fs: dcache per-bucket dcache hash locking
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include "internal.h"
39
40 /*
41 * Usage:
42 * dcache_inode_lock protects:
43 * - i_dentry, d_alias, d_inode
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
58 * - d_alias, d_inode
59 *
60 * Ordering:
61 * dcache_inode_lock
62 * dentry->d_lock
63 * dcache_lru_lock
64 * dcache_hash_bucket lock
65 * s_anon lock
66 *
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
75 * dentry1->d_lock
76 * dentry2->d_lock
77 */
78 int sysctl_vfs_cache_pressure __read_mostly = 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
80
81 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_inode_lock);
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
84
85 EXPORT_SYMBOL(rename_lock);
86 EXPORT_SYMBOL(dcache_inode_lock);
87
88 static struct kmem_cache *dentry_cache __read_mostly;
89
90 /*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
98 #define D_HASHBITS d_hash_shift
99 #define D_HASHMASK d_hash_mask
100
101 static unsigned int d_hash_mask __read_mostly;
102 static unsigned int d_hash_shift __read_mostly;
103
104 struct dcache_hash_bucket {
105 struct hlist_bl_head head;
106 };
107 static struct dcache_hash_bucket *dentry_hashtable __read_mostly;
108
109 static inline struct dcache_hash_bucket *d_hash(struct dentry *parent,
110 unsigned long hash)
111 {
112 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
113 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
114 return dentry_hashtable + (hash & D_HASHMASK);
115 }
116
117 static inline void spin_lock_bucket(struct dcache_hash_bucket *b)
118 {
119 bit_spin_lock(0, (unsigned long *)&b->head.first);
120 }
121
122 static inline void spin_unlock_bucket(struct dcache_hash_bucket *b)
123 {
124 __bit_spin_unlock(0, (unsigned long *)&b->head.first);
125 }
126
127 /* Statistics gathering. */
128 struct dentry_stat_t dentry_stat = {
129 .age_limit = 45,
130 };
131
132 static DEFINE_PER_CPU(unsigned int, nr_dentry);
133
134 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
135 static int get_nr_dentry(void)
136 {
137 int i;
138 int sum = 0;
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142 }
143
144 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
145 size_t *lenp, loff_t *ppos)
146 {
147 dentry_stat.nr_dentry = get_nr_dentry();
148 return proc_dointvec(table, write, buffer, lenp, ppos);
149 }
150 #endif
151
152 static void __d_free(struct rcu_head *head)
153 {
154 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
155
156 WARN_ON(!list_empty(&dentry->d_alias));
157 if (dname_external(dentry))
158 kfree(dentry->d_name.name);
159 kmem_cache_free(dentry_cache, dentry);
160 }
161
162 /*
163 * no locks, please.
164 */
165 static void d_free(struct dentry *dentry)
166 {
167 BUG_ON(dentry->d_count);
168 this_cpu_dec(nr_dentry);
169 if (dentry->d_op && dentry->d_op->d_release)
170 dentry->d_op->d_release(dentry);
171
172 /* if dentry was never inserted into hash, immediate free is OK */
173 if (hlist_bl_unhashed(&dentry->d_hash))
174 __d_free(&dentry->d_u.d_rcu);
175 else
176 call_rcu(&dentry->d_u.d_rcu, __d_free);
177 }
178
179 /**
180 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
181 * After this call, in-progress rcu-walk path lookup will fail. This
182 * should be called after unhashing, and after changing d_inode (if
183 * the dentry has not already been unhashed).
184 */
185 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
186 {
187 assert_spin_locked(&dentry->d_lock);
188 /* Go through a barrier */
189 write_seqcount_barrier(&dentry->d_seq);
190 }
191
192 /*
193 * Release the dentry's inode, using the filesystem
194 * d_iput() operation if defined. Dentry has no refcount
195 * and is unhashed.
196 */
197 static void dentry_iput(struct dentry * dentry)
198 __releases(dentry->d_lock)
199 __releases(dcache_inode_lock)
200 {
201 struct inode *inode = dentry->d_inode;
202 if (inode) {
203 dentry->d_inode = NULL;
204 list_del_init(&dentry->d_alias);
205 spin_unlock(&dentry->d_lock);
206 spin_unlock(&dcache_inode_lock);
207 if (!inode->i_nlink)
208 fsnotify_inoderemove(inode);
209 if (dentry->d_op && dentry->d_op->d_iput)
210 dentry->d_op->d_iput(dentry, inode);
211 else
212 iput(inode);
213 } else {
214 spin_unlock(&dentry->d_lock);
215 spin_unlock(&dcache_inode_lock);
216 }
217 }
218
219 /*
220 * Release the dentry's inode, using the filesystem
221 * d_iput() operation if defined. dentry remains in-use.
222 */
223 static void dentry_unlink_inode(struct dentry * dentry)
224 __releases(dentry->d_lock)
225 __releases(dcache_inode_lock)
226 {
227 struct inode *inode = dentry->d_inode;
228 dentry->d_inode = NULL;
229 list_del_init(&dentry->d_alias);
230 dentry_rcuwalk_barrier(dentry);
231 spin_unlock(&dentry->d_lock);
232 spin_unlock(&dcache_inode_lock);
233 if (!inode->i_nlink)
234 fsnotify_inoderemove(inode);
235 if (dentry->d_op && dentry->d_op->d_iput)
236 dentry->d_op->d_iput(dentry, inode);
237 else
238 iput(inode);
239 }
240
241 /*
242 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
243 */
244 static void dentry_lru_add(struct dentry *dentry)
245 {
246 if (list_empty(&dentry->d_lru)) {
247 spin_lock(&dcache_lru_lock);
248 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
249 dentry->d_sb->s_nr_dentry_unused++;
250 dentry_stat.nr_unused++;
251 spin_unlock(&dcache_lru_lock);
252 }
253 }
254
255 static void __dentry_lru_del(struct dentry *dentry)
256 {
257 list_del_init(&dentry->d_lru);
258 dentry->d_sb->s_nr_dentry_unused--;
259 dentry_stat.nr_unused--;
260 }
261
262 static void dentry_lru_del(struct dentry *dentry)
263 {
264 if (!list_empty(&dentry->d_lru)) {
265 spin_lock(&dcache_lru_lock);
266 __dentry_lru_del(dentry);
267 spin_unlock(&dcache_lru_lock);
268 }
269 }
270
271 static void dentry_lru_move_tail(struct dentry *dentry)
272 {
273 spin_lock(&dcache_lru_lock);
274 if (list_empty(&dentry->d_lru)) {
275 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
276 dentry->d_sb->s_nr_dentry_unused++;
277 dentry_stat.nr_unused++;
278 } else {
279 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
280 }
281 spin_unlock(&dcache_lru_lock);
282 }
283
284 /**
285 * d_kill - kill dentry and return parent
286 * @dentry: dentry to kill
287 *
288 * The dentry must already be unhashed and removed from the LRU.
289 *
290 * If this is the root of the dentry tree, return NULL.
291 *
292 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
293 * d_kill.
294 */
295 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
296 __releases(dentry->d_lock)
297 __releases(parent->d_lock)
298 __releases(dcache_inode_lock)
299 {
300 dentry->d_parent = NULL;
301 list_del(&dentry->d_u.d_child);
302 if (parent)
303 spin_unlock(&parent->d_lock);
304 dentry_iput(dentry);
305 /*
306 * dentry_iput drops the locks, at which point nobody (except
307 * transient RCU lookups) can reach this dentry.
308 */
309 d_free(dentry);
310 return parent;
311 }
312
313 /**
314 * d_drop - drop a dentry
315 * @dentry: dentry to drop
316 *
317 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
318 * be found through a VFS lookup any more. Note that this is different from
319 * deleting the dentry - d_delete will try to mark the dentry negative if
320 * possible, giving a successful _negative_ lookup, while d_drop will
321 * just make the cache lookup fail.
322 *
323 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
324 * reason (NFS timeouts or autofs deletes).
325 *
326 * __d_drop requires dentry->d_lock.
327 */
328 void __d_drop(struct dentry *dentry)
329 {
330 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
331 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) {
332 bit_spin_lock(0,
333 (unsigned long *)&dentry->d_sb->s_anon.first);
334 dentry->d_flags |= DCACHE_UNHASHED;
335 hlist_bl_del_init(&dentry->d_hash);
336 __bit_spin_unlock(0,
337 (unsigned long *)&dentry->d_sb->s_anon.first);
338 } else {
339 struct dcache_hash_bucket *b;
340 b = d_hash(dentry->d_parent, dentry->d_name.hash);
341 spin_lock_bucket(b);
342 /*
343 * We may not actually need to put DCACHE_UNHASHED
344 * manipulations under the hash lock, but follow
345 * the principle of least surprise.
346 */
347 dentry->d_flags |= DCACHE_UNHASHED;
348 hlist_bl_del_rcu(&dentry->d_hash);
349 spin_unlock_bucket(b);
350 dentry_rcuwalk_barrier(dentry);
351 }
352 }
353 }
354 EXPORT_SYMBOL(__d_drop);
355
356 void d_drop(struct dentry *dentry)
357 {
358 spin_lock(&dentry->d_lock);
359 __d_drop(dentry);
360 spin_unlock(&dentry->d_lock);
361 }
362 EXPORT_SYMBOL(d_drop);
363
364 /*
365 * Finish off a dentry we've decided to kill.
366 * dentry->d_lock must be held, returns with it unlocked.
367 * If ref is non-zero, then decrement the refcount too.
368 * Returns dentry requiring refcount drop, or NULL if we're done.
369 */
370 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
371 __releases(dentry->d_lock)
372 {
373 struct dentry *parent;
374
375 if (!spin_trylock(&dcache_inode_lock)) {
376 relock:
377 spin_unlock(&dentry->d_lock);
378 cpu_relax();
379 return dentry; /* try again with same dentry */
380 }
381 if (IS_ROOT(dentry))
382 parent = NULL;
383 else
384 parent = dentry->d_parent;
385 if (parent && !spin_trylock(&parent->d_lock)) {
386 spin_unlock(&dcache_inode_lock);
387 goto relock;
388 }
389
390 if (ref)
391 dentry->d_count--;
392 /* if dentry was on the d_lru list delete it from there */
393 dentry_lru_del(dentry);
394 /* if it was on the hash then remove it */
395 __d_drop(dentry);
396 return d_kill(dentry, parent);
397 }
398
399 /*
400 * This is dput
401 *
402 * This is complicated by the fact that we do not want to put
403 * dentries that are no longer on any hash chain on the unused
404 * list: we'd much rather just get rid of them immediately.
405 *
406 * However, that implies that we have to traverse the dentry
407 * tree upwards to the parents which might _also_ now be
408 * scheduled for deletion (it may have been only waiting for
409 * its last child to go away).
410 *
411 * This tail recursion is done by hand as we don't want to depend
412 * on the compiler to always get this right (gcc generally doesn't).
413 * Real recursion would eat up our stack space.
414 */
415
416 /*
417 * dput - release a dentry
418 * @dentry: dentry to release
419 *
420 * Release a dentry. This will drop the usage count and if appropriate
421 * call the dentry unlink method as well as removing it from the queues and
422 * releasing its resources. If the parent dentries were scheduled for release
423 * they too may now get deleted.
424 */
425 void dput(struct dentry *dentry)
426 {
427 if (!dentry)
428 return;
429
430 repeat:
431 if (dentry->d_count == 1)
432 might_sleep();
433 spin_lock(&dentry->d_lock);
434 BUG_ON(!dentry->d_count);
435 if (dentry->d_count > 1) {
436 dentry->d_count--;
437 spin_unlock(&dentry->d_lock);
438 return;
439 }
440
441 if (dentry->d_flags & DCACHE_OP_DELETE) {
442 if (dentry->d_op->d_delete(dentry))
443 goto kill_it;
444 }
445
446 /* Unreachable? Get rid of it */
447 if (d_unhashed(dentry))
448 goto kill_it;
449
450 /* Otherwise leave it cached and ensure it's on the LRU */
451 dentry->d_flags |= DCACHE_REFERENCED;
452 dentry_lru_add(dentry);
453
454 dentry->d_count--;
455 spin_unlock(&dentry->d_lock);
456 return;
457
458 kill_it:
459 dentry = dentry_kill(dentry, 1);
460 if (dentry)
461 goto repeat;
462 }
463 EXPORT_SYMBOL(dput);
464
465 /**
466 * d_invalidate - invalidate a dentry
467 * @dentry: dentry to invalidate
468 *
469 * Try to invalidate the dentry if it turns out to be
470 * possible. If there are other dentries that can be
471 * reached through this one we can't delete it and we
472 * return -EBUSY. On success we return 0.
473 *
474 * no dcache lock.
475 */
476
477 int d_invalidate(struct dentry * dentry)
478 {
479 /*
480 * If it's already been dropped, return OK.
481 */
482 spin_lock(&dentry->d_lock);
483 if (d_unhashed(dentry)) {
484 spin_unlock(&dentry->d_lock);
485 return 0;
486 }
487 /*
488 * Check whether to do a partial shrink_dcache
489 * to get rid of unused child entries.
490 */
491 if (!list_empty(&dentry->d_subdirs)) {
492 spin_unlock(&dentry->d_lock);
493 shrink_dcache_parent(dentry);
494 spin_lock(&dentry->d_lock);
495 }
496
497 /*
498 * Somebody else still using it?
499 *
500 * If it's a directory, we can't drop it
501 * for fear of somebody re-populating it
502 * with children (even though dropping it
503 * would make it unreachable from the root,
504 * we might still populate it if it was a
505 * working directory or similar).
506 */
507 if (dentry->d_count > 1) {
508 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
509 spin_unlock(&dentry->d_lock);
510 return -EBUSY;
511 }
512 }
513
514 __d_drop(dentry);
515 spin_unlock(&dentry->d_lock);
516 return 0;
517 }
518 EXPORT_SYMBOL(d_invalidate);
519
520 /* This must be called with d_lock held */
521 static inline void __dget_dlock(struct dentry *dentry)
522 {
523 dentry->d_count++;
524 }
525
526 static inline void __dget(struct dentry *dentry)
527 {
528 spin_lock(&dentry->d_lock);
529 __dget_dlock(dentry);
530 spin_unlock(&dentry->d_lock);
531 }
532
533 struct dentry *dget_parent(struct dentry *dentry)
534 {
535 struct dentry *ret;
536
537 repeat:
538 /*
539 * Don't need rcu_dereference because we re-check it was correct under
540 * the lock.
541 */
542 rcu_read_lock();
543 ret = dentry->d_parent;
544 if (!ret) {
545 rcu_read_unlock();
546 goto out;
547 }
548 spin_lock(&ret->d_lock);
549 if (unlikely(ret != dentry->d_parent)) {
550 spin_unlock(&ret->d_lock);
551 rcu_read_unlock();
552 goto repeat;
553 }
554 rcu_read_unlock();
555 BUG_ON(!ret->d_count);
556 ret->d_count++;
557 spin_unlock(&ret->d_lock);
558 out:
559 return ret;
560 }
561 EXPORT_SYMBOL(dget_parent);
562
563 /**
564 * d_find_alias - grab a hashed alias of inode
565 * @inode: inode in question
566 * @want_discon: flag, used by d_splice_alias, to request
567 * that only a DISCONNECTED alias be returned.
568 *
569 * If inode has a hashed alias, or is a directory and has any alias,
570 * acquire the reference to alias and return it. Otherwise return NULL.
571 * Notice that if inode is a directory there can be only one alias and
572 * it can be unhashed only if it has no children, or if it is the root
573 * of a filesystem.
574 *
575 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
576 * any other hashed alias over that one unless @want_discon is set,
577 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
578 */
579 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
580 {
581 struct dentry *alias, *discon_alias;
582
583 again:
584 discon_alias = NULL;
585 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
586 spin_lock(&alias->d_lock);
587 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
588 if (IS_ROOT(alias) &&
589 (alias->d_flags & DCACHE_DISCONNECTED)) {
590 discon_alias = alias;
591 } else if (!want_discon) {
592 __dget_dlock(alias);
593 spin_unlock(&alias->d_lock);
594 return alias;
595 }
596 }
597 spin_unlock(&alias->d_lock);
598 }
599 if (discon_alias) {
600 alias = discon_alias;
601 spin_lock(&alias->d_lock);
602 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
603 if (IS_ROOT(alias) &&
604 (alias->d_flags & DCACHE_DISCONNECTED)) {
605 __dget_dlock(alias);
606 spin_unlock(&alias->d_lock);
607 return alias;
608 }
609 }
610 spin_unlock(&alias->d_lock);
611 goto again;
612 }
613 return NULL;
614 }
615
616 struct dentry *d_find_alias(struct inode *inode)
617 {
618 struct dentry *de = NULL;
619
620 if (!list_empty(&inode->i_dentry)) {
621 spin_lock(&dcache_inode_lock);
622 de = __d_find_alias(inode, 0);
623 spin_unlock(&dcache_inode_lock);
624 }
625 return de;
626 }
627 EXPORT_SYMBOL(d_find_alias);
628
629 /*
630 * Try to kill dentries associated with this inode.
631 * WARNING: you must own a reference to inode.
632 */
633 void d_prune_aliases(struct inode *inode)
634 {
635 struct dentry *dentry;
636 restart:
637 spin_lock(&dcache_inode_lock);
638 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
639 spin_lock(&dentry->d_lock);
640 if (!dentry->d_count) {
641 __dget_dlock(dentry);
642 __d_drop(dentry);
643 spin_unlock(&dentry->d_lock);
644 spin_unlock(&dcache_inode_lock);
645 dput(dentry);
646 goto restart;
647 }
648 spin_unlock(&dentry->d_lock);
649 }
650 spin_unlock(&dcache_inode_lock);
651 }
652 EXPORT_SYMBOL(d_prune_aliases);
653
654 /*
655 * Try to throw away a dentry - free the inode, dput the parent.
656 * Requires dentry->d_lock is held, and dentry->d_count == 0.
657 * Releases dentry->d_lock.
658 *
659 * This may fail if locks cannot be acquired no problem, just try again.
660 */
661 static void try_prune_one_dentry(struct dentry *dentry)
662 __releases(dentry->d_lock)
663 {
664 struct dentry *parent;
665
666 parent = dentry_kill(dentry, 0);
667 /*
668 * If dentry_kill returns NULL, we have nothing more to do.
669 * if it returns the same dentry, trylocks failed. In either
670 * case, just loop again.
671 *
672 * Otherwise, we need to prune ancestors too. This is necessary
673 * to prevent quadratic behavior of shrink_dcache_parent(), but
674 * is also expected to be beneficial in reducing dentry cache
675 * fragmentation.
676 */
677 if (!parent)
678 return;
679 if (parent == dentry)
680 return;
681
682 /* Prune ancestors. */
683 dentry = parent;
684 while (dentry) {
685 spin_lock(&dentry->d_lock);
686 if (dentry->d_count > 1) {
687 dentry->d_count--;
688 spin_unlock(&dentry->d_lock);
689 return;
690 }
691 dentry = dentry_kill(dentry, 1);
692 }
693 }
694
695 static void shrink_dentry_list(struct list_head *list)
696 {
697 struct dentry *dentry;
698
699 rcu_read_lock();
700 for (;;) {
701 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
702 if (&dentry->d_lru == list)
703 break; /* empty */
704 spin_lock(&dentry->d_lock);
705 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
706 spin_unlock(&dentry->d_lock);
707 continue;
708 }
709
710 /*
711 * We found an inuse dentry which was not removed from
712 * the LRU because of laziness during lookup. Do not free
713 * it - just keep it off the LRU list.
714 */
715 if (dentry->d_count) {
716 dentry_lru_del(dentry);
717 spin_unlock(&dentry->d_lock);
718 continue;
719 }
720
721 rcu_read_unlock();
722
723 try_prune_one_dentry(dentry);
724
725 rcu_read_lock();
726 }
727 rcu_read_unlock();
728 }
729
730 /**
731 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
732 * @sb: superblock to shrink dentry LRU.
733 * @count: number of entries to prune
734 * @flags: flags to control the dentry processing
735 *
736 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
737 */
738 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
739 {
740 /* called from prune_dcache() and shrink_dcache_parent() */
741 struct dentry *dentry;
742 LIST_HEAD(referenced);
743 LIST_HEAD(tmp);
744 int cnt = *count;
745
746 relock:
747 spin_lock(&dcache_lru_lock);
748 while (!list_empty(&sb->s_dentry_lru)) {
749 dentry = list_entry(sb->s_dentry_lru.prev,
750 struct dentry, d_lru);
751 BUG_ON(dentry->d_sb != sb);
752
753 if (!spin_trylock(&dentry->d_lock)) {
754 spin_unlock(&dcache_lru_lock);
755 cpu_relax();
756 goto relock;
757 }
758
759 /*
760 * If we are honouring the DCACHE_REFERENCED flag and the
761 * dentry has this flag set, don't free it. Clear the flag
762 * and put it back on the LRU.
763 */
764 if (flags & DCACHE_REFERENCED &&
765 dentry->d_flags & DCACHE_REFERENCED) {
766 dentry->d_flags &= ~DCACHE_REFERENCED;
767 list_move(&dentry->d_lru, &referenced);
768 spin_unlock(&dentry->d_lock);
769 } else {
770 list_move_tail(&dentry->d_lru, &tmp);
771 spin_unlock(&dentry->d_lock);
772 if (!--cnt)
773 break;
774 }
775 cond_resched_lock(&dcache_lru_lock);
776 }
777 if (!list_empty(&referenced))
778 list_splice(&referenced, &sb->s_dentry_lru);
779 spin_unlock(&dcache_lru_lock);
780
781 shrink_dentry_list(&tmp);
782
783 *count = cnt;
784 }
785
786 /**
787 * prune_dcache - shrink the dcache
788 * @count: number of entries to try to free
789 *
790 * Shrink the dcache. This is done when we need more memory, or simply when we
791 * need to unmount something (at which point we need to unuse all dentries).
792 *
793 * This function may fail to free any resources if all the dentries are in use.
794 */
795 static void prune_dcache(int count)
796 {
797 struct super_block *sb, *p = NULL;
798 int w_count;
799 int unused = dentry_stat.nr_unused;
800 int prune_ratio;
801 int pruned;
802
803 if (unused == 0 || count == 0)
804 return;
805 if (count >= unused)
806 prune_ratio = 1;
807 else
808 prune_ratio = unused / count;
809 spin_lock(&sb_lock);
810 list_for_each_entry(sb, &super_blocks, s_list) {
811 if (list_empty(&sb->s_instances))
812 continue;
813 if (sb->s_nr_dentry_unused == 0)
814 continue;
815 sb->s_count++;
816 /* Now, we reclaim unused dentrins with fairness.
817 * We reclaim them same percentage from each superblock.
818 * We calculate number of dentries to scan on this sb
819 * as follows, but the implementation is arranged to avoid
820 * overflows:
821 * number of dentries to scan on this sb =
822 * count * (number of dentries on this sb /
823 * number of dentries in the machine)
824 */
825 spin_unlock(&sb_lock);
826 if (prune_ratio != 1)
827 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
828 else
829 w_count = sb->s_nr_dentry_unused;
830 pruned = w_count;
831 /*
832 * We need to be sure this filesystem isn't being unmounted,
833 * otherwise we could race with generic_shutdown_super(), and
834 * end up holding a reference to an inode while the filesystem
835 * is unmounted. So we try to get s_umount, and make sure
836 * s_root isn't NULL.
837 */
838 if (down_read_trylock(&sb->s_umount)) {
839 if ((sb->s_root != NULL) &&
840 (!list_empty(&sb->s_dentry_lru))) {
841 __shrink_dcache_sb(sb, &w_count,
842 DCACHE_REFERENCED);
843 pruned -= w_count;
844 }
845 up_read(&sb->s_umount);
846 }
847 spin_lock(&sb_lock);
848 if (p)
849 __put_super(p);
850 count -= pruned;
851 p = sb;
852 /* more work left to do? */
853 if (count <= 0)
854 break;
855 }
856 if (p)
857 __put_super(p);
858 spin_unlock(&sb_lock);
859 }
860
861 /**
862 * shrink_dcache_sb - shrink dcache for a superblock
863 * @sb: superblock
864 *
865 * Shrink the dcache for the specified super block. This is used to free
866 * the dcache before unmounting a file system.
867 */
868 void shrink_dcache_sb(struct super_block *sb)
869 {
870 LIST_HEAD(tmp);
871
872 spin_lock(&dcache_lru_lock);
873 while (!list_empty(&sb->s_dentry_lru)) {
874 list_splice_init(&sb->s_dentry_lru, &tmp);
875 spin_unlock(&dcache_lru_lock);
876 shrink_dentry_list(&tmp);
877 spin_lock(&dcache_lru_lock);
878 }
879 spin_unlock(&dcache_lru_lock);
880 }
881 EXPORT_SYMBOL(shrink_dcache_sb);
882
883 /*
884 * destroy a single subtree of dentries for unmount
885 * - see the comments on shrink_dcache_for_umount() for a description of the
886 * locking
887 */
888 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
889 {
890 struct dentry *parent;
891 unsigned detached = 0;
892
893 BUG_ON(!IS_ROOT(dentry));
894
895 /* detach this root from the system */
896 spin_lock(&dentry->d_lock);
897 dentry_lru_del(dentry);
898 __d_drop(dentry);
899 spin_unlock(&dentry->d_lock);
900
901 for (;;) {
902 /* descend to the first leaf in the current subtree */
903 while (!list_empty(&dentry->d_subdirs)) {
904 struct dentry *loop;
905
906 /* this is a branch with children - detach all of them
907 * from the system in one go */
908 spin_lock(&dentry->d_lock);
909 list_for_each_entry(loop, &dentry->d_subdirs,
910 d_u.d_child) {
911 spin_lock_nested(&loop->d_lock,
912 DENTRY_D_LOCK_NESTED);
913 dentry_lru_del(loop);
914 __d_drop(loop);
915 spin_unlock(&loop->d_lock);
916 }
917 spin_unlock(&dentry->d_lock);
918
919 /* move to the first child */
920 dentry = list_entry(dentry->d_subdirs.next,
921 struct dentry, d_u.d_child);
922 }
923
924 /* consume the dentries from this leaf up through its parents
925 * until we find one with children or run out altogether */
926 do {
927 struct inode *inode;
928
929 if (dentry->d_count != 0) {
930 printk(KERN_ERR
931 "BUG: Dentry %p{i=%lx,n=%s}"
932 " still in use (%d)"
933 " [unmount of %s %s]\n",
934 dentry,
935 dentry->d_inode ?
936 dentry->d_inode->i_ino : 0UL,
937 dentry->d_name.name,
938 dentry->d_count,
939 dentry->d_sb->s_type->name,
940 dentry->d_sb->s_id);
941 BUG();
942 }
943
944 if (IS_ROOT(dentry)) {
945 parent = NULL;
946 list_del(&dentry->d_u.d_child);
947 } else {
948 parent = dentry->d_parent;
949 spin_lock(&parent->d_lock);
950 parent->d_count--;
951 list_del(&dentry->d_u.d_child);
952 spin_unlock(&parent->d_lock);
953 }
954
955 detached++;
956
957 inode = dentry->d_inode;
958 if (inode) {
959 dentry->d_inode = NULL;
960 list_del_init(&dentry->d_alias);
961 if (dentry->d_op && dentry->d_op->d_iput)
962 dentry->d_op->d_iput(dentry, inode);
963 else
964 iput(inode);
965 }
966
967 d_free(dentry);
968
969 /* finished when we fall off the top of the tree,
970 * otherwise we ascend to the parent and move to the
971 * next sibling if there is one */
972 if (!parent)
973 return;
974 dentry = parent;
975 } while (list_empty(&dentry->d_subdirs));
976
977 dentry = list_entry(dentry->d_subdirs.next,
978 struct dentry, d_u.d_child);
979 }
980 }
981
982 /*
983 * destroy the dentries attached to a superblock on unmounting
984 * - we don't need to use dentry->d_lock because:
985 * - the superblock is detached from all mountings and open files, so the
986 * dentry trees will not be rearranged by the VFS
987 * - s_umount is write-locked, so the memory pressure shrinker will ignore
988 * any dentries belonging to this superblock that it comes across
989 * - the filesystem itself is no longer permitted to rearrange the dentries
990 * in this superblock
991 */
992 void shrink_dcache_for_umount(struct super_block *sb)
993 {
994 struct dentry *dentry;
995
996 if (down_read_trylock(&sb->s_umount))
997 BUG();
998
999 dentry = sb->s_root;
1000 sb->s_root = NULL;
1001 spin_lock(&dentry->d_lock);
1002 dentry->d_count--;
1003 spin_unlock(&dentry->d_lock);
1004 shrink_dcache_for_umount_subtree(dentry);
1005
1006 while (!hlist_bl_empty(&sb->s_anon)) {
1007 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1008 shrink_dcache_for_umount_subtree(dentry);
1009 }
1010 }
1011
1012 /*
1013 * Search for at least 1 mount point in the dentry's subdirs.
1014 * We descend to the next level whenever the d_subdirs
1015 * list is non-empty and continue searching.
1016 */
1017
1018 /**
1019 * have_submounts - check for mounts over a dentry
1020 * @parent: dentry to check.
1021 *
1022 * Return true if the parent or its subdirectories contain
1023 * a mount point
1024 */
1025 int have_submounts(struct dentry *parent)
1026 {
1027 struct dentry *this_parent;
1028 struct list_head *next;
1029 unsigned seq;
1030 int locked = 0;
1031
1032 seq = read_seqbegin(&rename_lock);
1033 again:
1034 this_parent = parent;
1035
1036 if (d_mountpoint(parent))
1037 goto positive;
1038 spin_lock(&this_parent->d_lock);
1039 repeat:
1040 next = this_parent->d_subdirs.next;
1041 resume:
1042 while (next != &this_parent->d_subdirs) {
1043 struct list_head *tmp = next;
1044 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1045 next = tmp->next;
1046
1047 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1048 /* Have we found a mount point ? */
1049 if (d_mountpoint(dentry)) {
1050 spin_unlock(&dentry->d_lock);
1051 spin_unlock(&this_parent->d_lock);
1052 goto positive;
1053 }
1054 if (!list_empty(&dentry->d_subdirs)) {
1055 spin_unlock(&this_parent->d_lock);
1056 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1057 this_parent = dentry;
1058 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1059 goto repeat;
1060 }
1061 spin_unlock(&dentry->d_lock);
1062 }
1063 /*
1064 * All done at this level ... ascend and resume the search.
1065 */
1066 if (this_parent != parent) {
1067 struct dentry *tmp;
1068 struct dentry *child;
1069
1070 tmp = this_parent->d_parent;
1071 rcu_read_lock();
1072 spin_unlock(&this_parent->d_lock);
1073 child = this_parent;
1074 this_parent = tmp;
1075 spin_lock(&this_parent->d_lock);
1076 /* might go back up the wrong parent if we have had a rename
1077 * or deletion */
1078 if (this_parent != child->d_parent ||
1079 (!locked && read_seqretry(&rename_lock, seq))) {
1080 spin_unlock(&this_parent->d_lock);
1081 rcu_read_unlock();
1082 goto rename_retry;
1083 }
1084 rcu_read_unlock();
1085 next = child->d_u.d_child.next;
1086 goto resume;
1087 }
1088 spin_unlock(&this_parent->d_lock);
1089 if (!locked && read_seqretry(&rename_lock, seq))
1090 goto rename_retry;
1091 if (locked)
1092 write_sequnlock(&rename_lock);
1093 return 0; /* No mount points found in tree */
1094 positive:
1095 if (!locked && read_seqretry(&rename_lock, seq))
1096 goto rename_retry;
1097 if (locked)
1098 write_sequnlock(&rename_lock);
1099 return 1;
1100
1101 rename_retry:
1102 locked = 1;
1103 write_seqlock(&rename_lock);
1104 goto again;
1105 }
1106 EXPORT_SYMBOL(have_submounts);
1107
1108 /*
1109 * Search the dentry child list for the specified parent,
1110 * and move any unused dentries to the end of the unused
1111 * list for prune_dcache(). We descend to the next level
1112 * whenever the d_subdirs list is non-empty and continue
1113 * searching.
1114 *
1115 * It returns zero iff there are no unused children,
1116 * otherwise it returns the number of children moved to
1117 * the end of the unused list. This may not be the total
1118 * number of unused children, because select_parent can
1119 * drop the lock and return early due to latency
1120 * constraints.
1121 */
1122 static int select_parent(struct dentry * parent)
1123 {
1124 struct dentry *this_parent;
1125 struct list_head *next;
1126 unsigned seq;
1127 int found = 0;
1128 int locked = 0;
1129
1130 seq = read_seqbegin(&rename_lock);
1131 again:
1132 this_parent = parent;
1133 spin_lock(&this_parent->d_lock);
1134 repeat:
1135 next = this_parent->d_subdirs.next;
1136 resume:
1137 while (next != &this_parent->d_subdirs) {
1138 struct list_head *tmp = next;
1139 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1140 next = tmp->next;
1141
1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1143
1144 /*
1145 * move only zero ref count dentries to the end
1146 * of the unused list for prune_dcache
1147 */
1148 if (!dentry->d_count) {
1149 dentry_lru_move_tail(dentry);
1150 found++;
1151 } else {
1152 dentry_lru_del(dentry);
1153 }
1154
1155 /*
1156 * We can return to the caller if we have found some (this
1157 * ensures forward progress). We'll be coming back to find
1158 * the rest.
1159 */
1160 if (found && need_resched()) {
1161 spin_unlock(&dentry->d_lock);
1162 goto out;
1163 }
1164
1165 /*
1166 * Descend a level if the d_subdirs list is non-empty.
1167 */
1168 if (!list_empty(&dentry->d_subdirs)) {
1169 spin_unlock(&this_parent->d_lock);
1170 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1171 this_parent = dentry;
1172 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1173 goto repeat;
1174 }
1175
1176 spin_unlock(&dentry->d_lock);
1177 }
1178 /*
1179 * All done at this level ... ascend and resume the search.
1180 */
1181 if (this_parent != parent) {
1182 struct dentry *tmp;
1183 struct dentry *child;
1184
1185 tmp = this_parent->d_parent;
1186 rcu_read_lock();
1187 spin_unlock(&this_parent->d_lock);
1188 child = this_parent;
1189 this_parent = tmp;
1190 spin_lock(&this_parent->d_lock);
1191 /* might go back up the wrong parent if we have had a rename
1192 * or deletion */
1193 if (this_parent != child->d_parent ||
1194 (!locked && read_seqretry(&rename_lock, seq))) {
1195 spin_unlock(&this_parent->d_lock);
1196 rcu_read_unlock();
1197 goto rename_retry;
1198 }
1199 rcu_read_unlock();
1200 next = child->d_u.d_child.next;
1201 goto resume;
1202 }
1203 out:
1204 spin_unlock(&this_parent->d_lock);
1205 if (!locked && read_seqretry(&rename_lock, seq))
1206 goto rename_retry;
1207 if (locked)
1208 write_sequnlock(&rename_lock);
1209 return found;
1210
1211 rename_retry:
1212 if (found)
1213 return found;
1214 locked = 1;
1215 write_seqlock(&rename_lock);
1216 goto again;
1217 }
1218
1219 /**
1220 * shrink_dcache_parent - prune dcache
1221 * @parent: parent of entries to prune
1222 *
1223 * Prune the dcache to remove unused children of the parent dentry.
1224 */
1225
1226 void shrink_dcache_parent(struct dentry * parent)
1227 {
1228 struct super_block *sb = parent->d_sb;
1229 int found;
1230
1231 while ((found = select_parent(parent)) != 0)
1232 __shrink_dcache_sb(sb, &found, 0);
1233 }
1234 EXPORT_SYMBOL(shrink_dcache_parent);
1235
1236 /*
1237 * Scan `nr' dentries and return the number which remain.
1238 *
1239 * We need to avoid reentering the filesystem if the caller is performing a
1240 * GFP_NOFS allocation attempt. One example deadlock is:
1241 *
1242 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1243 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1244 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1245 *
1246 * In this case we return -1 to tell the caller that we baled.
1247 */
1248 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1249 {
1250 if (nr) {
1251 if (!(gfp_mask & __GFP_FS))
1252 return -1;
1253 prune_dcache(nr);
1254 }
1255
1256 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1257 }
1258
1259 static struct shrinker dcache_shrinker = {
1260 .shrink = shrink_dcache_memory,
1261 .seeks = DEFAULT_SEEKS,
1262 };
1263
1264 /**
1265 * d_alloc - allocate a dcache entry
1266 * @parent: parent of entry to allocate
1267 * @name: qstr of the name
1268 *
1269 * Allocates a dentry. It returns %NULL if there is insufficient memory
1270 * available. On a success the dentry is returned. The name passed in is
1271 * copied and the copy passed in may be reused after this call.
1272 */
1273
1274 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1275 {
1276 struct dentry *dentry;
1277 char *dname;
1278
1279 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1280 if (!dentry)
1281 return NULL;
1282
1283 if (name->len > DNAME_INLINE_LEN-1) {
1284 dname = kmalloc(name->len + 1, GFP_KERNEL);
1285 if (!dname) {
1286 kmem_cache_free(dentry_cache, dentry);
1287 return NULL;
1288 }
1289 } else {
1290 dname = dentry->d_iname;
1291 }
1292 dentry->d_name.name = dname;
1293
1294 dentry->d_name.len = name->len;
1295 dentry->d_name.hash = name->hash;
1296 memcpy(dname, name->name, name->len);
1297 dname[name->len] = 0;
1298
1299 dentry->d_count = 1;
1300 dentry->d_flags = DCACHE_UNHASHED;
1301 spin_lock_init(&dentry->d_lock);
1302 seqcount_init(&dentry->d_seq);
1303 dentry->d_inode = NULL;
1304 dentry->d_parent = NULL;
1305 dentry->d_sb = NULL;
1306 dentry->d_op = NULL;
1307 dentry->d_fsdata = NULL;
1308 INIT_HLIST_BL_NODE(&dentry->d_hash);
1309 INIT_LIST_HEAD(&dentry->d_lru);
1310 INIT_LIST_HEAD(&dentry->d_subdirs);
1311 INIT_LIST_HEAD(&dentry->d_alias);
1312 INIT_LIST_HEAD(&dentry->d_u.d_child);
1313
1314 if (parent) {
1315 spin_lock(&parent->d_lock);
1316 /*
1317 * don't need child lock because it is not subject
1318 * to concurrency here
1319 */
1320 __dget_dlock(parent);
1321 dentry->d_parent = parent;
1322 dentry->d_sb = parent->d_sb;
1323 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1324 spin_unlock(&parent->d_lock);
1325 }
1326
1327 this_cpu_inc(nr_dentry);
1328
1329 return dentry;
1330 }
1331 EXPORT_SYMBOL(d_alloc);
1332
1333 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1334 {
1335 struct qstr q;
1336
1337 q.name = name;
1338 q.len = strlen(name);
1339 q.hash = full_name_hash(q.name, q.len);
1340 return d_alloc(parent, &q);
1341 }
1342 EXPORT_SYMBOL(d_alloc_name);
1343
1344 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1345 {
1346 BUG_ON(dentry->d_op);
1347 BUG_ON(dentry->d_flags & (DCACHE_OP_HASH |
1348 DCACHE_OP_COMPARE |
1349 DCACHE_OP_REVALIDATE |
1350 DCACHE_OP_DELETE ));
1351 dentry->d_op = op;
1352 if (!op)
1353 return;
1354 if (op->d_hash)
1355 dentry->d_flags |= DCACHE_OP_HASH;
1356 if (op->d_compare)
1357 dentry->d_flags |= DCACHE_OP_COMPARE;
1358 if (op->d_revalidate)
1359 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1360 if (op->d_delete)
1361 dentry->d_flags |= DCACHE_OP_DELETE;
1362
1363 }
1364 EXPORT_SYMBOL(d_set_d_op);
1365
1366 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1367 {
1368 spin_lock(&dentry->d_lock);
1369 if (inode)
1370 list_add(&dentry->d_alias, &inode->i_dentry);
1371 dentry->d_inode = inode;
1372 dentry_rcuwalk_barrier(dentry);
1373 spin_unlock(&dentry->d_lock);
1374 fsnotify_d_instantiate(dentry, inode);
1375 }
1376
1377 /**
1378 * d_instantiate - fill in inode information for a dentry
1379 * @entry: dentry to complete
1380 * @inode: inode to attach to this dentry
1381 *
1382 * Fill in inode information in the entry.
1383 *
1384 * This turns negative dentries into productive full members
1385 * of society.
1386 *
1387 * NOTE! This assumes that the inode count has been incremented
1388 * (or otherwise set) by the caller to indicate that it is now
1389 * in use by the dcache.
1390 */
1391
1392 void d_instantiate(struct dentry *entry, struct inode * inode)
1393 {
1394 BUG_ON(!list_empty(&entry->d_alias));
1395 spin_lock(&dcache_inode_lock);
1396 __d_instantiate(entry, inode);
1397 spin_unlock(&dcache_inode_lock);
1398 security_d_instantiate(entry, inode);
1399 }
1400 EXPORT_SYMBOL(d_instantiate);
1401
1402 /**
1403 * d_instantiate_unique - instantiate a non-aliased dentry
1404 * @entry: dentry to instantiate
1405 * @inode: inode to attach to this dentry
1406 *
1407 * Fill in inode information in the entry. On success, it returns NULL.
1408 * If an unhashed alias of "entry" already exists, then we return the
1409 * aliased dentry instead and drop one reference to inode.
1410 *
1411 * Note that in order to avoid conflicts with rename() etc, the caller
1412 * had better be holding the parent directory semaphore.
1413 *
1414 * This also assumes that the inode count has been incremented
1415 * (or otherwise set) by the caller to indicate that it is now
1416 * in use by the dcache.
1417 */
1418 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1419 struct inode *inode)
1420 {
1421 struct dentry *alias;
1422 int len = entry->d_name.len;
1423 const char *name = entry->d_name.name;
1424 unsigned int hash = entry->d_name.hash;
1425
1426 if (!inode) {
1427 __d_instantiate(entry, NULL);
1428 return NULL;
1429 }
1430
1431 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1432 struct qstr *qstr = &alias->d_name;
1433
1434 /*
1435 * Don't need alias->d_lock here, because aliases with
1436 * d_parent == entry->d_parent are not subject to name or
1437 * parent changes, because the parent inode i_mutex is held.
1438 */
1439 if (qstr->hash != hash)
1440 continue;
1441 if (alias->d_parent != entry->d_parent)
1442 continue;
1443 if (qstr->len != len)
1444 continue;
1445 if (memcmp(qstr->name, name, len))
1446 continue;
1447 __dget(alias);
1448 return alias;
1449 }
1450
1451 __d_instantiate(entry, inode);
1452 return NULL;
1453 }
1454
1455 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1456 {
1457 struct dentry *result;
1458
1459 BUG_ON(!list_empty(&entry->d_alias));
1460
1461 spin_lock(&dcache_inode_lock);
1462 result = __d_instantiate_unique(entry, inode);
1463 spin_unlock(&dcache_inode_lock);
1464
1465 if (!result) {
1466 security_d_instantiate(entry, inode);
1467 return NULL;
1468 }
1469
1470 BUG_ON(!d_unhashed(result));
1471 iput(inode);
1472 return result;
1473 }
1474
1475 EXPORT_SYMBOL(d_instantiate_unique);
1476
1477 /**
1478 * d_alloc_root - allocate root dentry
1479 * @root_inode: inode to allocate the root for
1480 *
1481 * Allocate a root ("/") dentry for the inode given. The inode is
1482 * instantiated and returned. %NULL is returned if there is insufficient
1483 * memory or the inode passed is %NULL.
1484 */
1485
1486 struct dentry * d_alloc_root(struct inode * root_inode)
1487 {
1488 struct dentry *res = NULL;
1489
1490 if (root_inode) {
1491 static const struct qstr name = { .name = "/", .len = 1 };
1492
1493 res = d_alloc(NULL, &name);
1494 if (res) {
1495 res->d_sb = root_inode->i_sb;
1496 res->d_parent = res;
1497 d_instantiate(res, root_inode);
1498 }
1499 }
1500 return res;
1501 }
1502 EXPORT_SYMBOL(d_alloc_root);
1503
1504 /**
1505 * d_obtain_alias - find or allocate a dentry for a given inode
1506 * @inode: inode to allocate the dentry for
1507 *
1508 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1509 * similar open by handle operations. The returned dentry may be anonymous,
1510 * or may have a full name (if the inode was already in the cache).
1511 *
1512 * When called on a directory inode, we must ensure that the inode only ever
1513 * has one dentry. If a dentry is found, that is returned instead of
1514 * allocating a new one.
1515 *
1516 * On successful return, the reference to the inode has been transferred
1517 * to the dentry. In case of an error the reference on the inode is released.
1518 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1519 * be passed in and will be the error will be propagate to the return value,
1520 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1521 */
1522 struct dentry *d_obtain_alias(struct inode *inode)
1523 {
1524 static const struct qstr anonstring = { .name = "" };
1525 struct dentry *tmp;
1526 struct dentry *res;
1527
1528 if (!inode)
1529 return ERR_PTR(-ESTALE);
1530 if (IS_ERR(inode))
1531 return ERR_CAST(inode);
1532
1533 res = d_find_alias(inode);
1534 if (res)
1535 goto out_iput;
1536
1537 tmp = d_alloc(NULL, &anonstring);
1538 if (!tmp) {
1539 res = ERR_PTR(-ENOMEM);
1540 goto out_iput;
1541 }
1542 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1543
1544
1545 spin_lock(&dcache_inode_lock);
1546 res = __d_find_alias(inode, 0);
1547 if (res) {
1548 spin_unlock(&dcache_inode_lock);
1549 dput(tmp);
1550 goto out_iput;
1551 }
1552
1553 /* attach a disconnected dentry */
1554 spin_lock(&tmp->d_lock);
1555 tmp->d_sb = inode->i_sb;
1556 tmp->d_inode = inode;
1557 tmp->d_flags |= DCACHE_DISCONNECTED;
1558 list_add(&tmp->d_alias, &inode->i_dentry);
1559 bit_spin_lock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1560 tmp->d_flags &= ~DCACHE_UNHASHED;
1561 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1562 __bit_spin_unlock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1563 spin_unlock(&tmp->d_lock);
1564 spin_unlock(&dcache_inode_lock);
1565
1566 return tmp;
1567
1568 out_iput:
1569 iput(inode);
1570 return res;
1571 }
1572 EXPORT_SYMBOL(d_obtain_alias);
1573
1574 /**
1575 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1576 * @inode: the inode which may have a disconnected dentry
1577 * @dentry: a negative dentry which we want to point to the inode.
1578 *
1579 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1580 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1581 * and return it, else simply d_add the inode to the dentry and return NULL.
1582 *
1583 * This is needed in the lookup routine of any filesystem that is exportable
1584 * (via knfsd) so that we can build dcache paths to directories effectively.
1585 *
1586 * If a dentry was found and moved, then it is returned. Otherwise NULL
1587 * is returned. This matches the expected return value of ->lookup.
1588 *
1589 */
1590 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1591 {
1592 struct dentry *new = NULL;
1593
1594 if (inode && S_ISDIR(inode->i_mode)) {
1595 spin_lock(&dcache_inode_lock);
1596 new = __d_find_alias(inode, 1);
1597 if (new) {
1598 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1599 spin_unlock(&dcache_inode_lock);
1600 security_d_instantiate(new, inode);
1601 d_move(new, dentry);
1602 iput(inode);
1603 } else {
1604 /* already got dcache_inode_lock, so d_add() by hand */
1605 __d_instantiate(dentry, inode);
1606 spin_unlock(&dcache_inode_lock);
1607 security_d_instantiate(dentry, inode);
1608 d_rehash(dentry);
1609 }
1610 } else
1611 d_add(dentry, inode);
1612 return new;
1613 }
1614 EXPORT_SYMBOL(d_splice_alias);
1615
1616 /**
1617 * d_add_ci - lookup or allocate new dentry with case-exact name
1618 * @inode: the inode case-insensitive lookup has found
1619 * @dentry: the negative dentry that was passed to the parent's lookup func
1620 * @name: the case-exact name to be associated with the returned dentry
1621 *
1622 * This is to avoid filling the dcache with case-insensitive names to the
1623 * same inode, only the actual correct case is stored in the dcache for
1624 * case-insensitive filesystems.
1625 *
1626 * For a case-insensitive lookup match and if the the case-exact dentry
1627 * already exists in in the dcache, use it and return it.
1628 *
1629 * If no entry exists with the exact case name, allocate new dentry with
1630 * the exact case, and return the spliced entry.
1631 */
1632 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1633 struct qstr *name)
1634 {
1635 int error;
1636 struct dentry *found;
1637 struct dentry *new;
1638
1639 /*
1640 * First check if a dentry matching the name already exists,
1641 * if not go ahead and create it now.
1642 */
1643 found = d_hash_and_lookup(dentry->d_parent, name);
1644 if (!found) {
1645 new = d_alloc(dentry->d_parent, name);
1646 if (!new) {
1647 error = -ENOMEM;
1648 goto err_out;
1649 }
1650
1651 found = d_splice_alias(inode, new);
1652 if (found) {
1653 dput(new);
1654 return found;
1655 }
1656 return new;
1657 }
1658
1659 /*
1660 * If a matching dentry exists, and it's not negative use it.
1661 *
1662 * Decrement the reference count to balance the iget() done
1663 * earlier on.
1664 */
1665 if (found->d_inode) {
1666 if (unlikely(found->d_inode != inode)) {
1667 /* This can't happen because bad inodes are unhashed. */
1668 BUG_ON(!is_bad_inode(inode));
1669 BUG_ON(!is_bad_inode(found->d_inode));
1670 }
1671 iput(inode);
1672 return found;
1673 }
1674
1675 /*
1676 * Negative dentry: instantiate it unless the inode is a directory and
1677 * already has a dentry.
1678 */
1679 spin_lock(&dcache_inode_lock);
1680 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1681 __d_instantiate(found, inode);
1682 spin_unlock(&dcache_inode_lock);
1683 security_d_instantiate(found, inode);
1684 return found;
1685 }
1686
1687 /*
1688 * In case a directory already has a (disconnected) entry grab a
1689 * reference to it, move it in place and use it.
1690 */
1691 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1692 __dget(new);
1693 spin_unlock(&dcache_inode_lock);
1694 security_d_instantiate(found, inode);
1695 d_move(new, found);
1696 iput(inode);
1697 dput(found);
1698 return new;
1699
1700 err_out:
1701 iput(inode);
1702 return ERR_PTR(error);
1703 }
1704 EXPORT_SYMBOL(d_add_ci);
1705
1706 /**
1707 * __d_lookup_rcu - search for a dentry (racy, store-free)
1708 * @parent: parent dentry
1709 * @name: qstr of name we wish to find
1710 * @seq: returns d_seq value at the point where the dentry was found
1711 * @inode: returns dentry->d_inode when the inode was found valid.
1712 * Returns: dentry, or NULL
1713 *
1714 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1715 * resolution (store-free path walking) design described in
1716 * Documentation/filesystems/path-lookup.txt.
1717 *
1718 * This is not to be used outside core vfs.
1719 *
1720 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1721 * held, and rcu_read_lock held. The returned dentry must not be stored into
1722 * without taking d_lock and checking d_seq sequence count against @seq
1723 * returned here.
1724 *
1725 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1726 * function.
1727 *
1728 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1729 * the returned dentry, so long as its parent's seqlock is checked after the
1730 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1731 * is formed, giving integrity down the path walk.
1732 */
1733 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1734 unsigned *seq, struct inode **inode)
1735 {
1736 unsigned int len = name->len;
1737 unsigned int hash = name->hash;
1738 const unsigned char *str = name->name;
1739 struct dcache_hash_bucket *b = d_hash(parent, hash);
1740 struct hlist_bl_node *node;
1741 struct dentry *dentry;
1742
1743 /*
1744 * Note: There is significant duplication with __d_lookup_rcu which is
1745 * required to prevent single threaded performance regressions
1746 * especially on architectures where smp_rmb (in seqcounts) are costly.
1747 * Keep the two functions in sync.
1748 */
1749
1750 /*
1751 * The hash list is protected using RCU.
1752 *
1753 * Carefully use d_seq when comparing a candidate dentry, to avoid
1754 * races with d_move().
1755 *
1756 * It is possible that concurrent renames can mess up our list
1757 * walk here and result in missing our dentry, resulting in the
1758 * false-negative result. d_lookup() protects against concurrent
1759 * renames using rename_lock seqlock.
1760 *
1761 * See Documentation/vfs/dcache-locking.txt for more details.
1762 */
1763 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1764 struct inode *i;
1765 const char *tname;
1766 int tlen;
1767
1768 if (dentry->d_name.hash != hash)
1769 continue;
1770
1771 seqretry:
1772 *seq = read_seqcount_begin(&dentry->d_seq);
1773 if (dentry->d_parent != parent)
1774 continue;
1775 if (d_unhashed(dentry))
1776 continue;
1777 tlen = dentry->d_name.len;
1778 tname = dentry->d_name.name;
1779 i = dentry->d_inode;
1780 /*
1781 * This seqcount check is required to ensure name and
1782 * len are loaded atomically, so as not to walk off the
1783 * edge of memory when walking. If we could load this
1784 * atomically some other way, we could drop this check.
1785 */
1786 if (read_seqcount_retry(&dentry->d_seq, *seq))
1787 goto seqretry;
1788 if (parent->d_flags & DCACHE_OP_COMPARE) {
1789 if (parent->d_op->d_compare(parent, *inode,
1790 dentry, i,
1791 tlen, tname, name))
1792 continue;
1793 } else {
1794 if (tlen != len)
1795 continue;
1796 if (memcmp(tname, str, tlen))
1797 continue;
1798 }
1799 /*
1800 * No extra seqcount check is required after the name
1801 * compare. The caller must perform a seqcount check in
1802 * order to do anything useful with the returned dentry
1803 * anyway.
1804 */
1805 *inode = i;
1806 return dentry;
1807 }
1808 return NULL;
1809 }
1810
1811 /**
1812 * d_lookup - search for a dentry
1813 * @parent: parent dentry
1814 * @name: qstr of name we wish to find
1815 * Returns: dentry, or NULL
1816 *
1817 * d_lookup searches the children of the parent dentry for the name in
1818 * question. If the dentry is found its reference count is incremented and the
1819 * dentry is returned. The caller must use dput to free the entry when it has
1820 * finished using it. %NULL is returned if the dentry does not exist.
1821 */
1822 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1823 {
1824 struct dentry *dentry;
1825 unsigned seq;
1826
1827 do {
1828 seq = read_seqbegin(&rename_lock);
1829 dentry = __d_lookup(parent, name);
1830 if (dentry)
1831 break;
1832 } while (read_seqretry(&rename_lock, seq));
1833 return dentry;
1834 }
1835 EXPORT_SYMBOL(d_lookup);
1836
1837 /**
1838 * __d_lookup - search for a dentry (racy)
1839 * @parent: parent dentry
1840 * @name: qstr of name we wish to find
1841 * Returns: dentry, or NULL
1842 *
1843 * __d_lookup is like d_lookup, however it may (rarely) return a
1844 * false-negative result due to unrelated rename activity.
1845 *
1846 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1847 * however it must be used carefully, eg. with a following d_lookup in
1848 * the case of failure.
1849 *
1850 * __d_lookup callers must be commented.
1851 */
1852 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1853 {
1854 unsigned int len = name->len;
1855 unsigned int hash = name->hash;
1856 const unsigned char *str = name->name;
1857 struct dcache_hash_bucket *b = d_hash(parent, hash);
1858 struct hlist_bl_node *node;
1859 struct dentry *found = NULL;
1860 struct dentry *dentry;
1861
1862 /*
1863 * Note: There is significant duplication with __d_lookup_rcu which is
1864 * required to prevent single threaded performance regressions
1865 * especially on architectures where smp_rmb (in seqcounts) are costly.
1866 * Keep the two functions in sync.
1867 */
1868
1869 /*
1870 * The hash list is protected using RCU.
1871 *
1872 * Take d_lock when comparing a candidate dentry, to avoid races
1873 * with d_move().
1874 *
1875 * It is possible that concurrent renames can mess up our list
1876 * walk here and result in missing our dentry, resulting in the
1877 * false-negative result. d_lookup() protects against concurrent
1878 * renames using rename_lock seqlock.
1879 *
1880 * See Documentation/vfs/dcache-locking.txt for more details.
1881 */
1882 rcu_read_lock();
1883
1884 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
1885 const char *tname;
1886 int tlen;
1887
1888 if (dentry->d_name.hash != hash)
1889 continue;
1890
1891 spin_lock(&dentry->d_lock);
1892 if (dentry->d_parent != parent)
1893 goto next;
1894 if (d_unhashed(dentry))
1895 goto next;
1896
1897 /*
1898 * It is safe to compare names since d_move() cannot
1899 * change the qstr (protected by d_lock).
1900 */
1901 tlen = dentry->d_name.len;
1902 tname = dentry->d_name.name;
1903 if (parent->d_flags & DCACHE_OP_COMPARE) {
1904 if (parent->d_op->d_compare(parent, parent->d_inode,
1905 dentry, dentry->d_inode,
1906 tlen, tname, name))
1907 goto next;
1908 } else {
1909 if (tlen != len)
1910 goto next;
1911 if (memcmp(tname, str, tlen))
1912 goto next;
1913 }
1914
1915 dentry->d_count++;
1916 found = dentry;
1917 spin_unlock(&dentry->d_lock);
1918 break;
1919 next:
1920 spin_unlock(&dentry->d_lock);
1921 }
1922 rcu_read_unlock();
1923
1924 return found;
1925 }
1926
1927 /**
1928 * d_hash_and_lookup - hash the qstr then search for a dentry
1929 * @dir: Directory to search in
1930 * @name: qstr of name we wish to find
1931 *
1932 * On hash failure or on lookup failure NULL is returned.
1933 */
1934 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1935 {
1936 struct dentry *dentry = NULL;
1937
1938 /*
1939 * Check for a fs-specific hash function. Note that we must
1940 * calculate the standard hash first, as the d_op->d_hash()
1941 * routine may choose to leave the hash value unchanged.
1942 */
1943 name->hash = full_name_hash(name->name, name->len);
1944 if (dir->d_flags & DCACHE_OP_HASH) {
1945 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1946 goto out;
1947 }
1948 dentry = d_lookup(dir, name);
1949 out:
1950 return dentry;
1951 }
1952
1953 /**
1954 * d_validate - verify dentry provided from insecure source (deprecated)
1955 * @dentry: The dentry alleged to be valid child of @dparent
1956 * @dparent: The parent dentry (known to be valid)
1957 *
1958 * An insecure source has sent us a dentry, here we verify it and dget() it.
1959 * This is used by ncpfs in its readdir implementation.
1960 * Zero is returned in the dentry is invalid.
1961 *
1962 * This function is slow for big directories, and deprecated, do not use it.
1963 */
1964 int d_validate(struct dentry *dentry, struct dentry *dparent)
1965 {
1966 struct dentry *child;
1967
1968 spin_lock(&dparent->d_lock);
1969 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1970 if (dentry == child) {
1971 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1972 __dget_dlock(dentry);
1973 spin_unlock(&dentry->d_lock);
1974 spin_unlock(&dparent->d_lock);
1975 return 1;
1976 }
1977 }
1978 spin_unlock(&dparent->d_lock);
1979
1980 return 0;
1981 }
1982 EXPORT_SYMBOL(d_validate);
1983
1984 /*
1985 * When a file is deleted, we have two options:
1986 * - turn this dentry into a negative dentry
1987 * - unhash this dentry and free it.
1988 *
1989 * Usually, we want to just turn this into
1990 * a negative dentry, but if anybody else is
1991 * currently using the dentry or the inode
1992 * we can't do that and we fall back on removing
1993 * it from the hash queues and waiting for
1994 * it to be deleted later when it has no users
1995 */
1996
1997 /**
1998 * d_delete - delete a dentry
1999 * @dentry: The dentry to delete
2000 *
2001 * Turn the dentry into a negative dentry if possible, otherwise
2002 * remove it from the hash queues so it can be deleted later
2003 */
2004
2005 void d_delete(struct dentry * dentry)
2006 {
2007 int isdir = 0;
2008 /*
2009 * Are we the only user?
2010 */
2011 again:
2012 spin_lock(&dentry->d_lock);
2013 isdir = S_ISDIR(dentry->d_inode->i_mode);
2014 if (dentry->d_count == 1) {
2015 if (!spin_trylock(&dcache_inode_lock)) {
2016 spin_unlock(&dentry->d_lock);
2017 cpu_relax();
2018 goto again;
2019 }
2020 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2021 dentry_unlink_inode(dentry);
2022 fsnotify_nameremove(dentry, isdir);
2023 return;
2024 }
2025
2026 if (!d_unhashed(dentry))
2027 __d_drop(dentry);
2028
2029 spin_unlock(&dentry->d_lock);
2030
2031 fsnotify_nameremove(dentry, isdir);
2032 }
2033 EXPORT_SYMBOL(d_delete);
2034
2035 static void __d_rehash(struct dentry * entry, struct dcache_hash_bucket *b)
2036 {
2037 BUG_ON(!d_unhashed(entry));
2038 spin_lock_bucket(b);
2039 entry->d_flags &= ~DCACHE_UNHASHED;
2040 hlist_bl_add_head_rcu(&entry->d_hash, &b->head);
2041 spin_unlock_bucket(b);
2042 }
2043
2044 static void _d_rehash(struct dentry * entry)
2045 {
2046 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2047 }
2048
2049 /**
2050 * d_rehash - add an entry back to the hash
2051 * @entry: dentry to add to the hash
2052 *
2053 * Adds a dentry to the hash according to its name.
2054 */
2055
2056 void d_rehash(struct dentry * entry)
2057 {
2058 spin_lock(&entry->d_lock);
2059 _d_rehash(entry);
2060 spin_unlock(&entry->d_lock);
2061 }
2062 EXPORT_SYMBOL(d_rehash);
2063
2064 /**
2065 * dentry_update_name_case - update case insensitive dentry with a new name
2066 * @dentry: dentry to be updated
2067 * @name: new name
2068 *
2069 * Update a case insensitive dentry with new case of name.
2070 *
2071 * dentry must have been returned by d_lookup with name @name. Old and new
2072 * name lengths must match (ie. no d_compare which allows mismatched name
2073 * lengths).
2074 *
2075 * Parent inode i_mutex must be held over d_lookup and into this call (to
2076 * keep renames and concurrent inserts, and readdir(2) away).
2077 */
2078 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2079 {
2080 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2081 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2082
2083 spin_lock(&dentry->d_lock);
2084 write_seqcount_begin(&dentry->d_seq);
2085 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2086 write_seqcount_end(&dentry->d_seq);
2087 spin_unlock(&dentry->d_lock);
2088 }
2089 EXPORT_SYMBOL(dentry_update_name_case);
2090
2091 static void switch_names(struct dentry *dentry, struct dentry *target)
2092 {
2093 if (dname_external(target)) {
2094 if (dname_external(dentry)) {
2095 /*
2096 * Both external: swap the pointers
2097 */
2098 swap(target->d_name.name, dentry->d_name.name);
2099 } else {
2100 /*
2101 * dentry:internal, target:external. Steal target's
2102 * storage and make target internal.
2103 */
2104 memcpy(target->d_iname, dentry->d_name.name,
2105 dentry->d_name.len + 1);
2106 dentry->d_name.name = target->d_name.name;
2107 target->d_name.name = target->d_iname;
2108 }
2109 } else {
2110 if (dname_external(dentry)) {
2111 /*
2112 * dentry:external, target:internal. Give dentry's
2113 * storage to target and make dentry internal
2114 */
2115 memcpy(dentry->d_iname, target->d_name.name,
2116 target->d_name.len + 1);
2117 target->d_name.name = dentry->d_name.name;
2118 dentry->d_name.name = dentry->d_iname;
2119 } else {
2120 /*
2121 * Both are internal. Just copy target to dentry
2122 */
2123 memcpy(dentry->d_iname, target->d_name.name,
2124 target->d_name.len + 1);
2125 dentry->d_name.len = target->d_name.len;
2126 return;
2127 }
2128 }
2129 swap(dentry->d_name.len, target->d_name.len);
2130 }
2131
2132 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2133 {
2134 /*
2135 * XXXX: do we really need to take target->d_lock?
2136 */
2137 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2138 spin_lock(&target->d_parent->d_lock);
2139 else {
2140 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2141 spin_lock(&dentry->d_parent->d_lock);
2142 spin_lock_nested(&target->d_parent->d_lock,
2143 DENTRY_D_LOCK_NESTED);
2144 } else {
2145 spin_lock(&target->d_parent->d_lock);
2146 spin_lock_nested(&dentry->d_parent->d_lock,
2147 DENTRY_D_LOCK_NESTED);
2148 }
2149 }
2150 if (target < dentry) {
2151 spin_lock_nested(&target->d_lock, 2);
2152 spin_lock_nested(&dentry->d_lock, 3);
2153 } else {
2154 spin_lock_nested(&dentry->d_lock, 2);
2155 spin_lock_nested(&target->d_lock, 3);
2156 }
2157 }
2158
2159 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2160 struct dentry *target)
2161 {
2162 if (target->d_parent != dentry->d_parent)
2163 spin_unlock(&dentry->d_parent->d_lock);
2164 if (target->d_parent != target)
2165 spin_unlock(&target->d_parent->d_lock);
2166 }
2167
2168 /*
2169 * When switching names, the actual string doesn't strictly have to
2170 * be preserved in the target - because we're dropping the target
2171 * anyway. As such, we can just do a simple memcpy() to copy over
2172 * the new name before we switch.
2173 *
2174 * Note that we have to be a lot more careful about getting the hash
2175 * switched - we have to switch the hash value properly even if it
2176 * then no longer matches the actual (corrupted) string of the target.
2177 * The hash value has to match the hash queue that the dentry is on..
2178 */
2179 /*
2180 * d_move - move a dentry
2181 * @dentry: entry to move
2182 * @target: new dentry
2183 *
2184 * Update the dcache to reflect the move of a file name. Negative
2185 * dcache entries should not be moved in this way.
2186 */
2187 void d_move(struct dentry * dentry, struct dentry * target)
2188 {
2189 if (!dentry->d_inode)
2190 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2191
2192 BUG_ON(d_ancestor(dentry, target));
2193 BUG_ON(d_ancestor(target, dentry));
2194
2195 write_seqlock(&rename_lock);
2196
2197 dentry_lock_for_move(dentry, target);
2198
2199 write_seqcount_begin(&dentry->d_seq);
2200 write_seqcount_begin(&target->d_seq);
2201
2202 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2203
2204 /*
2205 * Move the dentry to the target hash queue. Don't bother checking
2206 * for the same hash queue because of how unlikely it is.
2207 */
2208 __d_drop(dentry);
2209 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2210
2211 /* Unhash the target: dput() will then get rid of it */
2212 __d_drop(target);
2213
2214 list_del(&dentry->d_u.d_child);
2215 list_del(&target->d_u.d_child);
2216
2217 /* Switch the names.. */
2218 switch_names(dentry, target);
2219 swap(dentry->d_name.hash, target->d_name.hash);
2220
2221 /* ... and switch the parents */
2222 if (IS_ROOT(dentry)) {
2223 dentry->d_parent = target->d_parent;
2224 target->d_parent = target;
2225 INIT_LIST_HEAD(&target->d_u.d_child);
2226 } else {
2227 swap(dentry->d_parent, target->d_parent);
2228
2229 /* And add them back to the (new) parent lists */
2230 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2231 }
2232
2233 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2234
2235 write_seqcount_end(&target->d_seq);
2236 write_seqcount_end(&dentry->d_seq);
2237
2238 dentry_unlock_parents_for_move(dentry, target);
2239 spin_unlock(&target->d_lock);
2240 fsnotify_d_move(dentry);
2241 spin_unlock(&dentry->d_lock);
2242 write_sequnlock(&rename_lock);
2243 }
2244 EXPORT_SYMBOL(d_move);
2245
2246 /**
2247 * d_ancestor - search for an ancestor
2248 * @p1: ancestor dentry
2249 * @p2: child dentry
2250 *
2251 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2252 * an ancestor of p2, else NULL.
2253 */
2254 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2255 {
2256 struct dentry *p;
2257
2258 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2259 if (p->d_parent == p1)
2260 return p;
2261 }
2262 return NULL;
2263 }
2264
2265 /*
2266 * This helper attempts to cope with remotely renamed directories
2267 *
2268 * It assumes that the caller is already holding
2269 * dentry->d_parent->d_inode->i_mutex and the dcache_inode_lock
2270 *
2271 * Note: If ever the locking in lock_rename() changes, then please
2272 * remember to update this too...
2273 */
2274 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
2275 __releases(dcache_inode_lock)
2276 {
2277 struct mutex *m1 = NULL, *m2 = NULL;
2278 struct dentry *ret;
2279
2280 /* If alias and dentry share a parent, then no extra locks required */
2281 if (alias->d_parent == dentry->d_parent)
2282 goto out_unalias;
2283
2284 /* Check for loops */
2285 ret = ERR_PTR(-ELOOP);
2286 if (d_ancestor(alias, dentry))
2287 goto out_err;
2288
2289 /* See lock_rename() */
2290 ret = ERR_PTR(-EBUSY);
2291 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2292 goto out_err;
2293 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2294 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2295 goto out_err;
2296 m2 = &alias->d_parent->d_inode->i_mutex;
2297 out_unalias:
2298 d_move(alias, dentry);
2299 ret = alias;
2300 out_err:
2301 spin_unlock(&dcache_inode_lock);
2302 if (m2)
2303 mutex_unlock(m2);
2304 if (m1)
2305 mutex_unlock(m1);
2306 return ret;
2307 }
2308
2309 /*
2310 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2311 * named dentry in place of the dentry to be replaced.
2312 * returns with anon->d_lock held!
2313 */
2314 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2315 {
2316 struct dentry *dparent, *aparent;
2317
2318 dentry_lock_for_move(anon, dentry);
2319
2320 write_seqcount_begin(&dentry->d_seq);
2321 write_seqcount_begin(&anon->d_seq);
2322
2323 dparent = dentry->d_parent;
2324 aparent = anon->d_parent;
2325
2326 switch_names(dentry, anon);
2327 swap(dentry->d_name.hash, anon->d_name.hash);
2328
2329 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2330 list_del(&dentry->d_u.d_child);
2331 if (!IS_ROOT(dentry))
2332 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2333 else
2334 INIT_LIST_HEAD(&dentry->d_u.d_child);
2335
2336 anon->d_parent = (dparent == dentry) ? anon : dparent;
2337 list_del(&anon->d_u.d_child);
2338 if (!IS_ROOT(anon))
2339 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2340 else
2341 INIT_LIST_HEAD(&anon->d_u.d_child);
2342
2343 write_seqcount_end(&dentry->d_seq);
2344 write_seqcount_end(&anon->d_seq);
2345
2346 dentry_unlock_parents_for_move(anon, dentry);
2347 spin_unlock(&dentry->d_lock);
2348
2349 /* anon->d_lock still locked, returns locked */
2350 anon->d_flags &= ~DCACHE_DISCONNECTED;
2351 }
2352
2353 /**
2354 * d_materialise_unique - introduce an inode into the tree
2355 * @dentry: candidate dentry
2356 * @inode: inode to bind to the dentry, to which aliases may be attached
2357 *
2358 * Introduces an dentry into the tree, substituting an extant disconnected
2359 * root directory alias in its place if there is one
2360 */
2361 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2362 {
2363 struct dentry *actual;
2364
2365 BUG_ON(!d_unhashed(dentry));
2366
2367 if (!inode) {
2368 actual = dentry;
2369 __d_instantiate(dentry, NULL);
2370 d_rehash(actual);
2371 goto out_nolock;
2372 }
2373
2374 spin_lock(&dcache_inode_lock);
2375
2376 if (S_ISDIR(inode->i_mode)) {
2377 struct dentry *alias;
2378
2379 /* Does an aliased dentry already exist? */
2380 alias = __d_find_alias(inode, 0);
2381 if (alias) {
2382 actual = alias;
2383 /* Is this an anonymous mountpoint that we could splice
2384 * into our tree? */
2385 if (IS_ROOT(alias)) {
2386 __d_materialise_dentry(dentry, alias);
2387 __d_drop(alias);
2388 goto found;
2389 }
2390 /* Nope, but we must(!) avoid directory aliasing */
2391 actual = __d_unalias(dentry, alias);
2392 if (IS_ERR(actual))
2393 dput(alias);
2394 goto out_nolock;
2395 }
2396 }
2397
2398 /* Add a unique reference */
2399 actual = __d_instantiate_unique(dentry, inode);
2400 if (!actual)
2401 actual = dentry;
2402 else
2403 BUG_ON(!d_unhashed(actual));
2404
2405 spin_lock(&actual->d_lock);
2406 found:
2407 _d_rehash(actual);
2408 spin_unlock(&actual->d_lock);
2409 spin_unlock(&dcache_inode_lock);
2410 out_nolock:
2411 if (actual == dentry) {
2412 security_d_instantiate(dentry, inode);
2413 return NULL;
2414 }
2415
2416 iput(inode);
2417 return actual;
2418 }
2419 EXPORT_SYMBOL_GPL(d_materialise_unique);
2420
2421 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2422 {
2423 *buflen -= namelen;
2424 if (*buflen < 0)
2425 return -ENAMETOOLONG;
2426 *buffer -= namelen;
2427 memcpy(*buffer, str, namelen);
2428 return 0;
2429 }
2430
2431 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2432 {
2433 return prepend(buffer, buflen, name->name, name->len);
2434 }
2435
2436 /**
2437 * Prepend path string to a buffer
2438 *
2439 * @path: the dentry/vfsmount to report
2440 * @root: root vfsmnt/dentry (may be modified by this function)
2441 * @buffer: pointer to the end of the buffer
2442 * @buflen: pointer to buffer length
2443 *
2444 * Caller holds the rename_lock.
2445 *
2446 * If path is not reachable from the supplied root, then the value of
2447 * root is changed (without modifying refcounts).
2448 */
2449 static int prepend_path(const struct path *path, struct path *root,
2450 char **buffer, int *buflen)
2451 {
2452 struct dentry *dentry = path->dentry;
2453 struct vfsmount *vfsmnt = path->mnt;
2454 bool slash = false;
2455 int error = 0;
2456
2457 br_read_lock(vfsmount_lock);
2458 while (dentry != root->dentry || vfsmnt != root->mnt) {
2459 struct dentry * parent;
2460
2461 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2462 /* Global root? */
2463 if (vfsmnt->mnt_parent == vfsmnt) {
2464 goto global_root;
2465 }
2466 dentry = vfsmnt->mnt_mountpoint;
2467 vfsmnt = vfsmnt->mnt_parent;
2468 continue;
2469 }
2470 parent = dentry->d_parent;
2471 prefetch(parent);
2472 spin_lock(&dentry->d_lock);
2473 error = prepend_name(buffer, buflen, &dentry->d_name);
2474 spin_unlock(&dentry->d_lock);
2475 if (!error)
2476 error = prepend(buffer, buflen, "/", 1);
2477 if (error)
2478 break;
2479
2480 slash = true;
2481 dentry = parent;
2482 }
2483
2484 out:
2485 if (!error && !slash)
2486 error = prepend(buffer, buflen, "/", 1);
2487
2488 br_read_unlock(vfsmount_lock);
2489 return error;
2490
2491 global_root:
2492 /*
2493 * Filesystems needing to implement special "root names"
2494 * should do so with ->d_dname()
2495 */
2496 if (IS_ROOT(dentry) &&
2497 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2498 WARN(1, "Root dentry has weird name <%.*s>\n",
2499 (int) dentry->d_name.len, dentry->d_name.name);
2500 }
2501 root->mnt = vfsmnt;
2502 root->dentry = dentry;
2503 goto out;
2504 }
2505
2506 /**
2507 * __d_path - return the path of a dentry
2508 * @path: the dentry/vfsmount to report
2509 * @root: root vfsmnt/dentry (may be modified by this function)
2510 * @buf: buffer to return value in
2511 * @buflen: buffer length
2512 *
2513 * Convert a dentry into an ASCII path name.
2514 *
2515 * Returns a pointer into the buffer or an error code if the
2516 * path was too long.
2517 *
2518 * "buflen" should be positive.
2519 *
2520 * If path is not reachable from the supplied root, then the value of
2521 * root is changed (without modifying refcounts).
2522 */
2523 char *__d_path(const struct path *path, struct path *root,
2524 char *buf, int buflen)
2525 {
2526 char *res = buf + buflen;
2527 int error;
2528
2529 prepend(&res, &buflen, "\0", 1);
2530 write_seqlock(&rename_lock);
2531 error = prepend_path(path, root, &res, &buflen);
2532 write_sequnlock(&rename_lock);
2533
2534 if (error)
2535 return ERR_PTR(error);
2536 return res;
2537 }
2538
2539 /*
2540 * same as __d_path but appends "(deleted)" for unlinked files.
2541 */
2542 static int path_with_deleted(const struct path *path, struct path *root,
2543 char **buf, int *buflen)
2544 {
2545 prepend(buf, buflen, "\0", 1);
2546 if (d_unlinked(path->dentry)) {
2547 int error = prepend(buf, buflen, " (deleted)", 10);
2548 if (error)
2549 return error;
2550 }
2551
2552 return prepend_path(path, root, buf, buflen);
2553 }
2554
2555 static int prepend_unreachable(char **buffer, int *buflen)
2556 {
2557 return prepend(buffer, buflen, "(unreachable)", 13);
2558 }
2559
2560 /**
2561 * d_path - return the path of a dentry
2562 * @path: path to report
2563 * @buf: buffer to return value in
2564 * @buflen: buffer length
2565 *
2566 * Convert a dentry into an ASCII path name. If the entry has been deleted
2567 * the string " (deleted)" is appended. Note that this is ambiguous.
2568 *
2569 * Returns a pointer into the buffer or an error code if the path was
2570 * too long. Note: Callers should use the returned pointer, not the passed
2571 * in buffer, to use the name! The implementation often starts at an offset
2572 * into the buffer, and may leave 0 bytes at the start.
2573 *
2574 * "buflen" should be positive.
2575 */
2576 char *d_path(const struct path *path, char *buf, int buflen)
2577 {
2578 char *res = buf + buflen;
2579 struct path root;
2580 struct path tmp;
2581 int error;
2582
2583 /*
2584 * We have various synthetic filesystems that never get mounted. On
2585 * these filesystems dentries are never used for lookup purposes, and
2586 * thus don't need to be hashed. They also don't need a name until a
2587 * user wants to identify the object in /proc/pid/fd/. The little hack
2588 * below allows us to generate a name for these objects on demand:
2589 */
2590 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2591 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2592
2593 get_fs_root(current->fs, &root);
2594 write_seqlock(&rename_lock);
2595 tmp = root;
2596 error = path_with_deleted(path, &tmp, &res, &buflen);
2597 if (error)
2598 res = ERR_PTR(error);
2599 write_sequnlock(&rename_lock);
2600 path_put(&root);
2601 return res;
2602 }
2603 EXPORT_SYMBOL(d_path);
2604
2605 /**
2606 * d_path_with_unreachable - return the path of a dentry
2607 * @path: path to report
2608 * @buf: buffer to return value in
2609 * @buflen: buffer length
2610 *
2611 * The difference from d_path() is that this prepends "(unreachable)"
2612 * to paths which are unreachable from the current process' root.
2613 */
2614 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2615 {
2616 char *res = buf + buflen;
2617 struct path root;
2618 struct path tmp;
2619 int error;
2620
2621 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2622 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2623
2624 get_fs_root(current->fs, &root);
2625 write_seqlock(&rename_lock);
2626 tmp = root;
2627 error = path_with_deleted(path, &tmp, &res, &buflen);
2628 if (!error && !path_equal(&tmp, &root))
2629 error = prepend_unreachable(&res, &buflen);
2630 write_sequnlock(&rename_lock);
2631 path_put(&root);
2632 if (error)
2633 res = ERR_PTR(error);
2634
2635 return res;
2636 }
2637
2638 /*
2639 * Helper function for dentry_operations.d_dname() members
2640 */
2641 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2642 const char *fmt, ...)
2643 {
2644 va_list args;
2645 char temp[64];
2646 int sz;
2647
2648 va_start(args, fmt);
2649 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2650 va_end(args);
2651
2652 if (sz > sizeof(temp) || sz > buflen)
2653 return ERR_PTR(-ENAMETOOLONG);
2654
2655 buffer += buflen - sz;
2656 return memcpy(buffer, temp, sz);
2657 }
2658
2659 /*
2660 * Write full pathname from the root of the filesystem into the buffer.
2661 */
2662 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2663 {
2664 char *end = buf + buflen;
2665 char *retval;
2666
2667 prepend(&end, &buflen, "\0", 1);
2668 if (buflen < 1)
2669 goto Elong;
2670 /* Get '/' right */
2671 retval = end-1;
2672 *retval = '/';
2673
2674 while (!IS_ROOT(dentry)) {
2675 struct dentry *parent = dentry->d_parent;
2676 int error;
2677
2678 prefetch(parent);
2679 spin_lock(&dentry->d_lock);
2680 error = prepend_name(&end, &buflen, &dentry->d_name);
2681 spin_unlock(&dentry->d_lock);
2682 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2683 goto Elong;
2684
2685 retval = end;
2686 dentry = parent;
2687 }
2688 return retval;
2689 Elong:
2690 return ERR_PTR(-ENAMETOOLONG);
2691 }
2692
2693 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2694 {
2695 char *retval;
2696
2697 write_seqlock(&rename_lock);
2698 retval = __dentry_path(dentry, buf, buflen);
2699 write_sequnlock(&rename_lock);
2700
2701 return retval;
2702 }
2703 EXPORT_SYMBOL(dentry_path_raw);
2704
2705 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2706 {
2707 char *p = NULL;
2708 char *retval;
2709
2710 write_seqlock(&rename_lock);
2711 if (d_unlinked(dentry)) {
2712 p = buf + buflen;
2713 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2714 goto Elong;
2715 buflen++;
2716 }
2717 retval = __dentry_path(dentry, buf, buflen);
2718 write_sequnlock(&rename_lock);
2719 if (!IS_ERR(retval) && p)
2720 *p = '/'; /* restore '/' overriden with '\0' */
2721 return retval;
2722 Elong:
2723 return ERR_PTR(-ENAMETOOLONG);
2724 }
2725
2726 /*
2727 * NOTE! The user-level library version returns a
2728 * character pointer. The kernel system call just
2729 * returns the length of the buffer filled (which
2730 * includes the ending '\0' character), or a negative
2731 * error value. So libc would do something like
2732 *
2733 * char *getcwd(char * buf, size_t size)
2734 * {
2735 * int retval;
2736 *
2737 * retval = sys_getcwd(buf, size);
2738 * if (retval >= 0)
2739 * return buf;
2740 * errno = -retval;
2741 * return NULL;
2742 * }
2743 */
2744 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2745 {
2746 int error;
2747 struct path pwd, root;
2748 char *page = (char *) __get_free_page(GFP_USER);
2749
2750 if (!page)
2751 return -ENOMEM;
2752
2753 get_fs_root_and_pwd(current->fs, &root, &pwd);
2754
2755 error = -ENOENT;
2756 write_seqlock(&rename_lock);
2757 if (!d_unlinked(pwd.dentry)) {
2758 unsigned long len;
2759 struct path tmp = root;
2760 char *cwd = page + PAGE_SIZE;
2761 int buflen = PAGE_SIZE;
2762
2763 prepend(&cwd, &buflen, "\0", 1);
2764 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2765 write_sequnlock(&rename_lock);
2766
2767 if (error)
2768 goto out;
2769
2770 /* Unreachable from current root */
2771 if (!path_equal(&tmp, &root)) {
2772 error = prepend_unreachable(&cwd, &buflen);
2773 if (error)
2774 goto out;
2775 }
2776
2777 error = -ERANGE;
2778 len = PAGE_SIZE + page - cwd;
2779 if (len <= size) {
2780 error = len;
2781 if (copy_to_user(buf, cwd, len))
2782 error = -EFAULT;
2783 }
2784 } else {
2785 write_sequnlock(&rename_lock);
2786 }
2787
2788 out:
2789 path_put(&pwd);
2790 path_put(&root);
2791 free_page((unsigned long) page);
2792 return error;
2793 }
2794
2795 /*
2796 * Test whether new_dentry is a subdirectory of old_dentry.
2797 *
2798 * Trivially implemented using the dcache structure
2799 */
2800
2801 /**
2802 * is_subdir - is new dentry a subdirectory of old_dentry
2803 * @new_dentry: new dentry
2804 * @old_dentry: old dentry
2805 *
2806 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2807 * Returns 0 otherwise.
2808 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2809 */
2810
2811 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2812 {
2813 int result;
2814 unsigned seq;
2815
2816 if (new_dentry == old_dentry)
2817 return 1;
2818
2819 do {
2820 /* for restarting inner loop in case of seq retry */
2821 seq = read_seqbegin(&rename_lock);
2822 /*
2823 * Need rcu_readlock to protect against the d_parent trashing
2824 * due to d_move
2825 */
2826 rcu_read_lock();
2827 if (d_ancestor(old_dentry, new_dentry))
2828 result = 1;
2829 else
2830 result = 0;
2831 rcu_read_unlock();
2832 } while (read_seqretry(&rename_lock, seq));
2833
2834 return result;
2835 }
2836
2837 int path_is_under(struct path *path1, struct path *path2)
2838 {
2839 struct vfsmount *mnt = path1->mnt;
2840 struct dentry *dentry = path1->dentry;
2841 int res;
2842
2843 br_read_lock(vfsmount_lock);
2844 if (mnt != path2->mnt) {
2845 for (;;) {
2846 if (mnt->mnt_parent == mnt) {
2847 br_read_unlock(vfsmount_lock);
2848 return 0;
2849 }
2850 if (mnt->mnt_parent == path2->mnt)
2851 break;
2852 mnt = mnt->mnt_parent;
2853 }
2854 dentry = mnt->mnt_mountpoint;
2855 }
2856 res = is_subdir(dentry, path2->dentry);
2857 br_read_unlock(vfsmount_lock);
2858 return res;
2859 }
2860 EXPORT_SYMBOL(path_is_under);
2861
2862 void d_genocide(struct dentry *root)
2863 {
2864 struct dentry *this_parent;
2865 struct list_head *next;
2866 unsigned seq;
2867 int locked = 0;
2868
2869 seq = read_seqbegin(&rename_lock);
2870 again:
2871 this_parent = root;
2872 spin_lock(&this_parent->d_lock);
2873 repeat:
2874 next = this_parent->d_subdirs.next;
2875 resume:
2876 while (next != &this_parent->d_subdirs) {
2877 struct list_head *tmp = next;
2878 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2879 next = tmp->next;
2880
2881 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2882 if (d_unhashed(dentry) || !dentry->d_inode) {
2883 spin_unlock(&dentry->d_lock);
2884 continue;
2885 }
2886 if (!list_empty(&dentry->d_subdirs)) {
2887 spin_unlock(&this_parent->d_lock);
2888 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2889 this_parent = dentry;
2890 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2891 goto repeat;
2892 }
2893 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2894 dentry->d_flags |= DCACHE_GENOCIDE;
2895 dentry->d_count--;
2896 }
2897 spin_unlock(&dentry->d_lock);
2898 }
2899 if (this_parent != root) {
2900 struct dentry *tmp;
2901 struct dentry *child;
2902
2903 tmp = this_parent->d_parent;
2904 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2905 this_parent->d_flags |= DCACHE_GENOCIDE;
2906 this_parent->d_count--;
2907 }
2908 rcu_read_lock();
2909 spin_unlock(&this_parent->d_lock);
2910 child = this_parent;
2911 this_parent = tmp;
2912 spin_lock(&this_parent->d_lock);
2913 /* might go back up the wrong parent if we have had a rename
2914 * or deletion */
2915 if (this_parent != child->d_parent ||
2916 (!locked && read_seqretry(&rename_lock, seq))) {
2917 spin_unlock(&this_parent->d_lock);
2918 rcu_read_unlock();
2919 goto rename_retry;
2920 }
2921 rcu_read_unlock();
2922 next = child->d_u.d_child.next;
2923 goto resume;
2924 }
2925 spin_unlock(&this_parent->d_lock);
2926 if (!locked && read_seqretry(&rename_lock, seq))
2927 goto rename_retry;
2928 if (locked)
2929 write_sequnlock(&rename_lock);
2930 return;
2931
2932 rename_retry:
2933 locked = 1;
2934 write_seqlock(&rename_lock);
2935 goto again;
2936 }
2937
2938 /**
2939 * find_inode_number - check for dentry with name
2940 * @dir: directory to check
2941 * @name: Name to find.
2942 *
2943 * Check whether a dentry already exists for the given name,
2944 * and return the inode number if it has an inode. Otherwise
2945 * 0 is returned.
2946 *
2947 * This routine is used to post-process directory listings for
2948 * filesystems using synthetic inode numbers, and is necessary
2949 * to keep getcwd() working.
2950 */
2951
2952 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2953 {
2954 struct dentry * dentry;
2955 ino_t ino = 0;
2956
2957 dentry = d_hash_and_lookup(dir, name);
2958 if (dentry) {
2959 if (dentry->d_inode)
2960 ino = dentry->d_inode->i_ino;
2961 dput(dentry);
2962 }
2963 return ino;
2964 }
2965 EXPORT_SYMBOL(find_inode_number);
2966
2967 static __initdata unsigned long dhash_entries;
2968 static int __init set_dhash_entries(char *str)
2969 {
2970 if (!str)
2971 return 0;
2972 dhash_entries = simple_strtoul(str, &str, 0);
2973 return 1;
2974 }
2975 __setup("dhash_entries=", set_dhash_entries);
2976
2977 static void __init dcache_init_early(void)
2978 {
2979 int loop;
2980
2981 /* If hashes are distributed across NUMA nodes, defer
2982 * hash allocation until vmalloc space is available.
2983 */
2984 if (hashdist)
2985 return;
2986
2987 dentry_hashtable =
2988 alloc_large_system_hash("Dentry cache",
2989 sizeof(struct dcache_hash_bucket),
2990 dhash_entries,
2991 13,
2992 HASH_EARLY,
2993 &d_hash_shift,
2994 &d_hash_mask,
2995 0);
2996
2997 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2998 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
2999 }
3000
3001 static void __init dcache_init(void)
3002 {
3003 int loop;
3004
3005 /*
3006 * A constructor could be added for stable state like the lists,
3007 * but it is probably not worth it because of the cache nature
3008 * of the dcache.
3009 */
3010 dentry_cache = KMEM_CACHE(dentry,
3011 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3012
3013 register_shrinker(&dcache_shrinker);
3014
3015 /* Hash may have been set up in dcache_init_early */
3016 if (!hashdist)
3017 return;
3018
3019 dentry_hashtable =
3020 alloc_large_system_hash("Dentry cache",
3021 sizeof(struct dcache_hash_bucket),
3022 dhash_entries,
3023 13,
3024 0,
3025 &d_hash_shift,
3026 &d_hash_mask,
3027 0);
3028
3029 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3030 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
3031 }
3032
3033 /* SLAB cache for __getname() consumers */
3034 struct kmem_cache *names_cachep __read_mostly;
3035 EXPORT_SYMBOL(names_cachep);
3036
3037 EXPORT_SYMBOL(d_genocide);
3038
3039 void __init vfs_caches_init_early(void)
3040 {
3041 dcache_init_early();
3042 inode_init_early();
3043 }
3044
3045 void __init vfs_caches_init(unsigned long mempages)
3046 {
3047 unsigned long reserve;
3048
3049 /* Base hash sizes on available memory, with a reserve equal to
3050 150% of current kernel size */
3051
3052 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3053 mempages -= reserve;
3054
3055 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3056 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3057
3058 dcache_init();
3059 inode_init();
3060 files_init(mempages);
3061 mnt_init();
3062 bdev_cache_init();
3063 chrdev_init();
3064 }
This page took 0.08774 seconds and 6 git commands to generate.