Merge tag 'armsoc-late' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / fs / ecryptfs / crypto.c
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39
40 #define DECRYPT 0
41 #define ENCRYPT 1
42
43 /**
44 * ecryptfs_to_hex
45 * @dst: Buffer to take hex character representation of contents of
46 * src; must be at least of size (src_size * 2)
47 * @src: Buffer to be converted to a hex string respresentation
48 * @src_size: number of bytes to convert
49 */
50 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
51 {
52 int x;
53
54 for (x = 0; x < src_size; x++)
55 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
56 }
57
58 /**
59 * ecryptfs_from_hex
60 * @dst: Buffer to take the bytes from src hex; must be at least of
61 * size (src_size / 2)
62 * @src: Buffer to be converted from a hex string respresentation to raw value
63 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
64 */
65 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
66 {
67 int x;
68 char tmp[3] = { 0, };
69
70 for (x = 0; x < dst_size; x++) {
71 tmp[0] = src[x * 2];
72 tmp[1] = src[x * 2 + 1];
73 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
74 }
75 }
76
77 /**
78 * ecryptfs_calculate_md5 - calculates the md5 of @src
79 * @dst: Pointer to 16 bytes of allocated memory
80 * @crypt_stat: Pointer to crypt_stat struct for the current inode
81 * @src: Data to be md5'd
82 * @len: Length of @src
83 *
84 * Uses the allocated crypto context that crypt_stat references to
85 * generate the MD5 sum of the contents of src.
86 */
87 static int ecryptfs_calculate_md5(char *dst,
88 struct ecryptfs_crypt_stat *crypt_stat,
89 char *src, int len)
90 {
91 struct scatterlist sg;
92 struct hash_desc desc = {
93 .tfm = crypt_stat->hash_tfm,
94 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
95 };
96 int rc = 0;
97
98 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
99 sg_init_one(&sg, (u8 *)src, len);
100 if (!desc.tfm) {
101 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
102 CRYPTO_ALG_ASYNC);
103 if (IS_ERR(desc.tfm)) {
104 rc = PTR_ERR(desc.tfm);
105 ecryptfs_printk(KERN_ERR, "Error attempting to "
106 "allocate crypto context; rc = [%d]\n",
107 rc);
108 goto out;
109 }
110 crypt_stat->hash_tfm = desc.tfm;
111 }
112 rc = crypto_hash_init(&desc);
113 if (rc) {
114 printk(KERN_ERR
115 "%s: Error initializing crypto hash; rc = [%d]\n",
116 __func__, rc);
117 goto out;
118 }
119 rc = crypto_hash_update(&desc, &sg, len);
120 if (rc) {
121 printk(KERN_ERR
122 "%s: Error updating crypto hash; rc = [%d]\n",
123 __func__, rc);
124 goto out;
125 }
126 rc = crypto_hash_final(&desc, dst);
127 if (rc) {
128 printk(KERN_ERR
129 "%s: Error finalizing crypto hash; rc = [%d]\n",
130 __func__, rc);
131 goto out;
132 }
133 out:
134 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
135 return rc;
136 }
137
138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
139 char *cipher_name,
140 char *chaining_modifier)
141 {
142 int cipher_name_len = strlen(cipher_name);
143 int chaining_modifier_len = strlen(chaining_modifier);
144 int algified_name_len;
145 int rc;
146
147 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
148 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
149 if (!(*algified_name)) {
150 rc = -ENOMEM;
151 goto out;
152 }
153 snprintf((*algified_name), algified_name_len, "%s(%s)",
154 chaining_modifier, cipher_name);
155 rc = 0;
156 out:
157 return rc;
158 }
159
160 /**
161 * ecryptfs_derive_iv
162 * @iv: destination for the derived iv vale
163 * @crypt_stat: Pointer to crypt_stat struct for the current inode
164 * @offset: Offset of the extent whose IV we are to derive
165 *
166 * Generate the initialization vector from the given root IV and page
167 * offset.
168 *
169 * Returns zero on success; non-zero on error.
170 */
171 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
172 loff_t offset)
173 {
174 int rc = 0;
175 char dst[MD5_DIGEST_SIZE];
176 char src[ECRYPTFS_MAX_IV_BYTES + 16];
177
178 if (unlikely(ecryptfs_verbosity > 0)) {
179 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
180 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
181 }
182 /* TODO: It is probably secure to just cast the least
183 * significant bits of the root IV into an unsigned long and
184 * add the offset to that rather than go through all this
185 * hashing business. -Halcrow */
186 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
187 memset((src + crypt_stat->iv_bytes), 0, 16);
188 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
189 if (unlikely(ecryptfs_verbosity > 0)) {
190 ecryptfs_printk(KERN_DEBUG, "source:\n");
191 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
192 }
193 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
194 (crypt_stat->iv_bytes + 16));
195 if (rc) {
196 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
197 "MD5 while generating IV for a page\n");
198 goto out;
199 }
200 memcpy(iv, dst, crypt_stat->iv_bytes);
201 if (unlikely(ecryptfs_verbosity > 0)) {
202 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
203 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
204 }
205 out:
206 return rc;
207 }
208
209 /**
210 * ecryptfs_init_crypt_stat
211 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
212 *
213 * Initialize the crypt_stat structure.
214 */
215 void
216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
217 {
218 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
219 INIT_LIST_HEAD(&crypt_stat->keysig_list);
220 mutex_init(&crypt_stat->keysig_list_mutex);
221 mutex_init(&crypt_stat->cs_mutex);
222 mutex_init(&crypt_stat->cs_tfm_mutex);
223 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
224 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
225 }
226
227 /**
228 * ecryptfs_destroy_crypt_stat
229 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
230 *
231 * Releases all memory associated with a crypt_stat struct.
232 */
233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
234 {
235 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
236
237 if (crypt_stat->tfm)
238 crypto_free_ablkcipher(crypt_stat->tfm);
239 if (crypt_stat->hash_tfm)
240 crypto_free_hash(crypt_stat->hash_tfm);
241 list_for_each_entry_safe(key_sig, key_sig_tmp,
242 &crypt_stat->keysig_list, crypt_stat_list) {
243 list_del(&key_sig->crypt_stat_list);
244 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
245 }
246 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
247 }
248
249 void ecryptfs_destroy_mount_crypt_stat(
250 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
251 {
252 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
253
254 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
255 return;
256 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
257 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
258 &mount_crypt_stat->global_auth_tok_list,
259 mount_crypt_stat_list) {
260 list_del(&auth_tok->mount_crypt_stat_list);
261 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
262 key_put(auth_tok->global_auth_tok_key);
263 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
264 }
265 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
266 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
267 }
268
269 /**
270 * virt_to_scatterlist
271 * @addr: Virtual address
272 * @size: Size of data; should be an even multiple of the block size
273 * @sg: Pointer to scatterlist array; set to NULL to obtain only
274 * the number of scatterlist structs required in array
275 * @sg_size: Max array size
276 *
277 * Fills in a scatterlist array with page references for a passed
278 * virtual address.
279 *
280 * Returns the number of scatterlist structs in array used
281 */
282 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
283 int sg_size)
284 {
285 int i = 0;
286 struct page *pg;
287 int offset;
288 int remainder_of_page;
289
290 sg_init_table(sg, sg_size);
291
292 while (size > 0 && i < sg_size) {
293 pg = virt_to_page(addr);
294 offset = offset_in_page(addr);
295 sg_set_page(&sg[i], pg, 0, offset);
296 remainder_of_page = PAGE_CACHE_SIZE - offset;
297 if (size >= remainder_of_page) {
298 sg[i].length = remainder_of_page;
299 addr += remainder_of_page;
300 size -= remainder_of_page;
301 } else {
302 sg[i].length = size;
303 addr += size;
304 size = 0;
305 }
306 i++;
307 }
308 if (size > 0)
309 return -ENOMEM;
310 return i;
311 }
312
313 struct extent_crypt_result {
314 struct completion completion;
315 int rc;
316 };
317
318 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
319 {
320 struct extent_crypt_result *ecr = req->data;
321
322 if (rc == -EINPROGRESS)
323 return;
324
325 ecr->rc = rc;
326 complete(&ecr->completion);
327 }
328
329 /**
330 * crypt_scatterlist
331 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
332 * @dst_sg: Destination of the data after performing the crypto operation
333 * @src_sg: Data to be encrypted or decrypted
334 * @size: Length of data
335 * @iv: IV to use
336 * @op: ENCRYPT or DECRYPT to indicate the desired operation
337 *
338 * Returns the number of bytes encrypted or decrypted; negative value on error
339 */
340 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
341 struct scatterlist *dst_sg,
342 struct scatterlist *src_sg, int size,
343 unsigned char *iv, int op)
344 {
345 struct ablkcipher_request *req = NULL;
346 struct extent_crypt_result ecr;
347 int rc = 0;
348
349 BUG_ON(!crypt_stat || !crypt_stat->tfm
350 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 if (unlikely(ecryptfs_verbosity > 0)) {
352 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
353 crypt_stat->key_size);
354 ecryptfs_dump_hex(crypt_stat->key,
355 crypt_stat->key_size);
356 }
357
358 init_completion(&ecr.completion);
359
360 mutex_lock(&crypt_stat->cs_tfm_mutex);
361 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
362 if (!req) {
363 mutex_unlock(&crypt_stat->cs_tfm_mutex);
364 rc = -ENOMEM;
365 goto out;
366 }
367
368 ablkcipher_request_set_callback(req,
369 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
370 extent_crypt_complete, &ecr);
371 /* Consider doing this once, when the file is opened */
372 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
373 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
374 crypt_stat->key_size);
375 if (rc) {
376 ecryptfs_printk(KERN_ERR,
377 "Error setting key; rc = [%d]\n",
378 rc);
379 mutex_unlock(&crypt_stat->cs_tfm_mutex);
380 rc = -EINVAL;
381 goto out;
382 }
383 crypt_stat->flags |= ECRYPTFS_KEY_SET;
384 }
385 mutex_unlock(&crypt_stat->cs_tfm_mutex);
386 ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
387 rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
388 crypto_ablkcipher_decrypt(req);
389 if (rc == -EINPROGRESS || rc == -EBUSY) {
390 struct extent_crypt_result *ecr = req->base.data;
391
392 wait_for_completion(&ecr->completion);
393 rc = ecr->rc;
394 reinit_completion(&ecr->completion);
395 }
396 out:
397 ablkcipher_request_free(req);
398 return rc;
399 }
400
401 /**
402 * lower_offset_for_page
403 *
404 * Convert an eCryptfs page index into a lower byte offset
405 */
406 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
407 struct page *page)
408 {
409 return ecryptfs_lower_header_size(crypt_stat) +
410 ((loff_t)page->index << PAGE_CACHE_SHIFT);
411 }
412
413 /**
414 * crypt_extent
415 * @crypt_stat: crypt_stat containing cryptographic context for the
416 * encryption operation
417 * @dst_page: The page to write the result into
418 * @src_page: The page to read from
419 * @extent_offset: Page extent offset for use in generating IV
420 * @op: ENCRYPT or DECRYPT to indicate the desired operation
421 *
422 * Encrypts or decrypts one extent of data.
423 *
424 * Return zero on success; non-zero otherwise
425 */
426 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
427 struct page *dst_page,
428 struct page *src_page,
429 unsigned long extent_offset, int op)
430 {
431 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
432 loff_t extent_base;
433 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
434 struct scatterlist src_sg, dst_sg;
435 size_t extent_size = crypt_stat->extent_size;
436 int rc;
437
438 extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
439 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
440 (extent_base + extent_offset));
441 if (rc) {
442 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
443 "extent [0x%.16llx]; rc = [%d]\n",
444 (unsigned long long)(extent_base + extent_offset), rc);
445 goto out;
446 }
447
448 sg_init_table(&src_sg, 1);
449 sg_init_table(&dst_sg, 1);
450
451 sg_set_page(&src_sg, src_page, extent_size,
452 extent_offset * extent_size);
453 sg_set_page(&dst_sg, dst_page, extent_size,
454 extent_offset * extent_size);
455
456 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
457 extent_iv, op);
458 if (rc < 0) {
459 printk(KERN_ERR "%s: Error attempting to crypt page with "
460 "page_index = [%ld], extent_offset = [%ld]; "
461 "rc = [%d]\n", __func__, page_index, extent_offset, rc);
462 goto out;
463 }
464 rc = 0;
465 out:
466 return rc;
467 }
468
469 /**
470 * ecryptfs_encrypt_page
471 * @page: Page mapped from the eCryptfs inode for the file; contains
472 * decrypted content that needs to be encrypted (to a temporary
473 * page; not in place) and written out to the lower file
474 *
475 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
476 * that eCryptfs pages may straddle the lower pages -- for instance,
477 * if the file was created on a machine with an 8K page size
478 * (resulting in an 8K header), and then the file is copied onto a
479 * host with a 32K page size, then when reading page 0 of the eCryptfs
480 * file, 24K of page 0 of the lower file will be read and decrypted,
481 * and then 8K of page 1 of the lower file will be read and decrypted.
482 *
483 * Returns zero on success; negative on error
484 */
485 int ecryptfs_encrypt_page(struct page *page)
486 {
487 struct inode *ecryptfs_inode;
488 struct ecryptfs_crypt_stat *crypt_stat;
489 char *enc_extent_virt;
490 struct page *enc_extent_page = NULL;
491 loff_t extent_offset;
492 loff_t lower_offset;
493 int rc = 0;
494
495 ecryptfs_inode = page->mapping->host;
496 crypt_stat =
497 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
498 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
499 enc_extent_page = alloc_page(GFP_USER);
500 if (!enc_extent_page) {
501 rc = -ENOMEM;
502 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
503 "encrypted extent\n");
504 goto out;
505 }
506
507 for (extent_offset = 0;
508 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
509 extent_offset++) {
510 rc = crypt_extent(crypt_stat, enc_extent_page, page,
511 extent_offset, ENCRYPT);
512 if (rc) {
513 printk(KERN_ERR "%s: Error encrypting extent; "
514 "rc = [%d]\n", __func__, rc);
515 goto out;
516 }
517 }
518
519 lower_offset = lower_offset_for_page(crypt_stat, page);
520 enc_extent_virt = kmap(enc_extent_page);
521 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
522 PAGE_CACHE_SIZE);
523 kunmap(enc_extent_page);
524 if (rc < 0) {
525 ecryptfs_printk(KERN_ERR,
526 "Error attempting to write lower page; rc = [%d]\n",
527 rc);
528 goto out;
529 }
530 rc = 0;
531 out:
532 if (enc_extent_page) {
533 __free_page(enc_extent_page);
534 }
535 return rc;
536 }
537
538 /**
539 * ecryptfs_decrypt_page
540 * @page: Page mapped from the eCryptfs inode for the file; data read
541 * and decrypted from the lower file will be written into this
542 * page
543 *
544 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
545 * that eCryptfs pages may straddle the lower pages -- for instance,
546 * if the file was created on a machine with an 8K page size
547 * (resulting in an 8K header), and then the file is copied onto a
548 * host with a 32K page size, then when reading page 0 of the eCryptfs
549 * file, 24K of page 0 of the lower file will be read and decrypted,
550 * and then 8K of page 1 of the lower file will be read and decrypted.
551 *
552 * Returns zero on success; negative on error
553 */
554 int ecryptfs_decrypt_page(struct page *page)
555 {
556 struct inode *ecryptfs_inode;
557 struct ecryptfs_crypt_stat *crypt_stat;
558 char *page_virt;
559 unsigned long extent_offset;
560 loff_t lower_offset;
561 int rc = 0;
562
563 ecryptfs_inode = page->mapping->host;
564 crypt_stat =
565 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
566 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
567
568 lower_offset = lower_offset_for_page(crypt_stat, page);
569 page_virt = kmap(page);
570 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
571 ecryptfs_inode);
572 kunmap(page);
573 if (rc < 0) {
574 ecryptfs_printk(KERN_ERR,
575 "Error attempting to read lower page; rc = [%d]\n",
576 rc);
577 goto out;
578 }
579
580 for (extent_offset = 0;
581 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
582 extent_offset++) {
583 rc = crypt_extent(crypt_stat, page, page,
584 extent_offset, DECRYPT);
585 if (rc) {
586 printk(KERN_ERR "%s: Error encrypting extent; "
587 "rc = [%d]\n", __func__, rc);
588 goto out;
589 }
590 }
591 out:
592 return rc;
593 }
594
595 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
596
597 /**
598 * ecryptfs_init_crypt_ctx
599 * @crypt_stat: Uninitialized crypt stats structure
600 *
601 * Initialize the crypto context.
602 *
603 * TODO: Performance: Keep a cache of initialized cipher contexts;
604 * only init if needed
605 */
606 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
607 {
608 char *full_alg_name;
609 int rc = -EINVAL;
610
611 ecryptfs_printk(KERN_DEBUG,
612 "Initializing cipher [%s]; strlen = [%d]; "
613 "key_size_bits = [%zd]\n",
614 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
615 crypt_stat->key_size << 3);
616 mutex_lock(&crypt_stat->cs_tfm_mutex);
617 if (crypt_stat->tfm) {
618 rc = 0;
619 goto out_unlock;
620 }
621 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
622 crypt_stat->cipher, "cbc");
623 if (rc)
624 goto out_unlock;
625 crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
626 if (IS_ERR(crypt_stat->tfm)) {
627 rc = PTR_ERR(crypt_stat->tfm);
628 crypt_stat->tfm = NULL;
629 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
630 "Error initializing cipher [%s]\n",
631 full_alg_name);
632 goto out_free;
633 }
634 crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
635 rc = 0;
636 out_free:
637 kfree(full_alg_name);
638 out_unlock:
639 mutex_unlock(&crypt_stat->cs_tfm_mutex);
640 return rc;
641 }
642
643 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
644 {
645 int extent_size_tmp;
646
647 crypt_stat->extent_mask = 0xFFFFFFFF;
648 crypt_stat->extent_shift = 0;
649 if (crypt_stat->extent_size == 0)
650 return;
651 extent_size_tmp = crypt_stat->extent_size;
652 while ((extent_size_tmp & 0x01) == 0) {
653 extent_size_tmp >>= 1;
654 crypt_stat->extent_mask <<= 1;
655 crypt_stat->extent_shift++;
656 }
657 }
658
659 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
660 {
661 /* Default values; may be overwritten as we are parsing the
662 * packets. */
663 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
664 set_extent_mask_and_shift(crypt_stat);
665 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
666 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
667 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
668 else {
669 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
670 crypt_stat->metadata_size =
671 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
672 else
673 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
674 }
675 }
676
677 /**
678 * ecryptfs_compute_root_iv
679 * @crypt_stats
680 *
681 * On error, sets the root IV to all 0's.
682 */
683 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
684 {
685 int rc = 0;
686 char dst[MD5_DIGEST_SIZE];
687
688 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
689 BUG_ON(crypt_stat->iv_bytes <= 0);
690 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
691 rc = -EINVAL;
692 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
693 "cannot generate root IV\n");
694 goto out;
695 }
696 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
697 crypt_stat->key_size);
698 if (rc) {
699 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
700 "MD5 while generating root IV\n");
701 goto out;
702 }
703 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
704 out:
705 if (rc) {
706 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
707 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
708 }
709 return rc;
710 }
711
712 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
713 {
714 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
715 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
716 ecryptfs_compute_root_iv(crypt_stat);
717 if (unlikely(ecryptfs_verbosity > 0)) {
718 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
719 ecryptfs_dump_hex(crypt_stat->key,
720 crypt_stat->key_size);
721 }
722 }
723
724 /**
725 * ecryptfs_copy_mount_wide_flags_to_inode_flags
726 * @crypt_stat: The inode's cryptographic context
727 * @mount_crypt_stat: The mount point's cryptographic context
728 *
729 * This function propagates the mount-wide flags to individual inode
730 * flags.
731 */
732 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
733 struct ecryptfs_crypt_stat *crypt_stat,
734 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
735 {
736 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
737 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
738 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
739 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
740 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
741 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
742 if (mount_crypt_stat->flags
743 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
744 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
745 else if (mount_crypt_stat->flags
746 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
747 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
748 }
749 }
750
751 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
752 struct ecryptfs_crypt_stat *crypt_stat,
753 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
754 {
755 struct ecryptfs_global_auth_tok *global_auth_tok;
756 int rc = 0;
757
758 mutex_lock(&crypt_stat->keysig_list_mutex);
759 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
760
761 list_for_each_entry(global_auth_tok,
762 &mount_crypt_stat->global_auth_tok_list,
763 mount_crypt_stat_list) {
764 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
765 continue;
766 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
767 if (rc) {
768 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
769 goto out;
770 }
771 }
772
773 out:
774 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
775 mutex_unlock(&crypt_stat->keysig_list_mutex);
776 return rc;
777 }
778
779 /**
780 * ecryptfs_set_default_crypt_stat_vals
781 * @crypt_stat: The inode's cryptographic context
782 * @mount_crypt_stat: The mount point's cryptographic context
783 *
784 * Default values in the event that policy does not override them.
785 */
786 static void ecryptfs_set_default_crypt_stat_vals(
787 struct ecryptfs_crypt_stat *crypt_stat,
788 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
789 {
790 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
791 mount_crypt_stat);
792 ecryptfs_set_default_sizes(crypt_stat);
793 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
794 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
795 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
796 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
797 crypt_stat->mount_crypt_stat = mount_crypt_stat;
798 }
799
800 /**
801 * ecryptfs_new_file_context
802 * @ecryptfs_inode: The eCryptfs inode
803 *
804 * If the crypto context for the file has not yet been established,
805 * this is where we do that. Establishing a new crypto context
806 * involves the following decisions:
807 * - What cipher to use?
808 * - What set of authentication tokens to use?
809 * Here we just worry about getting enough information into the
810 * authentication tokens so that we know that they are available.
811 * We associate the available authentication tokens with the new file
812 * via the set of signatures in the crypt_stat struct. Later, when
813 * the headers are actually written out, we may again defer to
814 * userspace to perform the encryption of the session key; for the
815 * foreseeable future, this will be the case with public key packets.
816 *
817 * Returns zero on success; non-zero otherwise
818 */
819 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
820 {
821 struct ecryptfs_crypt_stat *crypt_stat =
822 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
823 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
824 &ecryptfs_superblock_to_private(
825 ecryptfs_inode->i_sb)->mount_crypt_stat;
826 int cipher_name_len;
827 int rc = 0;
828
829 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
830 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
831 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
832 mount_crypt_stat);
833 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
834 mount_crypt_stat);
835 if (rc) {
836 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
837 "to the inode key sigs; rc = [%d]\n", rc);
838 goto out;
839 }
840 cipher_name_len =
841 strlen(mount_crypt_stat->global_default_cipher_name);
842 memcpy(crypt_stat->cipher,
843 mount_crypt_stat->global_default_cipher_name,
844 cipher_name_len);
845 crypt_stat->cipher[cipher_name_len] = '\0';
846 crypt_stat->key_size =
847 mount_crypt_stat->global_default_cipher_key_size;
848 ecryptfs_generate_new_key(crypt_stat);
849 rc = ecryptfs_init_crypt_ctx(crypt_stat);
850 if (rc)
851 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
852 "context for cipher [%s]: rc = [%d]\n",
853 crypt_stat->cipher, rc);
854 out:
855 return rc;
856 }
857
858 /**
859 * ecryptfs_validate_marker - check for the ecryptfs marker
860 * @data: The data block in which to check
861 *
862 * Returns zero if marker found; -EINVAL if not found
863 */
864 static int ecryptfs_validate_marker(char *data)
865 {
866 u32 m_1, m_2;
867
868 m_1 = get_unaligned_be32(data);
869 m_2 = get_unaligned_be32(data + 4);
870 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
871 return 0;
872 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
873 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
874 MAGIC_ECRYPTFS_MARKER);
875 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
876 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
877 return -EINVAL;
878 }
879
880 struct ecryptfs_flag_map_elem {
881 u32 file_flag;
882 u32 local_flag;
883 };
884
885 /* Add support for additional flags by adding elements here. */
886 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
887 {0x00000001, ECRYPTFS_ENABLE_HMAC},
888 {0x00000002, ECRYPTFS_ENCRYPTED},
889 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
890 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
891 };
892
893 /**
894 * ecryptfs_process_flags
895 * @crypt_stat: The cryptographic context
896 * @page_virt: Source data to be parsed
897 * @bytes_read: Updated with the number of bytes read
898 *
899 * Returns zero on success; non-zero if the flag set is invalid
900 */
901 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
902 char *page_virt, int *bytes_read)
903 {
904 int rc = 0;
905 int i;
906 u32 flags;
907
908 flags = get_unaligned_be32(page_virt);
909 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
910 / sizeof(struct ecryptfs_flag_map_elem))); i++)
911 if (flags & ecryptfs_flag_map[i].file_flag) {
912 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
913 } else
914 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
915 /* Version is in top 8 bits of the 32-bit flag vector */
916 crypt_stat->file_version = ((flags >> 24) & 0xFF);
917 (*bytes_read) = 4;
918 return rc;
919 }
920
921 /**
922 * write_ecryptfs_marker
923 * @page_virt: The pointer to in a page to begin writing the marker
924 * @written: Number of bytes written
925 *
926 * Marker = 0x3c81b7f5
927 */
928 static void write_ecryptfs_marker(char *page_virt, size_t *written)
929 {
930 u32 m_1, m_2;
931
932 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
933 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
934 put_unaligned_be32(m_1, page_virt);
935 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
936 put_unaligned_be32(m_2, page_virt);
937 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
938 }
939
940 void ecryptfs_write_crypt_stat_flags(char *page_virt,
941 struct ecryptfs_crypt_stat *crypt_stat,
942 size_t *written)
943 {
944 u32 flags = 0;
945 int i;
946
947 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
948 / sizeof(struct ecryptfs_flag_map_elem))); i++)
949 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
950 flags |= ecryptfs_flag_map[i].file_flag;
951 /* Version is in top 8 bits of the 32-bit flag vector */
952 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
953 put_unaligned_be32(flags, page_virt);
954 (*written) = 4;
955 }
956
957 struct ecryptfs_cipher_code_str_map_elem {
958 char cipher_str[16];
959 u8 cipher_code;
960 };
961
962 /* Add support for additional ciphers by adding elements here. The
963 * cipher_code is whatever OpenPGP applicatoins use to identify the
964 * ciphers. List in order of probability. */
965 static struct ecryptfs_cipher_code_str_map_elem
966 ecryptfs_cipher_code_str_map[] = {
967 {"aes",RFC2440_CIPHER_AES_128 },
968 {"blowfish", RFC2440_CIPHER_BLOWFISH},
969 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
970 {"cast5", RFC2440_CIPHER_CAST_5},
971 {"twofish", RFC2440_CIPHER_TWOFISH},
972 {"cast6", RFC2440_CIPHER_CAST_6},
973 {"aes", RFC2440_CIPHER_AES_192},
974 {"aes", RFC2440_CIPHER_AES_256}
975 };
976
977 /**
978 * ecryptfs_code_for_cipher_string
979 * @cipher_name: The string alias for the cipher
980 * @key_bytes: Length of key in bytes; used for AES code selection
981 *
982 * Returns zero on no match, or the cipher code on match
983 */
984 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
985 {
986 int i;
987 u8 code = 0;
988 struct ecryptfs_cipher_code_str_map_elem *map =
989 ecryptfs_cipher_code_str_map;
990
991 if (strcmp(cipher_name, "aes") == 0) {
992 switch (key_bytes) {
993 case 16:
994 code = RFC2440_CIPHER_AES_128;
995 break;
996 case 24:
997 code = RFC2440_CIPHER_AES_192;
998 break;
999 case 32:
1000 code = RFC2440_CIPHER_AES_256;
1001 }
1002 } else {
1003 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1004 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1005 code = map[i].cipher_code;
1006 break;
1007 }
1008 }
1009 return code;
1010 }
1011
1012 /**
1013 * ecryptfs_cipher_code_to_string
1014 * @str: Destination to write out the cipher name
1015 * @cipher_code: The code to convert to cipher name string
1016 *
1017 * Returns zero on success
1018 */
1019 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1020 {
1021 int rc = 0;
1022 int i;
1023
1024 str[0] = '\0';
1025 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1026 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1027 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1028 if (str[0] == '\0') {
1029 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1030 "[%d]\n", cipher_code);
1031 rc = -EINVAL;
1032 }
1033 return rc;
1034 }
1035
1036 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1037 {
1038 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1039 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1040 int rc;
1041
1042 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1043 inode);
1044 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1045 return rc >= 0 ? -EINVAL : rc;
1046 rc = ecryptfs_validate_marker(marker);
1047 if (!rc)
1048 ecryptfs_i_size_init(file_size, inode);
1049 return rc;
1050 }
1051
1052 void
1053 ecryptfs_write_header_metadata(char *virt,
1054 struct ecryptfs_crypt_stat *crypt_stat,
1055 size_t *written)
1056 {
1057 u32 header_extent_size;
1058 u16 num_header_extents_at_front;
1059
1060 header_extent_size = (u32)crypt_stat->extent_size;
1061 num_header_extents_at_front =
1062 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1063 put_unaligned_be32(header_extent_size, virt);
1064 virt += 4;
1065 put_unaligned_be16(num_header_extents_at_front, virt);
1066 (*written) = 6;
1067 }
1068
1069 struct kmem_cache *ecryptfs_header_cache;
1070
1071 /**
1072 * ecryptfs_write_headers_virt
1073 * @page_virt: The virtual address to write the headers to
1074 * @max: The size of memory allocated at page_virt
1075 * @size: Set to the number of bytes written by this function
1076 * @crypt_stat: The cryptographic context
1077 * @ecryptfs_dentry: The eCryptfs dentry
1078 *
1079 * Format version: 1
1080 *
1081 * Header Extent:
1082 * Octets 0-7: Unencrypted file size (big-endian)
1083 * Octets 8-15: eCryptfs special marker
1084 * Octets 16-19: Flags
1085 * Octet 16: File format version number (between 0 and 255)
1086 * Octets 17-18: Reserved
1087 * Octet 19: Bit 1 (lsb): Reserved
1088 * Bit 2: Encrypted?
1089 * Bits 3-8: Reserved
1090 * Octets 20-23: Header extent size (big-endian)
1091 * Octets 24-25: Number of header extents at front of file
1092 * (big-endian)
1093 * Octet 26: Begin RFC 2440 authentication token packet set
1094 * Data Extent 0:
1095 * Lower data (CBC encrypted)
1096 * Data Extent 1:
1097 * Lower data (CBC encrypted)
1098 * ...
1099 *
1100 * Returns zero on success
1101 */
1102 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1103 size_t *size,
1104 struct ecryptfs_crypt_stat *crypt_stat,
1105 struct dentry *ecryptfs_dentry)
1106 {
1107 int rc;
1108 size_t written;
1109 size_t offset;
1110
1111 offset = ECRYPTFS_FILE_SIZE_BYTES;
1112 write_ecryptfs_marker((page_virt + offset), &written);
1113 offset += written;
1114 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1115 &written);
1116 offset += written;
1117 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1118 &written);
1119 offset += written;
1120 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1121 ecryptfs_dentry, &written,
1122 max - offset);
1123 if (rc)
1124 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1125 "set; rc = [%d]\n", rc);
1126 if (size) {
1127 offset += written;
1128 *size = offset;
1129 }
1130 return rc;
1131 }
1132
1133 static int
1134 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1135 char *virt, size_t virt_len)
1136 {
1137 int rc;
1138
1139 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1140 0, virt_len);
1141 if (rc < 0)
1142 printk(KERN_ERR "%s: Error attempting to write header "
1143 "information to lower file; rc = [%d]\n", __func__, rc);
1144 else
1145 rc = 0;
1146 return rc;
1147 }
1148
1149 static int
1150 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1151 char *page_virt, size_t size)
1152 {
1153 int rc;
1154
1155 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1156 size, 0);
1157 return rc;
1158 }
1159
1160 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1161 unsigned int order)
1162 {
1163 struct page *page;
1164
1165 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1166 if (page)
1167 return (unsigned long) page_address(page);
1168 return 0;
1169 }
1170
1171 /**
1172 * ecryptfs_write_metadata
1173 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1174 * @ecryptfs_inode: The newly created eCryptfs inode
1175 *
1176 * Write the file headers out. This will likely involve a userspace
1177 * callout, in which the session key is encrypted with one or more
1178 * public keys and/or the passphrase necessary to do the encryption is
1179 * retrieved via a prompt. Exactly what happens at this point should
1180 * be policy-dependent.
1181 *
1182 * Returns zero on success; non-zero on error
1183 */
1184 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1185 struct inode *ecryptfs_inode)
1186 {
1187 struct ecryptfs_crypt_stat *crypt_stat =
1188 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1189 unsigned int order;
1190 char *virt;
1191 size_t virt_len;
1192 size_t size = 0;
1193 int rc = 0;
1194
1195 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1196 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1197 printk(KERN_ERR "Key is invalid; bailing out\n");
1198 rc = -EINVAL;
1199 goto out;
1200 }
1201 } else {
1202 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1203 __func__);
1204 rc = -EINVAL;
1205 goto out;
1206 }
1207 virt_len = crypt_stat->metadata_size;
1208 order = get_order(virt_len);
1209 /* Released in this function */
1210 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1211 if (!virt) {
1212 printk(KERN_ERR "%s: Out of memory\n", __func__);
1213 rc = -ENOMEM;
1214 goto out;
1215 }
1216 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1217 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1218 ecryptfs_dentry);
1219 if (unlikely(rc)) {
1220 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1221 __func__, rc);
1222 goto out_free;
1223 }
1224 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1225 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1226 size);
1227 else
1228 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1229 virt_len);
1230 if (rc) {
1231 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1232 "rc = [%d]\n", __func__, rc);
1233 goto out_free;
1234 }
1235 out_free:
1236 free_pages((unsigned long)virt, order);
1237 out:
1238 return rc;
1239 }
1240
1241 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1242 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1243 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1244 char *virt, int *bytes_read,
1245 int validate_header_size)
1246 {
1247 int rc = 0;
1248 u32 header_extent_size;
1249 u16 num_header_extents_at_front;
1250
1251 header_extent_size = get_unaligned_be32(virt);
1252 virt += sizeof(__be32);
1253 num_header_extents_at_front = get_unaligned_be16(virt);
1254 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1255 * (size_t)header_extent_size));
1256 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1257 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1258 && (crypt_stat->metadata_size
1259 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1260 rc = -EINVAL;
1261 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1262 crypt_stat->metadata_size);
1263 }
1264 return rc;
1265 }
1266
1267 /**
1268 * set_default_header_data
1269 * @crypt_stat: The cryptographic context
1270 *
1271 * For version 0 file format; this function is only for backwards
1272 * compatibility for files created with the prior versions of
1273 * eCryptfs.
1274 */
1275 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1276 {
1277 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1278 }
1279
1280 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1281 {
1282 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1283 struct ecryptfs_crypt_stat *crypt_stat;
1284 u64 file_size;
1285
1286 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1287 mount_crypt_stat =
1288 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1289 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1290 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1291 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1292 file_size += crypt_stat->metadata_size;
1293 } else
1294 file_size = get_unaligned_be64(page_virt);
1295 i_size_write(inode, (loff_t)file_size);
1296 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1297 }
1298
1299 /**
1300 * ecryptfs_read_headers_virt
1301 * @page_virt: The virtual address into which to read the headers
1302 * @crypt_stat: The cryptographic context
1303 * @ecryptfs_dentry: The eCryptfs dentry
1304 * @validate_header_size: Whether to validate the header size while reading
1305 *
1306 * Read/parse the header data. The header format is detailed in the
1307 * comment block for the ecryptfs_write_headers_virt() function.
1308 *
1309 * Returns zero on success
1310 */
1311 static int ecryptfs_read_headers_virt(char *page_virt,
1312 struct ecryptfs_crypt_stat *crypt_stat,
1313 struct dentry *ecryptfs_dentry,
1314 int validate_header_size)
1315 {
1316 int rc = 0;
1317 int offset;
1318 int bytes_read;
1319
1320 ecryptfs_set_default_sizes(crypt_stat);
1321 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1322 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1323 offset = ECRYPTFS_FILE_SIZE_BYTES;
1324 rc = ecryptfs_validate_marker(page_virt + offset);
1325 if (rc)
1326 goto out;
1327 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1328 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1329 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1330 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1331 &bytes_read);
1332 if (rc) {
1333 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1334 goto out;
1335 }
1336 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1337 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1338 "file version [%d] is supported by this "
1339 "version of eCryptfs\n",
1340 crypt_stat->file_version,
1341 ECRYPTFS_SUPPORTED_FILE_VERSION);
1342 rc = -EINVAL;
1343 goto out;
1344 }
1345 offset += bytes_read;
1346 if (crypt_stat->file_version >= 1) {
1347 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1348 &bytes_read, validate_header_size);
1349 if (rc) {
1350 ecryptfs_printk(KERN_WARNING, "Error reading header "
1351 "metadata; rc = [%d]\n", rc);
1352 }
1353 offset += bytes_read;
1354 } else
1355 set_default_header_data(crypt_stat);
1356 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1357 ecryptfs_dentry);
1358 out:
1359 return rc;
1360 }
1361
1362 /**
1363 * ecryptfs_read_xattr_region
1364 * @page_virt: The vitual address into which to read the xattr data
1365 * @ecryptfs_inode: The eCryptfs inode
1366 *
1367 * Attempts to read the crypto metadata from the extended attribute
1368 * region of the lower file.
1369 *
1370 * Returns zero on success; non-zero on error
1371 */
1372 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1373 {
1374 struct dentry *lower_dentry =
1375 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1376 ssize_t size;
1377 int rc = 0;
1378
1379 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1380 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1381 if (size < 0) {
1382 if (unlikely(ecryptfs_verbosity > 0))
1383 printk(KERN_INFO "Error attempting to read the [%s] "
1384 "xattr from the lower file; return value = "
1385 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1386 rc = -EINVAL;
1387 goto out;
1388 }
1389 out:
1390 return rc;
1391 }
1392
1393 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1394 struct inode *inode)
1395 {
1396 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1397 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1398 int rc;
1399
1400 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1401 ECRYPTFS_XATTR_NAME, file_size,
1402 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1403 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1404 return rc >= 0 ? -EINVAL : rc;
1405 rc = ecryptfs_validate_marker(marker);
1406 if (!rc)
1407 ecryptfs_i_size_init(file_size, inode);
1408 return rc;
1409 }
1410
1411 /**
1412 * ecryptfs_read_metadata
1413 *
1414 * Common entry point for reading file metadata. From here, we could
1415 * retrieve the header information from the header region of the file,
1416 * the xattr region of the file, or some other repostory that is
1417 * stored separately from the file itself. The current implementation
1418 * supports retrieving the metadata information from the file contents
1419 * and from the xattr region.
1420 *
1421 * Returns zero if valid headers found and parsed; non-zero otherwise
1422 */
1423 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1424 {
1425 int rc;
1426 char *page_virt;
1427 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1428 struct ecryptfs_crypt_stat *crypt_stat =
1429 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1430 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1431 &ecryptfs_superblock_to_private(
1432 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1433
1434 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1435 mount_crypt_stat);
1436 /* Read the first page from the underlying file */
1437 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1438 if (!page_virt) {
1439 rc = -ENOMEM;
1440 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1441 __func__);
1442 goto out;
1443 }
1444 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1445 ecryptfs_inode);
1446 if (rc >= 0)
1447 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1448 ecryptfs_dentry,
1449 ECRYPTFS_VALIDATE_HEADER_SIZE);
1450 if (rc) {
1451 /* metadata is not in the file header, so try xattrs */
1452 memset(page_virt, 0, PAGE_CACHE_SIZE);
1453 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1454 if (rc) {
1455 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1456 "file header region or xattr region, inode %lu\n",
1457 ecryptfs_inode->i_ino);
1458 rc = -EINVAL;
1459 goto out;
1460 }
1461 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1462 ecryptfs_dentry,
1463 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1464 if (rc) {
1465 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1466 "file xattr region either, inode %lu\n",
1467 ecryptfs_inode->i_ino);
1468 rc = -EINVAL;
1469 }
1470 if (crypt_stat->mount_crypt_stat->flags
1471 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1472 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1473 } else {
1474 printk(KERN_WARNING "Attempt to access file with "
1475 "crypto metadata only in the extended attribute "
1476 "region, but eCryptfs was mounted without "
1477 "xattr support enabled. eCryptfs will not treat "
1478 "this like an encrypted file, inode %lu\n",
1479 ecryptfs_inode->i_ino);
1480 rc = -EINVAL;
1481 }
1482 }
1483 out:
1484 if (page_virt) {
1485 memset(page_virt, 0, PAGE_CACHE_SIZE);
1486 kmem_cache_free(ecryptfs_header_cache, page_virt);
1487 }
1488 return rc;
1489 }
1490
1491 /**
1492 * ecryptfs_encrypt_filename - encrypt filename
1493 *
1494 * CBC-encrypts the filename. We do not want to encrypt the same
1495 * filename with the same key and IV, which may happen with hard
1496 * links, so we prepend random bits to each filename.
1497 *
1498 * Returns zero on success; non-zero otherwise
1499 */
1500 static int
1501 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1502 struct ecryptfs_crypt_stat *crypt_stat,
1503 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1504 {
1505 int rc = 0;
1506
1507 filename->encrypted_filename = NULL;
1508 filename->encrypted_filename_size = 0;
1509 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1510 || (mount_crypt_stat && (mount_crypt_stat->flags
1511 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1512 size_t packet_size;
1513 size_t remaining_bytes;
1514
1515 rc = ecryptfs_write_tag_70_packet(
1516 NULL, NULL,
1517 &filename->encrypted_filename_size,
1518 mount_crypt_stat, NULL,
1519 filename->filename_size);
1520 if (rc) {
1521 printk(KERN_ERR "%s: Error attempting to get packet "
1522 "size for tag 72; rc = [%d]\n", __func__,
1523 rc);
1524 filename->encrypted_filename_size = 0;
1525 goto out;
1526 }
1527 filename->encrypted_filename =
1528 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1529 if (!filename->encrypted_filename) {
1530 printk(KERN_ERR "%s: Out of memory whilst attempting "
1531 "to kmalloc [%zd] bytes\n", __func__,
1532 filename->encrypted_filename_size);
1533 rc = -ENOMEM;
1534 goto out;
1535 }
1536 remaining_bytes = filename->encrypted_filename_size;
1537 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1538 &remaining_bytes,
1539 &packet_size,
1540 mount_crypt_stat,
1541 filename->filename,
1542 filename->filename_size);
1543 if (rc) {
1544 printk(KERN_ERR "%s: Error attempting to generate "
1545 "tag 70 packet; rc = [%d]\n", __func__,
1546 rc);
1547 kfree(filename->encrypted_filename);
1548 filename->encrypted_filename = NULL;
1549 filename->encrypted_filename_size = 0;
1550 goto out;
1551 }
1552 filename->encrypted_filename_size = packet_size;
1553 } else {
1554 printk(KERN_ERR "%s: No support for requested filename "
1555 "encryption method in this release\n", __func__);
1556 rc = -EOPNOTSUPP;
1557 goto out;
1558 }
1559 out:
1560 return rc;
1561 }
1562
1563 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1564 const char *name, size_t name_size)
1565 {
1566 int rc = 0;
1567
1568 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1569 if (!(*copied_name)) {
1570 rc = -ENOMEM;
1571 goto out;
1572 }
1573 memcpy((void *)(*copied_name), (void *)name, name_size);
1574 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1575 * in printing out the
1576 * string in debug
1577 * messages */
1578 (*copied_name_size) = name_size;
1579 out:
1580 return rc;
1581 }
1582
1583 /**
1584 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1585 * @key_tfm: Crypto context for key material, set by this function
1586 * @cipher_name: Name of the cipher
1587 * @key_size: Size of the key in bytes
1588 *
1589 * Returns zero on success. Any crypto_tfm structs allocated here
1590 * should be released by other functions, such as on a superblock put
1591 * event, regardless of whether this function succeeds for fails.
1592 */
1593 static int
1594 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1595 char *cipher_name, size_t *key_size)
1596 {
1597 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1598 char *full_alg_name = NULL;
1599 int rc;
1600
1601 *key_tfm = NULL;
1602 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1603 rc = -EINVAL;
1604 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1605 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1606 goto out;
1607 }
1608 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1609 "ecb");
1610 if (rc)
1611 goto out;
1612 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1613 if (IS_ERR(*key_tfm)) {
1614 rc = PTR_ERR(*key_tfm);
1615 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1616 "[%s]; rc = [%d]\n", full_alg_name, rc);
1617 goto out;
1618 }
1619 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1620 if (*key_size == 0) {
1621 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1622
1623 *key_size = alg->max_keysize;
1624 }
1625 get_random_bytes(dummy_key, *key_size);
1626 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1627 if (rc) {
1628 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1629 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1630 rc);
1631 rc = -EINVAL;
1632 goto out;
1633 }
1634 out:
1635 kfree(full_alg_name);
1636 return rc;
1637 }
1638
1639 struct kmem_cache *ecryptfs_key_tfm_cache;
1640 static struct list_head key_tfm_list;
1641 struct mutex key_tfm_list_mutex;
1642
1643 int __init ecryptfs_init_crypto(void)
1644 {
1645 mutex_init(&key_tfm_list_mutex);
1646 INIT_LIST_HEAD(&key_tfm_list);
1647 return 0;
1648 }
1649
1650 /**
1651 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1652 *
1653 * Called only at module unload time
1654 */
1655 int ecryptfs_destroy_crypto(void)
1656 {
1657 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1658
1659 mutex_lock(&key_tfm_list_mutex);
1660 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1661 key_tfm_list) {
1662 list_del(&key_tfm->key_tfm_list);
1663 if (key_tfm->key_tfm)
1664 crypto_free_blkcipher(key_tfm->key_tfm);
1665 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1666 }
1667 mutex_unlock(&key_tfm_list_mutex);
1668 return 0;
1669 }
1670
1671 int
1672 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1673 size_t key_size)
1674 {
1675 struct ecryptfs_key_tfm *tmp_tfm;
1676 int rc = 0;
1677
1678 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1679
1680 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1681 if (key_tfm != NULL)
1682 (*key_tfm) = tmp_tfm;
1683 if (!tmp_tfm) {
1684 rc = -ENOMEM;
1685 printk(KERN_ERR "Error attempting to allocate from "
1686 "ecryptfs_key_tfm_cache\n");
1687 goto out;
1688 }
1689 mutex_init(&tmp_tfm->key_tfm_mutex);
1690 strncpy(tmp_tfm->cipher_name, cipher_name,
1691 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1692 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1693 tmp_tfm->key_size = key_size;
1694 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1695 tmp_tfm->cipher_name,
1696 &tmp_tfm->key_size);
1697 if (rc) {
1698 printk(KERN_ERR "Error attempting to initialize key TFM "
1699 "cipher with name = [%s]; rc = [%d]\n",
1700 tmp_tfm->cipher_name, rc);
1701 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1702 if (key_tfm != NULL)
1703 (*key_tfm) = NULL;
1704 goto out;
1705 }
1706 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1707 out:
1708 return rc;
1709 }
1710
1711 /**
1712 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1713 * @cipher_name: the name of the cipher to search for
1714 * @key_tfm: set to corresponding tfm if found
1715 *
1716 * Searches for cached key_tfm matching @cipher_name
1717 * Must be called with &key_tfm_list_mutex held
1718 * Returns 1 if found, with @key_tfm set
1719 * Returns 0 if not found, with @key_tfm set to NULL
1720 */
1721 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1722 {
1723 struct ecryptfs_key_tfm *tmp_key_tfm;
1724
1725 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1726
1727 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1728 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1729 if (key_tfm)
1730 (*key_tfm) = tmp_key_tfm;
1731 return 1;
1732 }
1733 }
1734 if (key_tfm)
1735 (*key_tfm) = NULL;
1736 return 0;
1737 }
1738
1739 /**
1740 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1741 *
1742 * @tfm: set to cached tfm found, or new tfm created
1743 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1744 * @cipher_name: the name of the cipher to search for and/or add
1745 *
1746 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1747 * Searches for cached item first, and creates new if not found.
1748 * Returns 0 on success, non-zero if adding new cipher failed
1749 */
1750 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1751 struct mutex **tfm_mutex,
1752 char *cipher_name)
1753 {
1754 struct ecryptfs_key_tfm *key_tfm;
1755 int rc = 0;
1756
1757 (*tfm) = NULL;
1758 (*tfm_mutex) = NULL;
1759
1760 mutex_lock(&key_tfm_list_mutex);
1761 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1762 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1763 if (rc) {
1764 printk(KERN_ERR "Error adding new key_tfm to list; "
1765 "rc = [%d]\n", rc);
1766 goto out;
1767 }
1768 }
1769 (*tfm) = key_tfm->key_tfm;
1770 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1771 out:
1772 mutex_unlock(&key_tfm_list_mutex);
1773 return rc;
1774 }
1775
1776 /* 64 characters forming a 6-bit target field */
1777 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1778 "EFGHIJKLMNOPQRST"
1779 "UVWXYZabcdefghij"
1780 "klmnopqrstuvwxyz");
1781
1782 /* We could either offset on every reverse map or just pad some 0x00's
1783 * at the front here */
1784 static const unsigned char filename_rev_map[256] = {
1785 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1786 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1787 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1788 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1789 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1790 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1791 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1792 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1793 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1794 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1795 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1796 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1797 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1798 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1799 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1800 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1801 };
1802
1803 /**
1804 * ecryptfs_encode_for_filename
1805 * @dst: Destination location for encoded filename
1806 * @dst_size: Size of the encoded filename in bytes
1807 * @src: Source location for the filename to encode
1808 * @src_size: Size of the source in bytes
1809 */
1810 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1811 unsigned char *src, size_t src_size)
1812 {
1813 size_t num_blocks;
1814 size_t block_num = 0;
1815 size_t dst_offset = 0;
1816 unsigned char last_block[3];
1817
1818 if (src_size == 0) {
1819 (*dst_size) = 0;
1820 goto out;
1821 }
1822 num_blocks = (src_size / 3);
1823 if ((src_size % 3) == 0) {
1824 memcpy(last_block, (&src[src_size - 3]), 3);
1825 } else {
1826 num_blocks++;
1827 last_block[2] = 0x00;
1828 switch (src_size % 3) {
1829 case 1:
1830 last_block[0] = src[src_size - 1];
1831 last_block[1] = 0x00;
1832 break;
1833 case 2:
1834 last_block[0] = src[src_size - 2];
1835 last_block[1] = src[src_size - 1];
1836 }
1837 }
1838 (*dst_size) = (num_blocks * 4);
1839 if (!dst)
1840 goto out;
1841 while (block_num < num_blocks) {
1842 unsigned char *src_block;
1843 unsigned char dst_block[4];
1844
1845 if (block_num == (num_blocks - 1))
1846 src_block = last_block;
1847 else
1848 src_block = &src[block_num * 3];
1849 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1850 dst_block[1] = (((src_block[0] << 4) & 0x30)
1851 | ((src_block[1] >> 4) & 0x0F));
1852 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1853 | ((src_block[2] >> 6) & 0x03));
1854 dst_block[3] = (src_block[2] & 0x3F);
1855 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1856 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1857 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1858 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1859 block_num++;
1860 }
1861 out:
1862 return;
1863 }
1864
1865 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1866 {
1867 /* Not exact; conservatively long. Every block of 4
1868 * encoded characters decodes into a block of 3
1869 * decoded characters. This segment of code provides
1870 * the caller with the maximum amount of allocated
1871 * space that @dst will need to point to in a
1872 * subsequent call. */
1873 return ((encoded_size + 1) * 3) / 4;
1874 }
1875
1876 /**
1877 * ecryptfs_decode_from_filename
1878 * @dst: If NULL, this function only sets @dst_size and returns. If
1879 * non-NULL, this function decodes the encoded octets in @src
1880 * into the memory that @dst points to.
1881 * @dst_size: Set to the size of the decoded string.
1882 * @src: The encoded set of octets to decode.
1883 * @src_size: The size of the encoded set of octets to decode.
1884 */
1885 static void
1886 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1887 const unsigned char *src, size_t src_size)
1888 {
1889 u8 current_bit_offset = 0;
1890 size_t src_byte_offset = 0;
1891 size_t dst_byte_offset = 0;
1892
1893 if (dst == NULL) {
1894 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1895 goto out;
1896 }
1897 while (src_byte_offset < src_size) {
1898 unsigned char src_byte =
1899 filename_rev_map[(int)src[src_byte_offset]];
1900
1901 switch (current_bit_offset) {
1902 case 0:
1903 dst[dst_byte_offset] = (src_byte << 2);
1904 current_bit_offset = 6;
1905 break;
1906 case 6:
1907 dst[dst_byte_offset++] |= (src_byte >> 4);
1908 dst[dst_byte_offset] = ((src_byte & 0xF)
1909 << 4);
1910 current_bit_offset = 4;
1911 break;
1912 case 4:
1913 dst[dst_byte_offset++] |= (src_byte >> 2);
1914 dst[dst_byte_offset] = (src_byte << 6);
1915 current_bit_offset = 2;
1916 break;
1917 case 2:
1918 dst[dst_byte_offset++] |= (src_byte);
1919 current_bit_offset = 0;
1920 break;
1921 }
1922 src_byte_offset++;
1923 }
1924 (*dst_size) = dst_byte_offset;
1925 out:
1926 return;
1927 }
1928
1929 /**
1930 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1931 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1932 * @name: The plaintext name
1933 * @length: The length of the plaintext
1934 * @encoded_name: The encypted name
1935 *
1936 * Encrypts and encodes a filename into something that constitutes a
1937 * valid filename for a filesystem, with printable characters.
1938 *
1939 * We assume that we have a properly initialized crypto context,
1940 * pointed to by crypt_stat->tfm.
1941 *
1942 * Returns zero on success; non-zero on otherwise
1943 */
1944 int ecryptfs_encrypt_and_encode_filename(
1945 char **encoded_name,
1946 size_t *encoded_name_size,
1947 struct ecryptfs_crypt_stat *crypt_stat,
1948 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1949 const char *name, size_t name_size)
1950 {
1951 size_t encoded_name_no_prefix_size;
1952 int rc = 0;
1953
1954 (*encoded_name) = NULL;
1955 (*encoded_name_size) = 0;
1956 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
1957 || (mount_crypt_stat && (mount_crypt_stat->flags
1958 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
1959 struct ecryptfs_filename *filename;
1960
1961 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1962 if (!filename) {
1963 printk(KERN_ERR "%s: Out of memory whilst attempting "
1964 "to kzalloc [%zd] bytes\n", __func__,
1965 sizeof(*filename));
1966 rc = -ENOMEM;
1967 goto out;
1968 }
1969 filename->filename = (char *)name;
1970 filename->filename_size = name_size;
1971 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
1972 mount_crypt_stat);
1973 if (rc) {
1974 printk(KERN_ERR "%s: Error attempting to encrypt "
1975 "filename; rc = [%d]\n", __func__, rc);
1976 kfree(filename);
1977 goto out;
1978 }
1979 ecryptfs_encode_for_filename(
1980 NULL, &encoded_name_no_prefix_size,
1981 filename->encrypted_filename,
1982 filename->encrypted_filename_size);
1983 if ((crypt_stat && (crypt_stat->flags
1984 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1985 || (mount_crypt_stat
1986 && (mount_crypt_stat->flags
1987 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
1988 (*encoded_name_size) =
1989 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1990 + encoded_name_no_prefix_size);
1991 else
1992 (*encoded_name_size) =
1993 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1994 + encoded_name_no_prefix_size);
1995 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1996 if (!(*encoded_name)) {
1997 printk(KERN_ERR "%s: Out of memory whilst attempting "
1998 "to kzalloc [%zd] bytes\n", __func__,
1999 (*encoded_name_size));
2000 rc = -ENOMEM;
2001 kfree(filename->encrypted_filename);
2002 kfree(filename);
2003 goto out;
2004 }
2005 if ((crypt_stat && (crypt_stat->flags
2006 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2007 || (mount_crypt_stat
2008 && (mount_crypt_stat->flags
2009 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2010 memcpy((*encoded_name),
2011 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2012 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2013 ecryptfs_encode_for_filename(
2014 ((*encoded_name)
2015 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2016 &encoded_name_no_prefix_size,
2017 filename->encrypted_filename,
2018 filename->encrypted_filename_size);
2019 (*encoded_name_size) =
2020 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2021 + encoded_name_no_prefix_size);
2022 (*encoded_name)[(*encoded_name_size)] = '\0';
2023 } else {
2024 rc = -EOPNOTSUPP;
2025 }
2026 if (rc) {
2027 printk(KERN_ERR "%s: Error attempting to encode "
2028 "encrypted filename; rc = [%d]\n", __func__,
2029 rc);
2030 kfree((*encoded_name));
2031 (*encoded_name) = NULL;
2032 (*encoded_name_size) = 0;
2033 }
2034 kfree(filename->encrypted_filename);
2035 kfree(filename);
2036 } else {
2037 rc = ecryptfs_copy_filename(encoded_name,
2038 encoded_name_size,
2039 name, name_size);
2040 }
2041 out:
2042 return rc;
2043 }
2044
2045 /**
2046 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2047 * @plaintext_name: The plaintext name
2048 * @plaintext_name_size: The plaintext name size
2049 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2050 * @name: The filename in cipher text
2051 * @name_size: The cipher text name size
2052 *
2053 * Decrypts and decodes the filename.
2054 *
2055 * Returns zero on error; non-zero otherwise
2056 */
2057 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2058 size_t *plaintext_name_size,
2059 struct super_block *sb,
2060 const char *name, size_t name_size)
2061 {
2062 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2063 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2064 char *decoded_name;
2065 size_t decoded_name_size;
2066 size_t packet_size;
2067 int rc = 0;
2068
2069 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2070 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2071 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2072 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2073 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2074 const char *orig_name = name;
2075 size_t orig_name_size = name_size;
2076
2077 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2078 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2079 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2080 name, name_size);
2081 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2082 if (!decoded_name) {
2083 printk(KERN_ERR "%s: Out of memory whilst attempting "
2084 "to kmalloc [%zd] bytes\n", __func__,
2085 decoded_name_size);
2086 rc = -ENOMEM;
2087 goto out;
2088 }
2089 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2090 name, name_size);
2091 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2092 plaintext_name_size,
2093 &packet_size,
2094 mount_crypt_stat,
2095 decoded_name,
2096 decoded_name_size);
2097 if (rc) {
2098 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2099 "from filename; copying through filename "
2100 "as-is\n", __func__);
2101 rc = ecryptfs_copy_filename(plaintext_name,
2102 plaintext_name_size,
2103 orig_name, orig_name_size);
2104 goto out_free;
2105 }
2106 } else {
2107 rc = ecryptfs_copy_filename(plaintext_name,
2108 plaintext_name_size,
2109 name, name_size);
2110 goto out;
2111 }
2112 out_free:
2113 kfree(decoded_name);
2114 out:
2115 return rc;
2116 }
2117
2118 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2119
2120 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2121 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2122 {
2123 struct blkcipher_desc desc;
2124 struct mutex *tfm_mutex;
2125 size_t cipher_blocksize;
2126 int rc;
2127
2128 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2129 (*namelen) = lower_namelen;
2130 return 0;
2131 }
2132
2133 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2134 mount_crypt_stat->global_default_fn_cipher_name);
2135 if (unlikely(rc)) {
2136 (*namelen) = 0;
2137 return rc;
2138 }
2139
2140 mutex_lock(tfm_mutex);
2141 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2142 mutex_unlock(tfm_mutex);
2143
2144 /* Return an exact amount for the common cases */
2145 if (lower_namelen == NAME_MAX
2146 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2147 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2148 return 0;
2149 }
2150
2151 /* Return a safe estimate for the uncommon cases */
2152 (*namelen) = lower_namelen;
2153 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2154 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2155 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2156 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2157 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2158 /* Worst case is that the filename is padded nearly a full block size */
2159 (*namelen) -= cipher_blocksize - 1;
2160
2161 if ((*namelen) < 0)
2162 (*namelen) = 0;
2163
2164 return 0;
2165 }
This page took 0.18026 seconds and 5 git commands to generate.