VFS: Add a fallthrough flag for marking virtual dentries
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 /*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
117 };
118
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123
124 /*
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
128 *
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
132 *
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
135 */
136 static long get_nr_dentry(void)
137 {
138 int i;
139 long sum = 0;
140 for_each_possible_cpu(i)
141 sum += per_cpu(nr_dentry, i);
142 return sum < 0 ? 0 : sum;
143 }
144
145 static long get_nr_dentry_unused(void)
146 {
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry_unused, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 size_t *lenp, loff_t *ppos)
156 {
157 dentry_stat.nr_dentry = get_nr_dentry();
158 dentry_stat.nr_unused = get_nr_dentry_unused();
159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162
163 /*
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
166 */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168
169 #include <asm/word-at-a-time.h>
170 /*
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
175 *
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
178 */
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 unsigned long a,b,mask;
182
183 for (;;) {
184 a = *(unsigned long *)cs;
185 b = load_unaligned_zeropad(ct);
186 if (tcount < sizeof(unsigned long))
187 break;
188 if (unlikely(a != b))
189 return 1;
190 cs += sizeof(unsigned long);
191 ct += sizeof(unsigned long);
192 tcount -= sizeof(unsigned long);
193 if (!tcount)
194 return 0;
195 }
196 mask = bytemask_from_count(tcount);
197 return unlikely(!!((a ^ b) & mask));
198 }
199
200 #else
201
202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 do {
205 if (*cs != *ct)
206 return 1;
207 cs++;
208 ct++;
209 tcount--;
210 } while (tcount);
211 return 0;
212 }
213
214 #endif
215
216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 const unsigned char *cs;
219 /*
220 * Be careful about RCU walk racing with rename:
221 * use ACCESS_ONCE to fetch the name pointer.
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
235 cs = ACCESS_ONCE(dentry->d_name.name);
236 smp_read_barrier_depends();
237 return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246 };
247
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
253 static void __d_free(struct rcu_head *head)
254 {
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257 kmem_cache_free(dentry_cache, dentry);
258 }
259
260 static void __d_free_external(struct rcu_head *head)
261 {
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
265 }
266
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 return dentry->d_name.name != dentry->d_iname;
270 }
271
272 static void dentry_free(struct dentry *dentry)
273 {
274 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
275 if (unlikely(dname_external(dentry))) {
276 struct external_name *p = external_name(dentry);
277 if (likely(atomic_dec_and_test(&p->u.count))) {
278 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
279 return;
280 }
281 }
282 /* if dentry was never visible to RCU, immediate free is OK */
283 if (!(dentry->d_flags & DCACHE_RCUACCESS))
284 __d_free(&dentry->d_u.d_rcu);
285 else
286 call_rcu(&dentry->d_u.d_rcu, __d_free);
287 }
288
289 /**
290 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
291 * @dentry: the target dentry
292 * After this call, in-progress rcu-walk path lookup will fail. This
293 * should be called after unhashing, and after changing d_inode (if
294 * the dentry has not already been unhashed).
295 */
296 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
297 {
298 assert_spin_locked(&dentry->d_lock);
299 /* Go through a barrier */
300 write_seqcount_barrier(&dentry->d_seq);
301 }
302
303 /*
304 * Release the dentry's inode, using the filesystem
305 * d_iput() operation if defined. Dentry has no refcount
306 * and is unhashed.
307 */
308 static void dentry_iput(struct dentry * dentry)
309 __releases(dentry->d_lock)
310 __releases(dentry->d_inode->i_lock)
311 {
312 struct inode *inode = dentry->d_inode;
313 if (inode) {
314 dentry->d_inode = NULL;
315 hlist_del_init(&dentry->d_u.d_alias);
316 spin_unlock(&dentry->d_lock);
317 spin_unlock(&inode->i_lock);
318 if (!inode->i_nlink)
319 fsnotify_inoderemove(inode);
320 if (dentry->d_op && dentry->d_op->d_iput)
321 dentry->d_op->d_iput(dentry, inode);
322 else
323 iput(inode);
324 } else {
325 spin_unlock(&dentry->d_lock);
326 }
327 }
328
329 /*
330 * Release the dentry's inode, using the filesystem
331 * d_iput() operation if defined. dentry remains in-use.
332 */
333 static void dentry_unlink_inode(struct dentry * dentry)
334 __releases(dentry->d_lock)
335 __releases(dentry->d_inode->i_lock)
336 {
337 struct inode *inode = dentry->d_inode;
338 __d_clear_type(dentry);
339 dentry->d_inode = NULL;
340 hlist_del_init(&dentry->d_u.d_alias);
341 dentry_rcuwalk_barrier(dentry);
342 spin_unlock(&dentry->d_lock);
343 spin_unlock(&inode->i_lock);
344 if (!inode->i_nlink)
345 fsnotify_inoderemove(inode);
346 if (dentry->d_op && dentry->d_op->d_iput)
347 dentry->d_op->d_iput(dentry, inode);
348 else
349 iput(inode);
350 }
351
352 /*
353 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
354 * is in use - which includes both the "real" per-superblock
355 * LRU list _and_ the DCACHE_SHRINK_LIST use.
356 *
357 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
358 * on the shrink list (ie not on the superblock LRU list).
359 *
360 * The per-cpu "nr_dentry_unused" counters are updated with
361 * the DCACHE_LRU_LIST bit.
362 *
363 * These helper functions make sure we always follow the
364 * rules. d_lock must be held by the caller.
365 */
366 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
367 static void d_lru_add(struct dentry *dentry)
368 {
369 D_FLAG_VERIFY(dentry, 0);
370 dentry->d_flags |= DCACHE_LRU_LIST;
371 this_cpu_inc(nr_dentry_unused);
372 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
373 }
374
375 static void d_lru_del(struct dentry *dentry)
376 {
377 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
378 dentry->d_flags &= ~DCACHE_LRU_LIST;
379 this_cpu_dec(nr_dentry_unused);
380 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
381 }
382
383 static void d_shrink_del(struct dentry *dentry)
384 {
385 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
386 list_del_init(&dentry->d_lru);
387 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
388 this_cpu_dec(nr_dentry_unused);
389 }
390
391 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
392 {
393 D_FLAG_VERIFY(dentry, 0);
394 list_add(&dentry->d_lru, list);
395 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
396 this_cpu_inc(nr_dentry_unused);
397 }
398
399 /*
400 * These can only be called under the global LRU lock, ie during the
401 * callback for freeing the LRU list. "isolate" removes it from the
402 * LRU lists entirely, while shrink_move moves it to the indicated
403 * private list.
404 */
405 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
406 {
407 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
408 dentry->d_flags &= ~DCACHE_LRU_LIST;
409 this_cpu_dec(nr_dentry_unused);
410 list_lru_isolate(lru, &dentry->d_lru);
411 }
412
413 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
414 struct list_head *list)
415 {
416 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
417 dentry->d_flags |= DCACHE_SHRINK_LIST;
418 list_lru_isolate_move(lru, &dentry->d_lru, list);
419 }
420
421 /*
422 * dentry_lru_(add|del)_list) must be called with d_lock held.
423 */
424 static void dentry_lru_add(struct dentry *dentry)
425 {
426 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
427 d_lru_add(dentry);
428 }
429
430 /**
431 * d_drop - drop a dentry
432 * @dentry: dentry to drop
433 *
434 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
435 * be found through a VFS lookup any more. Note that this is different from
436 * deleting the dentry - d_delete will try to mark the dentry negative if
437 * possible, giving a successful _negative_ lookup, while d_drop will
438 * just make the cache lookup fail.
439 *
440 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
441 * reason (NFS timeouts or autofs deletes).
442 *
443 * __d_drop requires dentry->d_lock.
444 */
445 void __d_drop(struct dentry *dentry)
446 {
447 if (!d_unhashed(dentry)) {
448 struct hlist_bl_head *b;
449 /*
450 * Hashed dentries are normally on the dentry hashtable,
451 * with the exception of those newly allocated by
452 * d_obtain_alias, which are always IS_ROOT:
453 */
454 if (unlikely(IS_ROOT(dentry)))
455 b = &dentry->d_sb->s_anon;
456 else
457 b = d_hash(dentry->d_parent, dentry->d_name.hash);
458
459 hlist_bl_lock(b);
460 __hlist_bl_del(&dentry->d_hash);
461 dentry->d_hash.pprev = NULL;
462 hlist_bl_unlock(b);
463 dentry_rcuwalk_barrier(dentry);
464 }
465 }
466 EXPORT_SYMBOL(__d_drop);
467
468 void d_drop(struct dentry *dentry)
469 {
470 spin_lock(&dentry->d_lock);
471 __d_drop(dentry);
472 spin_unlock(&dentry->d_lock);
473 }
474 EXPORT_SYMBOL(d_drop);
475
476 static void __dentry_kill(struct dentry *dentry)
477 {
478 struct dentry *parent = NULL;
479 bool can_free = true;
480 if (!IS_ROOT(dentry))
481 parent = dentry->d_parent;
482
483 /*
484 * The dentry is now unrecoverably dead to the world.
485 */
486 lockref_mark_dead(&dentry->d_lockref);
487
488 /*
489 * inform the fs via d_prune that this dentry is about to be
490 * unhashed and destroyed.
491 */
492 if (dentry->d_flags & DCACHE_OP_PRUNE)
493 dentry->d_op->d_prune(dentry);
494
495 if (dentry->d_flags & DCACHE_LRU_LIST) {
496 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
497 d_lru_del(dentry);
498 }
499 /* if it was on the hash then remove it */
500 __d_drop(dentry);
501 __list_del_entry(&dentry->d_child);
502 /*
503 * Inform d_walk() that we are no longer attached to the
504 * dentry tree
505 */
506 dentry->d_flags |= DCACHE_DENTRY_KILLED;
507 if (parent)
508 spin_unlock(&parent->d_lock);
509 dentry_iput(dentry);
510 /*
511 * dentry_iput drops the locks, at which point nobody (except
512 * transient RCU lookups) can reach this dentry.
513 */
514 BUG_ON(dentry->d_lockref.count > 0);
515 this_cpu_dec(nr_dentry);
516 if (dentry->d_op && dentry->d_op->d_release)
517 dentry->d_op->d_release(dentry);
518
519 spin_lock(&dentry->d_lock);
520 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
521 dentry->d_flags |= DCACHE_MAY_FREE;
522 can_free = false;
523 }
524 spin_unlock(&dentry->d_lock);
525 if (likely(can_free))
526 dentry_free(dentry);
527 }
528
529 /*
530 * Finish off a dentry we've decided to kill.
531 * dentry->d_lock must be held, returns with it unlocked.
532 * If ref is non-zero, then decrement the refcount too.
533 * Returns dentry requiring refcount drop, or NULL if we're done.
534 */
535 static struct dentry *dentry_kill(struct dentry *dentry)
536 __releases(dentry->d_lock)
537 {
538 struct inode *inode = dentry->d_inode;
539 struct dentry *parent = NULL;
540
541 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
542 goto failed;
543
544 if (!IS_ROOT(dentry)) {
545 parent = dentry->d_parent;
546 if (unlikely(!spin_trylock(&parent->d_lock))) {
547 if (inode)
548 spin_unlock(&inode->i_lock);
549 goto failed;
550 }
551 }
552
553 __dentry_kill(dentry);
554 return parent;
555
556 failed:
557 spin_unlock(&dentry->d_lock);
558 cpu_relax();
559 return dentry; /* try again with same dentry */
560 }
561
562 static inline struct dentry *lock_parent(struct dentry *dentry)
563 {
564 struct dentry *parent = dentry->d_parent;
565 if (IS_ROOT(dentry))
566 return NULL;
567 if (unlikely(dentry->d_lockref.count < 0))
568 return NULL;
569 if (likely(spin_trylock(&parent->d_lock)))
570 return parent;
571 rcu_read_lock();
572 spin_unlock(&dentry->d_lock);
573 again:
574 parent = ACCESS_ONCE(dentry->d_parent);
575 spin_lock(&parent->d_lock);
576 /*
577 * We can't blindly lock dentry until we are sure
578 * that we won't violate the locking order.
579 * Any changes of dentry->d_parent must have
580 * been done with parent->d_lock held, so
581 * spin_lock() above is enough of a barrier
582 * for checking if it's still our child.
583 */
584 if (unlikely(parent != dentry->d_parent)) {
585 spin_unlock(&parent->d_lock);
586 goto again;
587 }
588 rcu_read_unlock();
589 if (parent != dentry)
590 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
591 else
592 parent = NULL;
593 return parent;
594 }
595
596 /*
597 * Try to do a lockless dput(), and return whether that was successful.
598 *
599 * If unsuccessful, we return false, having already taken the dentry lock.
600 *
601 * The caller needs to hold the RCU read lock, so that the dentry is
602 * guaranteed to stay around even if the refcount goes down to zero!
603 */
604 static inline bool fast_dput(struct dentry *dentry)
605 {
606 int ret;
607 unsigned int d_flags;
608
609 /*
610 * If we have a d_op->d_delete() operation, we sould not
611 * let the dentry count go to zero, so use "put__or_lock".
612 */
613 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
614 return lockref_put_or_lock(&dentry->d_lockref);
615
616 /*
617 * .. otherwise, we can try to just decrement the
618 * lockref optimistically.
619 */
620 ret = lockref_put_return(&dentry->d_lockref);
621
622 /*
623 * If the lockref_put_return() failed due to the lock being held
624 * by somebody else, the fast path has failed. We will need to
625 * get the lock, and then check the count again.
626 */
627 if (unlikely(ret < 0)) {
628 spin_lock(&dentry->d_lock);
629 if (dentry->d_lockref.count > 1) {
630 dentry->d_lockref.count--;
631 spin_unlock(&dentry->d_lock);
632 return 1;
633 }
634 return 0;
635 }
636
637 /*
638 * If we weren't the last ref, we're done.
639 */
640 if (ret)
641 return 1;
642
643 /*
644 * Careful, careful. The reference count went down
645 * to zero, but we don't hold the dentry lock, so
646 * somebody else could get it again, and do another
647 * dput(), and we need to not race with that.
648 *
649 * However, there is a very special and common case
650 * where we don't care, because there is nothing to
651 * do: the dentry is still hashed, it does not have
652 * a 'delete' op, and it's referenced and already on
653 * the LRU list.
654 *
655 * NOTE! Since we aren't locked, these values are
656 * not "stable". However, it is sufficient that at
657 * some point after we dropped the reference the
658 * dentry was hashed and the flags had the proper
659 * value. Other dentry users may have re-gotten
660 * a reference to the dentry and change that, but
661 * our work is done - we can leave the dentry
662 * around with a zero refcount.
663 */
664 smp_rmb();
665 d_flags = ACCESS_ONCE(dentry->d_flags);
666 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST;
667
668 /* Nothing to do? Dropping the reference was all we needed? */
669 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
670 return 1;
671
672 /*
673 * Not the fast normal case? Get the lock. We've already decremented
674 * the refcount, but we'll need to re-check the situation after
675 * getting the lock.
676 */
677 spin_lock(&dentry->d_lock);
678
679 /*
680 * Did somebody else grab a reference to it in the meantime, and
681 * we're no longer the last user after all? Alternatively, somebody
682 * else could have killed it and marked it dead. Either way, we
683 * don't need to do anything else.
684 */
685 if (dentry->d_lockref.count) {
686 spin_unlock(&dentry->d_lock);
687 return 1;
688 }
689
690 /*
691 * Re-get the reference we optimistically dropped. We hold the
692 * lock, and we just tested that it was zero, so we can just
693 * set it to 1.
694 */
695 dentry->d_lockref.count = 1;
696 return 0;
697 }
698
699
700 /*
701 * This is dput
702 *
703 * This is complicated by the fact that we do not want to put
704 * dentries that are no longer on any hash chain on the unused
705 * list: we'd much rather just get rid of them immediately.
706 *
707 * However, that implies that we have to traverse the dentry
708 * tree upwards to the parents which might _also_ now be
709 * scheduled for deletion (it may have been only waiting for
710 * its last child to go away).
711 *
712 * This tail recursion is done by hand as we don't want to depend
713 * on the compiler to always get this right (gcc generally doesn't).
714 * Real recursion would eat up our stack space.
715 */
716
717 /*
718 * dput - release a dentry
719 * @dentry: dentry to release
720 *
721 * Release a dentry. This will drop the usage count and if appropriate
722 * call the dentry unlink method as well as removing it from the queues and
723 * releasing its resources. If the parent dentries were scheduled for release
724 * they too may now get deleted.
725 */
726 void dput(struct dentry *dentry)
727 {
728 if (unlikely(!dentry))
729 return;
730
731 repeat:
732 rcu_read_lock();
733 if (likely(fast_dput(dentry))) {
734 rcu_read_unlock();
735 return;
736 }
737
738 /* Slow case: now with the dentry lock held */
739 rcu_read_unlock();
740
741 /* Unreachable? Get rid of it */
742 if (unlikely(d_unhashed(dentry)))
743 goto kill_it;
744
745 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
746 if (dentry->d_op->d_delete(dentry))
747 goto kill_it;
748 }
749
750 if (!(dentry->d_flags & DCACHE_REFERENCED))
751 dentry->d_flags |= DCACHE_REFERENCED;
752 dentry_lru_add(dentry);
753
754 dentry->d_lockref.count--;
755 spin_unlock(&dentry->d_lock);
756 return;
757
758 kill_it:
759 dentry = dentry_kill(dentry);
760 if (dentry)
761 goto repeat;
762 }
763 EXPORT_SYMBOL(dput);
764
765
766 /* This must be called with d_lock held */
767 static inline void __dget_dlock(struct dentry *dentry)
768 {
769 dentry->d_lockref.count++;
770 }
771
772 static inline void __dget(struct dentry *dentry)
773 {
774 lockref_get(&dentry->d_lockref);
775 }
776
777 struct dentry *dget_parent(struct dentry *dentry)
778 {
779 int gotref;
780 struct dentry *ret;
781
782 /*
783 * Do optimistic parent lookup without any
784 * locking.
785 */
786 rcu_read_lock();
787 ret = ACCESS_ONCE(dentry->d_parent);
788 gotref = lockref_get_not_zero(&ret->d_lockref);
789 rcu_read_unlock();
790 if (likely(gotref)) {
791 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
792 return ret;
793 dput(ret);
794 }
795
796 repeat:
797 /*
798 * Don't need rcu_dereference because we re-check it was correct under
799 * the lock.
800 */
801 rcu_read_lock();
802 ret = dentry->d_parent;
803 spin_lock(&ret->d_lock);
804 if (unlikely(ret != dentry->d_parent)) {
805 spin_unlock(&ret->d_lock);
806 rcu_read_unlock();
807 goto repeat;
808 }
809 rcu_read_unlock();
810 BUG_ON(!ret->d_lockref.count);
811 ret->d_lockref.count++;
812 spin_unlock(&ret->d_lock);
813 return ret;
814 }
815 EXPORT_SYMBOL(dget_parent);
816
817 /**
818 * d_find_alias - grab a hashed alias of inode
819 * @inode: inode in question
820 *
821 * If inode has a hashed alias, or is a directory and has any alias,
822 * acquire the reference to alias and return it. Otherwise return NULL.
823 * Notice that if inode is a directory there can be only one alias and
824 * it can be unhashed only if it has no children, or if it is the root
825 * of a filesystem, or if the directory was renamed and d_revalidate
826 * was the first vfs operation to notice.
827 *
828 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
829 * any other hashed alias over that one.
830 */
831 static struct dentry *__d_find_alias(struct inode *inode)
832 {
833 struct dentry *alias, *discon_alias;
834
835 again:
836 discon_alias = NULL;
837 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
838 spin_lock(&alias->d_lock);
839 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
840 if (IS_ROOT(alias) &&
841 (alias->d_flags & DCACHE_DISCONNECTED)) {
842 discon_alias = alias;
843 } else {
844 __dget_dlock(alias);
845 spin_unlock(&alias->d_lock);
846 return alias;
847 }
848 }
849 spin_unlock(&alias->d_lock);
850 }
851 if (discon_alias) {
852 alias = discon_alias;
853 spin_lock(&alias->d_lock);
854 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
855 __dget_dlock(alias);
856 spin_unlock(&alias->d_lock);
857 return alias;
858 }
859 spin_unlock(&alias->d_lock);
860 goto again;
861 }
862 return NULL;
863 }
864
865 struct dentry *d_find_alias(struct inode *inode)
866 {
867 struct dentry *de = NULL;
868
869 if (!hlist_empty(&inode->i_dentry)) {
870 spin_lock(&inode->i_lock);
871 de = __d_find_alias(inode);
872 spin_unlock(&inode->i_lock);
873 }
874 return de;
875 }
876 EXPORT_SYMBOL(d_find_alias);
877
878 /*
879 * Try to kill dentries associated with this inode.
880 * WARNING: you must own a reference to inode.
881 */
882 void d_prune_aliases(struct inode *inode)
883 {
884 struct dentry *dentry;
885 restart:
886 spin_lock(&inode->i_lock);
887 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
888 spin_lock(&dentry->d_lock);
889 if (!dentry->d_lockref.count) {
890 struct dentry *parent = lock_parent(dentry);
891 if (likely(!dentry->d_lockref.count)) {
892 __dentry_kill(dentry);
893 dput(parent);
894 goto restart;
895 }
896 if (parent)
897 spin_unlock(&parent->d_lock);
898 }
899 spin_unlock(&dentry->d_lock);
900 }
901 spin_unlock(&inode->i_lock);
902 }
903 EXPORT_SYMBOL(d_prune_aliases);
904
905 static void shrink_dentry_list(struct list_head *list)
906 {
907 struct dentry *dentry, *parent;
908
909 while (!list_empty(list)) {
910 struct inode *inode;
911 dentry = list_entry(list->prev, struct dentry, d_lru);
912 spin_lock(&dentry->d_lock);
913 parent = lock_parent(dentry);
914
915 /*
916 * The dispose list is isolated and dentries are not accounted
917 * to the LRU here, so we can simply remove it from the list
918 * here regardless of whether it is referenced or not.
919 */
920 d_shrink_del(dentry);
921
922 /*
923 * We found an inuse dentry which was not removed from
924 * the LRU because of laziness during lookup. Do not free it.
925 */
926 if (dentry->d_lockref.count > 0) {
927 spin_unlock(&dentry->d_lock);
928 if (parent)
929 spin_unlock(&parent->d_lock);
930 continue;
931 }
932
933
934 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
935 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
936 spin_unlock(&dentry->d_lock);
937 if (parent)
938 spin_unlock(&parent->d_lock);
939 if (can_free)
940 dentry_free(dentry);
941 continue;
942 }
943
944 inode = dentry->d_inode;
945 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
946 d_shrink_add(dentry, list);
947 spin_unlock(&dentry->d_lock);
948 if (parent)
949 spin_unlock(&parent->d_lock);
950 continue;
951 }
952
953 __dentry_kill(dentry);
954
955 /*
956 * We need to prune ancestors too. This is necessary to prevent
957 * quadratic behavior of shrink_dcache_parent(), but is also
958 * expected to be beneficial in reducing dentry cache
959 * fragmentation.
960 */
961 dentry = parent;
962 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
963 parent = lock_parent(dentry);
964 if (dentry->d_lockref.count != 1) {
965 dentry->d_lockref.count--;
966 spin_unlock(&dentry->d_lock);
967 if (parent)
968 spin_unlock(&parent->d_lock);
969 break;
970 }
971 inode = dentry->d_inode; /* can't be NULL */
972 if (unlikely(!spin_trylock(&inode->i_lock))) {
973 spin_unlock(&dentry->d_lock);
974 if (parent)
975 spin_unlock(&parent->d_lock);
976 cpu_relax();
977 continue;
978 }
979 __dentry_kill(dentry);
980 dentry = parent;
981 }
982 }
983 }
984
985 static enum lru_status dentry_lru_isolate(struct list_head *item,
986 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
987 {
988 struct list_head *freeable = arg;
989 struct dentry *dentry = container_of(item, struct dentry, d_lru);
990
991
992 /*
993 * we are inverting the lru lock/dentry->d_lock here,
994 * so use a trylock. If we fail to get the lock, just skip
995 * it
996 */
997 if (!spin_trylock(&dentry->d_lock))
998 return LRU_SKIP;
999
1000 /*
1001 * Referenced dentries are still in use. If they have active
1002 * counts, just remove them from the LRU. Otherwise give them
1003 * another pass through the LRU.
1004 */
1005 if (dentry->d_lockref.count) {
1006 d_lru_isolate(lru, dentry);
1007 spin_unlock(&dentry->d_lock);
1008 return LRU_REMOVED;
1009 }
1010
1011 if (dentry->d_flags & DCACHE_REFERENCED) {
1012 dentry->d_flags &= ~DCACHE_REFERENCED;
1013 spin_unlock(&dentry->d_lock);
1014
1015 /*
1016 * The list move itself will be made by the common LRU code. At
1017 * this point, we've dropped the dentry->d_lock but keep the
1018 * lru lock. This is safe to do, since every list movement is
1019 * protected by the lru lock even if both locks are held.
1020 *
1021 * This is guaranteed by the fact that all LRU management
1022 * functions are intermediated by the LRU API calls like
1023 * list_lru_add and list_lru_del. List movement in this file
1024 * only ever occur through this functions or through callbacks
1025 * like this one, that are called from the LRU API.
1026 *
1027 * The only exceptions to this are functions like
1028 * shrink_dentry_list, and code that first checks for the
1029 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1030 * operating only with stack provided lists after they are
1031 * properly isolated from the main list. It is thus, always a
1032 * local access.
1033 */
1034 return LRU_ROTATE;
1035 }
1036
1037 d_lru_shrink_move(lru, dentry, freeable);
1038 spin_unlock(&dentry->d_lock);
1039
1040 return LRU_REMOVED;
1041 }
1042
1043 /**
1044 * prune_dcache_sb - shrink the dcache
1045 * @sb: superblock
1046 * @sc: shrink control, passed to list_lru_shrink_walk()
1047 *
1048 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1049 * is done when we need more memory and called from the superblock shrinker
1050 * function.
1051 *
1052 * This function may fail to free any resources if all the dentries are in
1053 * use.
1054 */
1055 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1056 {
1057 LIST_HEAD(dispose);
1058 long freed;
1059
1060 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1061 dentry_lru_isolate, &dispose);
1062 shrink_dentry_list(&dispose);
1063 return freed;
1064 }
1065
1066 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1067 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1068 {
1069 struct list_head *freeable = arg;
1070 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1071
1072 /*
1073 * we are inverting the lru lock/dentry->d_lock here,
1074 * so use a trylock. If we fail to get the lock, just skip
1075 * it
1076 */
1077 if (!spin_trylock(&dentry->d_lock))
1078 return LRU_SKIP;
1079
1080 d_lru_shrink_move(lru, dentry, freeable);
1081 spin_unlock(&dentry->d_lock);
1082
1083 return LRU_REMOVED;
1084 }
1085
1086
1087 /**
1088 * shrink_dcache_sb - shrink dcache for a superblock
1089 * @sb: superblock
1090 *
1091 * Shrink the dcache for the specified super block. This is used to free
1092 * the dcache before unmounting a file system.
1093 */
1094 void shrink_dcache_sb(struct super_block *sb)
1095 {
1096 long freed;
1097
1098 do {
1099 LIST_HEAD(dispose);
1100
1101 freed = list_lru_walk(&sb->s_dentry_lru,
1102 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1103
1104 this_cpu_sub(nr_dentry_unused, freed);
1105 shrink_dentry_list(&dispose);
1106 } while (freed > 0);
1107 }
1108 EXPORT_SYMBOL(shrink_dcache_sb);
1109
1110 /**
1111 * enum d_walk_ret - action to talke during tree walk
1112 * @D_WALK_CONTINUE: contrinue walk
1113 * @D_WALK_QUIT: quit walk
1114 * @D_WALK_NORETRY: quit when retry is needed
1115 * @D_WALK_SKIP: skip this dentry and its children
1116 */
1117 enum d_walk_ret {
1118 D_WALK_CONTINUE,
1119 D_WALK_QUIT,
1120 D_WALK_NORETRY,
1121 D_WALK_SKIP,
1122 };
1123
1124 /**
1125 * d_walk - walk the dentry tree
1126 * @parent: start of walk
1127 * @data: data passed to @enter() and @finish()
1128 * @enter: callback when first entering the dentry
1129 * @finish: callback when successfully finished the walk
1130 *
1131 * The @enter() and @finish() callbacks are called with d_lock held.
1132 */
1133 static void d_walk(struct dentry *parent, void *data,
1134 enum d_walk_ret (*enter)(void *, struct dentry *),
1135 void (*finish)(void *))
1136 {
1137 struct dentry *this_parent;
1138 struct list_head *next;
1139 unsigned seq = 0;
1140 enum d_walk_ret ret;
1141 bool retry = true;
1142
1143 again:
1144 read_seqbegin_or_lock(&rename_lock, &seq);
1145 this_parent = parent;
1146 spin_lock(&this_parent->d_lock);
1147
1148 ret = enter(data, this_parent);
1149 switch (ret) {
1150 case D_WALK_CONTINUE:
1151 break;
1152 case D_WALK_QUIT:
1153 case D_WALK_SKIP:
1154 goto out_unlock;
1155 case D_WALK_NORETRY:
1156 retry = false;
1157 break;
1158 }
1159 repeat:
1160 next = this_parent->d_subdirs.next;
1161 resume:
1162 while (next != &this_parent->d_subdirs) {
1163 struct list_head *tmp = next;
1164 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1165 next = tmp->next;
1166
1167 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1168
1169 ret = enter(data, dentry);
1170 switch (ret) {
1171 case D_WALK_CONTINUE:
1172 break;
1173 case D_WALK_QUIT:
1174 spin_unlock(&dentry->d_lock);
1175 goto out_unlock;
1176 case D_WALK_NORETRY:
1177 retry = false;
1178 break;
1179 case D_WALK_SKIP:
1180 spin_unlock(&dentry->d_lock);
1181 continue;
1182 }
1183
1184 if (!list_empty(&dentry->d_subdirs)) {
1185 spin_unlock(&this_parent->d_lock);
1186 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1187 this_parent = dentry;
1188 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1189 goto repeat;
1190 }
1191 spin_unlock(&dentry->d_lock);
1192 }
1193 /*
1194 * All done at this level ... ascend and resume the search.
1195 */
1196 rcu_read_lock();
1197 ascend:
1198 if (this_parent != parent) {
1199 struct dentry *child = this_parent;
1200 this_parent = child->d_parent;
1201
1202 spin_unlock(&child->d_lock);
1203 spin_lock(&this_parent->d_lock);
1204
1205 /* might go back up the wrong parent if we have had a rename. */
1206 if (need_seqretry(&rename_lock, seq))
1207 goto rename_retry;
1208 next = child->d_child.next;
1209 while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) {
1210 if (next == &this_parent->d_subdirs)
1211 goto ascend;
1212 child = list_entry(next, struct dentry, d_child);
1213 next = next->next;
1214 }
1215 rcu_read_unlock();
1216 goto resume;
1217 }
1218 if (need_seqretry(&rename_lock, seq))
1219 goto rename_retry;
1220 rcu_read_unlock();
1221 if (finish)
1222 finish(data);
1223
1224 out_unlock:
1225 spin_unlock(&this_parent->d_lock);
1226 done_seqretry(&rename_lock, seq);
1227 return;
1228
1229 rename_retry:
1230 spin_unlock(&this_parent->d_lock);
1231 rcu_read_unlock();
1232 BUG_ON(seq & 1);
1233 if (!retry)
1234 return;
1235 seq = 1;
1236 goto again;
1237 }
1238
1239 /*
1240 * Search for at least 1 mount point in the dentry's subdirs.
1241 * We descend to the next level whenever the d_subdirs
1242 * list is non-empty and continue searching.
1243 */
1244
1245 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1246 {
1247 int *ret = data;
1248 if (d_mountpoint(dentry)) {
1249 *ret = 1;
1250 return D_WALK_QUIT;
1251 }
1252 return D_WALK_CONTINUE;
1253 }
1254
1255 /**
1256 * have_submounts - check for mounts over a dentry
1257 * @parent: dentry to check.
1258 *
1259 * Return true if the parent or its subdirectories contain
1260 * a mount point
1261 */
1262 int have_submounts(struct dentry *parent)
1263 {
1264 int ret = 0;
1265
1266 d_walk(parent, &ret, check_mount, NULL);
1267
1268 return ret;
1269 }
1270 EXPORT_SYMBOL(have_submounts);
1271
1272 /*
1273 * Called by mount code to set a mountpoint and check if the mountpoint is
1274 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1275 * subtree can become unreachable).
1276 *
1277 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1278 * this reason take rename_lock and d_lock on dentry and ancestors.
1279 */
1280 int d_set_mounted(struct dentry *dentry)
1281 {
1282 struct dentry *p;
1283 int ret = -ENOENT;
1284 write_seqlock(&rename_lock);
1285 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1286 /* Need exclusion wrt. d_invalidate() */
1287 spin_lock(&p->d_lock);
1288 if (unlikely(d_unhashed(p))) {
1289 spin_unlock(&p->d_lock);
1290 goto out;
1291 }
1292 spin_unlock(&p->d_lock);
1293 }
1294 spin_lock(&dentry->d_lock);
1295 if (!d_unlinked(dentry)) {
1296 dentry->d_flags |= DCACHE_MOUNTED;
1297 ret = 0;
1298 }
1299 spin_unlock(&dentry->d_lock);
1300 out:
1301 write_sequnlock(&rename_lock);
1302 return ret;
1303 }
1304
1305 /*
1306 * Search the dentry child list of the specified parent,
1307 * and move any unused dentries to the end of the unused
1308 * list for prune_dcache(). We descend to the next level
1309 * whenever the d_subdirs list is non-empty and continue
1310 * searching.
1311 *
1312 * It returns zero iff there are no unused children,
1313 * otherwise it returns the number of children moved to
1314 * the end of the unused list. This may not be the total
1315 * number of unused children, because select_parent can
1316 * drop the lock and return early due to latency
1317 * constraints.
1318 */
1319
1320 struct select_data {
1321 struct dentry *start;
1322 struct list_head dispose;
1323 int found;
1324 };
1325
1326 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1327 {
1328 struct select_data *data = _data;
1329 enum d_walk_ret ret = D_WALK_CONTINUE;
1330
1331 if (data->start == dentry)
1332 goto out;
1333
1334 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1335 data->found++;
1336 } else {
1337 if (dentry->d_flags & DCACHE_LRU_LIST)
1338 d_lru_del(dentry);
1339 if (!dentry->d_lockref.count) {
1340 d_shrink_add(dentry, &data->dispose);
1341 data->found++;
1342 }
1343 }
1344 /*
1345 * We can return to the caller if we have found some (this
1346 * ensures forward progress). We'll be coming back to find
1347 * the rest.
1348 */
1349 if (!list_empty(&data->dispose))
1350 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1351 out:
1352 return ret;
1353 }
1354
1355 /**
1356 * shrink_dcache_parent - prune dcache
1357 * @parent: parent of entries to prune
1358 *
1359 * Prune the dcache to remove unused children of the parent dentry.
1360 */
1361 void shrink_dcache_parent(struct dentry *parent)
1362 {
1363 for (;;) {
1364 struct select_data data;
1365
1366 INIT_LIST_HEAD(&data.dispose);
1367 data.start = parent;
1368 data.found = 0;
1369
1370 d_walk(parent, &data, select_collect, NULL);
1371 if (!data.found)
1372 break;
1373
1374 shrink_dentry_list(&data.dispose);
1375 cond_resched();
1376 }
1377 }
1378 EXPORT_SYMBOL(shrink_dcache_parent);
1379
1380 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1381 {
1382 /* it has busy descendents; complain about those instead */
1383 if (!list_empty(&dentry->d_subdirs))
1384 return D_WALK_CONTINUE;
1385
1386 /* root with refcount 1 is fine */
1387 if (dentry == _data && dentry->d_lockref.count == 1)
1388 return D_WALK_CONTINUE;
1389
1390 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1391 " still in use (%d) [unmount of %s %s]\n",
1392 dentry,
1393 dentry->d_inode ?
1394 dentry->d_inode->i_ino : 0UL,
1395 dentry,
1396 dentry->d_lockref.count,
1397 dentry->d_sb->s_type->name,
1398 dentry->d_sb->s_id);
1399 WARN_ON(1);
1400 return D_WALK_CONTINUE;
1401 }
1402
1403 static void do_one_tree(struct dentry *dentry)
1404 {
1405 shrink_dcache_parent(dentry);
1406 d_walk(dentry, dentry, umount_check, NULL);
1407 d_drop(dentry);
1408 dput(dentry);
1409 }
1410
1411 /*
1412 * destroy the dentries attached to a superblock on unmounting
1413 */
1414 void shrink_dcache_for_umount(struct super_block *sb)
1415 {
1416 struct dentry *dentry;
1417
1418 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1419
1420 dentry = sb->s_root;
1421 sb->s_root = NULL;
1422 do_one_tree(dentry);
1423
1424 while (!hlist_bl_empty(&sb->s_anon)) {
1425 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1426 do_one_tree(dentry);
1427 }
1428 }
1429
1430 struct detach_data {
1431 struct select_data select;
1432 struct dentry *mountpoint;
1433 };
1434 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1435 {
1436 struct detach_data *data = _data;
1437
1438 if (d_mountpoint(dentry)) {
1439 __dget_dlock(dentry);
1440 data->mountpoint = dentry;
1441 return D_WALK_QUIT;
1442 }
1443
1444 return select_collect(&data->select, dentry);
1445 }
1446
1447 static void check_and_drop(void *_data)
1448 {
1449 struct detach_data *data = _data;
1450
1451 if (!data->mountpoint && !data->select.found)
1452 __d_drop(data->select.start);
1453 }
1454
1455 /**
1456 * d_invalidate - detach submounts, prune dcache, and drop
1457 * @dentry: dentry to invalidate (aka detach, prune and drop)
1458 *
1459 * no dcache lock.
1460 *
1461 * The final d_drop is done as an atomic operation relative to
1462 * rename_lock ensuring there are no races with d_set_mounted. This
1463 * ensures there are no unhashed dentries on the path to a mountpoint.
1464 */
1465 void d_invalidate(struct dentry *dentry)
1466 {
1467 /*
1468 * If it's already been dropped, return OK.
1469 */
1470 spin_lock(&dentry->d_lock);
1471 if (d_unhashed(dentry)) {
1472 spin_unlock(&dentry->d_lock);
1473 return;
1474 }
1475 spin_unlock(&dentry->d_lock);
1476
1477 /* Negative dentries can be dropped without further checks */
1478 if (!dentry->d_inode) {
1479 d_drop(dentry);
1480 return;
1481 }
1482
1483 for (;;) {
1484 struct detach_data data;
1485
1486 data.mountpoint = NULL;
1487 INIT_LIST_HEAD(&data.select.dispose);
1488 data.select.start = dentry;
1489 data.select.found = 0;
1490
1491 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1492
1493 if (data.select.found)
1494 shrink_dentry_list(&data.select.dispose);
1495
1496 if (data.mountpoint) {
1497 detach_mounts(data.mountpoint);
1498 dput(data.mountpoint);
1499 }
1500
1501 if (!data.mountpoint && !data.select.found)
1502 break;
1503
1504 cond_resched();
1505 }
1506 }
1507 EXPORT_SYMBOL(d_invalidate);
1508
1509 /**
1510 * __d_alloc - allocate a dcache entry
1511 * @sb: filesystem it will belong to
1512 * @name: qstr of the name
1513 *
1514 * Allocates a dentry. It returns %NULL if there is insufficient memory
1515 * available. On a success the dentry is returned. The name passed in is
1516 * copied and the copy passed in may be reused after this call.
1517 */
1518
1519 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1520 {
1521 struct dentry *dentry;
1522 char *dname;
1523
1524 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1525 if (!dentry)
1526 return NULL;
1527
1528 /*
1529 * We guarantee that the inline name is always NUL-terminated.
1530 * This way the memcpy() done by the name switching in rename
1531 * will still always have a NUL at the end, even if we might
1532 * be overwriting an internal NUL character
1533 */
1534 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1535 if (name->len > DNAME_INLINE_LEN-1) {
1536 size_t size = offsetof(struct external_name, name[1]);
1537 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1538 if (!p) {
1539 kmem_cache_free(dentry_cache, dentry);
1540 return NULL;
1541 }
1542 atomic_set(&p->u.count, 1);
1543 dname = p->name;
1544 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1545 kasan_unpoison_shadow(dname,
1546 round_up(name->len + 1, sizeof(unsigned long)));
1547 } else {
1548 dname = dentry->d_iname;
1549 }
1550
1551 dentry->d_name.len = name->len;
1552 dentry->d_name.hash = name->hash;
1553 memcpy(dname, name->name, name->len);
1554 dname[name->len] = 0;
1555
1556 /* Make sure we always see the terminating NUL character */
1557 smp_wmb();
1558 dentry->d_name.name = dname;
1559
1560 dentry->d_lockref.count = 1;
1561 dentry->d_flags = 0;
1562 spin_lock_init(&dentry->d_lock);
1563 seqcount_init(&dentry->d_seq);
1564 dentry->d_inode = NULL;
1565 dentry->d_parent = dentry;
1566 dentry->d_sb = sb;
1567 dentry->d_op = NULL;
1568 dentry->d_fsdata = NULL;
1569 INIT_HLIST_BL_NODE(&dentry->d_hash);
1570 INIT_LIST_HEAD(&dentry->d_lru);
1571 INIT_LIST_HEAD(&dentry->d_subdirs);
1572 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1573 INIT_LIST_HEAD(&dentry->d_child);
1574 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1575
1576 this_cpu_inc(nr_dentry);
1577
1578 return dentry;
1579 }
1580
1581 /**
1582 * d_alloc - allocate a dcache entry
1583 * @parent: parent of entry to allocate
1584 * @name: qstr of the name
1585 *
1586 * Allocates a dentry. It returns %NULL if there is insufficient memory
1587 * available. On a success the dentry is returned. The name passed in is
1588 * copied and the copy passed in may be reused after this call.
1589 */
1590 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1591 {
1592 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1593 if (!dentry)
1594 return NULL;
1595
1596 spin_lock(&parent->d_lock);
1597 /*
1598 * don't need child lock because it is not subject
1599 * to concurrency here
1600 */
1601 __dget_dlock(parent);
1602 dentry->d_parent = parent;
1603 list_add(&dentry->d_child, &parent->d_subdirs);
1604 spin_unlock(&parent->d_lock);
1605
1606 return dentry;
1607 }
1608 EXPORT_SYMBOL(d_alloc);
1609
1610 /**
1611 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1612 * @sb: the superblock
1613 * @name: qstr of the name
1614 *
1615 * For a filesystem that just pins its dentries in memory and never
1616 * performs lookups at all, return an unhashed IS_ROOT dentry.
1617 */
1618 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1619 {
1620 return __d_alloc(sb, name);
1621 }
1622 EXPORT_SYMBOL(d_alloc_pseudo);
1623
1624 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1625 {
1626 struct qstr q;
1627
1628 q.name = name;
1629 q.len = strlen(name);
1630 q.hash = full_name_hash(q.name, q.len);
1631 return d_alloc(parent, &q);
1632 }
1633 EXPORT_SYMBOL(d_alloc_name);
1634
1635 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1636 {
1637 WARN_ON_ONCE(dentry->d_op);
1638 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1639 DCACHE_OP_COMPARE |
1640 DCACHE_OP_REVALIDATE |
1641 DCACHE_OP_WEAK_REVALIDATE |
1642 DCACHE_OP_DELETE ));
1643 dentry->d_op = op;
1644 if (!op)
1645 return;
1646 if (op->d_hash)
1647 dentry->d_flags |= DCACHE_OP_HASH;
1648 if (op->d_compare)
1649 dentry->d_flags |= DCACHE_OP_COMPARE;
1650 if (op->d_revalidate)
1651 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1652 if (op->d_weak_revalidate)
1653 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1654 if (op->d_delete)
1655 dentry->d_flags |= DCACHE_OP_DELETE;
1656 if (op->d_prune)
1657 dentry->d_flags |= DCACHE_OP_PRUNE;
1658
1659 }
1660 EXPORT_SYMBOL(d_set_d_op);
1661
1662
1663 /*
1664 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1665 * @dentry - The dentry to mark
1666 *
1667 * Mark a dentry as falling through to the lower layer (as set with
1668 * d_pin_lower()). This flag may be recorded on the medium.
1669 */
1670 void d_set_fallthru(struct dentry *dentry)
1671 {
1672 spin_lock(&dentry->d_lock);
1673 dentry->d_flags |= DCACHE_FALLTHRU;
1674 spin_unlock(&dentry->d_lock);
1675 }
1676 EXPORT_SYMBOL(d_set_fallthru);
1677
1678 static unsigned d_flags_for_inode(struct inode *inode)
1679 {
1680 unsigned add_flags = DCACHE_FILE_TYPE;
1681
1682 if (!inode)
1683 return DCACHE_MISS_TYPE;
1684
1685 if (S_ISDIR(inode->i_mode)) {
1686 add_flags = DCACHE_DIRECTORY_TYPE;
1687 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1688 if (unlikely(!inode->i_op->lookup))
1689 add_flags = DCACHE_AUTODIR_TYPE;
1690 else
1691 inode->i_opflags |= IOP_LOOKUP;
1692 }
1693 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1694 if (unlikely(inode->i_op->follow_link))
1695 add_flags = DCACHE_SYMLINK_TYPE;
1696 else
1697 inode->i_opflags |= IOP_NOFOLLOW;
1698 }
1699
1700 if (unlikely(IS_AUTOMOUNT(inode)))
1701 add_flags |= DCACHE_NEED_AUTOMOUNT;
1702 return add_flags;
1703 }
1704
1705 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1706 {
1707 unsigned add_flags = d_flags_for_inode(inode);
1708
1709 spin_lock(&dentry->d_lock);
1710 dentry->d_flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
1711 dentry->d_flags |= add_flags;
1712 if (inode)
1713 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1714 dentry->d_inode = inode;
1715 dentry_rcuwalk_barrier(dentry);
1716 spin_unlock(&dentry->d_lock);
1717 fsnotify_d_instantiate(dentry, inode);
1718 }
1719
1720 /**
1721 * d_instantiate - fill in inode information for a dentry
1722 * @entry: dentry to complete
1723 * @inode: inode to attach to this dentry
1724 *
1725 * Fill in inode information in the entry.
1726 *
1727 * This turns negative dentries into productive full members
1728 * of society.
1729 *
1730 * NOTE! This assumes that the inode count has been incremented
1731 * (or otherwise set) by the caller to indicate that it is now
1732 * in use by the dcache.
1733 */
1734
1735 void d_instantiate(struct dentry *entry, struct inode * inode)
1736 {
1737 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1738 if (inode)
1739 spin_lock(&inode->i_lock);
1740 __d_instantiate(entry, inode);
1741 if (inode)
1742 spin_unlock(&inode->i_lock);
1743 security_d_instantiate(entry, inode);
1744 }
1745 EXPORT_SYMBOL(d_instantiate);
1746
1747 /**
1748 * d_instantiate_unique - instantiate a non-aliased dentry
1749 * @entry: dentry to instantiate
1750 * @inode: inode to attach to this dentry
1751 *
1752 * Fill in inode information in the entry. On success, it returns NULL.
1753 * If an unhashed alias of "entry" already exists, then we return the
1754 * aliased dentry instead and drop one reference to inode.
1755 *
1756 * Note that in order to avoid conflicts with rename() etc, the caller
1757 * had better be holding the parent directory semaphore.
1758 *
1759 * This also assumes that the inode count has been incremented
1760 * (or otherwise set) by the caller to indicate that it is now
1761 * in use by the dcache.
1762 */
1763 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1764 struct inode *inode)
1765 {
1766 struct dentry *alias;
1767 int len = entry->d_name.len;
1768 const char *name = entry->d_name.name;
1769 unsigned int hash = entry->d_name.hash;
1770
1771 if (!inode) {
1772 __d_instantiate(entry, NULL);
1773 return NULL;
1774 }
1775
1776 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1777 /*
1778 * Don't need alias->d_lock here, because aliases with
1779 * d_parent == entry->d_parent are not subject to name or
1780 * parent changes, because the parent inode i_mutex is held.
1781 */
1782 if (alias->d_name.hash != hash)
1783 continue;
1784 if (alias->d_parent != entry->d_parent)
1785 continue;
1786 if (alias->d_name.len != len)
1787 continue;
1788 if (dentry_cmp(alias, name, len))
1789 continue;
1790 __dget(alias);
1791 return alias;
1792 }
1793
1794 __d_instantiate(entry, inode);
1795 return NULL;
1796 }
1797
1798 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1799 {
1800 struct dentry *result;
1801
1802 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1803
1804 if (inode)
1805 spin_lock(&inode->i_lock);
1806 result = __d_instantiate_unique(entry, inode);
1807 if (inode)
1808 spin_unlock(&inode->i_lock);
1809
1810 if (!result) {
1811 security_d_instantiate(entry, inode);
1812 return NULL;
1813 }
1814
1815 BUG_ON(!d_unhashed(result));
1816 iput(inode);
1817 return result;
1818 }
1819
1820 EXPORT_SYMBOL(d_instantiate_unique);
1821
1822 /**
1823 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1824 * @entry: dentry to complete
1825 * @inode: inode to attach to this dentry
1826 *
1827 * Fill in inode information in the entry. If a directory alias is found, then
1828 * return an error (and drop inode). Together with d_materialise_unique() this
1829 * guarantees that a directory inode may never have more than one alias.
1830 */
1831 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1832 {
1833 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1834
1835 spin_lock(&inode->i_lock);
1836 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1837 spin_unlock(&inode->i_lock);
1838 iput(inode);
1839 return -EBUSY;
1840 }
1841 __d_instantiate(entry, inode);
1842 spin_unlock(&inode->i_lock);
1843 security_d_instantiate(entry, inode);
1844
1845 return 0;
1846 }
1847 EXPORT_SYMBOL(d_instantiate_no_diralias);
1848
1849 struct dentry *d_make_root(struct inode *root_inode)
1850 {
1851 struct dentry *res = NULL;
1852
1853 if (root_inode) {
1854 static const struct qstr name = QSTR_INIT("/", 1);
1855
1856 res = __d_alloc(root_inode->i_sb, &name);
1857 if (res)
1858 d_instantiate(res, root_inode);
1859 else
1860 iput(root_inode);
1861 }
1862 return res;
1863 }
1864 EXPORT_SYMBOL(d_make_root);
1865
1866 static struct dentry * __d_find_any_alias(struct inode *inode)
1867 {
1868 struct dentry *alias;
1869
1870 if (hlist_empty(&inode->i_dentry))
1871 return NULL;
1872 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1873 __dget(alias);
1874 return alias;
1875 }
1876
1877 /**
1878 * d_find_any_alias - find any alias for a given inode
1879 * @inode: inode to find an alias for
1880 *
1881 * If any aliases exist for the given inode, take and return a
1882 * reference for one of them. If no aliases exist, return %NULL.
1883 */
1884 struct dentry *d_find_any_alias(struct inode *inode)
1885 {
1886 struct dentry *de;
1887
1888 spin_lock(&inode->i_lock);
1889 de = __d_find_any_alias(inode);
1890 spin_unlock(&inode->i_lock);
1891 return de;
1892 }
1893 EXPORT_SYMBOL(d_find_any_alias);
1894
1895 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1896 {
1897 static const struct qstr anonstring = QSTR_INIT("/", 1);
1898 struct dentry *tmp;
1899 struct dentry *res;
1900 unsigned add_flags;
1901
1902 if (!inode)
1903 return ERR_PTR(-ESTALE);
1904 if (IS_ERR(inode))
1905 return ERR_CAST(inode);
1906
1907 res = d_find_any_alias(inode);
1908 if (res)
1909 goto out_iput;
1910
1911 tmp = __d_alloc(inode->i_sb, &anonstring);
1912 if (!tmp) {
1913 res = ERR_PTR(-ENOMEM);
1914 goto out_iput;
1915 }
1916
1917 spin_lock(&inode->i_lock);
1918 res = __d_find_any_alias(inode);
1919 if (res) {
1920 spin_unlock(&inode->i_lock);
1921 dput(tmp);
1922 goto out_iput;
1923 }
1924
1925 /* attach a disconnected dentry */
1926 add_flags = d_flags_for_inode(inode);
1927
1928 if (disconnected)
1929 add_flags |= DCACHE_DISCONNECTED;
1930
1931 spin_lock(&tmp->d_lock);
1932 tmp->d_inode = inode;
1933 tmp->d_flags |= add_flags;
1934 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1935 hlist_bl_lock(&tmp->d_sb->s_anon);
1936 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1937 hlist_bl_unlock(&tmp->d_sb->s_anon);
1938 spin_unlock(&tmp->d_lock);
1939 spin_unlock(&inode->i_lock);
1940 security_d_instantiate(tmp, inode);
1941
1942 return tmp;
1943
1944 out_iput:
1945 if (res && !IS_ERR(res))
1946 security_d_instantiate(res, inode);
1947 iput(inode);
1948 return res;
1949 }
1950
1951 /**
1952 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1953 * @inode: inode to allocate the dentry for
1954 *
1955 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1956 * similar open by handle operations. The returned dentry may be anonymous,
1957 * or may have a full name (if the inode was already in the cache).
1958 *
1959 * When called on a directory inode, we must ensure that the inode only ever
1960 * has one dentry. If a dentry is found, that is returned instead of
1961 * allocating a new one.
1962 *
1963 * On successful return, the reference to the inode has been transferred
1964 * to the dentry. In case of an error the reference on the inode is released.
1965 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1966 * be passed in and the error will be propagated to the return value,
1967 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1968 */
1969 struct dentry *d_obtain_alias(struct inode *inode)
1970 {
1971 return __d_obtain_alias(inode, 1);
1972 }
1973 EXPORT_SYMBOL(d_obtain_alias);
1974
1975 /**
1976 * d_obtain_root - find or allocate a dentry for a given inode
1977 * @inode: inode to allocate the dentry for
1978 *
1979 * Obtain an IS_ROOT dentry for the root of a filesystem.
1980 *
1981 * We must ensure that directory inodes only ever have one dentry. If a
1982 * dentry is found, that is returned instead of allocating a new one.
1983 *
1984 * On successful return, the reference to the inode has been transferred
1985 * to the dentry. In case of an error the reference on the inode is
1986 * released. A %NULL or IS_ERR inode may be passed in and will be the
1987 * error will be propagate to the return value, with a %NULL @inode
1988 * replaced by ERR_PTR(-ESTALE).
1989 */
1990 struct dentry *d_obtain_root(struct inode *inode)
1991 {
1992 return __d_obtain_alias(inode, 0);
1993 }
1994 EXPORT_SYMBOL(d_obtain_root);
1995
1996 /**
1997 * d_add_ci - lookup or allocate new dentry with case-exact name
1998 * @inode: the inode case-insensitive lookup has found
1999 * @dentry: the negative dentry that was passed to the parent's lookup func
2000 * @name: the case-exact name to be associated with the returned dentry
2001 *
2002 * This is to avoid filling the dcache with case-insensitive names to the
2003 * same inode, only the actual correct case is stored in the dcache for
2004 * case-insensitive filesystems.
2005 *
2006 * For a case-insensitive lookup match and if the the case-exact dentry
2007 * already exists in in the dcache, use it and return it.
2008 *
2009 * If no entry exists with the exact case name, allocate new dentry with
2010 * the exact case, and return the spliced entry.
2011 */
2012 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2013 struct qstr *name)
2014 {
2015 struct dentry *found;
2016 struct dentry *new;
2017
2018 /*
2019 * First check if a dentry matching the name already exists,
2020 * if not go ahead and create it now.
2021 */
2022 found = d_hash_and_lookup(dentry->d_parent, name);
2023 if (!found) {
2024 new = d_alloc(dentry->d_parent, name);
2025 if (!new) {
2026 found = ERR_PTR(-ENOMEM);
2027 } else {
2028 found = d_splice_alias(inode, new);
2029 if (found) {
2030 dput(new);
2031 return found;
2032 }
2033 return new;
2034 }
2035 }
2036 iput(inode);
2037 return found;
2038 }
2039 EXPORT_SYMBOL(d_add_ci);
2040
2041 /*
2042 * Do the slow-case of the dentry name compare.
2043 *
2044 * Unlike the dentry_cmp() function, we need to atomically
2045 * load the name and length information, so that the
2046 * filesystem can rely on them, and can use the 'name' and
2047 * 'len' information without worrying about walking off the
2048 * end of memory etc.
2049 *
2050 * Thus the read_seqcount_retry() and the "duplicate" info
2051 * in arguments (the low-level filesystem should not look
2052 * at the dentry inode or name contents directly, since
2053 * rename can change them while we're in RCU mode).
2054 */
2055 enum slow_d_compare {
2056 D_COMP_OK,
2057 D_COMP_NOMATCH,
2058 D_COMP_SEQRETRY,
2059 };
2060
2061 static noinline enum slow_d_compare slow_dentry_cmp(
2062 const struct dentry *parent,
2063 struct dentry *dentry,
2064 unsigned int seq,
2065 const struct qstr *name)
2066 {
2067 int tlen = dentry->d_name.len;
2068 const char *tname = dentry->d_name.name;
2069
2070 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2071 cpu_relax();
2072 return D_COMP_SEQRETRY;
2073 }
2074 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2075 return D_COMP_NOMATCH;
2076 return D_COMP_OK;
2077 }
2078
2079 /**
2080 * __d_lookup_rcu - search for a dentry (racy, store-free)
2081 * @parent: parent dentry
2082 * @name: qstr of name we wish to find
2083 * @seqp: returns d_seq value at the point where the dentry was found
2084 * Returns: dentry, or NULL
2085 *
2086 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2087 * resolution (store-free path walking) design described in
2088 * Documentation/filesystems/path-lookup.txt.
2089 *
2090 * This is not to be used outside core vfs.
2091 *
2092 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2093 * held, and rcu_read_lock held. The returned dentry must not be stored into
2094 * without taking d_lock and checking d_seq sequence count against @seq
2095 * returned here.
2096 *
2097 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2098 * function.
2099 *
2100 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2101 * the returned dentry, so long as its parent's seqlock is checked after the
2102 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2103 * is formed, giving integrity down the path walk.
2104 *
2105 * NOTE! The caller *has* to check the resulting dentry against the sequence
2106 * number we've returned before using any of the resulting dentry state!
2107 */
2108 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2109 const struct qstr *name,
2110 unsigned *seqp)
2111 {
2112 u64 hashlen = name->hash_len;
2113 const unsigned char *str = name->name;
2114 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2115 struct hlist_bl_node *node;
2116 struct dentry *dentry;
2117
2118 /*
2119 * Note: There is significant duplication with __d_lookup_rcu which is
2120 * required to prevent single threaded performance regressions
2121 * especially on architectures where smp_rmb (in seqcounts) are costly.
2122 * Keep the two functions in sync.
2123 */
2124
2125 /*
2126 * The hash list is protected using RCU.
2127 *
2128 * Carefully use d_seq when comparing a candidate dentry, to avoid
2129 * races with d_move().
2130 *
2131 * It is possible that concurrent renames can mess up our list
2132 * walk here and result in missing our dentry, resulting in the
2133 * false-negative result. d_lookup() protects against concurrent
2134 * renames using rename_lock seqlock.
2135 *
2136 * See Documentation/filesystems/path-lookup.txt for more details.
2137 */
2138 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2139 unsigned seq;
2140
2141 seqretry:
2142 /*
2143 * The dentry sequence count protects us from concurrent
2144 * renames, and thus protects parent and name fields.
2145 *
2146 * The caller must perform a seqcount check in order
2147 * to do anything useful with the returned dentry.
2148 *
2149 * NOTE! We do a "raw" seqcount_begin here. That means that
2150 * we don't wait for the sequence count to stabilize if it
2151 * is in the middle of a sequence change. If we do the slow
2152 * dentry compare, we will do seqretries until it is stable,
2153 * and if we end up with a successful lookup, we actually
2154 * want to exit RCU lookup anyway.
2155 */
2156 seq = raw_seqcount_begin(&dentry->d_seq);
2157 if (dentry->d_parent != parent)
2158 continue;
2159 if (d_unhashed(dentry))
2160 continue;
2161
2162 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2163 if (dentry->d_name.hash != hashlen_hash(hashlen))
2164 continue;
2165 *seqp = seq;
2166 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2167 case D_COMP_OK:
2168 return dentry;
2169 case D_COMP_NOMATCH:
2170 continue;
2171 default:
2172 goto seqretry;
2173 }
2174 }
2175
2176 if (dentry->d_name.hash_len != hashlen)
2177 continue;
2178 *seqp = seq;
2179 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2180 return dentry;
2181 }
2182 return NULL;
2183 }
2184
2185 /**
2186 * d_lookup - search for a dentry
2187 * @parent: parent dentry
2188 * @name: qstr of name we wish to find
2189 * Returns: dentry, or NULL
2190 *
2191 * d_lookup searches the children of the parent dentry for the name in
2192 * question. If the dentry is found its reference count is incremented and the
2193 * dentry is returned. The caller must use dput to free the entry when it has
2194 * finished using it. %NULL is returned if the dentry does not exist.
2195 */
2196 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2197 {
2198 struct dentry *dentry;
2199 unsigned seq;
2200
2201 do {
2202 seq = read_seqbegin(&rename_lock);
2203 dentry = __d_lookup(parent, name);
2204 if (dentry)
2205 break;
2206 } while (read_seqretry(&rename_lock, seq));
2207 return dentry;
2208 }
2209 EXPORT_SYMBOL(d_lookup);
2210
2211 /**
2212 * __d_lookup - search for a dentry (racy)
2213 * @parent: parent dentry
2214 * @name: qstr of name we wish to find
2215 * Returns: dentry, or NULL
2216 *
2217 * __d_lookup is like d_lookup, however it may (rarely) return a
2218 * false-negative result due to unrelated rename activity.
2219 *
2220 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2221 * however it must be used carefully, eg. with a following d_lookup in
2222 * the case of failure.
2223 *
2224 * __d_lookup callers must be commented.
2225 */
2226 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2227 {
2228 unsigned int len = name->len;
2229 unsigned int hash = name->hash;
2230 const unsigned char *str = name->name;
2231 struct hlist_bl_head *b = d_hash(parent, hash);
2232 struct hlist_bl_node *node;
2233 struct dentry *found = NULL;
2234 struct dentry *dentry;
2235
2236 /*
2237 * Note: There is significant duplication with __d_lookup_rcu which is
2238 * required to prevent single threaded performance regressions
2239 * especially on architectures where smp_rmb (in seqcounts) are costly.
2240 * Keep the two functions in sync.
2241 */
2242
2243 /*
2244 * The hash list is protected using RCU.
2245 *
2246 * Take d_lock when comparing a candidate dentry, to avoid races
2247 * with d_move().
2248 *
2249 * It is possible that concurrent renames can mess up our list
2250 * walk here and result in missing our dentry, resulting in the
2251 * false-negative result. d_lookup() protects against concurrent
2252 * renames using rename_lock seqlock.
2253 *
2254 * See Documentation/filesystems/path-lookup.txt for more details.
2255 */
2256 rcu_read_lock();
2257
2258 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2259
2260 if (dentry->d_name.hash != hash)
2261 continue;
2262
2263 spin_lock(&dentry->d_lock);
2264 if (dentry->d_parent != parent)
2265 goto next;
2266 if (d_unhashed(dentry))
2267 goto next;
2268
2269 /*
2270 * It is safe to compare names since d_move() cannot
2271 * change the qstr (protected by d_lock).
2272 */
2273 if (parent->d_flags & DCACHE_OP_COMPARE) {
2274 int tlen = dentry->d_name.len;
2275 const char *tname = dentry->d_name.name;
2276 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2277 goto next;
2278 } else {
2279 if (dentry->d_name.len != len)
2280 goto next;
2281 if (dentry_cmp(dentry, str, len))
2282 goto next;
2283 }
2284
2285 dentry->d_lockref.count++;
2286 found = dentry;
2287 spin_unlock(&dentry->d_lock);
2288 break;
2289 next:
2290 spin_unlock(&dentry->d_lock);
2291 }
2292 rcu_read_unlock();
2293
2294 return found;
2295 }
2296
2297 /**
2298 * d_hash_and_lookup - hash the qstr then search for a dentry
2299 * @dir: Directory to search in
2300 * @name: qstr of name we wish to find
2301 *
2302 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2303 */
2304 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2305 {
2306 /*
2307 * Check for a fs-specific hash function. Note that we must
2308 * calculate the standard hash first, as the d_op->d_hash()
2309 * routine may choose to leave the hash value unchanged.
2310 */
2311 name->hash = full_name_hash(name->name, name->len);
2312 if (dir->d_flags & DCACHE_OP_HASH) {
2313 int err = dir->d_op->d_hash(dir, name);
2314 if (unlikely(err < 0))
2315 return ERR_PTR(err);
2316 }
2317 return d_lookup(dir, name);
2318 }
2319 EXPORT_SYMBOL(d_hash_and_lookup);
2320
2321 /*
2322 * When a file is deleted, we have two options:
2323 * - turn this dentry into a negative dentry
2324 * - unhash this dentry and free it.
2325 *
2326 * Usually, we want to just turn this into
2327 * a negative dentry, but if anybody else is
2328 * currently using the dentry or the inode
2329 * we can't do that and we fall back on removing
2330 * it from the hash queues and waiting for
2331 * it to be deleted later when it has no users
2332 */
2333
2334 /**
2335 * d_delete - delete a dentry
2336 * @dentry: The dentry to delete
2337 *
2338 * Turn the dentry into a negative dentry if possible, otherwise
2339 * remove it from the hash queues so it can be deleted later
2340 */
2341
2342 void d_delete(struct dentry * dentry)
2343 {
2344 struct inode *inode;
2345 int isdir = 0;
2346 /*
2347 * Are we the only user?
2348 */
2349 again:
2350 spin_lock(&dentry->d_lock);
2351 inode = dentry->d_inode;
2352 isdir = S_ISDIR(inode->i_mode);
2353 if (dentry->d_lockref.count == 1) {
2354 if (!spin_trylock(&inode->i_lock)) {
2355 spin_unlock(&dentry->d_lock);
2356 cpu_relax();
2357 goto again;
2358 }
2359 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2360 dentry_unlink_inode(dentry);
2361 fsnotify_nameremove(dentry, isdir);
2362 return;
2363 }
2364
2365 if (!d_unhashed(dentry))
2366 __d_drop(dentry);
2367
2368 spin_unlock(&dentry->d_lock);
2369
2370 fsnotify_nameremove(dentry, isdir);
2371 }
2372 EXPORT_SYMBOL(d_delete);
2373
2374 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2375 {
2376 BUG_ON(!d_unhashed(entry));
2377 hlist_bl_lock(b);
2378 entry->d_flags |= DCACHE_RCUACCESS;
2379 hlist_bl_add_head_rcu(&entry->d_hash, b);
2380 hlist_bl_unlock(b);
2381 }
2382
2383 static void _d_rehash(struct dentry * entry)
2384 {
2385 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2386 }
2387
2388 /**
2389 * d_rehash - add an entry back to the hash
2390 * @entry: dentry to add to the hash
2391 *
2392 * Adds a dentry to the hash according to its name.
2393 */
2394
2395 void d_rehash(struct dentry * entry)
2396 {
2397 spin_lock(&entry->d_lock);
2398 _d_rehash(entry);
2399 spin_unlock(&entry->d_lock);
2400 }
2401 EXPORT_SYMBOL(d_rehash);
2402
2403 /**
2404 * dentry_update_name_case - update case insensitive dentry with a new name
2405 * @dentry: dentry to be updated
2406 * @name: new name
2407 *
2408 * Update a case insensitive dentry with new case of name.
2409 *
2410 * dentry must have been returned by d_lookup with name @name. Old and new
2411 * name lengths must match (ie. no d_compare which allows mismatched name
2412 * lengths).
2413 *
2414 * Parent inode i_mutex must be held over d_lookup and into this call (to
2415 * keep renames and concurrent inserts, and readdir(2) away).
2416 */
2417 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2418 {
2419 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2420 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2421
2422 spin_lock(&dentry->d_lock);
2423 write_seqcount_begin(&dentry->d_seq);
2424 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2425 write_seqcount_end(&dentry->d_seq);
2426 spin_unlock(&dentry->d_lock);
2427 }
2428 EXPORT_SYMBOL(dentry_update_name_case);
2429
2430 static void swap_names(struct dentry *dentry, struct dentry *target)
2431 {
2432 if (unlikely(dname_external(target))) {
2433 if (unlikely(dname_external(dentry))) {
2434 /*
2435 * Both external: swap the pointers
2436 */
2437 swap(target->d_name.name, dentry->d_name.name);
2438 } else {
2439 /*
2440 * dentry:internal, target:external. Steal target's
2441 * storage and make target internal.
2442 */
2443 memcpy(target->d_iname, dentry->d_name.name,
2444 dentry->d_name.len + 1);
2445 dentry->d_name.name = target->d_name.name;
2446 target->d_name.name = target->d_iname;
2447 }
2448 } else {
2449 if (unlikely(dname_external(dentry))) {
2450 /*
2451 * dentry:external, target:internal. Give dentry's
2452 * storage to target and make dentry internal
2453 */
2454 memcpy(dentry->d_iname, target->d_name.name,
2455 target->d_name.len + 1);
2456 target->d_name.name = dentry->d_name.name;
2457 dentry->d_name.name = dentry->d_iname;
2458 } else {
2459 /*
2460 * Both are internal.
2461 */
2462 unsigned int i;
2463 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2464 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2465 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2466 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2467 swap(((long *) &dentry->d_iname)[i],
2468 ((long *) &target->d_iname)[i]);
2469 }
2470 }
2471 }
2472 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2473 }
2474
2475 static void copy_name(struct dentry *dentry, struct dentry *target)
2476 {
2477 struct external_name *old_name = NULL;
2478 if (unlikely(dname_external(dentry)))
2479 old_name = external_name(dentry);
2480 if (unlikely(dname_external(target))) {
2481 atomic_inc(&external_name(target)->u.count);
2482 dentry->d_name = target->d_name;
2483 } else {
2484 memcpy(dentry->d_iname, target->d_name.name,
2485 target->d_name.len + 1);
2486 dentry->d_name.name = dentry->d_iname;
2487 dentry->d_name.hash_len = target->d_name.hash_len;
2488 }
2489 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2490 kfree_rcu(old_name, u.head);
2491 }
2492
2493 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2494 {
2495 /*
2496 * XXXX: do we really need to take target->d_lock?
2497 */
2498 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2499 spin_lock(&target->d_parent->d_lock);
2500 else {
2501 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2502 spin_lock(&dentry->d_parent->d_lock);
2503 spin_lock_nested(&target->d_parent->d_lock,
2504 DENTRY_D_LOCK_NESTED);
2505 } else {
2506 spin_lock(&target->d_parent->d_lock);
2507 spin_lock_nested(&dentry->d_parent->d_lock,
2508 DENTRY_D_LOCK_NESTED);
2509 }
2510 }
2511 if (target < dentry) {
2512 spin_lock_nested(&target->d_lock, 2);
2513 spin_lock_nested(&dentry->d_lock, 3);
2514 } else {
2515 spin_lock_nested(&dentry->d_lock, 2);
2516 spin_lock_nested(&target->d_lock, 3);
2517 }
2518 }
2519
2520 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2521 {
2522 if (target->d_parent != dentry->d_parent)
2523 spin_unlock(&dentry->d_parent->d_lock);
2524 if (target->d_parent != target)
2525 spin_unlock(&target->d_parent->d_lock);
2526 spin_unlock(&target->d_lock);
2527 spin_unlock(&dentry->d_lock);
2528 }
2529
2530 /*
2531 * When switching names, the actual string doesn't strictly have to
2532 * be preserved in the target - because we're dropping the target
2533 * anyway. As such, we can just do a simple memcpy() to copy over
2534 * the new name before we switch, unless we are going to rehash
2535 * it. Note that if we *do* unhash the target, we are not allowed
2536 * to rehash it without giving it a new name/hash key - whether
2537 * we swap or overwrite the names here, resulting name won't match
2538 * the reality in filesystem; it's only there for d_path() purposes.
2539 * Note that all of this is happening under rename_lock, so the
2540 * any hash lookup seeing it in the middle of manipulations will
2541 * be discarded anyway. So we do not care what happens to the hash
2542 * key in that case.
2543 */
2544 /*
2545 * __d_move - move a dentry
2546 * @dentry: entry to move
2547 * @target: new dentry
2548 * @exchange: exchange the two dentries
2549 *
2550 * Update the dcache to reflect the move of a file name. Negative
2551 * dcache entries should not be moved in this way. Caller must hold
2552 * rename_lock, the i_mutex of the source and target directories,
2553 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2554 */
2555 static void __d_move(struct dentry *dentry, struct dentry *target,
2556 bool exchange)
2557 {
2558 if (!dentry->d_inode)
2559 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2560
2561 BUG_ON(d_ancestor(dentry, target));
2562 BUG_ON(d_ancestor(target, dentry));
2563
2564 dentry_lock_for_move(dentry, target);
2565
2566 write_seqcount_begin(&dentry->d_seq);
2567 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2568
2569 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2570
2571 /*
2572 * Move the dentry to the target hash queue. Don't bother checking
2573 * for the same hash queue because of how unlikely it is.
2574 */
2575 __d_drop(dentry);
2576 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2577
2578 /*
2579 * Unhash the target (d_delete() is not usable here). If exchanging
2580 * the two dentries, then rehash onto the other's hash queue.
2581 */
2582 __d_drop(target);
2583 if (exchange) {
2584 __d_rehash(target,
2585 d_hash(dentry->d_parent, dentry->d_name.hash));
2586 }
2587
2588 /* Switch the names.. */
2589 if (exchange)
2590 swap_names(dentry, target);
2591 else
2592 copy_name(dentry, target);
2593
2594 /* ... and switch them in the tree */
2595 if (IS_ROOT(dentry)) {
2596 /* splicing a tree */
2597 dentry->d_parent = target->d_parent;
2598 target->d_parent = target;
2599 list_del_init(&target->d_child);
2600 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2601 } else {
2602 /* swapping two dentries */
2603 swap(dentry->d_parent, target->d_parent);
2604 list_move(&target->d_child, &target->d_parent->d_subdirs);
2605 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2606 if (exchange)
2607 fsnotify_d_move(target);
2608 fsnotify_d_move(dentry);
2609 }
2610
2611 write_seqcount_end(&target->d_seq);
2612 write_seqcount_end(&dentry->d_seq);
2613
2614 dentry_unlock_for_move(dentry, target);
2615 }
2616
2617 /*
2618 * d_move - move a dentry
2619 * @dentry: entry to move
2620 * @target: new dentry
2621 *
2622 * Update the dcache to reflect the move of a file name. Negative
2623 * dcache entries should not be moved in this way. See the locking
2624 * requirements for __d_move.
2625 */
2626 void d_move(struct dentry *dentry, struct dentry *target)
2627 {
2628 write_seqlock(&rename_lock);
2629 __d_move(dentry, target, false);
2630 write_sequnlock(&rename_lock);
2631 }
2632 EXPORT_SYMBOL(d_move);
2633
2634 /*
2635 * d_exchange - exchange two dentries
2636 * @dentry1: first dentry
2637 * @dentry2: second dentry
2638 */
2639 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2640 {
2641 write_seqlock(&rename_lock);
2642
2643 WARN_ON(!dentry1->d_inode);
2644 WARN_ON(!dentry2->d_inode);
2645 WARN_ON(IS_ROOT(dentry1));
2646 WARN_ON(IS_ROOT(dentry2));
2647
2648 __d_move(dentry1, dentry2, true);
2649
2650 write_sequnlock(&rename_lock);
2651 }
2652
2653 /**
2654 * d_ancestor - search for an ancestor
2655 * @p1: ancestor dentry
2656 * @p2: child dentry
2657 *
2658 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2659 * an ancestor of p2, else NULL.
2660 */
2661 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2662 {
2663 struct dentry *p;
2664
2665 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2666 if (p->d_parent == p1)
2667 return p;
2668 }
2669 return NULL;
2670 }
2671
2672 /*
2673 * This helper attempts to cope with remotely renamed directories
2674 *
2675 * It assumes that the caller is already holding
2676 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2677 *
2678 * Note: If ever the locking in lock_rename() changes, then please
2679 * remember to update this too...
2680 */
2681 static int __d_unalias(struct inode *inode,
2682 struct dentry *dentry, struct dentry *alias)
2683 {
2684 struct mutex *m1 = NULL, *m2 = NULL;
2685 int ret = -EBUSY;
2686
2687 /* If alias and dentry share a parent, then no extra locks required */
2688 if (alias->d_parent == dentry->d_parent)
2689 goto out_unalias;
2690
2691 /* See lock_rename() */
2692 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2693 goto out_err;
2694 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2695 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2696 goto out_err;
2697 m2 = &alias->d_parent->d_inode->i_mutex;
2698 out_unalias:
2699 __d_move(alias, dentry, false);
2700 ret = 0;
2701 out_err:
2702 spin_unlock(&inode->i_lock);
2703 if (m2)
2704 mutex_unlock(m2);
2705 if (m1)
2706 mutex_unlock(m1);
2707 return ret;
2708 }
2709
2710 /**
2711 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2712 * @inode: the inode which may have a disconnected dentry
2713 * @dentry: a negative dentry which we want to point to the inode.
2714 *
2715 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2716 * place of the given dentry and return it, else simply d_add the inode
2717 * to the dentry and return NULL.
2718 *
2719 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2720 * we should error out: directories can't have multiple aliases.
2721 *
2722 * This is needed in the lookup routine of any filesystem that is exportable
2723 * (via knfsd) so that we can build dcache paths to directories effectively.
2724 *
2725 * If a dentry was found and moved, then it is returned. Otherwise NULL
2726 * is returned. This matches the expected return value of ->lookup.
2727 *
2728 * Cluster filesystems may call this function with a negative, hashed dentry.
2729 * In that case, we know that the inode will be a regular file, and also this
2730 * will only occur during atomic_open. So we need to check for the dentry
2731 * being already hashed only in the final case.
2732 */
2733 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2734 {
2735 if (IS_ERR(inode))
2736 return ERR_CAST(inode);
2737
2738 BUG_ON(!d_unhashed(dentry));
2739
2740 if (!inode) {
2741 __d_instantiate(dentry, NULL);
2742 goto out;
2743 }
2744 spin_lock(&inode->i_lock);
2745 if (S_ISDIR(inode->i_mode)) {
2746 struct dentry *new = __d_find_any_alias(inode);
2747 if (unlikely(new)) {
2748 write_seqlock(&rename_lock);
2749 if (unlikely(d_ancestor(new, dentry))) {
2750 write_sequnlock(&rename_lock);
2751 spin_unlock(&inode->i_lock);
2752 dput(new);
2753 new = ERR_PTR(-ELOOP);
2754 pr_warn_ratelimited(
2755 "VFS: Lookup of '%s' in %s %s"
2756 " would have caused loop\n",
2757 dentry->d_name.name,
2758 inode->i_sb->s_type->name,
2759 inode->i_sb->s_id);
2760 } else if (!IS_ROOT(new)) {
2761 int err = __d_unalias(inode, dentry, new);
2762 write_sequnlock(&rename_lock);
2763 if (err) {
2764 dput(new);
2765 new = ERR_PTR(err);
2766 }
2767 } else {
2768 __d_move(new, dentry, false);
2769 write_sequnlock(&rename_lock);
2770 spin_unlock(&inode->i_lock);
2771 security_d_instantiate(new, inode);
2772 }
2773 iput(inode);
2774 return new;
2775 }
2776 }
2777 /* already taking inode->i_lock, so d_add() by hand */
2778 __d_instantiate(dentry, inode);
2779 spin_unlock(&inode->i_lock);
2780 out:
2781 security_d_instantiate(dentry, inode);
2782 d_rehash(dentry);
2783 return NULL;
2784 }
2785 EXPORT_SYMBOL(d_splice_alias);
2786
2787 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2788 {
2789 *buflen -= namelen;
2790 if (*buflen < 0)
2791 return -ENAMETOOLONG;
2792 *buffer -= namelen;
2793 memcpy(*buffer, str, namelen);
2794 return 0;
2795 }
2796
2797 /**
2798 * prepend_name - prepend a pathname in front of current buffer pointer
2799 * @buffer: buffer pointer
2800 * @buflen: allocated length of the buffer
2801 * @name: name string and length qstr structure
2802 *
2803 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2804 * make sure that either the old or the new name pointer and length are
2805 * fetched. However, there may be mismatch between length and pointer.
2806 * The length cannot be trusted, we need to copy it byte-by-byte until
2807 * the length is reached or a null byte is found. It also prepends "/" at
2808 * the beginning of the name. The sequence number check at the caller will
2809 * retry it again when a d_move() does happen. So any garbage in the buffer
2810 * due to mismatched pointer and length will be discarded.
2811 *
2812 * Data dependency barrier is needed to make sure that we see that terminating
2813 * NUL. Alpha strikes again, film at 11...
2814 */
2815 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2816 {
2817 const char *dname = ACCESS_ONCE(name->name);
2818 u32 dlen = ACCESS_ONCE(name->len);
2819 char *p;
2820
2821 smp_read_barrier_depends();
2822
2823 *buflen -= dlen + 1;
2824 if (*buflen < 0)
2825 return -ENAMETOOLONG;
2826 p = *buffer -= dlen + 1;
2827 *p++ = '/';
2828 while (dlen--) {
2829 char c = *dname++;
2830 if (!c)
2831 break;
2832 *p++ = c;
2833 }
2834 return 0;
2835 }
2836
2837 /**
2838 * prepend_path - Prepend path string to a buffer
2839 * @path: the dentry/vfsmount to report
2840 * @root: root vfsmnt/dentry
2841 * @buffer: pointer to the end of the buffer
2842 * @buflen: pointer to buffer length
2843 *
2844 * The function will first try to write out the pathname without taking any
2845 * lock other than the RCU read lock to make sure that dentries won't go away.
2846 * It only checks the sequence number of the global rename_lock as any change
2847 * in the dentry's d_seq will be preceded by changes in the rename_lock
2848 * sequence number. If the sequence number had been changed, it will restart
2849 * the whole pathname back-tracing sequence again by taking the rename_lock.
2850 * In this case, there is no need to take the RCU read lock as the recursive
2851 * parent pointer references will keep the dentry chain alive as long as no
2852 * rename operation is performed.
2853 */
2854 static int prepend_path(const struct path *path,
2855 const struct path *root,
2856 char **buffer, int *buflen)
2857 {
2858 struct dentry *dentry;
2859 struct vfsmount *vfsmnt;
2860 struct mount *mnt;
2861 int error = 0;
2862 unsigned seq, m_seq = 0;
2863 char *bptr;
2864 int blen;
2865
2866 rcu_read_lock();
2867 restart_mnt:
2868 read_seqbegin_or_lock(&mount_lock, &m_seq);
2869 seq = 0;
2870 rcu_read_lock();
2871 restart:
2872 bptr = *buffer;
2873 blen = *buflen;
2874 error = 0;
2875 dentry = path->dentry;
2876 vfsmnt = path->mnt;
2877 mnt = real_mount(vfsmnt);
2878 read_seqbegin_or_lock(&rename_lock, &seq);
2879 while (dentry != root->dentry || vfsmnt != root->mnt) {
2880 struct dentry * parent;
2881
2882 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2883 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2884 /* Global root? */
2885 if (mnt != parent) {
2886 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2887 mnt = parent;
2888 vfsmnt = &mnt->mnt;
2889 continue;
2890 }
2891 /*
2892 * Filesystems needing to implement special "root names"
2893 * should do so with ->d_dname()
2894 */
2895 if (IS_ROOT(dentry) &&
2896 (dentry->d_name.len != 1 ||
2897 dentry->d_name.name[0] != '/')) {
2898 WARN(1, "Root dentry has weird name <%.*s>\n",
2899 (int) dentry->d_name.len,
2900 dentry->d_name.name);
2901 }
2902 if (!error)
2903 error = is_mounted(vfsmnt) ? 1 : 2;
2904 break;
2905 }
2906 parent = dentry->d_parent;
2907 prefetch(parent);
2908 error = prepend_name(&bptr, &blen, &dentry->d_name);
2909 if (error)
2910 break;
2911
2912 dentry = parent;
2913 }
2914 if (!(seq & 1))
2915 rcu_read_unlock();
2916 if (need_seqretry(&rename_lock, seq)) {
2917 seq = 1;
2918 goto restart;
2919 }
2920 done_seqretry(&rename_lock, seq);
2921
2922 if (!(m_seq & 1))
2923 rcu_read_unlock();
2924 if (need_seqretry(&mount_lock, m_seq)) {
2925 m_seq = 1;
2926 goto restart_mnt;
2927 }
2928 done_seqretry(&mount_lock, m_seq);
2929
2930 if (error >= 0 && bptr == *buffer) {
2931 if (--blen < 0)
2932 error = -ENAMETOOLONG;
2933 else
2934 *--bptr = '/';
2935 }
2936 *buffer = bptr;
2937 *buflen = blen;
2938 return error;
2939 }
2940
2941 /**
2942 * __d_path - return the path of a dentry
2943 * @path: the dentry/vfsmount to report
2944 * @root: root vfsmnt/dentry
2945 * @buf: buffer to return value in
2946 * @buflen: buffer length
2947 *
2948 * Convert a dentry into an ASCII path name.
2949 *
2950 * Returns a pointer into the buffer or an error code if the
2951 * path was too long.
2952 *
2953 * "buflen" should be positive.
2954 *
2955 * If the path is not reachable from the supplied root, return %NULL.
2956 */
2957 char *__d_path(const struct path *path,
2958 const struct path *root,
2959 char *buf, int buflen)
2960 {
2961 char *res = buf + buflen;
2962 int error;
2963
2964 prepend(&res, &buflen, "\0", 1);
2965 error = prepend_path(path, root, &res, &buflen);
2966
2967 if (error < 0)
2968 return ERR_PTR(error);
2969 if (error > 0)
2970 return NULL;
2971 return res;
2972 }
2973
2974 char *d_absolute_path(const struct path *path,
2975 char *buf, int buflen)
2976 {
2977 struct path root = {};
2978 char *res = buf + buflen;
2979 int error;
2980
2981 prepend(&res, &buflen, "\0", 1);
2982 error = prepend_path(path, &root, &res, &buflen);
2983
2984 if (error > 1)
2985 error = -EINVAL;
2986 if (error < 0)
2987 return ERR_PTR(error);
2988 return res;
2989 }
2990
2991 /*
2992 * same as __d_path but appends "(deleted)" for unlinked files.
2993 */
2994 static int path_with_deleted(const struct path *path,
2995 const struct path *root,
2996 char **buf, int *buflen)
2997 {
2998 prepend(buf, buflen, "\0", 1);
2999 if (d_unlinked(path->dentry)) {
3000 int error = prepend(buf, buflen, " (deleted)", 10);
3001 if (error)
3002 return error;
3003 }
3004
3005 return prepend_path(path, root, buf, buflen);
3006 }
3007
3008 static int prepend_unreachable(char **buffer, int *buflen)
3009 {
3010 return prepend(buffer, buflen, "(unreachable)", 13);
3011 }
3012
3013 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3014 {
3015 unsigned seq;
3016
3017 do {
3018 seq = read_seqcount_begin(&fs->seq);
3019 *root = fs->root;
3020 } while (read_seqcount_retry(&fs->seq, seq));
3021 }
3022
3023 /**
3024 * d_path - return the path of a dentry
3025 * @path: path to report
3026 * @buf: buffer to return value in
3027 * @buflen: buffer length
3028 *
3029 * Convert a dentry into an ASCII path name. If the entry has been deleted
3030 * the string " (deleted)" is appended. Note that this is ambiguous.
3031 *
3032 * Returns a pointer into the buffer or an error code if the path was
3033 * too long. Note: Callers should use the returned pointer, not the passed
3034 * in buffer, to use the name! The implementation often starts at an offset
3035 * into the buffer, and may leave 0 bytes at the start.
3036 *
3037 * "buflen" should be positive.
3038 */
3039 char *d_path(const struct path *path, char *buf, int buflen)
3040 {
3041 char *res = buf + buflen;
3042 struct path root;
3043 int error;
3044
3045 /*
3046 * We have various synthetic filesystems that never get mounted. On
3047 * these filesystems dentries are never used for lookup purposes, and
3048 * thus don't need to be hashed. They also don't need a name until a
3049 * user wants to identify the object in /proc/pid/fd/. The little hack
3050 * below allows us to generate a name for these objects on demand:
3051 *
3052 * Some pseudo inodes are mountable. When they are mounted
3053 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3054 * and instead have d_path return the mounted path.
3055 */
3056 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3057 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3058 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3059
3060 rcu_read_lock();
3061 get_fs_root_rcu(current->fs, &root);
3062 error = path_with_deleted(path, &root, &res, &buflen);
3063 rcu_read_unlock();
3064
3065 if (error < 0)
3066 res = ERR_PTR(error);
3067 return res;
3068 }
3069 EXPORT_SYMBOL(d_path);
3070
3071 /*
3072 * Helper function for dentry_operations.d_dname() members
3073 */
3074 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3075 const char *fmt, ...)
3076 {
3077 va_list args;
3078 char temp[64];
3079 int sz;
3080
3081 va_start(args, fmt);
3082 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3083 va_end(args);
3084
3085 if (sz > sizeof(temp) || sz > buflen)
3086 return ERR_PTR(-ENAMETOOLONG);
3087
3088 buffer += buflen - sz;
3089 return memcpy(buffer, temp, sz);
3090 }
3091
3092 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3093 {
3094 char *end = buffer + buflen;
3095 /* these dentries are never renamed, so d_lock is not needed */
3096 if (prepend(&end, &buflen, " (deleted)", 11) ||
3097 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3098 prepend(&end, &buflen, "/", 1))
3099 end = ERR_PTR(-ENAMETOOLONG);
3100 return end;
3101 }
3102 EXPORT_SYMBOL(simple_dname);
3103
3104 /*
3105 * Write full pathname from the root of the filesystem into the buffer.
3106 */
3107 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3108 {
3109 struct dentry *dentry;
3110 char *end, *retval;
3111 int len, seq = 0;
3112 int error = 0;
3113
3114 if (buflen < 2)
3115 goto Elong;
3116
3117 rcu_read_lock();
3118 restart:
3119 dentry = d;
3120 end = buf + buflen;
3121 len = buflen;
3122 prepend(&end, &len, "\0", 1);
3123 /* Get '/' right */
3124 retval = end-1;
3125 *retval = '/';
3126 read_seqbegin_or_lock(&rename_lock, &seq);
3127 while (!IS_ROOT(dentry)) {
3128 struct dentry *parent = dentry->d_parent;
3129
3130 prefetch(parent);
3131 error = prepend_name(&end, &len, &dentry->d_name);
3132 if (error)
3133 break;
3134
3135 retval = end;
3136 dentry = parent;
3137 }
3138 if (!(seq & 1))
3139 rcu_read_unlock();
3140 if (need_seqretry(&rename_lock, seq)) {
3141 seq = 1;
3142 goto restart;
3143 }
3144 done_seqretry(&rename_lock, seq);
3145 if (error)
3146 goto Elong;
3147 return retval;
3148 Elong:
3149 return ERR_PTR(-ENAMETOOLONG);
3150 }
3151
3152 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3153 {
3154 return __dentry_path(dentry, buf, buflen);
3155 }
3156 EXPORT_SYMBOL(dentry_path_raw);
3157
3158 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3159 {
3160 char *p = NULL;
3161 char *retval;
3162
3163 if (d_unlinked(dentry)) {
3164 p = buf + buflen;
3165 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3166 goto Elong;
3167 buflen++;
3168 }
3169 retval = __dentry_path(dentry, buf, buflen);
3170 if (!IS_ERR(retval) && p)
3171 *p = '/'; /* restore '/' overriden with '\0' */
3172 return retval;
3173 Elong:
3174 return ERR_PTR(-ENAMETOOLONG);
3175 }
3176
3177 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3178 struct path *pwd)
3179 {
3180 unsigned seq;
3181
3182 do {
3183 seq = read_seqcount_begin(&fs->seq);
3184 *root = fs->root;
3185 *pwd = fs->pwd;
3186 } while (read_seqcount_retry(&fs->seq, seq));
3187 }
3188
3189 /*
3190 * NOTE! The user-level library version returns a
3191 * character pointer. The kernel system call just
3192 * returns the length of the buffer filled (which
3193 * includes the ending '\0' character), or a negative
3194 * error value. So libc would do something like
3195 *
3196 * char *getcwd(char * buf, size_t size)
3197 * {
3198 * int retval;
3199 *
3200 * retval = sys_getcwd(buf, size);
3201 * if (retval >= 0)
3202 * return buf;
3203 * errno = -retval;
3204 * return NULL;
3205 * }
3206 */
3207 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3208 {
3209 int error;
3210 struct path pwd, root;
3211 char *page = __getname();
3212
3213 if (!page)
3214 return -ENOMEM;
3215
3216 rcu_read_lock();
3217 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3218
3219 error = -ENOENT;
3220 if (!d_unlinked(pwd.dentry)) {
3221 unsigned long len;
3222 char *cwd = page + PATH_MAX;
3223 int buflen = PATH_MAX;
3224
3225 prepend(&cwd, &buflen, "\0", 1);
3226 error = prepend_path(&pwd, &root, &cwd, &buflen);
3227 rcu_read_unlock();
3228
3229 if (error < 0)
3230 goto out;
3231
3232 /* Unreachable from current root */
3233 if (error > 0) {
3234 error = prepend_unreachable(&cwd, &buflen);
3235 if (error)
3236 goto out;
3237 }
3238
3239 error = -ERANGE;
3240 len = PATH_MAX + page - cwd;
3241 if (len <= size) {
3242 error = len;
3243 if (copy_to_user(buf, cwd, len))
3244 error = -EFAULT;
3245 }
3246 } else {
3247 rcu_read_unlock();
3248 }
3249
3250 out:
3251 __putname(page);
3252 return error;
3253 }
3254
3255 /*
3256 * Test whether new_dentry is a subdirectory of old_dentry.
3257 *
3258 * Trivially implemented using the dcache structure
3259 */
3260
3261 /**
3262 * is_subdir - is new dentry a subdirectory of old_dentry
3263 * @new_dentry: new dentry
3264 * @old_dentry: old dentry
3265 *
3266 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3267 * Returns 0 otherwise.
3268 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3269 */
3270
3271 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3272 {
3273 int result;
3274 unsigned seq;
3275
3276 if (new_dentry == old_dentry)
3277 return 1;
3278
3279 do {
3280 /* for restarting inner loop in case of seq retry */
3281 seq = read_seqbegin(&rename_lock);
3282 /*
3283 * Need rcu_readlock to protect against the d_parent trashing
3284 * due to d_move
3285 */
3286 rcu_read_lock();
3287 if (d_ancestor(old_dentry, new_dentry))
3288 result = 1;
3289 else
3290 result = 0;
3291 rcu_read_unlock();
3292 } while (read_seqretry(&rename_lock, seq));
3293
3294 return result;
3295 }
3296
3297 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3298 {
3299 struct dentry *root = data;
3300 if (dentry != root) {
3301 if (d_unhashed(dentry) || !dentry->d_inode)
3302 return D_WALK_SKIP;
3303
3304 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3305 dentry->d_flags |= DCACHE_GENOCIDE;
3306 dentry->d_lockref.count--;
3307 }
3308 }
3309 return D_WALK_CONTINUE;
3310 }
3311
3312 void d_genocide(struct dentry *parent)
3313 {
3314 d_walk(parent, parent, d_genocide_kill, NULL);
3315 }
3316
3317 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3318 {
3319 inode_dec_link_count(inode);
3320 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3321 !hlist_unhashed(&dentry->d_u.d_alias) ||
3322 !d_unlinked(dentry));
3323 spin_lock(&dentry->d_parent->d_lock);
3324 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3325 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3326 (unsigned long long)inode->i_ino);
3327 spin_unlock(&dentry->d_lock);
3328 spin_unlock(&dentry->d_parent->d_lock);
3329 d_instantiate(dentry, inode);
3330 }
3331 EXPORT_SYMBOL(d_tmpfile);
3332
3333 static __initdata unsigned long dhash_entries;
3334 static int __init set_dhash_entries(char *str)
3335 {
3336 if (!str)
3337 return 0;
3338 dhash_entries = simple_strtoul(str, &str, 0);
3339 return 1;
3340 }
3341 __setup("dhash_entries=", set_dhash_entries);
3342
3343 static void __init dcache_init_early(void)
3344 {
3345 unsigned int loop;
3346
3347 /* If hashes are distributed across NUMA nodes, defer
3348 * hash allocation until vmalloc space is available.
3349 */
3350 if (hashdist)
3351 return;
3352
3353 dentry_hashtable =
3354 alloc_large_system_hash("Dentry cache",
3355 sizeof(struct hlist_bl_head),
3356 dhash_entries,
3357 13,
3358 HASH_EARLY,
3359 &d_hash_shift,
3360 &d_hash_mask,
3361 0,
3362 0);
3363
3364 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3365 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3366 }
3367
3368 static void __init dcache_init(void)
3369 {
3370 unsigned int loop;
3371
3372 /*
3373 * A constructor could be added for stable state like the lists,
3374 * but it is probably not worth it because of the cache nature
3375 * of the dcache.
3376 */
3377 dentry_cache = KMEM_CACHE(dentry,
3378 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3379
3380 /* Hash may have been set up in dcache_init_early */
3381 if (!hashdist)
3382 return;
3383
3384 dentry_hashtable =
3385 alloc_large_system_hash("Dentry cache",
3386 sizeof(struct hlist_bl_head),
3387 dhash_entries,
3388 13,
3389 0,
3390 &d_hash_shift,
3391 &d_hash_mask,
3392 0,
3393 0);
3394
3395 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3396 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3397 }
3398
3399 /* SLAB cache for __getname() consumers */
3400 struct kmem_cache *names_cachep __read_mostly;
3401 EXPORT_SYMBOL(names_cachep);
3402
3403 EXPORT_SYMBOL(d_genocide);
3404
3405 void __init vfs_caches_init_early(void)
3406 {
3407 dcache_init_early();
3408 inode_init_early();
3409 }
3410
3411 void __init vfs_caches_init(unsigned long mempages)
3412 {
3413 unsigned long reserve;
3414
3415 /* Base hash sizes on available memory, with a reserve equal to
3416 150% of current kernel size */
3417
3418 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3419 mempages -= reserve;
3420
3421 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3422 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3423
3424 dcache_init();
3425 inode_init();
3426 files_init(mempages);
3427 mnt_init();
3428 bdev_cache_init();
3429 chrdev_init();
3430 }
This page took 0.096877 seconds and 6 git commands to generate.