Merge branch 'x86-olpc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
40
41 /*
42 * Usage:
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
55 * - d_count
56 * - d_unhashed()
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
59 * - d_alias, d_inode
60 *
61 * Ordering:
62 * dentry->d_inode->i_lock
63 * dentry->d_lock
64 * dcache_lru_lock
65 * dcache_hash_bucket lock
66 * s_anon lock
67 *
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
73 *
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
78 */
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
84
85 EXPORT_SYMBOL(rename_lock);
86
87 static struct kmem_cache *dentry_cache __read_mostly;
88
89 /*
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
93 *
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
96 */
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 unsigned long hash)
107 {
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
111 }
112
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116 };
117
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
119
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
122 {
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
128 }
129
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
132 {
133 dentry_stat.nr_dentry = get_nr_dentry();
134 return proc_dointvec(table, write, buffer, lenp, ppos);
135 }
136 #endif
137
138 static void __d_free(struct rcu_head *head)
139 {
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141
142 WARN_ON(!list_empty(&dentry->d_alias));
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
146 }
147
148 /*
149 * no locks, please.
150 */
151 static void d_free(struct dentry *dentry)
152 {
153 BUG_ON(dentry->d_count);
154 this_cpu_dec(nr_dentry);
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
157
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 __d_free(&dentry->d_u.d_rcu);
161 else
162 call_rcu(&dentry->d_u.d_rcu, __d_free);
163 }
164
165 /**
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
171 */
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173 {
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
177 }
178
179 /*
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
183 */
184 static void dentry_iput(struct dentry * dentry)
185 __releases(dentry->d_lock)
186 __releases(dentry->d_inode->i_lock)
187 {
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
193 spin_unlock(&inode->i_lock);
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
202 }
203 }
204
205 /*
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
208 */
209 static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
211 __releases(dentry->d_inode->i_lock)
212 {
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
218 spin_unlock(&inode->i_lock);
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
225 }
226
227 /*
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
229 */
230 static void dentry_lru_add(struct dentry *dentry)
231 {
232 if (list_empty(&dentry->d_lru)) {
233 spin_lock(&dcache_lru_lock);
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
236 dentry_stat.nr_unused++;
237 spin_unlock(&dcache_lru_lock);
238 }
239 }
240
241 static void __dentry_lru_del(struct dentry *dentry)
242 {
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
246 }
247
248 static void dentry_lru_del(struct dentry *dentry)
249 {
250 if (!list_empty(&dentry->d_lru)) {
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
254 }
255 }
256
257 static void dentry_lru_move_tail(struct dentry *dentry)
258 {
259 spin_lock(&dcache_lru_lock);
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
263 dentry_stat.nr_unused++;
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
266 }
267 spin_unlock(&dcache_lru_lock);
268 }
269
270 /**
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
274 *
275 * The dentry must already be unhashed and removed from the LRU.
276 *
277 * If this is the root of the dentry tree, return NULL.
278 *
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
281 */
282 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
283 __releases(dentry->d_lock)
284 __releases(parent->d_lock)
285 __releases(dentry->d_inode->i_lock)
286 {
287 list_del(&dentry->d_u.d_child);
288 /*
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
291 */
292 dentry->d_flags |= DCACHE_DISCONNECTED;
293 if (parent)
294 spin_unlock(&parent->d_lock);
295 dentry_iput(dentry);
296 /*
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
299 */
300 d_free(dentry);
301 return parent;
302 }
303
304 /**
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
307 *
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
313 *
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
316 *
317 * __d_drop requires dentry->d_lock.
318 */
319 void __d_drop(struct dentry *dentry)
320 {
321 if (!d_unhashed(dentry)) {
322 struct hlist_bl_head *b;
323 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
324 b = &dentry->d_sb->s_anon;
325 else
326 b = d_hash(dentry->d_parent, dentry->d_name.hash);
327
328 hlist_bl_lock(b);
329 __hlist_bl_del(&dentry->d_hash);
330 dentry->d_hash.pprev = NULL;
331 hlist_bl_unlock(b);
332
333 dentry_rcuwalk_barrier(dentry);
334 }
335 }
336 EXPORT_SYMBOL(__d_drop);
337
338 void d_drop(struct dentry *dentry)
339 {
340 spin_lock(&dentry->d_lock);
341 __d_drop(dentry);
342 spin_unlock(&dentry->d_lock);
343 }
344 EXPORT_SYMBOL(d_drop);
345
346 /*
347 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
348 * @dentry: dentry to drop
349 *
350 * This is called when we do a lookup on a placeholder dentry that needed to be
351 * looked up. The dentry should have been hashed in order for it to be found by
352 * the lookup code, but now needs to be unhashed while we do the actual lookup
353 * and clear the DCACHE_NEED_LOOKUP flag.
354 */
355 void d_clear_need_lookup(struct dentry *dentry)
356 {
357 spin_lock(&dentry->d_lock);
358 __d_drop(dentry);
359 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
360 spin_unlock(&dentry->d_lock);
361 }
362 EXPORT_SYMBOL(d_clear_need_lookup);
363
364 /*
365 * Finish off a dentry we've decided to kill.
366 * dentry->d_lock must be held, returns with it unlocked.
367 * If ref is non-zero, then decrement the refcount too.
368 * Returns dentry requiring refcount drop, or NULL if we're done.
369 */
370 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
371 __releases(dentry->d_lock)
372 {
373 struct inode *inode;
374 struct dentry *parent;
375
376 inode = dentry->d_inode;
377 if (inode && !spin_trylock(&inode->i_lock)) {
378 relock:
379 spin_unlock(&dentry->d_lock);
380 cpu_relax();
381 return dentry; /* try again with same dentry */
382 }
383 if (IS_ROOT(dentry))
384 parent = NULL;
385 else
386 parent = dentry->d_parent;
387 if (parent && !spin_trylock(&parent->d_lock)) {
388 if (inode)
389 spin_unlock(&inode->i_lock);
390 goto relock;
391 }
392
393 if (ref)
394 dentry->d_count--;
395 /* if dentry was on the d_lru list delete it from there */
396 dentry_lru_del(dentry);
397 /* if it was on the hash then remove it */
398 __d_drop(dentry);
399 return d_kill(dentry, parent);
400 }
401
402 /*
403 * This is dput
404 *
405 * This is complicated by the fact that we do not want to put
406 * dentries that are no longer on any hash chain on the unused
407 * list: we'd much rather just get rid of them immediately.
408 *
409 * However, that implies that we have to traverse the dentry
410 * tree upwards to the parents which might _also_ now be
411 * scheduled for deletion (it may have been only waiting for
412 * its last child to go away).
413 *
414 * This tail recursion is done by hand as we don't want to depend
415 * on the compiler to always get this right (gcc generally doesn't).
416 * Real recursion would eat up our stack space.
417 */
418
419 /*
420 * dput - release a dentry
421 * @dentry: dentry to release
422 *
423 * Release a dentry. This will drop the usage count and if appropriate
424 * call the dentry unlink method as well as removing it from the queues and
425 * releasing its resources. If the parent dentries were scheduled for release
426 * they too may now get deleted.
427 */
428 void dput(struct dentry *dentry)
429 {
430 if (!dentry)
431 return;
432
433 repeat:
434 if (dentry->d_count == 1)
435 might_sleep();
436 spin_lock(&dentry->d_lock);
437 BUG_ON(!dentry->d_count);
438 if (dentry->d_count > 1) {
439 dentry->d_count--;
440 spin_unlock(&dentry->d_lock);
441 return;
442 }
443
444 if (dentry->d_flags & DCACHE_OP_DELETE) {
445 if (dentry->d_op->d_delete(dentry))
446 goto kill_it;
447 }
448
449 /* Unreachable? Get rid of it */
450 if (d_unhashed(dentry))
451 goto kill_it;
452
453 /*
454 * If this dentry needs lookup, don't set the referenced flag so that it
455 * is more likely to be cleaned up by the dcache shrinker in case of
456 * memory pressure.
457 */
458 if (!d_need_lookup(dentry))
459 dentry->d_flags |= DCACHE_REFERENCED;
460 dentry_lru_add(dentry);
461
462 dentry->d_count--;
463 spin_unlock(&dentry->d_lock);
464 return;
465
466 kill_it:
467 dentry = dentry_kill(dentry, 1);
468 if (dentry)
469 goto repeat;
470 }
471 EXPORT_SYMBOL(dput);
472
473 /**
474 * d_invalidate - invalidate a dentry
475 * @dentry: dentry to invalidate
476 *
477 * Try to invalidate the dentry if it turns out to be
478 * possible. If there are other dentries that can be
479 * reached through this one we can't delete it and we
480 * return -EBUSY. On success we return 0.
481 *
482 * no dcache lock.
483 */
484
485 int d_invalidate(struct dentry * dentry)
486 {
487 /*
488 * If it's already been dropped, return OK.
489 */
490 spin_lock(&dentry->d_lock);
491 if (d_unhashed(dentry)) {
492 spin_unlock(&dentry->d_lock);
493 return 0;
494 }
495 /*
496 * Check whether to do a partial shrink_dcache
497 * to get rid of unused child entries.
498 */
499 if (!list_empty(&dentry->d_subdirs)) {
500 spin_unlock(&dentry->d_lock);
501 shrink_dcache_parent(dentry);
502 spin_lock(&dentry->d_lock);
503 }
504
505 /*
506 * Somebody else still using it?
507 *
508 * If it's a directory, we can't drop it
509 * for fear of somebody re-populating it
510 * with children (even though dropping it
511 * would make it unreachable from the root,
512 * we might still populate it if it was a
513 * working directory or similar).
514 */
515 if (dentry->d_count > 1) {
516 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
517 spin_unlock(&dentry->d_lock);
518 return -EBUSY;
519 }
520 }
521
522 __d_drop(dentry);
523 spin_unlock(&dentry->d_lock);
524 return 0;
525 }
526 EXPORT_SYMBOL(d_invalidate);
527
528 /* This must be called with d_lock held */
529 static inline void __dget_dlock(struct dentry *dentry)
530 {
531 dentry->d_count++;
532 }
533
534 static inline void __dget(struct dentry *dentry)
535 {
536 spin_lock(&dentry->d_lock);
537 __dget_dlock(dentry);
538 spin_unlock(&dentry->d_lock);
539 }
540
541 struct dentry *dget_parent(struct dentry *dentry)
542 {
543 struct dentry *ret;
544
545 repeat:
546 /*
547 * Don't need rcu_dereference because we re-check it was correct under
548 * the lock.
549 */
550 rcu_read_lock();
551 ret = dentry->d_parent;
552 spin_lock(&ret->d_lock);
553 if (unlikely(ret != dentry->d_parent)) {
554 spin_unlock(&ret->d_lock);
555 rcu_read_unlock();
556 goto repeat;
557 }
558 rcu_read_unlock();
559 BUG_ON(!ret->d_count);
560 ret->d_count++;
561 spin_unlock(&ret->d_lock);
562 return ret;
563 }
564 EXPORT_SYMBOL(dget_parent);
565
566 /**
567 * d_find_alias - grab a hashed alias of inode
568 * @inode: inode in question
569 * @want_discon: flag, used by d_splice_alias, to request
570 * that only a DISCONNECTED alias be returned.
571 *
572 * If inode has a hashed alias, or is a directory and has any alias,
573 * acquire the reference to alias and return it. Otherwise return NULL.
574 * Notice that if inode is a directory there can be only one alias and
575 * it can be unhashed only if it has no children, or if it is the root
576 * of a filesystem.
577 *
578 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
579 * any other hashed alias over that one unless @want_discon is set,
580 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
581 */
582 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
583 {
584 struct dentry *alias, *discon_alias;
585
586 again:
587 discon_alias = NULL;
588 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
589 spin_lock(&alias->d_lock);
590 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
591 if (IS_ROOT(alias) &&
592 (alias->d_flags & DCACHE_DISCONNECTED)) {
593 discon_alias = alias;
594 } else if (!want_discon) {
595 __dget_dlock(alias);
596 spin_unlock(&alias->d_lock);
597 return alias;
598 }
599 }
600 spin_unlock(&alias->d_lock);
601 }
602 if (discon_alias) {
603 alias = discon_alias;
604 spin_lock(&alias->d_lock);
605 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
606 if (IS_ROOT(alias) &&
607 (alias->d_flags & DCACHE_DISCONNECTED)) {
608 __dget_dlock(alias);
609 spin_unlock(&alias->d_lock);
610 return alias;
611 }
612 }
613 spin_unlock(&alias->d_lock);
614 goto again;
615 }
616 return NULL;
617 }
618
619 struct dentry *d_find_alias(struct inode *inode)
620 {
621 struct dentry *de = NULL;
622
623 if (!list_empty(&inode->i_dentry)) {
624 spin_lock(&inode->i_lock);
625 de = __d_find_alias(inode, 0);
626 spin_unlock(&inode->i_lock);
627 }
628 return de;
629 }
630 EXPORT_SYMBOL(d_find_alias);
631
632 /*
633 * Try to kill dentries associated with this inode.
634 * WARNING: you must own a reference to inode.
635 */
636 void d_prune_aliases(struct inode *inode)
637 {
638 struct dentry *dentry;
639 restart:
640 spin_lock(&inode->i_lock);
641 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
642 spin_lock(&dentry->d_lock);
643 if (!dentry->d_count) {
644 __dget_dlock(dentry);
645 __d_drop(dentry);
646 spin_unlock(&dentry->d_lock);
647 spin_unlock(&inode->i_lock);
648 dput(dentry);
649 goto restart;
650 }
651 spin_unlock(&dentry->d_lock);
652 }
653 spin_unlock(&inode->i_lock);
654 }
655 EXPORT_SYMBOL(d_prune_aliases);
656
657 /*
658 * Try to throw away a dentry - free the inode, dput the parent.
659 * Requires dentry->d_lock is held, and dentry->d_count == 0.
660 * Releases dentry->d_lock.
661 *
662 * This may fail if locks cannot be acquired no problem, just try again.
663 */
664 static void try_prune_one_dentry(struct dentry *dentry)
665 __releases(dentry->d_lock)
666 {
667 struct dentry *parent;
668
669 parent = dentry_kill(dentry, 0);
670 /*
671 * If dentry_kill returns NULL, we have nothing more to do.
672 * if it returns the same dentry, trylocks failed. In either
673 * case, just loop again.
674 *
675 * Otherwise, we need to prune ancestors too. This is necessary
676 * to prevent quadratic behavior of shrink_dcache_parent(), but
677 * is also expected to be beneficial in reducing dentry cache
678 * fragmentation.
679 */
680 if (!parent)
681 return;
682 if (parent == dentry)
683 return;
684
685 /* Prune ancestors. */
686 dentry = parent;
687 while (dentry) {
688 spin_lock(&dentry->d_lock);
689 if (dentry->d_count > 1) {
690 dentry->d_count--;
691 spin_unlock(&dentry->d_lock);
692 return;
693 }
694 dentry = dentry_kill(dentry, 1);
695 }
696 }
697
698 static void shrink_dentry_list(struct list_head *list)
699 {
700 struct dentry *dentry;
701
702 rcu_read_lock();
703 for (;;) {
704 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
705 if (&dentry->d_lru == list)
706 break; /* empty */
707 spin_lock(&dentry->d_lock);
708 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
709 spin_unlock(&dentry->d_lock);
710 continue;
711 }
712
713 /*
714 * We found an inuse dentry which was not removed from
715 * the LRU because of laziness during lookup. Do not free
716 * it - just keep it off the LRU list.
717 */
718 if (dentry->d_count) {
719 dentry_lru_del(dentry);
720 spin_unlock(&dentry->d_lock);
721 continue;
722 }
723
724 rcu_read_unlock();
725
726 try_prune_one_dentry(dentry);
727
728 rcu_read_lock();
729 }
730 rcu_read_unlock();
731 }
732
733 /**
734 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
735 * @sb: superblock to shrink dentry LRU.
736 * @count: number of entries to prune
737 * @flags: flags to control the dentry processing
738 *
739 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
740 */
741 static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
742 {
743 struct dentry *dentry;
744 LIST_HEAD(referenced);
745 LIST_HEAD(tmp);
746
747 relock:
748 spin_lock(&dcache_lru_lock);
749 while (!list_empty(&sb->s_dentry_lru)) {
750 dentry = list_entry(sb->s_dentry_lru.prev,
751 struct dentry, d_lru);
752 BUG_ON(dentry->d_sb != sb);
753
754 if (!spin_trylock(&dentry->d_lock)) {
755 spin_unlock(&dcache_lru_lock);
756 cpu_relax();
757 goto relock;
758 }
759
760 /*
761 * If we are honouring the DCACHE_REFERENCED flag and the
762 * dentry has this flag set, don't free it. Clear the flag
763 * and put it back on the LRU.
764 */
765 if (flags & DCACHE_REFERENCED &&
766 dentry->d_flags & DCACHE_REFERENCED) {
767 dentry->d_flags &= ~DCACHE_REFERENCED;
768 list_move(&dentry->d_lru, &referenced);
769 spin_unlock(&dentry->d_lock);
770 } else {
771 list_move_tail(&dentry->d_lru, &tmp);
772 spin_unlock(&dentry->d_lock);
773 if (!--count)
774 break;
775 }
776 cond_resched_lock(&dcache_lru_lock);
777 }
778 if (!list_empty(&referenced))
779 list_splice(&referenced, &sb->s_dentry_lru);
780 spin_unlock(&dcache_lru_lock);
781
782 shrink_dentry_list(&tmp);
783 }
784
785 /**
786 * prune_dcache_sb - shrink the dcache
787 * @nr_to_scan: number of entries to try to free
788 *
789 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
790 * done when we need more memory an called from the superblock shrinker
791 * function.
792 *
793 * This function may fail to free any resources if all the dentries are in
794 * use.
795 */
796 void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
797 {
798 __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
799 }
800
801 /**
802 * shrink_dcache_sb - shrink dcache for a superblock
803 * @sb: superblock
804 *
805 * Shrink the dcache for the specified super block. This is used to free
806 * the dcache before unmounting a file system.
807 */
808 void shrink_dcache_sb(struct super_block *sb)
809 {
810 LIST_HEAD(tmp);
811
812 spin_lock(&dcache_lru_lock);
813 while (!list_empty(&sb->s_dentry_lru)) {
814 list_splice_init(&sb->s_dentry_lru, &tmp);
815 spin_unlock(&dcache_lru_lock);
816 shrink_dentry_list(&tmp);
817 spin_lock(&dcache_lru_lock);
818 }
819 spin_unlock(&dcache_lru_lock);
820 }
821 EXPORT_SYMBOL(shrink_dcache_sb);
822
823 /*
824 * destroy a single subtree of dentries for unmount
825 * - see the comments on shrink_dcache_for_umount() for a description of the
826 * locking
827 */
828 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
829 {
830 struct dentry *parent;
831 unsigned detached = 0;
832
833 BUG_ON(!IS_ROOT(dentry));
834
835 /* detach this root from the system */
836 spin_lock(&dentry->d_lock);
837 dentry_lru_del(dentry);
838 __d_drop(dentry);
839 spin_unlock(&dentry->d_lock);
840
841 for (;;) {
842 /* descend to the first leaf in the current subtree */
843 while (!list_empty(&dentry->d_subdirs)) {
844 struct dentry *loop;
845
846 /* this is a branch with children - detach all of them
847 * from the system in one go */
848 spin_lock(&dentry->d_lock);
849 list_for_each_entry(loop, &dentry->d_subdirs,
850 d_u.d_child) {
851 spin_lock_nested(&loop->d_lock,
852 DENTRY_D_LOCK_NESTED);
853 dentry_lru_del(loop);
854 __d_drop(loop);
855 spin_unlock(&loop->d_lock);
856 }
857 spin_unlock(&dentry->d_lock);
858
859 /* move to the first child */
860 dentry = list_entry(dentry->d_subdirs.next,
861 struct dentry, d_u.d_child);
862 }
863
864 /* consume the dentries from this leaf up through its parents
865 * until we find one with children or run out altogether */
866 do {
867 struct inode *inode;
868
869 if (dentry->d_count != 0) {
870 printk(KERN_ERR
871 "BUG: Dentry %p{i=%lx,n=%s}"
872 " still in use (%d)"
873 " [unmount of %s %s]\n",
874 dentry,
875 dentry->d_inode ?
876 dentry->d_inode->i_ino : 0UL,
877 dentry->d_name.name,
878 dentry->d_count,
879 dentry->d_sb->s_type->name,
880 dentry->d_sb->s_id);
881 BUG();
882 }
883
884 if (IS_ROOT(dentry)) {
885 parent = NULL;
886 list_del(&dentry->d_u.d_child);
887 } else {
888 parent = dentry->d_parent;
889 spin_lock(&parent->d_lock);
890 parent->d_count--;
891 list_del(&dentry->d_u.d_child);
892 spin_unlock(&parent->d_lock);
893 }
894
895 detached++;
896
897 inode = dentry->d_inode;
898 if (inode) {
899 dentry->d_inode = NULL;
900 list_del_init(&dentry->d_alias);
901 if (dentry->d_op && dentry->d_op->d_iput)
902 dentry->d_op->d_iput(dentry, inode);
903 else
904 iput(inode);
905 }
906
907 d_free(dentry);
908
909 /* finished when we fall off the top of the tree,
910 * otherwise we ascend to the parent and move to the
911 * next sibling if there is one */
912 if (!parent)
913 return;
914 dentry = parent;
915 } while (list_empty(&dentry->d_subdirs));
916
917 dentry = list_entry(dentry->d_subdirs.next,
918 struct dentry, d_u.d_child);
919 }
920 }
921
922 /*
923 * destroy the dentries attached to a superblock on unmounting
924 * - we don't need to use dentry->d_lock because:
925 * - the superblock is detached from all mountings and open files, so the
926 * dentry trees will not be rearranged by the VFS
927 * - s_umount is write-locked, so the memory pressure shrinker will ignore
928 * any dentries belonging to this superblock that it comes across
929 * - the filesystem itself is no longer permitted to rearrange the dentries
930 * in this superblock
931 */
932 void shrink_dcache_for_umount(struct super_block *sb)
933 {
934 struct dentry *dentry;
935
936 if (down_read_trylock(&sb->s_umount))
937 BUG();
938
939 dentry = sb->s_root;
940 sb->s_root = NULL;
941 spin_lock(&dentry->d_lock);
942 dentry->d_count--;
943 spin_unlock(&dentry->d_lock);
944 shrink_dcache_for_umount_subtree(dentry);
945
946 while (!hlist_bl_empty(&sb->s_anon)) {
947 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
948 shrink_dcache_for_umount_subtree(dentry);
949 }
950 }
951
952 /*
953 * This tries to ascend one level of parenthood, but
954 * we can race with renaming, so we need to re-check
955 * the parenthood after dropping the lock and check
956 * that the sequence number still matches.
957 */
958 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
959 {
960 struct dentry *new = old->d_parent;
961
962 rcu_read_lock();
963 spin_unlock(&old->d_lock);
964 spin_lock(&new->d_lock);
965
966 /*
967 * might go back up the wrong parent if we have had a rename
968 * or deletion
969 */
970 if (new != old->d_parent ||
971 (old->d_flags & DCACHE_DISCONNECTED) ||
972 (!locked && read_seqretry(&rename_lock, seq))) {
973 spin_unlock(&new->d_lock);
974 new = NULL;
975 }
976 rcu_read_unlock();
977 return new;
978 }
979
980
981 /*
982 * Search for at least 1 mount point in the dentry's subdirs.
983 * We descend to the next level whenever the d_subdirs
984 * list is non-empty and continue searching.
985 */
986
987 /**
988 * have_submounts - check for mounts over a dentry
989 * @parent: dentry to check.
990 *
991 * Return true if the parent or its subdirectories contain
992 * a mount point
993 */
994 int have_submounts(struct dentry *parent)
995 {
996 struct dentry *this_parent;
997 struct list_head *next;
998 unsigned seq;
999 int locked = 0;
1000
1001 seq = read_seqbegin(&rename_lock);
1002 again:
1003 this_parent = parent;
1004
1005 if (d_mountpoint(parent))
1006 goto positive;
1007 spin_lock(&this_parent->d_lock);
1008 repeat:
1009 next = this_parent->d_subdirs.next;
1010 resume:
1011 while (next != &this_parent->d_subdirs) {
1012 struct list_head *tmp = next;
1013 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1014 next = tmp->next;
1015
1016 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1017 /* Have we found a mount point ? */
1018 if (d_mountpoint(dentry)) {
1019 spin_unlock(&dentry->d_lock);
1020 spin_unlock(&this_parent->d_lock);
1021 goto positive;
1022 }
1023 if (!list_empty(&dentry->d_subdirs)) {
1024 spin_unlock(&this_parent->d_lock);
1025 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1026 this_parent = dentry;
1027 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1028 goto repeat;
1029 }
1030 spin_unlock(&dentry->d_lock);
1031 }
1032 /*
1033 * All done at this level ... ascend and resume the search.
1034 */
1035 if (this_parent != parent) {
1036 struct dentry *child = this_parent;
1037 this_parent = try_to_ascend(this_parent, locked, seq);
1038 if (!this_parent)
1039 goto rename_retry;
1040 next = child->d_u.d_child.next;
1041 goto resume;
1042 }
1043 spin_unlock(&this_parent->d_lock);
1044 if (!locked && read_seqretry(&rename_lock, seq))
1045 goto rename_retry;
1046 if (locked)
1047 write_sequnlock(&rename_lock);
1048 return 0; /* No mount points found in tree */
1049 positive:
1050 if (!locked && read_seqretry(&rename_lock, seq))
1051 goto rename_retry;
1052 if (locked)
1053 write_sequnlock(&rename_lock);
1054 return 1;
1055
1056 rename_retry:
1057 locked = 1;
1058 write_seqlock(&rename_lock);
1059 goto again;
1060 }
1061 EXPORT_SYMBOL(have_submounts);
1062
1063 /*
1064 * Search the dentry child list for the specified parent,
1065 * and move any unused dentries to the end of the unused
1066 * list for prune_dcache(). We descend to the next level
1067 * whenever the d_subdirs list is non-empty and continue
1068 * searching.
1069 *
1070 * It returns zero iff there are no unused children,
1071 * otherwise it returns the number of children moved to
1072 * the end of the unused list. This may not be the total
1073 * number of unused children, because select_parent can
1074 * drop the lock and return early due to latency
1075 * constraints.
1076 */
1077 static int select_parent(struct dentry * parent)
1078 {
1079 struct dentry *this_parent;
1080 struct list_head *next;
1081 unsigned seq;
1082 int found = 0;
1083 int locked = 0;
1084
1085 seq = read_seqbegin(&rename_lock);
1086 again:
1087 this_parent = parent;
1088 spin_lock(&this_parent->d_lock);
1089 repeat:
1090 next = this_parent->d_subdirs.next;
1091 resume:
1092 while (next != &this_parent->d_subdirs) {
1093 struct list_head *tmp = next;
1094 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1095 next = tmp->next;
1096
1097 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1098
1099 /*
1100 * move only zero ref count dentries to the end
1101 * of the unused list for prune_dcache
1102 */
1103 if (!dentry->d_count) {
1104 dentry_lru_move_tail(dentry);
1105 found++;
1106 } else {
1107 dentry_lru_del(dentry);
1108 }
1109
1110 /*
1111 * We can return to the caller if we have found some (this
1112 * ensures forward progress). We'll be coming back to find
1113 * the rest.
1114 */
1115 if (found && need_resched()) {
1116 spin_unlock(&dentry->d_lock);
1117 goto out;
1118 }
1119
1120 /*
1121 * Descend a level if the d_subdirs list is non-empty.
1122 */
1123 if (!list_empty(&dentry->d_subdirs)) {
1124 spin_unlock(&this_parent->d_lock);
1125 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1126 this_parent = dentry;
1127 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1128 goto repeat;
1129 }
1130
1131 spin_unlock(&dentry->d_lock);
1132 }
1133 /*
1134 * All done at this level ... ascend and resume the search.
1135 */
1136 if (this_parent != parent) {
1137 struct dentry *child = this_parent;
1138 this_parent = try_to_ascend(this_parent, locked, seq);
1139 if (!this_parent)
1140 goto rename_retry;
1141 next = child->d_u.d_child.next;
1142 goto resume;
1143 }
1144 out:
1145 spin_unlock(&this_parent->d_lock);
1146 if (!locked && read_seqretry(&rename_lock, seq))
1147 goto rename_retry;
1148 if (locked)
1149 write_sequnlock(&rename_lock);
1150 return found;
1151
1152 rename_retry:
1153 if (found)
1154 return found;
1155 locked = 1;
1156 write_seqlock(&rename_lock);
1157 goto again;
1158 }
1159
1160 /**
1161 * shrink_dcache_parent - prune dcache
1162 * @parent: parent of entries to prune
1163 *
1164 * Prune the dcache to remove unused children of the parent dentry.
1165 */
1166
1167 void shrink_dcache_parent(struct dentry * parent)
1168 {
1169 struct super_block *sb = parent->d_sb;
1170 int found;
1171
1172 while ((found = select_parent(parent)) != 0)
1173 __shrink_dcache_sb(sb, found, 0);
1174 }
1175 EXPORT_SYMBOL(shrink_dcache_parent);
1176
1177 /**
1178 * __d_alloc - allocate a dcache entry
1179 * @sb: filesystem it will belong to
1180 * @name: qstr of the name
1181 *
1182 * Allocates a dentry. It returns %NULL if there is insufficient memory
1183 * available. On a success the dentry is returned. The name passed in is
1184 * copied and the copy passed in may be reused after this call.
1185 */
1186
1187 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1188 {
1189 struct dentry *dentry;
1190 char *dname;
1191
1192 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1193 if (!dentry)
1194 return NULL;
1195
1196 if (name->len > DNAME_INLINE_LEN-1) {
1197 dname = kmalloc(name->len + 1, GFP_KERNEL);
1198 if (!dname) {
1199 kmem_cache_free(dentry_cache, dentry);
1200 return NULL;
1201 }
1202 } else {
1203 dname = dentry->d_iname;
1204 }
1205 dentry->d_name.name = dname;
1206
1207 dentry->d_name.len = name->len;
1208 dentry->d_name.hash = name->hash;
1209 memcpy(dname, name->name, name->len);
1210 dname[name->len] = 0;
1211
1212 dentry->d_count = 1;
1213 dentry->d_flags = 0;
1214 spin_lock_init(&dentry->d_lock);
1215 seqcount_init(&dentry->d_seq);
1216 dentry->d_inode = NULL;
1217 dentry->d_parent = dentry;
1218 dentry->d_sb = sb;
1219 dentry->d_op = NULL;
1220 dentry->d_fsdata = NULL;
1221 INIT_HLIST_BL_NODE(&dentry->d_hash);
1222 INIT_LIST_HEAD(&dentry->d_lru);
1223 INIT_LIST_HEAD(&dentry->d_subdirs);
1224 INIT_LIST_HEAD(&dentry->d_alias);
1225 INIT_LIST_HEAD(&dentry->d_u.d_child);
1226 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1227
1228 this_cpu_inc(nr_dentry);
1229
1230 return dentry;
1231 }
1232
1233 /**
1234 * d_alloc - allocate a dcache entry
1235 * @parent: parent of entry to allocate
1236 * @name: qstr of the name
1237 *
1238 * Allocates a dentry. It returns %NULL if there is insufficient memory
1239 * available. On a success the dentry is returned. The name passed in is
1240 * copied and the copy passed in may be reused after this call.
1241 */
1242 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1243 {
1244 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1245 if (!dentry)
1246 return NULL;
1247
1248 spin_lock(&parent->d_lock);
1249 /*
1250 * don't need child lock because it is not subject
1251 * to concurrency here
1252 */
1253 __dget_dlock(parent);
1254 dentry->d_parent = parent;
1255 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1256 spin_unlock(&parent->d_lock);
1257
1258 return dentry;
1259 }
1260 EXPORT_SYMBOL(d_alloc);
1261
1262 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1263 {
1264 struct dentry *dentry = __d_alloc(sb, name);
1265 if (dentry)
1266 dentry->d_flags |= DCACHE_DISCONNECTED;
1267 return dentry;
1268 }
1269 EXPORT_SYMBOL(d_alloc_pseudo);
1270
1271 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1272 {
1273 struct qstr q;
1274
1275 q.name = name;
1276 q.len = strlen(name);
1277 q.hash = full_name_hash(q.name, q.len);
1278 return d_alloc(parent, &q);
1279 }
1280 EXPORT_SYMBOL(d_alloc_name);
1281
1282 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1283 {
1284 WARN_ON_ONCE(dentry->d_op);
1285 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1286 DCACHE_OP_COMPARE |
1287 DCACHE_OP_REVALIDATE |
1288 DCACHE_OP_DELETE ));
1289 dentry->d_op = op;
1290 if (!op)
1291 return;
1292 if (op->d_hash)
1293 dentry->d_flags |= DCACHE_OP_HASH;
1294 if (op->d_compare)
1295 dentry->d_flags |= DCACHE_OP_COMPARE;
1296 if (op->d_revalidate)
1297 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1298 if (op->d_delete)
1299 dentry->d_flags |= DCACHE_OP_DELETE;
1300
1301 }
1302 EXPORT_SYMBOL(d_set_d_op);
1303
1304 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1305 {
1306 spin_lock(&dentry->d_lock);
1307 if (inode) {
1308 if (unlikely(IS_AUTOMOUNT(inode)))
1309 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1310 list_add(&dentry->d_alias, &inode->i_dentry);
1311 }
1312 dentry->d_inode = inode;
1313 dentry_rcuwalk_barrier(dentry);
1314 spin_unlock(&dentry->d_lock);
1315 fsnotify_d_instantiate(dentry, inode);
1316 }
1317
1318 /**
1319 * d_instantiate - fill in inode information for a dentry
1320 * @entry: dentry to complete
1321 * @inode: inode to attach to this dentry
1322 *
1323 * Fill in inode information in the entry.
1324 *
1325 * This turns negative dentries into productive full members
1326 * of society.
1327 *
1328 * NOTE! This assumes that the inode count has been incremented
1329 * (or otherwise set) by the caller to indicate that it is now
1330 * in use by the dcache.
1331 */
1332
1333 void d_instantiate(struct dentry *entry, struct inode * inode)
1334 {
1335 BUG_ON(!list_empty(&entry->d_alias));
1336 if (inode)
1337 spin_lock(&inode->i_lock);
1338 __d_instantiate(entry, inode);
1339 if (inode)
1340 spin_unlock(&inode->i_lock);
1341 security_d_instantiate(entry, inode);
1342 }
1343 EXPORT_SYMBOL(d_instantiate);
1344
1345 /**
1346 * d_instantiate_unique - instantiate a non-aliased dentry
1347 * @entry: dentry to instantiate
1348 * @inode: inode to attach to this dentry
1349 *
1350 * Fill in inode information in the entry. On success, it returns NULL.
1351 * If an unhashed alias of "entry" already exists, then we return the
1352 * aliased dentry instead and drop one reference to inode.
1353 *
1354 * Note that in order to avoid conflicts with rename() etc, the caller
1355 * had better be holding the parent directory semaphore.
1356 *
1357 * This also assumes that the inode count has been incremented
1358 * (or otherwise set) by the caller to indicate that it is now
1359 * in use by the dcache.
1360 */
1361 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1362 struct inode *inode)
1363 {
1364 struct dentry *alias;
1365 int len = entry->d_name.len;
1366 const char *name = entry->d_name.name;
1367 unsigned int hash = entry->d_name.hash;
1368
1369 if (!inode) {
1370 __d_instantiate(entry, NULL);
1371 return NULL;
1372 }
1373
1374 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1375 struct qstr *qstr = &alias->d_name;
1376
1377 /*
1378 * Don't need alias->d_lock here, because aliases with
1379 * d_parent == entry->d_parent are not subject to name or
1380 * parent changes, because the parent inode i_mutex is held.
1381 */
1382 if (qstr->hash != hash)
1383 continue;
1384 if (alias->d_parent != entry->d_parent)
1385 continue;
1386 if (dentry_cmp(qstr->name, qstr->len, name, len))
1387 continue;
1388 __dget(alias);
1389 return alias;
1390 }
1391
1392 __d_instantiate(entry, inode);
1393 return NULL;
1394 }
1395
1396 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1397 {
1398 struct dentry *result;
1399
1400 BUG_ON(!list_empty(&entry->d_alias));
1401
1402 if (inode)
1403 spin_lock(&inode->i_lock);
1404 result = __d_instantiate_unique(entry, inode);
1405 if (inode)
1406 spin_unlock(&inode->i_lock);
1407
1408 if (!result) {
1409 security_d_instantiate(entry, inode);
1410 return NULL;
1411 }
1412
1413 BUG_ON(!d_unhashed(result));
1414 iput(inode);
1415 return result;
1416 }
1417
1418 EXPORT_SYMBOL(d_instantiate_unique);
1419
1420 /**
1421 * d_alloc_root - allocate root dentry
1422 * @root_inode: inode to allocate the root for
1423 *
1424 * Allocate a root ("/") dentry for the inode given. The inode is
1425 * instantiated and returned. %NULL is returned if there is insufficient
1426 * memory or the inode passed is %NULL.
1427 */
1428
1429 struct dentry * d_alloc_root(struct inode * root_inode)
1430 {
1431 struct dentry *res = NULL;
1432
1433 if (root_inode) {
1434 static const struct qstr name = { .name = "/", .len = 1 };
1435
1436 res = __d_alloc(root_inode->i_sb, &name);
1437 if (res)
1438 d_instantiate(res, root_inode);
1439 }
1440 return res;
1441 }
1442 EXPORT_SYMBOL(d_alloc_root);
1443
1444 static struct dentry * __d_find_any_alias(struct inode *inode)
1445 {
1446 struct dentry *alias;
1447
1448 if (list_empty(&inode->i_dentry))
1449 return NULL;
1450 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1451 __dget(alias);
1452 return alias;
1453 }
1454
1455 static struct dentry * d_find_any_alias(struct inode *inode)
1456 {
1457 struct dentry *de;
1458
1459 spin_lock(&inode->i_lock);
1460 de = __d_find_any_alias(inode);
1461 spin_unlock(&inode->i_lock);
1462 return de;
1463 }
1464
1465
1466 /**
1467 * d_obtain_alias - find or allocate a dentry for a given inode
1468 * @inode: inode to allocate the dentry for
1469 *
1470 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1471 * similar open by handle operations. The returned dentry may be anonymous,
1472 * or may have a full name (if the inode was already in the cache).
1473 *
1474 * When called on a directory inode, we must ensure that the inode only ever
1475 * has one dentry. If a dentry is found, that is returned instead of
1476 * allocating a new one.
1477 *
1478 * On successful return, the reference to the inode has been transferred
1479 * to the dentry. In case of an error the reference on the inode is released.
1480 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1481 * be passed in and will be the error will be propagate to the return value,
1482 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1483 */
1484 struct dentry *d_obtain_alias(struct inode *inode)
1485 {
1486 static const struct qstr anonstring = { .name = "" };
1487 struct dentry *tmp;
1488 struct dentry *res;
1489
1490 if (!inode)
1491 return ERR_PTR(-ESTALE);
1492 if (IS_ERR(inode))
1493 return ERR_CAST(inode);
1494
1495 res = d_find_any_alias(inode);
1496 if (res)
1497 goto out_iput;
1498
1499 tmp = __d_alloc(inode->i_sb, &anonstring);
1500 if (!tmp) {
1501 res = ERR_PTR(-ENOMEM);
1502 goto out_iput;
1503 }
1504
1505 spin_lock(&inode->i_lock);
1506 res = __d_find_any_alias(inode);
1507 if (res) {
1508 spin_unlock(&inode->i_lock);
1509 dput(tmp);
1510 goto out_iput;
1511 }
1512
1513 /* attach a disconnected dentry */
1514 spin_lock(&tmp->d_lock);
1515 tmp->d_inode = inode;
1516 tmp->d_flags |= DCACHE_DISCONNECTED;
1517 list_add(&tmp->d_alias, &inode->i_dentry);
1518 hlist_bl_lock(&tmp->d_sb->s_anon);
1519 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1520 hlist_bl_unlock(&tmp->d_sb->s_anon);
1521 spin_unlock(&tmp->d_lock);
1522 spin_unlock(&inode->i_lock);
1523 security_d_instantiate(tmp, inode);
1524
1525 return tmp;
1526
1527 out_iput:
1528 if (res && !IS_ERR(res))
1529 security_d_instantiate(res, inode);
1530 iput(inode);
1531 return res;
1532 }
1533 EXPORT_SYMBOL(d_obtain_alias);
1534
1535 /**
1536 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1537 * @inode: the inode which may have a disconnected dentry
1538 * @dentry: a negative dentry which we want to point to the inode.
1539 *
1540 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1541 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1542 * and return it, else simply d_add the inode to the dentry and return NULL.
1543 *
1544 * This is needed in the lookup routine of any filesystem that is exportable
1545 * (via knfsd) so that we can build dcache paths to directories effectively.
1546 *
1547 * If a dentry was found and moved, then it is returned. Otherwise NULL
1548 * is returned. This matches the expected return value of ->lookup.
1549 *
1550 */
1551 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1552 {
1553 struct dentry *new = NULL;
1554
1555 if (IS_ERR(inode))
1556 return ERR_CAST(inode);
1557
1558 if (inode && S_ISDIR(inode->i_mode)) {
1559 spin_lock(&inode->i_lock);
1560 new = __d_find_alias(inode, 1);
1561 if (new) {
1562 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1563 spin_unlock(&inode->i_lock);
1564 security_d_instantiate(new, inode);
1565 d_move(new, dentry);
1566 iput(inode);
1567 } else {
1568 /* already taking inode->i_lock, so d_add() by hand */
1569 __d_instantiate(dentry, inode);
1570 spin_unlock(&inode->i_lock);
1571 security_d_instantiate(dentry, inode);
1572 d_rehash(dentry);
1573 }
1574 } else
1575 d_add(dentry, inode);
1576 return new;
1577 }
1578 EXPORT_SYMBOL(d_splice_alias);
1579
1580 /**
1581 * d_add_ci - lookup or allocate new dentry with case-exact name
1582 * @inode: the inode case-insensitive lookup has found
1583 * @dentry: the negative dentry that was passed to the parent's lookup func
1584 * @name: the case-exact name to be associated with the returned dentry
1585 *
1586 * This is to avoid filling the dcache with case-insensitive names to the
1587 * same inode, only the actual correct case is stored in the dcache for
1588 * case-insensitive filesystems.
1589 *
1590 * For a case-insensitive lookup match and if the the case-exact dentry
1591 * already exists in in the dcache, use it and return it.
1592 *
1593 * If no entry exists with the exact case name, allocate new dentry with
1594 * the exact case, and return the spliced entry.
1595 */
1596 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1597 struct qstr *name)
1598 {
1599 int error;
1600 struct dentry *found;
1601 struct dentry *new;
1602
1603 /*
1604 * First check if a dentry matching the name already exists,
1605 * if not go ahead and create it now.
1606 */
1607 found = d_hash_and_lookup(dentry->d_parent, name);
1608 if (!found) {
1609 new = d_alloc(dentry->d_parent, name);
1610 if (!new) {
1611 error = -ENOMEM;
1612 goto err_out;
1613 }
1614
1615 found = d_splice_alias(inode, new);
1616 if (found) {
1617 dput(new);
1618 return found;
1619 }
1620 return new;
1621 }
1622
1623 /*
1624 * If a matching dentry exists, and it's not negative use it.
1625 *
1626 * Decrement the reference count to balance the iget() done
1627 * earlier on.
1628 */
1629 if (found->d_inode) {
1630 if (unlikely(found->d_inode != inode)) {
1631 /* This can't happen because bad inodes are unhashed. */
1632 BUG_ON(!is_bad_inode(inode));
1633 BUG_ON(!is_bad_inode(found->d_inode));
1634 }
1635 iput(inode);
1636 return found;
1637 }
1638
1639 /*
1640 * We are going to instantiate this dentry, unhash it and clear the
1641 * lookup flag so we can do that.
1642 */
1643 if (unlikely(d_need_lookup(found)))
1644 d_clear_need_lookup(found);
1645
1646 /*
1647 * Negative dentry: instantiate it unless the inode is a directory and
1648 * already has a dentry.
1649 */
1650 new = d_splice_alias(inode, found);
1651 if (new) {
1652 dput(found);
1653 found = new;
1654 }
1655 return found;
1656
1657 err_out:
1658 iput(inode);
1659 return ERR_PTR(error);
1660 }
1661 EXPORT_SYMBOL(d_add_ci);
1662
1663 /**
1664 * __d_lookup_rcu - search for a dentry (racy, store-free)
1665 * @parent: parent dentry
1666 * @name: qstr of name we wish to find
1667 * @seq: returns d_seq value at the point where the dentry was found
1668 * @inode: returns dentry->d_inode when the inode was found valid.
1669 * Returns: dentry, or NULL
1670 *
1671 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1672 * resolution (store-free path walking) design described in
1673 * Documentation/filesystems/path-lookup.txt.
1674 *
1675 * This is not to be used outside core vfs.
1676 *
1677 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1678 * held, and rcu_read_lock held. The returned dentry must not be stored into
1679 * without taking d_lock and checking d_seq sequence count against @seq
1680 * returned here.
1681 *
1682 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1683 * function.
1684 *
1685 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1686 * the returned dentry, so long as its parent's seqlock is checked after the
1687 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1688 * is formed, giving integrity down the path walk.
1689 */
1690 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1691 unsigned *seq, struct inode **inode)
1692 {
1693 unsigned int len = name->len;
1694 unsigned int hash = name->hash;
1695 const unsigned char *str = name->name;
1696 struct hlist_bl_head *b = d_hash(parent, hash);
1697 struct hlist_bl_node *node;
1698 struct dentry *dentry;
1699
1700 /*
1701 * Note: There is significant duplication with __d_lookup_rcu which is
1702 * required to prevent single threaded performance regressions
1703 * especially on architectures where smp_rmb (in seqcounts) are costly.
1704 * Keep the two functions in sync.
1705 */
1706
1707 /*
1708 * The hash list is protected using RCU.
1709 *
1710 * Carefully use d_seq when comparing a candidate dentry, to avoid
1711 * races with d_move().
1712 *
1713 * It is possible that concurrent renames can mess up our list
1714 * walk here and result in missing our dentry, resulting in the
1715 * false-negative result. d_lookup() protects against concurrent
1716 * renames using rename_lock seqlock.
1717 *
1718 * See Documentation/filesystems/path-lookup.txt for more details.
1719 */
1720 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1721 struct inode *i;
1722 const char *tname;
1723 int tlen;
1724
1725 if (dentry->d_name.hash != hash)
1726 continue;
1727
1728 seqretry:
1729 *seq = read_seqcount_begin(&dentry->d_seq);
1730 if (dentry->d_parent != parent)
1731 continue;
1732 if (d_unhashed(dentry))
1733 continue;
1734 tlen = dentry->d_name.len;
1735 tname = dentry->d_name.name;
1736 i = dentry->d_inode;
1737 prefetch(tname);
1738 /*
1739 * This seqcount check is required to ensure name and
1740 * len are loaded atomically, so as not to walk off the
1741 * edge of memory when walking. If we could load this
1742 * atomically some other way, we could drop this check.
1743 */
1744 if (read_seqcount_retry(&dentry->d_seq, *seq))
1745 goto seqretry;
1746 if (parent->d_flags & DCACHE_OP_COMPARE) {
1747 if (parent->d_op->d_compare(parent, *inode,
1748 dentry, i,
1749 tlen, tname, name))
1750 continue;
1751 } else {
1752 if (dentry_cmp(tname, tlen, str, len))
1753 continue;
1754 }
1755 /*
1756 * No extra seqcount check is required after the name
1757 * compare. The caller must perform a seqcount check in
1758 * order to do anything useful with the returned dentry
1759 * anyway.
1760 */
1761 *inode = i;
1762 return dentry;
1763 }
1764 return NULL;
1765 }
1766
1767 /**
1768 * d_lookup - search for a dentry
1769 * @parent: parent dentry
1770 * @name: qstr of name we wish to find
1771 * Returns: dentry, or NULL
1772 *
1773 * d_lookup searches the children of the parent dentry for the name in
1774 * question. If the dentry is found its reference count is incremented and the
1775 * dentry is returned. The caller must use dput to free the entry when it has
1776 * finished using it. %NULL is returned if the dentry does not exist.
1777 */
1778 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1779 {
1780 struct dentry *dentry;
1781 unsigned seq;
1782
1783 do {
1784 seq = read_seqbegin(&rename_lock);
1785 dentry = __d_lookup(parent, name);
1786 if (dentry)
1787 break;
1788 } while (read_seqretry(&rename_lock, seq));
1789 return dentry;
1790 }
1791 EXPORT_SYMBOL(d_lookup);
1792
1793 /**
1794 * __d_lookup - search for a dentry (racy)
1795 * @parent: parent dentry
1796 * @name: qstr of name we wish to find
1797 * Returns: dentry, or NULL
1798 *
1799 * __d_lookup is like d_lookup, however it may (rarely) return a
1800 * false-negative result due to unrelated rename activity.
1801 *
1802 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1803 * however it must be used carefully, eg. with a following d_lookup in
1804 * the case of failure.
1805 *
1806 * __d_lookup callers must be commented.
1807 */
1808 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1809 {
1810 unsigned int len = name->len;
1811 unsigned int hash = name->hash;
1812 const unsigned char *str = name->name;
1813 struct hlist_bl_head *b = d_hash(parent, hash);
1814 struct hlist_bl_node *node;
1815 struct dentry *found = NULL;
1816 struct dentry *dentry;
1817
1818 /*
1819 * Note: There is significant duplication with __d_lookup_rcu which is
1820 * required to prevent single threaded performance regressions
1821 * especially on architectures where smp_rmb (in seqcounts) are costly.
1822 * Keep the two functions in sync.
1823 */
1824
1825 /*
1826 * The hash list is protected using RCU.
1827 *
1828 * Take d_lock when comparing a candidate dentry, to avoid races
1829 * with d_move().
1830 *
1831 * It is possible that concurrent renames can mess up our list
1832 * walk here and result in missing our dentry, resulting in the
1833 * false-negative result. d_lookup() protects against concurrent
1834 * renames using rename_lock seqlock.
1835 *
1836 * See Documentation/filesystems/path-lookup.txt for more details.
1837 */
1838 rcu_read_lock();
1839
1840 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1841 const char *tname;
1842 int tlen;
1843
1844 if (dentry->d_name.hash != hash)
1845 continue;
1846
1847 spin_lock(&dentry->d_lock);
1848 if (dentry->d_parent != parent)
1849 goto next;
1850 if (d_unhashed(dentry))
1851 goto next;
1852
1853 /*
1854 * It is safe to compare names since d_move() cannot
1855 * change the qstr (protected by d_lock).
1856 */
1857 tlen = dentry->d_name.len;
1858 tname = dentry->d_name.name;
1859 if (parent->d_flags & DCACHE_OP_COMPARE) {
1860 if (parent->d_op->d_compare(parent, parent->d_inode,
1861 dentry, dentry->d_inode,
1862 tlen, tname, name))
1863 goto next;
1864 } else {
1865 if (dentry_cmp(tname, tlen, str, len))
1866 goto next;
1867 }
1868
1869 dentry->d_count++;
1870 found = dentry;
1871 spin_unlock(&dentry->d_lock);
1872 break;
1873 next:
1874 spin_unlock(&dentry->d_lock);
1875 }
1876 rcu_read_unlock();
1877
1878 return found;
1879 }
1880
1881 /**
1882 * d_hash_and_lookup - hash the qstr then search for a dentry
1883 * @dir: Directory to search in
1884 * @name: qstr of name we wish to find
1885 *
1886 * On hash failure or on lookup failure NULL is returned.
1887 */
1888 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1889 {
1890 struct dentry *dentry = NULL;
1891
1892 /*
1893 * Check for a fs-specific hash function. Note that we must
1894 * calculate the standard hash first, as the d_op->d_hash()
1895 * routine may choose to leave the hash value unchanged.
1896 */
1897 name->hash = full_name_hash(name->name, name->len);
1898 if (dir->d_flags & DCACHE_OP_HASH) {
1899 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1900 goto out;
1901 }
1902 dentry = d_lookup(dir, name);
1903 out:
1904 return dentry;
1905 }
1906
1907 /**
1908 * d_validate - verify dentry provided from insecure source (deprecated)
1909 * @dentry: The dentry alleged to be valid child of @dparent
1910 * @dparent: The parent dentry (known to be valid)
1911 *
1912 * An insecure source has sent us a dentry, here we verify it and dget() it.
1913 * This is used by ncpfs in its readdir implementation.
1914 * Zero is returned in the dentry is invalid.
1915 *
1916 * This function is slow for big directories, and deprecated, do not use it.
1917 */
1918 int d_validate(struct dentry *dentry, struct dentry *dparent)
1919 {
1920 struct dentry *child;
1921
1922 spin_lock(&dparent->d_lock);
1923 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1924 if (dentry == child) {
1925 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1926 __dget_dlock(dentry);
1927 spin_unlock(&dentry->d_lock);
1928 spin_unlock(&dparent->d_lock);
1929 return 1;
1930 }
1931 }
1932 spin_unlock(&dparent->d_lock);
1933
1934 return 0;
1935 }
1936 EXPORT_SYMBOL(d_validate);
1937
1938 /*
1939 * When a file is deleted, we have two options:
1940 * - turn this dentry into a negative dentry
1941 * - unhash this dentry and free it.
1942 *
1943 * Usually, we want to just turn this into
1944 * a negative dentry, but if anybody else is
1945 * currently using the dentry or the inode
1946 * we can't do that and we fall back on removing
1947 * it from the hash queues and waiting for
1948 * it to be deleted later when it has no users
1949 */
1950
1951 /**
1952 * d_delete - delete a dentry
1953 * @dentry: The dentry to delete
1954 *
1955 * Turn the dentry into a negative dentry if possible, otherwise
1956 * remove it from the hash queues so it can be deleted later
1957 */
1958
1959 void d_delete(struct dentry * dentry)
1960 {
1961 struct inode *inode;
1962 int isdir = 0;
1963 /*
1964 * Are we the only user?
1965 */
1966 again:
1967 spin_lock(&dentry->d_lock);
1968 inode = dentry->d_inode;
1969 isdir = S_ISDIR(inode->i_mode);
1970 if (dentry->d_count == 1) {
1971 if (inode && !spin_trylock(&inode->i_lock)) {
1972 spin_unlock(&dentry->d_lock);
1973 cpu_relax();
1974 goto again;
1975 }
1976 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1977 dentry_unlink_inode(dentry);
1978 fsnotify_nameremove(dentry, isdir);
1979 return;
1980 }
1981
1982 if (!d_unhashed(dentry))
1983 __d_drop(dentry);
1984
1985 spin_unlock(&dentry->d_lock);
1986
1987 fsnotify_nameremove(dentry, isdir);
1988 }
1989 EXPORT_SYMBOL(d_delete);
1990
1991 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1992 {
1993 BUG_ON(!d_unhashed(entry));
1994 hlist_bl_lock(b);
1995 entry->d_flags |= DCACHE_RCUACCESS;
1996 hlist_bl_add_head_rcu(&entry->d_hash, b);
1997 hlist_bl_unlock(b);
1998 }
1999
2000 static void _d_rehash(struct dentry * entry)
2001 {
2002 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2003 }
2004
2005 /**
2006 * d_rehash - add an entry back to the hash
2007 * @entry: dentry to add to the hash
2008 *
2009 * Adds a dentry to the hash according to its name.
2010 */
2011
2012 void d_rehash(struct dentry * entry)
2013 {
2014 spin_lock(&entry->d_lock);
2015 _d_rehash(entry);
2016 spin_unlock(&entry->d_lock);
2017 }
2018 EXPORT_SYMBOL(d_rehash);
2019
2020 /**
2021 * dentry_update_name_case - update case insensitive dentry with a new name
2022 * @dentry: dentry to be updated
2023 * @name: new name
2024 *
2025 * Update a case insensitive dentry with new case of name.
2026 *
2027 * dentry must have been returned by d_lookup with name @name. Old and new
2028 * name lengths must match (ie. no d_compare which allows mismatched name
2029 * lengths).
2030 *
2031 * Parent inode i_mutex must be held over d_lookup and into this call (to
2032 * keep renames and concurrent inserts, and readdir(2) away).
2033 */
2034 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2035 {
2036 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2037 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2038
2039 spin_lock(&dentry->d_lock);
2040 write_seqcount_begin(&dentry->d_seq);
2041 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2042 write_seqcount_end(&dentry->d_seq);
2043 spin_unlock(&dentry->d_lock);
2044 }
2045 EXPORT_SYMBOL(dentry_update_name_case);
2046
2047 static void switch_names(struct dentry *dentry, struct dentry *target)
2048 {
2049 if (dname_external(target)) {
2050 if (dname_external(dentry)) {
2051 /*
2052 * Both external: swap the pointers
2053 */
2054 swap(target->d_name.name, dentry->d_name.name);
2055 } else {
2056 /*
2057 * dentry:internal, target:external. Steal target's
2058 * storage and make target internal.
2059 */
2060 memcpy(target->d_iname, dentry->d_name.name,
2061 dentry->d_name.len + 1);
2062 dentry->d_name.name = target->d_name.name;
2063 target->d_name.name = target->d_iname;
2064 }
2065 } else {
2066 if (dname_external(dentry)) {
2067 /*
2068 * dentry:external, target:internal. Give dentry's
2069 * storage to target and make dentry internal
2070 */
2071 memcpy(dentry->d_iname, target->d_name.name,
2072 target->d_name.len + 1);
2073 target->d_name.name = dentry->d_name.name;
2074 dentry->d_name.name = dentry->d_iname;
2075 } else {
2076 /*
2077 * Both are internal. Just copy target to dentry
2078 */
2079 memcpy(dentry->d_iname, target->d_name.name,
2080 target->d_name.len + 1);
2081 dentry->d_name.len = target->d_name.len;
2082 return;
2083 }
2084 }
2085 swap(dentry->d_name.len, target->d_name.len);
2086 }
2087
2088 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2089 {
2090 /*
2091 * XXXX: do we really need to take target->d_lock?
2092 */
2093 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2094 spin_lock(&target->d_parent->d_lock);
2095 else {
2096 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2097 spin_lock(&dentry->d_parent->d_lock);
2098 spin_lock_nested(&target->d_parent->d_lock,
2099 DENTRY_D_LOCK_NESTED);
2100 } else {
2101 spin_lock(&target->d_parent->d_lock);
2102 spin_lock_nested(&dentry->d_parent->d_lock,
2103 DENTRY_D_LOCK_NESTED);
2104 }
2105 }
2106 if (target < dentry) {
2107 spin_lock_nested(&target->d_lock, 2);
2108 spin_lock_nested(&dentry->d_lock, 3);
2109 } else {
2110 spin_lock_nested(&dentry->d_lock, 2);
2111 spin_lock_nested(&target->d_lock, 3);
2112 }
2113 }
2114
2115 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2116 struct dentry *target)
2117 {
2118 if (target->d_parent != dentry->d_parent)
2119 spin_unlock(&dentry->d_parent->d_lock);
2120 if (target->d_parent != target)
2121 spin_unlock(&target->d_parent->d_lock);
2122 }
2123
2124 /*
2125 * When switching names, the actual string doesn't strictly have to
2126 * be preserved in the target - because we're dropping the target
2127 * anyway. As such, we can just do a simple memcpy() to copy over
2128 * the new name before we switch.
2129 *
2130 * Note that we have to be a lot more careful about getting the hash
2131 * switched - we have to switch the hash value properly even if it
2132 * then no longer matches the actual (corrupted) string of the target.
2133 * The hash value has to match the hash queue that the dentry is on..
2134 */
2135 /*
2136 * __d_move - move a dentry
2137 * @dentry: entry to move
2138 * @target: new dentry
2139 *
2140 * Update the dcache to reflect the move of a file name. Negative
2141 * dcache entries should not be moved in this way. Caller hold
2142 * rename_lock.
2143 */
2144 static void __d_move(struct dentry * dentry, struct dentry * target)
2145 {
2146 if (!dentry->d_inode)
2147 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2148
2149 BUG_ON(d_ancestor(dentry, target));
2150 BUG_ON(d_ancestor(target, dentry));
2151
2152 dentry_lock_for_move(dentry, target);
2153
2154 write_seqcount_begin(&dentry->d_seq);
2155 write_seqcount_begin(&target->d_seq);
2156
2157 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2158
2159 /*
2160 * Move the dentry to the target hash queue. Don't bother checking
2161 * for the same hash queue because of how unlikely it is.
2162 */
2163 __d_drop(dentry);
2164 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2165
2166 /* Unhash the target: dput() will then get rid of it */
2167 __d_drop(target);
2168
2169 list_del(&dentry->d_u.d_child);
2170 list_del(&target->d_u.d_child);
2171
2172 /* Switch the names.. */
2173 switch_names(dentry, target);
2174 swap(dentry->d_name.hash, target->d_name.hash);
2175
2176 /* ... and switch the parents */
2177 if (IS_ROOT(dentry)) {
2178 dentry->d_parent = target->d_parent;
2179 target->d_parent = target;
2180 INIT_LIST_HEAD(&target->d_u.d_child);
2181 } else {
2182 swap(dentry->d_parent, target->d_parent);
2183
2184 /* And add them back to the (new) parent lists */
2185 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2186 }
2187
2188 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2189
2190 write_seqcount_end(&target->d_seq);
2191 write_seqcount_end(&dentry->d_seq);
2192
2193 dentry_unlock_parents_for_move(dentry, target);
2194 spin_unlock(&target->d_lock);
2195 fsnotify_d_move(dentry);
2196 spin_unlock(&dentry->d_lock);
2197 }
2198
2199 /*
2200 * d_move - move a dentry
2201 * @dentry: entry to move
2202 * @target: new dentry
2203 *
2204 * Update the dcache to reflect the move of a file name. Negative
2205 * dcache entries should not be moved in this way.
2206 */
2207 void d_move(struct dentry *dentry, struct dentry *target)
2208 {
2209 write_seqlock(&rename_lock);
2210 __d_move(dentry, target);
2211 write_sequnlock(&rename_lock);
2212 }
2213 EXPORT_SYMBOL(d_move);
2214
2215 /**
2216 * d_ancestor - search for an ancestor
2217 * @p1: ancestor dentry
2218 * @p2: child dentry
2219 *
2220 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2221 * an ancestor of p2, else NULL.
2222 */
2223 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2224 {
2225 struct dentry *p;
2226
2227 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2228 if (p->d_parent == p1)
2229 return p;
2230 }
2231 return NULL;
2232 }
2233
2234 /*
2235 * This helper attempts to cope with remotely renamed directories
2236 *
2237 * It assumes that the caller is already holding
2238 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2239 *
2240 * Note: If ever the locking in lock_rename() changes, then please
2241 * remember to update this too...
2242 */
2243 static struct dentry *__d_unalias(struct inode *inode,
2244 struct dentry *dentry, struct dentry *alias)
2245 {
2246 struct mutex *m1 = NULL, *m2 = NULL;
2247 struct dentry *ret;
2248
2249 /* If alias and dentry share a parent, then no extra locks required */
2250 if (alias->d_parent == dentry->d_parent)
2251 goto out_unalias;
2252
2253 /* See lock_rename() */
2254 ret = ERR_PTR(-EBUSY);
2255 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2256 goto out_err;
2257 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2258 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2259 goto out_err;
2260 m2 = &alias->d_parent->d_inode->i_mutex;
2261 out_unalias:
2262 __d_move(alias, dentry);
2263 ret = alias;
2264 out_err:
2265 spin_unlock(&inode->i_lock);
2266 if (m2)
2267 mutex_unlock(m2);
2268 if (m1)
2269 mutex_unlock(m1);
2270 return ret;
2271 }
2272
2273 /*
2274 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2275 * named dentry in place of the dentry to be replaced.
2276 * returns with anon->d_lock held!
2277 */
2278 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2279 {
2280 struct dentry *dparent, *aparent;
2281
2282 dentry_lock_for_move(anon, dentry);
2283
2284 write_seqcount_begin(&dentry->d_seq);
2285 write_seqcount_begin(&anon->d_seq);
2286
2287 dparent = dentry->d_parent;
2288 aparent = anon->d_parent;
2289
2290 switch_names(dentry, anon);
2291 swap(dentry->d_name.hash, anon->d_name.hash);
2292
2293 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2294 list_del(&dentry->d_u.d_child);
2295 if (!IS_ROOT(dentry))
2296 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2297 else
2298 INIT_LIST_HEAD(&dentry->d_u.d_child);
2299
2300 anon->d_parent = (dparent == dentry) ? anon : dparent;
2301 list_del(&anon->d_u.d_child);
2302 if (!IS_ROOT(anon))
2303 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2304 else
2305 INIT_LIST_HEAD(&anon->d_u.d_child);
2306
2307 write_seqcount_end(&dentry->d_seq);
2308 write_seqcount_end(&anon->d_seq);
2309
2310 dentry_unlock_parents_for_move(anon, dentry);
2311 spin_unlock(&dentry->d_lock);
2312
2313 /* anon->d_lock still locked, returns locked */
2314 anon->d_flags &= ~DCACHE_DISCONNECTED;
2315 }
2316
2317 /**
2318 * d_materialise_unique - introduce an inode into the tree
2319 * @dentry: candidate dentry
2320 * @inode: inode to bind to the dentry, to which aliases may be attached
2321 *
2322 * Introduces an dentry into the tree, substituting an extant disconnected
2323 * root directory alias in its place if there is one
2324 */
2325 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2326 {
2327 struct dentry *actual;
2328
2329 BUG_ON(!d_unhashed(dentry));
2330
2331 if (!inode) {
2332 actual = dentry;
2333 __d_instantiate(dentry, NULL);
2334 d_rehash(actual);
2335 goto out_nolock;
2336 }
2337
2338 spin_lock(&inode->i_lock);
2339
2340 if (S_ISDIR(inode->i_mode)) {
2341 struct dentry *alias;
2342
2343 /* Does an aliased dentry already exist? */
2344 alias = __d_find_alias(inode, 0);
2345 if (alias) {
2346 actual = alias;
2347 write_seqlock(&rename_lock);
2348
2349 if (d_ancestor(alias, dentry)) {
2350 /* Check for loops */
2351 actual = ERR_PTR(-ELOOP);
2352 } else if (IS_ROOT(alias)) {
2353 /* Is this an anonymous mountpoint that we
2354 * could splice into our tree? */
2355 __d_materialise_dentry(dentry, alias);
2356 write_sequnlock(&rename_lock);
2357 __d_drop(alias);
2358 goto found;
2359 } else {
2360 /* Nope, but we must(!) avoid directory
2361 * aliasing */
2362 actual = __d_unalias(inode, dentry, alias);
2363 }
2364 write_sequnlock(&rename_lock);
2365 if (IS_ERR(actual))
2366 dput(alias);
2367 goto out_nolock;
2368 }
2369 }
2370
2371 /* Add a unique reference */
2372 actual = __d_instantiate_unique(dentry, inode);
2373 if (!actual)
2374 actual = dentry;
2375 else
2376 BUG_ON(!d_unhashed(actual));
2377
2378 spin_lock(&actual->d_lock);
2379 found:
2380 _d_rehash(actual);
2381 spin_unlock(&actual->d_lock);
2382 spin_unlock(&inode->i_lock);
2383 out_nolock:
2384 if (actual == dentry) {
2385 security_d_instantiate(dentry, inode);
2386 return NULL;
2387 }
2388
2389 iput(inode);
2390 return actual;
2391 }
2392 EXPORT_SYMBOL_GPL(d_materialise_unique);
2393
2394 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2395 {
2396 *buflen -= namelen;
2397 if (*buflen < 0)
2398 return -ENAMETOOLONG;
2399 *buffer -= namelen;
2400 memcpy(*buffer, str, namelen);
2401 return 0;
2402 }
2403
2404 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2405 {
2406 return prepend(buffer, buflen, name->name, name->len);
2407 }
2408
2409 /**
2410 * prepend_path - Prepend path string to a buffer
2411 * @path: the dentry/vfsmount to report
2412 * @root: root vfsmnt/dentry (may be modified by this function)
2413 * @buffer: pointer to the end of the buffer
2414 * @buflen: pointer to buffer length
2415 *
2416 * Caller holds the rename_lock.
2417 *
2418 * If path is not reachable from the supplied root, then the value of
2419 * root is changed (without modifying refcounts).
2420 */
2421 static int prepend_path(const struct path *path, struct path *root,
2422 char **buffer, int *buflen)
2423 {
2424 struct dentry *dentry = path->dentry;
2425 struct vfsmount *vfsmnt = path->mnt;
2426 bool slash = false;
2427 int error = 0;
2428
2429 br_read_lock(vfsmount_lock);
2430 while (dentry != root->dentry || vfsmnt != root->mnt) {
2431 struct dentry * parent;
2432
2433 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2434 /* Global root? */
2435 if (vfsmnt->mnt_parent == vfsmnt) {
2436 goto global_root;
2437 }
2438 dentry = vfsmnt->mnt_mountpoint;
2439 vfsmnt = vfsmnt->mnt_parent;
2440 continue;
2441 }
2442 parent = dentry->d_parent;
2443 prefetch(parent);
2444 spin_lock(&dentry->d_lock);
2445 error = prepend_name(buffer, buflen, &dentry->d_name);
2446 spin_unlock(&dentry->d_lock);
2447 if (!error)
2448 error = prepend(buffer, buflen, "/", 1);
2449 if (error)
2450 break;
2451
2452 slash = true;
2453 dentry = parent;
2454 }
2455
2456 out:
2457 if (!error && !slash)
2458 error = prepend(buffer, buflen, "/", 1);
2459
2460 br_read_unlock(vfsmount_lock);
2461 return error;
2462
2463 global_root:
2464 /*
2465 * Filesystems needing to implement special "root names"
2466 * should do so with ->d_dname()
2467 */
2468 if (IS_ROOT(dentry) &&
2469 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2470 WARN(1, "Root dentry has weird name <%.*s>\n",
2471 (int) dentry->d_name.len, dentry->d_name.name);
2472 }
2473 root->mnt = vfsmnt;
2474 root->dentry = dentry;
2475 goto out;
2476 }
2477
2478 /**
2479 * __d_path - return the path of a dentry
2480 * @path: the dentry/vfsmount to report
2481 * @root: root vfsmnt/dentry (may be modified by this function)
2482 * @buf: buffer to return value in
2483 * @buflen: buffer length
2484 *
2485 * Convert a dentry into an ASCII path name.
2486 *
2487 * Returns a pointer into the buffer or an error code if the
2488 * path was too long.
2489 *
2490 * "buflen" should be positive.
2491 *
2492 * If path is not reachable from the supplied root, then the value of
2493 * root is changed (without modifying refcounts).
2494 */
2495 char *__d_path(const struct path *path, struct path *root,
2496 char *buf, int buflen)
2497 {
2498 char *res = buf + buflen;
2499 int error;
2500
2501 prepend(&res, &buflen, "\0", 1);
2502 write_seqlock(&rename_lock);
2503 error = prepend_path(path, root, &res, &buflen);
2504 write_sequnlock(&rename_lock);
2505
2506 if (error)
2507 return ERR_PTR(error);
2508 return res;
2509 }
2510
2511 /*
2512 * same as __d_path but appends "(deleted)" for unlinked files.
2513 */
2514 static int path_with_deleted(const struct path *path, struct path *root,
2515 char **buf, int *buflen)
2516 {
2517 prepend(buf, buflen, "\0", 1);
2518 if (d_unlinked(path->dentry)) {
2519 int error = prepend(buf, buflen, " (deleted)", 10);
2520 if (error)
2521 return error;
2522 }
2523
2524 return prepend_path(path, root, buf, buflen);
2525 }
2526
2527 static int prepend_unreachable(char **buffer, int *buflen)
2528 {
2529 return prepend(buffer, buflen, "(unreachable)", 13);
2530 }
2531
2532 /**
2533 * d_path - return the path of a dentry
2534 * @path: path to report
2535 * @buf: buffer to return value in
2536 * @buflen: buffer length
2537 *
2538 * Convert a dentry into an ASCII path name. If the entry has been deleted
2539 * the string " (deleted)" is appended. Note that this is ambiguous.
2540 *
2541 * Returns a pointer into the buffer or an error code if the path was
2542 * too long. Note: Callers should use the returned pointer, not the passed
2543 * in buffer, to use the name! The implementation often starts at an offset
2544 * into the buffer, and may leave 0 bytes at the start.
2545 *
2546 * "buflen" should be positive.
2547 */
2548 char *d_path(const struct path *path, char *buf, int buflen)
2549 {
2550 char *res = buf + buflen;
2551 struct path root;
2552 struct path tmp;
2553 int error;
2554
2555 /*
2556 * We have various synthetic filesystems that never get mounted. On
2557 * these filesystems dentries are never used for lookup purposes, and
2558 * thus don't need to be hashed. They also don't need a name until a
2559 * user wants to identify the object in /proc/pid/fd/. The little hack
2560 * below allows us to generate a name for these objects on demand:
2561 */
2562 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2563 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2564
2565 get_fs_root(current->fs, &root);
2566 write_seqlock(&rename_lock);
2567 tmp = root;
2568 error = path_with_deleted(path, &tmp, &res, &buflen);
2569 if (error)
2570 res = ERR_PTR(error);
2571 write_sequnlock(&rename_lock);
2572 path_put(&root);
2573 return res;
2574 }
2575 EXPORT_SYMBOL(d_path);
2576
2577 /**
2578 * d_path_with_unreachable - return the path of a dentry
2579 * @path: path to report
2580 * @buf: buffer to return value in
2581 * @buflen: buffer length
2582 *
2583 * The difference from d_path() is that this prepends "(unreachable)"
2584 * to paths which are unreachable from the current process' root.
2585 */
2586 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2587 {
2588 char *res = buf + buflen;
2589 struct path root;
2590 struct path tmp;
2591 int error;
2592
2593 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2594 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2595
2596 get_fs_root(current->fs, &root);
2597 write_seqlock(&rename_lock);
2598 tmp = root;
2599 error = path_with_deleted(path, &tmp, &res, &buflen);
2600 if (!error && !path_equal(&tmp, &root))
2601 error = prepend_unreachable(&res, &buflen);
2602 write_sequnlock(&rename_lock);
2603 path_put(&root);
2604 if (error)
2605 res = ERR_PTR(error);
2606
2607 return res;
2608 }
2609
2610 /*
2611 * Helper function for dentry_operations.d_dname() members
2612 */
2613 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2614 const char *fmt, ...)
2615 {
2616 va_list args;
2617 char temp[64];
2618 int sz;
2619
2620 va_start(args, fmt);
2621 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2622 va_end(args);
2623
2624 if (sz > sizeof(temp) || sz > buflen)
2625 return ERR_PTR(-ENAMETOOLONG);
2626
2627 buffer += buflen - sz;
2628 return memcpy(buffer, temp, sz);
2629 }
2630
2631 /*
2632 * Write full pathname from the root of the filesystem into the buffer.
2633 */
2634 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2635 {
2636 char *end = buf + buflen;
2637 char *retval;
2638
2639 prepend(&end, &buflen, "\0", 1);
2640 if (buflen < 1)
2641 goto Elong;
2642 /* Get '/' right */
2643 retval = end-1;
2644 *retval = '/';
2645
2646 while (!IS_ROOT(dentry)) {
2647 struct dentry *parent = dentry->d_parent;
2648 int error;
2649
2650 prefetch(parent);
2651 spin_lock(&dentry->d_lock);
2652 error = prepend_name(&end, &buflen, &dentry->d_name);
2653 spin_unlock(&dentry->d_lock);
2654 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2655 goto Elong;
2656
2657 retval = end;
2658 dentry = parent;
2659 }
2660 return retval;
2661 Elong:
2662 return ERR_PTR(-ENAMETOOLONG);
2663 }
2664
2665 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2666 {
2667 char *retval;
2668
2669 write_seqlock(&rename_lock);
2670 retval = __dentry_path(dentry, buf, buflen);
2671 write_sequnlock(&rename_lock);
2672
2673 return retval;
2674 }
2675 EXPORT_SYMBOL(dentry_path_raw);
2676
2677 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2678 {
2679 char *p = NULL;
2680 char *retval;
2681
2682 write_seqlock(&rename_lock);
2683 if (d_unlinked(dentry)) {
2684 p = buf + buflen;
2685 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2686 goto Elong;
2687 buflen++;
2688 }
2689 retval = __dentry_path(dentry, buf, buflen);
2690 write_sequnlock(&rename_lock);
2691 if (!IS_ERR(retval) && p)
2692 *p = '/'; /* restore '/' overriden with '\0' */
2693 return retval;
2694 Elong:
2695 return ERR_PTR(-ENAMETOOLONG);
2696 }
2697
2698 /*
2699 * NOTE! The user-level library version returns a
2700 * character pointer. The kernel system call just
2701 * returns the length of the buffer filled (which
2702 * includes the ending '\0' character), or a negative
2703 * error value. So libc would do something like
2704 *
2705 * char *getcwd(char * buf, size_t size)
2706 * {
2707 * int retval;
2708 *
2709 * retval = sys_getcwd(buf, size);
2710 * if (retval >= 0)
2711 * return buf;
2712 * errno = -retval;
2713 * return NULL;
2714 * }
2715 */
2716 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2717 {
2718 int error;
2719 struct path pwd, root;
2720 char *page = (char *) __get_free_page(GFP_USER);
2721
2722 if (!page)
2723 return -ENOMEM;
2724
2725 get_fs_root_and_pwd(current->fs, &root, &pwd);
2726
2727 error = -ENOENT;
2728 write_seqlock(&rename_lock);
2729 if (!d_unlinked(pwd.dentry)) {
2730 unsigned long len;
2731 struct path tmp = root;
2732 char *cwd = page + PAGE_SIZE;
2733 int buflen = PAGE_SIZE;
2734
2735 prepend(&cwd, &buflen, "\0", 1);
2736 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2737 write_sequnlock(&rename_lock);
2738
2739 if (error)
2740 goto out;
2741
2742 /* Unreachable from current root */
2743 if (!path_equal(&tmp, &root)) {
2744 error = prepend_unreachable(&cwd, &buflen);
2745 if (error)
2746 goto out;
2747 }
2748
2749 error = -ERANGE;
2750 len = PAGE_SIZE + page - cwd;
2751 if (len <= size) {
2752 error = len;
2753 if (copy_to_user(buf, cwd, len))
2754 error = -EFAULT;
2755 }
2756 } else {
2757 write_sequnlock(&rename_lock);
2758 }
2759
2760 out:
2761 path_put(&pwd);
2762 path_put(&root);
2763 free_page((unsigned long) page);
2764 return error;
2765 }
2766
2767 /*
2768 * Test whether new_dentry is a subdirectory of old_dentry.
2769 *
2770 * Trivially implemented using the dcache structure
2771 */
2772
2773 /**
2774 * is_subdir - is new dentry a subdirectory of old_dentry
2775 * @new_dentry: new dentry
2776 * @old_dentry: old dentry
2777 *
2778 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2779 * Returns 0 otherwise.
2780 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2781 */
2782
2783 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2784 {
2785 int result;
2786 unsigned seq;
2787
2788 if (new_dentry == old_dentry)
2789 return 1;
2790
2791 do {
2792 /* for restarting inner loop in case of seq retry */
2793 seq = read_seqbegin(&rename_lock);
2794 /*
2795 * Need rcu_readlock to protect against the d_parent trashing
2796 * due to d_move
2797 */
2798 rcu_read_lock();
2799 if (d_ancestor(old_dentry, new_dentry))
2800 result = 1;
2801 else
2802 result = 0;
2803 rcu_read_unlock();
2804 } while (read_seqretry(&rename_lock, seq));
2805
2806 return result;
2807 }
2808
2809 int path_is_under(struct path *path1, struct path *path2)
2810 {
2811 struct vfsmount *mnt = path1->mnt;
2812 struct dentry *dentry = path1->dentry;
2813 int res;
2814
2815 br_read_lock(vfsmount_lock);
2816 if (mnt != path2->mnt) {
2817 for (;;) {
2818 if (mnt->mnt_parent == mnt) {
2819 br_read_unlock(vfsmount_lock);
2820 return 0;
2821 }
2822 if (mnt->mnt_parent == path2->mnt)
2823 break;
2824 mnt = mnt->mnt_parent;
2825 }
2826 dentry = mnt->mnt_mountpoint;
2827 }
2828 res = is_subdir(dentry, path2->dentry);
2829 br_read_unlock(vfsmount_lock);
2830 return res;
2831 }
2832 EXPORT_SYMBOL(path_is_under);
2833
2834 void d_genocide(struct dentry *root)
2835 {
2836 struct dentry *this_parent;
2837 struct list_head *next;
2838 unsigned seq;
2839 int locked = 0;
2840
2841 seq = read_seqbegin(&rename_lock);
2842 again:
2843 this_parent = root;
2844 spin_lock(&this_parent->d_lock);
2845 repeat:
2846 next = this_parent->d_subdirs.next;
2847 resume:
2848 while (next != &this_parent->d_subdirs) {
2849 struct list_head *tmp = next;
2850 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2851 next = tmp->next;
2852
2853 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2854 if (d_unhashed(dentry) || !dentry->d_inode) {
2855 spin_unlock(&dentry->d_lock);
2856 continue;
2857 }
2858 if (!list_empty(&dentry->d_subdirs)) {
2859 spin_unlock(&this_parent->d_lock);
2860 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2861 this_parent = dentry;
2862 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2863 goto repeat;
2864 }
2865 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2866 dentry->d_flags |= DCACHE_GENOCIDE;
2867 dentry->d_count--;
2868 }
2869 spin_unlock(&dentry->d_lock);
2870 }
2871 if (this_parent != root) {
2872 struct dentry *child = this_parent;
2873 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2874 this_parent->d_flags |= DCACHE_GENOCIDE;
2875 this_parent->d_count--;
2876 }
2877 this_parent = try_to_ascend(this_parent, locked, seq);
2878 if (!this_parent)
2879 goto rename_retry;
2880 next = child->d_u.d_child.next;
2881 goto resume;
2882 }
2883 spin_unlock(&this_parent->d_lock);
2884 if (!locked && read_seqretry(&rename_lock, seq))
2885 goto rename_retry;
2886 if (locked)
2887 write_sequnlock(&rename_lock);
2888 return;
2889
2890 rename_retry:
2891 locked = 1;
2892 write_seqlock(&rename_lock);
2893 goto again;
2894 }
2895
2896 /**
2897 * find_inode_number - check for dentry with name
2898 * @dir: directory to check
2899 * @name: Name to find.
2900 *
2901 * Check whether a dentry already exists for the given name,
2902 * and return the inode number if it has an inode. Otherwise
2903 * 0 is returned.
2904 *
2905 * This routine is used to post-process directory listings for
2906 * filesystems using synthetic inode numbers, and is necessary
2907 * to keep getcwd() working.
2908 */
2909
2910 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2911 {
2912 struct dentry * dentry;
2913 ino_t ino = 0;
2914
2915 dentry = d_hash_and_lookup(dir, name);
2916 if (dentry) {
2917 if (dentry->d_inode)
2918 ino = dentry->d_inode->i_ino;
2919 dput(dentry);
2920 }
2921 return ino;
2922 }
2923 EXPORT_SYMBOL(find_inode_number);
2924
2925 static __initdata unsigned long dhash_entries;
2926 static int __init set_dhash_entries(char *str)
2927 {
2928 if (!str)
2929 return 0;
2930 dhash_entries = simple_strtoul(str, &str, 0);
2931 return 1;
2932 }
2933 __setup("dhash_entries=", set_dhash_entries);
2934
2935 static void __init dcache_init_early(void)
2936 {
2937 int loop;
2938
2939 /* If hashes are distributed across NUMA nodes, defer
2940 * hash allocation until vmalloc space is available.
2941 */
2942 if (hashdist)
2943 return;
2944
2945 dentry_hashtable =
2946 alloc_large_system_hash("Dentry cache",
2947 sizeof(struct hlist_bl_head),
2948 dhash_entries,
2949 13,
2950 HASH_EARLY,
2951 &d_hash_shift,
2952 &d_hash_mask,
2953 0);
2954
2955 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2956 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2957 }
2958
2959 static void __init dcache_init(void)
2960 {
2961 int loop;
2962
2963 /*
2964 * A constructor could be added for stable state like the lists,
2965 * but it is probably not worth it because of the cache nature
2966 * of the dcache.
2967 */
2968 dentry_cache = KMEM_CACHE(dentry,
2969 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2970
2971 /* Hash may have been set up in dcache_init_early */
2972 if (!hashdist)
2973 return;
2974
2975 dentry_hashtable =
2976 alloc_large_system_hash("Dentry cache",
2977 sizeof(struct hlist_bl_head),
2978 dhash_entries,
2979 13,
2980 0,
2981 &d_hash_shift,
2982 &d_hash_mask,
2983 0);
2984
2985 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2986 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2987 }
2988
2989 /* SLAB cache for __getname() consumers */
2990 struct kmem_cache *names_cachep __read_mostly;
2991 EXPORT_SYMBOL(names_cachep);
2992
2993 EXPORT_SYMBOL(d_genocide);
2994
2995 void __init vfs_caches_init_early(void)
2996 {
2997 dcache_init_early();
2998 inode_init_early();
2999 }
3000
3001 void __init vfs_caches_init(unsigned long mempages)
3002 {
3003 unsigned long reserve;
3004
3005 /* Base hash sizes on available memory, with a reserve equal to
3006 150% of current kernel size */
3007
3008 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3009 mempages -= reserve;
3010
3011 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3012 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3013
3014 dcache_init();
3015 inode_init();
3016 files_init(mempages);
3017 mnt_init();
3018 bdev_cache_init();
3019 chrdev_init();
3020 }
This page took 0.148317 seconds and 6 git commands to generate.