fs: dcache per-inode inode alias locking
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include "internal.h"
39
40 /*
41 * Usage:
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
58 * - d_alias, d_inode
59 *
60 * Ordering:
61 * dentry->d_inode->i_lock
62 * dentry->d_lock
63 * dcache_lru_lock
64 * dcache_hash_bucket lock
65 * s_anon lock
66 *
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
75 * dentry1->d_lock
76 * dentry2->d_lock
77 */
78 int sysctl_vfs_cache_pressure __read_mostly = 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
80
81 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
83
84 EXPORT_SYMBOL(rename_lock);
85
86 static struct kmem_cache *dentry_cache __read_mostly;
87
88 /*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
98
99 static unsigned int d_hash_mask __read_mostly;
100 static unsigned int d_hash_shift __read_mostly;
101
102 struct dcache_hash_bucket {
103 struct hlist_bl_head head;
104 };
105 static struct dcache_hash_bucket *dentry_hashtable __read_mostly;
106
107 static inline struct dcache_hash_bucket *d_hash(struct dentry *parent,
108 unsigned long hash)
109 {
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 static inline void spin_lock_bucket(struct dcache_hash_bucket *b)
116 {
117 bit_spin_lock(0, (unsigned long *)&b->head.first);
118 }
119
120 static inline void spin_unlock_bucket(struct dcache_hash_bucket *b)
121 {
122 __bit_spin_unlock(0, (unsigned long *)&b->head.first);
123 }
124
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 .age_limit = 45,
128 };
129
130 static DEFINE_PER_CPU(unsigned int, nr_dentry);
131
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
133 static int get_nr_dentry(void)
134 {
135 int i;
136 int sum = 0;
137 for_each_possible_cpu(i)
138 sum += per_cpu(nr_dentry, i);
139 return sum < 0 ? 0 : sum;
140 }
141
142 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
143 size_t *lenp, loff_t *ppos)
144 {
145 dentry_stat.nr_dentry = get_nr_dentry();
146 return proc_dointvec(table, write, buffer, lenp, ppos);
147 }
148 #endif
149
150 static void __d_free(struct rcu_head *head)
151 {
152 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
153
154 WARN_ON(!list_empty(&dentry->d_alias));
155 if (dname_external(dentry))
156 kfree(dentry->d_name.name);
157 kmem_cache_free(dentry_cache, dentry);
158 }
159
160 /*
161 * no locks, please.
162 */
163 static void d_free(struct dentry *dentry)
164 {
165 BUG_ON(dentry->d_count);
166 this_cpu_dec(nr_dentry);
167 if (dentry->d_op && dentry->d_op->d_release)
168 dentry->d_op->d_release(dentry);
169
170 /* if dentry was never inserted into hash, immediate free is OK */
171 if (hlist_bl_unhashed(&dentry->d_hash))
172 __d_free(&dentry->d_u.d_rcu);
173 else
174 call_rcu(&dentry->d_u.d_rcu, __d_free);
175 }
176
177 /**
178 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
179 * After this call, in-progress rcu-walk path lookup will fail. This
180 * should be called after unhashing, and after changing d_inode (if
181 * the dentry has not already been unhashed).
182 */
183 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
184 {
185 assert_spin_locked(&dentry->d_lock);
186 /* Go through a barrier */
187 write_seqcount_barrier(&dentry->d_seq);
188 }
189
190 /*
191 * Release the dentry's inode, using the filesystem
192 * d_iput() operation if defined. Dentry has no refcount
193 * and is unhashed.
194 */
195 static void dentry_iput(struct dentry * dentry)
196 __releases(dentry->d_lock)
197 __releases(dentry->d_inode->i_lock)
198 {
199 struct inode *inode = dentry->d_inode;
200 if (inode) {
201 dentry->d_inode = NULL;
202 list_del_init(&dentry->d_alias);
203 spin_unlock(&dentry->d_lock);
204 spin_unlock(&inode->i_lock);
205 if (!inode->i_nlink)
206 fsnotify_inoderemove(inode);
207 if (dentry->d_op && dentry->d_op->d_iput)
208 dentry->d_op->d_iput(dentry, inode);
209 else
210 iput(inode);
211 } else {
212 spin_unlock(&dentry->d_lock);
213 }
214 }
215
216 /*
217 * Release the dentry's inode, using the filesystem
218 * d_iput() operation if defined. dentry remains in-use.
219 */
220 static void dentry_unlink_inode(struct dentry * dentry)
221 __releases(dentry->d_lock)
222 __releases(dentry->d_inode->i_lock)
223 {
224 struct inode *inode = dentry->d_inode;
225 dentry->d_inode = NULL;
226 list_del_init(&dentry->d_alias);
227 dentry_rcuwalk_barrier(dentry);
228 spin_unlock(&dentry->d_lock);
229 spin_unlock(&inode->i_lock);
230 if (!inode->i_nlink)
231 fsnotify_inoderemove(inode);
232 if (dentry->d_op && dentry->d_op->d_iput)
233 dentry->d_op->d_iput(dentry, inode);
234 else
235 iput(inode);
236 }
237
238 /*
239 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
240 */
241 static void dentry_lru_add(struct dentry *dentry)
242 {
243 if (list_empty(&dentry->d_lru)) {
244 spin_lock(&dcache_lru_lock);
245 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
246 dentry->d_sb->s_nr_dentry_unused++;
247 dentry_stat.nr_unused++;
248 spin_unlock(&dcache_lru_lock);
249 }
250 }
251
252 static void __dentry_lru_del(struct dentry *dentry)
253 {
254 list_del_init(&dentry->d_lru);
255 dentry->d_sb->s_nr_dentry_unused--;
256 dentry_stat.nr_unused--;
257 }
258
259 static void dentry_lru_del(struct dentry *dentry)
260 {
261 if (!list_empty(&dentry->d_lru)) {
262 spin_lock(&dcache_lru_lock);
263 __dentry_lru_del(dentry);
264 spin_unlock(&dcache_lru_lock);
265 }
266 }
267
268 static void dentry_lru_move_tail(struct dentry *dentry)
269 {
270 spin_lock(&dcache_lru_lock);
271 if (list_empty(&dentry->d_lru)) {
272 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
273 dentry->d_sb->s_nr_dentry_unused++;
274 dentry_stat.nr_unused++;
275 } else {
276 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
277 }
278 spin_unlock(&dcache_lru_lock);
279 }
280
281 /**
282 * d_kill - kill dentry and return parent
283 * @dentry: dentry to kill
284 *
285 * The dentry must already be unhashed and removed from the LRU.
286 *
287 * If this is the root of the dentry tree, return NULL.
288 *
289 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
290 * d_kill.
291 */
292 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
293 __releases(dentry->d_lock)
294 __releases(parent->d_lock)
295 __releases(dentry->d_inode->i_lock)
296 {
297 dentry->d_parent = NULL;
298 list_del(&dentry->d_u.d_child);
299 if (parent)
300 spin_unlock(&parent->d_lock);
301 dentry_iput(dentry);
302 /*
303 * dentry_iput drops the locks, at which point nobody (except
304 * transient RCU lookups) can reach this dentry.
305 */
306 d_free(dentry);
307 return parent;
308 }
309
310 /**
311 * d_drop - drop a dentry
312 * @dentry: dentry to drop
313 *
314 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
315 * be found through a VFS lookup any more. Note that this is different from
316 * deleting the dentry - d_delete will try to mark the dentry negative if
317 * possible, giving a successful _negative_ lookup, while d_drop will
318 * just make the cache lookup fail.
319 *
320 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
321 * reason (NFS timeouts or autofs deletes).
322 *
323 * __d_drop requires dentry->d_lock.
324 */
325 void __d_drop(struct dentry *dentry)
326 {
327 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
328 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) {
329 bit_spin_lock(0,
330 (unsigned long *)&dentry->d_sb->s_anon.first);
331 dentry->d_flags |= DCACHE_UNHASHED;
332 hlist_bl_del_init(&dentry->d_hash);
333 __bit_spin_unlock(0,
334 (unsigned long *)&dentry->d_sb->s_anon.first);
335 } else {
336 struct dcache_hash_bucket *b;
337 b = d_hash(dentry->d_parent, dentry->d_name.hash);
338 spin_lock_bucket(b);
339 /*
340 * We may not actually need to put DCACHE_UNHASHED
341 * manipulations under the hash lock, but follow
342 * the principle of least surprise.
343 */
344 dentry->d_flags |= DCACHE_UNHASHED;
345 hlist_bl_del_rcu(&dentry->d_hash);
346 spin_unlock_bucket(b);
347 dentry_rcuwalk_barrier(dentry);
348 }
349 }
350 }
351 EXPORT_SYMBOL(__d_drop);
352
353 void d_drop(struct dentry *dentry)
354 {
355 spin_lock(&dentry->d_lock);
356 __d_drop(dentry);
357 spin_unlock(&dentry->d_lock);
358 }
359 EXPORT_SYMBOL(d_drop);
360
361 /*
362 * Finish off a dentry we've decided to kill.
363 * dentry->d_lock must be held, returns with it unlocked.
364 * If ref is non-zero, then decrement the refcount too.
365 * Returns dentry requiring refcount drop, or NULL if we're done.
366 */
367 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
368 __releases(dentry->d_lock)
369 {
370 struct inode *inode;
371 struct dentry *parent;
372
373 inode = dentry->d_inode;
374 if (inode && !spin_trylock(&inode->i_lock)) {
375 relock:
376 spin_unlock(&dentry->d_lock);
377 cpu_relax();
378 return dentry; /* try again with same dentry */
379 }
380 if (IS_ROOT(dentry))
381 parent = NULL;
382 else
383 parent = dentry->d_parent;
384 if (parent && !spin_trylock(&parent->d_lock)) {
385 if (inode)
386 spin_unlock(&inode->i_lock);
387 goto relock;
388 }
389
390 if (ref)
391 dentry->d_count--;
392 /* if dentry was on the d_lru list delete it from there */
393 dentry_lru_del(dentry);
394 /* if it was on the hash then remove it */
395 __d_drop(dentry);
396 return d_kill(dentry, parent);
397 }
398
399 /*
400 * This is dput
401 *
402 * This is complicated by the fact that we do not want to put
403 * dentries that are no longer on any hash chain on the unused
404 * list: we'd much rather just get rid of them immediately.
405 *
406 * However, that implies that we have to traverse the dentry
407 * tree upwards to the parents which might _also_ now be
408 * scheduled for deletion (it may have been only waiting for
409 * its last child to go away).
410 *
411 * This tail recursion is done by hand as we don't want to depend
412 * on the compiler to always get this right (gcc generally doesn't).
413 * Real recursion would eat up our stack space.
414 */
415
416 /*
417 * dput - release a dentry
418 * @dentry: dentry to release
419 *
420 * Release a dentry. This will drop the usage count and if appropriate
421 * call the dentry unlink method as well as removing it from the queues and
422 * releasing its resources. If the parent dentries were scheduled for release
423 * they too may now get deleted.
424 */
425 void dput(struct dentry *dentry)
426 {
427 if (!dentry)
428 return;
429
430 repeat:
431 if (dentry->d_count == 1)
432 might_sleep();
433 spin_lock(&dentry->d_lock);
434 BUG_ON(!dentry->d_count);
435 if (dentry->d_count > 1) {
436 dentry->d_count--;
437 spin_unlock(&dentry->d_lock);
438 return;
439 }
440
441 if (dentry->d_flags & DCACHE_OP_DELETE) {
442 if (dentry->d_op->d_delete(dentry))
443 goto kill_it;
444 }
445
446 /* Unreachable? Get rid of it */
447 if (d_unhashed(dentry))
448 goto kill_it;
449
450 /* Otherwise leave it cached and ensure it's on the LRU */
451 dentry->d_flags |= DCACHE_REFERENCED;
452 dentry_lru_add(dentry);
453
454 dentry->d_count--;
455 spin_unlock(&dentry->d_lock);
456 return;
457
458 kill_it:
459 dentry = dentry_kill(dentry, 1);
460 if (dentry)
461 goto repeat;
462 }
463 EXPORT_SYMBOL(dput);
464
465 /**
466 * d_invalidate - invalidate a dentry
467 * @dentry: dentry to invalidate
468 *
469 * Try to invalidate the dentry if it turns out to be
470 * possible. If there are other dentries that can be
471 * reached through this one we can't delete it and we
472 * return -EBUSY. On success we return 0.
473 *
474 * no dcache lock.
475 */
476
477 int d_invalidate(struct dentry * dentry)
478 {
479 /*
480 * If it's already been dropped, return OK.
481 */
482 spin_lock(&dentry->d_lock);
483 if (d_unhashed(dentry)) {
484 spin_unlock(&dentry->d_lock);
485 return 0;
486 }
487 /*
488 * Check whether to do a partial shrink_dcache
489 * to get rid of unused child entries.
490 */
491 if (!list_empty(&dentry->d_subdirs)) {
492 spin_unlock(&dentry->d_lock);
493 shrink_dcache_parent(dentry);
494 spin_lock(&dentry->d_lock);
495 }
496
497 /*
498 * Somebody else still using it?
499 *
500 * If it's a directory, we can't drop it
501 * for fear of somebody re-populating it
502 * with children (even though dropping it
503 * would make it unreachable from the root,
504 * we might still populate it if it was a
505 * working directory or similar).
506 */
507 if (dentry->d_count > 1) {
508 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
509 spin_unlock(&dentry->d_lock);
510 return -EBUSY;
511 }
512 }
513
514 __d_drop(dentry);
515 spin_unlock(&dentry->d_lock);
516 return 0;
517 }
518 EXPORT_SYMBOL(d_invalidate);
519
520 /* This must be called with d_lock held */
521 static inline void __dget_dlock(struct dentry *dentry)
522 {
523 dentry->d_count++;
524 }
525
526 static inline void __dget(struct dentry *dentry)
527 {
528 spin_lock(&dentry->d_lock);
529 __dget_dlock(dentry);
530 spin_unlock(&dentry->d_lock);
531 }
532
533 struct dentry *dget_parent(struct dentry *dentry)
534 {
535 struct dentry *ret;
536
537 repeat:
538 /*
539 * Don't need rcu_dereference because we re-check it was correct under
540 * the lock.
541 */
542 rcu_read_lock();
543 ret = dentry->d_parent;
544 if (!ret) {
545 rcu_read_unlock();
546 goto out;
547 }
548 spin_lock(&ret->d_lock);
549 if (unlikely(ret != dentry->d_parent)) {
550 spin_unlock(&ret->d_lock);
551 rcu_read_unlock();
552 goto repeat;
553 }
554 rcu_read_unlock();
555 BUG_ON(!ret->d_count);
556 ret->d_count++;
557 spin_unlock(&ret->d_lock);
558 out:
559 return ret;
560 }
561 EXPORT_SYMBOL(dget_parent);
562
563 /**
564 * d_find_alias - grab a hashed alias of inode
565 * @inode: inode in question
566 * @want_discon: flag, used by d_splice_alias, to request
567 * that only a DISCONNECTED alias be returned.
568 *
569 * If inode has a hashed alias, or is a directory and has any alias,
570 * acquire the reference to alias and return it. Otherwise return NULL.
571 * Notice that if inode is a directory there can be only one alias and
572 * it can be unhashed only if it has no children, or if it is the root
573 * of a filesystem.
574 *
575 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
576 * any other hashed alias over that one unless @want_discon is set,
577 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
578 */
579 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
580 {
581 struct dentry *alias, *discon_alias;
582
583 again:
584 discon_alias = NULL;
585 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
586 spin_lock(&alias->d_lock);
587 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
588 if (IS_ROOT(alias) &&
589 (alias->d_flags & DCACHE_DISCONNECTED)) {
590 discon_alias = alias;
591 } else if (!want_discon) {
592 __dget_dlock(alias);
593 spin_unlock(&alias->d_lock);
594 return alias;
595 }
596 }
597 spin_unlock(&alias->d_lock);
598 }
599 if (discon_alias) {
600 alias = discon_alias;
601 spin_lock(&alias->d_lock);
602 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
603 if (IS_ROOT(alias) &&
604 (alias->d_flags & DCACHE_DISCONNECTED)) {
605 __dget_dlock(alias);
606 spin_unlock(&alias->d_lock);
607 return alias;
608 }
609 }
610 spin_unlock(&alias->d_lock);
611 goto again;
612 }
613 return NULL;
614 }
615
616 struct dentry *d_find_alias(struct inode *inode)
617 {
618 struct dentry *de = NULL;
619
620 if (!list_empty(&inode->i_dentry)) {
621 spin_lock(&inode->i_lock);
622 de = __d_find_alias(inode, 0);
623 spin_unlock(&inode->i_lock);
624 }
625 return de;
626 }
627 EXPORT_SYMBOL(d_find_alias);
628
629 /*
630 * Try to kill dentries associated with this inode.
631 * WARNING: you must own a reference to inode.
632 */
633 void d_prune_aliases(struct inode *inode)
634 {
635 struct dentry *dentry;
636 restart:
637 spin_lock(&inode->i_lock);
638 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
639 spin_lock(&dentry->d_lock);
640 if (!dentry->d_count) {
641 __dget_dlock(dentry);
642 __d_drop(dentry);
643 spin_unlock(&dentry->d_lock);
644 spin_unlock(&inode->i_lock);
645 dput(dentry);
646 goto restart;
647 }
648 spin_unlock(&dentry->d_lock);
649 }
650 spin_unlock(&inode->i_lock);
651 }
652 EXPORT_SYMBOL(d_prune_aliases);
653
654 /*
655 * Try to throw away a dentry - free the inode, dput the parent.
656 * Requires dentry->d_lock is held, and dentry->d_count == 0.
657 * Releases dentry->d_lock.
658 *
659 * This may fail if locks cannot be acquired no problem, just try again.
660 */
661 static void try_prune_one_dentry(struct dentry *dentry)
662 __releases(dentry->d_lock)
663 {
664 struct dentry *parent;
665
666 parent = dentry_kill(dentry, 0);
667 /*
668 * If dentry_kill returns NULL, we have nothing more to do.
669 * if it returns the same dentry, trylocks failed. In either
670 * case, just loop again.
671 *
672 * Otherwise, we need to prune ancestors too. This is necessary
673 * to prevent quadratic behavior of shrink_dcache_parent(), but
674 * is also expected to be beneficial in reducing dentry cache
675 * fragmentation.
676 */
677 if (!parent)
678 return;
679 if (parent == dentry)
680 return;
681
682 /* Prune ancestors. */
683 dentry = parent;
684 while (dentry) {
685 spin_lock(&dentry->d_lock);
686 if (dentry->d_count > 1) {
687 dentry->d_count--;
688 spin_unlock(&dentry->d_lock);
689 return;
690 }
691 dentry = dentry_kill(dentry, 1);
692 }
693 }
694
695 static void shrink_dentry_list(struct list_head *list)
696 {
697 struct dentry *dentry;
698
699 rcu_read_lock();
700 for (;;) {
701 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
702 if (&dentry->d_lru == list)
703 break; /* empty */
704 spin_lock(&dentry->d_lock);
705 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
706 spin_unlock(&dentry->d_lock);
707 continue;
708 }
709
710 /*
711 * We found an inuse dentry which was not removed from
712 * the LRU because of laziness during lookup. Do not free
713 * it - just keep it off the LRU list.
714 */
715 if (dentry->d_count) {
716 dentry_lru_del(dentry);
717 spin_unlock(&dentry->d_lock);
718 continue;
719 }
720
721 rcu_read_unlock();
722
723 try_prune_one_dentry(dentry);
724
725 rcu_read_lock();
726 }
727 rcu_read_unlock();
728 }
729
730 /**
731 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
732 * @sb: superblock to shrink dentry LRU.
733 * @count: number of entries to prune
734 * @flags: flags to control the dentry processing
735 *
736 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
737 */
738 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
739 {
740 /* called from prune_dcache() and shrink_dcache_parent() */
741 struct dentry *dentry;
742 LIST_HEAD(referenced);
743 LIST_HEAD(tmp);
744 int cnt = *count;
745
746 relock:
747 spin_lock(&dcache_lru_lock);
748 while (!list_empty(&sb->s_dentry_lru)) {
749 dentry = list_entry(sb->s_dentry_lru.prev,
750 struct dentry, d_lru);
751 BUG_ON(dentry->d_sb != sb);
752
753 if (!spin_trylock(&dentry->d_lock)) {
754 spin_unlock(&dcache_lru_lock);
755 cpu_relax();
756 goto relock;
757 }
758
759 /*
760 * If we are honouring the DCACHE_REFERENCED flag and the
761 * dentry has this flag set, don't free it. Clear the flag
762 * and put it back on the LRU.
763 */
764 if (flags & DCACHE_REFERENCED &&
765 dentry->d_flags & DCACHE_REFERENCED) {
766 dentry->d_flags &= ~DCACHE_REFERENCED;
767 list_move(&dentry->d_lru, &referenced);
768 spin_unlock(&dentry->d_lock);
769 } else {
770 list_move_tail(&dentry->d_lru, &tmp);
771 spin_unlock(&dentry->d_lock);
772 if (!--cnt)
773 break;
774 }
775 cond_resched_lock(&dcache_lru_lock);
776 }
777 if (!list_empty(&referenced))
778 list_splice(&referenced, &sb->s_dentry_lru);
779 spin_unlock(&dcache_lru_lock);
780
781 shrink_dentry_list(&tmp);
782
783 *count = cnt;
784 }
785
786 /**
787 * prune_dcache - shrink the dcache
788 * @count: number of entries to try to free
789 *
790 * Shrink the dcache. This is done when we need more memory, or simply when we
791 * need to unmount something (at which point we need to unuse all dentries).
792 *
793 * This function may fail to free any resources if all the dentries are in use.
794 */
795 static void prune_dcache(int count)
796 {
797 struct super_block *sb, *p = NULL;
798 int w_count;
799 int unused = dentry_stat.nr_unused;
800 int prune_ratio;
801 int pruned;
802
803 if (unused == 0 || count == 0)
804 return;
805 if (count >= unused)
806 prune_ratio = 1;
807 else
808 prune_ratio = unused / count;
809 spin_lock(&sb_lock);
810 list_for_each_entry(sb, &super_blocks, s_list) {
811 if (list_empty(&sb->s_instances))
812 continue;
813 if (sb->s_nr_dentry_unused == 0)
814 continue;
815 sb->s_count++;
816 /* Now, we reclaim unused dentrins with fairness.
817 * We reclaim them same percentage from each superblock.
818 * We calculate number of dentries to scan on this sb
819 * as follows, but the implementation is arranged to avoid
820 * overflows:
821 * number of dentries to scan on this sb =
822 * count * (number of dentries on this sb /
823 * number of dentries in the machine)
824 */
825 spin_unlock(&sb_lock);
826 if (prune_ratio != 1)
827 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
828 else
829 w_count = sb->s_nr_dentry_unused;
830 pruned = w_count;
831 /*
832 * We need to be sure this filesystem isn't being unmounted,
833 * otherwise we could race with generic_shutdown_super(), and
834 * end up holding a reference to an inode while the filesystem
835 * is unmounted. So we try to get s_umount, and make sure
836 * s_root isn't NULL.
837 */
838 if (down_read_trylock(&sb->s_umount)) {
839 if ((sb->s_root != NULL) &&
840 (!list_empty(&sb->s_dentry_lru))) {
841 __shrink_dcache_sb(sb, &w_count,
842 DCACHE_REFERENCED);
843 pruned -= w_count;
844 }
845 up_read(&sb->s_umount);
846 }
847 spin_lock(&sb_lock);
848 if (p)
849 __put_super(p);
850 count -= pruned;
851 p = sb;
852 /* more work left to do? */
853 if (count <= 0)
854 break;
855 }
856 if (p)
857 __put_super(p);
858 spin_unlock(&sb_lock);
859 }
860
861 /**
862 * shrink_dcache_sb - shrink dcache for a superblock
863 * @sb: superblock
864 *
865 * Shrink the dcache for the specified super block. This is used to free
866 * the dcache before unmounting a file system.
867 */
868 void shrink_dcache_sb(struct super_block *sb)
869 {
870 LIST_HEAD(tmp);
871
872 spin_lock(&dcache_lru_lock);
873 while (!list_empty(&sb->s_dentry_lru)) {
874 list_splice_init(&sb->s_dentry_lru, &tmp);
875 spin_unlock(&dcache_lru_lock);
876 shrink_dentry_list(&tmp);
877 spin_lock(&dcache_lru_lock);
878 }
879 spin_unlock(&dcache_lru_lock);
880 }
881 EXPORT_SYMBOL(shrink_dcache_sb);
882
883 /*
884 * destroy a single subtree of dentries for unmount
885 * - see the comments on shrink_dcache_for_umount() for a description of the
886 * locking
887 */
888 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
889 {
890 struct dentry *parent;
891 unsigned detached = 0;
892
893 BUG_ON(!IS_ROOT(dentry));
894
895 /* detach this root from the system */
896 spin_lock(&dentry->d_lock);
897 dentry_lru_del(dentry);
898 __d_drop(dentry);
899 spin_unlock(&dentry->d_lock);
900
901 for (;;) {
902 /* descend to the first leaf in the current subtree */
903 while (!list_empty(&dentry->d_subdirs)) {
904 struct dentry *loop;
905
906 /* this is a branch with children - detach all of them
907 * from the system in one go */
908 spin_lock(&dentry->d_lock);
909 list_for_each_entry(loop, &dentry->d_subdirs,
910 d_u.d_child) {
911 spin_lock_nested(&loop->d_lock,
912 DENTRY_D_LOCK_NESTED);
913 dentry_lru_del(loop);
914 __d_drop(loop);
915 spin_unlock(&loop->d_lock);
916 }
917 spin_unlock(&dentry->d_lock);
918
919 /* move to the first child */
920 dentry = list_entry(dentry->d_subdirs.next,
921 struct dentry, d_u.d_child);
922 }
923
924 /* consume the dentries from this leaf up through its parents
925 * until we find one with children or run out altogether */
926 do {
927 struct inode *inode;
928
929 if (dentry->d_count != 0) {
930 printk(KERN_ERR
931 "BUG: Dentry %p{i=%lx,n=%s}"
932 " still in use (%d)"
933 " [unmount of %s %s]\n",
934 dentry,
935 dentry->d_inode ?
936 dentry->d_inode->i_ino : 0UL,
937 dentry->d_name.name,
938 dentry->d_count,
939 dentry->d_sb->s_type->name,
940 dentry->d_sb->s_id);
941 BUG();
942 }
943
944 if (IS_ROOT(dentry)) {
945 parent = NULL;
946 list_del(&dentry->d_u.d_child);
947 } else {
948 parent = dentry->d_parent;
949 spin_lock(&parent->d_lock);
950 parent->d_count--;
951 list_del(&dentry->d_u.d_child);
952 spin_unlock(&parent->d_lock);
953 }
954
955 detached++;
956
957 inode = dentry->d_inode;
958 if (inode) {
959 dentry->d_inode = NULL;
960 list_del_init(&dentry->d_alias);
961 if (dentry->d_op && dentry->d_op->d_iput)
962 dentry->d_op->d_iput(dentry, inode);
963 else
964 iput(inode);
965 }
966
967 d_free(dentry);
968
969 /* finished when we fall off the top of the tree,
970 * otherwise we ascend to the parent and move to the
971 * next sibling if there is one */
972 if (!parent)
973 return;
974 dentry = parent;
975 } while (list_empty(&dentry->d_subdirs));
976
977 dentry = list_entry(dentry->d_subdirs.next,
978 struct dentry, d_u.d_child);
979 }
980 }
981
982 /*
983 * destroy the dentries attached to a superblock on unmounting
984 * - we don't need to use dentry->d_lock because:
985 * - the superblock is detached from all mountings and open files, so the
986 * dentry trees will not be rearranged by the VFS
987 * - s_umount is write-locked, so the memory pressure shrinker will ignore
988 * any dentries belonging to this superblock that it comes across
989 * - the filesystem itself is no longer permitted to rearrange the dentries
990 * in this superblock
991 */
992 void shrink_dcache_for_umount(struct super_block *sb)
993 {
994 struct dentry *dentry;
995
996 if (down_read_trylock(&sb->s_umount))
997 BUG();
998
999 dentry = sb->s_root;
1000 sb->s_root = NULL;
1001 spin_lock(&dentry->d_lock);
1002 dentry->d_count--;
1003 spin_unlock(&dentry->d_lock);
1004 shrink_dcache_for_umount_subtree(dentry);
1005
1006 while (!hlist_bl_empty(&sb->s_anon)) {
1007 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1008 shrink_dcache_for_umount_subtree(dentry);
1009 }
1010 }
1011
1012 /*
1013 * Search for at least 1 mount point in the dentry's subdirs.
1014 * We descend to the next level whenever the d_subdirs
1015 * list is non-empty and continue searching.
1016 */
1017
1018 /**
1019 * have_submounts - check for mounts over a dentry
1020 * @parent: dentry to check.
1021 *
1022 * Return true if the parent or its subdirectories contain
1023 * a mount point
1024 */
1025 int have_submounts(struct dentry *parent)
1026 {
1027 struct dentry *this_parent;
1028 struct list_head *next;
1029 unsigned seq;
1030 int locked = 0;
1031
1032 seq = read_seqbegin(&rename_lock);
1033 again:
1034 this_parent = parent;
1035
1036 if (d_mountpoint(parent))
1037 goto positive;
1038 spin_lock(&this_parent->d_lock);
1039 repeat:
1040 next = this_parent->d_subdirs.next;
1041 resume:
1042 while (next != &this_parent->d_subdirs) {
1043 struct list_head *tmp = next;
1044 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1045 next = tmp->next;
1046
1047 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1048 /* Have we found a mount point ? */
1049 if (d_mountpoint(dentry)) {
1050 spin_unlock(&dentry->d_lock);
1051 spin_unlock(&this_parent->d_lock);
1052 goto positive;
1053 }
1054 if (!list_empty(&dentry->d_subdirs)) {
1055 spin_unlock(&this_parent->d_lock);
1056 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1057 this_parent = dentry;
1058 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1059 goto repeat;
1060 }
1061 spin_unlock(&dentry->d_lock);
1062 }
1063 /*
1064 * All done at this level ... ascend and resume the search.
1065 */
1066 if (this_parent != parent) {
1067 struct dentry *tmp;
1068 struct dentry *child;
1069
1070 tmp = this_parent->d_parent;
1071 rcu_read_lock();
1072 spin_unlock(&this_parent->d_lock);
1073 child = this_parent;
1074 this_parent = tmp;
1075 spin_lock(&this_parent->d_lock);
1076 /* might go back up the wrong parent if we have had a rename
1077 * or deletion */
1078 if (this_parent != child->d_parent ||
1079 (!locked && read_seqretry(&rename_lock, seq))) {
1080 spin_unlock(&this_parent->d_lock);
1081 rcu_read_unlock();
1082 goto rename_retry;
1083 }
1084 rcu_read_unlock();
1085 next = child->d_u.d_child.next;
1086 goto resume;
1087 }
1088 spin_unlock(&this_parent->d_lock);
1089 if (!locked && read_seqretry(&rename_lock, seq))
1090 goto rename_retry;
1091 if (locked)
1092 write_sequnlock(&rename_lock);
1093 return 0; /* No mount points found in tree */
1094 positive:
1095 if (!locked && read_seqretry(&rename_lock, seq))
1096 goto rename_retry;
1097 if (locked)
1098 write_sequnlock(&rename_lock);
1099 return 1;
1100
1101 rename_retry:
1102 locked = 1;
1103 write_seqlock(&rename_lock);
1104 goto again;
1105 }
1106 EXPORT_SYMBOL(have_submounts);
1107
1108 /*
1109 * Search the dentry child list for the specified parent,
1110 * and move any unused dentries to the end of the unused
1111 * list for prune_dcache(). We descend to the next level
1112 * whenever the d_subdirs list is non-empty and continue
1113 * searching.
1114 *
1115 * It returns zero iff there are no unused children,
1116 * otherwise it returns the number of children moved to
1117 * the end of the unused list. This may not be the total
1118 * number of unused children, because select_parent can
1119 * drop the lock and return early due to latency
1120 * constraints.
1121 */
1122 static int select_parent(struct dentry * parent)
1123 {
1124 struct dentry *this_parent;
1125 struct list_head *next;
1126 unsigned seq;
1127 int found = 0;
1128 int locked = 0;
1129
1130 seq = read_seqbegin(&rename_lock);
1131 again:
1132 this_parent = parent;
1133 spin_lock(&this_parent->d_lock);
1134 repeat:
1135 next = this_parent->d_subdirs.next;
1136 resume:
1137 while (next != &this_parent->d_subdirs) {
1138 struct list_head *tmp = next;
1139 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1140 next = tmp->next;
1141
1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1143
1144 /*
1145 * move only zero ref count dentries to the end
1146 * of the unused list for prune_dcache
1147 */
1148 if (!dentry->d_count) {
1149 dentry_lru_move_tail(dentry);
1150 found++;
1151 } else {
1152 dentry_lru_del(dentry);
1153 }
1154
1155 /*
1156 * We can return to the caller if we have found some (this
1157 * ensures forward progress). We'll be coming back to find
1158 * the rest.
1159 */
1160 if (found && need_resched()) {
1161 spin_unlock(&dentry->d_lock);
1162 goto out;
1163 }
1164
1165 /*
1166 * Descend a level if the d_subdirs list is non-empty.
1167 */
1168 if (!list_empty(&dentry->d_subdirs)) {
1169 spin_unlock(&this_parent->d_lock);
1170 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1171 this_parent = dentry;
1172 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1173 goto repeat;
1174 }
1175
1176 spin_unlock(&dentry->d_lock);
1177 }
1178 /*
1179 * All done at this level ... ascend and resume the search.
1180 */
1181 if (this_parent != parent) {
1182 struct dentry *tmp;
1183 struct dentry *child;
1184
1185 tmp = this_parent->d_parent;
1186 rcu_read_lock();
1187 spin_unlock(&this_parent->d_lock);
1188 child = this_parent;
1189 this_parent = tmp;
1190 spin_lock(&this_parent->d_lock);
1191 /* might go back up the wrong parent if we have had a rename
1192 * or deletion */
1193 if (this_parent != child->d_parent ||
1194 (!locked && read_seqretry(&rename_lock, seq))) {
1195 spin_unlock(&this_parent->d_lock);
1196 rcu_read_unlock();
1197 goto rename_retry;
1198 }
1199 rcu_read_unlock();
1200 next = child->d_u.d_child.next;
1201 goto resume;
1202 }
1203 out:
1204 spin_unlock(&this_parent->d_lock);
1205 if (!locked && read_seqretry(&rename_lock, seq))
1206 goto rename_retry;
1207 if (locked)
1208 write_sequnlock(&rename_lock);
1209 return found;
1210
1211 rename_retry:
1212 if (found)
1213 return found;
1214 locked = 1;
1215 write_seqlock(&rename_lock);
1216 goto again;
1217 }
1218
1219 /**
1220 * shrink_dcache_parent - prune dcache
1221 * @parent: parent of entries to prune
1222 *
1223 * Prune the dcache to remove unused children of the parent dentry.
1224 */
1225
1226 void shrink_dcache_parent(struct dentry * parent)
1227 {
1228 struct super_block *sb = parent->d_sb;
1229 int found;
1230
1231 while ((found = select_parent(parent)) != 0)
1232 __shrink_dcache_sb(sb, &found, 0);
1233 }
1234 EXPORT_SYMBOL(shrink_dcache_parent);
1235
1236 /*
1237 * Scan `nr' dentries and return the number which remain.
1238 *
1239 * We need to avoid reentering the filesystem if the caller is performing a
1240 * GFP_NOFS allocation attempt. One example deadlock is:
1241 *
1242 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1243 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1244 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1245 *
1246 * In this case we return -1 to tell the caller that we baled.
1247 */
1248 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1249 {
1250 if (nr) {
1251 if (!(gfp_mask & __GFP_FS))
1252 return -1;
1253 prune_dcache(nr);
1254 }
1255
1256 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1257 }
1258
1259 static struct shrinker dcache_shrinker = {
1260 .shrink = shrink_dcache_memory,
1261 .seeks = DEFAULT_SEEKS,
1262 };
1263
1264 /**
1265 * d_alloc - allocate a dcache entry
1266 * @parent: parent of entry to allocate
1267 * @name: qstr of the name
1268 *
1269 * Allocates a dentry. It returns %NULL if there is insufficient memory
1270 * available. On a success the dentry is returned. The name passed in is
1271 * copied and the copy passed in may be reused after this call.
1272 */
1273
1274 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1275 {
1276 struct dentry *dentry;
1277 char *dname;
1278
1279 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1280 if (!dentry)
1281 return NULL;
1282
1283 if (name->len > DNAME_INLINE_LEN-1) {
1284 dname = kmalloc(name->len + 1, GFP_KERNEL);
1285 if (!dname) {
1286 kmem_cache_free(dentry_cache, dentry);
1287 return NULL;
1288 }
1289 } else {
1290 dname = dentry->d_iname;
1291 }
1292 dentry->d_name.name = dname;
1293
1294 dentry->d_name.len = name->len;
1295 dentry->d_name.hash = name->hash;
1296 memcpy(dname, name->name, name->len);
1297 dname[name->len] = 0;
1298
1299 dentry->d_count = 1;
1300 dentry->d_flags = DCACHE_UNHASHED;
1301 spin_lock_init(&dentry->d_lock);
1302 seqcount_init(&dentry->d_seq);
1303 dentry->d_inode = NULL;
1304 dentry->d_parent = NULL;
1305 dentry->d_sb = NULL;
1306 dentry->d_op = NULL;
1307 dentry->d_fsdata = NULL;
1308 INIT_HLIST_BL_NODE(&dentry->d_hash);
1309 INIT_LIST_HEAD(&dentry->d_lru);
1310 INIT_LIST_HEAD(&dentry->d_subdirs);
1311 INIT_LIST_HEAD(&dentry->d_alias);
1312 INIT_LIST_HEAD(&dentry->d_u.d_child);
1313
1314 if (parent) {
1315 spin_lock(&parent->d_lock);
1316 /*
1317 * don't need child lock because it is not subject
1318 * to concurrency here
1319 */
1320 __dget_dlock(parent);
1321 dentry->d_parent = parent;
1322 dentry->d_sb = parent->d_sb;
1323 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1324 spin_unlock(&parent->d_lock);
1325 }
1326
1327 this_cpu_inc(nr_dentry);
1328
1329 return dentry;
1330 }
1331 EXPORT_SYMBOL(d_alloc);
1332
1333 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1334 {
1335 struct qstr q;
1336
1337 q.name = name;
1338 q.len = strlen(name);
1339 q.hash = full_name_hash(q.name, q.len);
1340 return d_alloc(parent, &q);
1341 }
1342 EXPORT_SYMBOL(d_alloc_name);
1343
1344 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1345 {
1346 BUG_ON(dentry->d_op);
1347 BUG_ON(dentry->d_flags & (DCACHE_OP_HASH |
1348 DCACHE_OP_COMPARE |
1349 DCACHE_OP_REVALIDATE |
1350 DCACHE_OP_DELETE ));
1351 dentry->d_op = op;
1352 if (!op)
1353 return;
1354 if (op->d_hash)
1355 dentry->d_flags |= DCACHE_OP_HASH;
1356 if (op->d_compare)
1357 dentry->d_flags |= DCACHE_OP_COMPARE;
1358 if (op->d_revalidate)
1359 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1360 if (op->d_delete)
1361 dentry->d_flags |= DCACHE_OP_DELETE;
1362
1363 }
1364 EXPORT_SYMBOL(d_set_d_op);
1365
1366 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1367 {
1368 spin_lock(&dentry->d_lock);
1369 if (inode)
1370 list_add(&dentry->d_alias, &inode->i_dentry);
1371 dentry->d_inode = inode;
1372 dentry_rcuwalk_barrier(dentry);
1373 spin_unlock(&dentry->d_lock);
1374 fsnotify_d_instantiate(dentry, inode);
1375 }
1376
1377 /**
1378 * d_instantiate - fill in inode information for a dentry
1379 * @entry: dentry to complete
1380 * @inode: inode to attach to this dentry
1381 *
1382 * Fill in inode information in the entry.
1383 *
1384 * This turns negative dentries into productive full members
1385 * of society.
1386 *
1387 * NOTE! This assumes that the inode count has been incremented
1388 * (or otherwise set) by the caller to indicate that it is now
1389 * in use by the dcache.
1390 */
1391
1392 void d_instantiate(struct dentry *entry, struct inode * inode)
1393 {
1394 BUG_ON(!list_empty(&entry->d_alias));
1395 if (inode)
1396 spin_lock(&inode->i_lock);
1397 __d_instantiate(entry, inode);
1398 if (inode)
1399 spin_unlock(&inode->i_lock);
1400 security_d_instantiate(entry, inode);
1401 }
1402 EXPORT_SYMBOL(d_instantiate);
1403
1404 /**
1405 * d_instantiate_unique - instantiate a non-aliased dentry
1406 * @entry: dentry to instantiate
1407 * @inode: inode to attach to this dentry
1408 *
1409 * Fill in inode information in the entry. On success, it returns NULL.
1410 * If an unhashed alias of "entry" already exists, then we return the
1411 * aliased dentry instead and drop one reference to inode.
1412 *
1413 * Note that in order to avoid conflicts with rename() etc, the caller
1414 * had better be holding the parent directory semaphore.
1415 *
1416 * This also assumes that the inode count has been incremented
1417 * (or otherwise set) by the caller to indicate that it is now
1418 * in use by the dcache.
1419 */
1420 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1421 struct inode *inode)
1422 {
1423 struct dentry *alias;
1424 int len = entry->d_name.len;
1425 const char *name = entry->d_name.name;
1426 unsigned int hash = entry->d_name.hash;
1427
1428 if (!inode) {
1429 __d_instantiate(entry, NULL);
1430 return NULL;
1431 }
1432
1433 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1434 struct qstr *qstr = &alias->d_name;
1435
1436 /*
1437 * Don't need alias->d_lock here, because aliases with
1438 * d_parent == entry->d_parent are not subject to name or
1439 * parent changes, because the parent inode i_mutex is held.
1440 */
1441 if (qstr->hash != hash)
1442 continue;
1443 if (alias->d_parent != entry->d_parent)
1444 continue;
1445 if (qstr->len != len)
1446 continue;
1447 if (memcmp(qstr->name, name, len))
1448 continue;
1449 __dget(alias);
1450 return alias;
1451 }
1452
1453 __d_instantiate(entry, inode);
1454 return NULL;
1455 }
1456
1457 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1458 {
1459 struct dentry *result;
1460
1461 BUG_ON(!list_empty(&entry->d_alias));
1462
1463 if (inode)
1464 spin_lock(&inode->i_lock);
1465 result = __d_instantiate_unique(entry, inode);
1466 if (inode)
1467 spin_unlock(&inode->i_lock);
1468
1469 if (!result) {
1470 security_d_instantiate(entry, inode);
1471 return NULL;
1472 }
1473
1474 BUG_ON(!d_unhashed(result));
1475 iput(inode);
1476 return result;
1477 }
1478
1479 EXPORT_SYMBOL(d_instantiate_unique);
1480
1481 /**
1482 * d_alloc_root - allocate root dentry
1483 * @root_inode: inode to allocate the root for
1484 *
1485 * Allocate a root ("/") dentry for the inode given. The inode is
1486 * instantiated and returned. %NULL is returned if there is insufficient
1487 * memory or the inode passed is %NULL.
1488 */
1489
1490 struct dentry * d_alloc_root(struct inode * root_inode)
1491 {
1492 struct dentry *res = NULL;
1493
1494 if (root_inode) {
1495 static const struct qstr name = { .name = "/", .len = 1 };
1496
1497 res = d_alloc(NULL, &name);
1498 if (res) {
1499 res->d_sb = root_inode->i_sb;
1500 res->d_parent = res;
1501 d_instantiate(res, root_inode);
1502 }
1503 }
1504 return res;
1505 }
1506 EXPORT_SYMBOL(d_alloc_root);
1507
1508 /**
1509 * d_obtain_alias - find or allocate a dentry for a given inode
1510 * @inode: inode to allocate the dentry for
1511 *
1512 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1513 * similar open by handle operations. The returned dentry may be anonymous,
1514 * or may have a full name (if the inode was already in the cache).
1515 *
1516 * When called on a directory inode, we must ensure that the inode only ever
1517 * has one dentry. If a dentry is found, that is returned instead of
1518 * allocating a new one.
1519 *
1520 * On successful return, the reference to the inode has been transferred
1521 * to the dentry. In case of an error the reference on the inode is released.
1522 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1523 * be passed in and will be the error will be propagate to the return value,
1524 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1525 */
1526 struct dentry *d_obtain_alias(struct inode *inode)
1527 {
1528 static const struct qstr anonstring = { .name = "" };
1529 struct dentry *tmp;
1530 struct dentry *res;
1531
1532 if (!inode)
1533 return ERR_PTR(-ESTALE);
1534 if (IS_ERR(inode))
1535 return ERR_CAST(inode);
1536
1537 res = d_find_alias(inode);
1538 if (res)
1539 goto out_iput;
1540
1541 tmp = d_alloc(NULL, &anonstring);
1542 if (!tmp) {
1543 res = ERR_PTR(-ENOMEM);
1544 goto out_iput;
1545 }
1546 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1547
1548
1549 spin_lock(&inode->i_lock);
1550 res = __d_find_alias(inode, 0);
1551 if (res) {
1552 spin_unlock(&inode->i_lock);
1553 dput(tmp);
1554 goto out_iput;
1555 }
1556
1557 /* attach a disconnected dentry */
1558 spin_lock(&tmp->d_lock);
1559 tmp->d_sb = inode->i_sb;
1560 tmp->d_inode = inode;
1561 tmp->d_flags |= DCACHE_DISCONNECTED;
1562 list_add(&tmp->d_alias, &inode->i_dentry);
1563 bit_spin_lock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1564 tmp->d_flags &= ~DCACHE_UNHASHED;
1565 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1566 __bit_spin_unlock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1567 spin_unlock(&tmp->d_lock);
1568 spin_unlock(&inode->i_lock);
1569
1570 return tmp;
1571
1572 out_iput:
1573 iput(inode);
1574 return res;
1575 }
1576 EXPORT_SYMBOL(d_obtain_alias);
1577
1578 /**
1579 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1580 * @inode: the inode which may have a disconnected dentry
1581 * @dentry: a negative dentry which we want to point to the inode.
1582 *
1583 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1584 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1585 * and return it, else simply d_add the inode to the dentry and return NULL.
1586 *
1587 * This is needed in the lookup routine of any filesystem that is exportable
1588 * (via knfsd) so that we can build dcache paths to directories effectively.
1589 *
1590 * If a dentry was found and moved, then it is returned. Otherwise NULL
1591 * is returned. This matches the expected return value of ->lookup.
1592 *
1593 */
1594 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1595 {
1596 struct dentry *new = NULL;
1597
1598 if (inode && S_ISDIR(inode->i_mode)) {
1599 spin_lock(&inode->i_lock);
1600 new = __d_find_alias(inode, 1);
1601 if (new) {
1602 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1603 spin_unlock(&inode->i_lock);
1604 security_d_instantiate(new, inode);
1605 d_move(new, dentry);
1606 iput(inode);
1607 } else {
1608 /* already taking inode->i_lock, so d_add() by hand */
1609 __d_instantiate(dentry, inode);
1610 spin_unlock(&inode->i_lock);
1611 security_d_instantiate(dentry, inode);
1612 d_rehash(dentry);
1613 }
1614 } else
1615 d_add(dentry, inode);
1616 return new;
1617 }
1618 EXPORT_SYMBOL(d_splice_alias);
1619
1620 /**
1621 * d_add_ci - lookup or allocate new dentry with case-exact name
1622 * @inode: the inode case-insensitive lookup has found
1623 * @dentry: the negative dentry that was passed to the parent's lookup func
1624 * @name: the case-exact name to be associated with the returned dentry
1625 *
1626 * This is to avoid filling the dcache with case-insensitive names to the
1627 * same inode, only the actual correct case is stored in the dcache for
1628 * case-insensitive filesystems.
1629 *
1630 * For a case-insensitive lookup match and if the the case-exact dentry
1631 * already exists in in the dcache, use it and return it.
1632 *
1633 * If no entry exists with the exact case name, allocate new dentry with
1634 * the exact case, and return the spliced entry.
1635 */
1636 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1637 struct qstr *name)
1638 {
1639 int error;
1640 struct dentry *found;
1641 struct dentry *new;
1642
1643 /*
1644 * First check if a dentry matching the name already exists,
1645 * if not go ahead and create it now.
1646 */
1647 found = d_hash_and_lookup(dentry->d_parent, name);
1648 if (!found) {
1649 new = d_alloc(dentry->d_parent, name);
1650 if (!new) {
1651 error = -ENOMEM;
1652 goto err_out;
1653 }
1654
1655 found = d_splice_alias(inode, new);
1656 if (found) {
1657 dput(new);
1658 return found;
1659 }
1660 return new;
1661 }
1662
1663 /*
1664 * If a matching dentry exists, and it's not negative use it.
1665 *
1666 * Decrement the reference count to balance the iget() done
1667 * earlier on.
1668 */
1669 if (found->d_inode) {
1670 if (unlikely(found->d_inode != inode)) {
1671 /* This can't happen because bad inodes are unhashed. */
1672 BUG_ON(!is_bad_inode(inode));
1673 BUG_ON(!is_bad_inode(found->d_inode));
1674 }
1675 iput(inode);
1676 return found;
1677 }
1678
1679 /*
1680 * Negative dentry: instantiate it unless the inode is a directory and
1681 * already has a dentry.
1682 */
1683 spin_lock(&inode->i_lock);
1684 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1685 __d_instantiate(found, inode);
1686 spin_unlock(&inode->i_lock);
1687 security_d_instantiate(found, inode);
1688 return found;
1689 }
1690
1691 /*
1692 * In case a directory already has a (disconnected) entry grab a
1693 * reference to it, move it in place and use it.
1694 */
1695 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1696 __dget(new);
1697 spin_unlock(&inode->i_lock);
1698 security_d_instantiate(found, inode);
1699 d_move(new, found);
1700 iput(inode);
1701 dput(found);
1702 return new;
1703
1704 err_out:
1705 iput(inode);
1706 return ERR_PTR(error);
1707 }
1708 EXPORT_SYMBOL(d_add_ci);
1709
1710 /**
1711 * __d_lookup_rcu - search for a dentry (racy, store-free)
1712 * @parent: parent dentry
1713 * @name: qstr of name we wish to find
1714 * @seq: returns d_seq value at the point where the dentry was found
1715 * @inode: returns dentry->d_inode when the inode was found valid.
1716 * Returns: dentry, or NULL
1717 *
1718 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1719 * resolution (store-free path walking) design described in
1720 * Documentation/filesystems/path-lookup.txt.
1721 *
1722 * This is not to be used outside core vfs.
1723 *
1724 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1725 * held, and rcu_read_lock held. The returned dentry must not be stored into
1726 * without taking d_lock and checking d_seq sequence count against @seq
1727 * returned here.
1728 *
1729 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1730 * function.
1731 *
1732 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1733 * the returned dentry, so long as its parent's seqlock is checked after the
1734 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1735 * is formed, giving integrity down the path walk.
1736 */
1737 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1738 unsigned *seq, struct inode **inode)
1739 {
1740 unsigned int len = name->len;
1741 unsigned int hash = name->hash;
1742 const unsigned char *str = name->name;
1743 struct dcache_hash_bucket *b = d_hash(parent, hash);
1744 struct hlist_bl_node *node;
1745 struct dentry *dentry;
1746
1747 /*
1748 * Note: There is significant duplication with __d_lookup_rcu which is
1749 * required to prevent single threaded performance regressions
1750 * especially on architectures where smp_rmb (in seqcounts) are costly.
1751 * Keep the two functions in sync.
1752 */
1753
1754 /*
1755 * The hash list is protected using RCU.
1756 *
1757 * Carefully use d_seq when comparing a candidate dentry, to avoid
1758 * races with d_move().
1759 *
1760 * It is possible that concurrent renames can mess up our list
1761 * walk here and result in missing our dentry, resulting in the
1762 * false-negative result. d_lookup() protects against concurrent
1763 * renames using rename_lock seqlock.
1764 *
1765 * See Documentation/vfs/dcache-locking.txt for more details.
1766 */
1767 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1768 struct inode *i;
1769 const char *tname;
1770 int tlen;
1771
1772 if (dentry->d_name.hash != hash)
1773 continue;
1774
1775 seqretry:
1776 *seq = read_seqcount_begin(&dentry->d_seq);
1777 if (dentry->d_parent != parent)
1778 continue;
1779 if (d_unhashed(dentry))
1780 continue;
1781 tlen = dentry->d_name.len;
1782 tname = dentry->d_name.name;
1783 i = dentry->d_inode;
1784 /*
1785 * This seqcount check is required to ensure name and
1786 * len are loaded atomically, so as not to walk off the
1787 * edge of memory when walking. If we could load this
1788 * atomically some other way, we could drop this check.
1789 */
1790 if (read_seqcount_retry(&dentry->d_seq, *seq))
1791 goto seqretry;
1792 if (parent->d_flags & DCACHE_OP_COMPARE) {
1793 if (parent->d_op->d_compare(parent, *inode,
1794 dentry, i,
1795 tlen, tname, name))
1796 continue;
1797 } else {
1798 if (tlen != len)
1799 continue;
1800 if (memcmp(tname, str, tlen))
1801 continue;
1802 }
1803 /*
1804 * No extra seqcount check is required after the name
1805 * compare. The caller must perform a seqcount check in
1806 * order to do anything useful with the returned dentry
1807 * anyway.
1808 */
1809 *inode = i;
1810 return dentry;
1811 }
1812 return NULL;
1813 }
1814
1815 /**
1816 * d_lookup - search for a dentry
1817 * @parent: parent dentry
1818 * @name: qstr of name we wish to find
1819 * Returns: dentry, or NULL
1820 *
1821 * d_lookup searches the children of the parent dentry for the name in
1822 * question. If the dentry is found its reference count is incremented and the
1823 * dentry is returned. The caller must use dput to free the entry when it has
1824 * finished using it. %NULL is returned if the dentry does not exist.
1825 */
1826 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1827 {
1828 struct dentry *dentry;
1829 unsigned seq;
1830
1831 do {
1832 seq = read_seqbegin(&rename_lock);
1833 dentry = __d_lookup(parent, name);
1834 if (dentry)
1835 break;
1836 } while (read_seqretry(&rename_lock, seq));
1837 return dentry;
1838 }
1839 EXPORT_SYMBOL(d_lookup);
1840
1841 /**
1842 * __d_lookup - search for a dentry (racy)
1843 * @parent: parent dentry
1844 * @name: qstr of name we wish to find
1845 * Returns: dentry, or NULL
1846 *
1847 * __d_lookup is like d_lookup, however it may (rarely) return a
1848 * false-negative result due to unrelated rename activity.
1849 *
1850 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1851 * however it must be used carefully, eg. with a following d_lookup in
1852 * the case of failure.
1853 *
1854 * __d_lookup callers must be commented.
1855 */
1856 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1857 {
1858 unsigned int len = name->len;
1859 unsigned int hash = name->hash;
1860 const unsigned char *str = name->name;
1861 struct dcache_hash_bucket *b = d_hash(parent, hash);
1862 struct hlist_bl_node *node;
1863 struct dentry *found = NULL;
1864 struct dentry *dentry;
1865
1866 /*
1867 * Note: There is significant duplication with __d_lookup_rcu which is
1868 * required to prevent single threaded performance regressions
1869 * especially on architectures where smp_rmb (in seqcounts) are costly.
1870 * Keep the two functions in sync.
1871 */
1872
1873 /*
1874 * The hash list is protected using RCU.
1875 *
1876 * Take d_lock when comparing a candidate dentry, to avoid races
1877 * with d_move().
1878 *
1879 * It is possible that concurrent renames can mess up our list
1880 * walk here and result in missing our dentry, resulting in the
1881 * false-negative result. d_lookup() protects against concurrent
1882 * renames using rename_lock seqlock.
1883 *
1884 * See Documentation/vfs/dcache-locking.txt for more details.
1885 */
1886 rcu_read_lock();
1887
1888 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1889 const char *tname;
1890 int tlen;
1891
1892 if (dentry->d_name.hash != hash)
1893 continue;
1894
1895 spin_lock(&dentry->d_lock);
1896 if (dentry->d_parent != parent)
1897 goto next;
1898 if (d_unhashed(dentry))
1899 goto next;
1900
1901 /*
1902 * It is safe to compare names since d_move() cannot
1903 * change the qstr (protected by d_lock).
1904 */
1905 tlen = dentry->d_name.len;
1906 tname = dentry->d_name.name;
1907 if (parent->d_flags & DCACHE_OP_COMPARE) {
1908 if (parent->d_op->d_compare(parent, parent->d_inode,
1909 dentry, dentry->d_inode,
1910 tlen, tname, name))
1911 goto next;
1912 } else {
1913 if (tlen != len)
1914 goto next;
1915 if (memcmp(tname, str, tlen))
1916 goto next;
1917 }
1918
1919 dentry->d_count++;
1920 found = dentry;
1921 spin_unlock(&dentry->d_lock);
1922 break;
1923 next:
1924 spin_unlock(&dentry->d_lock);
1925 }
1926 rcu_read_unlock();
1927
1928 return found;
1929 }
1930
1931 /**
1932 * d_hash_and_lookup - hash the qstr then search for a dentry
1933 * @dir: Directory to search in
1934 * @name: qstr of name we wish to find
1935 *
1936 * On hash failure or on lookup failure NULL is returned.
1937 */
1938 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1939 {
1940 struct dentry *dentry = NULL;
1941
1942 /*
1943 * Check for a fs-specific hash function. Note that we must
1944 * calculate the standard hash first, as the d_op->d_hash()
1945 * routine may choose to leave the hash value unchanged.
1946 */
1947 name->hash = full_name_hash(name->name, name->len);
1948 if (dir->d_flags & DCACHE_OP_HASH) {
1949 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1950 goto out;
1951 }
1952 dentry = d_lookup(dir, name);
1953 out:
1954 return dentry;
1955 }
1956
1957 /**
1958 * d_validate - verify dentry provided from insecure source (deprecated)
1959 * @dentry: The dentry alleged to be valid child of @dparent
1960 * @dparent: The parent dentry (known to be valid)
1961 *
1962 * An insecure source has sent us a dentry, here we verify it and dget() it.
1963 * This is used by ncpfs in its readdir implementation.
1964 * Zero is returned in the dentry is invalid.
1965 *
1966 * This function is slow for big directories, and deprecated, do not use it.
1967 */
1968 int d_validate(struct dentry *dentry, struct dentry *dparent)
1969 {
1970 struct dentry *child;
1971
1972 spin_lock(&dparent->d_lock);
1973 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1974 if (dentry == child) {
1975 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1976 __dget_dlock(dentry);
1977 spin_unlock(&dentry->d_lock);
1978 spin_unlock(&dparent->d_lock);
1979 return 1;
1980 }
1981 }
1982 spin_unlock(&dparent->d_lock);
1983
1984 return 0;
1985 }
1986 EXPORT_SYMBOL(d_validate);
1987
1988 /*
1989 * When a file is deleted, we have two options:
1990 * - turn this dentry into a negative dentry
1991 * - unhash this dentry and free it.
1992 *
1993 * Usually, we want to just turn this into
1994 * a negative dentry, but if anybody else is
1995 * currently using the dentry or the inode
1996 * we can't do that and we fall back on removing
1997 * it from the hash queues and waiting for
1998 * it to be deleted later when it has no users
1999 */
2000
2001 /**
2002 * d_delete - delete a dentry
2003 * @dentry: The dentry to delete
2004 *
2005 * Turn the dentry into a negative dentry if possible, otherwise
2006 * remove it from the hash queues so it can be deleted later
2007 */
2008
2009 void d_delete(struct dentry * dentry)
2010 {
2011 struct inode *inode;
2012 int isdir = 0;
2013 /*
2014 * Are we the only user?
2015 */
2016 again:
2017 spin_lock(&dentry->d_lock);
2018 inode = dentry->d_inode;
2019 isdir = S_ISDIR(inode->i_mode);
2020 if (dentry->d_count == 1) {
2021 if (inode && !spin_trylock(&inode->i_lock)) {
2022 spin_unlock(&dentry->d_lock);
2023 cpu_relax();
2024 goto again;
2025 }
2026 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2027 dentry_unlink_inode(dentry);
2028 fsnotify_nameremove(dentry, isdir);
2029 return;
2030 }
2031
2032 if (!d_unhashed(dentry))
2033 __d_drop(dentry);
2034
2035 spin_unlock(&dentry->d_lock);
2036
2037 fsnotify_nameremove(dentry, isdir);
2038 }
2039 EXPORT_SYMBOL(d_delete);
2040
2041 static void __d_rehash(struct dentry * entry, struct dcache_hash_bucket *b)
2042 {
2043 BUG_ON(!d_unhashed(entry));
2044 spin_lock_bucket(b);
2045 entry->d_flags &= ~DCACHE_UNHASHED;
2046 hlist_bl_add_head_rcu(&entry->d_hash, &b->head);
2047 spin_unlock_bucket(b);
2048 }
2049
2050 static void _d_rehash(struct dentry * entry)
2051 {
2052 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2053 }
2054
2055 /**
2056 * d_rehash - add an entry back to the hash
2057 * @entry: dentry to add to the hash
2058 *
2059 * Adds a dentry to the hash according to its name.
2060 */
2061
2062 void d_rehash(struct dentry * entry)
2063 {
2064 spin_lock(&entry->d_lock);
2065 _d_rehash(entry);
2066 spin_unlock(&entry->d_lock);
2067 }
2068 EXPORT_SYMBOL(d_rehash);
2069
2070 /**
2071 * dentry_update_name_case - update case insensitive dentry with a new name
2072 * @dentry: dentry to be updated
2073 * @name: new name
2074 *
2075 * Update a case insensitive dentry with new case of name.
2076 *
2077 * dentry must have been returned by d_lookup with name @name. Old and new
2078 * name lengths must match (ie. no d_compare which allows mismatched name
2079 * lengths).
2080 *
2081 * Parent inode i_mutex must be held over d_lookup and into this call (to
2082 * keep renames and concurrent inserts, and readdir(2) away).
2083 */
2084 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2085 {
2086 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2087 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2088
2089 spin_lock(&dentry->d_lock);
2090 write_seqcount_begin(&dentry->d_seq);
2091 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2092 write_seqcount_end(&dentry->d_seq);
2093 spin_unlock(&dentry->d_lock);
2094 }
2095 EXPORT_SYMBOL(dentry_update_name_case);
2096
2097 static void switch_names(struct dentry *dentry, struct dentry *target)
2098 {
2099 if (dname_external(target)) {
2100 if (dname_external(dentry)) {
2101 /*
2102 * Both external: swap the pointers
2103 */
2104 swap(target->d_name.name, dentry->d_name.name);
2105 } else {
2106 /*
2107 * dentry:internal, target:external. Steal target's
2108 * storage and make target internal.
2109 */
2110 memcpy(target->d_iname, dentry->d_name.name,
2111 dentry->d_name.len + 1);
2112 dentry->d_name.name = target->d_name.name;
2113 target->d_name.name = target->d_iname;
2114 }
2115 } else {
2116 if (dname_external(dentry)) {
2117 /*
2118 * dentry:external, target:internal. Give dentry's
2119 * storage to target and make dentry internal
2120 */
2121 memcpy(dentry->d_iname, target->d_name.name,
2122 target->d_name.len + 1);
2123 target->d_name.name = dentry->d_name.name;
2124 dentry->d_name.name = dentry->d_iname;
2125 } else {
2126 /*
2127 * Both are internal. Just copy target to dentry
2128 */
2129 memcpy(dentry->d_iname, target->d_name.name,
2130 target->d_name.len + 1);
2131 dentry->d_name.len = target->d_name.len;
2132 return;
2133 }
2134 }
2135 swap(dentry->d_name.len, target->d_name.len);
2136 }
2137
2138 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2139 {
2140 /*
2141 * XXXX: do we really need to take target->d_lock?
2142 */
2143 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2144 spin_lock(&target->d_parent->d_lock);
2145 else {
2146 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2147 spin_lock(&dentry->d_parent->d_lock);
2148 spin_lock_nested(&target->d_parent->d_lock,
2149 DENTRY_D_LOCK_NESTED);
2150 } else {
2151 spin_lock(&target->d_parent->d_lock);
2152 spin_lock_nested(&dentry->d_parent->d_lock,
2153 DENTRY_D_LOCK_NESTED);
2154 }
2155 }
2156 if (target < dentry) {
2157 spin_lock_nested(&target->d_lock, 2);
2158 spin_lock_nested(&dentry->d_lock, 3);
2159 } else {
2160 spin_lock_nested(&dentry->d_lock, 2);
2161 spin_lock_nested(&target->d_lock, 3);
2162 }
2163 }
2164
2165 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2166 struct dentry *target)
2167 {
2168 if (target->d_parent != dentry->d_parent)
2169 spin_unlock(&dentry->d_parent->d_lock);
2170 if (target->d_parent != target)
2171 spin_unlock(&target->d_parent->d_lock);
2172 }
2173
2174 /*
2175 * When switching names, the actual string doesn't strictly have to
2176 * be preserved in the target - because we're dropping the target
2177 * anyway. As such, we can just do a simple memcpy() to copy over
2178 * the new name before we switch.
2179 *
2180 * Note that we have to be a lot more careful about getting the hash
2181 * switched - we have to switch the hash value properly even if it
2182 * then no longer matches the actual (corrupted) string of the target.
2183 * The hash value has to match the hash queue that the dentry is on..
2184 */
2185 /*
2186 * d_move - move a dentry
2187 * @dentry: entry to move
2188 * @target: new dentry
2189 *
2190 * Update the dcache to reflect the move of a file name. Negative
2191 * dcache entries should not be moved in this way.
2192 */
2193 void d_move(struct dentry * dentry, struct dentry * target)
2194 {
2195 if (!dentry->d_inode)
2196 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2197
2198 BUG_ON(d_ancestor(dentry, target));
2199 BUG_ON(d_ancestor(target, dentry));
2200
2201 write_seqlock(&rename_lock);
2202
2203 dentry_lock_for_move(dentry, target);
2204
2205 write_seqcount_begin(&dentry->d_seq);
2206 write_seqcount_begin(&target->d_seq);
2207
2208 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2209
2210 /*
2211 * Move the dentry to the target hash queue. Don't bother checking
2212 * for the same hash queue because of how unlikely it is.
2213 */
2214 __d_drop(dentry);
2215 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2216
2217 /* Unhash the target: dput() will then get rid of it */
2218 __d_drop(target);
2219
2220 list_del(&dentry->d_u.d_child);
2221 list_del(&target->d_u.d_child);
2222
2223 /* Switch the names.. */
2224 switch_names(dentry, target);
2225 swap(dentry->d_name.hash, target->d_name.hash);
2226
2227 /* ... and switch the parents */
2228 if (IS_ROOT(dentry)) {
2229 dentry->d_parent = target->d_parent;
2230 target->d_parent = target;
2231 INIT_LIST_HEAD(&target->d_u.d_child);
2232 } else {
2233 swap(dentry->d_parent, target->d_parent);
2234
2235 /* And add them back to the (new) parent lists */
2236 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2237 }
2238
2239 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2240
2241 write_seqcount_end(&target->d_seq);
2242 write_seqcount_end(&dentry->d_seq);
2243
2244 dentry_unlock_parents_for_move(dentry, target);
2245 spin_unlock(&target->d_lock);
2246 fsnotify_d_move(dentry);
2247 spin_unlock(&dentry->d_lock);
2248 write_sequnlock(&rename_lock);
2249 }
2250 EXPORT_SYMBOL(d_move);
2251
2252 /**
2253 * d_ancestor - search for an ancestor
2254 * @p1: ancestor dentry
2255 * @p2: child dentry
2256 *
2257 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2258 * an ancestor of p2, else NULL.
2259 */
2260 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2261 {
2262 struct dentry *p;
2263
2264 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2265 if (p->d_parent == p1)
2266 return p;
2267 }
2268 return NULL;
2269 }
2270
2271 /*
2272 * This helper attempts to cope with remotely renamed directories
2273 *
2274 * It assumes that the caller is already holding
2275 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2276 *
2277 * Note: If ever the locking in lock_rename() changes, then please
2278 * remember to update this too...
2279 */
2280 static struct dentry *__d_unalias(struct inode *inode,
2281 struct dentry *dentry, struct dentry *alias)
2282 {
2283 struct mutex *m1 = NULL, *m2 = NULL;
2284 struct dentry *ret;
2285
2286 /* If alias and dentry share a parent, then no extra locks required */
2287 if (alias->d_parent == dentry->d_parent)
2288 goto out_unalias;
2289
2290 /* Check for loops */
2291 ret = ERR_PTR(-ELOOP);
2292 if (d_ancestor(alias, dentry))
2293 goto out_err;
2294
2295 /* See lock_rename() */
2296 ret = ERR_PTR(-EBUSY);
2297 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2298 goto out_err;
2299 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2300 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2301 goto out_err;
2302 m2 = &alias->d_parent->d_inode->i_mutex;
2303 out_unalias:
2304 d_move(alias, dentry);
2305 ret = alias;
2306 out_err:
2307 spin_unlock(&inode->i_lock);
2308 if (m2)
2309 mutex_unlock(m2);
2310 if (m1)
2311 mutex_unlock(m1);
2312 return ret;
2313 }
2314
2315 /*
2316 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2317 * named dentry in place of the dentry to be replaced.
2318 * returns with anon->d_lock held!
2319 */
2320 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2321 {
2322 struct dentry *dparent, *aparent;
2323
2324 dentry_lock_for_move(anon, dentry);
2325
2326 write_seqcount_begin(&dentry->d_seq);
2327 write_seqcount_begin(&anon->d_seq);
2328
2329 dparent = dentry->d_parent;
2330 aparent = anon->d_parent;
2331
2332 switch_names(dentry, anon);
2333 swap(dentry->d_name.hash, anon->d_name.hash);
2334
2335 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2336 list_del(&dentry->d_u.d_child);
2337 if (!IS_ROOT(dentry))
2338 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2339 else
2340 INIT_LIST_HEAD(&dentry->d_u.d_child);
2341
2342 anon->d_parent = (dparent == dentry) ? anon : dparent;
2343 list_del(&anon->d_u.d_child);
2344 if (!IS_ROOT(anon))
2345 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2346 else
2347 INIT_LIST_HEAD(&anon->d_u.d_child);
2348
2349 write_seqcount_end(&dentry->d_seq);
2350 write_seqcount_end(&anon->d_seq);
2351
2352 dentry_unlock_parents_for_move(anon, dentry);
2353 spin_unlock(&dentry->d_lock);
2354
2355 /* anon->d_lock still locked, returns locked */
2356 anon->d_flags &= ~DCACHE_DISCONNECTED;
2357 }
2358
2359 /**
2360 * d_materialise_unique - introduce an inode into the tree
2361 * @dentry: candidate dentry
2362 * @inode: inode to bind to the dentry, to which aliases may be attached
2363 *
2364 * Introduces an dentry into the tree, substituting an extant disconnected
2365 * root directory alias in its place if there is one
2366 */
2367 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2368 {
2369 struct dentry *actual;
2370
2371 BUG_ON(!d_unhashed(dentry));
2372
2373 if (!inode) {
2374 actual = dentry;
2375 __d_instantiate(dentry, NULL);
2376 d_rehash(actual);
2377 goto out_nolock;
2378 }
2379
2380 spin_lock(&inode->i_lock);
2381
2382 if (S_ISDIR(inode->i_mode)) {
2383 struct dentry *alias;
2384
2385 /* Does an aliased dentry already exist? */
2386 alias = __d_find_alias(inode, 0);
2387 if (alias) {
2388 actual = alias;
2389 /* Is this an anonymous mountpoint that we could splice
2390 * into our tree? */
2391 if (IS_ROOT(alias)) {
2392 __d_materialise_dentry(dentry, alias);
2393 __d_drop(alias);
2394 goto found;
2395 }
2396 /* Nope, but we must(!) avoid directory aliasing */
2397 actual = __d_unalias(inode, dentry, alias);
2398 if (IS_ERR(actual))
2399 dput(alias);
2400 goto out_nolock;
2401 }
2402 }
2403
2404 /* Add a unique reference */
2405 actual = __d_instantiate_unique(dentry, inode);
2406 if (!actual)
2407 actual = dentry;
2408 else
2409 BUG_ON(!d_unhashed(actual));
2410
2411 spin_lock(&actual->d_lock);
2412 found:
2413 _d_rehash(actual);
2414 spin_unlock(&actual->d_lock);
2415 spin_unlock(&inode->i_lock);
2416 out_nolock:
2417 if (actual == dentry) {
2418 security_d_instantiate(dentry, inode);
2419 return NULL;
2420 }
2421
2422 iput(inode);
2423 return actual;
2424 }
2425 EXPORT_SYMBOL_GPL(d_materialise_unique);
2426
2427 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2428 {
2429 *buflen -= namelen;
2430 if (*buflen < 0)
2431 return -ENAMETOOLONG;
2432 *buffer -= namelen;
2433 memcpy(*buffer, str, namelen);
2434 return 0;
2435 }
2436
2437 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2438 {
2439 return prepend(buffer, buflen, name->name, name->len);
2440 }
2441
2442 /**
2443 * Prepend path string to a buffer
2444 *
2445 * @path: the dentry/vfsmount to report
2446 * @root: root vfsmnt/dentry (may be modified by this function)
2447 * @buffer: pointer to the end of the buffer
2448 * @buflen: pointer to buffer length
2449 *
2450 * Caller holds the rename_lock.
2451 *
2452 * If path is not reachable from the supplied root, then the value of
2453 * root is changed (without modifying refcounts).
2454 */
2455 static int prepend_path(const struct path *path, struct path *root,
2456 char **buffer, int *buflen)
2457 {
2458 struct dentry *dentry = path->dentry;
2459 struct vfsmount *vfsmnt = path->mnt;
2460 bool slash = false;
2461 int error = 0;
2462
2463 br_read_lock(vfsmount_lock);
2464 while (dentry != root->dentry || vfsmnt != root->mnt) {
2465 struct dentry * parent;
2466
2467 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2468 /* Global root? */
2469 if (vfsmnt->mnt_parent == vfsmnt) {
2470 goto global_root;
2471 }
2472 dentry = vfsmnt->mnt_mountpoint;
2473 vfsmnt = vfsmnt->mnt_parent;
2474 continue;
2475 }
2476 parent = dentry->d_parent;
2477 prefetch(parent);
2478 spin_lock(&dentry->d_lock);
2479 error = prepend_name(buffer, buflen, &dentry->d_name);
2480 spin_unlock(&dentry->d_lock);
2481 if (!error)
2482 error = prepend(buffer, buflen, "/", 1);
2483 if (error)
2484 break;
2485
2486 slash = true;
2487 dentry = parent;
2488 }
2489
2490 out:
2491 if (!error && !slash)
2492 error = prepend(buffer, buflen, "/", 1);
2493
2494 br_read_unlock(vfsmount_lock);
2495 return error;
2496
2497 global_root:
2498 /*
2499 * Filesystems needing to implement special "root names"
2500 * should do so with ->d_dname()
2501 */
2502 if (IS_ROOT(dentry) &&
2503 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2504 WARN(1, "Root dentry has weird name <%.*s>\n",
2505 (int) dentry->d_name.len, dentry->d_name.name);
2506 }
2507 root->mnt = vfsmnt;
2508 root->dentry = dentry;
2509 goto out;
2510 }
2511
2512 /**
2513 * __d_path - return the path of a dentry
2514 * @path: the dentry/vfsmount to report
2515 * @root: root vfsmnt/dentry (may be modified by this function)
2516 * @buf: buffer to return value in
2517 * @buflen: buffer length
2518 *
2519 * Convert a dentry into an ASCII path name.
2520 *
2521 * Returns a pointer into the buffer or an error code if the
2522 * path was too long.
2523 *
2524 * "buflen" should be positive.
2525 *
2526 * If path is not reachable from the supplied root, then the value of
2527 * root is changed (without modifying refcounts).
2528 */
2529 char *__d_path(const struct path *path, struct path *root,
2530 char *buf, int buflen)
2531 {
2532 char *res = buf + buflen;
2533 int error;
2534
2535 prepend(&res, &buflen, "\0", 1);
2536 write_seqlock(&rename_lock);
2537 error = prepend_path(path, root, &res, &buflen);
2538 write_sequnlock(&rename_lock);
2539
2540 if (error)
2541 return ERR_PTR(error);
2542 return res;
2543 }
2544
2545 /*
2546 * same as __d_path but appends "(deleted)" for unlinked files.
2547 */
2548 static int path_with_deleted(const struct path *path, struct path *root,
2549 char **buf, int *buflen)
2550 {
2551 prepend(buf, buflen, "\0", 1);
2552 if (d_unlinked(path->dentry)) {
2553 int error = prepend(buf, buflen, " (deleted)", 10);
2554 if (error)
2555 return error;
2556 }
2557
2558 return prepend_path(path, root, buf, buflen);
2559 }
2560
2561 static int prepend_unreachable(char **buffer, int *buflen)
2562 {
2563 return prepend(buffer, buflen, "(unreachable)", 13);
2564 }
2565
2566 /**
2567 * d_path - return the path of a dentry
2568 * @path: path to report
2569 * @buf: buffer to return value in
2570 * @buflen: buffer length
2571 *
2572 * Convert a dentry into an ASCII path name. If the entry has been deleted
2573 * the string " (deleted)" is appended. Note that this is ambiguous.
2574 *
2575 * Returns a pointer into the buffer or an error code if the path was
2576 * too long. Note: Callers should use the returned pointer, not the passed
2577 * in buffer, to use the name! The implementation often starts at an offset
2578 * into the buffer, and may leave 0 bytes at the start.
2579 *
2580 * "buflen" should be positive.
2581 */
2582 char *d_path(const struct path *path, char *buf, int buflen)
2583 {
2584 char *res = buf + buflen;
2585 struct path root;
2586 struct path tmp;
2587 int error;
2588
2589 /*
2590 * We have various synthetic filesystems that never get mounted. On
2591 * these filesystems dentries are never used for lookup purposes, and
2592 * thus don't need to be hashed. They also don't need a name until a
2593 * user wants to identify the object in /proc/pid/fd/. The little hack
2594 * below allows us to generate a name for these objects on demand:
2595 */
2596 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2597 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2598
2599 get_fs_root(current->fs, &root);
2600 write_seqlock(&rename_lock);
2601 tmp = root;
2602 error = path_with_deleted(path, &tmp, &res, &buflen);
2603 if (error)
2604 res = ERR_PTR(error);
2605 write_sequnlock(&rename_lock);
2606 path_put(&root);
2607 return res;
2608 }
2609 EXPORT_SYMBOL(d_path);
2610
2611 /**
2612 * d_path_with_unreachable - return the path of a dentry
2613 * @path: path to report
2614 * @buf: buffer to return value in
2615 * @buflen: buffer length
2616 *
2617 * The difference from d_path() is that this prepends "(unreachable)"
2618 * to paths which are unreachable from the current process' root.
2619 */
2620 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2621 {
2622 char *res = buf + buflen;
2623 struct path root;
2624 struct path tmp;
2625 int error;
2626
2627 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2628 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2629
2630 get_fs_root(current->fs, &root);
2631 write_seqlock(&rename_lock);
2632 tmp = root;
2633 error = path_with_deleted(path, &tmp, &res, &buflen);
2634 if (!error && !path_equal(&tmp, &root))
2635 error = prepend_unreachable(&res, &buflen);
2636 write_sequnlock(&rename_lock);
2637 path_put(&root);
2638 if (error)
2639 res = ERR_PTR(error);
2640
2641 return res;
2642 }
2643
2644 /*
2645 * Helper function for dentry_operations.d_dname() members
2646 */
2647 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2648 const char *fmt, ...)
2649 {
2650 va_list args;
2651 char temp[64];
2652 int sz;
2653
2654 va_start(args, fmt);
2655 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2656 va_end(args);
2657
2658 if (sz > sizeof(temp) || sz > buflen)
2659 return ERR_PTR(-ENAMETOOLONG);
2660
2661 buffer += buflen - sz;
2662 return memcpy(buffer, temp, sz);
2663 }
2664
2665 /*
2666 * Write full pathname from the root of the filesystem into the buffer.
2667 */
2668 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2669 {
2670 char *end = buf + buflen;
2671 char *retval;
2672
2673 prepend(&end, &buflen, "\0", 1);
2674 if (buflen < 1)
2675 goto Elong;
2676 /* Get '/' right */
2677 retval = end-1;
2678 *retval = '/';
2679
2680 while (!IS_ROOT(dentry)) {
2681 struct dentry *parent = dentry->d_parent;
2682 int error;
2683
2684 prefetch(parent);
2685 spin_lock(&dentry->d_lock);
2686 error = prepend_name(&end, &buflen, &dentry->d_name);
2687 spin_unlock(&dentry->d_lock);
2688 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2689 goto Elong;
2690
2691 retval = end;
2692 dentry = parent;
2693 }
2694 return retval;
2695 Elong:
2696 return ERR_PTR(-ENAMETOOLONG);
2697 }
2698
2699 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2700 {
2701 char *retval;
2702
2703 write_seqlock(&rename_lock);
2704 retval = __dentry_path(dentry, buf, buflen);
2705 write_sequnlock(&rename_lock);
2706
2707 return retval;
2708 }
2709 EXPORT_SYMBOL(dentry_path_raw);
2710
2711 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2712 {
2713 char *p = NULL;
2714 char *retval;
2715
2716 write_seqlock(&rename_lock);
2717 if (d_unlinked(dentry)) {
2718 p = buf + buflen;
2719 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2720 goto Elong;
2721 buflen++;
2722 }
2723 retval = __dentry_path(dentry, buf, buflen);
2724 write_sequnlock(&rename_lock);
2725 if (!IS_ERR(retval) && p)
2726 *p = '/'; /* restore '/' overriden with '\0' */
2727 return retval;
2728 Elong:
2729 return ERR_PTR(-ENAMETOOLONG);
2730 }
2731
2732 /*
2733 * NOTE! The user-level library version returns a
2734 * character pointer. The kernel system call just
2735 * returns the length of the buffer filled (which
2736 * includes the ending '\0' character), or a negative
2737 * error value. So libc would do something like
2738 *
2739 * char *getcwd(char * buf, size_t size)
2740 * {
2741 * int retval;
2742 *
2743 * retval = sys_getcwd(buf, size);
2744 * if (retval >= 0)
2745 * return buf;
2746 * errno = -retval;
2747 * return NULL;
2748 * }
2749 */
2750 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2751 {
2752 int error;
2753 struct path pwd, root;
2754 char *page = (char *) __get_free_page(GFP_USER);
2755
2756 if (!page)
2757 return -ENOMEM;
2758
2759 get_fs_root_and_pwd(current->fs, &root, &pwd);
2760
2761 error = -ENOENT;
2762 write_seqlock(&rename_lock);
2763 if (!d_unlinked(pwd.dentry)) {
2764 unsigned long len;
2765 struct path tmp = root;
2766 char *cwd = page + PAGE_SIZE;
2767 int buflen = PAGE_SIZE;
2768
2769 prepend(&cwd, &buflen, "\0", 1);
2770 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2771 write_sequnlock(&rename_lock);
2772
2773 if (error)
2774 goto out;
2775
2776 /* Unreachable from current root */
2777 if (!path_equal(&tmp, &root)) {
2778 error = prepend_unreachable(&cwd, &buflen);
2779 if (error)
2780 goto out;
2781 }
2782
2783 error = -ERANGE;
2784 len = PAGE_SIZE + page - cwd;
2785 if (len <= size) {
2786 error = len;
2787 if (copy_to_user(buf, cwd, len))
2788 error = -EFAULT;
2789 }
2790 } else {
2791 write_sequnlock(&rename_lock);
2792 }
2793
2794 out:
2795 path_put(&pwd);
2796 path_put(&root);
2797 free_page((unsigned long) page);
2798 return error;
2799 }
2800
2801 /*
2802 * Test whether new_dentry is a subdirectory of old_dentry.
2803 *
2804 * Trivially implemented using the dcache structure
2805 */
2806
2807 /**
2808 * is_subdir - is new dentry a subdirectory of old_dentry
2809 * @new_dentry: new dentry
2810 * @old_dentry: old dentry
2811 *
2812 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2813 * Returns 0 otherwise.
2814 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2815 */
2816
2817 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2818 {
2819 int result;
2820 unsigned seq;
2821
2822 if (new_dentry == old_dentry)
2823 return 1;
2824
2825 do {
2826 /* for restarting inner loop in case of seq retry */
2827 seq = read_seqbegin(&rename_lock);
2828 /*
2829 * Need rcu_readlock to protect against the d_parent trashing
2830 * due to d_move
2831 */
2832 rcu_read_lock();
2833 if (d_ancestor(old_dentry, new_dentry))
2834 result = 1;
2835 else
2836 result = 0;
2837 rcu_read_unlock();
2838 } while (read_seqretry(&rename_lock, seq));
2839
2840 return result;
2841 }
2842
2843 int path_is_under(struct path *path1, struct path *path2)
2844 {
2845 struct vfsmount *mnt = path1->mnt;
2846 struct dentry *dentry = path1->dentry;
2847 int res;
2848
2849 br_read_lock(vfsmount_lock);
2850 if (mnt != path2->mnt) {
2851 for (;;) {
2852 if (mnt->mnt_parent == mnt) {
2853 br_read_unlock(vfsmount_lock);
2854 return 0;
2855 }
2856 if (mnt->mnt_parent == path2->mnt)
2857 break;
2858 mnt = mnt->mnt_parent;
2859 }
2860 dentry = mnt->mnt_mountpoint;
2861 }
2862 res = is_subdir(dentry, path2->dentry);
2863 br_read_unlock(vfsmount_lock);
2864 return res;
2865 }
2866 EXPORT_SYMBOL(path_is_under);
2867
2868 void d_genocide(struct dentry *root)
2869 {
2870 struct dentry *this_parent;
2871 struct list_head *next;
2872 unsigned seq;
2873 int locked = 0;
2874
2875 seq = read_seqbegin(&rename_lock);
2876 again:
2877 this_parent = root;
2878 spin_lock(&this_parent->d_lock);
2879 repeat:
2880 next = this_parent->d_subdirs.next;
2881 resume:
2882 while (next != &this_parent->d_subdirs) {
2883 struct list_head *tmp = next;
2884 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2885 next = tmp->next;
2886
2887 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2888 if (d_unhashed(dentry) || !dentry->d_inode) {
2889 spin_unlock(&dentry->d_lock);
2890 continue;
2891 }
2892 if (!list_empty(&dentry->d_subdirs)) {
2893 spin_unlock(&this_parent->d_lock);
2894 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2895 this_parent = dentry;
2896 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2897 goto repeat;
2898 }
2899 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2900 dentry->d_flags |= DCACHE_GENOCIDE;
2901 dentry->d_count--;
2902 }
2903 spin_unlock(&dentry->d_lock);
2904 }
2905 if (this_parent != root) {
2906 struct dentry *tmp;
2907 struct dentry *child;
2908
2909 tmp = this_parent->d_parent;
2910 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2911 this_parent->d_flags |= DCACHE_GENOCIDE;
2912 this_parent->d_count--;
2913 }
2914 rcu_read_lock();
2915 spin_unlock(&this_parent->d_lock);
2916 child = this_parent;
2917 this_parent = tmp;
2918 spin_lock(&this_parent->d_lock);
2919 /* might go back up the wrong parent if we have had a rename
2920 * or deletion */
2921 if (this_parent != child->d_parent ||
2922 (!locked && read_seqretry(&rename_lock, seq))) {
2923 spin_unlock(&this_parent->d_lock);
2924 rcu_read_unlock();
2925 goto rename_retry;
2926 }
2927 rcu_read_unlock();
2928 next = child->d_u.d_child.next;
2929 goto resume;
2930 }
2931 spin_unlock(&this_parent->d_lock);
2932 if (!locked && read_seqretry(&rename_lock, seq))
2933 goto rename_retry;
2934 if (locked)
2935 write_sequnlock(&rename_lock);
2936 return;
2937
2938 rename_retry:
2939 locked = 1;
2940 write_seqlock(&rename_lock);
2941 goto again;
2942 }
2943
2944 /**
2945 * find_inode_number - check for dentry with name
2946 * @dir: directory to check
2947 * @name: Name to find.
2948 *
2949 * Check whether a dentry already exists for the given name,
2950 * and return the inode number if it has an inode. Otherwise
2951 * 0 is returned.
2952 *
2953 * This routine is used to post-process directory listings for
2954 * filesystems using synthetic inode numbers, and is necessary
2955 * to keep getcwd() working.
2956 */
2957
2958 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2959 {
2960 struct dentry * dentry;
2961 ino_t ino = 0;
2962
2963 dentry = d_hash_and_lookup(dir, name);
2964 if (dentry) {
2965 if (dentry->d_inode)
2966 ino = dentry->d_inode->i_ino;
2967 dput(dentry);
2968 }
2969 return ino;
2970 }
2971 EXPORT_SYMBOL(find_inode_number);
2972
2973 static __initdata unsigned long dhash_entries;
2974 static int __init set_dhash_entries(char *str)
2975 {
2976 if (!str)
2977 return 0;
2978 dhash_entries = simple_strtoul(str, &str, 0);
2979 return 1;
2980 }
2981 __setup("dhash_entries=", set_dhash_entries);
2982
2983 static void __init dcache_init_early(void)
2984 {
2985 int loop;
2986
2987 /* If hashes are distributed across NUMA nodes, defer
2988 * hash allocation until vmalloc space is available.
2989 */
2990 if (hashdist)
2991 return;
2992
2993 dentry_hashtable =
2994 alloc_large_system_hash("Dentry cache",
2995 sizeof(struct dcache_hash_bucket),
2996 dhash_entries,
2997 13,
2998 HASH_EARLY,
2999 &d_hash_shift,
3000 &d_hash_mask,
3001 0);
3002
3003 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3004 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3005 }
3006
3007 static void __init dcache_init(void)
3008 {
3009 int loop;
3010
3011 /*
3012 * A constructor could be added for stable state like the lists,
3013 * but it is probably not worth it because of the cache nature
3014 * of the dcache.
3015 */
3016 dentry_cache = KMEM_CACHE(dentry,
3017 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3018
3019 register_shrinker(&dcache_shrinker);
3020
3021 /* Hash may have been set up in dcache_init_early */
3022 if (!hashdist)
3023 return;
3024
3025 dentry_hashtable =
3026 alloc_large_system_hash("Dentry cache",
3027 sizeof(struct dcache_hash_bucket),
3028 dhash_entries,
3029 13,
3030 0,
3031 &d_hash_shift,
3032 &d_hash_mask,
3033 0);
3034
3035 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3036 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3037 }
3038
3039 /* SLAB cache for __getname() consumers */
3040 struct kmem_cache *names_cachep __read_mostly;
3041 EXPORT_SYMBOL(names_cachep);
3042
3043 EXPORT_SYMBOL(d_genocide);
3044
3045 void __init vfs_caches_init_early(void)
3046 {
3047 dcache_init_early();
3048 inode_init_early();
3049 }
3050
3051 void __init vfs_caches_init(unsigned long mempages)
3052 {
3053 unsigned long reserve;
3054
3055 /* Base hash sizes on available memory, with a reserve equal to
3056 150% of current kernel size */
3057
3058 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3059 mempages -= reserve;
3060
3061 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3062 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3063
3064 dcache_init();
3065 inode_init();
3066 files_init(mempages);
3067 mnt_init();
3068 bdev_cache_init();
3069 chrdev_init();
3070 }
This page took 0.093099 seconds and 6 git commands to generate.