net: Fix use after free by removing length arg from sk_data_ready callbacks.
[deliverable/linux.git] / fs / dlm / lowcomms.c
1 /******************************************************************************
2 *******************************************************************************
3 **
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
6 **
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13
14 /*
15 * lowcomms.c
16 *
17 * This is the "low-level" comms layer.
18 *
19 * It is responsible for sending/receiving messages
20 * from other nodes in the cluster.
21 *
22 * Cluster nodes are referred to by their nodeids. nodeids are
23 * simply 32 bit numbers to the locking module - if they need to
24 * be expanded for the cluster infrastructure then that is its
25 * responsibility. It is this layer's
26 * responsibility to resolve these into IP address or
27 * whatever it needs for inter-node communication.
28 *
29 * The comms level is two kernel threads that deal mainly with
30 * the receiving of messages from other nodes and passing them
31 * up to the mid-level comms layer (which understands the
32 * message format) for execution by the locking core, and
33 * a send thread which does all the setting up of connections
34 * to remote nodes and the sending of data. Threads are not allowed
35 * to send their own data because it may cause them to wait in times
36 * of high load. Also, this way, the sending thread can collect together
37 * messages bound for one node and send them in one block.
38 *
39 * lowcomms will choose to use either TCP or SCTP as its transport layer
40 * depending on the configuration variable 'protocol'. This should be set
41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42 * cluster-wide mechanism as it must be the same on all nodes of the cluster
43 * for the DLM to function.
44 *
45 */
46
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68
69 struct cbuf {
70 unsigned int base;
71 unsigned int len;
72 unsigned int mask;
73 };
74
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 cb->len += n;
78 }
79
80 static int cbuf_data(struct cbuf *cb)
81 {
82 return ((cb->base + cb->len) & cb->mask);
83 }
84
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 cb->base = cb->len = 0;
88 cb->mask = size-1;
89 }
90
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 cb->len -= n;
94 cb->base += n;
95 cb->base &= cb->mask;
96 }
97
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 return cb->len == 0;
101 }
102
103 struct connection {
104 struct socket *sock; /* NULL if not connected */
105 uint32_t nodeid; /* So we know who we are in the list */
106 struct mutex sock_mutex;
107 unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 struct list_head writequeue; /* List of outgoing writequeue_entries */
116 spinlock_t writequeue_lock;
117 int (*rx_action) (struct connection *); /* What to do when active */
118 void (*connect_action) (struct connection *); /* What to do to connect */
119 struct page *rx_page;
120 struct cbuf cb;
121 int retries;
122 #define MAX_CONNECT_RETRIES 3
123 int sctp_assoc;
124 struct hlist_node list;
125 struct connection *othercon;
126 struct work_struct rwork; /* Receive workqueue */
127 struct work_struct swork; /* Send workqueue */
128 bool try_new_addr;
129 };
130 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
131
132 /* An entry waiting to be sent */
133 struct writequeue_entry {
134 struct list_head list;
135 struct page *page;
136 int offset;
137 int len;
138 int end;
139 int users;
140 struct connection *con;
141 };
142
143 struct dlm_node_addr {
144 struct list_head list;
145 int nodeid;
146 int addr_count;
147 int curr_addr_index;
148 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
149 };
150
151 static LIST_HEAD(dlm_node_addrs);
152 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
153
154 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
155 static int dlm_local_count;
156 static int dlm_allow_conn;
157
158 /* Work queues */
159 static struct workqueue_struct *recv_workqueue;
160 static struct workqueue_struct *send_workqueue;
161
162 static struct hlist_head connection_hash[CONN_HASH_SIZE];
163 static DEFINE_MUTEX(connections_lock);
164 static struct kmem_cache *con_cache;
165
166 static void process_recv_sockets(struct work_struct *work);
167 static void process_send_sockets(struct work_struct *work);
168
169
170 /* This is deliberately very simple because most clusters have simple
171 sequential nodeids, so we should be able to go straight to a connection
172 struct in the array */
173 static inline int nodeid_hash(int nodeid)
174 {
175 return nodeid & (CONN_HASH_SIZE-1);
176 }
177
178 static struct connection *__find_con(int nodeid)
179 {
180 int r;
181 struct connection *con;
182
183 r = nodeid_hash(nodeid);
184
185 hlist_for_each_entry(con, &connection_hash[r], list) {
186 if (con->nodeid == nodeid)
187 return con;
188 }
189 return NULL;
190 }
191
192 /*
193 * If 'allocation' is zero then we don't attempt to create a new
194 * connection structure for this node.
195 */
196 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
197 {
198 struct connection *con = NULL;
199 int r;
200
201 con = __find_con(nodeid);
202 if (con || !alloc)
203 return con;
204
205 con = kmem_cache_zalloc(con_cache, alloc);
206 if (!con)
207 return NULL;
208
209 r = nodeid_hash(nodeid);
210 hlist_add_head(&con->list, &connection_hash[r]);
211
212 con->nodeid = nodeid;
213 mutex_init(&con->sock_mutex);
214 INIT_LIST_HEAD(&con->writequeue);
215 spin_lock_init(&con->writequeue_lock);
216 INIT_WORK(&con->swork, process_send_sockets);
217 INIT_WORK(&con->rwork, process_recv_sockets);
218
219 /* Setup action pointers for child sockets */
220 if (con->nodeid) {
221 struct connection *zerocon = __find_con(0);
222
223 con->connect_action = zerocon->connect_action;
224 if (!con->rx_action)
225 con->rx_action = zerocon->rx_action;
226 }
227
228 return con;
229 }
230
231 /* Loop round all connections */
232 static void foreach_conn(void (*conn_func)(struct connection *c))
233 {
234 int i;
235 struct hlist_node *n;
236 struct connection *con;
237
238 for (i = 0; i < CONN_HASH_SIZE; i++) {
239 hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
240 conn_func(con);
241 }
242 }
243
244 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
245 {
246 struct connection *con;
247
248 mutex_lock(&connections_lock);
249 con = __nodeid2con(nodeid, allocation);
250 mutex_unlock(&connections_lock);
251
252 return con;
253 }
254
255 /* This is a bit drastic, but only called when things go wrong */
256 static struct connection *assoc2con(int assoc_id)
257 {
258 int i;
259 struct connection *con;
260
261 mutex_lock(&connections_lock);
262
263 for (i = 0 ; i < CONN_HASH_SIZE; i++) {
264 hlist_for_each_entry(con, &connection_hash[i], list) {
265 if (con->sctp_assoc == assoc_id) {
266 mutex_unlock(&connections_lock);
267 return con;
268 }
269 }
270 }
271 mutex_unlock(&connections_lock);
272 return NULL;
273 }
274
275 static struct dlm_node_addr *find_node_addr(int nodeid)
276 {
277 struct dlm_node_addr *na;
278
279 list_for_each_entry(na, &dlm_node_addrs, list) {
280 if (na->nodeid == nodeid)
281 return na;
282 }
283 return NULL;
284 }
285
286 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
287 {
288 switch (x->ss_family) {
289 case AF_INET: {
290 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
291 struct sockaddr_in *siny = (struct sockaddr_in *)y;
292 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
293 return 0;
294 if (sinx->sin_port != siny->sin_port)
295 return 0;
296 break;
297 }
298 case AF_INET6: {
299 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
300 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
301 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
302 return 0;
303 if (sinx->sin6_port != siny->sin6_port)
304 return 0;
305 break;
306 }
307 default:
308 return 0;
309 }
310 return 1;
311 }
312
313 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
314 struct sockaddr *sa_out, bool try_new_addr)
315 {
316 struct sockaddr_storage sas;
317 struct dlm_node_addr *na;
318
319 if (!dlm_local_count)
320 return -1;
321
322 spin_lock(&dlm_node_addrs_spin);
323 na = find_node_addr(nodeid);
324 if (na && na->addr_count) {
325 if (try_new_addr) {
326 na->curr_addr_index++;
327 if (na->curr_addr_index == na->addr_count)
328 na->curr_addr_index = 0;
329 }
330
331 memcpy(&sas, na->addr[na->curr_addr_index ],
332 sizeof(struct sockaddr_storage));
333 }
334 spin_unlock(&dlm_node_addrs_spin);
335
336 if (!na)
337 return -EEXIST;
338
339 if (!na->addr_count)
340 return -ENOENT;
341
342 if (sas_out)
343 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
344
345 if (!sa_out)
346 return 0;
347
348 if (dlm_local_addr[0]->ss_family == AF_INET) {
349 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
350 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
351 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
352 } else {
353 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
354 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
355 ret6->sin6_addr = in6->sin6_addr;
356 }
357
358 return 0;
359 }
360
361 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
362 {
363 struct dlm_node_addr *na;
364 int rv = -EEXIST;
365 int addr_i;
366
367 spin_lock(&dlm_node_addrs_spin);
368 list_for_each_entry(na, &dlm_node_addrs, list) {
369 if (!na->addr_count)
370 continue;
371
372 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
373 if (addr_compare(na->addr[addr_i], addr)) {
374 *nodeid = na->nodeid;
375 rv = 0;
376 goto unlock;
377 }
378 }
379 }
380 unlock:
381 spin_unlock(&dlm_node_addrs_spin);
382 return rv;
383 }
384
385 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
386 {
387 struct sockaddr_storage *new_addr;
388 struct dlm_node_addr *new_node, *na;
389
390 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
391 if (!new_node)
392 return -ENOMEM;
393
394 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
395 if (!new_addr) {
396 kfree(new_node);
397 return -ENOMEM;
398 }
399
400 memcpy(new_addr, addr, len);
401
402 spin_lock(&dlm_node_addrs_spin);
403 na = find_node_addr(nodeid);
404 if (!na) {
405 new_node->nodeid = nodeid;
406 new_node->addr[0] = new_addr;
407 new_node->addr_count = 1;
408 list_add(&new_node->list, &dlm_node_addrs);
409 spin_unlock(&dlm_node_addrs_spin);
410 return 0;
411 }
412
413 if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
414 spin_unlock(&dlm_node_addrs_spin);
415 kfree(new_addr);
416 kfree(new_node);
417 return -ENOSPC;
418 }
419
420 na->addr[na->addr_count++] = new_addr;
421 spin_unlock(&dlm_node_addrs_spin);
422 kfree(new_node);
423 return 0;
424 }
425
426 /* Data available on socket or listen socket received a connect */
427 static void lowcomms_data_ready(struct sock *sk)
428 {
429 struct connection *con = sock2con(sk);
430 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
431 queue_work(recv_workqueue, &con->rwork);
432 }
433
434 static void lowcomms_write_space(struct sock *sk)
435 {
436 struct connection *con = sock2con(sk);
437
438 if (!con)
439 return;
440
441 clear_bit(SOCK_NOSPACE, &con->sock->flags);
442
443 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
444 con->sock->sk->sk_write_pending--;
445 clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
446 }
447
448 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
449 queue_work(send_workqueue, &con->swork);
450 }
451
452 static inline void lowcomms_connect_sock(struct connection *con)
453 {
454 if (test_bit(CF_CLOSE, &con->flags))
455 return;
456 if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
457 queue_work(send_workqueue, &con->swork);
458 }
459
460 static void lowcomms_state_change(struct sock *sk)
461 {
462 if (sk->sk_state == TCP_ESTABLISHED)
463 lowcomms_write_space(sk);
464 }
465
466 int dlm_lowcomms_connect_node(int nodeid)
467 {
468 struct connection *con;
469
470 /* with sctp there's no connecting without sending */
471 if (dlm_config.ci_protocol != 0)
472 return 0;
473
474 if (nodeid == dlm_our_nodeid())
475 return 0;
476
477 con = nodeid2con(nodeid, GFP_NOFS);
478 if (!con)
479 return -ENOMEM;
480 lowcomms_connect_sock(con);
481 return 0;
482 }
483
484 /* Make a socket active */
485 static void add_sock(struct socket *sock, struct connection *con)
486 {
487 con->sock = sock;
488
489 /* Install a data_ready callback */
490 con->sock->sk->sk_data_ready = lowcomms_data_ready;
491 con->sock->sk->sk_write_space = lowcomms_write_space;
492 con->sock->sk->sk_state_change = lowcomms_state_change;
493 con->sock->sk->sk_user_data = con;
494 con->sock->sk->sk_allocation = GFP_NOFS;
495 }
496
497 /* Add the port number to an IPv6 or 4 sockaddr and return the address
498 length */
499 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
500 int *addr_len)
501 {
502 saddr->ss_family = dlm_local_addr[0]->ss_family;
503 if (saddr->ss_family == AF_INET) {
504 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
505 in4_addr->sin_port = cpu_to_be16(port);
506 *addr_len = sizeof(struct sockaddr_in);
507 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
508 } else {
509 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
510 in6_addr->sin6_port = cpu_to_be16(port);
511 *addr_len = sizeof(struct sockaddr_in6);
512 }
513 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
514 }
515
516 /* Close a remote connection and tidy up */
517 static void close_connection(struct connection *con, bool and_other)
518 {
519 mutex_lock(&con->sock_mutex);
520
521 if (con->sock) {
522 sock_release(con->sock);
523 con->sock = NULL;
524 }
525 if (con->othercon && and_other) {
526 /* Will only re-enter once. */
527 close_connection(con->othercon, false);
528 }
529 if (con->rx_page) {
530 __free_page(con->rx_page);
531 con->rx_page = NULL;
532 }
533
534 con->retries = 0;
535 mutex_unlock(&con->sock_mutex);
536 }
537
538 /* We only send shutdown messages to nodes that are not part of the cluster */
539 static void sctp_send_shutdown(sctp_assoc_t associd)
540 {
541 static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
542 struct msghdr outmessage;
543 struct cmsghdr *cmsg;
544 struct sctp_sndrcvinfo *sinfo;
545 int ret;
546 struct connection *con;
547
548 con = nodeid2con(0,0);
549 BUG_ON(con == NULL);
550
551 outmessage.msg_name = NULL;
552 outmessage.msg_namelen = 0;
553 outmessage.msg_control = outcmsg;
554 outmessage.msg_controllen = sizeof(outcmsg);
555 outmessage.msg_flags = MSG_EOR;
556
557 cmsg = CMSG_FIRSTHDR(&outmessage);
558 cmsg->cmsg_level = IPPROTO_SCTP;
559 cmsg->cmsg_type = SCTP_SNDRCV;
560 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
561 outmessage.msg_controllen = cmsg->cmsg_len;
562 sinfo = CMSG_DATA(cmsg);
563 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
564
565 sinfo->sinfo_flags |= MSG_EOF;
566 sinfo->sinfo_assoc_id = associd;
567
568 ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
569
570 if (ret != 0)
571 log_print("send EOF to node failed: %d", ret);
572 }
573
574 static void sctp_init_failed_foreach(struct connection *con)
575 {
576
577 /*
578 * Don't try to recover base con and handle race where the
579 * other node's assoc init creates a assoc and we get that
580 * notification, then we get a notification that our attempt
581 * failed due. This happens when we are still trying the primary
582 * address, but the other node has already tried secondary addrs
583 * and found one that worked.
584 */
585 if (!con->nodeid || con->sctp_assoc)
586 return;
587
588 log_print("Retrying SCTP association init for node %d\n", con->nodeid);
589
590 con->try_new_addr = true;
591 con->sctp_assoc = 0;
592 if (test_and_clear_bit(CF_INIT_PENDING, &con->flags)) {
593 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
594 queue_work(send_workqueue, &con->swork);
595 }
596 }
597
598 /* INIT failed but we don't know which node...
599 restart INIT on all pending nodes */
600 static void sctp_init_failed(void)
601 {
602 mutex_lock(&connections_lock);
603
604 foreach_conn(sctp_init_failed_foreach);
605
606 mutex_unlock(&connections_lock);
607 }
608
609 static void retry_failed_sctp_send(struct connection *recv_con,
610 struct sctp_send_failed *sn_send_failed,
611 char *buf)
612 {
613 int len = sn_send_failed->ssf_length - sizeof(struct sctp_send_failed);
614 struct dlm_mhandle *mh;
615 struct connection *con;
616 char *retry_buf;
617 int nodeid = sn_send_failed->ssf_info.sinfo_ppid;
618
619 log_print("Retry sending %d bytes to node id %d", len, nodeid);
620
621 con = nodeid2con(nodeid, 0);
622 if (!con) {
623 log_print("Could not look up con for nodeid %d\n",
624 nodeid);
625 return;
626 }
627
628 mh = dlm_lowcomms_get_buffer(nodeid, len, GFP_NOFS, &retry_buf);
629 if (!mh) {
630 log_print("Could not allocate buf for retry.");
631 return;
632 }
633 memcpy(retry_buf, buf + sizeof(struct sctp_send_failed), len);
634 dlm_lowcomms_commit_buffer(mh);
635
636 /*
637 * If we got a assoc changed event before the send failed event then
638 * we only need to retry the send.
639 */
640 if (con->sctp_assoc) {
641 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
642 queue_work(send_workqueue, &con->swork);
643 } else
644 sctp_init_failed_foreach(con);
645 }
646
647 /* Something happened to an association */
648 static void process_sctp_notification(struct connection *con,
649 struct msghdr *msg, char *buf)
650 {
651 union sctp_notification *sn = (union sctp_notification *)buf;
652 struct linger linger;
653
654 switch (sn->sn_header.sn_type) {
655 case SCTP_SEND_FAILED:
656 retry_failed_sctp_send(con, &sn->sn_send_failed, buf);
657 break;
658 case SCTP_ASSOC_CHANGE:
659 switch (sn->sn_assoc_change.sac_state) {
660 case SCTP_COMM_UP:
661 case SCTP_RESTART:
662 {
663 /* Check that the new node is in the lockspace */
664 struct sctp_prim prim;
665 int nodeid;
666 int prim_len, ret;
667 int addr_len;
668 struct connection *new_con;
669
670 /*
671 * We get this before any data for an association.
672 * We verify that the node is in the cluster and
673 * then peel off a socket for it.
674 */
675 if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
676 log_print("COMM_UP for invalid assoc ID %d",
677 (int)sn->sn_assoc_change.sac_assoc_id);
678 sctp_init_failed();
679 return;
680 }
681 memset(&prim, 0, sizeof(struct sctp_prim));
682 prim_len = sizeof(struct sctp_prim);
683 prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
684
685 ret = kernel_getsockopt(con->sock,
686 IPPROTO_SCTP,
687 SCTP_PRIMARY_ADDR,
688 (char*)&prim,
689 &prim_len);
690 if (ret < 0) {
691 log_print("getsockopt/sctp_primary_addr on "
692 "new assoc %d failed : %d",
693 (int)sn->sn_assoc_change.sac_assoc_id,
694 ret);
695
696 /* Retry INIT later */
697 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
698 if (new_con)
699 clear_bit(CF_CONNECT_PENDING, &con->flags);
700 return;
701 }
702 make_sockaddr(&prim.ssp_addr, 0, &addr_len);
703 if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
704 unsigned char *b=(unsigned char *)&prim.ssp_addr;
705 log_print("reject connect from unknown addr");
706 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
707 b, sizeof(struct sockaddr_storage));
708 sctp_send_shutdown(prim.ssp_assoc_id);
709 return;
710 }
711
712 new_con = nodeid2con(nodeid, GFP_NOFS);
713 if (!new_con)
714 return;
715
716 /* Peel off a new sock */
717 lock_sock(con->sock->sk);
718 ret = sctp_do_peeloff(con->sock->sk,
719 sn->sn_assoc_change.sac_assoc_id,
720 &new_con->sock);
721 release_sock(con->sock->sk);
722 if (ret < 0) {
723 log_print("Can't peel off a socket for "
724 "connection %d to node %d: err=%d",
725 (int)sn->sn_assoc_change.sac_assoc_id,
726 nodeid, ret);
727 return;
728 }
729 add_sock(new_con->sock, new_con);
730
731 linger.l_onoff = 1;
732 linger.l_linger = 0;
733 ret = kernel_setsockopt(new_con->sock, SOL_SOCKET, SO_LINGER,
734 (char *)&linger, sizeof(linger));
735 if (ret < 0)
736 log_print("set socket option SO_LINGER failed");
737
738 log_print("connecting to %d sctp association %d",
739 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
740
741 new_con->sctp_assoc = sn->sn_assoc_change.sac_assoc_id;
742 new_con->try_new_addr = false;
743 /* Send any pending writes */
744 clear_bit(CF_CONNECT_PENDING, &new_con->flags);
745 clear_bit(CF_INIT_PENDING, &new_con->flags);
746 if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
747 queue_work(send_workqueue, &new_con->swork);
748 }
749 if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
750 queue_work(recv_workqueue, &new_con->rwork);
751 }
752 break;
753
754 case SCTP_COMM_LOST:
755 case SCTP_SHUTDOWN_COMP:
756 {
757 con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
758 if (con) {
759 con->sctp_assoc = 0;
760 }
761 }
762 break;
763
764 case SCTP_CANT_STR_ASSOC:
765 {
766 /* Will retry init when we get the send failed notification */
767 log_print("Can't start SCTP association - retrying");
768 }
769 break;
770
771 default:
772 log_print("unexpected SCTP assoc change id=%d state=%d",
773 (int)sn->sn_assoc_change.sac_assoc_id,
774 sn->sn_assoc_change.sac_state);
775 }
776 default:
777 ; /* fall through */
778 }
779 }
780
781 /* Data received from remote end */
782 static int receive_from_sock(struct connection *con)
783 {
784 int ret = 0;
785 struct msghdr msg = {};
786 struct kvec iov[2];
787 unsigned len;
788 int r;
789 int call_again_soon = 0;
790 int nvec;
791 char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
792
793 mutex_lock(&con->sock_mutex);
794
795 if (con->sock == NULL) {
796 ret = -EAGAIN;
797 goto out_close;
798 }
799
800 if (con->rx_page == NULL) {
801 /*
802 * This doesn't need to be atomic, but I think it should
803 * improve performance if it is.
804 */
805 con->rx_page = alloc_page(GFP_ATOMIC);
806 if (con->rx_page == NULL)
807 goto out_resched;
808 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
809 }
810
811 /* Only SCTP needs these really */
812 memset(&incmsg, 0, sizeof(incmsg));
813 msg.msg_control = incmsg;
814 msg.msg_controllen = sizeof(incmsg);
815
816 /*
817 * iov[0] is the bit of the circular buffer between the current end
818 * point (cb.base + cb.len) and the end of the buffer.
819 */
820 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
821 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
822 iov[1].iov_len = 0;
823 nvec = 1;
824
825 /*
826 * iov[1] is the bit of the circular buffer between the start of the
827 * buffer and the start of the currently used section (cb.base)
828 */
829 if (cbuf_data(&con->cb) >= con->cb.base) {
830 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
831 iov[1].iov_len = con->cb.base;
832 iov[1].iov_base = page_address(con->rx_page);
833 nvec = 2;
834 }
835 len = iov[0].iov_len + iov[1].iov_len;
836
837 r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
838 MSG_DONTWAIT | MSG_NOSIGNAL);
839 if (ret <= 0)
840 goto out_close;
841
842 /* Process SCTP notifications */
843 if (msg.msg_flags & MSG_NOTIFICATION) {
844 msg.msg_control = incmsg;
845 msg.msg_controllen = sizeof(incmsg);
846
847 process_sctp_notification(con, &msg,
848 page_address(con->rx_page) + con->cb.base);
849 mutex_unlock(&con->sock_mutex);
850 return 0;
851 }
852 BUG_ON(con->nodeid == 0);
853
854 if (ret == len)
855 call_again_soon = 1;
856 cbuf_add(&con->cb, ret);
857 ret = dlm_process_incoming_buffer(con->nodeid,
858 page_address(con->rx_page),
859 con->cb.base, con->cb.len,
860 PAGE_CACHE_SIZE);
861 if (ret == -EBADMSG) {
862 log_print("lowcomms: addr=%p, base=%u, len=%u, "
863 "iov_len=%u, iov_base[0]=%p, read=%d",
864 page_address(con->rx_page), con->cb.base, con->cb.len,
865 len, iov[0].iov_base, r);
866 }
867 if (ret < 0)
868 goto out_close;
869 cbuf_eat(&con->cb, ret);
870
871 if (cbuf_empty(&con->cb) && !call_again_soon) {
872 __free_page(con->rx_page);
873 con->rx_page = NULL;
874 }
875
876 if (call_again_soon)
877 goto out_resched;
878 mutex_unlock(&con->sock_mutex);
879 return 0;
880
881 out_resched:
882 if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
883 queue_work(recv_workqueue, &con->rwork);
884 mutex_unlock(&con->sock_mutex);
885 return -EAGAIN;
886
887 out_close:
888 mutex_unlock(&con->sock_mutex);
889 if (ret != -EAGAIN) {
890 close_connection(con, false);
891 /* Reconnect when there is something to send */
892 }
893 /* Don't return success if we really got EOF */
894 if (ret == 0)
895 ret = -EAGAIN;
896
897 return ret;
898 }
899
900 /* Listening socket is busy, accept a connection */
901 static int tcp_accept_from_sock(struct connection *con)
902 {
903 int result;
904 struct sockaddr_storage peeraddr;
905 struct socket *newsock;
906 int len;
907 int nodeid;
908 struct connection *newcon;
909 struct connection *addcon;
910
911 mutex_lock(&connections_lock);
912 if (!dlm_allow_conn) {
913 mutex_unlock(&connections_lock);
914 return -1;
915 }
916 mutex_unlock(&connections_lock);
917
918 memset(&peeraddr, 0, sizeof(peeraddr));
919 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
920 IPPROTO_TCP, &newsock);
921 if (result < 0)
922 return -ENOMEM;
923
924 mutex_lock_nested(&con->sock_mutex, 0);
925
926 result = -ENOTCONN;
927 if (con->sock == NULL)
928 goto accept_err;
929
930 newsock->type = con->sock->type;
931 newsock->ops = con->sock->ops;
932
933 result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
934 if (result < 0)
935 goto accept_err;
936
937 /* Get the connected socket's peer */
938 memset(&peeraddr, 0, sizeof(peeraddr));
939 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
940 &len, 2)) {
941 result = -ECONNABORTED;
942 goto accept_err;
943 }
944
945 /* Get the new node's NODEID */
946 make_sockaddr(&peeraddr, 0, &len);
947 if (addr_to_nodeid(&peeraddr, &nodeid)) {
948 unsigned char *b=(unsigned char *)&peeraddr;
949 log_print("connect from non cluster node");
950 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
951 b, sizeof(struct sockaddr_storage));
952 sock_release(newsock);
953 mutex_unlock(&con->sock_mutex);
954 return -1;
955 }
956
957 log_print("got connection from %d", nodeid);
958
959 /* Check to see if we already have a connection to this node. This
960 * could happen if the two nodes initiate a connection at roughly
961 * the same time and the connections cross on the wire.
962 * In this case we store the incoming one in "othercon"
963 */
964 newcon = nodeid2con(nodeid, GFP_NOFS);
965 if (!newcon) {
966 result = -ENOMEM;
967 goto accept_err;
968 }
969 mutex_lock_nested(&newcon->sock_mutex, 1);
970 if (newcon->sock) {
971 struct connection *othercon = newcon->othercon;
972
973 if (!othercon) {
974 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
975 if (!othercon) {
976 log_print("failed to allocate incoming socket");
977 mutex_unlock(&newcon->sock_mutex);
978 result = -ENOMEM;
979 goto accept_err;
980 }
981 othercon->nodeid = nodeid;
982 othercon->rx_action = receive_from_sock;
983 mutex_init(&othercon->sock_mutex);
984 INIT_WORK(&othercon->swork, process_send_sockets);
985 INIT_WORK(&othercon->rwork, process_recv_sockets);
986 set_bit(CF_IS_OTHERCON, &othercon->flags);
987 }
988 if (!othercon->sock) {
989 newcon->othercon = othercon;
990 othercon->sock = newsock;
991 newsock->sk->sk_user_data = othercon;
992 add_sock(newsock, othercon);
993 addcon = othercon;
994 }
995 else {
996 printk("Extra connection from node %d attempted\n", nodeid);
997 result = -EAGAIN;
998 mutex_unlock(&newcon->sock_mutex);
999 goto accept_err;
1000 }
1001 }
1002 else {
1003 newsock->sk->sk_user_data = newcon;
1004 newcon->rx_action = receive_from_sock;
1005 add_sock(newsock, newcon);
1006 addcon = newcon;
1007 }
1008
1009 mutex_unlock(&newcon->sock_mutex);
1010
1011 /*
1012 * Add it to the active queue in case we got data
1013 * between processing the accept adding the socket
1014 * to the read_sockets list
1015 */
1016 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
1017 queue_work(recv_workqueue, &addcon->rwork);
1018 mutex_unlock(&con->sock_mutex);
1019
1020 return 0;
1021
1022 accept_err:
1023 mutex_unlock(&con->sock_mutex);
1024 sock_release(newsock);
1025
1026 if (result != -EAGAIN)
1027 log_print("error accepting connection from node: %d", result);
1028 return result;
1029 }
1030
1031 static void free_entry(struct writequeue_entry *e)
1032 {
1033 __free_page(e->page);
1034 kfree(e);
1035 }
1036
1037 /*
1038 * writequeue_entry_complete - try to delete and free write queue entry
1039 * @e: write queue entry to try to delete
1040 * @completed: bytes completed
1041 *
1042 * writequeue_lock must be held.
1043 */
1044 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1045 {
1046 e->offset += completed;
1047 e->len -= completed;
1048
1049 if (e->len == 0 && e->users == 0) {
1050 list_del(&e->list);
1051 free_entry(e);
1052 }
1053 }
1054
1055 /* Initiate an SCTP association.
1056 This is a special case of send_to_sock() in that we don't yet have a
1057 peeled-off socket for this association, so we use the listening socket
1058 and add the primary IP address of the remote node.
1059 */
1060 static void sctp_init_assoc(struct connection *con)
1061 {
1062 struct sockaddr_storage rem_addr;
1063 char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
1064 struct msghdr outmessage;
1065 struct cmsghdr *cmsg;
1066 struct sctp_sndrcvinfo *sinfo;
1067 struct connection *base_con;
1068 struct writequeue_entry *e;
1069 int len, offset;
1070 int ret;
1071 int addrlen;
1072 struct kvec iov[1];
1073
1074 mutex_lock(&con->sock_mutex);
1075 if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
1076 goto unlock;
1077
1078 if (nodeid_to_addr(con->nodeid, NULL, (struct sockaddr *)&rem_addr,
1079 con->try_new_addr)) {
1080 log_print("no address for nodeid %d", con->nodeid);
1081 goto unlock;
1082 }
1083 base_con = nodeid2con(0, 0);
1084 BUG_ON(base_con == NULL);
1085
1086 make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
1087
1088 outmessage.msg_name = &rem_addr;
1089 outmessage.msg_namelen = addrlen;
1090 outmessage.msg_control = outcmsg;
1091 outmessage.msg_controllen = sizeof(outcmsg);
1092 outmessage.msg_flags = MSG_EOR;
1093
1094 spin_lock(&con->writequeue_lock);
1095
1096 if (list_empty(&con->writequeue)) {
1097 spin_unlock(&con->writequeue_lock);
1098 log_print("writequeue empty for nodeid %d", con->nodeid);
1099 goto unlock;
1100 }
1101
1102 e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1103 len = e->len;
1104 offset = e->offset;
1105
1106 /* Send the first block off the write queue */
1107 iov[0].iov_base = page_address(e->page)+offset;
1108 iov[0].iov_len = len;
1109 spin_unlock(&con->writequeue_lock);
1110
1111 if (rem_addr.ss_family == AF_INET) {
1112 struct sockaddr_in *sin = (struct sockaddr_in *)&rem_addr;
1113 log_print("Trying to connect to %pI4", &sin->sin_addr.s_addr);
1114 } else {
1115 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&rem_addr;
1116 log_print("Trying to connect to %pI6", &sin6->sin6_addr);
1117 }
1118
1119 cmsg = CMSG_FIRSTHDR(&outmessage);
1120 cmsg->cmsg_level = IPPROTO_SCTP;
1121 cmsg->cmsg_type = SCTP_SNDRCV;
1122 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
1123 sinfo = CMSG_DATA(cmsg);
1124 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
1125 sinfo->sinfo_ppid = cpu_to_le32(con->nodeid);
1126 outmessage.msg_controllen = cmsg->cmsg_len;
1127 sinfo->sinfo_flags |= SCTP_ADDR_OVER;
1128
1129 ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
1130 if (ret < 0) {
1131 log_print("Send first packet to node %d failed: %d",
1132 con->nodeid, ret);
1133
1134 /* Try again later */
1135 clear_bit(CF_CONNECT_PENDING, &con->flags);
1136 clear_bit(CF_INIT_PENDING, &con->flags);
1137 }
1138 else {
1139 spin_lock(&con->writequeue_lock);
1140 writequeue_entry_complete(e, ret);
1141 spin_unlock(&con->writequeue_lock);
1142 }
1143
1144 unlock:
1145 mutex_unlock(&con->sock_mutex);
1146 }
1147
1148 /* Connect a new socket to its peer */
1149 static void tcp_connect_to_sock(struct connection *con)
1150 {
1151 struct sockaddr_storage saddr, src_addr;
1152 int addr_len;
1153 struct socket *sock = NULL;
1154 int one = 1;
1155 int result;
1156
1157 if (con->nodeid == 0) {
1158 log_print("attempt to connect sock 0 foiled");
1159 return;
1160 }
1161
1162 mutex_lock(&con->sock_mutex);
1163 if (con->retries++ > MAX_CONNECT_RETRIES)
1164 goto out;
1165
1166 /* Some odd races can cause double-connects, ignore them */
1167 if (con->sock)
1168 goto out;
1169
1170 /* Create a socket to communicate with */
1171 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1172 IPPROTO_TCP, &sock);
1173 if (result < 0)
1174 goto out_err;
1175
1176 memset(&saddr, 0, sizeof(saddr));
1177 result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1178 if (result < 0) {
1179 log_print("no address for nodeid %d", con->nodeid);
1180 goto out_err;
1181 }
1182
1183 sock->sk->sk_user_data = con;
1184 con->rx_action = receive_from_sock;
1185 con->connect_action = tcp_connect_to_sock;
1186 add_sock(sock, con);
1187
1188 /* Bind to our cluster-known address connecting to avoid
1189 routing problems */
1190 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1191 make_sockaddr(&src_addr, 0, &addr_len);
1192 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1193 addr_len);
1194 if (result < 0) {
1195 log_print("could not bind for connect: %d", result);
1196 /* This *may* not indicate a critical error */
1197 }
1198
1199 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1200
1201 log_print("connecting to %d", con->nodeid);
1202
1203 /* Turn off Nagle's algorithm */
1204 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1205 sizeof(one));
1206
1207 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1208 O_NONBLOCK);
1209 if (result == -EINPROGRESS)
1210 result = 0;
1211 if (result == 0)
1212 goto out;
1213
1214 out_err:
1215 if (con->sock) {
1216 sock_release(con->sock);
1217 con->sock = NULL;
1218 } else if (sock) {
1219 sock_release(sock);
1220 }
1221 /*
1222 * Some errors are fatal and this list might need adjusting. For other
1223 * errors we try again until the max number of retries is reached.
1224 */
1225 if (result != -EHOSTUNREACH &&
1226 result != -ENETUNREACH &&
1227 result != -ENETDOWN &&
1228 result != -EINVAL &&
1229 result != -EPROTONOSUPPORT) {
1230 log_print("connect %d try %d error %d", con->nodeid,
1231 con->retries, result);
1232 mutex_unlock(&con->sock_mutex);
1233 msleep(1000);
1234 lowcomms_connect_sock(con);
1235 return;
1236 }
1237 out:
1238 mutex_unlock(&con->sock_mutex);
1239 return;
1240 }
1241
1242 static struct socket *tcp_create_listen_sock(struct connection *con,
1243 struct sockaddr_storage *saddr)
1244 {
1245 struct socket *sock = NULL;
1246 int result = 0;
1247 int one = 1;
1248 int addr_len;
1249
1250 if (dlm_local_addr[0]->ss_family == AF_INET)
1251 addr_len = sizeof(struct sockaddr_in);
1252 else
1253 addr_len = sizeof(struct sockaddr_in6);
1254
1255 /* Create a socket to communicate with */
1256 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1257 IPPROTO_TCP, &sock);
1258 if (result < 0) {
1259 log_print("Can't create listening comms socket");
1260 goto create_out;
1261 }
1262
1263 /* Turn off Nagle's algorithm */
1264 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1265 sizeof(one));
1266
1267 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1268 (char *)&one, sizeof(one));
1269
1270 if (result < 0) {
1271 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1272 }
1273 con->rx_action = tcp_accept_from_sock;
1274 con->connect_action = tcp_connect_to_sock;
1275
1276 /* Bind to our port */
1277 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1278 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1279 if (result < 0) {
1280 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1281 sock_release(sock);
1282 sock = NULL;
1283 con->sock = NULL;
1284 goto create_out;
1285 }
1286 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1287 (char *)&one, sizeof(one));
1288 if (result < 0) {
1289 log_print("Set keepalive failed: %d", result);
1290 }
1291
1292 result = sock->ops->listen(sock, 5);
1293 if (result < 0) {
1294 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1295 sock_release(sock);
1296 sock = NULL;
1297 goto create_out;
1298 }
1299
1300 create_out:
1301 return sock;
1302 }
1303
1304 /* Get local addresses */
1305 static void init_local(void)
1306 {
1307 struct sockaddr_storage sas, *addr;
1308 int i;
1309
1310 dlm_local_count = 0;
1311 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1312 if (dlm_our_addr(&sas, i))
1313 break;
1314
1315 addr = kmalloc(sizeof(*addr), GFP_NOFS);
1316 if (!addr)
1317 break;
1318 memcpy(addr, &sas, sizeof(*addr));
1319 dlm_local_addr[dlm_local_count++] = addr;
1320 }
1321 }
1322
1323 /* Bind to an IP address. SCTP allows multiple address so it can do
1324 multi-homing */
1325 static int add_sctp_bind_addr(struct connection *sctp_con,
1326 struct sockaddr_storage *addr,
1327 int addr_len, int num)
1328 {
1329 int result = 0;
1330
1331 if (num == 1)
1332 result = kernel_bind(sctp_con->sock,
1333 (struct sockaddr *) addr,
1334 addr_len);
1335 else
1336 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1337 SCTP_SOCKOPT_BINDX_ADD,
1338 (char *)addr, addr_len);
1339
1340 if (result < 0)
1341 log_print("Can't bind to port %d addr number %d",
1342 dlm_config.ci_tcp_port, num);
1343
1344 return result;
1345 }
1346
1347 /* Initialise SCTP socket and bind to all interfaces */
1348 static int sctp_listen_for_all(void)
1349 {
1350 struct socket *sock = NULL;
1351 struct sockaddr_storage localaddr;
1352 struct sctp_event_subscribe subscribe;
1353 int result = -EINVAL, num = 1, i, addr_len;
1354 struct connection *con = nodeid2con(0, GFP_NOFS);
1355 int bufsize = NEEDED_RMEM;
1356 int one = 1;
1357
1358 if (!con)
1359 return -ENOMEM;
1360
1361 log_print("Using SCTP for communications");
1362
1363 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1364 IPPROTO_SCTP, &sock);
1365 if (result < 0) {
1366 log_print("Can't create comms socket, check SCTP is loaded");
1367 goto out;
1368 }
1369
1370 /* Listen for events */
1371 memset(&subscribe, 0, sizeof(subscribe));
1372 subscribe.sctp_data_io_event = 1;
1373 subscribe.sctp_association_event = 1;
1374 subscribe.sctp_send_failure_event = 1;
1375 subscribe.sctp_shutdown_event = 1;
1376 subscribe.sctp_partial_delivery_event = 1;
1377
1378 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1379 (char *)&bufsize, sizeof(bufsize));
1380 if (result)
1381 log_print("Error increasing buffer space on socket %d", result);
1382
1383 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1384 (char *)&subscribe, sizeof(subscribe));
1385 if (result < 0) {
1386 log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1387 result);
1388 goto create_delsock;
1389 }
1390
1391 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1392 sizeof(one));
1393 if (result < 0)
1394 log_print("Could not set SCTP NODELAY error %d\n", result);
1395
1396 /* Init con struct */
1397 sock->sk->sk_user_data = con;
1398 con->sock = sock;
1399 con->sock->sk->sk_data_ready = lowcomms_data_ready;
1400 con->rx_action = receive_from_sock;
1401 con->connect_action = sctp_init_assoc;
1402
1403 /* Bind to all interfaces. */
1404 for (i = 0; i < dlm_local_count; i++) {
1405 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1406 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1407
1408 result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1409 if (result)
1410 goto create_delsock;
1411 ++num;
1412 }
1413
1414 result = sock->ops->listen(sock, 5);
1415 if (result < 0) {
1416 log_print("Can't set socket listening");
1417 goto create_delsock;
1418 }
1419
1420 return 0;
1421
1422 create_delsock:
1423 sock_release(sock);
1424 con->sock = NULL;
1425 out:
1426 return result;
1427 }
1428
1429 static int tcp_listen_for_all(void)
1430 {
1431 struct socket *sock = NULL;
1432 struct connection *con = nodeid2con(0, GFP_NOFS);
1433 int result = -EINVAL;
1434
1435 if (!con)
1436 return -ENOMEM;
1437
1438 /* We don't support multi-homed hosts */
1439 if (dlm_local_addr[1] != NULL) {
1440 log_print("TCP protocol can't handle multi-homed hosts, "
1441 "try SCTP");
1442 return -EINVAL;
1443 }
1444
1445 log_print("Using TCP for communications");
1446
1447 sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1448 if (sock) {
1449 add_sock(sock, con);
1450 result = 0;
1451 }
1452 else {
1453 result = -EADDRINUSE;
1454 }
1455
1456 return result;
1457 }
1458
1459
1460
1461 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1462 gfp_t allocation)
1463 {
1464 struct writequeue_entry *entry;
1465
1466 entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1467 if (!entry)
1468 return NULL;
1469
1470 entry->page = alloc_page(allocation);
1471 if (!entry->page) {
1472 kfree(entry);
1473 return NULL;
1474 }
1475
1476 entry->offset = 0;
1477 entry->len = 0;
1478 entry->end = 0;
1479 entry->users = 0;
1480 entry->con = con;
1481
1482 return entry;
1483 }
1484
1485 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1486 {
1487 struct connection *con;
1488 struct writequeue_entry *e;
1489 int offset = 0;
1490
1491 con = nodeid2con(nodeid, allocation);
1492 if (!con)
1493 return NULL;
1494
1495 spin_lock(&con->writequeue_lock);
1496 e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1497 if ((&e->list == &con->writequeue) ||
1498 (PAGE_CACHE_SIZE - e->end < len)) {
1499 e = NULL;
1500 } else {
1501 offset = e->end;
1502 e->end += len;
1503 e->users++;
1504 }
1505 spin_unlock(&con->writequeue_lock);
1506
1507 if (e) {
1508 got_one:
1509 *ppc = page_address(e->page) + offset;
1510 return e;
1511 }
1512
1513 e = new_writequeue_entry(con, allocation);
1514 if (e) {
1515 spin_lock(&con->writequeue_lock);
1516 offset = e->end;
1517 e->end += len;
1518 e->users++;
1519 list_add_tail(&e->list, &con->writequeue);
1520 spin_unlock(&con->writequeue_lock);
1521 goto got_one;
1522 }
1523 return NULL;
1524 }
1525
1526 void dlm_lowcomms_commit_buffer(void *mh)
1527 {
1528 struct writequeue_entry *e = (struct writequeue_entry *)mh;
1529 struct connection *con = e->con;
1530 int users;
1531
1532 spin_lock(&con->writequeue_lock);
1533 users = --e->users;
1534 if (users)
1535 goto out;
1536 e->len = e->end - e->offset;
1537 spin_unlock(&con->writequeue_lock);
1538
1539 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1540 queue_work(send_workqueue, &con->swork);
1541 }
1542 return;
1543
1544 out:
1545 spin_unlock(&con->writequeue_lock);
1546 return;
1547 }
1548
1549 /* Send a message */
1550 static void send_to_sock(struct connection *con)
1551 {
1552 int ret = 0;
1553 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1554 struct writequeue_entry *e;
1555 int len, offset;
1556 int count = 0;
1557
1558 mutex_lock(&con->sock_mutex);
1559 if (con->sock == NULL)
1560 goto out_connect;
1561
1562 spin_lock(&con->writequeue_lock);
1563 for (;;) {
1564 e = list_entry(con->writequeue.next, struct writequeue_entry,
1565 list);
1566 if ((struct list_head *) e == &con->writequeue)
1567 break;
1568
1569 len = e->len;
1570 offset = e->offset;
1571 BUG_ON(len == 0 && e->users == 0);
1572 spin_unlock(&con->writequeue_lock);
1573
1574 ret = 0;
1575 if (len) {
1576 ret = kernel_sendpage(con->sock, e->page, offset, len,
1577 msg_flags);
1578 if (ret == -EAGAIN || ret == 0) {
1579 if (ret == -EAGAIN &&
1580 test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1581 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1582 /* Notify TCP that we're limited by the
1583 * application window size.
1584 */
1585 set_bit(SOCK_NOSPACE, &con->sock->flags);
1586 con->sock->sk->sk_write_pending++;
1587 }
1588 cond_resched();
1589 goto out;
1590 } else if (ret < 0)
1591 goto send_error;
1592 }
1593
1594 /* Don't starve people filling buffers */
1595 if (++count >= MAX_SEND_MSG_COUNT) {
1596 cond_resched();
1597 count = 0;
1598 }
1599
1600 spin_lock(&con->writequeue_lock);
1601 writequeue_entry_complete(e, ret);
1602 }
1603 spin_unlock(&con->writequeue_lock);
1604 out:
1605 mutex_unlock(&con->sock_mutex);
1606 return;
1607
1608 send_error:
1609 mutex_unlock(&con->sock_mutex);
1610 close_connection(con, false);
1611 lowcomms_connect_sock(con);
1612 return;
1613
1614 out_connect:
1615 mutex_unlock(&con->sock_mutex);
1616 if (!test_bit(CF_INIT_PENDING, &con->flags))
1617 lowcomms_connect_sock(con);
1618 }
1619
1620 static void clean_one_writequeue(struct connection *con)
1621 {
1622 struct writequeue_entry *e, *safe;
1623
1624 spin_lock(&con->writequeue_lock);
1625 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1626 list_del(&e->list);
1627 free_entry(e);
1628 }
1629 spin_unlock(&con->writequeue_lock);
1630 }
1631
1632 /* Called from recovery when it knows that a node has
1633 left the cluster */
1634 int dlm_lowcomms_close(int nodeid)
1635 {
1636 struct connection *con;
1637 struct dlm_node_addr *na;
1638
1639 log_print("closing connection to node %d", nodeid);
1640 con = nodeid2con(nodeid, 0);
1641 if (con) {
1642 clear_bit(CF_CONNECT_PENDING, &con->flags);
1643 clear_bit(CF_WRITE_PENDING, &con->flags);
1644 set_bit(CF_CLOSE, &con->flags);
1645 if (cancel_work_sync(&con->swork))
1646 log_print("canceled swork for node %d", nodeid);
1647 if (cancel_work_sync(&con->rwork))
1648 log_print("canceled rwork for node %d", nodeid);
1649 clean_one_writequeue(con);
1650 close_connection(con, true);
1651 }
1652
1653 spin_lock(&dlm_node_addrs_spin);
1654 na = find_node_addr(nodeid);
1655 if (na) {
1656 list_del(&na->list);
1657 while (na->addr_count--)
1658 kfree(na->addr[na->addr_count]);
1659 kfree(na);
1660 }
1661 spin_unlock(&dlm_node_addrs_spin);
1662
1663 return 0;
1664 }
1665
1666 /* Receive workqueue function */
1667 static void process_recv_sockets(struct work_struct *work)
1668 {
1669 struct connection *con = container_of(work, struct connection, rwork);
1670 int err;
1671
1672 clear_bit(CF_READ_PENDING, &con->flags);
1673 do {
1674 err = con->rx_action(con);
1675 } while (!err);
1676 }
1677
1678 /* Send workqueue function */
1679 static void process_send_sockets(struct work_struct *work)
1680 {
1681 struct connection *con = container_of(work, struct connection, swork);
1682
1683 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1684 con->connect_action(con);
1685 set_bit(CF_WRITE_PENDING, &con->flags);
1686 }
1687 if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1688 send_to_sock(con);
1689 }
1690
1691
1692 /* Discard all entries on the write queues */
1693 static void clean_writequeues(void)
1694 {
1695 foreach_conn(clean_one_writequeue);
1696 }
1697
1698 static void work_stop(void)
1699 {
1700 destroy_workqueue(recv_workqueue);
1701 destroy_workqueue(send_workqueue);
1702 }
1703
1704 static int work_start(void)
1705 {
1706 recv_workqueue = alloc_workqueue("dlm_recv",
1707 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1708 if (!recv_workqueue) {
1709 log_print("can't start dlm_recv");
1710 return -ENOMEM;
1711 }
1712
1713 send_workqueue = alloc_workqueue("dlm_send",
1714 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1715 if (!send_workqueue) {
1716 log_print("can't start dlm_send");
1717 destroy_workqueue(recv_workqueue);
1718 return -ENOMEM;
1719 }
1720
1721 return 0;
1722 }
1723
1724 static void stop_conn(struct connection *con)
1725 {
1726 con->flags |= 0x0F;
1727 if (con->sock && con->sock->sk)
1728 con->sock->sk->sk_user_data = NULL;
1729 }
1730
1731 static void free_conn(struct connection *con)
1732 {
1733 close_connection(con, true);
1734 if (con->othercon)
1735 kmem_cache_free(con_cache, con->othercon);
1736 hlist_del(&con->list);
1737 kmem_cache_free(con_cache, con);
1738 }
1739
1740 void dlm_lowcomms_stop(void)
1741 {
1742 /* Set all the flags to prevent any
1743 socket activity.
1744 */
1745 mutex_lock(&connections_lock);
1746 dlm_allow_conn = 0;
1747 foreach_conn(stop_conn);
1748 mutex_unlock(&connections_lock);
1749
1750 work_stop();
1751
1752 mutex_lock(&connections_lock);
1753 clean_writequeues();
1754
1755 foreach_conn(free_conn);
1756
1757 mutex_unlock(&connections_lock);
1758 kmem_cache_destroy(con_cache);
1759 }
1760
1761 int dlm_lowcomms_start(void)
1762 {
1763 int error = -EINVAL;
1764 struct connection *con;
1765 int i;
1766
1767 for (i = 0; i < CONN_HASH_SIZE; i++)
1768 INIT_HLIST_HEAD(&connection_hash[i]);
1769
1770 init_local();
1771 if (!dlm_local_count) {
1772 error = -ENOTCONN;
1773 log_print("no local IP address has been set");
1774 goto fail;
1775 }
1776
1777 error = -ENOMEM;
1778 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1779 __alignof__(struct connection), 0,
1780 NULL);
1781 if (!con_cache)
1782 goto fail;
1783
1784 error = work_start();
1785 if (error)
1786 goto fail_destroy;
1787
1788 dlm_allow_conn = 1;
1789
1790 /* Start listening */
1791 if (dlm_config.ci_protocol == 0)
1792 error = tcp_listen_for_all();
1793 else
1794 error = sctp_listen_for_all();
1795 if (error)
1796 goto fail_unlisten;
1797
1798 return 0;
1799
1800 fail_unlisten:
1801 dlm_allow_conn = 0;
1802 con = nodeid2con(0,0);
1803 if (con) {
1804 close_connection(con, false);
1805 kmem_cache_free(con_cache, con);
1806 }
1807 fail_destroy:
1808 kmem_cache_destroy(con_cache);
1809 fail:
1810 return error;
1811 }
1812
1813 void dlm_lowcomms_exit(void)
1814 {
1815 struct dlm_node_addr *na, *safe;
1816
1817 spin_lock(&dlm_node_addrs_spin);
1818 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1819 list_del(&na->list);
1820 while (na->addr_count--)
1821 kfree(na->addr[na->addr_count]);
1822 kfree(na);
1823 }
1824 spin_unlock(&dlm_node_addrs_spin);
1825 }
This page took 0.069574 seconds and 5 git commands to generate.