen: allocated length of the buffer
2702 * name: name string and length qstr structure
2703 *
2704 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2705 * make sure that either the old or the new name pointer and length are
2706 * fetched. However, there may be mismatch between length and pointer.
2707 * The length cannot be trusted, we need to copy it byte-by-byte until
2708 * the length is reached or a null byte is found. It also prepends "/" at
2709 * the beginning of the name. The sequence number check at the caller will
2710 * retry it again when a d_move() does happen. So any garbage in the buffer
2711 * due to mismatched pointer and length will be discarded.
2712 */
2713 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2714 {
2715 const char *dname = ACCESS_ONCE(name->name);
2716 u32 dlen = ACCESS_ONCE(name->len);
2717 char *p;
2718
2719 if (*buflen < dlen + 1)
2720 return -ENAMETOOLONG;
2721 *buflen -= dlen + 1;
2722 p = *buffer -= dlen + 1;
2723 *p++ = '/';
2724 while (dlen--) {
2725 char c = *dname++;
2726 if (!c)
2727 break;
2728 *p++ = c;
2729 }
2730 return 0;
2731 }
2732
2733 /**
2734 * prepend_path - Prepend path string to a buffer
2735 * @path: the dentry/vfsmount to report
2736 * @root: root vfsmnt/dentry
2737 * @buffer: pointer to the end of the buffer
2738 * @buflen: pointer to buffer length
2739 *
2740 * The function tries to write out the pathname without taking any lock other
2741 * than the RCU read lock to make sure that dentries won't go away. It only
2742 * checks the sequence number of the global rename_lock as any change in the
2743 * dentry's d_seq will be preceded by changes in the rename_lock sequence
2744 * number. If the sequence number had been change, it will restart the whole
2745 * pathname back-tracing sequence again. It performs a total of 3 trials of
2746 * lockless back-tracing sequences before falling back to take the
2747 * rename_lock.
2748 */
2749 static int prepend_path(const struct path *path,
2750 const struct path *root,
2751 char **buffer, int *buflen)
2752 {
2753 struct dentry *dentry = path->dentry;
2754 struct vfsmount *vfsmnt = path->mnt;
2755 struct mount *mnt = real_mount(vfsmnt);
2756 int error = 0;
2757 unsigned seq = 0;
2758 char *bptr;
2759 int blen;
2760
2761 rcu_read_lock();
2762 restart:
2763 bptr = *buffer;
2764 blen = *buflen;
2765 read_seqbegin_or_lock(&rename_lock, &seq);
2766 while (dentry != root->dentry || vfsmnt != root->mnt) {
2767 struct dentry * parent;
2768
2769 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2770 /* Global root? */
2771 if (mnt_has_parent(mnt)) {
2772 dentry = mnt->mnt_mountpoint;
2773 mnt = mnt->mnt_parent;
2774 vfsmnt = &mnt->mnt;
2775 continue;
2776 }
2777 /*
2778 * Filesystems needing to implement special "root names"
2779 * should do so with ->d_dname()
2780 */
2781 if (IS_ROOT(dentry) &&
2782 (dentry->d_name.len != 1 ||
2783 dentry->d_name.name[0] != '/')) {
2784 WARN(1, "Root dentry has weird name <%.*s>\n",
2785 (int) dentry->d_name.len,
2786 dentry->d_name.name);
2787 }
2788 if (!error)
2789 error = is_mounted(vfsmnt) ? 1 : 2;
2790 break;
2791 }
2792 parent = dentry->d_parent;
2793 prefetch(parent);
2794 error = prepend_name(&bptr, &blen, &dentry->d_name);
2795 if (error)
2796 break;
2797
2798 dentry = parent;
2799 }
2800 if (!(seq & 1))
2801 rcu_read_unlock();
2802 if (need_seqretry(&rename_lock, seq)) {
2803 seq = 1;
2804 goto restart;
2805 }
2806 done_seqretry(&rename_lock, seq);
2807
2808 if (error >= 0 && bptr == *buffer) {
2809 if (--blen < 0)
2810 error = -ENAMETOOLONG;
2811 else
2812 *--bptr = '/';
2813 }
2814 *buffer = bptr;
2815 *buflen = blen;
2816 return error;
2817 }
2818
2819 /**
2820 * __d_path - return the path of a dentry
2821 * @path: the dentry/vfsmount to report
2822 * @root: root vfsmnt/dentry
2823 * @buf: buffer to return value in
2824 * @buflen: buffer length
2825 *
2826 * Convert a dentry into an ASCII path name.
2827 *
2828 * Returns a pointer into the buffer or an error code if the
2829 * path was too long.
2830 *
2831 * "buflen" should be positive.
2832 *
2833 * If the path is not reachable from the supplied root, return %NULL.
2834 */
2835 char *__d_path(const struct path *path,
2836 const struct path *root,
2837 char *buf, int buflen)
2838 {
2839 char *res = buf + buflen;
2840 int error;
2841
2842 prepend(&res, &buflen, "\0", 1);
2843 br_read_lock(&vfsmount_lock);
2844 error = prepend_path(path, root, &res, &buflen);
2845 br_read_unlock(&vfsmount_lock);
2846
2847 if (error < 0)
2848 return ERR_PTR(error);
2849 if (error > 0)
2850 return NULL;
2851 return res;
2852 }
2853
2854 char *d_absolute_path(const struct path *path,
2855 char *buf, int buflen)
2856 {
2857 struct path root = {};
2858 char *res = buf + buflen;
2859 int error;
2860
2861 prepend(&res, &buflen, "\0", 1);
2862 br_read_lock(&vfsmount_lock);
2863 error = prepend_path(path, &root, &res, &buflen);
2864 br_read_unlock(&vfsmount_lock);
2865
2866 if (error > 1)
2867 error = -EINVAL;
2868 if (error < 0)
2869 return ERR_PTR(error);
2870 return res;
2871 }
2872
2873 /*
2874 * same as __d_path but appends "(deleted)" for unlinked files.
2875 */
2876 static int path_with_deleted(const struct path *path,
2877 const struct path *root,
2878 char **buf, int *buflen)
2879 {
2880 prepend(buf, buflen, "\0", 1);
2881 if (d_unlinked(path->dentry)) {
2882 int error = prepend(buf, buflen, " (deleted)", 10);
2883 if (error)
2884 return error;
2885 }
2886
2887 return prepend_path(path, root, buf, buflen);
2888 }
2889
2890 static int prepend_unreachable(char **buffer, int *buflen)
2891 {
2892 return prepend(buffer, buflen, "(unreachable)", 13);
2893 }
2894
2895 /**
2896 * d_path - return the path of a dentry
2897 * @path: path to report
2898 * @buf: buffer to return value in
2899 * @buflen: buffer length
2900 *
2901 * Convert a dentry into an ASCII path name. If the entry has been deleted
2902 * the string " (deleted)" is appended. Note that this is ambiguous.
2903 *
2904 * Returns a pointer into the buffer or an error code if the path was
2905 * too long. Note: Callers should use the returned pointer, not the passed
2906 * in buffer, to use the name! The implementation often starts at an offset
2907 * into the buffer, and may leave 0 bytes at the start.
2908 *
2909 * "buflen" should be positive.
2910 */
2911 char *d_path(const struct path *path, char *buf, int buflen)
2912 {
2913 char *res = buf + buflen;
2914 struct path root;
2915 int error;
2916
2917 /*
2918 * We have various synthetic filesystems that never get mounted. On
2919 * these filesystems dentries are never used for lookup purposes, and
2920 * thus don't need to be hashed. They also don't need a name until a
2921 * user wants to identify the object in /proc/pid/fd/. The little hack
2922 * below allows us to generate a name for these objects on demand:
2923 */
2924 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2925 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2926
2927 get_fs_root(current->fs, &root);
2928 br_read_lock(&vfsmount_lock);
2929 error = path_with_deleted(path, &root, &res, &buflen);
2930 br_read_unlock(&vfsmount_lock);
2931 if (error < 0)
2932 res = ERR_PTR(error);
2933 path_put(&root);
2934 return res;
2935 }
2936 EXPORT_SYMBOL(d_path);
2937
2938 /*
2939 * Helper function for dentry_operations.d_dname() members
2940 */
2941 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2942 const char *fmt, ...)
2943 {
2944 va_list args;
2945 char temp[64];
2946 int sz;
2947
2948 va_start(args, fmt);
2949 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2950 va_end(args);
2951
2952 if (sz > sizeof(temp) || sz > buflen)
2953 return ERR_PTR(-ENAMETOOLONG);
2954
2955 buffer += buflen - sz;
2956 return memcpy(buffer, temp, sz);
2957 }
2958
2959 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2960 {
2961 char *end = buffer + buflen;
2962 /* these dentries are never renamed, so d_lock is not needed */
2963 if (prepend(&end, &buflen, " (deleted)", 11) ||
2964 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
2965 prepend(&end, &buflen, "/", 1))
2966 end = ERR_PTR(-ENAMETOOLONG);
2967 return end;
2968 }
2969
2970 /*
2971 * Write full pathname from the root of the filesystem into the buffer.
2972 */
2973 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2974 {
2975 char *end, *retval;
2976 int len, seq = 0;
2977 int error = 0;
2978
2979 rcu_read_lock();
2980 restart:
2981 end = buf + buflen;
2982 len = buflen;
2983 prepend(&end, &len, "\0", 1);
2984 if (buflen < 1)
2985 goto Elong;
2986 /* Get '/' right */
2987 retval = end-1;
2988 *retval = '/';
2989 read_seqbegin_or_lock(&rename_lock, &seq);
2990 while (!IS_ROOT(dentry)) {
2991 struct dentry *parent = dentry->d_parent;
2992 int error;
2993
2994 prefetch(parent);
2995 error = prepend_name(&end, &len, &dentry->d_name);
2996 if (error)
2997 break;
2998
2999 retval = end;
3000 dentry = parent;
3001 }
3002 if (!(seq & 1))
3003 rcu_read_unlock();
3004 if (need_seqretry(&rename_lock, seq)) {
3005 seq = 1;
3006 goto restart;
3007 }
3008 done_seqretry(&rename_lock, seq);
3009 if (error)
3010 goto Elong;
3011 return retval;
3012 Elong:
3013 return ERR_PTR(-ENAMETOOLONG);
3014 }
3015
3016 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3017 {
3018 return __dentry_path(dentry, buf, buflen);
3019 }
3020 EXPORT_SYMBOL(dentry_path_raw);
3021
3022 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3023 {
3024 char *p = NULL;
3025 char *retval;
3026
3027 if (d_unlinked(dentry)) {
3028 p = buf + buflen;
3029 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3030 goto Elong;
3031 buflen++;
3032 }
3033 retval = __dentry_path(dentry, buf, buflen);
3034 if (!IS_ERR(retval) && p)
3035 *p = '/'; /* restore '/' overriden with '\0' */
3036 return retval;
3037 Elong:
3038 return ERR_PTR(-ENAMETOOLONG);
3039 }
3040
3041 /*
3042 * NOTE! The user-level library version returns a
3043 * character pointer. The kernel system call just
3044 * returns the length of the buffer filled (which
3045 * includes the ending '\0' character), or a negative
3046 * error value. So libc would do something like
3047 *
3048 * char *getcwd(char * buf, size_t size)
3049 * {
3050 * int retval;
3051 *
3052 * retval = sys_getcwd(buf, size);
3053 * if (retval >= 0)
3054 * return buf;
3055 * errno = -retval;
3056 * return NULL;
3057 * }
3058 */
3059 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3060 {
3061 int error;
3062 struct path pwd, root;
3063 char *page = (char *) __get_free_page(GFP_USER);
3064
3065 if (!page)
3066 return -ENOMEM;
3067
3068 get_fs_root_and_pwd(current->fs, &root, &pwd);
3069
3070 error = -ENOENT;
3071 br_read_lock(&vfsmount_lock);
3072 if (!d_unlinked(pwd.dentry)) {
3073 unsigned long len;
3074 char *cwd = page + PAGE_SIZE;
3075 int buflen = PAGE_SIZE;
3076
3077 prepend(&cwd, &buflen, "\0", 1);
3078 error = prepend_path(&pwd, &root, &cwd, &buflen);
3079 br_read_unlock(&vfsmount_lock);
3080
3081 if (error < 0)
3082 goto out;
3083
3084 /* Unreachable from current root */
3085 if (error > 0) {
3086 error = prepend_unreachable(&cwd, &buflen);
3087 if (error)
3088 goto out;
3089 }
3090
3091 error = -ERANGE;
3092 len = PAGE_SIZE + page - cwd;
3093 if (len <= size) {
3094 error = len;
3095 if (copy_to_user(buf, cwd, len))
3096 error = -EFAULT;
3097 }
3098 } else {
3099 br_read_unlock(&vfsmount_lock);
3100 }
3101
3102 out:
3103 path_put(&pwd);
3104 path_put(&root);
3105 free_page((unsigned long) page);
3106 return error;
3107 }
3108
3109 /*
3110 * Test whether new_dentry is a subdirectory of old_dentry.
3111 *
3112 * Trivially implemented using the dcache structure
3113 */
3114
3115 /**
3116 * is_subdir - is new dentry a subdirectory of old_dentry
3117 * @new_dentry: new dentry
3118 * @old_dentry: old dentry
3119 *
3120 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3121 * Returns 0 otherwise.
3122 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3123 */
3124
3125 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3126 {
3127 int result;
3128 unsigned seq;
3129
3130 if (new_dentry == old_dentry)
3131 return 1;
3132
3133 do {
3134 /* for restarting inner loop in case of seq retry */
3135 seq = read_seqbegin(&rename_lock);
3136 /*
3137 * Need rcu_readlock to protect against the d_parent trashing
3138 * due to d_move
3139 */
3140 rcu_read_lock();
3141 if (d_ancestor(old_dentry, new_dentry))
3142 result = 1;
3143 else
3144 result = 0;
3145 rcu_read_unlock();
3146 } while (read_seqretry(&rename_lock, seq));
3147
3148 return result;
3149 }
3150
3151 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3152 {
3153 struct dentry *root = data;
3154 if (dentry != root) {
3155 if (d_unhashed(dentry) || !dentry->d_inode)
3156 return D_WALK_SKIP;
3157
3158 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3159 dentry->d_flags |= DCACHE_GENOCIDE;
3160 dentry->d_lockref.count--;
3161 }
3162 }
3163 return D_WALK_CONTINUE;
3164 }
3165
3166 void d_genocide(struct dentry *parent)
3167 {
3168 d_walk(parent, parent, d_genocide_kill, NULL);
3169 }
3170
3171 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3172 {
3173 inode_dec_link_count(inode);
3174 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3175 !hlist_unhashed(&dentry->d_alias) ||
3176 !d_unlinked(dentry));
3177 spin_lock(&dentry->d_parent->d_lock);
3178 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3179 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3180 (unsigned long long)inode->i_ino);
3181 spin_unlock(&dentry->d_lock);
3182 spin_unlock(&dentry->d_parent->d_lock);
3183 d_instantiate(dentry, inode);
3184 }
3185 EXPORT_SYMBOL(d_tmpfile);
3186
3187 static __initdata unsigned long dhash_entries;
3188 static int __init set_dhash_entries(char *str)
3189 {
3190 if (!str)
3191 return 0;
3192 dhash_entries = simple_strtoul(str, &str, 0);
3193 return 1;
3194 }
3195 __setup("dhash_entries=", set_dhash_entries);
3196
3197 static void __init dcache_init_early(void)
3198 {
3199 unsigned int loop;
3200
3201 /* If hashes are distributed across NUMA nodes, defer
3202 * hash allocation until vmalloc space is available.
3203 */
3204 if (hashdist)
3205 return;
3206
3207 dentry_hashtable =
3208 alloc_large_system_hash("Dentry cache",
3209 sizeof(struct hlist_bl_head),
3210 dhash_entries,
3211 13,
3212 HASH_EARLY,
3213 &d_hash_shift,
3214 &d_hash_mask,
3215 0,
3216 0);
3217
3218 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3219 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3220 }
3221
3222 static void __init dcache_init(void)
3223 {
3224 unsigned int loop;
3225
3226 /*
3227 * A constructor could be added for stable state like the lists,
3228 * but it is probably not worth it because of the cache nature
3229 * of the dcache.
3230 */
3231 dentry_cache = KMEM_CACHE(dentry,
3232 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3233
3234 /* Hash may have been set up in dcache_init_early */
3235 if (!hashdist)
3236 return;
3237
3238 dentry_hashtable =
3239 alloc_large_system_hash("Dentry cache",
3240 sizeof(struct hlist_bl_head),
3241 dhash_entries,
3242 13,
3243 0,
3244 &d_hash_shift,
3245 &d_hash_mask,
3246 0,
3247 0);
3248
3249 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3250 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3251 }
3252
3253 /* SLAB cache for __getname() consumers */
3254 struct kmem_cache *names_cachep __read_mostly;
3255 EXPORT_SYMBOL(names_cachep);
3256
3257 EXPORT_SYMBOL(d_genocide);
3258
3259 void __init vfs_caches_init_early(void)
3260 {
3261 dcache_init_early();
3262 inode_init_early();
3263 }
3264
3265 void __init vfs_caches_init(unsigned long mempages)
3266 {
3267 unsigned long reserve;
3268
3269 /* Base hash sizes on available memory, with a reserve equal to
3270 150% of current kernel size */
3271
3272 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3273 mempages -= reserve;
3274
3275 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3276 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3277
3278 dcache_init();
3279 inode_init();
3280 files_init(mempages);
3281 mnt_init();
3282 bdev_cache_init();
3283 chrdev_init();
3284 }
This page took 0.132731 seconds and 6 git commands to generate.