Merge branch 'perf/x86' into perf/core, because it's ready
[deliverable/linux.git] / fs / dlm / lowcomms.c
1 /******************************************************************************
2 *******************************************************************************
3 **
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
6 **
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13
14 /*
15 * lowcomms.c
16 *
17 * This is the "low-level" comms layer.
18 *
19 * It is responsible for sending/receiving messages
20 * from other nodes in the cluster.
21 *
22 * Cluster nodes are referred to by their nodeids. nodeids are
23 * simply 32 bit numbers to the locking module - if they need to
24 * be expanded for the cluster infrastructure then that is its
25 * responsibility. It is this layer's
26 * responsibility to resolve these into IP address or
27 * whatever it needs for inter-node communication.
28 *
29 * The comms level is two kernel threads that deal mainly with
30 * the receiving of messages from other nodes and passing them
31 * up to the mid-level comms layer (which understands the
32 * message format) for execution by the locking core, and
33 * a send thread which does all the setting up of connections
34 * to remote nodes and the sending of data. Threads are not allowed
35 * to send their own data because it may cause them to wait in times
36 * of high load. Also, this way, the sending thread can collect together
37 * messages bound for one node and send them in one block.
38 *
39 * lowcomms will choose to use either TCP or SCTP as its transport layer
40 * depending on the configuration variable 'protocol'. This should be set
41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42 * cluster-wide mechanism as it must be the same on all nodes of the cluster
43 * for the DLM to function.
44 *
45 */
46
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68
69 struct cbuf {
70 unsigned int base;
71 unsigned int len;
72 unsigned int mask;
73 };
74
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 cb->len += n;
78 }
79
80 static int cbuf_data(struct cbuf *cb)
81 {
82 return ((cb->base + cb->len) & cb->mask);
83 }
84
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 cb->base = cb->len = 0;
88 cb->mask = size-1;
89 }
90
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 cb->len -= n;
94 cb->base += n;
95 cb->base &= cb->mask;
96 }
97
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 return cb->len == 0;
101 }
102
103 struct connection {
104 struct socket *sock; /* NULL if not connected */
105 uint32_t nodeid; /* So we know who we are in the list */
106 struct mutex sock_mutex;
107 unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 struct list_head writequeue; /* List of outgoing writequeue_entries */
116 spinlock_t writequeue_lock;
117 int (*rx_action) (struct connection *); /* What to do when active */
118 void (*connect_action) (struct connection *); /* What to do to connect */
119 struct page *rx_page;
120 struct cbuf cb;
121 int retries;
122 #define MAX_CONNECT_RETRIES 3
123 int sctp_assoc;
124 struct hlist_node list;
125 struct connection *othercon;
126 struct work_struct rwork; /* Receive workqueue */
127 struct work_struct swork; /* Send workqueue */
128 bool try_new_addr;
129 };
130 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
131
132 /* An entry waiting to be sent */
133 struct writequeue_entry {
134 struct list_head list;
135 struct page *page;
136 int offset;
137 int len;
138 int end;
139 int users;
140 struct connection *con;
141 };
142
143 struct dlm_node_addr {
144 struct list_head list;
145 int nodeid;
146 int addr_count;
147 int curr_addr_index;
148 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
149 };
150
151 static LIST_HEAD(dlm_node_addrs);
152 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
153
154 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
155 static int dlm_local_count;
156 static int dlm_allow_conn;
157
158 /* Work queues */
159 static struct workqueue_struct *recv_workqueue;
160 static struct workqueue_struct *send_workqueue;
161
162 static struct hlist_head connection_hash[CONN_HASH_SIZE];
163 static DEFINE_MUTEX(connections_lock);
164 static struct kmem_cache *con_cache;
165
166 static void process_recv_sockets(struct work_struct *work);
167 static void process_send_sockets(struct work_struct *work);
168
169
170 /* This is deliberately very simple because most clusters have simple
171 sequential nodeids, so we should be able to go straight to a connection
172 struct in the array */
173 static inline int nodeid_hash(int nodeid)
174 {
175 return nodeid & (CONN_HASH_SIZE-1);
176 }
177
178 static struct connection *__find_con(int nodeid)
179 {
180 int r;
181 struct connection *con;
182
183 r = nodeid_hash(nodeid);
184
185 hlist_for_each_entry(con, &connection_hash[r], list) {
186 if (con->nodeid == nodeid)
187 return con;
188 }
189 return NULL;
190 }
191
192 /*
193 * If 'allocation' is zero then we don't attempt to create a new
194 * connection structure for this node.
195 */
196 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
197 {
198 struct connection *con = NULL;
199 int r;
200
201 con = __find_con(nodeid);
202 if (con || !alloc)
203 return con;
204
205 con = kmem_cache_zalloc(con_cache, alloc);
206 if (!con)
207 return NULL;
208
209 r = nodeid_hash(nodeid);
210 hlist_add_head(&con->list, &connection_hash[r]);
211
212 con->nodeid = nodeid;
213 mutex_init(&con->sock_mutex);
214 INIT_LIST_HEAD(&con->writequeue);
215 spin_lock_init(&con->writequeue_lock);
216 INIT_WORK(&con->swork, process_send_sockets);
217 INIT_WORK(&con->rwork, process_recv_sockets);
218
219 /* Setup action pointers for child sockets */
220 if (con->nodeid) {
221 struct connection *zerocon = __find_con(0);
222
223 con->connect_action = zerocon->connect_action;
224 if (!con->rx_action)
225 con->rx_action = zerocon->rx_action;
226 }
227
228 return con;
229 }
230
231 /* Loop round all connections */
232 static void foreach_conn(void (*conn_func)(struct connection *c))
233 {
234 int i;
235 struct hlist_node *n;
236 struct connection *con;
237
238 for (i = 0; i < CONN_HASH_SIZE; i++) {
239 hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
240 conn_func(con);
241 }
242 }
243
244 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
245 {
246 struct connection *con;
247
248 mutex_lock(&connections_lock);
249 con = __nodeid2con(nodeid, allocation);
250 mutex_unlock(&connections_lock);
251
252 return con;
253 }
254
255 /* This is a bit drastic, but only called when things go wrong */
256 static struct connection *assoc2con(int assoc_id)
257 {
258 int i;
259 struct connection *con;
260
261 mutex_lock(&connections_lock);
262
263 for (i = 0 ; i < CONN_HASH_SIZE; i++) {
264 hlist_for_each_entry(con, &connection_hash[i], list) {
265 if (con->sctp_assoc == assoc_id) {
266 mutex_unlock(&connections_lock);
267 return con;
268 }
269 }
270 }
271 mutex_unlock(&connections_lock);
272 return NULL;
273 }
274
275 static struct dlm_node_addr *find_node_addr(int nodeid)
276 {
277 struct dlm_node_addr *na;
278
279 list_for_each_entry(na, &dlm_node_addrs, list) {
280 if (na->nodeid == nodeid)
281 return na;
282 }
283 return NULL;
284 }
285
286 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
287 {
288 switch (x->ss_family) {
289 case AF_INET: {
290 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
291 struct sockaddr_in *siny = (struct sockaddr_in *)y;
292 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
293 return 0;
294 if (sinx->sin_port != siny->sin_port)
295 return 0;
296 break;
297 }
298 case AF_INET6: {
299 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
300 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
301 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
302 return 0;
303 if (sinx->sin6_port != siny->sin6_port)
304 return 0;
305 break;
306 }
307 default:
308 return 0;
309 }
310 return 1;
311 }
312
313 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
314 struct sockaddr *sa_out, bool try_new_addr)
315 {
316 struct sockaddr_storage sas;
317 struct dlm_node_addr *na;
318
319 if (!dlm_local_count)
320 return -1;
321
322 spin_lock(&dlm_node_addrs_spin);
323 na = find_node_addr(nodeid);
324 if (na && na->addr_count) {
325 if (try_new_addr) {
326 na->curr_addr_index++;
327 if (na->curr_addr_index == na->addr_count)
328 na->curr_addr_index = 0;
329 }
330
331 memcpy(&sas, na->addr[na->curr_addr_index ],
332 sizeof(struct sockaddr_storage));
333 }
334 spin_unlock(&dlm_node_addrs_spin);
335
336 if (!na)
337 return -EEXIST;
338
339 if (!na->addr_count)
340 return -ENOENT;
341
342 if (sas_out)
343 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
344
345 if (!sa_out)
346 return 0;
347
348 if (dlm_local_addr[0]->ss_family == AF_INET) {
349 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
350 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
351 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
352 } else {
353 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
354 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
355 ret6->sin6_addr = in6->sin6_addr;
356 }
357
358 return 0;
359 }
360
361 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
362 {
363 struct dlm_node_addr *na;
364 int rv = -EEXIST;
365 int addr_i;
366
367 spin_lock(&dlm_node_addrs_spin);
368 list_for_each_entry(na, &dlm_node_addrs, list) {
369 if (!na->addr_count)
370 continue;
371
372 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
373 if (addr_compare(na->addr[addr_i], addr)) {
374 *nodeid = na->nodeid;
375 rv = 0;
376 goto unlock;
377 }
378 }
379 }
380 unlock:
381 spin_unlock(&dlm_node_addrs_spin);
382 return rv;
383 }
384
385 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
386 {
387 struct sockaddr_storage *new_addr;
388 struct dlm_node_addr *new_node, *na;
389
390 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
391 if (!new_node)
392 return -ENOMEM;
393
394 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
395 if (!new_addr) {
396 kfree(new_node);
397 return -ENOMEM;
398 }
399
400 memcpy(new_addr, addr, len);
401
402 spin_lock(&dlm_node_addrs_spin);
403 na = find_node_addr(nodeid);
404 if (!na) {
405 new_node->nodeid = nodeid;
406 new_node->addr[0] = new_addr;
407 new_node->addr_count = 1;
408 list_add(&new_node->list, &dlm_node_addrs);
409 spin_unlock(&dlm_node_addrs_spin);
410 return 0;
411 }
412
413 if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
414 spin_unlock(&dlm_node_addrs_spin);
415 kfree(new_addr);
416 kfree(new_node);
417 return -ENOSPC;
418 }
419
420 na->addr[na->addr_count++] = new_addr;
421 spin_unlock(&dlm_node_addrs_spin);
422 kfree(new_node);
423 return 0;
424 }
425
426 /* Data available on socket or listen socket received a connect */
427 static void lowcomms_data_ready(struct sock *sk)
428 {
429 struct connection *con = sock2con(sk);
430 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
431 queue_work(recv_workqueue, &con->rwork);
432 }
433
434 static void lowcomms_write_space(struct sock *sk)
435 {
436 struct connection *con = sock2con(sk);
437
438 if (!con)
439 return;
440
441 clear_bit(SOCK_NOSPACE, &con->sock->flags);
442
443 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
444 con->sock->sk->sk_write_pending--;
445 clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
446 }
447
448 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
449 queue_work(send_workqueue, &con->swork);
450 }
451
452 static inline void lowcomms_connect_sock(struct connection *con)
453 {
454 if (test_bit(CF_CLOSE, &con->flags))
455 return;
456 if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
457 queue_work(send_workqueue, &con->swork);
458 }
459
460 static void lowcomms_state_change(struct sock *sk)
461 {
462 if (sk->sk_state == TCP_ESTABLISHED)
463 lowcomms_write_space(sk);
464 }
465
466 int dlm_lowcomms_connect_node(int nodeid)
467 {
468 struct connection *con;
469
470 /* with sctp there's no connecting without sending */
471 if (dlm_config.ci_protocol != 0)
472 return 0;
473
474 if (nodeid == dlm_our_nodeid())
475 return 0;
476
477 con = nodeid2con(nodeid, GFP_NOFS);
478 if (!con)
479 return -ENOMEM;
480 lowcomms_connect_sock(con);
481 return 0;
482 }
483
484 /* Make a socket active */
485 static void add_sock(struct socket *sock, struct connection *con)
486 {
487 con->sock = sock;
488
489 /* Install a data_ready callback */
490 con->sock->sk->sk_data_ready = lowcomms_data_ready;
491 con->sock->sk->sk_write_space = lowcomms_write_space;
492 con->sock->sk->sk_state_change = lowcomms_state_change;
493 con->sock->sk->sk_user_data = con;
494 con->sock->sk->sk_allocation = GFP_NOFS;
495 }
496
497 /* Add the port number to an IPv6 or 4 sockaddr and return the address
498 length */
499 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
500 int *addr_len)
501 {
502 saddr->ss_family = dlm_local_addr[0]->ss_family;
503 if (saddr->ss_family == AF_INET) {
504 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
505 in4_addr->sin_port = cpu_to_be16(port);
506 *addr_len = sizeof(struct sockaddr_in);
507 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
508 } else {
509 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
510 in6_addr->sin6_port = cpu_to_be16(port);
511 *addr_len = sizeof(struct sockaddr_in6);
512 }
513 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
514 }
515
516 /* Close a remote connection and tidy up */
517 static void close_connection(struct connection *con, bool and_other)
518 {
519 mutex_lock(&con->sock_mutex);
520
521 if (con->sock) {
522 sock_release(con->sock);
523 con->sock = NULL;
524 }
525 if (con->othercon && and_other) {
526 /* Will only re-enter once. */
527 close_connection(con->othercon, false);
528 }
529 if (con->rx_page) {
530 __free_page(con->rx_page);
531 con->rx_page = NULL;
532 }
533
534 con->retries = 0;
535 mutex_unlock(&con->sock_mutex);
536 }
537
538 /* We only send shutdown messages to nodes that are not part of the cluster */
539 static void sctp_send_shutdown(sctp_assoc_t associd)
540 {
541 static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
542 struct msghdr outmessage;
543 struct cmsghdr *cmsg;
544 struct sctp_sndrcvinfo *sinfo;
545 int ret;
546 struct connection *con;
547
548 con = nodeid2con(0,0);
549 BUG_ON(con == NULL);
550
551 outmessage.msg_name = NULL;
552 outmessage.msg_namelen = 0;
553 outmessage.msg_control = outcmsg;
554 outmessage.msg_controllen = sizeof(outcmsg);
555 outmessage.msg_flags = MSG_EOR;
556
557 cmsg = CMSG_FIRSTHDR(&outmessage);
558 cmsg->cmsg_level = IPPROTO_SCTP;
559 cmsg->cmsg_type = SCTP_SNDRCV;
560 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
561 outmessage.msg_controllen = cmsg->cmsg_len;
562 sinfo = CMSG_DATA(cmsg);
563 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
564
565 sinfo->sinfo_flags |= MSG_EOF;
566 sinfo->sinfo_assoc_id = associd;
567
568 ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
569
570 if (ret != 0)
571 log_print("send EOF to node failed: %d", ret);
572 }
573
574 static void sctp_init_failed_foreach(struct connection *con)
575 {
576
577 /*
578 * Don't try to recover base con and handle race where the
579 * other node's assoc init creates a assoc and we get that
580 * notification, then we get a notification that our attempt
581 * failed due. This happens when we are still trying the primary
582 * address, but the other node has already tried secondary addrs
583 * and found one that worked.
584 */
585 if (!con->nodeid || con->sctp_assoc)
586 return;
587
588 log_print("Retrying SCTP association init for node %d\n", con->nodeid);
589
590 con->try_new_addr = true;
591 con->sctp_assoc = 0;
592 if (test_and_clear_bit(CF_INIT_PENDING, &con->flags)) {
593 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
594 queue_work(send_workqueue, &con->swork);
595 }
596 }
597
598 /* INIT failed but we don't know which node...
599 restart INIT on all pending nodes */
600 static void sctp_init_failed(void)
601 {
602 mutex_lock(&connections_lock);
603
604 foreach_conn(sctp_init_failed_foreach);
605
606 mutex_unlock(&connections_lock);
607 }
608
609 static void retry_failed_sctp_send(struct connection *recv_con,
610 struct sctp_send_failed *sn_send_failed,
611 char *buf)
612 {
613 int len = sn_send_failed->ssf_length - sizeof(struct sctp_send_failed);
614 struct dlm_mhandle *mh;
615 struct connection *con;
616 char *retry_buf;
617 int nodeid = sn_send_failed->ssf_info.sinfo_ppid;
618
619 log_print("Retry sending %d bytes to node id %d", len, nodeid);
620
621 if (!nodeid) {
622 log_print("Shouldn't resend data via listening connection.");
623 return;
624 }
625
626 con = nodeid2con(nodeid, 0);
627 if (!con) {
628 log_print("Could not look up con for nodeid %d\n",
629 nodeid);
630 return;
631 }
632
633 mh = dlm_lowcomms_get_buffer(nodeid, len, GFP_NOFS, &retry_buf);
634 if (!mh) {
635 log_print("Could not allocate buf for retry.");
636 return;
637 }
638 memcpy(retry_buf, buf + sizeof(struct sctp_send_failed), len);
639 dlm_lowcomms_commit_buffer(mh);
640
641 /*
642 * If we got a assoc changed event before the send failed event then
643 * we only need to retry the send.
644 */
645 if (con->sctp_assoc) {
646 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
647 queue_work(send_workqueue, &con->swork);
648 } else
649 sctp_init_failed_foreach(con);
650 }
651
652 /* Something happened to an association */
653 static void process_sctp_notification(struct connection *con,
654 struct msghdr *msg, char *buf)
655 {
656 union sctp_notification *sn = (union sctp_notification *)buf;
657 struct linger linger;
658
659 switch (sn->sn_header.sn_type) {
660 case SCTP_SEND_FAILED:
661 retry_failed_sctp_send(con, &sn->sn_send_failed, buf);
662 break;
663 case SCTP_ASSOC_CHANGE:
664 switch (sn->sn_assoc_change.sac_state) {
665 case SCTP_COMM_UP:
666 case SCTP_RESTART:
667 {
668 /* Check that the new node is in the lockspace */
669 struct sctp_prim prim;
670 int nodeid;
671 int prim_len, ret;
672 int addr_len;
673 struct connection *new_con;
674
675 /*
676 * We get this before any data for an association.
677 * We verify that the node is in the cluster and
678 * then peel off a socket for it.
679 */
680 if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
681 log_print("COMM_UP for invalid assoc ID %d",
682 (int)sn->sn_assoc_change.sac_assoc_id);
683 sctp_init_failed();
684 return;
685 }
686 memset(&prim, 0, sizeof(struct sctp_prim));
687 prim_len = sizeof(struct sctp_prim);
688 prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
689
690 ret = kernel_getsockopt(con->sock,
691 IPPROTO_SCTP,
692 SCTP_PRIMARY_ADDR,
693 (char*)&prim,
694 &prim_len);
695 if (ret < 0) {
696 log_print("getsockopt/sctp_primary_addr on "
697 "new assoc %d failed : %d",
698 (int)sn->sn_assoc_change.sac_assoc_id,
699 ret);
700
701 /* Retry INIT later */
702 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
703 if (new_con)
704 clear_bit(CF_CONNECT_PENDING, &con->flags);
705 return;
706 }
707 make_sockaddr(&prim.ssp_addr, 0, &addr_len);
708 if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
709 unsigned char *b=(unsigned char *)&prim.ssp_addr;
710 log_print("reject connect from unknown addr");
711 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
712 b, sizeof(struct sockaddr_storage));
713 sctp_send_shutdown(prim.ssp_assoc_id);
714 return;
715 }
716
717 new_con = nodeid2con(nodeid, GFP_NOFS);
718 if (!new_con)
719 return;
720
721 /* Peel off a new sock */
722 lock_sock(con->sock->sk);
723 ret = sctp_do_peeloff(con->sock->sk,
724 sn->sn_assoc_change.sac_assoc_id,
725 &new_con->sock);
726 release_sock(con->sock->sk);
727 if (ret < 0) {
728 log_print("Can't peel off a socket for "
729 "connection %d to node %d: err=%d",
730 (int)sn->sn_assoc_change.sac_assoc_id,
731 nodeid, ret);
732 return;
733 }
734 add_sock(new_con->sock, new_con);
735
736 linger.l_onoff = 1;
737 linger.l_linger = 0;
738 ret = kernel_setsockopt(new_con->sock, SOL_SOCKET, SO_LINGER,
739 (char *)&linger, sizeof(linger));
740 if (ret < 0)
741 log_print("set socket option SO_LINGER failed");
742
743 log_print("connecting to %d sctp association %d",
744 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
745
746 new_con->sctp_assoc = sn->sn_assoc_change.sac_assoc_id;
747 new_con->try_new_addr = false;
748 /* Send any pending writes */
749 clear_bit(CF_CONNECT_PENDING, &new_con->flags);
750 clear_bit(CF_INIT_PENDING, &new_con->flags);
751 if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
752 queue_work(send_workqueue, &new_con->swork);
753 }
754 if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
755 queue_work(recv_workqueue, &new_con->rwork);
756 }
757 break;
758
759 case SCTP_COMM_LOST:
760 case SCTP_SHUTDOWN_COMP:
761 {
762 con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
763 if (con) {
764 con->sctp_assoc = 0;
765 }
766 }
767 break;
768
769 case SCTP_CANT_STR_ASSOC:
770 {
771 /* Will retry init when we get the send failed notification */
772 log_print("Can't start SCTP association - retrying");
773 }
774 break;
775
776 default:
777 log_print("unexpected SCTP assoc change id=%d state=%d",
778 (int)sn->sn_assoc_change.sac_assoc_id,
779 sn->sn_assoc_change.sac_state);
780 }
781 default:
782 ; /* fall through */
783 }
784 }
785
786 /* Data received from remote end */
787 static int receive_from_sock(struct connection *con)
788 {
789 int ret = 0;
790 struct msghdr msg = {};
791 struct kvec iov[2];
792 unsigned len;
793 int r;
794 int call_again_soon = 0;
795 int nvec;
796 char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
797
798 mutex_lock(&con->sock_mutex);
799
800 if (con->sock == NULL) {
801 ret = -EAGAIN;
802 goto out_close;
803 }
804
805 if (con->rx_page == NULL) {
806 /*
807 * This doesn't need to be atomic, but I think it should
808 * improve performance if it is.
809 */
810 con->rx_page = alloc_page(GFP_ATOMIC);
811 if (con->rx_page == NULL)
812 goto out_resched;
813 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
814 }
815
816 /* Only SCTP needs these really */
817 memset(&incmsg, 0, sizeof(incmsg));
818 msg.msg_control = incmsg;
819 msg.msg_controllen = sizeof(incmsg);
820
821 /*
822 * iov[0] is the bit of the circular buffer between the current end
823 * point (cb.base + cb.len) and the end of the buffer.
824 */
825 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
826 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
827 iov[1].iov_len = 0;
828 nvec = 1;
829
830 /*
831 * iov[1] is the bit of the circular buffer between the start of the
832 * buffer and the start of the currently used section (cb.base)
833 */
834 if (cbuf_data(&con->cb) >= con->cb.base) {
835 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
836 iov[1].iov_len = con->cb.base;
837 iov[1].iov_base = page_address(con->rx_page);
838 nvec = 2;
839 }
840 len = iov[0].iov_len + iov[1].iov_len;
841
842 r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
843 MSG_DONTWAIT | MSG_NOSIGNAL);
844 if (ret <= 0)
845 goto out_close;
846
847 /* Process SCTP notifications */
848 if (msg.msg_flags & MSG_NOTIFICATION) {
849 msg.msg_control = incmsg;
850 msg.msg_controllen = sizeof(incmsg);
851
852 process_sctp_notification(con, &msg,
853 page_address(con->rx_page) + con->cb.base);
854 mutex_unlock(&con->sock_mutex);
855 return 0;
856 }
857 BUG_ON(con->nodeid == 0);
858
859 if (ret == len)
860 call_again_soon = 1;
861 cbuf_add(&con->cb, ret);
862 ret = dlm_process_incoming_buffer(con->nodeid,
863 page_address(con->rx_page),
864 con->cb.base, con->cb.len,
865 PAGE_CACHE_SIZE);
866 if (ret == -EBADMSG) {
867 log_print("lowcomms: addr=%p, base=%u, len=%u, "
868 "iov_len=%u, iov_base[0]=%p, read=%d",
869 page_address(con->rx_page), con->cb.base, con->cb.len,
870 len, iov[0].iov_base, r);
871 }
872 if (ret < 0)
873 goto out_close;
874 cbuf_eat(&con->cb, ret);
875
876 if (cbuf_empty(&con->cb) && !call_again_soon) {
877 __free_page(con->rx_page);
878 con->rx_page = NULL;
879 }
880
881 if (call_again_soon)
882 goto out_resched;
883 mutex_unlock(&con->sock_mutex);
884 return 0;
885
886 out_resched:
887 if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
888 queue_work(recv_workqueue, &con->rwork);
889 mutex_unlock(&con->sock_mutex);
890 return -EAGAIN;
891
892 out_close:
893 mutex_unlock(&con->sock_mutex);
894 if (ret != -EAGAIN) {
895 close_connection(con, false);
896 /* Reconnect when there is something to send */
897 }
898 /* Don't return success if we really got EOF */
899 if (ret == 0)
900 ret = -EAGAIN;
901
902 return ret;
903 }
904
905 /* Listening socket is busy, accept a connection */
906 static int tcp_accept_from_sock(struct connection *con)
907 {
908 int result;
909 struct sockaddr_storage peeraddr;
910 struct socket *newsock;
911 int len;
912 int nodeid;
913 struct connection *newcon;
914 struct connection *addcon;
915
916 mutex_lock(&connections_lock);
917 if (!dlm_allow_conn) {
918 mutex_unlock(&connections_lock);
919 return -1;
920 }
921 mutex_unlock(&connections_lock);
922
923 memset(&peeraddr, 0, sizeof(peeraddr));
924 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
925 IPPROTO_TCP, &newsock);
926 if (result < 0)
927 return -ENOMEM;
928
929 mutex_lock_nested(&con->sock_mutex, 0);
930
931 result = -ENOTCONN;
932 if (con->sock == NULL)
933 goto accept_err;
934
935 newsock->type = con->sock->type;
936 newsock->ops = con->sock->ops;
937
938 result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
939 if (result < 0)
940 goto accept_err;
941
942 /* Get the connected socket's peer */
943 memset(&peeraddr, 0, sizeof(peeraddr));
944 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
945 &len, 2)) {
946 result = -ECONNABORTED;
947 goto accept_err;
948 }
949
950 /* Get the new node's NODEID */
951 make_sockaddr(&peeraddr, 0, &len);
952 if (addr_to_nodeid(&peeraddr, &nodeid)) {
953 unsigned char *b=(unsigned char *)&peeraddr;
954 log_print("connect from non cluster node");
955 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
956 b, sizeof(struct sockaddr_storage));
957 sock_release(newsock);
958 mutex_unlock(&con->sock_mutex);
959 return -1;
960 }
961
962 log_print("got connection from %d", nodeid);
963
964 /* Check to see if we already have a connection to this node. This
965 * could happen if the two nodes initiate a connection at roughly
966 * the same time and the connections cross on the wire.
967 * In this case we store the incoming one in "othercon"
968 */
969 newcon = nodeid2con(nodeid, GFP_NOFS);
970 if (!newcon) {
971 result = -ENOMEM;
972 goto accept_err;
973 }
974 mutex_lock_nested(&newcon->sock_mutex, 1);
975 if (newcon->sock) {
976 struct connection *othercon = newcon->othercon;
977
978 if (!othercon) {
979 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
980 if (!othercon) {
981 log_print("failed to allocate incoming socket");
982 mutex_unlock(&newcon->sock_mutex);
983 result = -ENOMEM;
984 goto accept_err;
985 }
986 othercon->nodeid = nodeid;
987 othercon->rx_action = receive_from_sock;
988 mutex_init(&othercon->sock_mutex);
989 INIT_WORK(&othercon->swork, process_send_sockets);
990 INIT_WORK(&othercon->rwork, process_recv_sockets);
991 set_bit(CF_IS_OTHERCON, &othercon->flags);
992 }
993 if (!othercon->sock) {
994 newcon->othercon = othercon;
995 othercon->sock = newsock;
996 newsock->sk->sk_user_data = othercon;
997 add_sock(newsock, othercon);
998 addcon = othercon;
999 }
1000 else {
1001 printk("Extra connection from node %d attempted\n", nodeid);
1002 result = -EAGAIN;
1003 mutex_unlock(&newcon->sock_mutex);
1004 goto accept_err;
1005 }
1006 }
1007 else {
1008 newsock->sk->sk_user_data = newcon;
1009 newcon->rx_action = receive_from_sock;
1010 add_sock(newsock, newcon);
1011 addcon = newcon;
1012 }
1013
1014 mutex_unlock(&newcon->sock_mutex);
1015
1016 /*
1017 * Add it to the active queue in case we got data
1018 * between processing the accept adding the socket
1019 * to the read_sockets list
1020 */
1021 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
1022 queue_work(recv_workqueue, &addcon->rwork);
1023 mutex_unlock(&con->sock_mutex);
1024
1025 return 0;
1026
1027 accept_err:
1028 mutex_unlock(&con->sock_mutex);
1029 sock_release(newsock);
1030
1031 if (result != -EAGAIN)
1032 log_print("error accepting connection from node: %d", result);
1033 return result;
1034 }
1035
1036 static void free_entry(struct writequeue_entry *e)
1037 {
1038 __free_page(e->page);
1039 kfree(e);
1040 }
1041
1042 /*
1043 * writequeue_entry_complete - try to delete and free write queue entry
1044 * @e: write queue entry to try to delete
1045 * @completed: bytes completed
1046 *
1047 * writequeue_lock must be held.
1048 */
1049 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1050 {
1051 e->offset += completed;
1052 e->len -= completed;
1053
1054 if (e->len == 0 && e->users == 0) {
1055 list_del(&e->list);
1056 free_entry(e);
1057 }
1058 }
1059
1060 /* Initiate an SCTP association.
1061 This is a special case of send_to_sock() in that we don't yet have a
1062 peeled-off socket for this association, so we use the listening socket
1063 and add the primary IP address of the remote node.
1064 */
1065 static void sctp_init_assoc(struct connection *con)
1066 {
1067 struct sockaddr_storage rem_addr;
1068 char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
1069 struct msghdr outmessage;
1070 struct cmsghdr *cmsg;
1071 struct sctp_sndrcvinfo *sinfo;
1072 struct connection *base_con;
1073 struct writequeue_entry *e;
1074 int len, offset;
1075 int ret;
1076 int addrlen;
1077 struct kvec iov[1];
1078
1079 mutex_lock(&con->sock_mutex);
1080 if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
1081 goto unlock;
1082
1083 if (nodeid_to_addr(con->nodeid, NULL, (struct sockaddr *)&rem_addr,
1084 con->try_new_addr)) {
1085 log_print("no address for nodeid %d", con->nodeid);
1086 goto unlock;
1087 }
1088 base_con = nodeid2con(0, 0);
1089 BUG_ON(base_con == NULL);
1090
1091 make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
1092
1093 outmessage.msg_name = &rem_addr;
1094 outmessage.msg_namelen = addrlen;
1095 outmessage.msg_control = outcmsg;
1096 outmessage.msg_controllen = sizeof(outcmsg);
1097 outmessage.msg_flags = MSG_EOR;
1098
1099 spin_lock(&con->writequeue_lock);
1100
1101 if (list_empty(&con->writequeue)) {
1102 spin_unlock(&con->writequeue_lock);
1103 log_print("writequeue empty for nodeid %d", con->nodeid);
1104 goto unlock;
1105 }
1106
1107 e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1108 len = e->len;
1109 offset = e->offset;
1110
1111 /* Send the first block off the write queue */
1112 iov[0].iov_base = page_address(e->page)+offset;
1113 iov[0].iov_len = len;
1114 spin_unlock(&con->writequeue_lock);
1115
1116 if (rem_addr.ss_family == AF_INET) {
1117 struct sockaddr_in *sin = (struct sockaddr_in *)&rem_addr;
1118 log_print("Trying to connect to %pI4", &sin->sin_addr.s_addr);
1119 } else {
1120 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&rem_addr;
1121 log_print("Trying to connect to %pI6", &sin6->sin6_addr);
1122 }
1123
1124 cmsg = CMSG_FIRSTHDR(&outmessage);
1125 cmsg->cmsg_level = IPPROTO_SCTP;
1126 cmsg->cmsg_type = SCTP_SNDRCV;
1127 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
1128 sinfo = CMSG_DATA(cmsg);
1129 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
1130 sinfo->sinfo_ppid = cpu_to_le32(con->nodeid);
1131 outmessage.msg_controllen = cmsg->cmsg_len;
1132 sinfo->sinfo_flags |= SCTP_ADDR_OVER;
1133
1134 ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
1135 if (ret < 0) {
1136 log_print("Send first packet to node %d failed: %d",
1137 con->nodeid, ret);
1138
1139 /* Try again later */
1140 clear_bit(CF_CONNECT_PENDING, &con->flags);
1141 clear_bit(CF_INIT_PENDING, &con->flags);
1142 }
1143 else {
1144 spin_lock(&con->writequeue_lock);
1145 writequeue_entry_complete(e, ret);
1146 spin_unlock(&con->writequeue_lock);
1147 }
1148
1149 unlock:
1150 mutex_unlock(&con->sock_mutex);
1151 }
1152
1153 /* Connect a new socket to its peer */
1154 static void tcp_connect_to_sock(struct connection *con)
1155 {
1156 struct sockaddr_storage saddr, src_addr;
1157 int addr_len;
1158 struct socket *sock = NULL;
1159 int one = 1;
1160 int result;
1161
1162 if (con->nodeid == 0) {
1163 log_print("attempt to connect sock 0 foiled");
1164 return;
1165 }
1166
1167 mutex_lock(&con->sock_mutex);
1168 if (con->retries++ > MAX_CONNECT_RETRIES)
1169 goto out;
1170
1171 /* Some odd races can cause double-connects, ignore them */
1172 if (con->sock)
1173 goto out;
1174
1175 /* Create a socket to communicate with */
1176 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1177 IPPROTO_TCP, &sock);
1178 if (result < 0)
1179 goto out_err;
1180
1181 memset(&saddr, 0, sizeof(saddr));
1182 result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1183 if (result < 0) {
1184 log_print("no address for nodeid %d", con->nodeid);
1185 goto out_err;
1186 }
1187
1188 sock->sk->sk_user_data = con;
1189 con->rx_action = receive_from_sock;
1190 con->connect_action = tcp_connect_to_sock;
1191 add_sock(sock, con);
1192
1193 /* Bind to our cluster-known address connecting to avoid
1194 routing problems */
1195 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1196 make_sockaddr(&src_addr, 0, &addr_len);
1197 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1198 addr_len);
1199 if (result < 0) {
1200 log_print("could not bind for connect: %d", result);
1201 /* This *may* not indicate a critical error */
1202 }
1203
1204 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1205
1206 log_print("connecting to %d", con->nodeid);
1207
1208 /* Turn off Nagle's algorithm */
1209 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1210 sizeof(one));
1211
1212 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1213 O_NONBLOCK);
1214 if (result == -EINPROGRESS)
1215 result = 0;
1216 if (result == 0)
1217 goto out;
1218
1219 out_err:
1220 if (con->sock) {
1221 sock_release(con->sock);
1222 con->sock = NULL;
1223 } else if (sock) {
1224 sock_release(sock);
1225 }
1226 /*
1227 * Some errors are fatal and this list might need adjusting. For other
1228 * errors we try again until the max number of retries is reached.
1229 */
1230 if (result != -EHOSTUNREACH &&
1231 result != -ENETUNREACH &&
1232 result != -ENETDOWN &&
1233 result != -EINVAL &&
1234 result != -EPROTONOSUPPORT) {
1235 log_print("connect %d try %d error %d", con->nodeid,
1236 con->retries, result);
1237 mutex_unlock(&con->sock_mutex);
1238 msleep(1000);
1239 lowcomms_connect_sock(con);
1240 return;
1241 }
1242 out:
1243 mutex_unlock(&con->sock_mutex);
1244 return;
1245 }
1246
1247 static struct socket *tcp_create_listen_sock(struct connection *con,
1248 struct sockaddr_storage *saddr)
1249 {
1250 struct socket *sock = NULL;
1251 int result = 0;
1252 int one = 1;
1253 int addr_len;
1254
1255 if (dlm_local_addr[0]->ss_family == AF_INET)
1256 addr_len = sizeof(struct sockaddr_in);
1257 else
1258 addr_len = sizeof(struct sockaddr_in6);
1259
1260 /* Create a socket to communicate with */
1261 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1262 IPPROTO_TCP, &sock);
1263 if (result < 0) {
1264 log_print("Can't create listening comms socket");
1265 goto create_out;
1266 }
1267
1268 /* Turn off Nagle's algorithm */
1269 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1270 sizeof(one));
1271
1272 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1273 (char *)&one, sizeof(one));
1274
1275 if (result < 0) {
1276 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1277 }
1278 con->rx_action = tcp_accept_from_sock;
1279 con->connect_action = tcp_connect_to_sock;
1280
1281 /* Bind to our port */
1282 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1283 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1284 if (result < 0) {
1285 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1286 sock_release(sock);
1287 sock = NULL;
1288 con->sock = NULL;
1289 goto create_out;
1290 }
1291 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1292 (char *)&one, sizeof(one));
1293 if (result < 0) {
1294 log_print("Set keepalive failed: %d", result);
1295 }
1296
1297 result = sock->ops->listen(sock, 5);
1298 if (result < 0) {
1299 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1300 sock_release(sock);
1301 sock = NULL;
1302 goto create_out;
1303 }
1304
1305 create_out:
1306 return sock;
1307 }
1308
1309 /* Get local addresses */
1310 static void init_local(void)
1311 {
1312 struct sockaddr_storage sas, *addr;
1313 int i;
1314
1315 dlm_local_count = 0;
1316 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1317 if (dlm_our_addr(&sas, i))
1318 break;
1319
1320 addr = kmalloc(sizeof(*addr), GFP_NOFS);
1321 if (!addr)
1322 break;
1323 memcpy(addr, &sas, sizeof(*addr));
1324 dlm_local_addr[dlm_local_count++] = addr;
1325 }
1326 }
1327
1328 /* Bind to an IP address. SCTP allows multiple address so it can do
1329 multi-homing */
1330 static int add_sctp_bind_addr(struct connection *sctp_con,
1331 struct sockaddr_storage *addr,
1332 int addr_len, int num)
1333 {
1334 int result = 0;
1335
1336 if (num == 1)
1337 result = kernel_bind(sctp_con->sock,
1338 (struct sockaddr *) addr,
1339 addr_len);
1340 else
1341 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1342 SCTP_SOCKOPT_BINDX_ADD,
1343 (char *)addr, addr_len);
1344
1345 if (result < 0)
1346 log_print("Can't bind to port %d addr number %d",
1347 dlm_config.ci_tcp_port, num);
1348
1349 return result;
1350 }
1351
1352 /* Initialise SCTP socket and bind to all interfaces */
1353 static int sctp_listen_for_all(void)
1354 {
1355 struct socket *sock = NULL;
1356 struct sockaddr_storage localaddr;
1357 struct sctp_event_subscribe subscribe;
1358 int result = -EINVAL, num = 1, i, addr_len;
1359 struct connection *con = nodeid2con(0, GFP_NOFS);
1360 int bufsize = NEEDED_RMEM;
1361 int one = 1;
1362
1363 if (!con)
1364 return -ENOMEM;
1365
1366 log_print("Using SCTP for communications");
1367
1368 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1369 IPPROTO_SCTP, &sock);
1370 if (result < 0) {
1371 log_print("Can't create comms socket, check SCTP is loaded");
1372 goto out;
1373 }
1374
1375 /* Listen for events */
1376 memset(&subscribe, 0, sizeof(subscribe));
1377 subscribe.sctp_data_io_event = 1;
1378 subscribe.sctp_association_event = 1;
1379 subscribe.sctp_send_failure_event = 1;
1380 subscribe.sctp_shutdown_event = 1;
1381 subscribe.sctp_partial_delivery_event = 1;
1382
1383 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1384 (char *)&bufsize, sizeof(bufsize));
1385 if (result)
1386 log_print("Error increasing buffer space on socket %d", result);
1387
1388 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1389 (char *)&subscribe, sizeof(subscribe));
1390 if (result < 0) {
1391 log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1392 result);
1393 goto create_delsock;
1394 }
1395
1396 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1397 sizeof(one));
1398 if (result < 0)
1399 log_print("Could not set SCTP NODELAY error %d\n", result);
1400
1401 /* Init con struct */
1402 sock->sk->sk_user_data = con;
1403 con->sock = sock;
1404 con->sock->sk->sk_data_ready = lowcomms_data_ready;
1405 con->rx_action = receive_from_sock;
1406 con->connect_action = sctp_init_assoc;
1407
1408 /* Bind to all interfaces. */
1409 for (i = 0; i < dlm_local_count; i++) {
1410 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1411 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1412
1413 result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1414 if (result)
1415 goto create_delsock;
1416 ++num;
1417 }
1418
1419 result = sock->ops->listen(sock, 5);
1420 if (result < 0) {
1421 log_print("Can't set socket listening");
1422 goto create_delsock;
1423 }
1424
1425 return 0;
1426
1427 create_delsock:
1428 sock_release(sock);
1429 con->sock = NULL;
1430 out:
1431 return result;
1432 }
1433
1434 static int tcp_listen_for_all(void)
1435 {
1436 struct socket *sock = NULL;
1437 struct connection *con = nodeid2con(0, GFP_NOFS);
1438 int result = -EINVAL;
1439
1440 if (!con)
1441 return -ENOMEM;
1442
1443 /* We don't support multi-homed hosts */
1444 if (dlm_local_addr[1] != NULL) {
1445 log_print("TCP protocol can't handle multi-homed hosts, "
1446 "try SCTP");
1447 return -EINVAL;
1448 }
1449
1450 log_print("Using TCP for communications");
1451
1452 sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1453 if (sock) {
1454 add_sock(sock, con);
1455 result = 0;
1456 }
1457 else {
1458 result = -EADDRINUSE;
1459 }
1460
1461 return result;
1462 }
1463
1464
1465
1466 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1467 gfp_t allocation)
1468 {
1469 struct writequeue_entry *entry;
1470
1471 entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1472 if (!entry)
1473 return NULL;
1474
1475 entry->page = alloc_page(allocation);
1476 if (!entry->page) {
1477 kfree(entry);
1478 return NULL;
1479 }
1480
1481 entry->offset = 0;
1482 entry->len = 0;
1483 entry->end = 0;
1484 entry->users = 0;
1485 entry->con = con;
1486
1487 return entry;
1488 }
1489
1490 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1491 {
1492 struct connection *con;
1493 struct writequeue_entry *e;
1494 int offset = 0;
1495
1496 con = nodeid2con(nodeid, allocation);
1497 if (!con)
1498 return NULL;
1499
1500 spin_lock(&con->writequeue_lock);
1501 e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1502 if ((&e->list == &con->writequeue) ||
1503 (PAGE_CACHE_SIZE - e->end < len)) {
1504 e = NULL;
1505 } else {
1506 offset = e->end;
1507 e->end += len;
1508 e->users++;
1509 }
1510 spin_unlock(&con->writequeue_lock);
1511
1512 if (e) {
1513 got_one:
1514 *ppc = page_address(e->page) + offset;
1515 return e;
1516 }
1517
1518 e = new_writequeue_entry(con, allocation);
1519 if (e) {
1520 spin_lock(&con->writequeue_lock);
1521 offset = e->end;
1522 e->end += len;
1523 e->users++;
1524 list_add_tail(&e->list, &con->writequeue);
1525 spin_unlock(&con->writequeue_lock);
1526 goto got_one;
1527 }
1528 return NULL;
1529 }
1530
1531 void dlm_lowcomms_commit_buffer(void *mh)
1532 {
1533 struct writequeue_entry *e = (struct writequeue_entry *)mh;
1534 struct connection *con = e->con;
1535 int users;
1536
1537 spin_lock(&con->writequeue_lock);
1538 users = --e->users;
1539 if (users)
1540 goto out;
1541 e->len = e->end - e->offset;
1542 spin_unlock(&con->writequeue_lock);
1543
1544 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1545 queue_work(send_workqueue, &con->swork);
1546 }
1547 return;
1548
1549 out:
1550 spin_unlock(&con->writequeue_lock);
1551 return;
1552 }
1553
1554 /* Send a message */
1555 static void send_to_sock(struct connection *con)
1556 {
1557 int ret = 0;
1558 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1559 struct writequeue_entry *e;
1560 int len, offset;
1561 int count = 0;
1562
1563 mutex_lock(&con->sock_mutex);
1564 if (con->sock == NULL)
1565 goto out_connect;
1566
1567 spin_lock(&con->writequeue_lock);
1568 for (;;) {
1569 e = list_entry(con->writequeue.next, struct writequeue_entry,
1570 list);
1571 if ((struct list_head *) e == &con->writequeue)
1572 break;
1573
1574 len = e->len;
1575 offset = e->offset;
1576 BUG_ON(len == 0 && e->users == 0);
1577 spin_unlock(&con->writequeue_lock);
1578
1579 ret = 0;
1580 if (len) {
1581 ret = kernel_sendpage(con->sock, e->page, offset, len,
1582 msg_flags);
1583 if (ret == -EAGAIN || ret == 0) {
1584 if (ret == -EAGAIN &&
1585 test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1586 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1587 /* Notify TCP that we're limited by the
1588 * application window size.
1589 */
1590 set_bit(SOCK_NOSPACE, &con->sock->flags);
1591 con->sock->sk->sk_write_pending++;
1592 }
1593 cond_resched();
1594 goto out;
1595 } else if (ret < 0)
1596 goto send_error;
1597 }
1598
1599 /* Don't starve people filling buffers */
1600 if (++count >= MAX_SEND_MSG_COUNT) {
1601 cond_resched();
1602 count = 0;
1603 }
1604
1605 spin_lock(&con->writequeue_lock);
1606 writequeue_entry_complete(e, ret);
1607 }
1608 spin_unlock(&con->writequeue_lock);
1609 out:
1610 mutex_unlock(&con->sock_mutex);
1611 return;
1612
1613 send_error:
1614 mutex_unlock(&con->sock_mutex);
1615 close_connection(con, false);
1616 lowcomms_connect_sock(con);
1617 return;
1618
1619 out_connect:
1620 mutex_unlock(&con->sock_mutex);
1621 if (!test_bit(CF_INIT_PENDING, &con->flags))
1622 lowcomms_connect_sock(con);
1623 }
1624
1625 static void clean_one_writequeue(struct connection *con)
1626 {
1627 struct writequeue_entry *e, *safe;
1628
1629 spin_lock(&con->writequeue_lock);
1630 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1631 list_del(&e->list);
1632 free_entry(e);
1633 }
1634 spin_unlock(&con->writequeue_lock);
1635 }
1636
1637 /* Called from recovery when it knows that a node has
1638 left the cluster */
1639 int dlm_lowcomms_close(int nodeid)
1640 {
1641 struct connection *con;
1642 struct dlm_node_addr *na;
1643
1644 log_print("closing connection to node %d", nodeid);
1645 con = nodeid2con(nodeid, 0);
1646 if (con) {
1647 clear_bit(CF_CONNECT_PENDING, &con->flags);
1648 clear_bit(CF_WRITE_PENDING, &con->flags);
1649 set_bit(CF_CLOSE, &con->flags);
1650 if (cancel_work_sync(&con->swork))
1651 log_print("canceled swork for node %d", nodeid);
1652 if (cancel_work_sync(&con->rwork))
1653 log_print("canceled rwork for node %d", nodeid);
1654 clean_one_writequeue(con);
1655 close_connection(con, true);
1656 }
1657
1658 spin_lock(&dlm_node_addrs_spin);
1659 na = find_node_addr(nodeid);
1660 if (na) {
1661 list_del(&na->list);
1662 while (na->addr_count--)
1663 kfree(na->addr[na->addr_count]);
1664 kfree(na);
1665 }
1666 spin_unlock(&dlm_node_addrs_spin);
1667
1668 return 0;
1669 }
1670
1671 /* Receive workqueue function */
1672 static void process_recv_sockets(struct work_struct *work)
1673 {
1674 struct connection *con = container_of(work, struct connection, rwork);
1675 int err;
1676
1677 clear_bit(CF_READ_PENDING, &con->flags);
1678 do {
1679 err = con->rx_action(con);
1680 } while (!err);
1681 }
1682
1683 /* Send workqueue function */
1684 static void process_send_sockets(struct work_struct *work)
1685 {
1686 struct connection *con = container_of(work, struct connection, swork);
1687
1688 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1689 con->connect_action(con);
1690 set_bit(CF_WRITE_PENDING, &con->flags);
1691 }
1692 if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1693 send_to_sock(con);
1694 }
1695
1696
1697 /* Discard all entries on the write queues */
1698 static void clean_writequeues(void)
1699 {
1700 foreach_conn(clean_one_writequeue);
1701 }
1702
1703 static void work_stop(void)
1704 {
1705 destroy_workqueue(recv_workqueue);
1706 destroy_workqueue(send_workqueue);
1707 }
1708
1709 static int work_start(void)
1710 {
1711 recv_workqueue = alloc_workqueue("dlm_recv",
1712 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1713 if (!recv_workqueue) {
1714 log_print("can't start dlm_recv");
1715 return -ENOMEM;
1716 }
1717
1718 send_workqueue = alloc_workqueue("dlm_send",
1719 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1720 if (!send_workqueue) {
1721 log_print("can't start dlm_send");
1722 destroy_workqueue(recv_workqueue);
1723 return -ENOMEM;
1724 }
1725
1726 return 0;
1727 }
1728
1729 static void stop_conn(struct connection *con)
1730 {
1731 con->flags |= 0x0F;
1732 if (con->sock && con->sock->sk)
1733 con->sock->sk->sk_user_data = NULL;
1734 }
1735
1736 static void free_conn(struct connection *con)
1737 {
1738 close_connection(con, true);
1739 if (con->othercon)
1740 kmem_cache_free(con_cache, con->othercon);
1741 hlist_del(&con->list);
1742 kmem_cache_free(con_cache, con);
1743 }
1744
1745 void dlm_lowcomms_stop(void)
1746 {
1747 /* Set all the flags to prevent any
1748 socket activity.
1749 */
1750 mutex_lock(&connections_lock);
1751 dlm_allow_conn = 0;
1752 foreach_conn(stop_conn);
1753 mutex_unlock(&connections_lock);
1754
1755 work_stop();
1756
1757 mutex_lock(&connections_lock);
1758 clean_writequeues();
1759
1760 foreach_conn(free_conn);
1761
1762 mutex_unlock(&connections_lock);
1763 kmem_cache_destroy(con_cache);
1764 }
1765
1766 int dlm_lowcomms_start(void)
1767 {
1768 int error = -EINVAL;
1769 struct connection *con;
1770 int i;
1771
1772 for (i = 0; i < CONN_HASH_SIZE; i++)
1773 INIT_HLIST_HEAD(&connection_hash[i]);
1774
1775 init_local();
1776 if (!dlm_local_count) {
1777 error = -ENOTCONN;
1778 log_print("no local IP address has been set");
1779 goto fail;
1780 }
1781
1782 error = -ENOMEM;
1783 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1784 __alignof__(struct connection), 0,
1785 NULL);
1786 if (!con_cache)
1787 goto fail;
1788
1789 error = work_start();
1790 if (error)
1791 goto fail_destroy;
1792
1793 dlm_allow_conn = 1;
1794
1795 /* Start listening */
1796 if (dlm_config.ci_protocol == 0)
1797 error = tcp_listen_for_all();
1798 else
1799 error = sctp_listen_for_all();
1800 if (error)
1801 goto fail_unlisten;
1802
1803 return 0;
1804
1805 fail_unlisten:
1806 dlm_allow_conn = 0;
1807 con = nodeid2con(0,0);
1808 if (con) {
1809 close_connection(con, false);
1810 kmem_cache_free(con_cache, con);
1811 }
1812 fail_destroy:
1813 kmem_cache_destroy(con_cache);
1814 fail:
1815 return error;
1816 }
1817
1818 void dlm_lowcomms_exit(void)
1819 {
1820 struct dlm_node_addr *na, *safe;
1821
1822 spin_lock(&dlm_node_addrs_spin);
1823 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1824 list_del(&na->list);
1825 while (na->addr_count--)
1826 kfree(na->addr[na->addr_count]);
1827 kfree(na);
1828 }
1829 spin_unlock(&dlm_node_addrs_spin);
1830 }
This page took 0.067375 seconds and 5 git commands to generate.