Merge tag 'sound-3.16-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 #include <linux/aio.h>
41
42 /*
43 * How many user pages to map in one call to get_user_pages(). This determines
44 * the size of a structure in the slab cache
45 */
46 #define DIO_PAGES 64
47
48 /*
49 * This code generally works in units of "dio_blocks". A dio_block is
50 * somewhere between the hard sector size and the filesystem block size. it
51 * is determined on a per-invocation basis. When talking to the filesystem
52 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
53 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
54 * to bio_block quantities by shifting left by blkfactor.
55 *
56 * If blkfactor is zero then the user's request was aligned to the filesystem's
57 * blocksize.
58 */
59
60 /* dio_state only used in the submission path */
61
62 struct dio_submit {
63 struct bio *bio; /* bio under assembly */
64 unsigned blkbits; /* doesn't change */
65 unsigned blkfactor; /* When we're using an alignment which
66 is finer than the filesystem's soft
67 blocksize, this specifies how much
68 finer. blkfactor=2 means 1/4-block
69 alignment. Does not change */
70 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
71 been performed at the start of a
72 write */
73 int pages_in_io; /* approximate total IO pages */
74 size_t size; /* total request size (doesn't change)*/
75 sector_t block_in_file; /* Current offset into the underlying
76 file in dio_block units. */
77 unsigned blocks_available; /* At block_in_file. changes */
78 int reap_counter; /* rate limit reaping */
79 sector_t final_block_in_request;/* doesn't change */
80 int boundary; /* prev block is at a boundary */
81 get_block_t *get_block; /* block mapping function */
82 dio_submit_t *submit_io; /* IO submition function */
83
84 loff_t logical_offset_in_bio; /* current first logical block in bio */
85 sector_t final_block_in_bio; /* current final block in bio + 1 */
86 sector_t next_block_for_io; /* next block to be put under IO,
87 in dio_blocks units */
88
89 /*
90 * Deferred addition of a page to the dio. These variables are
91 * private to dio_send_cur_page(), submit_page_section() and
92 * dio_bio_add_page().
93 */
94 struct page *cur_page; /* The page */
95 unsigned cur_page_offset; /* Offset into it, in bytes */
96 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
97 sector_t cur_page_block; /* Where it starts */
98 loff_t cur_page_fs_offset; /* Offset in file */
99
100 struct iov_iter *iter;
101 /*
102 * Page queue. These variables belong to dio_refill_pages() and
103 * dio_get_page().
104 */
105 unsigned head; /* next page to process */
106 unsigned tail; /* last valid page + 1 */
107 size_t from, to;
108 };
109
110 /* dio_state communicated between submission path and end_io */
111 struct dio {
112 int flags; /* doesn't change */
113 int rw;
114 struct inode *inode;
115 loff_t i_size; /* i_size when submitted */
116 dio_iodone_t *end_io; /* IO completion function */
117
118 void *private; /* copy from map_bh.b_private */
119
120 /* BIO completion state */
121 spinlock_t bio_lock; /* protects BIO fields below */
122 int page_errors; /* errno from get_user_pages() */
123 int is_async; /* is IO async ? */
124 bool defer_completion; /* defer AIO completion to workqueue? */
125 int io_error; /* IO error in completion path */
126 unsigned long refcount; /* direct_io_worker() and bios */
127 struct bio *bio_list; /* singly linked via bi_private */
128 struct task_struct *waiter; /* waiting task (NULL if none) */
129
130 /* AIO related stuff */
131 struct kiocb *iocb; /* kiocb */
132 ssize_t result; /* IO result */
133
134 /*
135 * pages[] (and any fields placed after it) are not zeroed out at
136 * allocation time. Don't add new fields after pages[] unless you
137 * wish that they not be zeroed.
138 */
139 union {
140 struct page *pages[DIO_PAGES]; /* page buffer */
141 struct work_struct complete_work;/* deferred AIO completion */
142 };
143 } ____cacheline_aligned_in_smp;
144
145 static struct kmem_cache *dio_cache __read_mostly;
146
147 /*
148 * How many pages are in the queue?
149 */
150 static inline unsigned dio_pages_present(struct dio_submit *sdio)
151 {
152 return sdio->tail - sdio->head;
153 }
154
155 /*
156 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
157 */
158 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
159 {
160 ssize_t ret;
161
162 ret = iov_iter_get_pages(sdio->iter, dio->pages, DIO_PAGES * PAGE_SIZE,
163 &sdio->from);
164
165 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
166 struct page *page = ZERO_PAGE(0);
167 /*
168 * A memory fault, but the filesystem has some outstanding
169 * mapped blocks. We need to use those blocks up to avoid
170 * leaking stale data in the file.
171 */
172 if (dio->page_errors == 0)
173 dio->page_errors = ret;
174 page_cache_get(page);
175 dio->pages[0] = page;
176 sdio->head = 0;
177 sdio->tail = 1;
178 sdio->from = 0;
179 sdio->to = PAGE_SIZE;
180 return 0;
181 }
182
183 if (ret >= 0) {
184 iov_iter_advance(sdio->iter, ret);
185 ret += sdio->from;
186 sdio->head = 0;
187 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
188 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
189 return 0;
190 }
191 return ret;
192 }
193
194 /*
195 * Get another userspace page. Returns an ERR_PTR on error. Pages are
196 * buffered inside the dio so that we can call get_user_pages() against a
197 * decent number of pages, less frequently. To provide nicer use of the
198 * L1 cache.
199 */
200 static inline struct page *dio_get_page(struct dio *dio,
201 struct dio_submit *sdio, size_t *from, size_t *to)
202 {
203 int n;
204 if (dio_pages_present(sdio) == 0) {
205 int ret;
206
207 ret = dio_refill_pages(dio, sdio);
208 if (ret)
209 return ERR_PTR(ret);
210 BUG_ON(dio_pages_present(sdio) == 0);
211 }
212 n = sdio->head++;
213 *from = n ? 0 : sdio->from;
214 *to = (n == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
215 return dio->pages[n];
216 }
217
218 /**
219 * dio_complete() - called when all DIO BIO I/O has been completed
220 * @offset: the byte offset in the file of the completed operation
221 *
222 * This drops i_dio_count, lets interested parties know that a DIO operation
223 * has completed, and calculates the resulting return code for the operation.
224 *
225 * It lets the filesystem know if it registered an interest earlier via
226 * get_block. Pass the private field of the map buffer_head so that
227 * filesystems can use it to hold additional state between get_block calls and
228 * dio_complete.
229 */
230 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
231 bool is_async)
232 {
233 ssize_t transferred = 0;
234
235 /*
236 * AIO submission can race with bio completion to get here while
237 * expecting to have the last io completed by bio completion.
238 * In that case -EIOCBQUEUED is in fact not an error we want
239 * to preserve through this call.
240 */
241 if (ret == -EIOCBQUEUED)
242 ret = 0;
243
244 if (dio->result) {
245 transferred = dio->result;
246
247 /* Check for short read case */
248 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
249 transferred = dio->i_size - offset;
250 }
251
252 if (ret == 0)
253 ret = dio->page_errors;
254 if (ret == 0)
255 ret = dio->io_error;
256 if (ret == 0)
257 ret = transferred;
258
259 if (dio->end_io && dio->result)
260 dio->end_io(dio->iocb, offset, transferred, dio->private);
261
262 inode_dio_done(dio->inode);
263 if (is_async) {
264 if (dio->rw & WRITE) {
265 int err;
266
267 err = generic_write_sync(dio->iocb->ki_filp, offset,
268 transferred);
269 if (err < 0 && ret > 0)
270 ret = err;
271 }
272
273 aio_complete(dio->iocb, ret, 0);
274 }
275
276 kmem_cache_free(dio_cache, dio);
277 return ret;
278 }
279
280 static void dio_aio_complete_work(struct work_struct *work)
281 {
282 struct dio *dio = container_of(work, struct dio, complete_work);
283
284 dio_complete(dio, dio->iocb->ki_pos, 0, true);
285 }
286
287 static int dio_bio_complete(struct dio *dio, struct bio *bio);
288
289 /*
290 * Asynchronous IO callback.
291 */
292 static void dio_bio_end_aio(struct bio *bio, int error)
293 {
294 struct dio *dio = bio->bi_private;
295 unsigned long remaining;
296 unsigned long flags;
297
298 /* cleanup the bio */
299 dio_bio_complete(dio, bio);
300
301 spin_lock_irqsave(&dio->bio_lock, flags);
302 remaining = --dio->refcount;
303 if (remaining == 1 && dio->waiter)
304 wake_up_process(dio->waiter);
305 spin_unlock_irqrestore(&dio->bio_lock, flags);
306
307 if (remaining == 0) {
308 if (dio->result && dio->defer_completion) {
309 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
310 queue_work(dio->inode->i_sb->s_dio_done_wq,
311 &dio->complete_work);
312 } else {
313 dio_complete(dio, dio->iocb->ki_pos, 0, true);
314 }
315 }
316 }
317
318 /*
319 * The BIO completion handler simply queues the BIO up for the process-context
320 * handler.
321 *
322 * During I/O bi_private points at the dio. After I/O, bi_private is used to
323 * implement a singly-linked list of completed BIOs, at dio->bio_list.
324 */
325 static void dio_bio_end_io(struct bio *bio, int error)
326 {
327 struct dio *dio = bio->bi_private;
328 unsigned long flags;
329
330 spin_lock_irqsave(&dio->bio_lock, flags);
331 bio->bi_private = dio->bio_list;
332 dio->bio_list = bio;
333 if (--dio->refcount == 1 && dio->waiter)
334 wake_up_process(dio->waiter);
335 spin_unlock_irqrestore(&dio->bio_lock, flags);
336 }
337
338 /**
339 * dio_end_io - handle the end io action for the given bio
340 * @bio: The direct io bio thats being completed
341 * @error: Error if there was one
342 *
343 * This is meant to be called by any filesystem that uses their own dio_submit_t
344 * so that the DIO specific endio actions are dealt with after the filesystem
345 * has done it's completion work.
346 */
347 void dio_end_io(struct bio *bio, int error)
348 {
349 struct dio *dio = bio->bi_private;
350
351 if (dio->is_async)
352 dio_bio_end_aio(bio, error);
353 else
354 dio_bio_end_io(bio, error);
355 }
356 EXPORT_SYMBOL_GPL(dio_end_io);
357
358 static inline void
359 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
360 struct block_device *bdev,
361 sector_t first_sector, int nr_vecs)
362 {
363 struct bio *bio;
364
365 /*
366 * bio_alloc() is guaranteed to return a bio when called with
367 * __GFP_WAIT and we request a valid number of vectors.
368 */
369 bio = bio_alloc(GFP_KERNEL, nr_vecs);
370
371 bio->bi_bdev = bdev;
372 bio->bi_iter.bi_sector = first_sector;
373 if (dio->is_async)
374 bio->bi_end_io = dio_bio_end_aio;
375 else
376 bio->bi_end_io = dio_bio_end_io;
377
378 sdio->bio = bio;
379 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
380 }
381
382 /*
383 * In the AIO read case we speculatively dirty the pages before starting IO.
384 * During IO completion, any of these pages which happen to have been written
385 * back will be redirtied by bio_check_pages_dirty().
386 *
387 * bios hold a dio reference between submit_bio and ->end_io.
388 */
389 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
390 {
391 struct bio *bio = sdio->bio;
392 unsigned long flags;
393
394 bio->bi_private = dio;
395
396 spin_lock_irqsave(&dio->bio_lock, flags);
397 dio->refcount++;
398 spin_unlock_irqrestore(&dio->bio_lock, flags);
399
400 if (dio->is_async && dio->rw == READ)
401 bio_set_pages_dirty(bio);
402
403 if (sdio->submit_io)
404 sdio->submit_io(dio->rw, bio, dio->inode,
405 sdio->logical_offset_in_bio);
406 else
407 submit_bio(dio->rw, bio);
408
409 sdio->bio = NULL;
410 sdio->boundary = 0;
411 sdio->logical_offset_in_bio = 0;
412 }
413
414 /*
415 * Release any resources in case of a failure
416 */
417 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
418 {
419 while (sdio->head < sdio->tail)
420 page_cache_release(dio->pages[sdio->head++]);
421 }
422
423 /*
424 * Wait for the next BIO to complete. Remove it and return it. NULL is
425 * returned once all BIOs have been completed. This must only be called once
426 * all bios have been issued so that dio->refcount can only decrease. This
427 * requires that that the caller hold a reference on the dio.
428 */
429 static struct bio *dio_await_one(struct dio *dio)
430 {
431 unsigned long flags;
432 struct bio *bio = NULL;
433
434 spin_lock_irqsave(&dio->bio_lock, flags);
435
436 /*
437 * Wait as long as the list is empty and there are bios in flight. bio
438 * completion drops the count, maybe adds to the list, and wakes while
439 * holding the bio_lock so we don't need set_current_state()'s barrier
440 * and can call it after testing our condition.
441 */
442 while (dio->refcount > 1 && dio->bio_list == NULL) {
443 __set_current_state(TASK_UNINTERRUPTIBLE);
444 dio->waiter = current;
445 spin_unlock_irqrestore(&dio->bio_lock, flags);
446 io_schedule();
447 /* wake up sets us TASK_RUNNING */
448 spin_lock_irqsave(&dio->bio_lock, flags);
449 dio->waiter = NULL;
450 }
451 if (dio->bio_list) {
452 bio = dio->bio_list;
453 dio->bio_list = bio->bi_private;
454 }
455 spin_unlock_irqrestore(&dio->bio_lock, flags);
456 return bio;
457 }
458
459 /*
460 * Process one completed BIO. No locks are held.
461 */
462 static int dio_bio_complete(struct dio *dio, struct bio *bio)
463 {
464 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
465 struct bio_vec *bvec;
466 unsigned i;
467
468 if (!uptodate)
469 dio->io_error = -EIO;
470
471 if (dio->is_async && dio->rw == READ) {
472 bio_check_pages_dirty(bio); /* transfers ownership */
473 } else {
474 bio_for_each_segment_all(bvec, bio, i) {
475 struct page *page = bvec->bv_page;
476
477 if (dio->rw == READ && !PageCompound(page))
478 set_page_dirty_lock(page);
479 page_cache_release(page);
480 }
481 bio_put(bio);
482 }
483 return uptodate ? 0 : -EIO;
484 }
485
486 /*
487 * Wait on and process all in-flight BIOs. This must only be called once
488 * all bios have been issued so that the refcount can only decrease.
489 * This just waits for all bios to make it through dio_bio_complete. IO
490 * errors are propagated through dio->io_error and should be propagated via
491 * dio_complete().
492 */
493 static void dio_await_completion(struct dio *dio)
494 {
495 struct bio *bio;
496 do {
497 bio = dio_await_one(dio);
498 if (bio)
499 dio_bio_complete(dio, bio);
500 } while (bio);
501 }
502
503 /*
504 * A really large O_DIRECT read or write can generate a lot of BIOs. So
505 * to keep the memory consumption sane we periodically reap any completed BIOs
506 * during the BIO generation phase.
507 *
508 * This also helps to limit the peak amount of pinned userspace memory.
509 */
510 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
511 {
512 int ret = 0;
513
514 if (sdio->reap_counter++ >= 64) {
515 while (dio->bio_list) {
516 unsigned long flags;
517 struct bio *bio;
518 int ret2;
519
520 spin_lock_irqsave(&dio->bio_lock, flags);
521 bio = dio->bio_list;
522 dio->bio_list = bio->bi_private;
523 spin_unlock_irqrestore(&dio->bio_lock, flags);
524 ret2 = dio_bio_complete(dio, bio);
525 if (ret == 0)
526 ret = ret2;
527 }
528 sdio->reap_counter = 0;
529 }
530 return ret;
531 }
532
533 /*
534 * Create workqueue for deferred direct IO completions. We allocate the
535 * workqueue when it's first needed. This avoids creating workqueue for
536 * filesystems that don't need it and also allows us to create the workqueue
537 * late enough so the we can include s_id in the name of the workqueue.
538 */
539 static int sb_init_dio_done_wq(struct super_block *sb)
540 {
541 struct workqueue_struct *old;
542 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
543 WQ_MEM_RECLAIM, 0,
544 sb->s_id);
545 if (!wq)
546 return -ENOMEM;
547 /*
548 * This has to be atomic as more DIOs can race to create the workqueue
549 */
550 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
551 /* Someone created workqueue before us? Free ours... */
552 if (old)
553 destroy_workqueue(wq);
554 return 0;
555 }
556
557 static int dio_set_defer_completion(struct dio *dio)
558 {
559 struct super_block *sb = dio->inode->i_sb;
560
561 if (dio->defer_completion)
562 return 0;
563 dio->defer_completion = true;
564 if (!sb->s_dio_done_wq)
565 return sb_init_dio_done_wq(sb);
566 return 0;
567 }
568
569 /*
570 * Call into the fs to map some more disk blocks. We record the current number
571 * of available blocks at sdio->blocks_available. These are in units of the
572 * fs blocksize, (1 << inode->i_blkbits).
573 *
574 * The fs is allowed to map lots of blocks at once. If it wants to do that,
575 * it uses the passed inode-relative block number as the file offset, as usual.
576 *
577 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
578 * has remaining to do. The fs should not map more than this number of blocks.
579 *
580 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
581 * indicate how much contiguous disk space has been made available at
582 * bh->b_blocknr.
583 *
584 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
585 * This isn't very efficient...
586 *
587 * In the case of filesystem holes: the fs may return an arbitrarily-large
588 * hole by returning an appropriate value in b_size and by clearing
589 * buffer_mapped(). However the direct-io code will only process holes one
590 * block at a time - it will repeatedly call get_block() as it walks the hole.
591 */
592 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
593 struct buffer_head *map_bh)
594 {
595 int ret;
596 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
597 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
598 unsigned long fs_count; /* Number of filesystem-sized blocks */
599 int create;
600 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
601
602 /*
603 * If there was a memory error and we've overwritten all the
604 * mapped blocks then we can now return that memory error
605 */
606 ret = dio->page_errors;
607 if (ret == 0) {
608 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
609 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
610 fs_endblk = (sdio->final_block_in_request - 1) >>
611 sdio->blkfactor;
612 fs_count = fs_endblk - fs_startblk + 1;
613
614 map_bh->b_state = 0;
615 map_bh->b_size = fs_count << i_blkbits;
616
617 /*
618 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
619 * forbid block creations: only overwrites are permitted.
620 * We will return early to the caller once we see an
621 * unmapped buffer head returned, and the caller will fall
622 * back to buffered I/O.
623 *
624 * Otherwise the decision is left to the get_blocks method,
625 * which may decide to handle it or also return an unmapped
626 * buffer head.
627 */
628 create = dio->rw & WRITE;
629 if (dio->flags & DIO_SKIP_HOLES) {
630 if (sdio->block_in_file < (i_size_read(dio->inode) >>
631 sdio->blkbits))
632 create = 0;
633 }
634
635 ret = (*sdio->get_block)(dio->inode, fs_startblk,
636 map_bh, create);
637
638 /* Store for completion */
639 dio->private = map_bh->b_private;
640
641 if (ret == 0 && buffer_defer_completion(map_bh))
642 ret = dio_set_defer_completion(dio);
643 }
644 return ret;
645 }
646
647 /*
648 * There is no bio. Make one now.
649 */
650 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
651 sector_t start_sector, struct buffer_head *map_bh)
652 {
653 sector_t sector;
654 int ret, nr_pages;
655
656 ret = dio_bio_reap(dio, sdio);
657 if (ret)
658 goto out;
659 sector = start_sector << (sdio->blkbits - 9);
660 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
661 BUG_ON(nr_pages <= 0);
662 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
663 sdio->boundary = 0;
664 out:
665 return ret;
666 }
667
668 /*
669 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
670 * that was successful then update final_block_in_bio and take a ref against
671 * the just-added page.
672 *
673 * Return zero on success. Non-zero means the caller needs to start a new BIO.
674 */
675 static inline int dio_bio_add_page(struct dio_submit *sdio)
676 {
677 int ret;
678
679 ret = bio_add_page(sdio->bio, sdio->cur_page,
680 sdio->cur_page_len, sdio->cur_page_offset);
681 if (ret == sdio->cur_page_len) {
682 /*
683 * Decrement count only, if we are done with this page
684 */
685 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
686 sdio->pages_in_io--;
687 page_cache_get(sdio->cur_page);
688 sdio->final_block_in_bio = sdio->cur_page_block +
689 (sdio->cur_page_len >> sdio->blkbits);
690 ret = 0;
691 } else {
692 ret = 1;
693 }
694 return ret;
695 }
696
697 /*
698 * Put cur_page under IO. The section of cur_page which is described by
699 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
700 * starts on-disk at cur_page_block.
701 *
702 * We take a ref against the page here (on behalf of its presence in the bio).
703 *
704 * The caller of this function is responsible for removing cur_page from the
705 * dio, and for dropping the refcount which came from that presence.
706 */
707 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
708 struct buffer_head *map_bh)
709 {
710 int ret = 0;
711
712 if (sdio->bio) {
713 loff_t cur_offset = sdio->cur_page_fs_offset;
714 loff_t bio_next_offset = sdio->logical_offset_in_bio +
715 sdio->bio->bi_iter.bi_size;
716
717 /*
718 * See whether this new request is contiguous with the old.
719 *
720 * Btrfs cannot handle having logically non-contiguous requests
721 * submitted. For example if you have
722 *
723 * Logical: [0-4095][HOLE][8192-12287]
724 * Physical: [0-4095] [4096-8191]
725 *
726 * We cannot submit those pages together as one BIO. So if our
727 * current logical offset in the file does not equal what would
728 * be the next logical offset in the bio, submit the bio we
729 * have.
730 */
731 if (sdio->final_block_in_bio != sdio->cur_page_block ||
732 cur_offset != bio_next_offset)
733 dio_bio_submit(dio, sdio);
734 }
735
736 if (sdio->bio == NULL) {
737 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
738 if (ret)
739 goto out;
740 }
741
742 if (dio_bio_add_page(sdio) != 0) {
743 dio_bio_submit(dio, sdio);
744 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
745 if (ret == 0) {
746 ret = dio_bio_add_page(sdio);
747 BUG_ON(ret != 0);
748 }
749 }
750 out:
751 return ret;
752 }
753
754 /*
755 * An autonomous function to put a chunk of a page under deferred IO.
756 *
757 * The caller doesn't actually know (or care) whether this piece of page is in
758 * a BIO, or is under IO or whatever. We just take care of all possible
759 * situations here. The separation between the logic of do_direct_IO() and
760 * that of submit_page_section() is important for clarity. Please don't break.
761 *
762 * The chunk of page starts on-disk at blocknr.
763 *
764 * We perform deferred IO, by recording the last-submitted page inside our
765 * private part of the dio structure. If possible, we just expand the IO
766 * across that page here.
767 *
768 * If that doesn't work out then we put the old page into the bio and add this
769 * page to the dio instead.
770 */
771 static inline int
772 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
773 unsigned offset, unsigned len, sector_t blocknr,
774 struct buffer_head *map_bh)
775 {
776 int ret = 0;
777
778 if (dio->rw & WRITE) {
779 /*
780 * Read accounting is performed in submit_bio()
781 */
782 task_io_account_write(len);
783 }
784
785 /*
786 * Can we just grow the current page's presence in the dio?
787 */
788 if (sdio->cur_page == page &&
789 sdio->cur_page_offset + sdio->cur_page_len == offset &&
790 sdio->cur_page_block +
791 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
792 sdio->cur_page_len += len;
793 goto out;
794 }
795
796 /*
797 * If there's a deferred page already there then send it.
798 */
799 if (sdio->cur_page) {
800 ret = dio_send_cur_page(dio, sdio, map_bh);
801 page_cache_release(sdio->cur_page);
802 sdio->cur_page = NULL;
803 if (ret)
804 return ret;
805 }
806
807 page_cache_get(page); /* It is in dio */
808 sdio->cur_page = page;
809 sdio->cur_page_offset = offset;
810 sdio->cur_page_len = len;
811 sdio->cur_page_block = blocknr;
812 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
813 out:
814 /*
815 * If sdio->boundary then we want to schedule the IO now to
816 * avoid metadata seeks.
817 */
818 if (sdio->boundary) {
819 ret = dio_send_cur_page(dio, sdio, map_bh);
820 dio_bio_submit(dio, sdio);
821 page_cache_release(sdio->cur_page);
822 sdio->cur_page = NULL;
823 }
824 return ret;
825 }
826
827 /*
828 * Clean any dirty buffers in the blockdev mapping which alias newly-created
829 * file blocks. Only called for S_ISREG files - blockdevs do not set
830 * buffer_new
831 */
832 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
833 {
834 unsigned i;
835 unsigned nblocks;
836
837 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
838
839 for (i = 0; i < nblocks; i++) {
840 unmap_underlying_metadata(map_bh->b_bdev,
841 map_bh->b_blocknr + i);
842 }
843 }
844
845 /*
846 * If we are not writing the entire block and get_block() allocated
847 * the block for us, we need to fill-in the unused portion of the
848 * block with zeros. This happens only if user-buffer, fileoffset or
849 * io length is not filesystem block-size multiple.
850 *
851 * `end' is zero if we're doing the start of the IO, 1 at the end of the
852 * IO.
853 */
854 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
855 int end, struct buffer_head *map_bh)
856 {
857 unsigned dio_blocks_per_fs_block;
858 unsigned this_chunk_blocks; /* In dio_blocks */
859 unsigned this_chunk_bytes;
860 struct page *page;
861
862 sdio->start_zero_done = 1;
863 if (!sdio->blkfactor || !buffer_new(map_bh))
864 return;
865
866 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
867 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
868
869 if (!this_chunk_blocks)
870 return;
871
872 /*
873 * We need to zero out part of an fs block. It is either at the
874 * beginning or the end of the fs block.
875 */
876 if (end)
877 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
878
879 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
880
881 page = ZERO_PAGE(0);
882 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
883 sdio->next_block_for_io, map_bh))
884 return;
885
886 sdio->next_block_for_io += this_chunk_blocks;
887 }
888
889 /*
890 * Walk the user pages, and the file, mapping blocks to disk and generating
891 * a sequence of (page,offset,len,block) mappings. These mappings are injected
892 * into submit_page_section(), which takes care of the next stage of submission
893 *
894 * Direct IO against a blockdev is different from a file. Because we can
895 * happily perform page-sized but 512-byte aligned IOs. It is important that
896 * blockdev IO be able to have fine alignment and large sizes.
897 *
898 * So what we do is to permit the ->get_block function to populate bh.b_size
899 * with the size of IO which is permitted at this offset and this i_blkbits.
900 *
901 * For best results, the blockdev should be set up with 512-byte i_blkbits and
902 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
903 * fine alignment but still allows this function to work in PAGE_SIZE units.
904 */
905 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
906 struct buffer_head *map_bh)
907 {
908 const unsigned blkbits = sdio->blkbits;
909 int ret = 0;
910
911 while (sdio->block_in_file < sdio->final_block_in_request) {
912 struct page *page;
913 size_t from, to;
914 page = dio_get_page(dio, sdio, &from, &to);
915 if (IS_ERR(page)) {
916 ret = PTR_ERR(page);
917 goto out;
918 }
919
920 while (from < to) {
921 unsigned this_chunk_bytes; /* # of bytes mapped */
922 unsigned this_chunk_blocks; /* # of blocks */
923 unsigned u;
924
925 if (sdio->blocks_available == 0) {
926 /*
927 * Need to go and map some more disk
928 */
929 unsigned long blkmask;
930 unsigned long dio_remainder;
931
932 ret = get_more_blocks(dio, sdio, map_bh);
933 if (ret) {
934 page_cache_release(page);
935 goto out;
936 }
937 if (!buffer_mapped(map_bh))
938 goto do_holes;
939
940 sdio->blocks_available =
941 map_bh->b_size >> sdio->blkbits;
942 sdio->next_block_for_io =
943 map_bh->b_blocknr << sdio->blkfactor;
944 if (buffer_new(map_bh))
945 clean_blockdev_aliases(dio, map_bh);
946
947 if (!sdio->blkfactor)
948 goto do_holes;
949
950 blkmask = (1 << sdio->blkfactor) - 1;
951 dio_remainder = (sdio->block_in_file & blkmask);
952
953 /*
954 * If we are at the start of IO and that IO
955 * starts partway into a fs-block,
956 * dio_remainder will be non-zero. If the IO
957 * is a read then we can simply advance the IO
958 * cursor to the first block which is to be
959 * read. But if the IO is a write and the
960 * block was newly allocated we cannot do that;
961 * the start of the fs block must be zeroed out
962 * on-disk
963 */
964 if (!buffer_new(map_bh))
965 sdio->next_block_for_io += dio_remainder;
966 sdio->blocks_available -= dio_remainder;
967 }
968 do_holes:
969 /* Handle holes */
970 if (!buffer_mapped(map_bh)) {
971 loff_t i_size_aligned;
972
973 /* AKPM: eargh, -ENOTBLK is a hack */
974 if (dio->rw & WRITE) {
975 page_cache_release(page);
976 return -ENOTBLK;
977 }
978
979 /*
980 * Be sure to account for a partial block as the
981 * last block in the file
982 */
983 i_size_aligned = ALIGN(i_size_read(dio->inode),
984 1 << blkbits);
985 if (sdio->block_in_file >=
986 i_size_aligned >> blkbits) {
987 /* We hit eof */
988 page_cache_release(page);
989 goto out;
990 }
991 zero_user(page, from, 1 << blkbits);
992 sdio->block_in_file++;
993 from += 1 << blkbits;
994 dio->result += 1 << blkbits;
995 goto next_block;
996 }
997
998 /*
999 * If we're performing IO which has an alignment which
1000 * is finer than the underlying fs, go check to see if
1001 * we must zero out the start of this block.
1002 */
1003 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1004 dio_zero_block(dio, sdio, 0, map_bh);
1005
1006 /*
1007 * Work out, in this_chunk_blocks, how much disk we
1008 * can add to this page
1009 */
1010 this_chunk_blocks = sdio->blocks_available;
1011 u = (to - from) >> blkbits;
1012 if (this_chunk_blocks > u)
1013 this_chunk_blocks = u;
1014 u = sdio->final_block_in_request - sdio->block_in_file;
1015 if (this_chunk_blocks > u)
1016 this_chunk_blocks = u;
1017 this_chunk_bytes = this_chunk_blocks << blkbits;
1018 BUG_ON(this_chunk_bytes == 0);
1019
1020 if (this_chunk_blocks == sdio->blocks_available)
1021 sdio->boundary = buffer_boundary(map_bh);
1022 ret = submit_page_section(dio, sdio, page,
1023 from,
1024 this_chunk_bytes,
1025 sdio->next_block_for_io,
1026 map_bh);
1027 if (ret) {
1028 page_cache_release(page);
1029 goto out;
1030 }
1031 sdio->next_block_for_io += this_chunk_blocks;
1032
1033 sdio->block_in_file += this_chunk_blocks;
1034 from += this_chunk_bytes;
1035 dio->result += this_chunk_bytes;
1036 sdio->blocks_available -= this_chunk_blocks;
1037 next_block:
1038 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1039 if (sdio->block_in_file == sdio->final_block_in_request)
1040 break;
1041 }
1042
1043 /* Drop the ref which was taken in get_user_pages() */
1044 page_cache_release(page);
1045 }
1046 out:
1047 return ret;
1048 }
1049
1050 static inline int drop_refcount(struct dio *dio)
1051 {
1052 int ret2;
1053 unsigned long flags;
1054
1055 /*
1056 * Sync will always be dropping the final ref and completing the
1057 * operation. AIO can if it was a broken operation described above or
1058 * in fact if all the bios race to complete before we get here. In
1059 * that case dio_complete() translates the EIOCBQUEUED into the proper
1060 * return code that the caller will hand to aio_complete().
1061 *
1062 * This is managed by the bio_lock instead of being an atomic_t so that
1063 * completion paths can drop their ref and use the remaining count to
1064 * decide to wake the submission path atomically.
1065 */
1066 spin_lock_irqsave(&dio->bio_lock, flags);
1067 ret2 = --dio->refcount;
1068 spin_unlock_irqrestore(&dio->bio_lock, flags);
1069 return ret2;
1070 }
1071
1072 /*
1073 * This is a library function for use by filesystem drivers.
1074 *
1075 * The locking rules are governed by the flags parameter:
1076 * - if the flags value contains DIO_LOCKING we use a fancy locking
1077 * scheme for dumb filesystems.
1078 * For writes this function is called under i_mutex and returns with
1079 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1080 * taken and dropped again before returning.
1081 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1082 * internal locking but rather rely on the filesystem to synchronize
1083 * direct I/O reads/writes versus each other and truncate.
1084 *
1085 * To help with locking against truncate we incremented the i_dio_count
1086 * counter before starting direct I/O, and decrement it once we are done.
1087 * Truncate can wait for it to reach zero to provide exclusion. It is
1088 * expected that filesystem provide exclusion between new direct I/O
1089 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1090 * but other filesystems need to take care of this on their own.
1091 *
1092 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1093 * is always inlined. Otherwise gcc is unable to split the structure into
1094 * individual fields and will generate much worse code. This is important
1095 * for the whole file.
1096 */
1097 static inline ssize_t
1098 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1099 struct block_device *bdev, struct iov_iter *iter, loff_t offset,
1100 get_block_t get_block, dio_iodone_t end_io,
1101 dio_submit_t submit_io, int flags)
1102 {
1103 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1104 unsigned blkbits = i_blkbits;
1105 unsigned blocksize_mask = (1 << blkbits) - 1;
1106 ssize_t retval = -EINVAL;
1107 loff_t end = offset + iov_iter_count(iter);
1108 struct dio *dio;
1109 struct dio_submit sdio = { 0, };
1110 struct buffer_head map_bh = { 0, };
1111 struct blk_plug plug;
1112 unsigned long align = offset | iov_iter_alignment(iter);
1113
1114 if (rw & WRITE)
1115 rw = WRITE_ODIRECT;
1116
1117 /*
1118 * Avoid references to bdev if not absolutely needed to give
1119 * the early prefetch in the caller enough time.
1120 */
1121
1122 if (align & blocksize_mask) {
1123 if (bdev)
1124 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1125 blocksize_mask = (1 << blkbits) - 1;
1126 if (align & blocksize_mask)
1127 goto out;
1128 }
1129
1130 /* watch out for a 0 len io from a tricksy fs */
1131 if (rw == READ && !iov_iter_count(iter))
1132 return 0;
1133
1134 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1135 retval = -ENOMEM;
1136 if (!dio)
1137 goto out;
1138 /*
1139 * Believe it or not, zeroing out the page array caused a .5%
1140 * performance regression in a database benchmark. So, we take
1141 * care to only zero out what's needed.
1142 */
1143 memset(dio, 0, offsetof(struct dio, pages));
1144
1145 dio->flags = flags;
1146 if (dio->flags & DIO_LOCKING) {
1147 if (rw == READ) {
1148 struct address_space *mapping =
1149 iocb->ki_filp->f_mapping;
1150
1151 /* will be released by direct_io_worker */
1152 mutex_lock(&inode->i_mutex);
1153
1154 retval = filemap_write_and_wait_range(mapping, offset,
1155 end - 1);
1156 if (retval) {
1157 mutex_unlock(&inode->i_mutex);
1158 kmem_cache_free(dio_cache, dio);
1159 goto out;
1160 }
1161 }
1162 }
1163
1164 /*
1165 * For file extending writes updating i_size before data writeouts
1166 * complete can expose uninitialized blocks in dumb filesystems.
1167 * In that case we need to wait for I/O completion even if asked
1168 * for an asynchronous write.
1169 */
1170 if (is_sync_kiocb(iocb))
1171 dio->is_async = false;
1172 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1173 (rw & WRITE) && end > i_size_read(inode))
1174 dio->is_async = false;
1175 else
1176 dio->is_async = true;
1177
1178 dio->inode = inode;
1179 dio->rw = rw;
1180
1181 /*
1182 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1183 * so that we can call ->fsync.
1184 */
1185 if (dio->is_async && (rw & WRITE) &&
1186 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1187 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1188 retval = dio_set_defer_completion(dio);
1189 if (retval) {
1190 /*
1191 * We grab i_mutex only for reads so we don't have
1192 * to release it here
1193 */
1194 kmem_cache_free(dio_cache, dio);
1195 goto out;
1196 }
1197 }
1198
1199 /*
1200 * Will be decremented at I/O completion time.
1201 */
1202 atomic_inc(&inode->i_dio_count);
1203
1204 retval = 0;
1205 sdio.blkbits = blkbits;
1206 sdio.blkfactor = i_blkbits - blkbits;
1207 sdio.block_in_file = offset >> blkbits;
1208
1209 sdio.get_block = get_block;
1210 dio->end_io = end_io;
1211 sdio.submit_io = submit_io;
1212 sdio.final_block_in_bio = -1;
1213 sdio.next_block_for_io = -1;
1214
1215 dio->iocb = iocb;
1216 dio->i_size = i_size_read(inode);
1217
1218 spin_lock_init(&dio->bio_lock);
1219 dio->refcount = 1;
1220
1221 sdio.iter = iter;
1222 sdio.final_block_in_request =
1223 (offset + iov_iter_count(iter)) >> blkbits;
1224
1225 /*
1226 * In case of non-aligned buffers, we may need 2 more
1227 * pages since we need to zero out first and last block.
1228 */
1229 if (unlikely(sdio.blkfactor))
1230 sdio.pages_in_io = 2;
1231
1232 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1233
1234 blk_start_plug(&plug);
1235
1236 retval = do_direct_IO(dio, &sdio, &map_bh);
1237 if (retval)
1238 dio_cleanup(dio, &sdio);
1239
1240 if (retval == -ENOTBLK) {
1241 /*
1242 * The remaining part of the request will be
1243 * be handled by buffered I/O when we return
1244 */
1245 retval = 0;
1246 }
1247 /*
1248 * There may be some unwritten disk at the end of a part-written
1249 * fs-block-sized block. Go zero that now.
1250 */
1251 dio_zero_block(dio, &sdio, 1, &map_bh);
1252
1253 if (sdio.cur_page) {
1254 ssize_t ret2;
1255
1256 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1257 if (retval == 0)
1258 retval = ret2;
1259 page_cache_release(sdio.cur_page);
1260 sdio.cur_page = NULL;
1261 }
1262 if (sdio.bio)
1263 dio_bio_submit(dio, &sdio);
1264
1265 blk_finish_plug(&plug);
1266
1267 /*
1268 * It is possible that, we return short IO due to end of file.
1269 * In that case, we need to release all the pages we got hold on.
1270 */
1271 dio_cleanup(dio, &sdio);
1272
1273 /*
1274 * All block lookups have been performed. For READ requests
1275 * we can let i_mutex go now that its achieved its purpose
1276 * of protecting us from looking up uninitialized blocks.
1277 */
1278 if (rw == READ && (dio->flags & DIO_LOCKING))
1279 mutex_unlock(&dio->inode->i_mutex);
1280
1281 /*
1282 * The only time we want to leave bios in flight is when a successful
1283 * partial aio read or full aio write have been setup. In that case
1284 * bio completion will call aio_complete. The only time it's safe to
1285 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1286 * This had *better* be the only place that raises -EIOCBQUEUED.
1287 */
1288 BUG_ON(retval == -EIOCBQUEUED);
1289 if (dio->is_async && retval == 0 && dio->result &&
1290 ((rw == READ) || (dio->result == sdio.size)))
1291 retval = -EIOCBQUEUED;
1292
1293 if (retval != -EIOCBQUEUED)
1294 dio_await_completion(dio);
1295
1296 if (drop_refcount(dio) == 0) {
1297 retval = dio_complete(dio, offset, retval, false);
1298 } else
1299 BUG_ON(retval != -EIOCBQUEUED);
1300
1301 out:
1302 return retval;
1303 }
1304
1305 ssize_t
1306 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1307 struct block_device *bdev, struct iov_iter *iter, loff_t offset,
1308 get_block_t get_block, dio_iodone_t end_io,
1309 dio_submit_t submit_io, int flags)
1310 {
1311 /*
1312 * The block device state is needed in the end to finally
1313 * submit everything. Since it's likely to be cache cold
1314 * prefetch it here as first thing to hide some of the
1315 * latency.
1316 *
1317 * Attempt to prefetch the pieces we likely need later.
1318 */
1319 prefetch(&bdev->bd_disk->part_tbl);
1320 prefetch(bdev->bd_queue);
1321 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1322
1323 return do_blockdev_direct_IO(rw, iocb, inode, bdev, iter, offset,
1324 get_block, end_io, submit_io, flags);
1325 }
1326
1327 EXPORT_SYMBOL(__blockdev_direct_IO);
1328
1329 static __init int dio_init(void)
1330 {
1331 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1332 return 0;
1333 }
1334 module_init(dio_init)
This page took 0.064756 seconds and 5 git commands to generate.