7554e4dac6bbbc0290ac26a1a75438a1551d5060
[deliverable/linux.git] / fs / dlm / recover.c
1 /******************************************************************************
2 *******************************************************************************
3 **
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
6 **
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13
14 #include "dlm_internal.h"
15 #include "lockspace.h"
16 #include "dir.h"
17 #include "config.h"
18 #include "ast.h"
19 #include "memory.h"
20 #include "rcom.h"
21 #include "lock.h"
22 #include "lowcomms.h"
23 #include "member.h"
24 #include "recover.h"
25
26
27 /*
28 * Recovery waiting routines: these functions wait for a particular reply from
29 * a remote node, or for the remote node to report a certain status. They need
30 * to abort if the lockspace is stopped indicating a node has failed (perhaps
31 * the one being waited for).
32 */
33
34 /*
35 * Wait until given function returns non-zero or lockspace is stopped
36 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes). When another
37 * function thinks it could have completed the waited-on task, they should wake
38 * up ls_wait_general to get an immediate response rather than waiting for the
39 * timer to detect the result. A timer wakes us up periodically while waiting
40 * to see if we should abort due to a node failure. This should only be called
41 * by the dlm_recoverd thread.
42 */
43
44 static void dlm_wait_timer_fn(unsigned long data)
45 {
46 struct dlm_ls *ls = (struct dlm_ls *) data;
47 mod_timer(&ls->ls_timer, jiffies + (dlm_config.ci_recover_timer * HZ));
48 wake_up(&ls->ls_wait_general);
49 }
50
51 int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls))
52 {
53 int error = 0;
54
55 init_timer(&ls->ls_timer);
56 ls->ls_timer.function = dlm_wait_timer_fn;
57 ls->ls_timer.data = (long) ls;
58 ls->ls_timer.expires = jiffies + (dlm_config.ci_recover_timer * HZ);
59 add_timer(&ls->ls_timer);
60
61 wait_event(ls->ls_wait_general, testfn(ls) || dlm_recovery_stopped(ls));
62 del_timer_sync(&ls->ls_timer);
63
64 if (dlm_recovery_stopped(ls)) {
65 log_debug(ls, "dlm_wait_function aborted");
66 error = -EINTR;
67 }
68 return error;
69 }
70
71 /*
72 * An efficient way for all nodes to wait for all others to have a certain
73 * status. The node with the lowest nodeid polls all the others for their
74 * status (wait_status_all) and all the others poll the node with the low id
75 * for its accumulated result (wait_status_low). When all nodes have set
76 * status flag X, then status flag X_ALL will be set on the low nodeid.
77 */
78
79 uint32_t dlm_recover_status(struct dlm_ls *ls)
80 {
81 uint32_t status;
82 spin_lock(&ls->ls_recover_lock);
83 status = ls->ls_recover_status;
84 spin_unlock(&ls->ls_recover_lock);
85 return status;
86 }
87
88 static void _set_recover_status(struct dlm_ls *ls, uint32_t status)
89 {
90 ls->ls_recover_status |= status;
91 }
92
93 void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status)
94 {
95 spin_lock(&ls->ls_recover_lock);
96 _set_recover_status(ls, status);
97 spin_unlock(&ls->ls_recover_lock);
98 }
99
100 static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status,
101 int save_slots)
102 {
103 struct dlm_rcom *rc = ls->ls_recover_buf;
104 struct dlm_member *memb;
105 int error = 0, delay;
106
107 list_for_each_entry(memb, &ls->ls_nodes, list) {
108 delay = 0;
109 for (;;) {
110 if (dlm_recovery_stopped(ls)) {
111 error = -EINTR;
112 goto out;
113 }
114
115 error = dlm_rcom_status(ls, memb->nodeid, 0);
116 if (error)
117 goto out;
118
119 if (save_slots)
120 dlm_slot_save(ls, rc, memb);
121
122 if (rc->rc_result & wait_status)
123 break;
124 if (delay < 1000)
125 delay += 20;
126 msleep(delay);
127 }
128 }
129 out:
130 return error;
131 }
132
133 static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status,
134 uint32_t status_flags)
135 {
136 struct dlm_rcom *rc = ls->ls_recover_buf;
137 int error = 0, delay = 0, nodeid = ls->ls_low_nodeid;
138
139 for (;;) {
140 if (dlm_recovery_stopped(ls)) {
141 error = -EINTR;
142 goto out;
143 }
144
145 error = dlm_rcom_status(ls, nodeid, status_flags);
146 if (error)
147 break;
148
149 if (rc->rc_result & wait_status)
150 break;
151 if (delay < 1000)
152 delay += 20;
153 msleep(delay);
154 }
155 out:
156 return error;
157 }
158
159 static int wait_status(struct dlm_ls *ls, uint32_t status)
160 {
161 uint32_t status_all = status << 1;
162 int error;
163
164 if (ls->ls_low_nodeid == dlm_our_nodeid()) {
165 error = wait_status_all(ls, status, 0);
166 if (!error)
167 dlm_set_recover_status(ls, status_all);
168 } else
169 error = wait_status_low(ls, status_all, 0);
170
171 return error;
172 }
173
174 int dlm_recover_members_wait(struct dlm_ls *ls)
175 {
176 struct dlm_member *memb;
177 struct dlm_slot *slots;
178 int num_slots, slots_size;
179 int error, rv;
180 uint32_t gen;
181
182 list_for_each_entry(memb, &ls->ls_nodes, list) {
183 memb->slot = -1;
184 memb->generation = 0;
185 }
186
187 if (ls->ls_low_nodeid == dlm_our_nodeid()) {
188 error = wait_status_all(ls, DLM_RS_NODES, 1);
189 if (error)
190 goto out;
191
192 /* slots array is sparse, slots_size may be > num_slots */
193
194 rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen);
195 if (!rv) {
196 spin_lock(&ls->ls_recover_lock);
197 _set_recover_status(ls, DLM_RS_NODES_ALL);
198 ls->ls_num_slots = num_slots;
199 ls->ls_slots_size = slots_size;
200 ls->ls_slots = slots;
201 ls->ls_generation = gen;
202 spin_unlock(&ls->ls_recover_lock);
203 } else {
204 dlm_set_recover_status(ls, DLM_RS_NODES_ALL);
205 }
206 } else {
207 error = wait_status_low(ls, DLM_RS_NODES_ALL, DLM_RSF_NEED_SLOTS);
208 if (error)
209 goto out;
210
211 dlm_slots_copy_in(ls);
212 }
213 out:
214 return error;
215 }
216
217 int dlm_recover_directory_wait(struct dlm_ls *ls)
218 {
219 return wait_status(ls, DLM_RS_DIR);
220 }
221
222 int dlm_recover_locks_wait(struct dlm_ls *ls)
223 {
224 return wait_status(ls, DLM_RS_LOCKS);
225 }
226
227 int dlm_recover_done_wait(struct dlm_ls *ls)
228 {
229 return wait_status(ls, DLM_RS_DONE);
230 }
231
232 /*
233 * The recover_list contains all the rsb's for which we've requested the new
234 * master nodeid. As replies are returned from the resource directories the
235 * rsb's are removed from the list. When the list is empty we're done.
236 *
237 * The recover_list is later similarly used for all rsb's for which we've sent
238 * new lkb's and need to receive new corresponding lkid's.
239 *
240 * We use the address of the rsb struct as a simple local identifier for the
241 * rsb so we can match an rcom reply with the rsb it was sent for.
242 */
243
244 static int recover_list_empty(struct dlm_ls *ls)
245 {
246 int empty;
247
248 spin_lock(&ls->ls_recover_list_lock);
249 empty = list_empty(&ls->ls_recover_list);
250 spin_unlock(&ls->ls_recover_list_lock);
251
252 return empty;
253 }
254
255 static void recover_list_add(struct dlm_rsb *r)
256 {
257 struct dlm_ls *ls = r->res_ls;
258
259 spin_lock(&ls->ls_recover_list_lock);
260 if (list_empty(&r->res_recover_list)) {
261 list_add_tail(&r->res_recover_list, &ls->ls_recover_list);
262 ls->ls_recover_list_count++;
263 dlm_hold_rsb(r);
264 }
265 spin_unlock(&ls->ls_recover_list_lock);
266 }
267
268 static void recover_list_del(struct dlm_rsb *r)
269 {
270 struct dlm_ls *ls = r->res_ls;
271
272 spin_lock(&ls->ls_recover_list_lock);
273 list_del_init(&r->res_recover_list);
274 ls->ls_recover_list_count--;
275 spin_unlock(&ls->ls_recover_list_lock);
276
277 dlm_put_rsb(r);
278 }
279
280 static struct dlm_rsb *recover_list_find(struct dlm_ls *ls, uint64_t id)
281 {
282 struct dlm_rsb *r = NULL;
283
284 spin_lock(&ls->ls_recover_list_lock);
285
286 list_for_each_entry(r, &ls->ls_recover_list, res_recover_list) {
287 if (id == (unsigned long) r)
288 goto out;
289 }
290 r = NULL;
291 out:
292 spin_unlock(&ls->ls_recover_list_lock);
293 return r;
294 }
295
296 static void recover_list_clear(struct dlm_ls *ls)
297 {
298 struct dlm_rsb *r, *s;
299
300 spin_lock(&ls->ls_recover_list_lock);
301 list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) {
302 list_del_init(&r->res_recover_list);
303 r->res_recover_locks_count = 0;
304 dlm_put_rsb(r);
305 ls->ls_recover_list_count--;
306 }
307
308 if (ls->ls_recover_list_count != 0) {
309 log_error(ls, "warning: recover_list_count %d",
310 ls->ls_recover_list_count);
311 ls->ls_recover_list_count = 0;
312 }
313 spin_unlock(&ls->ls_recover_list_lock);
314 }
315
316
317 /* Master recovery: find new master node for rsb's that were
318 mastered on nodes that have been removed.
319
320 dlm_recover_masters
321 recover_master
322 dlm_send_rcom_lookup -> receive_rcom_lookup
323 dlm_dir_lookup
324 receive_rcom_lookup_reply <-
325 dlm_recover_master_reply
326 set_new_master
327 set_master_lkbs
328 set_lock_master
329 */
330
331 /*
332 * Set the lock master for all LKBs in a lock queue
333 * If we are the new master of the rsb, we may have received new
334 * MSTCPY locks from other nodes already which we need to ignore
335 * when setting the new nodeid.
336 */
337
338 static void set_lock_master(struct list_head *queue, int nodeid)
339 {
340 struct dlm_lkb *lkb;
341
342 list_for_each_entry(lkb, queue, lkb_statequeue) {
343 if (!(lkb->lkb_flags & DLM_IFL_MSTCPY)) {
344 lkb->lkb_nodeid = nodeid;
345 lkb->lkb_remid = 0;
346 }
347 }
348 }
349
350 static void set_master_lkbs(struct dlm_rsb *r)
351 {
352 set_lock_master(&r->res_grantqueue, r->res_nodeid);
353 set_lock_master(&r->res_convertqueue, r->res_nodeid);
354 set_lock_master(&r->res_waitqueue, r->res_nodeid);
355 }
356
357 /*
358 * Propagate the new master nodeid to locks
359 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider.
360 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which
361 * rsb's to consider.
362 */
363
364 static void set_new_master(struct dlm_rsb *r, int nodeid)
365 {
366 r->res_nodeid = nodeid;
367 set_master_lkbs(r);
368 rsb_set_flag(r, RSB_NEW_MASTER);
369 rsb_set_flag(r, RSB_NEW_MASTER2);
370 }
371
372 /*
373 * We do async lookups on rsb's that need new masters. The rsb's
374 * waiting for a lookup reply are kept on the recover_list.
375 */
376
377 static int recover_master(struct dlm_rsb *r)
378 {
379 struct dlm_ls *ls = r->res_ls;
380 int error, ret_nodeid;
381 int our_nodeid = dlm_our_nodeid();
382 int dir_nodeid = dlm_dir_nodeid(r);
383
384 if (dir_nodeid == our_nodeid) {
385 error = dlm_dir_lookup(ls, our_nodeid, r->res_name,
386 r->res_length, &ret_nodeid);
387 if (error)
388 log_error(ls, "recover dir lookup error %d", error);
389
390 if (ret_nodeid == our_nodeid)
391 ret_nodeid = 0;
392 lock_rsb(r);
393 set_new_master(r, ret_nodeid);
394 unlock_rsb(r);
395 } else {
396 recover_list_add(r);
397 error = dlm_send_rcom_lookup(r, dir_nodeid);
398 }
399
400 return error;
401 }
402
403 /*
404 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same.
405 * This is necessary because recovery can be started, aborted and restarted,
406 * causing the master nodeid to briefly change during the aborted recovery, and
407 * change back to the original value in the second recovery. The MSTCPY locks
408 * may or may not have been purged during the aborted recovery. Another node
409 * with an outstanding request in waiters list and a request reply saved in the
410 * requestqueue, cannot know whether it should ignore the reply and resend the
411 * request, or accept the reply and complete the request. It must do the
412 * former if the remote node purged MSTCPY locks, and it must do the later if
413 * the remote node did not. This is solved by always purging MSTCPY locks, in
414 * which case, the request reply would always be ignored and the request
415 * resent.
416 */
417
418 static int recover_master_static(struct dlm_rsb *r)
419 {
420 int dir_nodeid = dlm_dir_nodeid(r);
421 int new_master = dir_nodeid;
422
423 if (dir_nodeid == dlm_our_nodeid())
424 new_master = 0;
425
426 lock_rsb(r);
427 dlm_purge_mstcpy_locks(r);
428 set_new_master(r, new_master);
429 unlock_rsb(r);
430 return 1;
431 }
432
433 /*
434 * Go through local root resources and for each rsb which has a master which
435 * has departed, get the new master nodeid from the directory. The dir will
436 * assign mastery to the first node to look up the new master. That means
437 * we'll discover in this lookup if we're the new master of any rsb's.
438 *
439 * We fire off all the dir lookup requests individually and asynchronously to
440 * the correct dir node.
441 */
442
443 int dlm_recover_masters(struct dlm_ls *ls)
444 {
445 struct dlm_rsb *r;
446 int error = 0, count = 0;
447
448 log_debug(ls, "dlm_recover_masters");
449
450 down_read(&ls->ls_root_sem);
451 list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
452 if (dlm_recovery_stopped(ls)) {
453 up_read(&ls->ls_root_sem);
454 error = -EINTR;
455 goto out;
456 }
457
458 if (dlm_no_directory(ls))
459 count += recover_master_static(r);
460 else if (!is_master(r) &&
461 (dlm_is_removed(ls, r->res_nodeid) ||
462 rsb_flag(r, RSB_NEW_MASTER))) {
463 recover_master(r);
464 count++;
465 }
466
467 schedule();
468 }
469 up_read(&ls->ls_root_sem);
470
471 log_debug(ls, "dlm_recover_masters %d resources", count);
472
473 error = dlm_wait_function(ls, &recover_list_empty);
474 out:
475 if (error)
476 recover_list_clear(ls);
477 return error;
478 }
479
480 int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc)
481 {
482 struct dlm_rsb *r;
483 int nodeid;
484
485 r = recover_list_find(ls, rc->rc_id);
486 if (!r) {
487 log_error(ls, "dlm_recover_master_reply no id %llx",
488 (unsigned long long)rc->rc_id);
489 goto out;
490 }
491
492 nodeid = rc->rc_result;
493 if (nodeid == dlm_our_nodeid())
494 nodeid = 0;
495
496 lock_rsb(r);
497 set_new_master(r, nodeid);
498 unlock_rsb(r);
499 recover_list_del(r);
500
501 if (recover_list_empty(ls))
502 wake_up(&ls->ls_wait_general);
503 out:
504 return 0;
505 }
506
507
508 /* Lock recovery: rebuild the process-copy locks we hold on a
509 remastered rsb on the new rsb master.
510
511 dlm_recover_locks
512 recover_locks
513 recover_locks_queue
514 dlm_send_rcom_lock -> receive_rcom_lock
515 dlm_recover_master_copy
516 receive_rcom_lock_reply <-
517 dlm_recover_process_copy
518 */
519
520
521 /*
522 * keep a count of the number of lkb's we send to the new master; when we get
523 * an equal number of replies then recovery for the rsb is done
524 */
525
526 static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head)
527 {
528 struct dlm_lkb *lkb;
529 int error = 0;
530
531 list_for_each_entry(lkb, head, lkb_statequeue) {
532 error = dlm_send_rcom_lock(r, lkb);
533 if (error)
534 break;
535 r->res_recover_locks_count++;
536 }
537
538 return error;
539 }
540
541 static int recover_locks(struct dlm_rsb *r)
542 {
543 int error = 0;
544
545 lock_rsb(r);
546
547 DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r););
548
549 error = recover_locks_queue(r, &r->res_grantqueue);
550 if (error)
551 goto out;
552 error = recover_locks_queue(r, &r->res_convertqueue);
553 if (error)
554 goto out;
555 error = recover_locks_queue(r, &r->res_waitqueue);
556 if (error)
557 goto out;
558
559 if (r->res_recover_locks_count)
560 recover_list_add(r);
561 else
562 rsb_clear_flag(r, RSB_NEW_MASTER);
563 out:
564 unlock_rsb(r);
565 return error;
566 }
567
568 int dlm_recover_locks(struct dlm_ls *ls)
569 {
570 struct dlm_rsb *r;
571 int error, count = 0;
572
573 down_read(&ls->ls_root_sem);
574 list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
575 if (is_master(r)) {
576 rsb_clear_flag(r, RSB_NEW_MASTER);
577 continue;
578 }
579
580 if (!rsb_flag(r, RSB_NEW_MASTER))
581 continue;
582
583 if (dlm_recovery_stopped(ls)) {
584 error = -EINTR;
585 up_read(&ls->ls_root_sem);
586 goto out;
587 }
588
589 error = recover_locks(r);
590 if (error) {
591 up_read(&ls->ls_root_sem);
592 goto out;
593 }
594
595 count += r->res_recover_locks_count;
596 }
597 up_read(&ls->ls_root_sem);
598
599 log_debug(ls, "dlm_recover_locks %d out", count);
600
601 error = dlm_wait_function(ls, &recover_list_empty);
602 out:
603 if (error)
604 recover_list_clear(ls);
605 return error;
606 }
607
608 void dlm_recovered_lock(struct dlm_rsb *r)
609 {
610 DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r););
611
612 r->res_recover_locks_count--;
613 if (!r->res_recover_locks_count) {
614 rsb_clear_flag(r, RSB_NEW_MASTER);
615 recover_list_del(r);
616 }
617
618 if (recover_list_empty(r->res_ls))
619 wake_up(&r->res_ls->ls_wait_general);
620 }
621
622 /*
623 * The lvb needs to be recovered on all master rsb's. This includes setting
624 * the VALNOTVALID flag if necessary, and determining the correct lvb contents
625 * based on the lvb's of the locks held on the rsb.
626 *
627 * RSB_VALNOTVALID is set if there are only NL/CR locks on the rsb. If it
628 * was already set prior to recovery, it's not cleared, regardless of locks.
629 *
630 * The LVB contents are only considered for changing when this is a new master
631 * of the rsb (NEW_MASTER2). Then, the rsb's lvb is taken from any lkb with
632 * mode > CR. If no lkb's exist with mode above CR, the lvb contents are taken
633 * from the lkb with the largest lvb sequence number.
634 */
635
636 static void recover_lvb(struct dlm_rsb *r)
637 {
638 struct dlm_lkb *lkb, *high_lkb = NULL;
639 uint32_t high_seq = 0;
640 int lock_lvb_exists = 0;
641 int big_lock_exists = 0;
642 int lvblen = r->res_ls->ls_lvblen;
643
644 list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
645 if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
646 continue;
647
648 lock_lvb_exists = 1;
649
650 if (lkb->lkb_grmode > DLM_LOCK_CR) {
651 big_lock_exists = 1;
652 goto setflag;
653 }
654
655 if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
656 high_lkb = lkb;
657 high_seq = lkb->lkb_lvbseq;
658 }
659 }
660
661 list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
662 if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
663 continue;
664
665 lock_lvb_exists = 1;
666
667 if (lkb->lkb_grmode > DLM_LOCK_CR) {
668 big_lock_exists = 1;
669 goto setflag;
670 }
671
672 if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
673 high_lkb = lkb;
674 high_seq = lkb->lkb_lvbseq;
675 }
676 }
677
678 setflag:
679 if (!lock_lvb_exists)
680 goto out;
681
682 if (!big_lock_exists)
683 rsb_set_flag(r, RSB_VALNOTVALID);
684
685 /* don't mess with the lvb unless we're the new master */
686 if (!rsb_flag(r, RSB_NEW_MASTER2))
687 goto out;
688
689 if (!r->res_lvbptr) {
690 r->res_lvbptr = dlm_allocate_lvb(r->res_ls);
691 if (!r->res_lvbptr)
692 goto out;
693 }
694
695 if (big_lock_exists) {
696 r->res_lvbseq = lkb->lkb_lvbseq;
697 memcpy(r->res_lvbptr, lkb->lkb_lvbptr, lvblen);
698 } else if (high_lkb) {
699 r->res_lvbseq = high_lkb->lkb_lvbseq;
700 memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen);
701 } else {
702 r->res_lvbseq = 0;
703 memset(r->res_lvbptr, 0, lvblen);
704 }
705 out:
706 return;
707 }
708
709 /* All master rsb's flagged RECOVER_CONVERT need to be looked at. The locks
710 converting PR->CW or CW->PR need to have their lkb_grmode set. */
711
712 static void recover_conversion(struct dlm_rsb *r)
713 {
714 struct dlm_lkb *lkb;
715 int grmode = -1;
716
717 list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
718 if (lkb->lkb_grmode == DLM_LOCK_PR ||
719 lkb->lkb_grmode == DLM_LOCK_CW) {
720 grmode = lkb->lkb_grmode;
721 break;
722 }
723 }
724
725 list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
726 if (lkb->lkb_grmode != DLM_LOCK_IV)
727 continue;
728 if (grmode == -1)
729 lkb->lkb_grmode = lkb->lkb_rqmode;
730 else
731 lkb->lkb_grmode = grmode;
732 }
733 }
734
735 /* We've become the new master for this rsb and waiting/converting locks may
736 need to be granted in dlm_recover_grant() due to locks that may have
737 existed from a removed node. */
738
739 static void recover_grant(struct dlm_rsb *r)
740 {
741 if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue))
742 rsb_set_flag(r, RSB_RECOVER_GRANT);
743 }
744
745 void dlm_recover_rsbs(struct dlm_ls *ls)
746 {
747 struct dlm_rsb *r;
748 unsigned int count = 0;
749
750 down_read(&ls->ls_root_sem);
751 list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
752 lock_rsb(r);
753 if (is_master(r)) {
754 if (rsb_flag(r, RSB_RECOVER_CONVERT))
755 recover_conversion(r);
756 if (rsb_flag(r, RSB_NEW_MASTER2))
757 recover_grant(r);
758 recover_lvb(r);
759 count++;
760 }
761 rsb_clear_flag(r, RSB_RECOVER_CONVERT);
762 rsb_clear_flag(r, RSB_NEW_MASTER2);
763 unlock_rsb(r);
764 }
765 up_read(&ls->ls_root_sem);
766
767 if (count)
768 log_debug(ls, "dlm_recover_rsbs %d done", count);
769 }
770
771 /* Create a single list of all root rsb's to be used during recovery */
772
773 int dlm_create_root_list(struct dlm_ls *ls)
774 {
775 struct rb_node *n;
776 struct dlm_rsb *r;
777 int i, error = 0;
778
779 down_write(&ls->ls_root_sem);
780 if (!list_empty(&ls->ls_root_list)) {
781 log_error(ls, "root list not empty");
782 error = -EINVAL;
783 goto out;
784 }
785
786 for (i = 0; i < ls->ls_rsbtbl_size; i++) {
787 spin_lock(&ls->ls_rsbtbl[i].lock);
788 for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) {
789 r = rb_entry(n, struct dlm_rsb, res_hashnode);
790 list_add(&r->res_root_list, &ls->ls_root_list);
791 dlm_hold_rsb(r);
792 }
793
794 /* If we're using a directory, add tossed rsbs to the root
795 list; they'll have entries created in the new directory,
796 but no other recovery steps should do anything with them. */
797
798 if (dlm_no_directory(ls)) {
799 spin_unlock(&ls->ls_rsbtbl[i].lock);
800 continue;
801 }
802
803 for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = rb_next(n)) {
804 r = rb_entry(n, struct dlm_rsb, res_hashnode);
805 list_add(&r->res_root_list, &ls->ls_root_list);
806 dlm_hold_rsb(r);
807 }
808 spin_unlock(&ls->ls_rsbtbl[i].lock);
809 }
810 out:
811 up_write(&ls->ls_root_sem);
812 return error;
813 }
814
815 void dlm_release_root_list(struct dlm_ls *ls)
816 {
817 struct dlm_rsb *r, *safe;
818
819 down_write(&ls->ls_root_sem);
820 list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) {
821 list_del_init(&r->res_root_list);
822 dlm_put_rsb(r);
823 }
824 up_write(&ls->ls_root_sem);
825 }
826
827 /* If not using a directory, clear the entire toss list, there's no benefit to
828 caching the master value since it's fixed. If we are using a dir, keep the
829 rsb's we're the master of. Recovery will add them to the root list and from
830 there they'll be entered in the rebuilt directory. */
831
832 void dlm_clear_toss_list(struct dlm_ls *ls)
833 {
834 struct rb_node *n, *next;
835 struct dlm_rsb *rsb;
836 int i;
837
838 for (i = 0; i < ls->ls_rsbtbl_size; i++) {
839 spin_lock(&ls->ls_rsbtbl[i].lock);
840 for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) {
841 next = rb_next(n);;
842 rsb = rb_entry(n, struct dlm_rsb, res_hashnode);
843 if (dlm_no_directory(ls) || !is_master(rsb)) {
844 rb_erase(n, &ls->ls_rsbtbl[i].toss);
845 dlm_free_rsb(rsb);
846 }
847 }
848 spin_unlock(&ls->ls_rsbtbl[i].lock);
849 }
850 }
851
This page took 0.14478 seconds and 4 git commands to generate.